Handwritten signature verification : a hidden Markov model approach

Le Riche, Pierre (Pierre Jacques) (2000-12)

Thesis (MEng)--University of Stellenbosch, 2000.

Thesis

ENGLISH ABSTRACT: Handwritten signature verification (HSV) is the process through which handwritten signatures are analysed in an attempt to determine whether the person who made the signature is who he claims to be. Banks and other financial institutions lose billions of rands annually to cheque fraud and other crimes that are preventable with the aid of good signature verification techniques. Unfortunately, the volume of cheques that are processed precludes a thorough HSV process done in the traditional manner by human operators. It is the aim of this research to investigate new methods to compare signatures automatically, to eventually speed up the HSV process and improve on the accuracy of existing systems. The new technology that is investigated is the use of the so-called hidden Markov models (HMMs). It is only quite recently that the computing power has become commonly available to make the real-time use of HMMs in pattern recognition a possibility. Two demonstration programs, SigGrab and Securitlheque, have been developed that make use of this technology, and show excellent improvements over other techniques and competing products. HSV accuracies in excess of99% can be attained.

AFRIKAANSE OPSOMMING: Handgeskrewe handtekening verifikasie (HHV) is die proses waardeur handgeskrewe handtekeninge ondersoek word in 'n poging om te bevestig of die persoon wat die handtekening gemaak het werklik is wie hy voorgee om te wees. Banke en ander finansiele instansies verloor jaarliks biljoene rande aan tjekbedrog en ander misdrywe wat voorkom sou kon word indien goeie metodes van handtekening verifikasie daargestel kon word. Ongelukkig is die volume van tjeks wat hanteer word so groot, dat tradisionele HHV deur menslike operateurs 'n onbegonne taak is. Dit is die doel van hierdie navorsmg om nuwe metodes te ondersoek om handtekeninge outomaties te kan vergelyk en so die HHV proses te bespoedig en ook te verbeter op die akkuraatheid van bestaande stelsels. Die nuwe tegnologie wat ondersoek is is die gebruik van die sogenaamde verskuilde Markov modelle (VMMs). Dit is eers redelik onlangs dat die rekenaar verwerkingskrag algemeen beskikbaar geraak het om die intydse gebruik van VMMs in patroonherkenning prakties moontlik te maak. Twee demonstrasieprogramme, SigGrab en SecuriCheque, is ontwikkel wat gebruik maak van hierdie tegnologie en toon uitstekende verbeterings teenoor ander tegnieke en kompeterende produkte. 'n Akkuraatheid van 99% of hoer word tipies verkry.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/51784
This item appears in the following collections: