A unified strategy for windup prevention in control systems with multiple saturating actuators

Browne, Michael John (2000-12)

Thesis (MScEng)--University of Stellenbosch, 2000.

Thesis

ENGLISH ABSTRACT: A unified method is proposed to treat saturation in both Multi-Input-Multi-Output MIMO and Single-Input-Single-Output controllers. This method offers superior performance over existing MIM 0 anti-saturation schemes. The anti-saturation problem is posed as a linear programming problem. A practical and efficient implementation of the algorithm is developed by transforming the problem into its dual linear programming form. The problem, in dual form, is then solved using the dual simplex method rather than the primal simplex method. The nature of the problem when expressed in dual form and the properties of the dual simplex method are harmonised to guarantee an initial basic feasible solution and an optimal bounded final solution in a finite, predictable and minimal number of iterations. The resultant controller never saturates, hence cannot windup. Furthermore the resultant controller always applies the optimal control effort to the plant to minimise the error signal input as follows: • The controller is governed such that while the future free response combined with the present forced response of the controller results in no saturation limits being exceeded, now or at some time in the future, the normal linear response of the controller prevails. • When the future free response combined with the present forced response of the controller will result in a saturation limit being reached, now or at some time in the future, the present time input signal into the controller is optimally governed to prevent the saturation limit from being exceeded at any future time.

AFRIKAANSE OPSOMMING: 'n Metode word voorgestel waarmee versadiging in enkel-inset enkel-uitset en meer-inset meeruitset (MIMU) stelsels beheer kan word. Die metode presteer beter as ander huidige teenversadiging- maatreels vir (MIMU) beheerders. Die teen-versadigings-probleem word as 'n lineere programmeringsprobleem herformuleer. 'n Praktiese en effektiewe implementering van die algoritme word verkry deur die probleem na die duale vorm te transformeer. Die probleem, in duale vorm, word opgelos met die duale simplex metode, in plaas van die direkte metode. Die eienskappe van hierdie formulering is 'n gewaarborgde, aanvanklike, bereikbare oplossing en 'n optimale, begrensde, finale oplossing in 'n eindige, voorspelbare en minimum aantal stappe. Die uiteindelike beheerder versadig nooit nie, en wen gevolglik nie op nie. Die beheerder wend altyd die optimale aanleg-inset aan om die foutsein te minimeer soos volg: • Wanneer die nul-inset gedrag saam met die huidige inset-gedrag geen beperkings nou of in die toekoms saloorskry nie, word geen beperkende aksie geneem nie, en tree die beheerder dus lineer op. • Sodra die toekomstige nul-inset gedrag saam met die huidige inset-gedrag, nou of later versadiging sou veroorsaak, word die huidige inset tot die beheerder optimaal begrens om latere versadiging te voorkom.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/51629
This item appears in the following collections: