High incidence of antimicrobial resistant organisms including extended spectrum beta-lactamase producing Enterobacteriaceae and methicillin-resistant Staphylococcus aureus in nasopharyngeal and blood isolates of HIV-infected children from Cape Town, South Africa

Cotton, Mark F. ; Wasserman, Elizabeth ; Smit, Juanita ; Whitelaw, Andrew ; Zar, Heather J. (BioMed Central, 2008-04)

Includes bibliography


Background: There is little information on nasopharyngeal (NP) flora or bacteremia in HIV-infected children. Our aim was to describe the organisms and antimicrobial resistance patterns in children enrolled in a prospective study comparing daily and three times weekly trimethoprim-sulfamethoxazole (TMP-SMX) and isoniazid (INH) or placebo prophylaxis. Methods: NP swabs were taken at baseline from HIV-infected children enrolled in the study. Standard microbiological techniques were used. Children were grouped according to previous or current exposure to TMP-SMX and whether enrolled to the study during a period of hospitalization. Blood culture results were also recorded within 12 months of baseline. Results: Two hundred and three children, median age 1.8 (Interquartile [IQ]: 0.7–4) years had NP swabs submitted for culture. One hundred and eighty-four (90.7%) had either stage B or C HIV disease. One hundred and forty-one (69.8%) were receiving TMP-SMX and 19 (9.4%) were on antiretroviral therapy. The majority, 168 (82%) had a history of hospitalization and 91 (44.8%) were enrolled during a period of hospitalization. Thirty-two subjects (16.2%) died within 12 months of study entry. One hundred and eighty-one potential pathogens were found in 167 children. The most commonly isolated organisms were Streptococcus pneumoniae (48: 22.2%), Gram-negative respiratory organisms (Haemophilus influenzae and Moraxella catarrhalis) (47: 21.8%), Staphylococcus aureus (44: 20.4%), Enterobacteriaceae 32 (14.8%) and Pseudomonas 5 (2.3%). Resistance to TMP-SMX occurred in > 80% of pathogens except for M. catarrhalis (2: 18.2% of tested organisms). TMP-SMX resistance tended to be higher in those receiving it at baseline (p = 0.065). Carriage of Methicillin resistant S. aureus (MRSA) was significantly associated with being on TMP-SMX at baseline (p = 0.002). Minimal inhibitory concentrations (MIC) to penicillin were determined for 18 S. pneumoniae isolates: 7 (38.9%) were fully sensitive (MIC ≤ 0.06 μg/ml), 9 (50%) had intermediate resistance (MIC 0.12 – 1 μg/ml) and 2 (11.1%) had high level resistance (MIC ≥2 μg/ml). Fifty percent of Enterobacteriaceae produced extended spectrum beta-lactamases (ESBL) (resistant to third generation cephalosporins) and 56% were resistant to gentamicin. Seventy-seven percent of S. aureus were MRSA. Carriage of resistant organisms was not associated with hospitalization. On multivariate logistic regression, risk factors for colonization with Enterobacteriaceae were age ≤ one year (Odds ratio 4.4; 95% Confidence Interval 1.9–10.9; p = 0.0008) and CDC stage C disease (Odds ratio 3.6; 95% Confidence Interval 1.5–8.6; p = 0.005) Nineteen (9.4%) subjects had 23 episodes of bacteremia. Enterobacteriaceae were most commonly isolated (13 of 25 isolates), of which 6 (46%) produced ESBL and were resistant to gentamicin. Conclusion: HIV-infected children are colonized with potential pathogens, most of which are resistant to commonly used antibiotics. TMP-SMX resistance is extremely common. Antibiotic resistance is widespread in colonizing organisms and those causing invasive disease. Antibiotic recommendations should take cognizance of resistance patterns. Antibiotics appropriate for ESBL-producing Enterobacteriaceae and MRSA should be used for severely ill HIV-infected children in our region. Further study of antibiotic resistance patterns in HIV-infected children from other areas is needed.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/5114