Fredholm theory in general Banach algebras

Heymann, Retha (2010-03)

Thesis (MSc (Mathematics))--University of Stellenbosch, 2010.

Thesis

ENGLISH ABSTRACT: This thesis is a study of a generalisation, due to R. Harte (see [9]), of Fredholm theory in the context of bounded linear operators on Banach spaces to a theory in a Banach algebra setting. A bounded linear operator T on a Banach space X is Fredholm if it has closed range and the dimension of its kernel as well as the dimension of the quotient space X/T(X) are finite. The index of a Fredholm operator is the integer dim T−1(0)−dimX/T(X). Weyl operators are those Fredholm operators of which the index is zero. Browder operators are Fredholm operators with finite ascent and descent. Harte’s generalisation is motivated by Atkinson’s theorem, according to which a bounded linear operator on a Banach space is Fredholm if and only if its coset is invertible in the Banach algebra L(X) /K(X), where L(X) is the Banach algebra of bounded linear operators on X and K(X) the two-sided ideal of compact linear operators in L(X). By Harte’s definition, an element a of a Banach algebra A is Fredholm relative to a Banach algebra homomorphism T : A ! B if Ta is invertible in B. Furthermore, an element of the form a + b where a is invertible in A and b is in the kernel of T is called Weyl relative to T and if ab = ba as well, the element is called Browder. Harte consequently introduced spectra corresponding to the sets of Fredholm, Weyl and Browder elements, respectively. He obtained several interesting inclusion results of these sets and their spectra as well as some spectral mapping and inclusion results. We also convey a related result due to Harte which was obtained by using the exponential spectrum. We show what H. du T. Mouton and H. Raubenheimer found when they considered two homomorphisms. They also introduced Ruston and almost Ruston elements which led to an interesting result related to work by B. Aupetit. Finally, we introduce the notions of upper and lower semi-regularities – concepts due to V. M¨uller. M¨uller obtained spectral inclusion results for spectra corresponding to upper and lower semi-regularities. We could use them to recover certain spectral mapping and inclusion results obtained earlier in the thesis, and some could even be improved.

AFRIKAANSE OPSOMMING: Hierdie tesis is ‘n studie van ’n veralgemening deur R. Harte (sien [9]) van Fredholm-teorie in die konteks van begrensde lineˆere operatore op Banachruimtes tot ’n teorie in die konteks van Banach-algebras. ’n Begrensde lineˆere operator T op ’n Banach-ruimte X is Fredholm as sy waardeversameling geslote is en die dimensie van sy kern, sowel as di´e van die kwosi¨entruimte X/T(X), eindig is. Die indeks van ’n Fredholm-operator is die heelgetal dim T−1(0) − dimX/T(X). Weyl-operatore is daardie Fredholm-operatore waarvan die indeks gelyk is aan nul. Fredholm-operatore met eindige styging en daling word Browder-operatore genoem. Harte se veralgemening is gemotiveer deur Atkinson se stelling, waarvolgens ’n begrensde lineˆere operator op ’n Banach-ruimte Fredholm is as en slegs as sy neweklas inverteerbaar is in die Banach-algebra L(X) /K(X), waar L(X) die Banach-algebra van begrensde lineˆere operatore op X is en K(X) die twee-sydige ideaal van kompakte lineˆere operatore in L(X) is. Volgens Harte se definisie is ’n element a van ’n Banach-algebra A Fredholm relatief tot ’n Banach-algebrahomomorfisme T : A ! B as Ta inverteerbaar is in B. Verder word ’n Weyl-element relatief tot ’n Banach-algebrahomomorfisme T : A ! B gedefinieer as ’n element met die vorm a + b, waar a inverteerbaar in A is en b in die kern van T is. As ab = ba met a en b soos in die definisie van ’n Weyl-element, dan word die element Browder relatief tot T genoem. Harte het vervolgens spektra gedefinieer in ooreenstemming met die versamelings van Fredholm-, Weylen Browder-elemente, onderskeidelik. Hy het heelparty interessante resultate met betrekking tot insluitings van die verskillende versamelings en hulle spektra verkry, asook ’n paar spektrale-afbeeldingsresultate en spektraleinsluitingsresultate. Ons dra ook ’n verwante resultaat te danke aan Harte oor, wat verkry is deur van die eksponensi¨ele-spektrum gebruik te maak. Ons wys wat H. du T. Mouton en H. Raubenheimer verkry het deur twee homomorfismes gelyktydig te beskou. Hulle het ook Ruston- en byna Rustonelemente gedefinieer, wat tot ’n interessante resultaat, verwant aan werk van B. Aupetit, gelei het. Ten slotte stel ons nog twee begrippe bekend, naamlik ’n onder-semi-regulariteit en ’n bo-semi-regulariteit – konsepte te danke aan V. M¨uller. M¨uller het spektrale-insluitingsresultate verkry vir spektra wat ooreenstem met bo- en onder-semi-regulariteite. Ons kon dit gebruik om sekere spektrale-afbeeldingsresultate en spektrale-insluitingsresultate wat vroe¨er in hierdie tesis verkry is, te herwin, en sommige kon selfs verbeter word.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/4265
This item appears in the following collections: