Development of a hybrid light alloy - carbon fibre aerospace structural panel

Roets, Philip J. (2010-03)

Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2010.

Thesis

ENGLISH ABSTRACT: The development of light and sti aerospace structural panels is very important in the aerospace industry, e.g. a lighter satellite requires less fuel to launch it into space which in turn saves money for the owner of the satellite. This thesis describes the design, optimisation, manufacturing and testing of a ribbed light alloy core - carbon bre face sheets, sandwich-type, satellite panel operating at launch loading conditions (115 m/s2 accelerations and requiring a minimum structural natural frequency of 90 Hz) to determine the optimum sti ness per mass ratio of the panel. The panel layout was based on a satellite panel designed by SunSpace and Information Systems for the Sumbandila satellite. Only the black box mounting positions of the original panel were used in the optimisation of the new panel. The core of the evaluation panel was manufactured from aluminium (6082-T6). The carbon bre skins were manufactured from unidirectional high modulus carbon bre (K63712) in a [0/90/0] wet layup with the 0± direction in the longitudinal direction of the panel. A three-dimensional model of the panel consisting of 3D wedge elements and containing all the boundary conditions was modelled with the use of the nite element software MSC Patran. The model was optimised with the use of optimisation software Genesis to locate the rib positions. Genesis removes all the elements containing the least amount of stress; only 30% of the core elements were kept while restricting the elements to form an extruded con guration (for milling machining) throughout the thickness of the panel. The rib elements remaining were replaced in MSC Patran by shell elements and the shell element thicknesses were optimised with the use of Genesis to ensure the lightest and sti est possible structure. The optimised rib thicknesses were imported into MSC Patran and the numerically optimised model could then be analysed with MSC Nastran. The numerical model was converted into a manufacturable structure and the core was machined from a solid aluminium sheet. The ribs were machined in the shape of an Ibeam to allow for minimum weight and a su cient bonding area for the two carbon bre face sheets. Elevated circular surfaces, protruding through the carbon bre sheets, were machined in the position of the black box mountings to allow for better heat transfer away from the black boxes. The carbon bre face sheets were bonded to the metal core (3M Scotch-Weld 9323 B/A). The nished panel was put through various tests to determine whether it is suitable for use in the aviation industry. The tests included modal testing, random vibration testing and temperature testing to determine if the structure is durable enough for use in satellites. The test results are promising and show that a substantive amount of money can be saved by reducing the mass on the structure. By using optimisation software and ribbed light alloy - carbon bre face sheets sandwich structures the performance of the structures can be improved without adding mass to the structure.

AFRIKAANSE OPSOMMING: Die ontwikkeling van ligter en stywer lugvaartstruktuur panele is baie belangrik in die lugvaart-industrie, bv. 'n ligter satelliet benodig minder brandstof om tot in 'n wentelbaan lanseer te word. Dit bespaar sodoende lanseerkostes vir die eienaar van die satelliet. In die verslag word die ontwerp, optimering, vervaardiging en toets van 'n gewebde, ligte allooi kern - koolstofveselvel, saamgestelde materiaal, satelliet struktuurpaneel wat onderwerp word aan lanseer belastingstoestande van ongeveer 115 m/s2 versnellings ondersoek. Die tegnieke word gebruik om die optimale styfheid per eenheidsmassa-verhouding te bepaal. Die paneel benodig 'n minimum strukturele eerste natuurlike frekwensie van 90 Hz. Die basiese paneel uitleg is verkry vanaf 'n satellietpaneel wat deur SunSpace and Information Systems ontwerp is vir die basisplaat van die Sumbandila satelliet. Die enigste geometrie wat van die oorspronklike struktuur behou is om die nuwe struktuur te optimeer is die vashegtingspunt-posisies van die swart-kassies. Die kern van die ge-optimeerde struktuur is vervaardig uit gemasjieneerde aluminium (6082-T6). Die koolstofvesel-velle is vervaardig uit enkelrigting hoë-modulus koolstofvesel-doek (K63712). Die oplegging is gedoen met 'n nat-opleggingsproses waar die drie lae van elke vel 'n [0/90/0] oriëntasie het met, die 0± lae in die langsrigting van die paneel. 'n Drie-dimensionele eindige element model van die paneel is geskep met behulp van die MSC Patran sagteware pakket met die model hoofsaaklik opgebou uit 3D wig-elemente. Al die lanseertuig vashegtingsrandwaardes is in die eindige element model ingebou. Om die web posisies te bepaal is die Genesis optimeringsagteware pakket gebruik. Verskeie ontwerpsvoorwaardes is gespesi seer waaraan die optimeringsproses moes voldoen. Slegs 30% van die wig-elemente mag behoue bly in die optimeringsproses en al die elemente deur die dikte van die paneel moet of behou of verwyder word. Dit verseker dat die resultaat masjieneerbaar is met 'n freesmasjien. Die oorblywende wig-elemente is in MSC Patran vervang met dop-elemente. Die dopelemente se diktes is ge-optimeer met Genesis om die ligste en styfste struktuur moontlik te kry. Die ge-optimeerde dop-element diktes is in die MSC Patran model ingetrek. Die numeries ge-optimeerde model is daarna met behulp van MSC Nastran ge-analiseer. Nadat die numeriese model omgeskakel is in 'n vervaardigbare struktuur is die kern gemasjieneer uit 'n soliede blok aluminium. Die webbe is ontwerp en vervaardig in 'n I-balk vorm. Dit laat toe dat die webbe 'n minimum gewig en genoegsame area het waarop die koolstofvesel velle geheg kan word. Verhewe vlakke is gemasjieneer op die aluminium kern in die posisies van die swart-kassie vashegtingpunte. Hierdie verhewe vlakke steek deur die koolstofvesel-vel aan die kant waar die swart-kassies vasgeheg word. Dit verseker 'n metaal-op-metaal verbinding tussen die kern en die swart-kassies vir beter hittegeleiding. 3M Scotch-Weld 9323 B/A epoksie is gebruik om die koolstofvesel-velle aan die aluminium kern te heg. Die voltooide struktuur is aan 'n reeks toetse onderwerp om te bepaal of dit geskik is om in die ruimtevaart-industrie gebruik te kan word. Dit sluit modale toetse, lukrake vibrasie toetse en temperatuursverandering toetse in. Die toetsresultate sal bepaal of die struktuur duursaam genoeg is om in satelliete gebruik te word. Die toetsresultate is belowend en dui daarop dat deur massa te bespaar op die struktuur, 'n aansienlike bedrag op satelliet lanseer-kostes bespaar kan word. Deur optimeringsagteware tesame met gewebde ligte allooi kern - koolstofvesel vel, saamgestelde materiaal strukture te gebruik kan die werksverrigting van die strukture verbeter sonder dat massa bygevoeg word.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/4151
This item appears in the following collections: