SUNScholar will be unavailable on 25 April 2018 from 08:00 to 10:00 South African Time for routine maintenance. Please contact for queries.

Electrolytes for redox flow battery systems

Modiba, Portia (2010-03)

Thesis (PhD (Chemistry and Polymer Science))--University of Stellenbosch, 2010.


Electrochemical behaviour of Ce, Fe, Cr,V and Mn in the presence of DTPA, EDTA, EDDS, NTA ligands were investigated by using cyclic voltammetry, a rotating disc electrode and electrochemical impedance spectroscopy for use in redox flow battery (RFB) systems. RFB is currently used for energy storage, the vanadium, which is used in most of the RFB’s, however suffers from species crossover and sluggish reactions, which limit the lifetime of the battery. These various ligands and metal complexes mentioned above where all examined to identify the suitable and favoured electrolyte that can be used for a RFB system. Kinetic parameters such as potential, limiting current, transfer coefficient, diffusion coefficients, and rate constants were studied. RDE experiments confirmed that the parameters measured by CV are similar under hydrodynamic conditions and can be used to determine the kinetic parameters of the redox couples. The use of DTPA as a ligand for complexation of Ce(IV) gave more favourable results compared to other ligand with various metal complexes used in this study [1-3]. The results of kinetic studies of Ce(IV)–DTPA complex shows promise as an electrolyte for a redox flow battery. The separation of V(IV)/(V), Fe (III)/(IV),Cr(III)/(IV),Mn (III)/(IV) and Ce(III)/(IV) with various ligands (EDTA, EDDS, NTA and DTPA) were also investigated using capillary electrophoresis. To understand the speciation of these metal complexes as used in this study and particularly the vanadium, for the reason that it has a complicated (V) oxidation state. The charge/discharge performance of all electrolytes used in this work was determined and a high voltage achieved when Ce-DTPA was used, and it is compared to that of the vanadium electrolyte currently in use. This was evaluated with systems studied previously. Therefore, Ce-DTPA will be a suitable electrolyte for redox flow battery systems.

Please refer to this item in SUNScholar by using the following persistent URL:
This item appears in the following collections: