Modifying redox potential and its impact on metabolic fluxes in Saccharomyces cerevisiae

Date
2010-03
Authors
Jain, Vishist Kumar
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : University of Stellenbosch
Abstract
ENGLISH ABSTRACT: The production of glycerol by Saccharomyces cerevisiae under anaerobic conditions is essential for maintaining the intracellular redox balance thereby allowing continuous energy generation through conversion of sugars into ethanol. In addition, glycerol can act as an osmolyte and is synthesized to maintain turgor pressure under hyperosmotic conditions. The production of ethanol from sugars can be a redox-neutral process, where the NAD+ (nicotinamide adenine dinucleotide) that is consumed during the glycolytic conversion of glyceraldehyde-3-phosphate to pyruvate is later regenerated by the reduction of acetaldehyde to ethanol. However, in particular the redirection of metabolic flux of pyruvate to biomass formation leads to excess NADH formation. The intracellular redox balance in these conditions is then primarily maintained through formation of glycerol which is control by two main enzymes, namely Gpd1p and Gpd2p. Deletion of the genes coding for these two proteins leads to accumulation of NADH and renders the cells incapable of maintaining their fermentative ability and growth under anaerobic conditions. The goal of this study was to investigate the growth, fermentative ability and metabolite synthesis of various gpd1Δgpd2Δ double mutant (DM) strains in which the redox balancing potential was partially restored through expression of native or heterologous genes. Strains were constructed by introducing alternative NADH oxidizing pathways or manipulating existing pathways to favour the oxidation of excess NADH. More specifically, the modifications included (i) sorbitol formation; (ii) establishing a pathway for propane-1,2-diol formation; and (iii) increasing ethanol formation. Apart from genetically manipulating the gpd1Δgpd2Δ double mutant, the addition of pyruvate during growth was also investigated. The experiments were carried out under oxygen limited conditions in a high sugar medium and the fermented product was analyzed for total sugar consumed, biomass and primary and secondary metabolites formed by the different strains. The relationships between sugar consumption, growth and metabolite production by different strains were investigated by comparing the data generated from the different strains by using multivariate data analysis tools. Analysis of the pathways involved in the production of primary (acids, ethanol and other metabolites) and secondary metabolites (aroma compounds) were also carried out in order to establish flux modification in comparison to the wild type (WT) strain. The results revealed that these manipulations improved the fermentative capacity of the gpd1Δgpd2Δ double mutant, suggesting a partial recovery of NAD+ regeneration ability, albeit not to the extent of the WT strain. As expected a significant correlation was found between sugar consumption and ethanol and biomass formation. Ethanol yields but not final concentrations were increased by the genetic manipulations. Sorbitol by DM(srlD) and DM(SOR1) strains and propane-1,2-diol by DM(gldA, GRE3, mgsA) strain were formed in significant amounts although at lower molar yields than glycerol. Furthermore, by genetic manipulation the yield of secondary metabolites (isobutanol, isoamyl alcohol, 2-phenyl ethanol and isobutyric acid) was increased whereas the ethyl acetate concentration and yield decreased. The results indicate that aroma compound properties of wine yeasts could be favourably changed by manipulating the glycerol synthesizing pathway. The addition of pyruvate during the growth of gpd1Δgpd2Δ double mutant contributes to excess NADH re-oxidation through additional ethanol formation.
AFRIKAANSE OPSOMMING: Die produksie van gliserol deur Saccharomyces cerevisiae onder anaërobiese toestande is noodsaaklik vir die onderhouding van die intrasellulêre redoksbalans en maak dus ononderbroke energie-ontwikkeling tydens die omsetting van suikers in etanol moontlik. Daarbenewens kan gliserol as ‘n osmoliet optree en word dit gesintetiseer om turgordruk onder hiperosmotiese toestande te onderhou. Die produksie van etanol uit suikers kan ‘n redoksneutrale proses wees, waar die NAD+ (nikotinamiedadenien-dinukleotied) wat tydens die glikolitiese omskakeling van gliseraldehied-3-fosfaat na piruvaat verbruik word, later deur die reduksie van asetaldehied na etanol regenereer word. Die nasending van die metaboliese vloeiing van piruvaat na biomassavorming lei egter na ‘n oormaat NADH-vorming. Onder hierdie toestande word die intrasellulêre redoksbalans dan hoofsaaklik deur die vorming van gliserol onderhou. Laasgenoemde word veral deur twee ensieme beheer, naamlik Gpd1p en Gpd2p. Die delesie van die gene wat vir hierdie twee proteïene enkodeer, lei tot ‘n akkumulasie van NADH en veroorsaak dat die selle nie hulle gistingsvermoë en groei onder anaërobiese toestande kan onderhou nie. Die doelwit van hierdie studie was om die groei, gistingsvermoë en metabolietsintese van verskeie gpd1Δgpd2Δ dubbelmutant (DM) rasse te ondersoek waarin die redoksbalanseringspotensiaal gedeeltelik herstel is deur die uitdrukking van inheemse of heteroloë gene. Rasse is gekonstrueer deur alternatiewe NADH-oksiderende weë in te voer of deur bestaande weë te manipuleer om die oksidasie van oormaat NADH te bevoordeel. Meer spesifiek het die modifikasies die volgende ingesluit: (i) sorbitolvorming; (ii) die vestiging van ‘n weg vir propaan-1,2-diol-vorming; en (iii) die verhoging van etanolvorming. Buiten die genetiese manipulering van die gpd1Δgpd2Δ dubbelmutant, is die byvoeging van piruvaat tydens groei ook ondersoek. Die eksperimente is onder suurstofbeperkte toestande in ‘n hoë-suiker medium uitgevoer en die gegiste produk is ondersoek vir totale suikerverbruik, biomassa en primêre en sekondêre metaboliete wat deur die verskillende rasse gevorm is. Die verhoudings tussen suikerverbruik, groei en metabolietproduksie deur die verskillende rasse is ondersoek deur die data wat deur die verskillende rasse gegeneer is deur middel van meerveranderlike data-analise te vergelyk. Analise van die weë wat in die produksie van primêre (sure, etanol en ander metaboliete) en sekondêre metaboliete (aromaverbindings) betrokke is, is ook uitgevoer om die verandering in vloei te bepaal in vergelyking met die wildetipe (WT) ras. Die resultate het gewys dat hierdie manipulasies die gistingsvermoë van die gpd1Δgpd2Δ-dubbelmutant verbeter het, wat ‘n gedeeltelike herstel van NAD+- regenerasievermoë voorstel, hoewel nie tot dieselfde mate as in die WT-ras nie. Soos verwag, is ‘n beduidende korrelasie tussen suikerverbruik en etanol- en biomassavorming gevind. Etanolopbrengs is deur genetiese manipulasies verhoog, maar nie die finale konsentrasies van etanol nie. Sorbitol is in beduidende hoeveelhede deur die DM(srlD) en DM(SOR1)-rasse gevorm en propaan-1,2-diol deur die DM(gldA, GRE3, mgsA) -rasse, hoewel teen laer molare opbrengste as gliserol. Verder is die opbrengs van sekondêre metaboliete (isobutanol, iso-amielalkohol, 2-fenieletanol en isobottersuur) deur genetiese manipulasie verhoog, terwyl die etielasetaatkonsentrasie en -opbreng verlaag is. Die resultate dui aan dat die aromaverbindingseienskappe van wyngiste voordelig verander kan word deur die gliserolsintetiseringsweg te manipuleer. Die byvoeging van piruvaat tydens die groei van die gpd1Δgpd2Δ-dubbelmutant dra by tot uitermate NADH-reoksidasie tydens die bykomende vorming van etanol.
Description
Thesis (PhD (Science) (Viticulture and Oenology. Wine Biotechnology))--University of Stellenbosch, 2010.
Keywords
Saccharomyces cerevisiae, Redox balance, Propane-1,2-diol, Dissertations -- Wine biotechnology, Theses -- Wine biotechnology, Yeasts, Fermentation, Wine and wine making
Citation