Iron and multiple sclerosis

Bloem, Liezl (Stellenbosch : University of Stellenbosch, 2007-03)

Thesis (MSc (Genetics))--University of Stellenbosch, 2007.

Thesis

Multiple sclerosis (MS) is a disease that causes neurological dysfunction. Studies attempting to elucidate the role of genes in MS development may aid efforts to control the damage caused by the disease that affects two million people worldwide, e.g. improved diagnosis and treatment. Although the association of MS and genes has not been fully characterized the proposed genetic etiology has been supported by the observed association of MS with the Major Histocompatibility Complex (MHC), haplotype HLA-DRB1*1501, DRB5*0101, DQA1*0102, DQB1*0602. Iron, or rather the dysregulation thereof, has also been implicated as a precipitating factor in MS development. Considering the factors of iron dysregulation and the genes involved in iron regulation, this study aims to identify variation within genes involved in iron metabolism namely the high iron gene (HFE), solute-carrier family 40 (iron regulated transporter) member 1 gene (SLC40A1), hepcidin anti-microbial peptide (HAMP), cytochrome b reductase 1 (CYBRD1) and hemojuvelin (HJV). Screening of 40 patients (33 female, seven male; 33 Caucasian, seven Coloured) for each of the five genes was achieved by the Heteroduplex Single-Stranded Conformation Polymorphism (HEX-SSCP) technique. Semi-automated DNA sequencing allowed for verification and characterization of the variants detected. Results included identification of four novel variants present in only the Caucasian patient group, characterized as IVS4-53G→A (HFE) (one of 33 patients; 3%), IVS2-65delA (CYBRD1) (two of 32 patients; 6.3%), 3’UTR+26delACGTCACGTTTCAAAACTA (CYBRD1) (one of 31 patients; 3.2%) and 219delG (HJV) (two of 33 patients; 6%). In addition, a total of 15 previously described variants were identified (seven intronic and eight exonic) of which three were also prevalent in only the Caucasian patient group. This study aimed to investigate the differences ...

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/2802
This item appears in the following collections: