# Modelling of flow through porous packing elements of a CO2 absorption tower

 dc.contributor.advisor Du Plessis, J. P. dc.contributor.author Rautenbach, Christo dc.contributor.other University of Stellenbosch. Faculty of Science. Dept. of Mathematical Sciences. dc.date.accessioned 2009-05-13T11:09:14Z en_ZA dc.date.accessioned 2010-06-01T08:45:56Z dc.date.available 2009-05-13T11:09:14Z en_ZA dc.date.available 2010-06-01T08:45:56Z dc.date.issued 2009-12 dc.identifier.uri http://hdl.handle.net/10019.1/2319 dc.description Thesis (MSc (Mathematics))--University of Stellenbosch, 2009. dc.description.abstract ENGLISH ABSTRACT: Packed beds are widely used in industry to improve the total contact area between two en substances in a multiphase process. The process typically involves forced convection of liquid or gas through either structured or dumped solid packings. Applications of such multiphase processes include mass transfer to catalyst particles forming the packed bed and the adsorption of gases or liquids on the solid packing. An experimental study on the determination of air flow pressure drops over different packingmaterialswas carried out at the Telemark University College in Porsgrunn,Norway. The packed bed consisted of a cylindrical column of diameter 0.072m and height 1.5m, filled with different packingmaterials. Air was pumped vertically upwards through a porous distributor to allow for a uniform inlet pressure. Resulting pressure values were measured at regular height intervals within the bed. Due to the geometric nature of a Raschig ring packing wall effects, namely the combined effects of extra wall shear stress due to the column surface and channelling due to packing adjacent to a solid column surface, were assumed to be negligible. Several mathematical drag models exist for packed beds of granular particles and an important question arises as to whether they can be generalized in a scientific manner to enhance the accuracy of predicting the drag for different kinds of packing materials. Problems with the frequently used Ergun equation, which is based on a tubular model for flow between granules and then being empirically adjusted, will be discussed. Some theoretical models that improve on the Ergun equation and their correlation with experimental work will be discussed. It is shown that a particular pore-scale model, that allows for different geometries and porosities, is superior to the Ergun equation in its predictions. Also important in the advanced models is the fact that it could take into account anomalies such as dead zones where no fluid transport is present and surfaces that do neither contribute to shear stress nor to interstitial form drag. The overall conclusion is that proper modelling of the dynamical situation present in the packing can provide drag models that can be used with confidence in a variety of packed bed applications. dc.description.abstract AFRIKAANSE OPSOMMING: Gepakte materiaal strukture word in die industrie gebruik om die kontak area tussen twee af stowwe in meervoudige faseprosesse te vergroot. Die proses gaan gewoonlik gepaard met geforseerde konveksie van ’n vloeistof of ’n gas deur gestruktureerde of lukrake soliede gepakte strukture. Toepassings van sulke meervoudige faseprossese sluit onder andere in die massa-oordrag na katalisator partikels wat die gepakte struktuur vorm of die absorpsie van gasse of vloeistowwe op die soliede gepakte elemente. ’n Eksperimentele ondersoek oor die drukval van veskillende gepakte elemente in ’n kolom is gedoen by die Telemark University College in Porsgrunn, Noorweë. Die gepakte struktuur het bestaan uit ’n kolommet ’n diameter van 0.072m en ’n hoogte van 1.5m. Lug is vertikaal opwaarts gepomp deur ’n poreuse plaat wat gesorg het vir ’n benaderde uniforme snelheidsprofiel. Die druk is toe op intervalle deur die poreuse struktuur gemeet. In die studie is die effekte van die eksterne wande, nl. die bydrae van die wand se wrywing en die vorming van kanale langs die kolom wand, as weglaatbaar aanvaar. Daar bestaan baie wiskundige dempingsmodelle vir gepakte strukture wat uit korrels saamgestel is. ’n Belangrike vraag kan dus gevra word, of laasgenoemde modelle veralgemeen kan word op ’n wetenskaplike manier om die demping deur verskillende gepakte strukture akkuraat te kan voorspel. Probleme wat ontstaan het met die wel bekende Ergun vergelyking, wat gebaseer is op ’n kapillêre model en wat toe verder aangepas is deur empiriese resultate van uniforme sfere, sal bespreek word. Teoretiesemodelle wat verbeteringe op die Ergun vergelyking voorstel sal bespreek word en vergelyk word met eksperimentele data. Daar word ook gewys dat ’n spesifieke porie-skaal model, wat aanpasbaar is vir verskillende geometrieë en porositeite, in baie gevalle beter is as die Ergun vergelyking. ’n Ander baie belangrike aspek van gevorderde modelle is die moontlikheid om stagnante gebiede in die gepakte strukture in ag te neem. Laasgenoemde gebiede sal die totale kontak area sowel as die intermediêre vorm demping verlaag. Die gevolgtrekking is dat wanneer deeglike modulering van dinamiese situasies in die industrie gedoen word kan dempings modelle met vertroue op ’n verskeidenheid gepakte strukture toegepas word. dc.language.iso en dc.publisher Stellenbosch : University of Stellenbosch dc.subject Pressure drop en dc.subject Packing materials en dc.subject Raschig rings en dc.subject Dissertations -- Mathematics en dc.subject Theses -- Mathematics en dc.subject.lcsh Porous materials en dc.subject.lcsh Packaging en dc.subject.lcsh Multiphase flow en_ZA dc.title Modelling of flow through porous packing elements of a CO2 absorption tower en dc.type Thesis dc.rights.holder University of Stellenbosch
﻿