ITEM VIEW

Performance evaluation of wet-cooling tower fills with computational fluid dynamics

dc.contributor.advisorReuter, H. C. R.en_ZA
dc.contributor.authorGudmundsson, Yngvien_ZA
dc.contributor.otherStellenbosch University. Faculty of Engineering. Dept. of Mechanical & Mechatronic Engineering.en_ZA
dc.date.accessioned2012-03-13T11:12:37Zen_ZA
dc.date.accessioned2012-03-30T10:23:28Z
dc.date.available2012-03-13T11:12:37Zen_ZA
dc.date.available2012-03-30T10:23:28Z
dc.date.issued2012-03en_ZA
dc.identifier.urihttp://hdl.handle.net/10019.1/19908
dc.descriptionThesis (MScEng)--Stellenbosch University, 2012.en_ZA
dc.description.abstractENGLISH ABSTRACT: A wet-cooling tower fill performance evaluation model developed by Reuter is derived in Cartesian coordinates for a rectangular cooling tower and compared to cross- and counterflow Merkel, e-NTU and Poppe models. The models are compared by applying them to a range of experimental data measured in the cross- and counterflow wet-cooling tower test facility at Stellenbosch University. The Reuter model is found to effectively give the same results as the Poppe method for cross- and counterflow fill configuration as well as the Merkel and e-NTU method if the assumptions as made by Merkel are implemented. A second order upwind discretization method is applied to the Reuter model for increased accuracy and compared to solution methods generally used to solve cross- and counterflow Merkel and Poppe models. First order methods used to solve the Reuter model and crossflow Merkel and Poppe models are found to need cell sizes four times smaller than the second order method to obtain the same results. The Reuter model is successfully implemented in two- and three-dimensional ANSYS-Fluent® CFD models for under- and supersaturated air. Heat and mass transfer in the fill area is simulated with a user defined function that employs a second order upwind method. The two dimensional ANSYS-Fluent® model is verified by means of a programmed numerical model for crossflow, counterflow and cross-counterflow.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: ‘n Natkoeltoring model vir die evaluering van pakkings werkverrigting, wat deur Reuter ontwikkel is, word in Kartesiese koördinate afgelei vir ‘n reghoekige koeltoring en word vergelyk met kruis- en teenvloei Merkel, e-NTU en Poppe modelle. Die verskillende modelle word vergelyk deur hulle op ‘n reeks eksperimentele data toe te pas wat in die kruis- en teenvloei natkoeltoring toetsfasiliteit by die Universiteit van Stellenbosch gemeet is. Dit is bevind dat die Reuter model effektief dieselfde resultate gee as die Poppe model vir kruis- en teenvloei pakkingskonfigurasies sowel as die Merkel en e-NTU metode, indien dieselfde aannames wat deur Merkel gemaak is geїmplementeer word. ‘n Tweede orde “upwind” metode word op die Reuter model toegepas vir hoër akkuraatheid en word vergelyk met oplossingsmetodes wat gewoonlik gebruik word om kruis- en teenvloei Merkel en Poppe modelle op te los. Eerste orde metodes wat gebruik is om die Reuter model en kruisvloei Merkel en Poppe modelle op te los benodig rooster selle wat vier keer kleiner is as vir tweede orde metodes om dieselfde resultaat te verkry. Die Reuter model is suksesvol in twee- en driedimensionele ANSYS-Fluent® BVD (“CFD”) modelle geїmplementeer vir on- en oorversadigde lug. Warmte- en massaoordrag in die pakkingsgebied word gesimuleer mbv ‘n gebruiker gedefinieerde funksie (“user defined function”) wat van ‘n tweede orde numeriese metode gebruik maak. Die tweedimensionele ANSYS-Fluent® model word m.b.v. ‘n geprogrameerde numeriese model bevestig vir kruis-, teen- en kruis-teenvloei.af
dc.format.extent110 p. : ill.
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.subjectPoppe modelen_ZA
dc.subjectDissertations -- Mechanical engineeringen_ZA
dc.subjectTheses -- Mechanical engineeringen_ZA
dc.subjectWet cooling towersen_ZA
dc.subjectComputational fluid dynamicsen_ZA
dc.subjectHeat mass transfersen_ZA
dc.subjectMerkel modelen_ZA
dc.subjectReuter modelen_ZA
dc.titlePerformance evaluation of wet-cooling tower fills with computational fluid dynamicsen_ZA
dc.typeThesis
dc.rights.holderStellenbosch University


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

ITEM VIEW