ITEM VIEW

Special subvarieties of Drinfeld modular varieties

dc.contributor.authorBreuer, Florian
dc.date.accessioned2012-02-27T07:12:43Z
dc.date.issued2010-11
dc.identifier.citationBreuer, F. 2010. Special subvarieties of Drinfeld modular varieties. Journal fuer die reine und angewandte Mathematik.
dc.identifier.urihttp://hdl.handle.net/10019.1/19870
dc.descriptionAccepted for publication under copy editingen_ZA
dc.description.abstractWe explore an analogue of the Andr´e-Oort conjecture for subvarieties of Drinfeld modular varieties. The conjecture states that a subvariety X of a Drinfeld modular variety contains a Zariski-dense set of complex multiplication (CM) points if and only if X is a “special” subvariety (i.e. X is defined by requiring additional endomorphisms). We prove this conjecture in two cases. Firstly when X contains a Zariski-dense set of CM points which all lie in one Hecke orbit, and secondly when X is a curve containing infinitely many CM points without any additional assumptions.en_ZA
dc.description.sponsorshipNRF Blue Skies fund BS2008100900027.en_ZA
dc.language.isoen_USen_ZA
dc.publisherWalter de Gruyteren_ZA
dc.subjectDrinfeld modulesen_ZA
dc.subjectDrinfeld modular varietiesen_Z
dc.subjectSpecial subvarietiesen_ZA
dc.subjectCM pointsen_ZA
dc.subjectAndre-Oorten_ZA
dc.subjectHecke correspondenceen_ZA
dc.titleSpecial subvarieties of Drinfeld modular varietiesen_ZA
dc.typeArticleen_ZA
dc.description.versionAccepted version, pre-copy-editingen_ZA
dc.description.versionStill need to sort out copyrighten_ZA
dc.rights.holderWalter de Gruyteren_ZA
dc.embargo.terms2050-12-31en_ZA
dc.embargo.lift2050-12-31


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

ITEM VIEW