Enhancing xylose utilisation during fermentation by engineering recombinant Saccharomyces cerevisiae strains

Date
2007-12
Authors
Thanvanthri Gururajan, Vasudevan
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Xylose is the second most abundant sugar present in plant biomass. Plant biomass is the only potential renewable and sustainable source of energy available to mankind at present, especially in the production of transportation fuels. Transportation fuels such as gasoline can be blended with or completely replaced by ethanol produced exclusively from plant biomass, known as bio-ethanol. Bio-ethanol has the potential to reduce carbon emissions and also the dependence on foreign oil (mostly from the Middle East and Africa) for many countries. Bio-ethanol can be produced from both starch and cellulose present in plants, even though cellulosic ethanol has been suggested to be the more feasible option. Lignocellulose can be broken down to cellulose and hemicellulose by the hydrolytic action of acids or enzymes, which can, in turn, be broken down to monosaccharides such as hexoses and pentoses. These simple sugars can then be fermented to ethanol by microorganisms. Among the innumerable microorganisms present in nature, the yeast Saccharomyces cerevisiae is the most efficient ethanol producer on an industrial scale. Its unique ability to efficiently synthesise and tolerate alcohol has made it the ‘workhorse’ of the alcohol industry. Although S. cerevisiae has arguably a relatively wide substrate utilisation range, it cannot assimilate pentose sugars such as xylose and arabinose. Since xylose constitutes at least one-third of the sugars present in lignocellulose, the ethanol yield from fermentation using S. cerevisiae would be inefficient due to the non-utilisation of this sugar. Thus, several attempts towards xylose fermentation by S. cerevisiae have been made. Through molecular cloning methods, xylose pathway genes from the natural xylose-utilising yeast Pichia stipitis and an anaerobic fungus, Piromyces, have been cloned and expressed separately in various S. cerevisiae strains. However, recombinant S. cerevisiae strains expressing P. stipitis genes encoding xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) had poor growth on xylose and fermented this pentose sugar to xylitol. The main focus of this study was to improve xylose utilisation by a recombinant S. cerevisiae expressing the P. stipitis XYL1 and XYL2 genes under anaerobic fermentation conditions. This has been approached at three different levels: (i) by creating constitutive carbon catabolite repression mutants in the recombinant S. cerevisiae background so that a glucose-like environment is mimicked for the yeast cells during xylose fermentation; (ii) by isolating and cloning a novel xylose reductase gene from the natural xylose-degrading fungus Neurospora crassa through functional complementation in S. cerevisiae; and (iii) by random mutagenesis of a recombinant XYL1 and XYL2 expressing S. cerevisiae strain to create haploid xylose-fermenting mutant that showed an altered product profile after anaerobic xylose fermentation. From the data obtained, it has been shown that it is possible to improve the anaerobic xylose utilisation of recombinant S. cerevisiae to varying degrees using the strategies followed, although ethanol formation appears to be a highly regulated process in the cell. In summary, this work exposits three different methods of improving xylose utilisation under anaerobic conditions through manipulations at the molecular level and metabolic level. The novel S. cerevisiae strains developed and described in this study show improved xylose utilisation. These strains, in turn, could be developed further to encompass other polysaccharide degradation properties to be used in the so-called consolidated bioprocess.
AFRIKAANSE OPSOMMING: Xilose is die tweede volopste suiker wat in plantbiomassa teenwoordig is. Plantbiomassa is die enigste potensiële hernubare en volhoubare bron van energie wat tans vir die mensdom beskikbaar is, veral vir die produksie van vervoerbrandstowwe. Vervoerbrandstowwe soos petrol kan vermeng word met etanol wat uitsluitlik van plantbiomassa vervaardig is, bekend as bio-etanol, of heeltemal daardeur vervang word. Bio-etanol het die potensiaal om koolstofuitlatings te verminder en vir baie lande ook afhanklikheid op buitelandse olie (hoofsaaklik afkomstig van die Midde-Ooste en Afrika) te verminder. Bio-etanol kan vanaf beide die stysel en sellulose in plante vervaardig word, maar sellulosiese etanol word as die meer praktiese opsie beskou. Lignosellulose kan deur die hidrolitiese aksie van sure of ensieme in sellulose en hemisellulose afgebreek word en dit kan op hulle beurt weer in monosakkariede soos heksoses en pentoses afgebreek word. Hierdie eenvoudige suikers kan dan deur mikro-organismes tot etanol gegis word. Onder die tallose mikro-organismes wat in die natuur teenwoordig is, is die gis Saccharomyces cerevisiae die doeltreffendste etanolprodusent in die bedryf. Sy unieke vermoë om alkohol te vervaardig en te weerstaan het dit die werksperd van die alkoholbedryf gemaak. Hoewel S. cerevisiae ‘n taamlike breë spektrum van substrate kan benut, kan dit nie pentosesuikers soos xilose en arabinose assimileer nie. Aangesien xilose ten minste ‘n derde van die suikers wat in lignosellulose teenwoordig is, uitmaak, sou die etanolopbrengs uit gisting met S. cerevisiae onvoldoende wees omdat hierdie suiker nie benut word nie. Verskeie pogings is dus aangewend om xilosegisting deur S. cerevisiae te bewerkstellig. Deur middel van molekulêre kloneringsmetodes is gene van die xiloseweg uit ‘n gis wat xilose natuurlik benut, Pichia stipitis, en ‘n anaërobiese swam, Piromyces, afsonderlik in S. cerevisiae-rasse gekloneer en uitgedruk. ‘n Rekombinante ras wat P. stipitis- se XYL1-xilosereduktase- en XYL2-xilitoldehidrogenase gene uitdruk, het egter swak groei op xilose getoon en het dié pentosesuiker tot xilitol gegis. Die hooffokus van hierdie ondersoek was om die benutting van xilose deur ‘n rekombinante S. cerevisiae-ras wat P. stipitis se XYL1 en XYL2-gene uitdruk onder anaërobiese gistingstoestande te verbeter. Dit is op drie verskillende vlakke benader: (i) deur konstitutiewe koolstofkataboliet-onderdrukkende mutante in die rekombinante S. cerevisiae-agtergrond te skep sodat ‘n glukose-agtige omgewing tydens xilosegisting vir die gisselle nageboots word; (ii) deur ‘n nuwe xilose-reduktasegeen uit die natuurlike xilose-afbrekende swam Neurospora crassa te isoleer en deur funksionele komplementasie in S. cerevisiae te kloneer; en (iii) deur willekeurige mutagenese van die rekombinante S. cerevisiae-ras ‘n haploïede xilose-gistende mutant te skep wat ‘n gewysigde produkprofiel ná anaërobiese xilosegisting vertoon. Deur hierdie drieledige benadering te volg, is dit bewys dat dit moontlik is om die anaërobiese xilosebenutting van rekombinante S. cerevisiae-rasse in wisselende mate deur die aangepaste metodes te verbeter, hoewel etanolvorming ‘n hoogs gereguleerde proses in die sel blyk te wees. Opsommend kan gesê word dat hierdie werk drie verskillende metodes uiteensit om xilosebenutting onder anaërobiese toestande te verbeter deur manipulasies op die molekulêre en metaboliese vlak. Die nuwe S. cerevisiae-rasse wat in hierdie studie ontwikkel en beskryf word, toon verbeterde xilosebenutting. Hierdie rasse kan op hulle beurt verder ontwikkel word om ander polisakkariedafbrekende eienskappe in te sluit wat in die sogenaamde gekonsolideerde bioproses gebruik kan word.
Description
Dissertation (DPhil)--University of Stellenbosch, 2007.
Keywords
Saccharomyces cerevisiae -- Genetic engineering, Fermentation, Wine and wine making, Recombinant microorganisms, Xylose metabolism, Theses -- Microbiology, Dissertations -- Microbiology
Citation