Causal layered analysis enriching the innovation process

Kotze, H. A. (2010-03)

Thesis (MPhil)--Stellenbosch University, 2010.

Thesis

ENGLISH ABSTRACT: This research report aims to show how futures studies or foresight techniques, especially causal layered analysis (CLA), can enrich the attempts of organisations to innovate. The study discusses the importance of innovation for organisations and shows that innovation is deeply rooted in the knowledge economy. The nature of innovation is explored as well as the different types and degrees of innovation. An integrated innovation model is proposed which is used to establish some of the key challenges which arise from the innovation process. The challenges are expanded to take into consideration those challenges which arise from the approach organisations take to innovation as well as some of the innovation challenges which arise from the underlying organisational culture. The nature of futures studies is discussed from the perspective of an approach and field of study for creating knowledge and facilitating understanding. This ability of futures studies is explored further to show how it can address some of the challenges which arise from innovation. The study further explores the ability of causal layered analysis, a foresight technique; not only to address some of the innovation challenges but to enrich the innovation process by providing depth and breadth in the analysis of the problem through creating an understanding of the deeply rooted drivers and viewing the problem from different perspectives, effectively expanding the solution set and creating a platform for identifying latent needs and opportunities. Causal layered analysis is applied to three of the top thirty innovations of the last three decades, testing the hypothesis that successful innovation transcends and addresses needs at the deeper layers. It is shown that innovations which are able to address needs in the deeper levels get embedded in our daily lives and as a result become more enduring.

AFRIKAANSE OPSOMMING: Hierdie navorsings projek beoog om te wys dat toekomsstudies en die tegnieke in die studie veld, spesifiek “causal layered analysis”, waarde kan toevoeg tot die innoverings probeerslae van organisasies. Die studie bespreek die belangrikheid van innovering vir organisasies en wys dat innovasie diep gewortel is in die kennis ekonomie. Die aard van innovering word ondersoek sowel as die verskillende tipes en grade daarvan. ‘n Ge-integreerde innoverings model word voorgestel en word gebruik om van die belangrike uitdagings in die innovasie proses te identifiseer. Daar word uitgebrei op hierdie uitdagings deur in ag te neem die benadering wat organisasies neem tot innovering asook die uitdagings wat voortspruit uit die onderliggende kultuur in die organisasie. Die aard van toekomstudies word bespreek uit die oogpunt van die benadering van die studie veld om kennis te skep en begrip te bewerkstellig. Die vermoë van toekomstudies om die uitdagings wat deur innovasie onstaan word verder ondersoek. Die studie ondersoek ook die vermoë van “causal layered analysis”, as ‘n toekoms tegniek, nie net om die innoverings uitdagings te adresseer nie, maar ook deur die verryking van die innoverings proses waardeur begrip geskep word. Begrip volg deur die diepte en wydheid van die analise van die probleem, asook deur die probleem vanuit verskeie oogpunte te benader. Hierdeur word daar meer moontlike oplossings blootgelê en word daar geleentheid geskep om nuwe geleenthede te identifiseer. “Causal layered analysis” word ook toegepas op drie van die top dertig innovasies van die laaste drie dekades om die hipotese te toets dat suksesvolle innovasies, behoeftes in al die lae aanspreek, spesifiek in die diepliggende areas. Die studie wys dat innovasies wat behoeftes in die diepliggende areas aanspreek deel word van ons alledaagse lewe en sodoende meer langdurig word.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/18153
This item appears in the following collections: