Biochar from vacuum pyrolysis of agricultural residues : characterisation and its applications.

Date
2011-12
Authors
Uras, Umit
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: According to recent studies, biochar has the potential to improve soil fertility, mitigate climate change, reduce off-site pollution and assist in managing wastes. The application of biochar to soil is not a new concept; Amazonian dark earths are carbon-rich soils with high soil fertility that were created before 1541. Vacuum pyrolysis is a thermo-chemical conversion technique in which biomass is transformed into bio-oil, biochar and non-condensable gas. The objective of this work was to investigate the chemical and physical properties of biochar produced from vacuum pyrolysis of black wattle, vineyard annual prunings and sugar cane bagasse for their potential as soil amendment and adsorbent. The vacuum pyrolysis of black wattle, vineyard prunings and sugar cane bagasse (pyrolysis temperature: 460°C, pressure: 8kPaabs, heating rate: 17°C/min) resulted in biochar yields of 23.5%, 31.0% and 19.7% on a weight basis, respectively. The nature of the biomass had a substantial effect on yields of the products. High ash content combined with high lignin composition led to higher biochar yields for vineyard prunings. The highest surface acidity was observed for sugar cane bagasse (2.3 mmol/g), whereas the lowest surface acidity was observed for vineyard biochar (1.67 mmol/g). Consequently, the pH of the biochars was in the order: vineyard (10.43)> black wattle (9.74)> sugar cane bagasse (6.56). The cation exchange capacities (CEC) of biochars were 122 cmol/kg, 101 cmol/kg and 65 cmol/kg for sugar cane bagasse, black wattle and vineyard, respectively. The electrical conductivities (EC) were highly correlated with feedstock nature. The Ca and K rich vineyard biochar resulted in the highest EC (0.83 dS/m), whilst EC values of black wattle and sugar cane bagasse were 0.67 dS/m and 0.17 dS/m, respectively. Biochars contained substantial amounts of plant-available nutrients, while being low in toxic inorganic content (Pb, As, Cd). The BET surface areas of sugar cane bagasse, black wattle and vineyard were 259 mª/g, 241 mª/g and 91 mª/g, respectively. The adsorption capacity was found to increase with increased contact time and initial solution concentration. The experimental equilibrium time were found to be 3505 min, 1350 min and 150 min for adsorption of 20 mg/L methylene blue solution for vineyard, black wattle and sugar cane bagasse, respectively. Equilibrium data were well fitted to Langmuir and Freundlich isotherms. The maximum adsorption capacities were found to be 15.15 mg/g, 14.49 mg/g and 19.23 mg/g for vineyard, black wattle and sugar cane bagasse when modelled with Langmuir isotherms. The adsorption kinetics was found to follow the pseudo-second order kinetic model. In summary, biochar from sugar cane bagasse is a promising adsorbent for the removal of basic dyes due to its high surface area and microporous structure. This biochar can be applied to slightly acidic soils for nutrient retention and the exchange of nutrients. On the other hand, possessing high amounts of nutrients, biochars from black wattle and vineyard are potential soil amendentment agents. Biochar from black wattle is more beneficial compared to biochar from vineyard due to its higher surface area, microporosity and cation exchange capacity.
AFRIKAANSE OPSOMMING: Volgens onlangse studies, het houtskool die potensiaal om grond vrugbaarheid te verbeter, klimaat verandering te versag, besoedeling te verlaag en ondersteuning te verleen in die bestuur van afval. Die toevoeging van houtskool in grond is nie ‘n nuwe konsep nie; Amazone donker gronde is koolstof ryk gronde met hoë vrugbaarheid wat voor 1541 geskep is. Vakuum pirolise is ‘n termo-chemiese omskakelings tegniek waarin biomassa afgebreek word na bio-olie, houtskool en nie-kondenseerbare gasse. Die doelwit van hierdie werk was om die chemiese en fisiese eienskappe van houtskool, wat geproduseer is deur die vakuum pirolise van swart wattel, jaarlikse wingerd snoeisels, en suikerriet bagasse, vir hulle potensiaal vir grond verbetering en adsorpsie toepassings te ondersoek. Die vakuum pirolise van swart wattel, jaarlikse wingerd snoeisels, en suikerriet bagasse (pirolise temperatuur: 460°C, druk: 8kPaabs, verhittingstempo: 17°C/min) het houtskool opbrengste van 23.5%, 31.0% en 19.7% op massa basis, respektiewelik tot gevolg. Die tipe biomassa het ‘n beduidende effek op die opbrengs van die produkte. Hoë as-inhoud, gekombineer met hoë lignien inhoud, lei tot hoër houtskool opbrengste vir wingerd snoeisels. Die hoogste oppervlak suurheid is gevind vir suikerriet bagasse (2.3 mmol/g), terwyl die laagste waarde gevind is vir die wingerd snoeisels (1.67 mmol/g). Gevolglik, is die pH van die houtskole in die volgorde van: wingerd (10.43) > swart wattle (9.74) > suikerriet bagasse (6.56). Die katioon uitruiling vermoë (CEC) van die houtskole was 122 cmol/kg, 101 cmol/kg and 65 cmol/kg vir suikerriet bagasse, swart wattel en wingerd snoeisels respektiewelik. Die elektriese konduktiwiteite (EC) is gekorreleer met die eienskappe van die biomassas. Die Ca en K ryke wingerd snoeisel houtskool het die hoogste EC waarde (0.83 dS/m) tot gevolg, terwyl die EC waardes vir swart wattel en suikerriet bagasse bepaal is as 0.67 dS/ 0.16 dS/m respektiewelik. Die houtskole het groot hoeveelhede plant-beskikbare voedingstowwe bevat, terwyl dit laag was in toksiese anorganiese stowwe (Pb, As, Cd). Die BET oppervlak areas van suikerriet bagasse, swart wattel en wingerd snoeisels was 259 mª/g, 241 mª/g en 91 mª/g respektiewelik. Daar is gevind dat die adsorpsie kapasiteit toeneem met toenemende kontak tyd met die aanvanklike oplossing. Die eksperimentele ewewigs tye is gevind as 350 min, 1350 min en 150 min vir die adsorpsie van ‘n 20 mg/L metileen blou oplossing vir wingerd snoeisels, swart wattel en suikerriet bagasse, respektiewelik. Die ewewigs data het die Langmuir en Freundlich isoterme goed gepas. Die maksimum adsorpsie kapasiteite is gevind as 15.15 mg/g, 14.9 mg/g en 19.23 mg/g vir wingerd snoeisels, swart wattel en suikerriet bagasse wanneer dit gemodeleer is met Langmuir isoterme. Daar is bevind dat die adsorpsie kinetika ‘n pseudo-tweede orde kintika model volg. In opsomming, houtskool van suikerriet bagasse is ‘n veelbelowende adsorpsie middel vir die verwydering van basiese kleurstowwe, as gevolg van die hoë oppervlak area en mikroporie-struktuur van hierdie houtskool. Dié houtskool kan gebruik word op effense suur gronde vir voedingstof behoud en uitruiling. Aan die ander kant, houtskole van swart wattel en wingerd snoeisels wat hoë hoeveelhede voedingsstowwe bevat, is potensiële grond verbeterings middels. Houtskool afkomstig van swart wattel is meer voordelig as die van wingerd snoeisels, as gevolg van die hoër oppervlak area, mikroporositeit en katioon uitruilings vermoë van die swart wattel houtskool.
Description
Thesis (MScEng)--Stellenbosch University, 2011.
Keywords
Vacuum pyrolysis, Dissertations -- Process engineering, Theses -- Process engineering, Biochar, Soil amendment
Citation