Single bubble-electrospinning of polyvinyl alcohol and polyacrylonitrile

Date
2011-12
Authors
Pringle, Carla
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Needle-electrospinning is an uncomplicated and highly versatile nanofiber (fiber diameter of 50 to 500 nm) production technique. Nevertheless the process can only produce 0.01 to 1.0 g/h/m2 of nanofibers, unpractical for large-scale productions. Bubble-electrospinning, in the presence of surfactants, is a novel nanofiber mass-production technique developed at Stellenbosch University.[1] The technique is similar to needle-electrospinning only that the surface area of a bubble surpasses that of a solution droplet, making it possible for multiple jets to form on the bubble surface at high field strengths. Thus far little research has been done on the influence of solution properties on the bubble-electrospinning technique. During electrospinning the solution experiences three competing forces, namely, surface tension (contracting force), charge repulsion (expanding force), and viscosity (resistance to flow). The first aim of this study was to obtain better understanding on the influence of three significant solution properties (viscosity, conductivity and surface tension) on bubble-electrospinning in terms of bubble lifetime, bubble size, average number of jets and the resultant fibers. The solution properties were varied using a range of polymer and surfactant concentrations. A second aim was to obtain better understanding on the comparison of the bubble-electrospinning process between two polymer solutions, namely Polyvinyl alcohol (PVOH) solutions containing sodium lauryl ether sulphate (SLES) surfactant, and Polyacrylonitrile (PAN) solutions containing silicone surfactant. Results indicated that the solution viscosity and conductivity increased with increasing polymer concentrations for both polymer solutions. In addition, both the solution surface tensions were not influenced by polymer concentration. With regards to bubble-electrospinning of PVOH solutions, results indicated that the average number of jets per bubble was influenced by the polymer concentration. Regarding PAN solutions, bubble lifetime and the average number of jets was influenced by polymer concentration. Results indicated that the solution viscosity increased and surface tension decreased with increasing surfactant concentration for both polymer solutions. PVOH solution conductivity increased whilst PAN solution conductivity decreased with increasing surfactant concentrations. With regards to bubble-electrospinning of PVOH solutions, the bubble lifetime and bubble size was significantly influenced by the SLES concentration. Regarding PAN solutions, the silicone surfactant concentration had no significant effect on the bubble-electrospinning process. Overall, PVOH fiber diameters decreased with increasing surfactant concentration. There was no common trend between the bubble-electrospinning of PVOH and PAN solutions in relation to their solution properties. It was concluded that solution viscosity, conductivity and surface tension are not the only significant contributing parameters to the bubble-electrospinning process.
AFRIKAANSE OPSOMMING: Die naald-elektrospinproses is 'n eenvoudige, hoogsaanpasbare tegniek wat gebruik word vir die maak van nanovesels. Nanovesels het tipies 'n deursnee van 50nm tot 500nm. Ongelukkig is dit onprakties vir grootskaalse produksie omdat die uitset daarvan beperk is tot 0.01 tot 1.0 g/h/m2. Die borrel-elektrospinproses, waar elektrospinstrale gespin word vanaf die oppervlak van borrels op die oppervlak van die spinoplossing en waar die borrels gestabiliseer is m.b.v. sepe, is 'n nuwe tegniek wat ontwikkel is by die Universiteit van Stellenbosch. [1]. Die tegniek is soortgelyk aan die naald-elektrospinproses in dié sin dat die elektrospinstraal vorm vanaf 'n gelaaide halfsfeervormige oppervlak in die spinoplossing, maar die aansienlik groter oppervlakarea van die borrel in die borrel-elektrospinproses maak dit moontlik om verskeie elektrospinstrale gelyktydig op die oppervlak van die borrel te onderhou. Dit lei tot baie hoër doeltreffendheid in die saamgroeppering van die strale en gevolglik tot hoër nanoveseluitsette. Tot dusver is daar weinig navorsing aangaande die invloed van oplossingseienskappe op die borrel- elektrospintegniek gedoen. Tydens die elektrospinproses ervaar die oplossing drie kompeterende kragte, naamlik: oppervlakspanning (sametrekkende krag), elektrostatiese afstoting (afstotende krag) en viskositeit (vertragende effek op vloei van die oplossing). Die hoofdoelwit van hierdie navorsing was om 'n beter begrip te kry van die invloed van drie gemete oplossingswaardes, d.w.s. viskositeit, elektriese geleidingsvermoë en oppervlakspanning op die borrel-elektrospinproses. Die impak van hierde waardes is spesifiek geëvalueer in terme van borrellewensduur, borrelgrootte, gemiddelde hoeveelheid elektrospinstrale per borrel en die morfologie van die vesels wat in die proses gevorm is. Die tweede doelwit van die studie was om 'n vergelyking te tref tussen die mees optimale oplossingswaardes in die borrel-elektrospinproses van twee baie uiteenlopende polimeerspinoplossings, naamlik polivinielalkohol (PVOH), met natrium dodesieletersulfaat (SLES) as die borrelstabiliserende seep en poliakrilonitriel (PAN) oplossing, met 'n silikoonseep as die borrelstabiliserende seep. Resultate het getoon dat die viskositeit en elektriese geleidingsvermoë toeneem met toename in polimeerkonsentrasie vir beide PVOH- en PAN-oplossings. Verder is oppervlakspanning in beide gevalle nie beduidend beïnvloed deur die polimeerkonsentrasie nie. In die geval van die borrel-elektrospin van die PVOH-oplossings het resultate daarop gedui dat die gemiddelde aantal elektrospinstrale per borrel moontlik beïnvloed kon word deur die polimeerkonsentrasie. In die geval van borrel-elektrospin van PAN-oplossing is bevind dat polimeerkonsentrasie die borrelleeftyd en die gemiddelde aantal elektrospinstrale per borrel beïnvloed. Resultate het ook getoon dat die viskositeit vermeerder en die oppervlakspanning afneem met toename in die konsentrasie van die sepe in beide die polimeeroplossings. Die PVOH-oplossing se elektriese geleidingsvermoë het vermeerder terwyl dit verminder in die geval van die PAN-oplossings met 'n toename in die seepkonsentrasie. Tydens borrel-elektrospin van die PVOH-oplossings is beide borrelleeftyd en borrelgrootte beduidend beïnvloed deur die SLES konsentrasie. By die borrel-elektrospin van PAN-oplossings het die silikoonseepkonsentrasie nie 'n beduidende invloed gehad op die borrelleeftyd en borrelgrootte nie. Oor die algemeen het die gemiddelde PVOH veseldeursnee afgeneem met toename in seepkonsentrasie. Geen algemene tendens kon waargeneem word tussen die optimale oplossingswaardes vir borrel-elektrospin van die PVOH- en die PAN-oplossings onderskeidelik nie. Die gevolgtrekking is dat die viskositeit, elektriese geleidingsvermoë en oppervlakspanning nie die enigste beduidende waardes is wat bepaal of die borrel-elektrospinproses sal werk vir 'n spesifieke polimeeroplossing nie.
Description
Thesis (MSc)--Stellenbosch University, 2011.
Keywords
Bubble-electrospinning, Nanofibers, Dissertations -- Polymer science, Theses -- Polymer science
Citation