Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species

Weldon C.W. ; Terblanche J.S. ; Chown S.L. (2011-10-13)

Article in Press

Acclimation in the thermal tolerance range of insects occurs when they are exposed to novel temperatures in the laboratory. In contrast to the large number of studies that have tested for the ability of insects to acclimate, relatively few have sought to determine the time-course for attainment and reversal of thermal acclimation. In this study the time required for the Mediterranean fruit fly, Ceratitis capitata Wiedemann, and the Natal fruit fly, Ceratitis rosa Karsch, to acclimate to a range of constant temperatures was tested by determining the chill-coma recovery time and heat knock-down time of flies that had been exposed to novel benign temperatures for different durations. The time required for reversal of acclimation for both Ceratitis species was also determined after flies had been returned to the control temperature. Acclimation to 31 °C for only one day significantly improved the heat knock-down time of C. capitata, but also led to slower recovery from chill-coma. Heat knock-down time indicated that acclimation was achieved after only one day in C. rosa, but it took three days for C. rosa to exhibit a significant acclimation response to a novel temperature of 33 °C when measured using chill-coma recovery time. Reversal of acclimation after return to initial temperature conditions was achieved after only one day in both C. capitata and C. rosa. Adult C. capitata held at 31.5 °C initially exhibited improved heat knock-down times but after 9 days the heat knock-down time of these flies had declined to levels not significantly different from that of control flies held at the baseline temperature of 24 °C. In both Ceratitis species, heat knock-down time declined with age whereas chill-coma recovery time increased with age, indicating an increased susceptibility to high and low temperatures, respectively. © 2011 Elsevier Ltd. All rights reserved.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/17206
This item appears in the following collections: