Relativistic description of inclusive quasielastic proton-nucleus scattering with relativistic distorted-wave impulse approximation and random-phase approximation

Van Niekerk D.D. ; Van Der Ventel B.I.S. ; Titus N.P. ; Hillhouse G.C. (2011)

Article

We present a fully relativistic model for polarized inclusive quasielastic proton-nucleus scattering that includes relativistic distorted waves for the projectile and ejectile (RDWIA), as well as the relativistic random-phase approximation (RPA) applied to the target nucleus. Using a standard relativistic impulse approximation treatment of quasielastic scattering and a two-body Scalar, Pseudoscalar, Vector, Axial vector, Tensor (SPVAT) form of the current operator, it is shown how the behavior of the projectile/ejectile and target can be decoupled. Distortion effects are included via a full partial-wave expansion of the relativistic wave functions. Target correlations are included via the relativistic RPA applied to mean-field theory in quantum hadrodynamics. A number of novel analytical and numerical techniques are employed to aid in this highly nontrivial calculation. A baseline plane-wave calculation is performed for the reaction Ca40(p,p′) at an energy of 500 MeV and an angle θc.m.=40°. Here it is found that the effect of isoscalar correlations is a quenching of the cross section that is expected to become more pronounced at lower energies or for higher-density targets. A RDWIA calculation shows additional reduction and if isoscalar target correlations are included this effect is enhanced. © 2011 American Physical Society.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/17076
This item appears in the following collections: