Comparative footprint of alien, agricultural and restored vegetation on surface-active arthropods

Magoba R.N. ; Samways M.J. (2011)

Article

Both invasive alien trees and agricultural conversion have major impacts on biodiversity. We studied here the comparative impact of these two types of land transformation on a wide range of surface-active arthropod species using pitfall traps, with evergreen sclerophyllous natural vegetation (fynbos) as the control. The study was in the Cape Floristic Region, a global biodiversity hotspot, where alien trees are of major concern and where vineyards replace natural fynbos vegetation. Surface-active arthropods were selected as they are species rich, relatively immobile, and occur in high abundance. We hypothesized that the impact of the two types of land cover transformation would produce similar qualitative and quantitative effects on the arthropods. We also compared the results in the transformed and natural areas with those in areas cleared of alien trees. Arthropod species richness in cleared areas was higher than in vineyards and more similar to that in natural fynbos, while alien trees had the lowest. Overall abundance scores were highest in cleared areas, closely followed by fynbos, then vineyards and lowest in alien trees. Several species were restricted to each vegetation type, including alien trees. In terms of assemblage composition, all vegetation types were significantly different, although fynbos and vineyards grouped, suggesting that vineyards have less impact on the arthropod community than do alien trees. When rare species were excluded, vineyards and cleared sites grouped, indicating some recovery but only involving those species that were common and habitat tolerant. Our results suggest that vineyards retain a greater complement of indigenous species than alien trees, but that clearing of these aliens soon encourages establishment of indigenous species. Although there were significant differences in soil moisture and litter depth within and between vegetation types, we did not record them as significantly affecting species richness or abundance, even in alien vegetation, an encouraging sign for restoration. © 2011 Springer Science+Business Media B.V.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/14670
This item appears in the following collections: