Spatial pattern formation in semi-arid shrubland: A priori predicted versus observed pattern characteristics

Schurr F.M. ; Bossdorf O. ; Milton S.J. ; Schumacher J. (2004)


Ecologists increasingly use spatial statistics to study vegetation patterns. Mostly, however, these techniques are applied in a purely descriptive fashion without a priori statements on the pattern characteristics expected. We formulated such a priori predictions in a study of spatial pattern in a semi-arid Karoo shrubland, South Africa. Both seed dispersal and root competition have been discussed as processes shaping the spatial structure of this community. If either of the two processes dominates pattern formation, patterns within and between shrub functional groups are expected to show distinct deviations from null models. We predicted the type and scale of these deviations and compared predicted to observed pattern characteristics. As predicted by the seed dispersal hypothesis, small-scale co-occurrence within and between groups of colonisers and successors was increased as compared to complete spatially random arrangement of shrubs. The root competition predictions, however, were not met as shrubs of similar rooting depth co-occurred more frequently than expected under random shrub arrangement. Since the distribution of rooting groups to the given shrub locations also failed to match the root competition predictions, there was little evidence for dominance of root competition in pattern formation. Although other processes may contribute to small-scale plant co-occurrence, the sufficient and most parsimonious explanation for the observed pattern is that its formation was dominated by seed dispersal. To characterise point patterns we applied both cumulative (uni- and bivariate K-function) and local (pair- and mark-correlation function) techniques. Based on our results we recommend that future studies of vegetation patterns include local characteristics as they independently describe a pattern at different scales and can be easily related to processes changing with interplant distance in a predictable fashion.

Please refer to this item in SUNScholar by using the following persistent URL:
This item appears in the following collections: