Time-dependant behaviour of engineered cement-based composites

Boshoff, William Peter (Stellenbosch : University of Stellenbosch, 2007-03)

Thesis (PhD (Civil Engineering))--University of Stellenbosch, 2007.


ECC (Engineered Cement-based Composites) is a type of HPC (High Performance Concrete) that was engineered to overcome the weaknesses of ordinary concrete. It shows high ductility as it can resist the full tensile load at a strain of more than 3 %. This superior response is achieved with multiple cracking under tensile loading which has a pseudo strain hardening phenomenon as result. The purpose of the research project reported in this dissertation is to investigate and characterise the time-dependant behaviour of ECC and create a constitutive model to numerically simulate the static and time-dependant behaviour of ECC. To investigate the time-dependant behaviour experimentally, rate and creep tests were done on the meso- and macro-level while rate tests were done on the structurallevel. The meso-level was represented by the pull-out testing of fibres embedded in the cement-based matrix and direct tensile tests were done for the macro-level. Flexural tests on thin beams were done to simulate the structural-level. Strong time-dependant behaviour was found on all three these levels. On the meso-level, the most prominent finding is that the failure mechanism can change with a change of strain rate, i.e. fibre pull-out at a low pull-out rate, while with a high pullout rate, fibre rupture can occur. Even though the strength of a tensile specimen on the macro-level showed a dependence on the strain rate, the ductility remained constant over four orders of magnitude of the strain rate. On the structural-level, however, a reduction of the flexural ductility was found with an increase of the ...

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/1249
This item appears in the following collections: