ITEM VIEW

Spin in the path integral: Anti-commuting versus commuting variables

dc.contributor.authorScholtz F.G.
dc.contributor.authorTheron A.N.
dc.contributor.authorGeyer H.B.
dc.date.accessioned2011-05-15T16:02:13Z
dc.date.available2011-05-15T16:02:13Z
dc.date.issued1995
dc.identifier.citationPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
dc.identifier.citation345
dc.identifier.citation3
dc.identifier.issn3702693
dc.identifier.urihttp://hdl.handle.net/10019.1/12364
dc.description.abstractWe discuss the equivalence between the path integral representations of spin dynamics for anti-commuting (Grassmann) and commuting variables and establish a bosonization dictionary for both generators of spin and single fermion operators. The content of this construction in terms of the representations of the spin algebra is discussed in the path integral setting. Finally it is shown how a 'free field realization' (Dyson mapping) can be constructed in the path integral.
dc.titleSpin in the path integral: Anti-commuting versus commuting variables
dc.typeArticle
dc.description.versionArticle


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

ITEM VIEW