Operator equations and Moyal products-metrics in quasi-Hermitian quantum mechanics

Scholtz F.G. ; Geyer H.B. (2006)


The Moyal product is used to cast the equation for the metric of a non-Hermitian Hamiltonian in the form of a differential equation. For Hamiltonians of the form p2+V(ix) with V polynomial this is an exact equation. Solving this equation in perturbation theory recovers known results. Explicit criteria for the hermiticity and positive definiteness of the metric are formulated on the functional level. © 2006 Elsevier B.V. All rights reserved.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/12359
This item appears in the following collections: