Chromosome painting and molecular dating indicate a low rate of chromosomal evolution in golden moles (Mammalia, Chrysochloridae)

Gilbert C. ; O'Brien P.C. ; Bronner G. ; Yang F. ; Hassanin A. ; Ferguson-Smith M.A. ; Robinson T.J. (2006)

Article

Golden moles (Chrysochloridae) are poorly known subterranean mammals endemic to Southern Africa that are part of the superordinal clade Afrotheria. Using G-banding and chromosome painting we provide a comprehensive comparison of the karyotypes of five species representing five of the nine recognized genera: Amblysomus hottentotus, Chrysochloris asiatica, Chrysospalax trevelyani, Cryptochloris zyli and Eremitalpa granti. The species are karyotypically highly conserved. In total, only four changes were detected among them. Eremitalpa granti has the most derived karyotype with 2n = 26 and differs from the remaining species (all of whom have 2n = 30) by one centric and one telomere:telomere fusion. In addition, two intrachromosomal rearrangements were detected in A. hottentotus. The painting probes also suggest the presence of a unique satellite DNA family located on chromosomes 11 and 12 of both C. asiatica and C. zyli. This represents a synapomorphy linking these two sympatric species as sister taxa. A molecular clock was calibrated adopting a relaxed Bayesian approach for multigene data sets comprising publicly available sequences derived from five gene fragments representative of three golden moles and 39 other eutherian species. The data suggest that golden moles diverged from a common ancestor approximately 28.5 mya (95% credibility interval = 21.5-36.5 mya). Based on an inferred chrysochlorid ancestral karyotype of 2n = 30, the estimated rate of 0.7 rearrangements per 10 my (95% Credibility Interval = 0.54-0.93) differs from the 'default rate' of mammalian chromosomal evolution which has been estimated at one change per 10 million years, thus placing the Chrysochloridae among the slower-evolving chromosomal lineages thus far recorded. © 2006 Springer.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/10985
This item appears in the following collections: