Impact of pulsed xenon ultraviolet disinfection on surface contamination in a hospital facility’s expressed human milk feed preparation area

Dippenaar, Ricky ; Smith, Johan (2018-02-23)

CITATION: Dippenaar, R. & Smith, J. 2018. Impact of pulsed xenon ultraviolet disinfection on surface contamination in a hospital facility’s expressed human milk feed preparation area. BMC Infectious Diseases, 18:91, doi:10.1186/s12879-018-2997-9.

The original publication is available at https://bmcinfectdis.biomedcentral.com

Article

Background; Expressed human milk (EHM) feed preparation areas represent a potential source of unintentional nosocomial infection. Daily disinfection of environmental surfaces remains an essential intervention to mitigate nosocomial infections. The inefficiency of conventional cleaning and disinfection contributes to an increased risk for the acquisition of multi-drug resistant pathogens. “Non touch” technologies such as the pulsed xenon ultraviolet (PX-UVD) light device have documented sustained reduction in surface bacterial colonization and reduced cross contamination. Methods: The impact of a PX-UVD on surface colony forming units per square centimeter (cfu/cm2) in feed preparation areas was evaluated following its implementation as standard care. A quasi-experimental study was performed documenting bacterial colonization from 6 high risk feed preparation areas in a community care hospital in South Africa. Pre and post conventional cleaning neutralizing rinse swabs were collected fortnightly over a 16 week control period prior to the introduction of the PX-UVD and compared to a matching set of samples for the PX-UVD period. Results: A 90% reduction in total surface bioburden was noted from the control period (544 cfu/cm2) compared to the corresponding PX-UVD period (50 cfu/cm2). Sub -analysis of both the Pre-clean Control: Pre-clean PX-UVD counts as well as the Post-clean Control: Post-clean PX-UVD counts noted significant improvements (p < 0.001). A statistically significant improvement was noted between pre-and post-cleaning total surface bioburden following exposure to the PX-UVD (p = 0.0004). The introduction of the PX-UVD was associated with a sustained reduction in the pre clean bioburden counts with a risk trend (per week) 0.19, (95% CI [0.056, 0.67], p = 0.01). Discussion: The use of a PX-UVD as adjunct to standard cleaning protocols was associated with a significant decrease in surface bioburden. The study demonstrated the inefficiency of conventional cleaning. Persistence of potentially pathological species in both periods highlights current health sector challenges.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/103185
This item appears in the following collections: