Development of an unsteady-state model for control of polymer grade transitions in Ziegler-Natta catalyzed reactor systems

Rawatlal R. ; Tincul I. (2007)


The dynamics of the activity and polymer growth in Ziegler-Natta catalysts has been well established in the literature.[1,2] The corresponding dynamic behaviour of the reactor system is predicted using a segregation model approach and the unsteady state model of residence time distribution previously developed.[3] The model is therefore able to predict reactor performance for a time-varying catalyst flow rate through the reactor, as well as time-varying concentrations of monomer, co-catalyst and chain termination agent. A method of determining grade transition policies by the use of the developed reactor models is then presented. It is demonstrated that the reactor productivity, catalyst efficiency, average chain length and polydispersity can be controlled by the catalyst flow rate and reactor monomer and hydrogen concentrations. The relationship between the required polymer product properties and the system flow rates is determined. Case studies are presented that evaluate various transition strategies for a specific polymer grades. Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA.

Please refer to this item in SUNScholar by using the following persistent URL:
This item appears in the following collections: