The development of a 48V, 10kWh LiFePO4 battery management system for low voltage battery storage applications

Date
2017-03
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Renewable energy sources are a promising replacement for fossil fuels in future energy generation. To fully replace fossil fuels some form of energy storage is required. Chemical batteries offer an energy storage solution that is flexible and scalable for applications ranging from electric vehicles to residential and even commercial applications. Lithium-ion (Li-ion) battery technologies offers the most promising performance in terms of energy density, power density as well as cycle life. Unfortunately, Li-ion batteries are very sensitive to usage outside of the specified operating range. These specified parameters include the battery operating temperature, over- and undervoltage thresholds as well as the maximum charge and discharge current. A Battery Management System (BMS) is thus required to monitor all of the above mentioned parameters and to ensure the battery is operated safely and within the specified range. A BMS’s primary focus is on the safety and protection of the battery, to minimise the risk of sudden failure and to maximise the life of the battery. The secondary function of the BMS is to perform battery diagnostics which could be used for more effective energy management of the battery. The objective of this project was to develop a BMS to be used within a Li-ion battery pack for a micro electric vehicle. The developed BMS was used for battery testing. The battery results were used to estimate the battery parameters off-line according to a specific battery model. The estimated battery parameters can be used as a basis for future energy management purposes. An on-line parameter estimation algorithm was also developed. The algorithm was proven to be successful with a simulation. Future work is required in order to simplify the practical implementation of the algorithm. Another objective of this project was to development a solid state contactor (SSC) that can be used to disconnect the battery from a load. Mechanical contactors, which presents some disadvantages, are typically used for high current applications. The proof of concept SSC was proven to be an efficient though costly substitute to replace the mechanical contactor within the BMS design.
AFRIKAANSE OPSOMMING: Hernubare energie bronne is belowende opsies om fossiel brandstof bronne mee te vervang. Om fossiel brandstowwe volledig te vervang is daar een of ander vorm van energie storing nodig. Chemiese batterye bied so ’n oplossing wat buigsaam en maklik skaleerbaar is vir toepassings wat strek van elektriese voertuie tot residensiële en selfs kommersiële verbruik. Lithium-ioon battery tegnologië bied belowende verrigting in terme van energie digtheid, drywings digtheid en lewens siklusse. Ongelukking is hierdie tegnologië baie sensitief om buite die vervaardiger se spesifikasies bedryf te word. Hierdie spesifikasies sluit in die battery temperatuur, oor- en onderspannings drumpel asook die maksimum battery laai en ontlaai stroom. ’n Battery monitor stelsel (BMS) word gebruik, vir hierdie rede, om al hierdie spesifikasies te meet en te verseker dit is binne die veilige venster van gebruik. ’n BMS se primêre doel is die beveiliging en die beskerming van die battery om die lewe van die battery te maksimeer. Die sekondêre doel van die BMS is om battery diagnose te doen vir meer effektiewe energie bestuur. Die doel van hierdie projek is om ’n BMS te ontwikkel vir ’n mikro elektriese voertuig. The ontwikkelde stelsel was gebruik om battery toetse te doen. Die resultate was gebruik om die battery parameters van ’n battery model af te skat. Hierdie afgeskatte parameters kan in die toekoms gebruik word vir energie bestuur doelwitte. ’n Aanlyn parameters afskatting algoritme word ook in hierdie projek ontwikkel. Die algoritme word slegs bewys deur behulp van simulasies. Verdere werk sal gedoen moet word om die algoritme aan te pas om in ’n praktiese stelsel geïmplementeer te kan word. Die projek ondersoek ook die onwikkeling van ’n “solid state contactor” wat gebruik kan word om die battery van die las te ontkoppel. Meganiese kontaktors, wat nadele het, word tipies gebruik vir hoë stroom toepassings. Die “solid state contactor” poog om ’n opsie te wees wat die meganiese kontaktor in die hoof BMS ontwerp kan verwag.
Description
Thesis (MEng)--Stellenbosch University, 2017.
Keywords
UCTD, Energy storage, Storage batteries, Low voltage systems, Renewable energy sources
Citation