Antioxidant activity of the dihydrochalcones aspalathin and nothofagin and their corresponding flavones in relation to other rooibos (Aspalathus linearis) flavonoids, epigallocatechin gallate, and Trolox

Date
2009
Authors
Sinjman P.W.
Joubert E.
Ferreira D.
Li X.-C.
Ding Y.
Green I.R.
Gelderblom W.C.A.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The antioxidant activity of rooibos flavonoids, including the dihydrochalcones aspalathin and nothofagin and their corresponding flavone glycosides, was evaluated using the ABTS radical cation, metal chelating, and Fe(II)-induced microsomal lipid peroxidation assays. Epigallocatechin gallate (EGCG) and Trolox were used as reference standards. Optimized geometric conformers of aspalathin and nothofagin, in addition to calculated physicochemical properties, were considered to explain interaction with the microsomal membrane structure and thus relative potency of the dihydrochalcones. The most potent radical scavengers were aspalathin (IC50 = 3.33 μM) and EGCG (IC50 = 3.46 μM), followed by quercetin (IC 50 = 3.60 μM) and nothofagin (IC50 = 4.04 μM). The least effective radical scavengers were isovitexin (IC50 = 1224 μM) and vitexin (IC50 > 2131 μM). Quercetin (IC50 = 17.5 μM) and EGCG (IC50 = 22.3 μM) were the most effective inhibitors of lipid peroxidation. Aspalathin (IC50 = 50.2 μM) and catechin (IC50 = 53.3 μM) displayed similar potencies. Nothofagin (IC50 = 1388 μM) was almost as ineffective as its flavone glycoside analogues. © 2009 American Chemical Society.
Description
Keywords
Aspalathus, Aspalathus linearis
Citation
Journal of Agricultural and Food Chemistry
57
15