Advanced Modelling of a Borehole
Radar Environment with the Finite
Difference Time Domain Method

Peter W. Futter

Thesis presented in partial fulfilment of the requirements
for the degree of Master of Science in Engineering at the
University of Stellenbosch.

Advisor

Prof. David B. Davidson

December 2001



— Declaration —

“T, the undersigned, hereby declare that the work contained in this thesis is my own
original work and that I have not previously in its entirety or in part submitted it at any
university for a degree.”

YOR
Signature ...\ LT CVMONN L Peter W. Futter

Date 2L -\ -dool .



Abstract

Over the last decade, as the mining industry of South Africa is moving
to ever deeper mines, the borehole radar is becoming an increasingly im-
portant field of research.

In December 2000, Burger completed his thesis on Electromagnetic Mod-
elling of a Borehole Radar Environment with the FDTD Method. The
goal of this thesis is to extend the research presented in Burger’s thesis,
considering how more advanced modelling techniques can be applied to
the FDTD analysis of the borehole radar environment.

Some of these techniques include implementation of dispersive and con-
ductive material models, and developing Uniaxial Perfectly Matched
Layer boundary conditions for matching these model. Simulations were
run to measure the performance of these boundary CODdlthI"l for match-
ing dispersive and conductive materials.

The thesis also includes the implementation of a parallel version of the
FDTD algorithm using the Message Passing Interface library.

Finally several realistic borehole models where simulated to test the ac-
curacy of the code and to show how the code can be used to model real
world problems.



Opsomming

Gedurende die laaste dekade, soos die Suid-Afrikaanse myn industrie al
hoe dieper myne gebou het, het die boorgat radar 'n belangrike navors-
ingsveld geword. _

Burger se Meersters graad tesis, Desember 2000, het gehandel oor die
electromagnetiese modellering van die boorgat radar omgewing met die
Eindige Verskil Tyd Gebied [EVTG] tegniek. Die doel van die huidige
tesis is om Burger se werk verder te voer, deur die toepassing van meer
gevorderde modellerings tegnieke op die EVTG analise van die boorgat
radar omgewing te ondersoek.

Sommige van hierdie tegnieke sluit in: die implimentering van dispersiewe
en geleidende materiaal modelle en die ontwikkeling van "Uniaksiaal, Per-
fek Aangepaste Laag’ rand voorwaardes om hierdie modelle mee aan te
pas. Simulasies is uitgevoer om die effektiwiteit van hierdie randvoor-
waardes vir die aanpassing van dispersiewe en geleidende materiale te
evalueer.

Die tesis sluit ook 'n parallele implimentering van die EVTG algoritme
in, wat gebruik maak van die 'Message Passing Interface’ funksie biblio-
teek.

Ten slotte is 'n paar realistiese boorgat modelle gesimuleer om die
toepassing van die kode op praktiese probleme te demonstreer en om
die akkuraatheid daarvan te evalueer,

it
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Nomenclature

FDTD - Finite Difference Time Domain
ABC - Absorbing Boundary Condition
PML - Perfectly Matched Layer

UPML - Uniaxial Perfectly Matched Layer
ADE - Auxiliary Differential Equation
3D - Three Dimentional

2D - Two Dimentional

MPI - Message PAssing Interface

GUI - Graphical User Interface

MoM - Method of Moments
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Chapter 1

Introduction

In December 1999 Burger completed his Masters Thesis, Electromagnetic Modelling of a
Borehole Radar Environment using the Finite Difference Time Domain [FDTD] Method.
Although he made extensive progress on the FDTD algorithm that he was working on,
there was still wide scope for including more advanced modelling techniques in the algo-
rithm. For an introduction to the project and the FDTD Method consult his thesis [1}.

This thesis deals with the development and implementation of advanced FDTD meth-
ods, which will add greater functionality and modelling capabilities to the FDTD code
developed by Burger.

In this chapter, a brief introduction to the Deepmine Project is presented, including
specific reference to what the value of developing this FDTD algorithm is to the project.
Finally, a description of the actual goals for this thesis and an overview of this report is
presented.

1.1 The Deepmine Project

In South Africa, the mining industries plays a critical part in the countries economy. Due
to diminishing geological reserves, mines have been forced to depths below 3.5km. But
even the reserves at these depths will diminish in the future. According to Trickett {2], it
is therefore imperative that the mining industry pursue technologies that enable mining
at ultra-deep levels. This was the backbone idea that lead to the creation of the Deepmine
project in March 1998.

Since the creation of the Deepmine project, extensive work has been done on developing
a borehole radar for the estimation of subterranean features, including faults and water
fissures. In March 2001, a group of researchers went to Kleinsee (near the Nambian bor-
der) to take measurements using the borehole radar developed for the Deepmine project.
Figure 1.1 shows some photographs taken of the borehole, and the radar being lowered
into the borehole.
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Figure 1.1: Photographs from the Kleinsee Expedition

It is of great value to the Deepmine project to be able to simulate such a borehole
environment. The FDTD algorithm that was developed for this thesis, was developed
with the intention of simulating these borehole measurements. In chapter 5 an example
of such a borehole simulation is presented.

1.2 Thesis Goals

The FDTD code written by Burger offered good modelling for such a borehole environ-
ment. However, there was still scope for further development on the code, to add greater
functionality and accuracy. These are the following aspects that were identified as key
areas of development for this thesis:

e Mur second order Absorbing Boundary Condition (ABC) were used in the origi-
nal FDTD code. However the performance of this boundary condition is greatly
exceeded by the Uniaxial Perfectly Matched Layer (UPML). The UPML is theoret-
ically capable of zero reflection, even for conductive and dielectric media. The
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Mur second order ABCs will be replaced by the UPML.

e A model will be implemented such that the UPML can be used to terminate dis-
persive media. This model is similar to the Auxiliary Differential Equation (ADE)
Method, and will replace the Recursive Convolution Method used in the original
code. A Debye model is used to model the dispersive properties of the media.

e A model will also be introduced to the code to include modelling capabilities for
dielectric and conductive media. The UPML model will also be adapted to terminate
these media.

e A parallel version of the code (using the Message Passing Interface (MPI)) will
implemented. This will reduce the time required to run a simulation, and also allow
much larger simulation to be solved.

¢ Due to the increasing size of the code, it proved necessary to restructure the code.
The code will be split up into several source files and modules will be used to
define variables. This will make the code much more readable, and make further
development on the code substantially easier.

The thin-wire antenna model and the impedance loaded antenna models which were
developed in the original code will still be used. All the text files that were used for
setting up the dimensions in the original code, are also still used.

1.3 Overview of this Report

In chapter 2 a detailed description of the UPML is presented. This chapter includes a
derivation, which explains how the UPML can be used to absorb incident waveforms. The
derivation of the update equations is also presented.

Chapter 3 discusses the implementation of material models for dispersive and conductive
materials. The chapter shows how the UMPL can be extended to match these materials.

Chapter 4 looks at the development of the parallel FDTD algorithm. The chapter in-
troduces the MPI library, and discusses certain functions that were used from the library.
It also discusses the finer points of how the FDTD algorithm can be split up between
several processes, and what inter-process communication is required.

Chapter 5 shows some results of simulations that were run with the code. The results are
compared to results of obtained using other numerical codes.

Finally, in chapter 6 a conclusion is presented. The chapter discusses how effectively the
goals of this thesis were achieved, as well as presenting some ideas for future development
on the code.



Chapter 2

The PML ABC for Anisotropic Media

One of the greatest challenges with an FDTD implementation is to accurately and effi-
ciently model an unbounded region. In order to maximize efficiency, the simulation grid
should only enclose the area closest to the structures of interest. However, it must appear
that the fields propagate in an infinite region beyond the grid.

This is best achieved by implementing some form of Absorbing Boundary Condition
[ABC|, which reduces reflections of the waves leaving the grid.

This chapter will consider several formulations of Perfectly Matched Layer ABC, giving
a detailed discussion on the uniaxial formulation. The implementation of the 3D UPML
is then discussed. Finally, the performance of a 2D example is presented. A 2D example
is used because of the large amount of memory required to obtain a reference signal.

2.1 Introduction to the Perfectly Matched Layer

There are several different types of ABCs, but by far the most successful is the Perfectly
Matched Layer [PML]|, introduced by Berenger [3] . As the name suggests, the PML is a
layer of material, a few cells wide, that is modelled to match the inside of the computa-
tional grid. The layer must absorb all outgoing fields, minimizing their interaction with
the fields inside the grid. There are currently three accepted formulations of the PML:

o Berenger split field formulation
e Stretched co-ordinate formulation

o Uniaxial anisotropic formulation

The split field formulation was the original formulation presented by Berenger [4]. The
PML is modelled by splitting the transverse field components into two orthogonal com-
ponents, allowing an extra degree of freedom. Although this method performs well, the
implementation can be confusing, and the material that is modelled in the PML does not
actually exist.

The stretched co-ordinate formulation [5] maps Maxwell’s equations into a complex co-
ordinate space, offering a more compact way of writing the split field equations. Once

4



CHAPTER 2. THE PML ABC FOR ANISOTROPIC MEDIA 5

again this formulation is largely theoretical.

The concept of modelling the PML ABC as a uniaxial a,msotroplc material (UPML)for
the FDTD method was first introduced by Gedney [6]. The uniaxial formulations is the
only formulation that has true physical meaning. Here the PML is modelled as a uniaxial
anisotropic medium, with the materials properties to be described in section 2.2.1

2.2 The Uniaxial PML

Because the UPML formulation is the only formulation with true physical significance, it
was the formulation that was implemented in the code. The next section briefly discusses
some of the properties of uniaxial anisotropic materials, and how these properties can be
utilized to implement a UPML ABC.

2.2.1 Uniaxial Anisotropic Materials

In an electrically anisotropic material the D field can no longer be expressed as the product
of the scaler € and the vector E field. Each of the D field components are a function of
all the E field components. The scaler ¢ is replaced by the tensor € with D = €E where

€11 €12 €13
= €31 €99 €33 (21)
€31 €32 €33

enEl

A uniaxial anisotropic material is a special case of the anisotropic materials. It describes
materials with tensors which only have diagonal elements,

€11 0 0
% = 0 Ego 0 (22)
0 0 €33

where two of the three diagonal elements are equal.

It will be shown that the uniaxial anisotropic material is ideal for an ABC because it
is theoretically capable of transmitting an incident plane wave with zero reflection,
regardless of the angle of incidence.

2.2.2 Absorbing Properties of the Uniaxial Medium

In this section, Gedney’s derivation [7], on how the UPML is matched to truncate the
FDTD grid, is presented because it is essential in understanding of the workings of the
UPML.

Consider the scenario shown in figure 2.1 where a polarized time harmonic plane wave is
incident on a uniaxial anisotropic half-space. The boundary between the two media is in
a constant z plane. Assume that the incident wave has the form H™"® = Hpe 7Fe=~ By
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isotropic
medium

Figure 2.1: The uniaxial PML
Expressions for the reflected (H,} and transmitted (Hz) waves will be derived.
The fields of the plane wave in the uniaxial medium are described by:
3¢ x E = wiH
Bx B =aps (2.3)
Fax # = —wekE

where {)3“ = 3% + 94, and the permittivity and permeability are the uniaxial tensors

a 00 ¢ 0.0
t=e |0 b 0|, HE=pm |0 dO (2.4)
00 b 00 d

which clearly illustrates the uniaxial medium is rotationally symmetric around the x axis.
From equation{2.3) we derive the wave equation as

Fex @5 x H+w?GH =0 (2.5)

If the curl operations are executed on the vectors, the following matrix expression is
obtained from the wave equation:

k% — (Bg)%7 ByBab~! 0 H,
gepeb™ k- (B)%0! 0 H, | =0 (26)
0 0 k2d — (8226t = (%! | | H.

Here k? = w®epq. If the matrix is solved for 82, there are four eigenmode solutions that
can be decoupled into forward and backward TE, and TM; modes. For the TE, mode
the dispersion relationship is

k2 — ()27 — (8% =0 (2.7)

In order to calculate the reflection coefficient at the boundary of the uniaxial material,
the fields in the isotropic medium are expressed as the superposition of the incident and
reflected field.

, = 3Hy(1 + De¥fir)g=ifan=ibiy
(2.8)

—

1

: i : - gi igi p_ 74
[—2—L(1+ [‘323'»5&03) + Q&(l + FEQJﬁxI)]Hoe_Jﬂmm_Jﬁy'y
Wey wey
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The wave that is transmitted through the uniaxial medium is described by
H, = 3Hyre 1Ps2—i8y

g

B s (2.9)

a2
4§ | Hyremifia-ifiy
wera werh

where T and 7 are the reflection and transmission coefficients respectively. When the
boundary conditions are enforced, we have

b BB
=Y a h—1
s e
T= —
B+ By b7

In order for the tangential field components to be continuous over the boundary, the tan-
gential phase velocities must be equal i.e. By = 5.

Qur goal is to find the elements of € and & that will give I' = 0 for all angles of inci-
dence. Clearly from equation(2.10) the medium must have 3¢ = b for this to be true.
If equation(2.7) is rearranged for 83 we have

B2 = 1/ (bd)k? — (a=1b)(85)?
=/ (bd)k? - (a7'B)(5})?

Choosing d = b and a = b™!, we have

B2 = /P = ()"
= b(8%)

giving the relationship for zero reflection for all angles of incidence.

A similar procedure can be performed for the TM, mode dispersion relationship. Zero
reflection is obtained in the case where b=d and ¢! =d.

It is now clear that, if a plane wave is incident on a uniaxial medium boundary in any
constant z plane, and has permittivity and permeability tensors

(2.11)

(2.12)

? - €1§
T =3
s;7 00 (2.13)
3= 0 s, O
0 0 s,

the wave will be purely transmitted into the uniaxial medium with zero reflection, for all
angles of incidence, polarization and frequency of incident wave.

If s, is chosen to be s, = (1 + ﬁﬁa) then

pe= (1 - 2%y (2.14)

Wep
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The fields in the uniaxial medium can now be rewritten as
H2 = éHoe‘jﬁ;z_j.Bgye_UxﬂlfrlCOS(B,‘)E

1805 i 4e 2.15
Ey = (—&s47h sin(6;) + gy cos(6;)) Hoe ™ #2e-985vemommen coslh)z (2.15)

where 6; is the angle of incidence measured from the x-axis and #, is the wave impedance.
As the wave propagates further into the uniaxial medium it is attenuated along the x-axis.

The uniaxial medium performs ideally as a PML because it exhibits the following prop-
erties:

e The tangential phase velocities and therefore the wave impedances are equal across
the boundary, making the boundary perfectly matched.

e The normal phase velocity {equation 2.14) reduces as as the wave propagates into
the PML.

e The uniaxial medium is theoretically capable of totally absorbing an incident plane
wave.

Equation (2.13) gives the tensor for the case of a uniaxial medium boundary in a constant
z plane. It can be shown that the general tensor, for uniaxial medium boundaries in
planes of constant z,y and z can be written as

E=61§
= 18
ne g g (2.16)
s=| 0 == 0
¥
0 0 =

2.2.3 Performance of the UPML as an ABC

The previous section deals with the theoretical performance of a uniaxial half-space as an
absorbing medium. It was shown that under these ideal conditions the medium is capable
of completely absorbing an incident plane wave.

However, two assumptions were made that prevent the UPML from being a perfect ab-
sorber when it is implemented in an FDTD code.

The first problem is that a PML ABC must be finite thickness. In the previous section it
was assumed that the uniaxial medium was a half-space. When the uniaxial medium is
used as a ABC it is only a few cells wide and must be terminated by a boundary. If the
boundary is assumed to be PEC then the incident fields are reflected off the boundary
and back into the FDTD region. It can be shown that for a PML of thickness d the actual
reflection is given by [7]

R(B;) — B—chmnerdcos(e.-) (2.17)
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and is reduced by using a thicker PML and a higher conductivity. Unfortunately the
reflection error increases with larger angles of incidence.

For an efficient FDTD implementation of the UPML the thickness, d should be small.
Therefore, to minimize the reflection error the conductance is usually chosen as large as
possible.

The second problem is due to the assumption that the FDTD grid is continuous, i.e.
reflections occur due to the discretization of the grid. Berenger postulated [8] that the
largest discretization reflections occurs at the interface of the UPML.

He proposed that discretization errors can be reduced by spatially scaling the conductance
in the UPML. If the conductance is scaled only along the normal axis, the material
is still matched at the boundary. Several ways of scaling the conductance have been
suggested, but the most successful has been the polynomial scaling [9] where

T

U.'E(:L‘) = O'mam(a)m (218)
yielding a reflection error of
cas(d;
R(Qz) — e—zﬂ'mazﬂfrd—k-m_'_l) (2.19)

where m is the order of the polynomial (typically in the range of 2 and 4), and d is the
thickness of the ABC.

If the conductance is polynomially scaled, then two different reflection errors can be
distinguished for the following cases. Given m,d and E(6};)

e If the conductance is chosen small (not usually the case) the reflection error is
dominated by the reflection off the PEC wall. Equation(2.19) predicts the error
accurately.

o If the conductance is chosen large, which is normallj the case, the discretization
error can dominate the reflection error. Equation(2.19) no longer predicts the error
accurately.

Clearly a trade off exists between the two types of reflection errors and an optimal opera-
tion point must be found. In [10] a detailed description of the optimal design of the PML
is presented. However, a more general solution is desired.

Through extensive experimental studies, demonstrated in [7], the following parameters
were found to produce the smallest reflection errors, while still minimizing the discretiza-
tion errors for a broad range of applications.

It was shown that for a 10 cell think PML (d = 10), with R{0) = !¢, or d = 5 and
R(0) = e~® the optimal choice of gy, Was given as:

(m+1)
=T 2.20
Tort = 150 /e, Az (220
This expression was found to be robust for a large number of applications.
TBIVERSITEN STELLENBOSCH

BIBLIOTEEK
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2.2.4 Implementation - UPML Update Equations

Maxwell’s curl equations can now be written as
V x E = —jwysH
s T (2.21)
V x H = jwesk

In order to obtain simpler expressions for the update equations, expressions for the D and
B fields are also used.
Using the general tensor given in equation(2.16) the D field is given by

D, b,
D, | =¢| 3By (2.22)
D, LK,
Substituting the D field into equation(2.21) we get
GH-%H ] s 0 01[D
§Hm - @Hz =jw| 0 s 0 D, (2.23)
wHy — 3 He 0 0 s | |D.

When s, is chosen such that s, = 1-|—J.—$§;, and s, and s, are chosen in a similar manner, and
used in equation(2.23), after the equation is transformed into the time domain (jw = 4)

we have

%mwﬁ& s[D=]1 (o 0 07D
LH,— LH, == D, |+=]0 o, 0 D, (2.24)
%Hy B %Hx D, “l0 0 o D,

The update equations for the # components of all the fields are derived. The § and 2

vector components can be derived in the same way. The D, component is obtained from
(2.24)

WD:  ovp, —Lp, 2

dt €0 dy dz

The partial derivatives in both the space and time domains are now discretized. Time

averaging is applied to the loss term 2D, = %(Dmi?f%l,j,k + Dy ) and then the

H, (2.25)

"
i+5.0.k
equation is rearranged

Do+ __(260 - oyAt)D " +( 2e0At )
N . —_— L1 - _—
Flitgak O 2en + oy At Tlitgdk T\ 2eg + 0, At
n+3 nt3 nt g ntg 2.96
H""i+%,j+%,k Hz|z'+%,j—%,k _ Hy|i+%,j,k+% y'z‘-i-%,j,k—% (2.26)
Ay Az

The E, component is derived from the D, component using the relationship given by
equation(2.22).

S, Dy = €8, E,

(jw+-€£)D$ =e(jw+%i)Em (227)
0 0
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The equation is then transformed into the time domain (jw = £) giving

d o d -

—(Dy) + —=D;) = e(—(Ex) + = E¢ 2.28

(5(D2) +Z2D2) = e 3 (B) + Z o) (228)

Once again the partial derivatives are discretized, and time averaging is used for the loss

term. Both sides of the equation are then multiply through by 2eyAt and then it is
rearranged

— o, At 1
Bt = oo 5 ora ot * ey 8D 29
(260 + o2 88) D2 — (260 = 0eBODLIT, ]
We now calculate the B and H fields |
1 -_— 1
BIIZIE%M% :(;ZE - Zﬁi) ligrpars ¥ (25021)?:&)
£ ?ﬁl,m% h EZI?,IL% E?”'Z;-il-%,k-’rl h Eyl?,ﬁ.;,,k] (2.30)
Ay Az
and H
e A G s 10 U S
titgkts  (2¢p + 0, At) *?J+f7k+§ 1(2¢q + 0, AL) 1 (2.31)
[(260 + amAt)Bz':;f%,H% — (2¢p — UIAt)B,EE;f%’H%]

At this point it should be mentioned that when the value of ¢ is being calculated, careful
consideration should be paid to the position of the ifields, remembering the half spatial
step between the different vector components.

It should also be mentioned that the UPML update equations presented in this section can
be used as a general set of FDTD update equations. It can be shown that for any point
outside of the PML (where o = 0) the equations simplify to the general update equations.
This is of great advantage, because it implies that a single set of update equations can
be used for the ABC and the field points inside the computational grid. This means a
cleaner and more efficient implementation is possible.

2.3  Performance - A 2D Simulation

In order to test the performance of the UPML, a 2D example was implemented to measure
the reflections error (It was not possible to perform this example in 3D because of the
large memory requirements for calculating the reference signal). Figure 2.2 shows the
setup of the grid for the example. The grid was fed at the centre by the differentiated
Gaussian pulse point source

t— t()]e_[%q]z

Bi(t) = ~2[—" (2.32)
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Figure 2.2: Grid for example

with t, = 26.53 ps and t; = 4f,. A 1x1 mm cell size and a time step of 98% of the
Courant limit were used for the simulation. The E field was measured two cells away
from the UPML at points A and B. In order to calculate the reflection error at A and B
the fields must be compared to a reference signal. This was obtained by extending the
grid from a 41x41 cell grid to a 1021x1021 cell grid and measuring the fields at the same
position relative to the source as points A an B. The reflection error at time step n was
then calculated as '
Ez(n) - Ez,ref(n)

Ez,ma,.:r:

where E, ,.;(n) is the reference signal at time step 7 and E, ;o is the maximum value of
sequence E,.

The simulation was run using 5 and 10 layer UPML. The respective predicted reflection
errors are (-69dB) and (-139dB) when the optimum conductivity given by equation(2.20)
is used. Figure 2.3 and 2.4 show the results obtained for the example.

In both cases the reflection measured at A is smaller than the reflection measured at B.
This is due to the summation of reflections off both UPML walls at B, causing the larger
reflection error. The 5 layer simulations seems much closer to the predicted value than the
10 layer simulation. This is probably caused by reflections that occur deeper in the PML
in the 10 layer simulation. The reflection error measured at A, for the 10 layer simulation,
is not nearly as smooth as the other reflection errors. This is probably numerical noise
due to the simulation only being run in single precision. It only occurs for this single case,
because the values of the reflection error are so small. '

Rerror (n) —

(2.33)

2.4 Conclusion

This chapter has discussed how a uniaxial anisotropic material can be modelled as a
PML ABC. The formulation of how the a uniaxial half-space can be considered a perfect
absorber was presented in detail. Then certain shortcomings of the theoretical model were
considered. The formulation of the update equations for the PML vector components was
derived, and the implementation thereof was discussed. Finally a 2D simulation was run
to measure the performance of the PML as an ABC.
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It is clear from the results shown in this chapter that the UPML out-performs all previous
ABCs by obtaining almost negligible reflection errors.
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Chapter 3

Modelling Dispersive and Conductive
Materials |

Due to the cell-like structure of the FDTD computational grid, the algorithm is easily
adapted to include material models. Once suitable update equations are included in the
algorithm, materials are modelled simply by assigning material properties to each cell.
Boundary conditions between stratified media are automatically enforced by the update
equations.

In this chapter, derivations for both dispersive and conductive PML ABCs are present.
It is also shown how the update equations for the PML update equations simplify to the
general update equations for both types of materials. The effect that the materials have
on modelling the geometry is also discussed.

3.1 Methods for Modelling Dispersive Media

This section involves the derivation of the update equations for dispersive media, using
the Debye model to approximate the frequency dependence of the media. The update
equations for the PML will be derived first, because outside of the PML, these equations
simplify to the general update equations for dispersive media.

3.1.1 The Debye Model

In [1] it was shown that the frequency dependency relative permittivity of water can be
accurately modelled using the Debye first order formulation. The Debye approach models
the frequency dependency of the relative permittivity as:
ES - Cm !
= == 3.1
er(W) = (€00 + 1+jwt0) (3.1)
where ¢, is the DC permittivity, €., is the permittivity at very high frequencies and ¢, is

the Debye relaxation constant. These constants for distilled water are given in Table 3.1
Figure 3.1 shows the value of the Debye model for distilled water.

15
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Figure 3.1: Debye modelling of material frequency dependence for water

€ | 81
€ | 1.8
to 9.4 x 10712

Table 3.1: Debye constants for distilled water

3.1.2 PML Boundary Conditions for Dispersive Media

In [1] a 2nd order Mur ABC was implemented. The Mur formulation is dependant on the
speed of the wave traveling in the medium, which it must terminate. When the medium
has dispersive properties, the Mur ABC performs poorly, because the different frequency
components of the incident wave travel at different speeds. This implies that the ABC
cannot be matched to the dispersive media, causing large reflections for certain incident
wave forms.

It was shown in section 2.2.3 that the PML is perfectly matched to a medium provided the
medium extends normally through the UPML. This is also true for dispersive materials.
Therefore the PML was chosen as an ABC, because of its theoretical ability to offer a
zero reflection coefficient, even for dispersive and stratified media.

The formulation of the PML update equations is very similar, but slightly more com-
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plicated than those presented in section 2.2.4. Again the D and B field components are
used, but now it is necessary to introduce another variable.
From the general set of PML update equations we have,

diHZ - %Hy % 0 0 E,
%HZ ~4H. | =juei@) | 0 = 0 || B, (3.2)
wHy — e 0 0 =X E,

with now the Debye model is included in e-{w).
Now a variable T is introduced to simplify the update equation by breaking them up into
another stage, and the D field component is used, giving:

T, .,
Ty = € ;:'Ey (33)
T, N p,

[D] = & (w)[T] (3.4)

Therefore the update equations for the PML with s =1 + j:jm with dispersive media are
given by:

%H@- - %Hy [0 1 [ow 0 0)[D:
%Hx - %Hz = a Dy + a 0 [ 0 Dy (35)
iy~ @Hm D, 0 0 o5 D,
and substituting the Debye model for €.(w) into equation 3.4 and rearranging for T we
get. '

25

[

and

(jwhoeoo + €5)Tx = (1 + jwito) Dy

d d (3.6)
tgéoogt'Tx + CSTE = t()EDm + Dg;
Finally, the value of the E field can be determined by equation 3.3 and performing a
fourier transform into the time domain:

eo(l+ Z)E, =1+

— )T
Juw Jw

(3.7)

d d
—Ea: 2y = "'"Ta: -ty
Eodt + epo. E p” + o, T,

The final update equations are obtained by implementing the discrete derivatives, and
using central averaging on the other terms. For example the %Tm + 0.1, will become

VSl VN Tt + Ty

3 Oy 5 (3.8)

Once an expression for the E field has been implemented, the standard update equations
for the B and H fields are used.
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If the equations obtained for the dispersive media PML are compared to those for the free
space case, it is clear that they are almost identical. When the dispersive PML equations
are implemented, an intermediate step can simply be applied to the free space implemen-
tation. This step is the calculation of the variable T in equation 3.6. Equation 3.7 is the
same as that of the free space PML equation, with D replaced by T.

In section 5.1 a simulation was run to measure the performance of the PML for terminating
dispersive media.

3.1.3 Implementing the General Dispersive Media Update Equa-
tions

In the PML the variable s = 1 + j:m, where o is a function of the depth in the PML.

However, if o is set equal to zero (s = 1) for all points outside of the PML, the dispersive
media PML update equations simplify as follows:

T = EQE
D = ¢ (w)T : (3.9)
= D = g€, (w)E

Here, €, (w) is still modelled using the Debye model. This set of equations is identical
to the equations that are obtained if the ADE method is used to model the dispersive
media.

Therefore the update equations for the dispersive media PML simplify to the general
update equations for modelling the dispersive media. This is done simply by setting
o = 0 for all points outside the PML.

The update equations for the PML offer a simple general solution to modelling dispersive
media. For points in the PML, the value of o is matched to the properties of the material
normal to the PML. For all points outside the PML, o is set equal to zero, to provide the
general update equations for dispersive media.

3.2 Methods for Modelling Conductive Media

This section presents the derivation of the update equations for modelling conductive
material. Once again it will be shown that the PML update equations simplify to the
general conductive media update equations for peints outside of the PML.

3.2.1 Modelling the Conductivity

The conductivity of the material is modelled in a similar way to the model used for
dispersive media. The following expression is used to model the conductivity:

\E (3.10)

, o
D = jweg(€ér + -
Jweg

where ¢, is the relative permittivity and o is the conductance of the material. This model
is used in the derivation of the PML boundary conditions presented in the next section.
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3.2.2 PML Boundary Conditions for Conductive Media

The update equations for conductive media PML are derived in the same way as those
for dispersive media. The expression given for the conductive media in equation 3.10 is
frequency dependent. When the expression is transformed into the time domain a variable
is introduced to break the update equations up into simpler expression. A full derivation
for the PML boundary conditions for conductive media is presented in appendix A.

In [7] a similar formulation is presented to the derivation in appendix A. However, the
variables in appendix A are rearranged slightly differently. This allows for the implemen-
tation to make use of the general UPML update equations presented in section 2.2.4, with
an intermediate expression included. This expression is the calculation of the variable T
(equation A.5), which is then used to calculate the E field.

Once again the PML offers zero reflection if the PML is matched to the material prop-
erties of the material adjacent to the surface of the layer.

In section 5.1 a simulation was run to measure the performance of the PML for terminating
conductive media.

3.2.3 Implementing the General Conductive Media Update Equa-
tions

As with the dipersive media PML update equations, the conductive media PML update
equations offer a general solution to modelling the conductive media. If s = 1 outside of
the PML the update equations simplify to the general update equations for conductive
media.

3.3 Matching the PML to Stratified Media

In this chapter it was shown that in order for the PML to be matched to a material, the
material should extend normally into the PML. For the stratified case, this means that
the PML is perfectly matched at a point if the material properties of the material that is
adjacent to the point extend into the PML.

However one topic concerning the implementation of the stratified media PML has not yet
been addressed. That is the assigning of the value of o,y for the PML. In equation 2.20
it is shown that o,y is dependent on the relative permittivity of the material. For the
stratified media case this proposes an interesting problem, which is not really addressed
in related literature. Two possibilities exist to overcoming the problem:

e Use a PML for each stratified layer, where values of o, are calculated for each
layer.

¢ Use a single PML, where o, is calculated from some kind of average value of ¢, for
all the layers.
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When the first method was implemented, it was found that reflections occur at the bound-
aries between the different PML layers, giving unstable results.

Therefore the only solution is to calculate some kind of average of ¢, for all the layers,
which is used to determine ogy. This is not the ideal solution, because if the different lay-
ers have large differences in their relative permittivities, it could lead to large reflections,
because the PML will not be perfectly matched to the material.

Figure 3.2: Stratified Media example

In order to clarify the implementation a hypothetical example is considered. The geom-
etry is shown in figure 3.2. Here two materials, A and B, are modelled and terminated
using a PML. If material A has a relative permittivity of €4 and material B of ¢g, the
following can be said about the modelling of the points 1-4:

e Point 1 will be modelled using a permittivity €4, and ¢,y will be calculated using
€4.

¢ Point 2 will be modelled using a permittivity ¢, and o,,: will be calculated using
an average of e4 and ep.

e Point 3 will be modelled using a permittivity eg, and g,, will be calculated using
an average of €4 and ep.

o Point 4 will be modelled using a permittivity g, and g,, will be calculated using
€B.

3.4 Modelling the Geometry in Conductive and Dis-
persive Media

3.4.1 The Thin-wire Update Equations

The thin-wire antenna model, that was developed in {1], was used in this thesis.

When the antenna is surrounded by a material, the free space expressions for the E, and
E, fields on the wire, are replaced by the the material update equations. The E, com-
ponent on the wire is modelled as metal, and therefore is unaffected by the surrounding
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material. The magnetic field components are also unaffected by the surrounding material,
and therefore the free space update equations are used.

The update equations for the lumped elements remain unchanged when the antenna is
surrounded by a material. This is because the fields refer to internal fields in the resistor
or capacitor.

3.4.2 Modelling a Borehole and Other Geometries

One of the prime interests of this thesis is to be able to simulate the measurements taken
in a borehole. This is discussed in more detail in chapter 5.

The modelling of the borehole requires the ability to model stratified media, where the
layers are cylindrical (surrounding the borehole).

Tt is also of interest to be able to model horizontally stratified media.

Both cases are modelled in the following way.

o Each different material is assigned an integer, mat_ num.

o The properties of each material are stored in a matrix, where mat_num is used to
index the matrix. For example mat_prop (mat_num,3) = 4.815.

e Finally a three dimensional matrix, the same size as the computational grid, stores
the number of the material for each point in the grid. When the fields are updated,
the matrix is tested for a material at each point. If a material is present the proper-
ties are obtained from mat_prop and the special update equations for the material
are used.

3.4.3 Stability Consideration

It should be noted that for dielectric materials, the wavelength is reduced by a factor of
% to that of the free space wavelength. This should be considered when the FDTD cell
size is chosen. The rule of thumb is that the cells size should be less than or equal to a
tenth of a wavelength.

If the material has dispersive properties, then €,,; is used when determining the cell size,

and matching the PML.

3.5 Results

Several simulations were run to test the accuracy of the two material models presented in
this chapter. The results obtained using the code that was developed were compared to
results obtained with other commercial packages. The results are presented in Chapter 5.
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3.6 Conclusion

In this chapter implementations for dispersive and conductive media models were pre-
sented. It was shown that the PML update equations can be used as a general set of
update equations for modelling the materials.

The accuracy of the two models was tested in several examples presented in Chapter 5

The implementation of these two models allows the code to model a large range of ma-
terials, with varying geometries, The fact that the ABCs can now be matched to the
material that is modelled, means that previous reflections off non-perfect ABCs no longer
interfere with the accuracy of the material models.



Chapter 4

The Message Passing Interface [MPI]

Today’s personal and super computer capabilities have not done away with the need for
parallel processing applications. Rather, it has taken the level of performance of paral-
lel processing algorithms to a new level, allowing faster solutions to substantially larger
problems. For an introduction to the implementation of a parallel FDTD algorithm on a
CM-2 machine consult [11].

The following chapter considers the implementation of a two dimensional parallel archi-
tecture, which utilizes the MPI library for inter-processes communication. Functions that
were used from the MPI library are described, including the Cartesian mapping and the
derived data types that were used. The actual inter-process communication that is re-
quired is discussed in section 4.2.4 and 4.2.6.

Severa] simulations were run to measure the performance of the MPT algorithm. Finally
a conclusion is presented, which ties up the work presented in this chapter.

4.1 The MPI Library

Over the last one and a half decades there has been a huge development in the parallel
processing community, resulting in codes, which offer highly efficient functions to be used
for inter-process communications. An introduction to the developement of parallel pro-
cessing is presented in [12].

The MPI library, which enables message passing for programs exploiting multiple proces-
sors, was completed in 1994, and is fast becoming the standard.

The library contains a group of functions, which can be called in C, C-++ and Fortran.
The functions are easy to use and are well documented. For these reasons the MPI library
was chosen to develop a parallel FDTD algorithm.

The MPI Users Guide [13] provides a detailed description of the MPI functions, while [14]
provides an excellent tutorial, including Fortran and C code extracts, for the MPI library.

23
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4.2 Implementing a Parallel FDTD Algorithm

The interest in implementing a parallel FDTD algorithm lies in the following two funda-
mental ideas. Assuming that inter-process communication time overheads are negligible,
the following is theoretically possible for a parallel FDTD algorithm executed on N ma-
chines

e The computational time can be reduced by a factor of N.

e The memory requirement can be shared equally between the N machines.

For example, consider two FDTD simulations, where simulation one has a computational
grid ten times larger than simulation two. If simulation one is solved using an MPI algo-
rithm on ten machines, it could take the same time to run as simulation two, run on a
single machine. It is clear that, by developing a parallel FDTD algorithm, the scope of
problems that can be solved becomes substantially larger.

It is shown in [13] that in order for an MPI algorithm to be efficient, the computa-
tional loads of each process must be balanced. The FDTD algorithm can be described as
a SPMD (Single Program Multiple Data) parallel architecture. These means that each
process executes the same program. The differences between processes lie in the position
of sources, boundary conditions and material properties. If the FDTD computational grid
is divided up equally between the process, the load requirements for each process will be
almost the same, and a efficient FDTD algorithm can be developed.

Figure 4.1 shows the flow diagram of the MPI FDTD algorithm that was developed. The
remainder of this section describes how each of the steps in the flow diagram are imple-
mented using functions from the MPI library. Several extracts from the Fortran 90 code
are included.

4.2.1 Compiling and Running using the MPI Library

In order to use the functions offered in the MPI library it is necessary to include the MPI
header file. This is done by inserting the following line at the beginning of the program:

#include "mpif.h"

The MPI libraries are linked dynamically i.e. they are only linked when the code is exe-
cuted. The code can be compiled using the standard 90 compiler options, and ‘-lmpi’ is
added at the end of the command line. The following line will compile a 64 bit executable,
FDTD _mpi, from the source code FDTD _ mpi.f90, with level 2 optimization, linking
the MPT libraries:

£90 -64 -02 FDTD_mpi.f90 -o FDTD_mpi -lmpi
The mpirun command is the primary job launcher for the Message Passing Toolkit im-

plementation of MPI. The parameter ‘-np’ is passed before the executable file giving the
number of processes to launch. Here N processes will be launched:



CHAPTER 4. THE MESSAGE PASSING INTERFACE [MPI] 25

Update
D field
=
1 E field
Create 2D -
Carteslan map [Updatc proceSSj
=) |
Set up process -
boundaries
y

3
Create MPI

data types
/—“
Enter time
loop
NO

YES / Time loo
finished ?

Finalize I\./IPI‘ END
Communication

Figure 4.1: Flow diagram for the MPI FDTD algorithm
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4.2.2 Initializing the Communication World

When mpirun is called, MPI groups all N processes in a single communicator, MPI_comm_ world.
MPI comm_world is the default communicator, and is created when the MPI_init is
called, enabling all N processes to communicate with one another. It is important to note

that, typically each process is run on its own processor, but its not always true. It is
possible to run more that one process on a single processor, but it is usually not practical.

The following code extract is the typical structure for setting up an MPI program:

call MPI_init( err )
call MPI_comm_size( MPI_comm_world, size, err )

call MPI_finalize( err )
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with the following parameters returned after the functions are called:

MPI_comm_world : MPI default communicator handle,
created when MPI_init is called

size . number of processes, N, in
MPI_comm_world
err : error if function call failed

4.2.3 Implementing the Two Dimensional Cartesian Topology

The MPI library has a group of functions, which can be used to regulate the way in which
the process are mapped to a problem. For an FDTD algorithm, the Cartesian mapping
function is ideal for dividing up the computational grid into subspaces and assigning a
process to each subspace.

By using a Cartesian map the program is given a more logical structure. It also offers
a much simpler and cleaner solution to writing a generic MPI FDTD algorithm i.e. the
code can be run with any number of processes without being recompiled.

It was not practical to implement a three dimensional Cartesian map because it would
require a large cluster to be run on, which unfortunately was not available. However,
the MPI Cartesian functions are easily scaled to three dimensions (for running larger
problems). Figure 4.2 shows how the FDTD computational area is mapped for a 3x3 two
dimensional Cartesian map in the zy plane. This is implemented by calling the following

AY

FDTD COMPUTATIONAL
AREA :

13| @)1 33

6 1 8
(1,2) | 22| 3.2)

3 4 5 X
A, enf an

0 1 2

Figure 4.2: 2D Cartesian topology

function:
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call MPI_cart_create( MPI_comm_world, D, dim(1:3), period,
reorder, 2D_comm, err )

where

MPI_comm_world : default communicator

D : number of dimensions = 2

dim(1:3) : number of process in each direction
period : no periodicity = 0

reorder : no reordering of processes = 0
2D_comm ;. new communicator

err : error if function call failed

When the 2D _comm is created each process is assigned a rank (from 0 to N—1), and
an x and v Cartesian coordinate. This is also illustrated in figure 4.2.

Once the process have been mapped, several MPI functions are available for handling
the Cartesian map.

The first function that is used, returns the rank of the neighbouring processes. This in-
formation is essential for directing inter-process communication (see section 4.2.6). The
following two function calls store the rank of the neighbouring processes in a four element
array.

call MPI_cart_shift(2D_comm, 0, 1, neighbour_rank(UP),
neighbour_rank (DOWN), err)

call MPI_cart_shift(2D_comm, 1, 1, neighbour_rank(LEFT),
neighbour_rank (RIGHT), err)

If the process does not have a neighbour on one of its sides i.e. it is on the edge of the
Cartesian map, the function returns a rank of -1 for that side. The array for process (3,3)
in figure 4.2 would have the following form:

neighbour_rank (UP) = -1
neighbour_ rank(DOWN) = 5
neighbour_rank(LEFT) = 7
neighbour_rank(RIGHT) = -1

This function is also used for determining where PML boundary conditions must be ap-
plied i.e. absorbing layers are only added to edges of processes where the array has a
value of -1.

The Cartesian mapping also helps simplify the mapping of the geometry across the vari-
ous number of processes. The following function returns the Cartesian coordinates of the
process rank in the two element array coords:

call MPI_cart_coords{2D_comm, rank, 2, coords, err)

Once the Cartesian coordinates of the process are obtained, coordinates local to a process
can be converted to global coordinates for mapping geometry.
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4.2.4 Inter-process Boundaries

In order for the FDTD algorithm to be continuous over the process boundaries, it is
necessary to passes certain field values between the processes. This is explained further
by considering the dependencies of the field components.

For example, in the plane y = 1 in the subspace assigned to process (2,2), shown in
figure 4.2

D:::Ii,l,k is a function of (Hyli,l,k; Hylz’,l,k—l; Hz|i,1,k; Hzl,;,g,k). The value of Hz'i,ﬂ,k is Hzli,ny,k
in the process (2,1). This value must be communicated from the process (2,1) to calculate
the values of Dy|; 14 correctly.

Similarly in the plane y = ny in the same subspace Bg|iny,; is a function of

(Bylinyhs1; Byling.k Belimytiks Belinys). Here Exliny+1x 8 Eline in process (2,3).

y
Receive Ex, Ez

X

Send Hx, Hz

Receive Hy, Hz i Send Hy, Hz

(3,2)

Send Ey, Ez Receive Ey, Ez

Receive Hx, Hz Send Ex, Ez

Figure 4.3: Inter-process communication

Figure 4.3 shows the communication required for process (2,2) in the Cartesian topology.
In order to simplify the inter-process communication, the size of the field matrices is
extended by one in the X and Y directions [15]. These the additional planes are used as
buffers to receive outstanding field values from neighbouring processes. The matrices are
allocated as follows:

E_x( 1:nx+1,1:ny+1,nz ) H_x( 0:nx,0:ny,nz)
E_y( 1:nx+1,1:ny+l,nz ) H_y( 0:nx,0:ny,nz)
E_z( 1:nx+1,1:ny+i,nz ) H_z( 0:nx,0:ny,nz)

4.2.5 Defining the Derived Data Types

In Fortran 90 a three dimensional matrix, with indexing (x,y,z), has contiguous data in
the X direction, and discontiguous data in both the Y and Z directions. The MPI library
offers functions for defining derived data types for both contiguous and discontiguous
data. :

In order to reduce the time overhead associated with inter-process communication, the
data is first grouped before being sent. It can then be sent using a single communication
instruction.
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Section 4.2.4 showed that fields lying in both the zz and yz planes on process boundaries
must be sent or received between processes. Two new data types are needed for grouping -
these planes before sending or receiving them. The data types are defined in the following
way. Firstly a column and a row vector of are defined and committed to the communicator:

! define data types call MPI_type_contiguous( nx+1, MPI_real,
colX, err ) call MPI_type_vector( ny+1, 1, nx+i, MPI_real, rowY,
err ) | commit data types call MPI_type_commit( colX, err) call
MPI_type_commit( rowY, err)

Here the contiguous data type is used for the X direction and the discontiguous data type
for the Y direction. These vector data types are then used to create two two dimensional
matrices.

call MPI_type_vector( nz, 1, nx+l, colX, matXZ, err )
call MPI_type_vector( nz, 1, ny+l, rowY, matYZ, err )
call MPI_type_commit( matXZ, err)
call MPI_type_commit( matYZ, err)

Because the data is discontiguous in the Z direction, both matrices are created using the
discontiguous data type. '

4.2.6 Inter-process Communications

The MPI library offers a range of different send and receive functions. Non-blocking send
and receive functions were used to perform the required inter-process communication in
the parallel algorithm.

The following extract of code shows how inter-process communication in the X direction
of E field values is handled.

! X direction communication
send = neighbour_rank (LEFT)
receive = neighbour_rank{(RIGHT)
IF(send.NE.-1)THEN
CALL MPI_SEND(EYS(1,1,1),1,matYZ,send,tag,2D_comm,stat,err)
CALL MPI_SEND(EZS(1,1,1),1,matYZ,send,tag,2D_comm,stat,err)
ENDIF
IF(receive.NE.-1)THEN
CALL MPI_RECV(EYS(NX+1,1,1),1,matYZ,receive,tag,2D_comm,stat,err)
CALL MPI_RECV(EZS(NX+1,1,1),1,matYZ,receive,tag,2D_comm,stat,err)
ENDIF

where

EYS(1,1,1) : the address of the data group to send
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EZS(1,1,1) : " "
EYS(NX+1,1,1) : the address of the data group to receive
EZS(NX+1,1,1) : " "

matYZ : the data type to send
receive . the rank of process in the positive X direction
send . the rank of process in the negative X direction

Each process is tested to see if it lies on the edge of the computational grid (send or
receive equals -1). If the process does lie on the edge, no fields are sent or received.

The passing of the field values between processes is handled generically, and is independent
of the number of process used.

4.3 Performance

A simulation was set up to test the performance of the MPI algorithm. A 60x60x50 com-
putational grid was used, and all simulations were run for 200 time steps.

Firstly, the simulation was run using the standard FDTD algorithm to obtain a bench-
mark time, to which the MPI execution times can be compared. Then MPI simulations,
with different number of processes, were run, and execution times were measured. Sim-
ulations were run using both one and two dimensional mapping, so that a comparison
could be made.

Unfortunately a cluster was not available to test the MPI algorithm properly. All simula-
tions were executed on a Dual SGI i.e. multiple processes were launched on each processor.
Execution times are the actual dedicated CPU times for each process. This means that
the results present here do not give a true reflection of the actual performance of the
algorithm, because the process times given do not include networking time overheads.
Figure 4.4 shows the execution times for both the one and two dimensional MPI algo-
rithms, for the different number of processes.

The performance of the parallel algorithms can be measured by the following two param-
eters [15]:

S =
(4.1)
E=

IR

where T} is the single process execution time and Ty, is the execution time for n processes.
The scalability gives the ratio between the single process and the n process times, while
the efficiency measures the actual performance of the algorithm.
Figure 4.5 shows a plot of the scalability of the two algorithms. It also shows the ideal
case, where communication time overheads are zero, which increases linearly with the
number of processes. It is clear that both have the one dimensional, and more so the
two dimensional algorithm, have non-zero time overheads, especially for a large number
of processes.
Figure 4.6 shows a comparison of the two algorithms efficiency. The ideal case would have
an efficiency of 100% for any number of processes. The performance of both algorithms



CHAPTER 4. THE MESSAGE PASSING INTERFACE [MPI] 31

90 ! ! ! T T T

e—=e 1D Cartesian Mapping
- - > 2D Carlesian Mapping |

0 NSRRI E PP L s

[4,3 o] ~
(=] o (=

n
<

Time in seconds

30

20

10

Number of processes

Figure 4.4: Process Times

deteriorates as the number of processes increase and the communication times become
larger.

4.4 Conclusion

In this chapter, a detailed description of how a parallel FDTD algorithm can be imple-
mented, was presented. Several MPI functions are also discussed that can be used to
implement a generic solution, which allows for mapping of geometry and boundary con-
ditions regardless of the number of processes used.

Several tests were run to measure the performance of the algorithm. Although it is
clear that communication time overheads are not negligible for simulations with a large
number of processes, this does not make the algorithm impractical to use. The strength
of the MPI FDTD algorithm lies in the fact that, if large machines are available, the
algorithm can provide a faster solution to huge problems that can never be solved on a
single machine, using the standard FDTD algorithm.
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Chapter 5

Simulations

In order to measure the accuracy of the various FDTD implementations presented in this
thesis, several realistic problems were set up and the results were compared to results
obtained from other numerical packages.

Firstly, a simulation is set up to measure the performance of PML models developed in
chapter 3. Then three GPR simulations are presented, to measure the accuracy of the
code and to show how the code can be used to model real world problems.

5.1 PML Performance Measurements

In this section a simulation was set up to measure the performance of the PML models
developed in chaper 3. The simulation is set up in the same manner as the simulation in
section 2.3, however this example uses the full three dimensional update equations.

The simulation was run using a grid with NX = 100, NY = 60 and NZ = 100, and
was excited with a 1GHz differential Gaussian pulse. The reflection error for the 10 cell
PML was determined by equation 2.17. The reflection was measured two cells from the
PML interface in the ¥ direction. The reference signal was obtained by extending the
grid in the Y direction so that NY = 1000. The simulation was run to measure the PML
performance for homogeneous free space, conductive and dielectric material models.

The conductive media was modelled as dry clay (see section 5.2.1 for properties). Three
different simulations were run for the dispersive media, to illustrate how the PML can be
mismatched to the material.

Figure 5.1 shows the results obtained for the free space and conductive materials. The
maximuimn reflection error for both materials is about —113dB, showing that the PML is
an excellent ABC for these two materials.

For the homogeneous dispersive media model, the PML matching is slightly more complex.
Careful consideration must be paid to the frequency dependency of the permittivity,
relative to the bandwidth of the source. This is illustrated by using three homogeneous
dispersive materials, all with different Debye relaxation constants (all three materials have
¢, = 4.815 and €5, = 1.8). Figure 5.2 shows the three Debye models that where used to
model the permittivity frequency dependency for three simulations.

The figure shows that for the three materials, in the frequency band from 100MHz to

34
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Figure 5.1: PML Performance test

LG Hz (where most of the excitation energy lies) the relative permittivity for:

e Material 1 is 1.8 across the whole band.
e Material 2 varies between 3.7 and 1.8,

e Material 3 varies between 4.815 and 3.

For the simulation, the PML is matched to the maximum value of the relative permittiv-
ity, ¢, = 4.815. Figure 5.3 shows the reflection error for the three materials.

Due to the the PML not being matched to the first material at high frequencies, a larger
reflection occurs in the early time response. In the later time response the reflection error
is reduce, because the PML is matched at lower frequencies.

Because the PML of the second material is better matched than the first material, the
earlier time response now has a smaller reflection error.

For the third material the PML matching is still better, and no increase in the reflection
error can be seen in the early time response. '

The PML mismatching that occurs in the first simulation can be overcome by match-
ing the PML to a lower value of the relative permittivity. This would increase the later
time response reflection error slightly, but it would reduce the reflection error that occurs
in the initial time response, giving a reflection error that varies less.

If the frequency dependency of the relative permittivity is considered when the PML is
matched, the PML performs excellently as an ABC for terminating dispersive media.
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5.2 GPR Borehole Measurements

In the mining industry it is of great value if the position of gold reefs can be estimated.
One way of doing this is by estimating the properties of the rock from the way an elec-
tromagnetic wave propagates through it. Such measurements are made by exciting an
antenna in a borehole, while measuring the field with another antenna in another bore-
hole. Subterranean properties can be extracted from the fields that are measured.

A simple model is used in the first example to model such a measurement. In the second
example a more complex model is used in order to model the actual borehole measurement
more realistically. In both examples the antenna is excited with a Gaussian pulse, and the
field is measured at some point from the antenna. In the third example, a horizontally
layered problem is considered.

5.2.1 Example 1: Simple Model

Figure 5.4 shows a vertical cut through the borehole. In this example, the clay that
surrounds the borehole is modelled as dry clay. The dry clay is modelled as a lossy
dielectric with the following properties:

€ = 4.815

(5.1)
o = 0.00123

The antenna is excited with a Gaussian pulse with a bandwidth of 100 MHz, giving a
minimum wavelength of A,.;, = 1.3672m in the clay. In order to model the geometry
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accurately a spatial segmentation of at least 10 samples per wavelength should be used.

Initially, in order to model the borehole as a single cell, a spatial segmentation of 60mm
is used in both the X and Y directions. A spatial segmentation of 100mm was used in the
7 direction. A computational grid of (NX = 41, NY = 78, NZ = 41), including the 10
cell PML on each wall, was used. The results of the simulation were compared to those
obtained using the CST' |16 package. However, after the first run, the results were far
from agreeing. Figure 5.5 shows a comparison between the probe signals in the frequency
domain, after the first run. The results from the FDTD algorithm had a substantially
lower centre frequency. After some speculation, the follow areas were identified as causing
the difference between the two results.

e Firstly, it was discovered that the finite volume codes excitation wave had a built
in time delay. Obviously, if the results are to be compared in the time domain, it is
essential that the excitation waveforms are identical (this will only affect the phase
in the frequency domain). '

¢ Secondly, the two probe signals had different sampling periods, due to the difference
in mesh sizes. In order to compare the signals accurately in the frequency domain
it is essential that they have the same sampling period. After the FDTD simulation
was run, the probe signal was re-sampled so that the two signals have the same
sampling period 2.

o The single cell approximation of the borehole was not good enough. Although using
a finer mesh would result in the simulation taking longer to run, it was necessary
to model the cylindrical nature of the borehole more accurately.

LThis is a commercial package, based on a finite volume method
?Re-sampling, Discrete Fourier Transforms and all graphs were obtained using MATLAB
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Figure 5.4: Borehole geometry

o Another problem was caused by the borehole not being matched to the PML in the
Z direction. Although the PML is perfectly matched in both the horizontal planes,
it is not matched in the Z direction (see section 3.3). The PML was matched to the
dielectric (¢, = 4.815) i.e. it is not matched over the borehole. The reflection off
the PML interferes with the signal measured at the probe.

The simulation was re-run with the following changes made:

e Both simulations were excited with exactly the same time waveform, allowing the
results to be compared in the time domain.

e A finer mesh was used in the X and Y direction, enabling the borehole to be modelled
as a ‘circle’ with a 5 cell diameter.

¢ The computational grid was extended in the Z direction. This reduces the effects
that any reflections off the PML will have on the probe signal because the reflections
take longer to reach the probe and will be more attenuated, due to the longer path
length.

The final parameters for the simulation, including 10 cell PMLs, where:

Az =0012m NX =51
Ay =0.012m NY =285 (5.2)
Az=00lm NZ =100

and the time parameters are:

At = 2.8203¢7 s NT = 8000 (5.3)
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Clearly, the second simulation will take much longer to run than the first.
Figure 5.6 shows the two probe signals in the time domain. For the first five peaks the
two signals are almost indistinguishable, but then the signals start to differ slightly.

The difference between the two signals is caused by the different modelling capabilities
of the two codes. CST has the ability to model circles accurately due to its conformal
meshing capabilities, while the FDTD algorithm approximates the circle using a square
mesh. The borehole was approximated using a circle with a diameter of five cells. Using
only five cells for the circle causes a stairstepped approximation of the borehole. However
if a finer mesh was used (to give a better approximation of the round borehole) the sim-
ulation would take several days to run.

Figure 5.6 also shows that the two signals have exactly the same centre frequency. This
is also illustrated in figure 5.7, where the frequency response of the two signals is shown.
Here it is clear that the two signals have the same centre frequency.

This example has illustrated that the conductive media model that was implemented
for the FDTD algorithm is accurate. It has also illustrated several other problems with
the algorithm.

Firstly, stratified media provide a problem concerning matching the PML. Even though
the PML can be perfectly matched to the individual materials, when more than one ma-
terial is modelled, larger reflections off the PML can be expected. This can be partially
overcome by using a larger computational grid.

Secondly, the FDTD algorithm (using rectangular coordinates) models curved structures
poorly. This can be improved by using a finer mesh, but this is not always practical due
to large RAM requirements. A better option would be to include either non-rectilinear
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meshing [17], or cylindrical update equations.

5.2.2 Example 2: Cylindrically Layered Model

In this example, the borehole geometry is extended to include a more realistic model
of the borehole. The model consists of three different material layers surrounding the
borehole, shown in figure 5.8. The first layer is modelled as polyflip (this can be seen
clearly in the photographs shown in figure 1.1 ), the second is modelled as wet clay (the
clay becomes wet from the drilling technique), and the final layer is modelled as dry clay.
The properties of the materials are given in table 5.1.

Material | ¢, o (S/m)
polyflip |20 | 0.0176
wet clay | 70 0.15

dry clay | 4.815 | 0.00123

Table 5.1: Material properties

The simulation is excited with the same source as the previous simulation. A value of
¢, = 8 (see section 3.3) was chosen to match the PML in .the Z direction. This value
was chosen much closer to the dry clay permittivity than the other materials, because at
the PML boundary the dry clay occupies the largest number of cells. However it is still
necessary to extend the computational grid in the Z direction to reduce the interference of
the reflections off the PML. The PML can be perfectly matched in the X and Y directions
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(¢, = 4.815). The final parameters for the simulation, including 10 cell PMLs, were:

Ar=0012m NX =860
Ay =0.012m NY =295 (5.4)
Az=00lm NZ =200

and the time parameters are:

At = 2.8203e" s NT = 8000 (5.5)

Figure 5.8 shows a cross section of one quarter of the material matrix that is used to
model the borehole. It is clear that the edges of circles are not modelled accurately at all,

with the free free space circle being modelled as a square. Table 5.2 gives the dimensions
for the problem. :

Material | Dimension

air diameter 60mm
polyflip diameter 200mm
wet clay | diameter 300mm
dry clay | extends to infinity

Table 5.2: Material Layer Dimensions

Figure 5.9 shows a comparison results from the simulation and those obtained using CST.

Once again the results differ slightly, but this is due to the poor modelling of the circular
nature of the borehole.
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5.2.3 Example 3: Layered Dispersive Media Model

In this section a slightly different type of problem is considered. The problem also concerns
a stratified media problem, however in this example the layers lie horizontally (this could
represent different reefs underground). Once again a dipole is used as a source for the
example, but in this example the borehole is not modelled.

Figure 5.10 illustrates the layout of the problem. The dipole is excited with a 1 GHz
Differential Gaussian pulse, and the field is probed in two different places. Material one
has a dielectric constant of 2.46, while material two has a dielectric constant of 1.3.

A spatial segmentation of -2% at 1 GHz was used, giving Az = Ay = Az = 0.015m. Once
again, the PML matching must be considered carefully. In this example the PML can be
matched perfectly to material one (e, = 2.46} in the Z direction. However this is not true
in the X and Y directions. The average value of ¢,,. = 2.3 was used to match the PML
in these directions. It was chosen closer to the value of material two so that the PML is
better matched to the middle material layer. The computational grid was extended in the
X and Y directions in order to minimize the reflections off the PML’s interference with
the probe signals. The parameters for the simulation are:

Az =0015m NX =100
Ay =0.015m NY =100 (5.6)
Az=0015m NZ =47
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and the time parameters are:

At = 288975 NT = 1500 (5.7)

In order to determine the accuracy of the results, the same problem was set up using
another commercial package called FEKO [18]. However, unlike CST and the FDTD
algorithm, FEKO uses a Method of Moments {MoM) computational engine i.e. it is a
frequency domain code and includes the radiation condition.

The FDTD simulation was excited with a Differential Gaussian pulse with a bandwidth
of 1 GHz. The FEKQ simulation was run from 1.5 to 8.5 GHz, with a frequency step of
AfFE'KO = 16 MHz.

Once again the FDTD time signal needs to be re-sampled such that A frexo = ﬁm 3
i.e. the two simulations will have data at the same frequency points.

It is also necessary to normalise the FDTD probe signals by the source energy because
the FEKO simulation excites each frequency point with the same amount of energy.
Figure 5.11 shows a comparison of the two probe signals for the two simulation. The
results correlate very well, with the maximum difference less than 2 dBs.

5.3 Conclusion

In this chapter simulations where run to measure the performance of the PML for disper-
sive and conductive media. The simulations show that the PML is capable of terminating

3Tt is of great importance that A frpxo is not too large, otherwise it will result in the FDTD time
wave form being under-sampled. Check the Nyquist rate [19]
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these materials with average reflections errors less than -120 dBs. When the PML is
matched to dispersive media the frequency dependency of the relative permittivity should
be taken into account.

This chapter also deals with three different real world GPR examples, where the results
were compared to other commercial packages. This chapter has shown that the imple-
mentation of the FDTD algorithm, and the various material models is accurate. Other
important issues have also been considered.

The chapter has looked at the various aspects that must be taken into consideration
when different codes are compared.

This chapter has also discussed what measures must be taken when the code is used to
model stratified media.
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Chapter 6

General Conclusion and
Recommendations

The goal of this thesis was to add functionality and accuracy to the FDTD code, originally
developed by Burger [1]. During the development of the work in this thesis, challenging
issues concerning the implementation of the advanced PML ABCs, various material mod-
elling techniques, and the development of a parallel algorithm have been addressed.
This chapter wraps up the all the work that has been presented in this thesis, as well as
presenting ideas for future development opportunities.

6.1 Achievements

The main aim of this thesis was to improve the modelling capability of the FDTD code
developed in [1], making the algorithm more efficient and more accurate for simulating
the borehole environment.

This section discusses the major achievements that were made in the development on the
FDTD code:

e The implementation of the UPML, to replace the Mur second order ABCs, was
a major contribution to the code. This has led to the an improvement in the
algorithm’s accuracy, by greatly reducing reflections off computational grid edges.
The UPML equations also can be used as a general set of update equations, which
now also include the B and D fields.

e The Recursive Convolution Model was replaced by a model similar to the Auxil-
iary Differential Equation model, and PML ABCs were implemented for dispersive
media. Once again the PMLs allow for more accurate modelling.

o A model for dielectric and conductive media was introduced to the algorithm, with
PML boundary conditions. This allows a larger range of material types to be mod-
elled, which do not exhibit dispersive properties, for example the clay surrounding
the borehole in chapter 5.
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e The development of the parallel FDTD algorithm has led to the algorithm becom-
ing far more efficient, allowing much larger problems to be split up over several
computers and produce results much faster.

e Finally, work was done on the code, to make it more modular. The code was broken
up in to several different files containing different sets of subroutines. This will allow
for much easier understanding of the code and future development on the code.

6.2 Possible Future Development

Although much functionality was added to the FDTD algorithm that has been developed,
there are still aspect of the algorithm that can be enhanced to improve the performance
and make the code more user friendly. Here are some ideas which would be worth inves-
tigating.

e In order to model the cylindrical nature of the borehole more accurately, it could be
of great value to implement the update equations in cylindrical coordinates. This
would be a large task, because all boundary conditions and material models would
have to be derived again. However, it would lead to more accurate results.

e In the event of a large cluster being available for running simulations on, it could
be well worth scaling the two dimensional MPI FDTD algorithm to a full three
dimensional algorithm. It would not require too much extra work, as the MPI
algorithm was written considering the possibility of later being scaled. This would
add great efficiency and allow far larger simulations to be solved.

o It would be of great value if a near to far field transformation was included in the
code. This would enable the code to calculate far field patterns for antennas etc.

o It may be worth developing a more advanced preprocessor, which could import
geometries that were drawn in some kind of drawing package. This would greatly
increase the complexity of the problems that could be solved.

e Finally, if some kind of Graphic User Interface (GUI) was added to the code, it
would make the code far easier to use, and could be the final step in developing a
commercial package.
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UPML Conductive Boundary

Conditions

From V x H = jwesk

§Hm - %Hz = jweg(e, + ; )
EHy - cTyHm

Now introduce the D field, and a variable T, where :

0 0
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} H )
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T, | =a| &B (A.2)
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and -
D| = —)[T A.
(D)= (e + (7] (A3)
The update equations for the D field in the PML, with s =1 + 5:‘,’;3 is given by:
d d
%-Hm — %Hz == Dy|+=|0 o, 0 D, (A.4)
€
=zHy — 5 He: D, 10 0 o D,
Equation A.3 is rearranged and then transformed into the time domain.
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Finally, the value of the E field can be determined from equation A.2

(A.6)

The final update equations are obtain by implementing the discrete derivatives, and using
central averaging on the other terms. Once the expression of the E field has been imple-
mented, the standard update equations for the B and H fields are used.
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