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Abstract 

Background: Sudden and unexpected deaths in infancy (SUDI) includes infants under the age of one year that 

die suddenly and without apparent cause. Childhood diarrhoea is one of the leading causes of death for children 

under five, with around 1.7 billion cases worldwide each year and is often reported prior to death in SUDI 

cases. Poor socioeconomic conditions and inadequate water supplies in developing countries contribute to 

diarrhoea, and diarrhoeagenic Escherichia coli (DEC) were detected in 30-40% of these cases, while acute 

viral gastroenteritis causes ± 70% of all episodes. The microbiome influences host immunity, infectious 

susceptibility, and health, disease, and death outcomes. Limited information is available on the gastrointestinal 

tract (GIT) pathology, as well as the GIT microbiome as contributory factors to SUDI in South Africa. This 

study aims to investigate the bacterial and viral pathogens and colonisation of the GIT in SUDI cases admitted 

to the Tygerberg Medico-Legal Mortuary in the Western Cape in the process of determining the cause of death. 

Finally, the SUDI microbiome was compared to age-matched, apparently healthy infants.  

Methods: Swabs of the GIT and stool samples were collected from SUDI cases at Tygerberg Medico-legal 

Mortuary between June 2017 and May 2018. To serve as controls, stool samples were collected from the 

nappies of 45 healthy and age-matched infants. In stool and swab samples positive for Escherichia coli, DEC 

were detected using the AllplexTM GI-Bacteria (II) Assay and gastrointestinal viruses were detected in stool 

samples using the Allplex™ GI-Viral Assay. Positive rotavirus samples were genotyped and the intestinal 

microbiome was characterised by full-length 16S rRNA sequencing, on the PacBio Sequel IIe System 

platform. 

Results: This study included 186 SUDI cases (107 males and 79 females) and 45 controls (24 males and 21 

females). Several known demographic factors increase the risk for SUDI, including age between 2-4 months, 

male sex, cold season, bedsharing, prone and side sleeping positions, as well as informal housing. 

Enteroaggregative Escherichia coli (EAEC) ) were detected in 87.3% of cases and enteropathogenic 

Escherichia coli (EPEC) were detected in 78.2% of cases. Co-infections between DEC pathotypes were 

observed in 85.2% of cases. Rotavirus was detected in 38.6%, of cases followed by norovirus GI and GII 

(30.0%), whereas norovirus GII was more prevalent in the controls (36.7%). Forty-eight cases had enteric virus 

co-detections. The association between most viruses and seasons was highly significant. Among the rotavirus 

genotypes, combinations of the G type and the P type, G1P[8] had the highest prevalence (40%), followed by 

G2P[4] (30%), while G9P[8] (20%) and G8P[4] (10%) genotypes had the lowest prevalence. Firmicutes, 

Bacteroidota, Proteobacteria, and Actinobacteria were found to be the most common organisms in the GIT. 

Significant differences were observed in alpha diversity and beta diversity between cases and controls, as well 

as the different final diagnoses. 

Conclusion: This study demonstrated that autopsy sampling procedures should include other sampling sites, 

e.g., GIT, as these pathogens may contribute to death, particularly with virus and bacterium co-infections. 

Determining the cause of death based on GIT pathogens, may decrease the number of Sudden Infant Death 

Syndrome (SIDS) cases reported in the future. (513 words) 
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Opsomming 

Agtergrond: Skielike en onverwagte sterftes in babas jonger as een jaar wat skielik en sonder duidelike oorsaak 

plaasvind word algemeen geag as onverwagte babadood. Diarree is een van die hoofoorsake van dood vir kinders 

jonger as vyf jaar, met ongeveer 1.7 miljard gevalle wêreldwyd elke jaar en dit word dikwels aangemeld in gevalle 

van onverwagte babadood. Swak sosio-ekonomiese toestande en onvoldoende watervoorsiening in ontwikkelende 

lande dra by tot diarree, en diarrogeniese Escherichia coli (DEC) is verantwoordelik vir 30-40% van hierdie gevalle, 

terwyl akute virale gastro-enteritis ± 70% van alle episodes veroorsaak. Die mikrobioom beïnvloed 

gasheerimmuniteit, aansteeklike vatbaarheid en gesondheid, siekte en sterftes. Beperkte inligting is beskikbaar oor 

die spysverteringskanaal patologie, sowel as die spysverteringskanaal-mikrobioom as bydraende faktore tot 

onverwagte babadood in Suid-Afrika. Hierdie studie het ten doel om die bakteriële en virale patogene en kolonisasie 

van die spysverteringskanaal in gevalle van onverwagte babadood te ondersoek wat in die Tygerberg Medies-

geregtelike Lykshuis in die Wes-Kaap opgeneem is in die proses om die oorsaak van dood te bepaal. Laastens is 

die mikrobioom vergelyk tussen gevalle van onverwagte babadood en ŉ groep gesonde babas van dieselfde 

ouderdom.  

Metodes: Deppers van die spysverteringskanaal en stoelgangmonsters is van gevalle van onverwagte babadood by 

Tygerberg Medies-geregtelike Lykshuis ingesamel tussen Junie 2017 en Mei 2018. Om as kontroles te dien, is 

stoelgangmonsters van die doeke van 45 gesonde en ouderdom-ooreenstemmende babas versamel. In stoelgang- en 

deppermonsters positief vir Escherichia coli, is DEC opgespoor met behulp van die AllplexTM GI-Bacteria (II) 

Assay en gastroïntestinale virusse is opgespoor in stoelmonsters met behulp van die Allplex™ GI-Virale Assay. 

Positiewe rotavirus monsters is genotipeer en die intestinale mikrobioom is gekenmerk deur vollengte 16S rRNA 

volgordebepaling, op die PacBio Sequel IIe System platform. 

Resultate: Hierdie studie het 186 gevalle van onverwagte babadood (107 manlik en 79 vroulik) en 45 kontroles (24 

manlik en 21 vroulik) ingesluit. Verskeie bekende demografiese faktore verhoog die risiko vir onverwagte 

babadood, onder andere ouderdom tussen 2-4 maande, manlike geslag, koue seisoen, deel van beddens, buik- en 

syslaapposisies, sowel as informele behuising. Enteroaggregatiewe Escherichia coli (EAEC) was verantwoordelik 

vir 87.3% van gevalle en enteropatogene Escherichia coli (EPEC) was verantwoordelik vir 78.2% van gevalle. Ko-

infeksie is in 85.2% van die gevalle waargeneem. Rotavirus is opgespoor in 38.6% van gevalle, gevolg deur 

norovirus GI en GII (30.0%), terwyl norovirus GII meer algemeen in die kontroles (36.7%) voorgekom het. Meer 

as een enteriese virusse is in 48 gevalle bevestig. Die verband tussen die meeste virusse en seisoene was hoogs 

betekenisvol. Kombinasies van G-tipe en P-tipe, G1P[8] was die algemeenste (40%), gevolg deur G2P[4] (30%), 

terwyl G9P[8] (20%) en G8P[4] (10%) genotipes het die laagste voorkoms getoon. Firmicutes, Bacteroidota, 

Proteobacteria en Actinobacteria was die algemeenste organismes in die spysverteringskanaal. Beduidende 

verskille is waargeneem in alfa-diversiteit en beta-diversiteit tussen gevalle en kontroles, sowel as die verskillende 

finale diagnoses. 

Gevolgtrekking: Hierdie studie het getoon dat lykskouingsprosedures ander areas moet insluit, bv. 

spysverteringskanaal, aangesien hierdie patogene tot die dood kan bydra, veral met virus- en bakterie-

gepaardgaande infeksies. Die bepaling van die oorsaak van dood gebaseer op spysverteringskaal-patogene kan die 

aantal wiegiedood gevalle wat in die toekoms aangemeld word, verminder. (514 woorde) 
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Chapter 1: Introduction 

As a highly sensitive and useful measure of population health, infant mortality rate (IMR), defined as 

the number deaths in infants under the age of 1 per 1 000 live births in a particular year, has been 

used for decades (Blaxter, 1981). Accordingly, the IMR is also dependent on other factors that could 

influence the health status of entire populations, such as economic growth, general quality of life, 

social conditions, disease frequencies, and environmental factors (Reidpath & Allotey, 2003). Over 

the past five years, the IMR in South Africa has steadily declined to 36 per 1 000 live births in 2021 

(Geoba.se: Gazetter - The World at Your fingertips, 2021). South Africa still faces enormous 

challenges in an effort to further reduce the IMR, despite the recent decline. Several factors 

complicate investigations into unexpected deaths in children, including different population densities 

across the country, a lack of standardised national death investigation protocols, cultural and language 

barriers, and a lack of funding and resources for qualified forensic pathologists, particularly in rural 

areas (Dempers et al., 2018). 

The literature uses different terms interchangeably to describe the sudden and unexpected and / or 

unexplained deaths in infants younger than one year with no apparent cause. It refers to the 

circumstances under which the infant died, rather than a specific diagnosis (Weber & Sebire, 2009) 

and is commonly referred to by the general public as cot death. 

Sudden unexpected death in infancy (SUDI) is a collective term to include all infant deaths where the 

cause of death is not immediately apparent before any investigation has been done to find a cause of 

death. On the other hand, Sudden infant death syndrome (SIDS) is defined as the unexpected death 

of an infant under the age of one, which appears to occur during sleep, where no explanation can be 

found after a thorough investigation has been conducted. This includes an autopsy and an examination 

of the circumstances of death and medical history (Krous et al., 2004).  

Infection is a leading contender in terms of causation of SUDI, based on epidemiological evidence. 

The infection model is consistent with factors such as male sex predominance, winter seasonality, 

low socioeconomic status, vulnerability of the host (prematurity, low birth weight, genetic 

predisposition due to important polymorphisms in inflammatory, innate and adaptive immune 

responses) and smoke exposure. There is a correlation between an increased risk of infection and the 

use of the prone sleeping position (Goldwater & Bettelheim, 2013), as well as the use of contaminated 

surfaces as a bed for infants (Gilbert et al., 1992). As with SUDI, cases are often colonised by coliform 

bacteria in the respiratory tract (Blackwell et al., 2002, Blood-Siegfried et al., 2008, Weber et al., 

2008) and by toxigenic organisms in the gastrointestinal tract (GIT) such as Staphylococcus aureus 

(S. aureus) (Highet & Goldwater, 2009). 
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Cases of unnatural deaths, including SUDI, are investigated under the auspices of the Inquests Act 

(Act 58 of 1959). In accordance with this Act, the South African Police Service (SAPS) is responsible 

for investigating the circumstances and cause of death. Moreover, the Act states that the body of a 

person who died as a result of other than natural causes, including SUDI, must be examined by a 

district surgeon or any other medical practitioner who may assess it in order to establish the cause of 

death with greater certainty. There is no national guideline for sudden infant death investigation in 

South Africa, resulting in national institutions all following different guidelines to investigate such 

cases (du Toit-Prinsloo et al., 2011; 2013). SUDI cases are investigated at Tygerberg Medico-legal 

Mortuary in accordance with standard facility procedures and may include a death scene investigation 

(DSI), a medical history review, as well as autopsy, and laboratory investigations including virology 

and microbiology to determine potential causes of death. 

One of the infections that may be associated with SUDI is acute gastroenteritis. Millions of deaths in 

young children are caused by acute gastroenteritis (Elliott 2007). Clinically, the disease is 

characterised by inflammation of the mucous membrane of the GIT and increasing frequency of 

bowel movements with or without vomiting, fever, and abdominal pain. Three or more watery or 

loose bowel movements in 24 hours or at least 200 grams of stool per day are considered increasing 

bowel movement frequency. The disease is among the leading causes of illness worldwide and 

contributes to 1.5 million to 2.5 million deaths each year. Globally, diarrhoeal diseases affect 2.5 

billion children per year and are the second major cause of death in children under 5 years of age 

(Sattar & Singh, 2021). A variety of pathogens may cause acute gastroenteritis, including bacteria, 

viruses, parasites, and fungi (Ciccarelli et al., 2013). While viruses are the most common cause of 

acute infectious diarrhoea (noro-, rota-, adeno-, and other viruses), bacterial causes are more likely to 

result in severe disease than other infectious causes (Sattar & Singh, 2021). Risk factors for infectious 

diarrhoea include a variety of factors including geography, co-morbidities, and the immune status of 

the host. 

The human microbiome is made up of bacteria, archaea, viruses and eukaryotic microbes which exist 

in and on the body. The physiology of the human both in health and in disease are impacted by these 

microbes. They contribute metabolic functions, defend against pathogens, and educate the immune 

system, in doing so directly or indirectly affect most of the physiological functions (Shreiner et al., 

2015). It is vital for the infants’ health to establish normal GIT function for the duration of early 

development (Goldwater, 2015). This could influence the infants’ vulnerability to infection, induction 

of GIT inflammation, and adverse infection outcomes (Highet et al., 2014). Factors known to 

influence bacterial colonisation of the colon of infants are gestational age, diet, environment, 
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antibiotic use (Stark & Lee, 1982; Copperstock & Zedd, 1983; Doré et al., 1998; Macfarlane & 

McBain, 1999; Harmsen et al., 2000) and mode of delivery (Grönlund et al., 1999). 

Despite the majority of the studies related to SUDI research in Africa being conducted in South Africa 

(Osei-Poku et al., 2021), no studies have been done on the role of GIT pathology in determining the 

cause of death in SUDI as described in South Africa. 

This study therefore aimed to investigate pathogens in the GIT in order to assess the role of GIT 

colonisation in the process of determining the cause of death in cases of SUDI, as well as profile in 

microbiome in these cases compared to an age-matched healthy control group. 
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Chapter 2: Literature Review 

2.1 History of sudden unexpected infant death 

Since ancient times, the sudden and unexpected death of seemingly healthy infant has been recognised 

(Fleming et al., 2015). In the Old Testament of the Bible reference is made to such a case. “And this 

woman’s son died, in the night, because she lay on him” (1 Kings 3:19). It was not until the second 

half of the 20th century that such deaths became the focus of medical attention. Due to the significant 

decrease of IMRs in England and Wales in the 20th century, from 95 per 1 000 live births in 1912, 11 

in 1982 and 4 per 1 000 live births in 2012, further consideration was given to deaths for which 

insufficient cause of death could be found (Fleming et al., 2015). 

These cases became the focus of pathologists in the 1950s and 1960s, as paediatricians would rarely 

see cases where no suggestive ailment requiring medical attention resulted in the demise of these 

infants (Mitchell & Krous, 2015). Numerous studies in the 1970s and 1980s showed an increasing 

number of such deaths. In Europe and New Zealand, epidemiological studies indicated an association 

with infants placed in a prone position while sleeping (de Jonge et al., 1989; Fleming et al., 1990). 

2.2 The definitions of SUDI and SIDS  

SUDI is not a clinical or pathological diagnosis and does not correspond to SIDS; rather, it signifies 

the presentation of death and includes all deaths in infants < 1 year of age (often restricted to 7-365 

days), that present more or less suddenly and unexpectedly (Weber & Sebire, 2009), or at least 

without an initial clearly identifiable cause. According to the 2004 San Diego definition, SIDS is 

defined as the unexpected death of an infant under the age of one, which appears to occur during 

sleep, where no explanation can be found after a thorough investigation has been conducted. This 

includes an autopsy and an examination of the circumstances of death and medical history (Krous et 

al., 2004). The term “Borderline SIDS” is used in SUDI cases where pathological changes are clearly 

present, however they are not sufficient to unequivocally confirm a particular cause of death 

(Bajanowski et al., 2007) (Figure 2.1). 
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Figure 2.1:  The link between SUDI and SIDS 

2.3 Epidemiology of SUDI 

The foremost cause of infant death outside of the neonatal period is SUDI and more specifically, 

SIDS (National Centre for Chronic Disease Prevention and Health Promotion, 2017). In 2015, SIDS 

accounted for 9% of under-5 deaths globally, resulting in approximately 19 200 deaths. This is a 

decrease of 8% from 20 800 deaths in 2005 (GBD 2015 Mortality and Causes of Death Collaborators, 

2016). The number of SIDS globally decreased by 17% between 2007 and 2017 (GBD 2017 Causes 

of Death Collaborators, 2018). SIDS accounted for 27 700 deaths globally in 2019 (Institute for 

Health Metrics and Evaluation, 2020). In South Africa, the IMR for 2017 was 39 per 1 000 live births, 

compared to 38 in 2018 and 2019 and 37 in 2020. The overall IMR in 2021 was 36 per 1 000 live 

births, with the male IMR at 39 compared to 33 for females (Geoba.se: Gazetter - The World at Your 

fingertips, 2021). 

There are a wide range of factors that contribute to the risk of SUDI. Risk factors include demographic 

factors, such as low socioeconomic status (Beckwith, 2003), male infants being more susceptible than 

females, infants in the age group of 2 to 4 months being particularly susceptible and there is a seasonal 

trend with more cases being reported during the colder months of the year (du Toit-Prinsloo et al., 

2013; Moscovis et al., 2014; Fleming et el., 2015). 

The literature reports specific racial and ethnic differences, despite the overall global decrease in 

SIDS. There are significant differences in the rates among African Americans, Native Americans, 

and Alaskan Native infants regardless of their socioeconomic status (Hoyert et al., 2001; Mathews et 

al., 2004). There is also a greater risk of SUDI among Aboriginal Australians (Beal, 2000; Panaretto 

et al., 2002; Freemantle et al., 2006) and Maoris in New Zealand (Mitchell et al., 1997). Moreover, 
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Maoris have a 6 times greater likelihood of dying of SUDI than New Zealanders of non-Maori descent 

(Blakely et al., 2004). Behavioural factors as well as biological differences influences the disparity.  

It is estimated that African Americans place their infants in the prone position to sleep twice as often 

as other ethnic groups. This is despite being familiar with the Back to Sleep and other safe-sleeping 

campaigns, since many mothers do not believe the supine position is safest for their infant. Other 

mothers use prone positions to provide comfort for their infants or to prolong sleep time for 

themselves (Oden et al., 2010). In addition, African Americans are more likely to share a bed with 

their infant than other groups (Willinger et al., 2003). 

Birth-related risk factors include prematurity (Vennemann et al., 2005) and low birth weight (Malloy 

and Freeman, 2000). The position the infant is placed to sleep, especially the prone and side sleeping 

positions, also increase the risk of SUDI. As infants between 4 and 7 months of age begin to roll over, 

it is easier for them to roll from the side position into the prone position than rolling from the back, 

as the side sleeping position is very unstable and as such confers an increased risk of SUDI. (Li et al., 

2003; American Academy of Pediatrics Task Force on Sudden Infant Death Syndrome, 2005, 2011; 

Hauck et al., 2010; Task Force on Sudden Infant Death Syndrome & Moon RY, 2011). Other risk 

factors include the use of soft bedding or pillows near the sleeping infant (Task Force on Sudden 

Infant Death Syndrome & Moon RY, 2011). 

The room temperature, quantity of clothing on the infant, and season of the year may also contribute 

to SUDI (Gelfer & Tatum, 2014). Several layers of clothing or blankets on the infant and warmer 

room temperatures have been associated with an increase in SUDI (Moon et al., 2022). Infants 

sleeping in the prone position have an increased risk of overheating (Fulmer et al., 2020 ), when the 

infants are placed in the supine position this risk is unclear. Room sharing without sharing beds was 

linked with a decrease in SUDI, however the risk is higher when there is co-sleeping with numerous 

people and when the bed-sharer is intoxicated or fatigued (American Academy of Pediatrics Task 

Force on Sudden Infant Death Syndrome, 2005). 

A significant link between maternal smoking during pregnancy and SUDI has been confirmed by 

most epidemiological studies (Schoendorf & Kiely, 1992; Haglund, 1993; MacDorman et al., 1997). 

Smoking during pregnancy results in reduced lung volume and compliance in the foetus (Difranza et 

al., 2004), as well as reduced heart rate variability when stressed (Søvik et al., 2001). In addition to 

its neurological teratogenic effects, nicotine results in altered autonomic pathways, which contribute 

to a diminished response to hypoxia and other stimuli (Lewis & Bosque, 1995; Franco et al., 1999; 

Frøen et al., 2000; Chang et al., 2003; Horne et al., 2004). The impact of postnatal exposure to smoke 
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has emerged in a few studies as a distinct risk factor (Schoendorf & Kiely, 1992; Mitchell & Milerad, 

2006).  

Prematurity and low birth weight increases the risk of SUDI up to four-fold compared to infants born 

at full term (Hoffman & Hillman, 1992; Malloy & Hoffman, 1995; Blair et al., 2005). Preterm infants 

are frequently placed in the prone position during hospitalisation to improve respiratory function 

(Shepherd et al., 2020). Even though respiratory parameters are similar whether the infant is supine 

or prone in preterm infants nearing discharge (Levy et al., 2006), both the infant and caregiver may 

have become accustomed to the prone position. This can make a change in position more difficult. 

Other inherent risk factors include young maternal age, low maternal education, prenatal exposure to 

drugs, and poor, delayed or no prenatal care (Hoffman et al., 1988; Kattwinkel et al., 2000; American 

Academy of Pediatrics et al., 2006; Harper, 2006; Shah et al., 2006; Athanasakis et al., 2011). 

Nutrition plays an important role in a child's development, both during pregnancy and after birth. 

Although breastfeeding may reduce the risk of SIDS (Alm et al., 2016), there is no direct evidence 

that maternal diet plays a role in SUDI incidence. However, a poor or unbalanced diet may result in 

foetal compromise that increases the risk of SUDI, such as intrauterine growth restriction (Hakeem 

et al., 2015). Malnutrition, however, has not been extensively discussed in the literature as a risk 

factor. 

2.4 Aetiology of SUDI 

A variety of risk factors are involved in the aetiology of SUDI, as there are many probable causes, 

but thus far no conclusive, acceptable pathological or genetic explanation has been established 

(Carroll & Wood, 2012).  

Froggatt et al. (1971) was first to propose that the age range of 1-6 months represents a period of 

enhanced physiological vulnerability in which some critical combination of extrinsic (e.g., infection 

and sleep) and intrinsic (not yet unequivocally identified) factors can prove lethal. Wedgwood (1972) 

subsequently proposed three types of risk factors: vulnerability, age-specific risk factors, and a 

precipitating factor. 

In 1993, Rognum and Saugstad proposed the fatal triangle as the interplay of 3 factors: (i) a vulnerable 

phase in the development of the central nervous system and the immune system in the first months 

after birth; (ii) predisposing factors, such as genetic make-up, and (iii) a trigger event such as 

overstimulation of the immune system.  
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Filiano and Kinney (1994) subsequently proposed a Triple Risk Model which hypothesised SUDI to 

result from 3 overlapping factors intersecting: (i) a vulnerable infant, (ii) a critical development period 

in homeostatic control; and (iii) an exogenous stressor.  

SUDI may also be explained by an underlying abnormality in the brain stem neural networks that 

facilitate protective responses to asphyxia (Kinney et al., 2009). Serotonin and γ-aminobutyric acid 

deficiencies have been reported in infants who succumbed to SUDI. It has been argued that SUDI 

only affects infants with an underlying condition, not healthy infants (Kinney and Thach, 2009). 

2.5 Interventions for risk reduction and their impact 

There have been many campaigns aimed at reducing SUDI, beginning in the Netherlands in 1987, 

the United Kingdom (UK), New Zealand, and Australia in 1991, and Scandinavian countries in 1990-

1992, as well as the United States of America (USA) in 1994 (Hauck, 2001). Reducing prone sleeping 

was a major focus of these risk campaigns. Although side and supine sleeping positions were initially 

recommended, the risk of side sleeping was found to be greater than the risk of back sleeping, thus 

sleeping on the back became the only recommended position (American Academy of Pediatrics Task 

Force on Sudden Infant Death Syndrome, 2005). Interventions on other behaviour and practices to 

reduce the risk of SUDI were also included in some campaigns, such as the reduction of tobacco use 

during pregnancy and the promotion of breastfeeding. However, no significant changes in these 

behaviour patterns have been seen and avoidance of the prone sleeping position has largely attributed 

to reduced SUDI rates (Mitchell et al., 1994; Dwyer et al., 1995; Markestad et al., 1995). 

In Hong Kong, SUDI was rare, as placing infants to sleep in the supine position was a common 

Chinese habit (Davies, 1985). In 1987, a campaign recommending that parents place neonates to sleep 

in the supine rather than prone positions was introduced in the Netherlands (Högberg & Bergström, 

2000; Rusen et al., 2004). After the introduction of the Back to Sleep campaign (Kattwinkel et 

al.,1992), the SUDI rate in the USA decreased by over 50%. An analysis of SUDI in San Diego from 

1991 to 2008 by Trachtenberg et al. (2012) indicated that the number of infants placed to sleep in the 

prone position decreased from 85% to 30%, whereas those placed to sleep in the supine position 

increased from 2% to 42%, and deceased infants found in the prone position decreased from 84% to 

49%. 

Throughout the past two decades, numerous studies have demonstrated an association between the 

use of pacifiers and a reduced risk of SUDI (Mitchell et al., 1993; Arnestad et al., 1997; Fleming et 

al., 1999; L’Hoir et al., 1999; Hauck et al., 2003; Moon et al., 2012). Meta-analysis has revealed that 

being placed to sleep with a pacifier has a significant protective effect against SUDI (Hauck et al., 
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2005). The reduction in risk was independent of other risk factors. Researchers found that pacifier 

users have a 90% reduction in risk, along with a reduction in other risk factors associated with SUDI, 

specifically poor sleeping conditions (Li et al., 2006). Pacifiers have been suggested to exhibit 

protective effects in a variety of ways, including by reducing arousal thresholds, improving mouth 

breathing capabilities, and rendering the tongue forward in the mouth (Franco et al., 2000; Hauck et 

al., 2005). 

2.6 Medico-legal investigation into SUDI  

Under South African law, in the event that an infant has an underlying medical condition or illness 

and has been treated, death may be considered due to natural causes under the Births and Deaths 

Registration Act (Act 51 of 1992). In such circumstances, a death certificate form may be issued by 

the treating medical personnel, and the death will be registered with the Department of Home Affairs.  

For any other deaths, such as sudden, unexplained deaths, inquest proceedings are conducted 

according to the Inquests Act (Act 58 of 1959), and the bodies are admitted to a medico-legal 

mortuary for further examination. Often the admission or not of the body is dependent on the opinion 

of the clinician as to whether the cause of death was regarded to be natural or unnatural. 

For centuries, autopsies have been performed, in one form or another, to study the anatomy and 

physiology of the human body and determine the cause of death of an individual (Mark, 2002). 

Autopsies may be conducted in academic or anatomical pathology settings to determine the nature 

and degree of underlying pathology, as well as permit academics to teach students and conduct 

research. Medico-legal autopsies are however routinely carried out under statutory provisions 

requiring examinations of deceased bodies, where the cause of death is unnatural, unforeseeable or 

unexplained. Further legal proceedings and decisions are facilitated by this action. 

The Human Tissue Act (Act 65 of 1983) governs the conduct of autopsies for academic purposes as 

well as anatomical pathology, in South Africa. During the post-mortem examination, the attending 

physician/pathologist should establish if the deceased died from natural causes. 

Medico-legal post-mortem examinations are performed in cases of death that may have resulted by 

an unnatural cause, mainly under the Inquests Act. The Act serves to provide for the holding of 

inquests in cases of deaths or alleged deaths apparently occurring from other than natural causes and 

for matters incidental thereto, and to repeal the fire Inquests Act, 1883 (Cape of Good Hope) and the 

fire Inquests Law, 1884 (Natal). 
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The Regulations Regarding the Provision of Forensic Pathology Services (Government Gazette, 

R341(15 April 2005 No. 27464) regulate the provision of forensic pathology services under the 

National Health Act (Act 61 of 2003). Investigation of deaths that are unexpected or unexplained 

should be assisted by SAPS, but the performance of an autopsy may not necessarily be included in 

the investigation. An autopsy is further defined by these regulations as a post-mortem dissection of a 

corpse and post-mortem examination is defined as an examination of a human body or the remains 

thereof, including an autopsy with the purpose of establishing the cause of death and factors 

associated with the death (National Health Act (Act 61 of 2003). 

Dempers et al. (2016), conducted a study to institute a standard investigation protocol for sudden 

infant death in the Eastern Metropole, Cape Town, South Africa. The project comprised of 18 

autopsied infants. The DSIs were conducted using a standardised DSI form published by the Centres 

for Disease Control (CDC), Atlanta, USA (Hanzlick et al., 2007). The information obtained included 

the age of the infant, gestational age, the person who discovered the infant, co-sleeping information 

(yes/no, number of co-sleepers), the infant's medical history, such as the number and location of clinic 

visits, any medication, and any illnesses. 

A standardised autopsy protocol was developed, partly based upon the California protocol for SUDI 

(Gianelli Castiglione et al., 1993), along with regional protocols. Detailed external examination of 

the body and histologic examination of major organ systems, as well as bacterial and viral cultures, 

Human Immunodeficiency virus (HIV) testing and toxicology screening where applicable, were all 

included in the autopsies. The autopsy results and microscopic slides of each death were reviewed by 

all the study pathologists in order to categorise each death according to the 1990 National Institute of 

Child Health and Human Development (NICHD) definition (Willinger et al., 1991): SIDS was 

defined as unexplained death and viewed as a diagnosis by exclusion. Based on autopsy and DSI, the 

known/explained cause of death was determined. There are situations in which the cause of death 

cannot be determined due to inexplicable autopsy results or circumstances at the scene of death, which 

represent an unclassified (undetermined) category.  

The results revealed that the investigations conducted to determine the cause of death varied 

significantly in terms of the extent of the DSI and the interviews conducted with the mother and 

family, but not so much when it came to the autopsy performed. Initially, all the deaths were attributed 

to SUDI prior to the autopsy and DSI. A DSI was completed in all 18 cases, with photographs taken 

in 83%. Based on the results of a full autopsy and DSI conducted in each case, these deaths were 

categorised into three types: SIDS (n=7; 39%), known/explained cause of death (n=7; 39%), and 
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unclassified (n=4; 22%). The authors concluded that paediatric autopsies and DSI protocols can be 

developed in areas with high SUDI rates, as well as in other areas. 

In medico-legal investigations, radiographs have been used since the invention of x-rays (Harcke, 

2010). They are a permanent, but incomplete, record of the anatomy and pathology of the deceased 

before the forensic autopsy, primarily in identifying fractures and foreign materials such as bullet 

fragments (O’Donnell & Woodford, 2008). Medico-legal autopsies in South Africa are performed 

using low-dose X-rays (Lodox®) of the entire body for various reasons. The multiple views aid in 

rapid localisation of foreign bodies, it therefore benefits criminal investigations and religious 

practices which dictate fast burials. Trained staff can operate it without difficulty and its low radiation 

dose reduces the risk to staff (Knobel et al., 2006).  

2.7 Bacterial, viral, and fungal pathogens in SUDI 

2.7.1 Toxigenic bacteria and SUDI 

According to epidemiological and pathological findings, S. aureus superantigenic enterotoxins may 

be responsible for SUDI (Lee et al., 1987; Malam et al., 1992; Murrell et al., 1993; Blackwell et al., 

1999; Morris, 1999; Zorgani et al., 1999). An analysis of staphylococcal enterotoxins in the intestinal 

tract was conducted by Highet and Goldwater, 2009, in support of the staphylococcal toxic shock 

hypothesis of SIDS. A PCR analysis was performed to detect S. aureus, staphylococcal enterotoxins 

and staphylococcal toxic shock in the intestinal contents of 57 SIDS infants, as well as stool from 79 

live comparison infants matched in age and gender. The proportion of SUDI babies who were positive 

for S. aureus and staphylococcal enterotoxin genes was significantly higher than that of comparison 

babies (68.4% versus 40.5%), suggesting a possible role for these organisms in SUDI.  

Several studies investigated the association between Escherichia coli (E. coli) and SUDI. Within the 

first few days of an infant's life, E. coli colonises the bowel, and numerous studies have linked E. coli 

to SUDI (Bettelheim et al., 1990). E. coli serotypes found in the GIT of SUDI cases, however, are 

typically extraintestinal (Highet, 2008). The toxic effect of E. coli is attributed to several toxins, 

including heat-stable enterotoxins (ST), heat labile enterotoxins (LT) and verocytotoxins (VT). The 

effects of these toxins have been extensively studied (Highet, 2008). These toxins may be associated 

with other, unknown, or less studied toxins, as well as share a transmission vector such as 

bacteriophage (Bettelheim et al., 1990). 

Additionally, research has linked SUDI with the presence of Clostridium perfringens (C. perfringens) 

in the GIT of these infants (Lindsay et al., 1993). It has also been reported that Clostridium botulinum 

(C. botulinum), which releases a highly toxic substance called botulinum neurotoxin (BoNT), is 
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associated with SUDI (Böhnel et al., 2001). The presence of C. botulinum further confirms the 

infectious hypothesis of SUDI, since C. botulinum is not a constituent of the normal flora of the 

human body (Highet, 2008). In an effort to understand how infants acquire these organisms, 

researchers have examined associations between numerous bacteria and SUDI. In light of the 

accumulation of protein within polyurethane used in cot mattresses, researchers in the UK 

investigated the possibility that mattresses may serve as viable harbours for bacteria. Polyurethane 

foam mattresses without waterproof covers at the head region of the infant were observed to have 

significantly higher protein levels (p=0000019), and (ii) protein levels positively correlated with both 

the density of culturable bacteria in the polyurethane foams and the extent to which S. aureus was 

present in the aqueous leachates. Other measured parameters and mattress type/use did not show 

significant associations (p>0.05) (Jenkins & Sherburn, 2008). 

The other bacteria species responsible for diarrhoeal disease include Salmonella, Shigella, 

Campylobacter and Yersinia enterocolitica. In 2017 and 2018, Shigella, Campylobacter, and 

Salmonella caused deaths among children under five, in 11%, 2%, and 1% of cases respectively 

(Cohen et al., 2022). In the USA, Yersinia enterocolitica was responsible for approximately 5% of 

all bacterial infections in children younger than five (Scallan et al., 2013). Although Salmonella 

virchow was isolated from the myocardium of an infant who died suddenly at one month of age 

(Neuwirth et al., 1999), Shigella, Camphylobacter, and Yersinia enterocolitica have not been reported 

in literature to be associated with SUDI. 

2.7.2 SUDI and viral infections 

It is evident from several epidemiological characteristics of SUDI that viruses may play an important 

role leading to SUDI by either increasing the lethality of bacterial toxins or by synergistically 

influencing virulence factors or immunoregulatory polymorphisms of the bacteria. It is possible for 

sub-lethal doses of bacterial toxins to become lethal when viruses are present (Jakeman et al., 1991; 

Blackwell et al., 2005). There is no clear understanding of how this occurs, but a cytokine storm is 

considered to be the most likely cause (Doughty et al., 2006). 

As the more likely cause of SUDI, viral-induced respiratory infections fit in well with the infectious 

hypothesis (Highet, 2008). Nearly 80% of reported SUDI cases present with a viral infection of the 

upper respiratory tract before death (Cutz et al., 2001; Highet, 2008). There has also been evidence 

that SUDI cases have higher rates of respiratory viruses in comparison to controls; however, no single 

respiratory pathogen has yet been linked to SUDI (Álvarez-Lafuente et al., 2008). Despite different 

study conclusions, epidemiological and pathological evidence strongly supports the association 

between viral infections and SUDI (Highet, 2008). 
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Certain enteroviral and Cytomegalovirus (CMV) infections may lead to acute myocarditis in infants, 

which may result in sudden death (Dettmeyer et al., 2001, 2002; Fernández-Rodriguez et al., 2006; 

Dettmeyer et al., 2008). Other viral infections associated with SUDI include influenza virus A, 

Epstein-Barr virus (EBV), and Human herpes virus (HHV) type 6 (Fernández-Rodriguez et al., 2006). 

It is also possible that the fairly benign Coxsackie virus (CV) A16 can contribute to SUDI (Astrup et 

al., 2016). Co-infection of CMV with Varicella zoster virus (VZV) resulted in the sudden death of a 

2-month-old infant in 2013 (Desmons et al., 2013). 

The presence of Human cardiovirus (HCV) has been detected in clinical samples from children who 

had diarrhoea and respiratory illness (Drexler et al., 2008). An infant whose cause of death was 

initially attributed to SUDI was found to have HCV in the cerebrospinal fluid (CSF) in 2011. It was 

the first time HCV was reported in a body compartment other than the respiratory tract or the GIT 

(Drexler et al., 2011). 

Burger et al. (2014) found 29 polymerase chain reaction (PCR) positive cases for CMV and 2 for 

Adenovirus (AdV) in 82 SUDI cases at Tygerberg Medico-legal Mortuary. In France one case of 

SUDI was found to be positive for Human Parechovirus (HPeV) type 3 (Schuffenecker et al., 2012). 

Krous et al. (2009), detected no AdV or Enteroviruses with PCR, however only 7 out of 17 cases had 

symptoms of upper respiratory tract infection 48 hours before death. 

As part of a German study, Dettemeyer et al. (2004), examined 62 SUDI cases and 11 controls who 

had died of unnatural causes. Enteroviruses were detected in 23%, Parvovirus B19 (PVB19) in 11%, 

EBV in 5%, AdV in 3% and HHV-6 in 1.6% of the SUDI groups, while no virus was found in the 

control group. 

In many SUDI cases, the presence of viral pathogens is not an indicator of cause of death. It has been 

observed that viruses related to common childhood diseases such as herpes simplex, VZV, EBV and 

CMV are found in the lungs of deceased infants, but their involvement in death sometimes remains 

unclear (Alvarez-Lafuente et al., 2008). Infections can be latent, asymptomatic or pre-symptomatic. 

An infection that is latent can be described as an infection caused by an organism that lies hidden or 

dormant in the body and is not active. It is common for latent infections to remain static without 

causing symptoms (Larragoite & Spivak, 2019). Asymptomatic is often used to describe illnesses in 

which there are no symptoms for all or part of the time. A pre-symptomatic condition, on the other 

hand, is sometimes used to describe conditions that do not initially exhibit any symptoms but then 

develop them later (WHO, 2021). According to Weber & Sebire (2010), systemic responses to 

isolated pathogens instead of only relying on detection would provide a better understanding of 

pathogen involvement in disease progression. 
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2.7.3 Fungal infections and SUDI 

Autopsies have demonstrated the presence of Pneumocystis in the lungs of SUDI cases without 

obvious pathological changes (Morgan et al., 2001; Vargas et al., 2007), however, in 105 of 128 SUDI 

cases, Pneumocystis deoxyribonucleic acid (DNA) was detected (Vargas et al., 2013). Pneumocystis 

might function as a cofactor that contributes to respiratory diseases in infants and young children, 

triggering excess mucus production via non-specific pathways (Vargas et al., 2013). Various species 

of Candida were also detected in SUDI autopsies, although none of them were associated with clinical 

manifestations of infection or septicaemia (Geertinger et al., 1982). 

2.8 Introduction of GIT pathogens investigated in this study 

The following sections will briefly introduce and characterise the diarrhoeagenic E. coli (DEC) and 

five gastrointestinal viruses and subtypes that were investigated during this study, namely 

enterohaemorrhagic E. coli (EHEC) (stx1/stx2, E. coli O157), enteropathogenic E. coli (EPEC), 

enteroaggregative E. coli (EAEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), 

and diffusely adhering E. coli (DAEC) (Jesser & Levy, 2020), Norovirus (NoV) (GI, GII), Rotavirus 

(RV) A, AdV-F (Serotype 40/41), Astrovirus (AstV) and Sapovirus (SaV) (Genogroups G1, 2, 4). 

E. coli is a gram-negative bacterium that is oxidase-negative, rod-shaped and belongs to the order 

Enterobacterales (Janda & Abbott, 2021), family Enterobacteriaceae (Croxen et al., 2013). It is 

typically about 2.0 µm long and 0.25–1.0 µm in diameter, with an estimated volume of 0.6–0.7 µm3 

(Kubitschek, 1990; Yu et al., 2014). Within hours of birth, it colonises the GIT of neonates (Kaper et 

al., 2004) and can be readily isolated from faeces. Despite most strains of E. coli being harmless, 

there are those that are pathogenic. These strains can cause diseases like watery diarrhoea, bloody 

diarrhoea, urinary tract infection, meningitis, and sepsis, which are likely to be fatal (Nataro & Kaper, 

1998; Gyles, 2007). These well-adapted strains of E. coli have acquired specific virulence factors that 

enable them to cause illness (Nataro & Kaper, 1998). 

2.8.1 Diarrhoeagenic E. coli 

Approximately 30–40% of acute diarrhoeal episodes among children younger than five years of age 

in developing countries are caused by DEC (Miliwebsky et al., 2016). It is responsible for both 

sporadic diarrhoea cases as well as diarrhoeal outbreaks worldwide (Croxen et al., 2013). Faecal-oral 

transmission occurs frequently (Gehlbach et al., 1973), and inadequate living conditions, such as 

insufficient water supply, poor sanitation, as well as inadequate education, are primarily responsible 

for disease (Croxen et al., 2013). 
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2.8.2 Enterohaemorrhagic E. coli (stx1/stx2, E. coli O157) 

E. coli O157 is one of the enterohaemorrhagic group of E. coli strains (Coia, 1998). They are also 

known as verocytotoxigenic E coli (VTEC), after it was demonstrated that they could produce a toxin 

that would cause direct damage to Vero cells in cultured conditions in 1977 (Konowalchuk et al., 

1977). After discovering that VT was closely related to Shiga toxin in 1982, it was termed Shiga-

toxin producing E. coli (STEC) (O’Brien et al., 1982). Globally, EHEC is well-known to cause 

foodborne illnesses. The ability to produce cytotoxins from the Shiga toxin family is the primary 

virulence characteristic of this pathogroup of E. coli (Melton-Celsa, 2014). Two toxin families, stx1 

and stx2, encoded by respective forms of stx1 and stx2, have been identified (Gallien, 2003). There 

are three subtypes of stx1, namely stx1a, stx1c, and stx1d, while the stx2 group has seven subtypes, 

namely stx2a, stx2b, stx2c, stx2d, stx2e, stx2f, and stx2g (Scheutz et al., 2012). 

Infections caused by EHEC range from mild diarrhoea to more serious manifestations such as 

haemorrhagic colitis and haemolytic uraemic syndrome (HUS), which can have potentially life-

threatening consequences. Among the most affected patients are infants and children. The prevalence 

of EHEC infections varies among regions, but in many countries, it is a significant cause of acute 

kidney failure among children (Guth et al., 2010; Majowicz et al., 2014). A distinctive feature EHEC 

epidemiology is the presence of its reservoir found in the digestive tracts of cattle and other animals; 

various foods can transmit the disease, with beef representing the most significant means of 

transmission, and a relatively low infectious dose, which contributes to high rates of infection and 

transmission among individuals (Nataro & Kaper, 1998). Diarrhoea caused by EHEC is treated with 

supportive care (Salvadori & Bertoni, 2013). 

There have been numerous outbreaks associated with EHEC belonging to serogroup O157 over the 

course of history. There are many transmission vehicles associated with EHEC outbreaks, including 

meat products (Vygen-Bonnet et al., 2017; Furukawa et al., 2018; Wilson et al., 2018), dairy/milk 

products (Jaakkonen et al., 2017), vegetables/salads (Sharapov et al., 2006; Gardiner et al., 2018; 

Mikhail et al., 2018), and water (Probert et al., 2017). An outbreak of EHEC occurred in Germany in 

2011, resulting in almost 3,000 cases of acute gastroenteritis, and 855 cases of HUS. As a result of 

the infection, 55 people have died (Robert Koch-Institut, 2011). In addition to several northern 

German states, visitors from 15 other countries were affected by the outbreak. This was also linked 

to a smaller outbreak in France (Rubino et al., 2011). A laboratory diagnosis determined that the 

causative pathogen was E. coli O104:H4, and an epidemiological investigation determined that 

fenugreek sprouts, grown in Germany but imported from Egypt, were the origin of the outbreak 

(Krause et al., 2011). In 2016, Japan experienced an outbreak of EHEC O157:H7 infection. 

Laboratory testing confirmed the presence of EHEC O157:H7 infection in 61 individuals, including 
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17 asymptomatic individuals, 24 patients hospitalised and 4 patients who developed HUS. This 

outbreak was associated with the consumption of uncooked minced meat cutlets sold frozen at 

supermarket branches (Furukawa et al., 2018).  

In South Korea, there were five outbreaks between 2015 and 2019, with an average of 3.8 cases per 

outbreak. There were three outbreaks related to restaurants and two outbreaks at home. Among the 5 

outbreaks, serotypes O165, O168, and O26 were associated, while O157 was not associated (Lee et 

al., 2021). A cluster of four HUS cases was identified in South Africa in 2017 associated with EHEC 

O26:H11. Patients were all females aged 5 and under. There was no evidence of an epidemiological 

link between the cases of HUS. It was suspected that dried meat products were the main vehicle of 

transmission in these cases, as three of the case-patients reported having consumed them. A test of 

dried meat products, however, was not able to confirm this (Smith et al., 2019). 

Cytotoxicity of bacteria culture supernatants to eukaryotic cells is the gold standard for detecting stx 

(Konowalchuk et al., 1977; Karmali et al., 1983). Multiplex PCR using the stx gene and other 

virulence factors may be suitable for detecting STEC/EHEC from bacteria in confluent growth zones 

or from colonies on Sorbitol MacConkey Agar (SMAC) that are fermenting or non-fermenting 

(Leotta et al., 2005). Several assays are available to diagnose STEC based on the detection of stx1 or 

stx2, which are important virulence factors found in this type of E. coli (Gould, 2009). Depending on 

the test format and the manufacturer, the sensitivity and specificity may differ (Donohue-Rolfe et al., 

1986; Kongmuang et al., 1987; Beutin et al., 1996; Mackenzie et al., 1998; Novicki et al., 2000; 

Beutin et al., 2002, 2007). The cost of using these commercially available tests is too high for 

developing countries. The detection of STEC/EHEC can be accomplished using numerous 

immunoassay formats, including indirect Enzyme-Linked Immunosorbent Assay (ELISA) utilising 

rabbit anti-Stx1 and anti-Stx2 sera or capture ELISAs utilising polyclonal and monoclonal antibodies 

(Rocha & Piazza, 2007; Mendes-Ledesma et al., 2008; Rocha et al., 2012). 

2.8.3 Enteropathogenic E. coli 

In 1955, Neter et al., first introduced the term EPEC, to refer to a group of enteropathogenic E. coli 

strains epidemiologically associated with several infantile diarrhoea outbreaks during the 1940s and 

1950s (Bray, 1945; Robins-Browne, 1987). Initially, they were classified by their serogroup, but have 

since been classified by the characteristic pattern of localised adhesion in tissue cultured cells. 

Currently, they are distinguished primarily based on the presence of distinct virulence genes. 

Attaching and effacing (A/E) lesions are a distinct phenotype of EPEC (Nataro & Kaper, 1998). Over 

the years, advances in techniques have improved the understanding of how EPEC strains differ in 

their genomes and virulence mechanisms. This has resulted in the subcategorisation of EPEC into 
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typical EPEC (tEPEC) and atypical EPEC (aEPEC) (Trabulsi et al., 2002; Kaper et al., 2004). Typical 

EPEC strains can cause human infectious diarrhoea and carry a large virulence plasmid, that is 

referred to as the EPEC adherence factor plasmid (pEAF), encoding the type IV fimbriae known as 

the bundle forming pilus (BFP), whereas aEPEC does not bear this plasmid (Nataro & Kaper, 1998; 

Trabulsi et al., 2002). 

Over the span of decades, studies conducted throughout the world have strongly linked tEPEC 

serotypes with children <1 year of age, particularly among children in urban areas (Nataro & Kaper, 

1998; Trabulsi et al., 2002; Gomes & González-Pedrajo, 2010). tEPEC is transmitted faecal-orally 

through contaminated surfaces, weaning fluid and direct contact with humans (Levine & Edelman, 

1984). Only humans are known to harbour tEPEC and the most likely carriers are symptomatic and 

asymptomatic children, and asymptomatic adults (Nataro & Kaper, 1998). The pathogenic potential 

of aEPEC is the subject of long-standing controversy, but epidemiological studies have determined 

that aEPEC plays a significant role in diarrhoeal endemics and outbreaks among children (Hedberg 

et al., 1997; Scaletsky et al., 1999; Vieira et al., 2001; Yatsuyanagi et al., 2002; Dulguer et al., 2003). 

Despite the lack of direct evidence of aEPEC strains being transmissible from animals to humans, 

some strains may represent potential zoonotic pathogens, since diverse animal species are known 

reservoirs of these pathogens (Gomes et al., 2016). Additionally, foods such as raw meat, pasteurised 

milk, vegetables, as well as water, have been implicated in aEPEC transmission to humans (Hu & 

Torres, 2015; Gomes et al., 2016). 

Traditional EPEC testing is still performed routinely in microbiology laboratories for children under 

two years of age. In order to screen E. coli colonies from primary isolation, antisera against the 

classical EPEC serogroups are used in slide agglutination. While it is widely available in most 

laboratories, this test has a number of significant limitations, including its inability to differentiate 

typical E. coli from aEPEC strains, cross-reactions due to serogroup diversity, and false negative 

results caused by strains of EPEC that belong to different serogroups than the classical strains. 

Molecular methods, such as PCR, are recommended for EPEC diagnosis, which can differentiate 

between typical and atypical infections based on the presence or absence of specific virulence factors 

(Mare et al., 2021). It is currently possible to identify EPEC strains by the characteristics of their 

virulence, however cell culture methods are labour-intensive and not available in most laboratories 

(Hernandes et al., 2009; Gomes et al., 2016). Available methods include immunoblotting and 

immunofluorescence that utilise polyclonal or monoclonal antibodies to detect BFP, as well as rapid 

tests, including detecting E. coli-secreted protein B (EspB) and a secreted protein (Girón et al., 1995; 

Gismero-Ordoñez et al., 2002). 
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2.8.4 Enteroaggregative E. coli 

In both developed and developing countries, a pathogenic strain of E. coli is present which causes 

acute and chronic diarrhoea (Nataro et al., 2006; Hebbelstrup Jensen et al., 2014). The first EAEC 

strain was described by Nataro et al. in 1987 as part of their investigation of the pattern of adherence 

of different strains of E. coli to Hep-2 cells in culture. Strains were isolated from children in Chile 

that were suffering from diarrhoea, and they displayed a characteristic “stacked-brick” morphology, 

which continues to distinguish EAEC. In recent years, the EAEC has emerged as an enteric pathogen. 

EAEC is particularly reported as the second major cause of travelers’ diarrhoea and most frequent 

cause of diarrhoea among children as well (Adachi et al., 2001; Huang et al., 2006). 

EAEC is transmitted via the faecal-oral route through food or contaminated water (Itoh et al., 1997; 

Pai et al, 1997; Scavia et al., 2008). Milk samples from feeding bottles handled by mothers of low 

socioeconomic status were found to contain EAEC (Morais et al., 1997). EAEC is thought to progress 

through three distinct stages of pathogenesis. Stage 1 consists of the attachment of the EAEC to the 

intestinal mucosa by means of aggregative adhesion fimbriae (AAF) and other adhering projections. 

During stage 2, mucus accumulates on the surface of the enterocytes covering the EAEC and during 

the third stage, an inflammatory response is triggered, mucosal toxicity occurs, gastrointestinal 

secretion, as well as the release of toxins (Jenkins, 2018).  

A gold standard for the detection of EAEC remains Hep-2 cell culture (Nataro et al., 1987; Jenkins 

et al., 2007; Bangar & Mamatha., 2008; Tokuda et al., 2010), which is performed by reference 

laboratories only, requires cell culture facilities, and takes a considerable amount of time (Vial et al., 

1990). For detecting both typical and atypical EAEC strains, a multiplex PCR involving two plasmid-

encoded genes and two chromosome-borne genes is recommended. Genes aggR and aatA (Cerna et 

al., 2003; Jenkins et al., 2006), as well as genes aaiA and aaiG (Dudley et al., 2006) that are included 

in the assay for detection of aaiA, aaiG, aggR and aatA, are quite sensitive and specific, and the assay 

is effective in detecting both groups of EAEC with E. coli isolated from stool cultures (Andrade et 

al., 2014). 

2.8.5 Enterotoxigenic E. coli 

ETEC was first identified by De and colleagues in Calcutta in 1956 when they administered live E. 

coli isolates obtained from children and adults suffering from cholera-like illnesses into rabbit ileal 

loops and found that significant amounts of fluid accumulated, as was found in the case of Vibrio 

cholera (De et al., 1956). The filtrates from these cultures were however not tested to determine 

whether an enterotoxin was present. These findings were not followed up until 1968, when Sack 
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reported that both adults and children in Calcutta with cholera-like illnesses showed almost pure E. 

coli growth in both stool and small intestine samples (Sack, 1968). 

ETEC is characterised by the production of heat labile and -stable (LT and ST) enterotoxins. In 

endemic areas, the majority of ETEC illnesses occur within the first two years of life (Qadri et al., 

2007), as well as among travellers and military personnel deployed in endemic areas (Riddle et al., 

2006; Shah et al., 2009; Steffen et al., 2015; Hameed et al., 2016). Infections are usually acquired 

through the consumption of contaminated food or water (Dalton et al., 1999; Gilligan, 1999; Beatty 

et al., 2004). As a result of insufficient sanitation and sewage facilities, contaminated water is the 

principal source of ETEC infection (Qadri et al., 2005). The importation of food from endemic areas 

has recently been linked to rare sporadic cases and outbreaks in developed countries (Roussel et al., 

2017).  

In order to detect ETEC, the two enterotoxins must be identified. ST enterotoxins can be detected 

using various immunoassays, including radioimmunoassays and ELISAs, whereas LT enterotoxins 

of ETEC can be detected using two commercial agglutination tests. DNA probes have been used 

successfully to detect the LT- and ST-coding genes in stool and environment specimens. When 

applied to clinical samples or isolated bacteria, a variety of PCR methods have been demonstrated to 

be highly sensitive and specific for detecting ETEC (Qadri et al., 2005). 

2.8.6 Enteroinvasive E. coli 

It was not until 1947 that the first report of an EIEC strain was published (Ewing & Gravatti, 1947). 

In the late 1950s and early 1960s, it was discovered that strains of E. coli isolated from patients with 

dysentery could also cause experimental keratoconjunctivitis in guinea pigs (Séreny, 1963; Sakazaki 

et al., 1967). In the late 1950s and early 1960s, it was discovered that strains of E. coli isolated from 

patients with dysentery could also cause experimental keratoconjunctivitis in guinea pigs. In addition 

to Shigella, Shigella manolovi, Shigella sofia, Shigella strain 13, Shigella metadysenteriae, these E. 

coli strains have been called numerous names (Manolov, 1959; Rowe et al., 1977). Later, they were 

all renamed enteroinvasive E. coli (EIEC), which has become universally accepted (Edwards & 

Ewing, 1986). It is often challenging to distinguish between EIEC and Shigella spp due to the 

similarity of phenotypic and genotypic characteristics, especially when serogroups are shared. (Silva 

et al., 1980; Toledo & Trabulsi, 1983; Bando et al., 1998; Lan & Reeves, 2002; Pavlovic et al., 2011, 

van den Beld & Reubsaet, 2012). 

Since no animal reservoir has been identified, EIEC infections in humans are likely to be transmitted 

through oral-faecal contact. The spread of EIEC infections occurs worldwide, but they are particularly 
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common in low-income countries where poor general hygiene is conducive to their spread (Chatterjee 

& Sanyal, 1984; Beutin et al., 1997; Kaper et al., 2004; Vieira et al., 2007). Additionally, water and 

cheese were described as possible sources of transmission (Borian et al., 1959; Marrier et al., 1973; 

Tulloch et al., 1973; Valentini et al., 1992).  

A major outbreak of diarrhoea was reported in the USA in the 1970s, which affected 387 patients. 

The transmission vehicle was imported cheese contaminated with the O124 serogroup (Marrier et al., 

1973). In Europe, outbreaks involving EIEC have been reported, including one in Italy in 2012 

involving 109 cases (Escher et al., 2014; Pettengill et al., 2015). In 2014, two connected outbreaks of 

gastroenteritis led to more than 100 cases in the UK (Newitt et al., 2016), and in 2013 traveler's 

diarrhoea was reported in Spain with the same EIEC serotype (Michelacci et al., 2016). In Africa, 

EIEC has been reported sporadically and infrequently (Rappelli et al., 2005; Bonkoungou et al., 2013). 

A simple stool test based on apyrase activity was described for EIEC detection. This enzyme is 

essential for the pathogen's intracellular and inter-cellular spread and can be measured by a 

colorimetric reaction. In laboratories with limited resources, the method can be applied for routine 

use in laboratories with robust equipment and affordable reagents. 

2.8.7 Diffusely adherent E. coli 

In 2006, DAEC were reported to also belong to the diarrheagenic group of E. coli (Blanco et al., 

2006). Diffusely adherent E. coli strains are distinguished by their diffuse adherence pattern to 

cultured HeLa or HEp-2a cells, in which the bacteria are uniformly distributed across the surface of 

each cell (Scaletsky et al., 2002a). There are two groups of DAEC strains that can be identified based 

on the expression of adhesins, Afa/Dr DAEC and AIDA-I DAEC. The adherence phenotype in DAEC 

strains may be caused by the Afa/Dr family of adhesions (Scaletsky et al., 2002b).  

In children, especially those 6 months of age and older, Afa/Dr DAEC strains have been associated 

with acute diarrhoea as well as persistent diarrhoea. Consequently, patients with the DAEC 

pathogroup can experience diarrhoea caused by genes encoding the Afa/Dr adhesin (Lozer et al., 

2013). In addition to fimbrial and afimbrial adhesins, the Afa/Dr family includes the afimbrial 

adhesins Afa-I-VIII and Dr-2 as well as the fimbrial adhesins Dr and F1845. These adhesins have 

been detected in E. coli strains isolated from human urinary tract infections or diarrhoea. However, 

Afa-VII has only been found in E. coli strains isolated from bovine faeces. The first report of F1845 

adhesin was made from an E coli strain (C1845) isolated from a child suffering from chronic diarrhoea 

(Lalioui et al.,1999). In E. coli isolates from diarrhoea patients, Afa-I, Afa-II, Afa-III, and Afa-V 

genes have been isolated (Servin, 2014). 
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The main route by which DAEC pathogens are transmitted is through food or water contaminated 

with human or animal faeces. Watery or bloody diarrhoea, abdominal pain, dehydration, and fever 

may be symptoms of diarrhoea caused by DAEC. However, DAEC diarrhoea has no specific clinical 

feature (Gunzburg et al., 1993). In stool specimens from children with diarrhoea, DAEC is less 

prevalent than other DEC pathotypes. Studies have linked DAEC strains to diarrhea in infants, 

children, and adults (Daigle et al., 1994). It has been reported that DAEC may be present in children 

without clinical symptoms, while other studies indicate a relationship between DAEC infection and 

clinical symptoms (Meraz et al., 2007; Spano et al., 2008). Diffusely adherent E. coli can be identified 

using HEp2 cell adherence assays based on diffuse patterns (Cabrera-Sosa & Ochoa, 2020). 

2.8.8 Norovirus (GI, GII) 

Known formerly as Norwalk virus, human NoV was initially identified in stool samples obtained in 

Norwalk, Ohio, USA, during an outbreak of gastroenteritis and was the first to be associated with 

gastroenteritis (Kapikian et al., 1972). Acute illness due to this virus was first named “winter vomiting 

disease” in 1929 because of the seasonality of the illness and the prevalence of vomiting among 

patients (Zahorsky, 1929). 

NoVs are small, nonenveloped, positive-stranded ribonucleic acid (RNA) viruses belonging to the 

Caliciviridae family (Green, 2013). This genome consists of a linear, positive-sense RNA that 

measures ∼7.6 kb in length (Jiang et al., 1993). There is a covalent linkage at the 5’ end of the genome 

to the viral protein genome and a polyadenylation at the 3’ end (Thorne & Goodfellow, 2014). At 

least seven genogroups of NoV have been described (GI, GII, GIII, GIV, GV, GVI, and GVII), further 

divided into different genetic clusters or genotypes (Atmar et al., 2019). Genogroups GI and GII are 

the most common NoV that cause human illness (Vinjé et al., 2000). Genogroup II, genotype 4 NoV 

(also referred to as GII.4) causes the majority of adult gastroenteritis outbreaks around the world 

(Noel et al., 1999). 

An elementary school in Norwalk experienced an outbreak in 1968 that resulted in the identification 

of the virus and approximately half of the students experienced nausea, vomiting, diarrhoea, and low-

grade fever (Adler & Zickl, 1969). The virus is typically transmitted through the faecal-oral route via 

contaminated water or food, or by direct contact between people. In addition to contaminated surfaces 

or vomit from infected individuals, other risk factors include unhygienic food preparation and sharing 

close quarters with others (Brunette, 2017). In addition to accounting for nearly 20% of acute 

diarrhoeal cases worldwide, it is resulting in a reported 685 million episodes and 212 000 deaths each 

year (Ahmed et al., 2014; GBD Diarrhoeal Diseases Collaborators, 2017; Farahmand et al., 2022). 

Children younger than five years of age are generally the most vulnerable to endemic NoV 
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gastroenteritis (Kabue et al., 2016; Cannon et al., 2019; Farahmand et al, 2022). Among infants less 

than one year of age, the NoV infection rate was highest, according to meta-analysis conducted 

recently (Farahmand et al, 2022). 

NoV detection is best performed by real-time reverse transcription-PCR (RT-PCR). It is extremely 

sensitive and can be applied to clinical and environmental samples, as well as to quantify viral loads 

using quantitative reverse transcription PCR (RT-qPCR). For the surveillance of NoV outbreaks, the 

CDC uses RT-PCR for genotyping. In outbreaks, enzyme immunoassays (EIA) provide rapid and 

cost-effective monitoring, but their sensitivity is only about 50%, which requires negative samples to 

be confirmed using RT-PCR (Gastañaduy & Bégué, 2016). 

2.8.9 Rotavirus A 

RVs are members of the family Sedoreoviridae (Matthijnssens et al., 2022) and possess a genome 

consisting of 11 segments of double-stranded (ds) RNA enclosed in three concentric layers of protein 

(Estes & Cohen, 1989; Estes, 2001). Viral particles can measure up to 76.5 nm in diameter (Prasad 

& Chiu, 1994). One gene product code for each of the 11 genes, with six proteins found in virus 

particles, VP1-VP7, and five nonstructural proteins (NSP), NSP1-NSP5 (Ciarlet & Estes, 2001; 

Lundgren & Svensson, 2001). RVs are classified into nine genetic groups (A-J), with K and L 

proposed as new species (Johne et al., 2019). In humans, RV-A is responsible for more than 90% of 

RV infections (Leung et al., 2005). 

In 1943, researchers showed that an agent that caused infectious diarrhoea in children also caused 

diarrhoea among cattle (Light & Hodes, 1943). More than 30 years after the discovery of the agent, 

preserved samples were characterised as RV (Mebus et al., 1976). A related group of viruses was 

found in children with gastroenteritis by Ruth Bishop and colleagues in 1973 (Bishop, 2009). 

Hospitalised infants, children in day-care centres, and the elderly living in nursing homes are 

commonly affected by RV-A diarrhoea outbreaks (Anderson & Weber, 2004; Sassi et al., 2015). The 

largest recorded epidemic of diarrhoea occurred in Central America during 2005. A mutation in the 

RV-A genome may have caused such an unusually large and severe outbreak, enabling the virus to 

escape immunity in the population (Bucardo et al., 2007). In 1977, Brazil experienced a similar large 

outbreak (Linhares et al., 1981). Mild to severe symptoms of the illness include nausea, vomiting, 

diarrhoea and a low-grade fever. Infected children usually show symptoms within two days of 

exposure (Hochwald & Kivela, 1999). Infections caused by rotavirus are more likely to cause 

dehydration than infections caused by most bacteria. This is the most common cause of death 

associated with rotavirus infection. (Maldonado & Yolken, 1990). 
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A monovalent 2-dose vaccine with an attenuated human strain of RV G1P[8] (Rotarix; 

GlaxoSmithKline), as well as a pentavalent bovine RV-based vaccine with capsid proteins bearing 

human serotypes G1, G2, G3, G4, and P[8] (RotaTeq; Merck) were licensed in the USA in 2006 

(Ruiz-Palacios et al., 2006; Vesikari et al., 2006). Globally, the World Health Organisation (WHO) 

Strategic Advisory Group of Experts on Immunisation (SAGE) has recommended that RV vaccines 

be included in all childhood immunisation programs in 2009 (WHO, 2009). As a result of vaccination, 

hospital admissions and emergency room visits have declined by 67% globally (Burnett et al., 2017). 

RV-A infections are diagnosed by direct analysis of faecal samples, which can contain as many as 

1 x 10¹⁰ viral particles per gram of stool. In laboratories engaged in clinical and public health, EIAs 

are preferred due to their high specificity and sensitivity (>90%). In addition to lateral flow 

immunoassays, other antigen detection methods, such as latex agglutination, are also available for 

point-of-care testing (Esona & Gautam, 2015). The presence of RV antigen correlates more strongly 

with illness than does the presence of viral nucleic acids. By detecting viral nucleic acids, subclinical 

infections can also be detected. The new generation of molecular detection methods, which can 

identify multiple gastroenteritis pathogens simultaneously and require expensive laboratory 

equipment, are highly sensitive and specific (>90%) for identifying RV (Reddington et al., 2014; 

Buss et al., 2015; Deng et al., 2015). 

2.8.10 Adenovirus-F (Serotype 40/41) 

AdVs are members of the Adenoviridae family and are nonenveloped viruses that contain a double-

stranded (ds) deoxyribonucleic acid (DNA) genome enclosed in an icosahedral nucleocapsid. They 

are medium size ranging from 90-100 nm. AdVs are the largest non-enveloped viruses structurally 

and their non-segmented dsDNA genomes range between 26 and 45 kbp, which is larger than other 

dsDNA viruses (Anon, 2021). At present, there are 88 human AdVs, which are categorised into seven 

species (AdV A to G) (Dhingra et al., 2019). Paediatric gastroenteritis, accompanied by fever, 

vomiting, and diarrhoea, is a common complication of type 40/41 (species F) (Uhnoo et al., 1984; 

Kotloff et al., 1989; Grimwood et al., 1995). 

The gastroenteritis caused by AdV 40/41 is a common cause of hospitalisation as well as serious 

illness (Afrad et al., 2018; Iturriza-Gómara et al., 2019; Praharaj et al., 2019). In children younger 

than two years of age, especially in infants younger than 12 months, the disease burden is highest 

(Banerjee et al., 2017; Platts-Mills et al., 2018; Bray et al., 2019). The prevalence of type 41 is higher 

than that of type 40 (Afrad et al., 2018; Primo et al., 2018; Qiu et al., 2018; Hassan et al., 2019; 

Kumthip et al., 2019). Diarrhoea has also been associated with AdV species A, B, C, and D. Types 
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12, 18, and 31 of species A are classified as enteric AdV, along with AdV 40 and 41 (Magwalivha et 

al., 2010; Ghebremedhin, 2014; La Rosa et al., 2015; Qiu et al., 2018). 

AdV in humans can be spread through inhalation, contact with small droplets, or the faecal-oral route. 

As a result of AdV contaminating food and water, outbreaks have been reported in schools, nurseries, 

and military camps (Fong & Lipp, 2005; Filho et al., 2007; Huh et al., 2009; Lazić et al., 2015). 

Direct or indirect immunofluorescence, conventional cell culture methods or shell vial cultures, as 

well as PCR can be used to detect AdV (Lee et al., 2010). While conventional viral culture is the gold 

standard for RV detection, it may not be sensitive enough for some samples and the cytopathic effect 

(CPE) may not be apparent for up to 21 days (Ison, 2006; Lee et al., 2010). Since EIAs are 98% more 

sensitive and specific than electron microscopy (EM) in detecting viral antigens in stool, it is the most 

convenient method of detection. Real-time RT-PCR has demonstrated superior performance over 

EIAs and EM (Logan et al., 2006). Serotypes can be determined by PCR amplification. The use of 

serological tests is relatively uncommon; however, neutralisation or haemagglutination inhibition 

tests are used to detect these antibodies. The growth of enteric AdVs in routine cell lines has been 

difficult, but isolation techniques have improved (Arcangeletti et al., 2014). 

2.8.11 Astrovirus 

The human AstV genome consists of a non-segmented positive sense ssRNA that is encapsulated 

within a non-enveloped icosahedral capsid (Matsui et al., 2001). EM was first used to detect the 

presence of AstV in infants hospitalised with diarrhoea (Madeley & Cosgrove, 1975). Based on virion 

morphology, human AstV was the earliest member of the Astroviridae family to be detected (Monroe 

et al., 1995). Two genera were later established according to their hosts, the Mamastrovirus, which 

affects mammals, and the Avastrovirus, which affects birds (Mayo, 2002). AstV has a genome size 

of about 6.8 (6.2 to 7.8) kb, excluding the polyadenylated tail at the 3′ end (Bosch et al., 2011). Open 

reading frames (ORF) 1a,1b, and 2 appear in the genome from the 5′ to 3′ ends. NSPs are encoded by 

ORF1a and ORF1b, both of which are involved in the transcription and replication of RNA, whereas 

structural proteins are encoded by ORF2, which are expressed from a sub-genomic RNA (Monroe et 

al., 1993; Willcocks & Carter, 1993).  

Human AstV have eight known serotypes (1 to 8), with serotype 1 being the most dominant 

worldwide (Matsui & Greenberg, 2001). In addition to RV and caliciviruses such as norovirus and 

sapovirus, AstV is one of the leading causes of acute gastroenteritis among infants (Glass et al., 1996). 

In particular, children and immunocompromised adults are particularly susceptible to gastroenteritis 

(Cortez et al., 2017), with approximately 2–8% of all cases of non-bacterial acute gastroenteritis in 
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children being caused by AstV. Duodenal epithelial cells usually contain viral particles (Maclachlan 

et al., 2017). An infection typically causes mild symptoms and is linked to outbreaks of gastroenteritis 

in indoor locations, such as day-care centres and schools (Pankovics et al., 2011; Tan et al., 2017). 

Faecal-oral transmission is primarily facilitated by direct contact with faeces or by consuming 

contaminated food or water (Roach & Langlois, 2021). Due to lower temperatures which enhance 

virus stability, infection is more common during the winter months in temperate climates (Abad et 

al., 2001), whereas infections in tropical climates are more prevalent during the rainy season (Cruz et 

al., 1992; Maldonado et al., 1998). It is also possible for AstV to be transmitted from animals to 

humans, with abattoir employees having three times the likelihood of having antibodies against turkey 

AstV (Meliopoulos et al., 2014). 

There has been some research reporting use of real-time RT-PCR to be effective in detecting all AstV 

genotypes (Royuela et al., 2006) and there are a few RT-qPCR techniques that can be used to diagnose 

AstV simultaneously with other enteric viruses that cause gastroenteritis (Liu et al., 2012). In 

addition, microarrays are used to distinguish between the eight distinct types of AstV (Brown et al., 

2008). Recent developments have enabled multiplex RT-PCR panels to diagnose AstV and other GIT 

pathogens more rapidly, efficiently, and at a reasonable cost. In the early attempts to detect AstV, 

NoV, AdV, SaV, and enteroviruses in stool samples, either end-point (Rohayem et al., 2004; Yan et 

al., 2004) or qPCR (Beuret, 2004) were as effective as single-plex PCR, while a melting curve 

analysis allowed detection of dual-infection through the formation of dual peaks, although the 

sensitivity was approximately 10 times greater than end-point PCR (Beuret, 2004). 

2.8.12 Sapovirus (Genogroups G1, 2, 4) 

SaV comprises a genus of genetically diverse non-enveloped, positive-sense ssRNA viruses in the 

family Caliciviridae (Vinjé et al., 2019). The genome contains two ORFs and is approximately 7.5-

8.5 kb in length. ORF1 encodes a large polyprotein that contains NSPs (such as RNA-dependent RNA 

polymerase [RdRp]) followed by the major capsid protein, VP1, while ORF2 encodes for the minor 

structural protein, VP2 (Desselberger, 2019). VP1 sequences are widely used in SaV classification as 

the VP1 region has greater genetic diversity than the RdRp region (Oka et al., 2015). Human and 

animal SaVs are classified into 19 genogroups, of which viruses from GI, GII, GIV, and GV are 

associated with human gastroenteritis infection and human SaV can further be subdivided into at least 

18 genotypes (Vinjé et al., 2019). As of recent years, the SaV GI and GII genogroups have been 

detected more frequently globally (Diez-Valcarce et al., 2018; Varela et al., 2019; Makhaola et al, 

2020), whereas the GIV genogroup is relatively uncommon, but can occasionally be found in South 

Stellenbosch University https://scholar.sun.ac.za



26 

Africa, Spain, Canada, and Guatemala since it is the third most prevalent genogroup (Pang et al., 

2009; Murray et al., 2016; Diez-Valcarce et al., 2019; Varela et al., 2019). 

The prevalence of Caliciviruses, such as NoV and SaV, has increased as RV vaccines have been 

widely used (Hemming et al., 2013; Koo et al., 2013; Payne et al., 2013; Doll et al., 2016). SaV 

infections are less detrimental to health than NoV or RV infections (Sakai et al., 2001). However, 

evidence suggests that infections can lead to severe dehydration and hospitalisation (Romani et al., 

2012; Bucardo et al., 2014). There have been outbreaks as well as sporadic cases of acute 

gastroenteritis associated with SaV (Liu et al., 2015; 2016), with a higher prevalence in children than 

in adults (Liu et al., 2016; Pongsuwanna et al., 2017). The faecal–oral route allows viruses to be 

transmitted from one individual to another by consuming contaminated food and drinking water, and 

handling faeces that contains or have been contaminated by SaV (Iizuka et al., 2010; Räsänen et al., 

2010; Kitajima et al., 2011; Kobayashi et al., 2012; Lee et al., 2012). 

SaVs are typically detected by RT-PCR. It is normally not diagnosed due to costs and limited 

accessibility to PCR in many parts of the world and generally, diagnosis does not affect treatment. 

Several multiplex GIT pathogen panel tests now include SaV (Freeman et al., 2017). Epidemiological 

studies are frequently conducted using SaV genotyping (Sánchez et al., 2018). 

2.9 Overview of the GIT and microbiota 

There are several distinctly defined anatomical regions of the GIT, extending from the lips to the 

anus. Microbiology of the GIT can be accessed from the oral cavity to the stomach, small intestine, 

and large intestine as well as faeces. Most microbiome research on the GIT focuses on faeces, as it is 

more readily accessible (Mackie et al., 1999). The GIT is inhabited by a microbial community that is 

characterised by its high population density, extensive diversity, and intricacy of interactions. GIT 

microbes include all major groups, with bacteria being the most researched. However, a diversity of 

protozoa is commonly observed in the GIT as well (Clarke, 1977; Dehority, 1997; Hespell et al., 

1997). 

The human microbiome is a microbial community defined as the sum of all microbial life living in or 

on the human body (Fricke, 2014). It has expansive metabolic, nutritional, and immunological effects 

on the host. Throughout a person's lifetime, the microbiome evolves within the host, constantly 

adjusting to maintain homeostasis with the host's immune system (Gritz & Bhandari, 2015). Shortly 

after birth, the GIT is colonised with commensal bacteria, which compromise approximately 1 000 

species that form significant components of the microbiota ecosystem (Bischoff & Kramer, 2007; 

Honda & Takeda, 2009). 

Stellenbosch University https://scholar.sun.ac.za



27 

The virome, or viral microbiome (Oh et al., 2014), is comprised of eukaryotic RNA, DNA viruses 

and bacteriophages. The virome is relatively unknown, yet there are indications that it plays a role in 

human health. In addition to being an indicator of paediatric febrile illness and Acquired 

Immunodeficiency Syndrome (AIDS), anellovirus, a DNA virus originating in eukaryotic cells, is 

directly associated with host immunosuppression and organ transplant outcome (McElvania Tekippe 

et al., 2012; De Vlaminck et al., 2013; Li et al., 2013; Béland et al., 2014). As chronic virus infection 

can confer increased resistance to pathogens (Barton et al., 2007), the ongoing characterisation and 

annotation of the virome will provide the opportunity to identify novel pathogens, species that are 

mutualistic and symbiotic, and genetic elements that can be found on host chromosomes derived from 

viruses (Virgin, 2014). 

The mycobiome refers to the commensal fungi and archaea in the human microbiome (Gillevet et al., 

2009). Commensal fungi that normally inhabit the human body have been much less studied, as the 

minority of overall commensal organisms in the human body is formed by fungi. A large number of 

fungi is also unculturable (Huffnagle & Noverr, 2013). Despite constituting as little as 0.1% of the 

total microbiome, the fungi found in the microbiome may be crucial to maintaining the structure, 

function, and immune priming of the microbial community (Qin et al., 2010). 

2.9.1 Bacterial diversity in the GIT 

The human GIT mucosa is made up of epithelial cells, lamina propria and the muscularis mucosae, 

which is populated by approximately 1014 microbes (Clark & Coopersmith, 2007). As a result of a 

low pH level and rapid flow rates of the stomach and small intestine, there are relatively few microbes 

in these regions (103-105 bacteria/g or mL content). The upper small intestine is predominated by 

acid-tolerant lactobacilli and streptococci. As a transition region preceding the large intestine, the 

distal small intestine (ileum) maintains a more varied microbiota and has a higher number of bacteria 

(108/g or mL content) than the upper bowel. Due to its slow turnover, the large intestine (colon) is the 

primary location of microbial colonisation. It is characterised by high bacteria numbers (1010-1011/g 

or mL content), low redox potential, and high short-chain fatty acid (SCFA) contents. Additionally, 

there are distinct spatial patterns of organism distribution within each compartment of the GIT, as 

well as an increasing gradient of indigenous microbes from the stomach to the colon. A total of four 

microhabitats are known, including the intestinal lumen, the unstirred mucus layer or gel that covers 

the entire epithelium of the intestinal tract, the deep mucus layer in the intestinal crypts, and the 

surface of mucosal epithelial cells (Lee, 1984; Berg, 1996). 
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2.9.2 Development of the infant GIT microbiome 

The in-utero environment was previously regarded as being largely sterile, and that the foetus was 

only colonised with bacteria at the time of birth (Gritz & Bhandari, 2015). The presence of microbes 

has been confirmed by both culture-based and culture independent studies in the placenta (Satokari 

et al., 2009; Aagaard et al., 2014), amniotic fluid (DiGiulio et al., 2008; Oh et al., 2010), foetal 

membrane (Steel et al., 2005), umbilical cord blood (Jiménez et al., 2005) and meconium (Jiménez 

et al., 2008; Hu et al., 2013).  

Infants born via vaginal delivery initially have skin, GIT, oral, and nasopharyngeal cavities enriched 

with Lactobacillus spp, which is very similar to the mother's vaginal microbiome (Dominguez-Bello 

et al., 2010). In the case of a caesarean delivery, the infant is colonised by skin and environmental 

bacteria, such as Staphylococcus, Streptococcus and Propionibacteria (Bäckhed et al., 2015; 

Dominguez-Bello et al., 2016). In contrast to emergency caesarean delivery, infant GIT microbiome 

development is different following elective caesarean deliveries. An emergency caesarean delivery is 

usually laboured, whereas an elective caesarean delivery is not laboured (Chu et al., 2017). The 

rupture of membranes during labour often results in the neonate being exposed to vaginal microbes, 

which may explain the difference in the infant's GIT colonisation following the two types of caesarean 

deliveries (Stinson et al., 2018). Over time, the microbiota changes and adapt to the physiochemical 

and biochemical composition of each organ in the body, as well as to the availability of certain 

nutrients (Koenig et al., 2011; Yatsunenko et al., 2012; Lim et al., 2015). 

Infants receive their nutrients primarily from either breastmilk or formula feed during their first few 

months of life. Many benefits to the infant are associated with breastfeeding, including an enhanced 

resistance to infection (WHO, 2000; Sadeharja et al., 2007), lower risk of obesity (Harder et al., 2005; 

Weng et al., 2012) or decreased risk of allergies (Greer et al., 2008). Breastmilk is believed to be 

beneficial due in part to factors secreted in the milk, such as immunoglobulin (Ig) A, lactoferrin, and 

defensins (Lönnerdal, 2003; Brandtzaeg, 2010). In comparison with formula-fed infants, breastfed 

infants are enriched with Bifidobacterium and Lactobacillus, resulting in an increased intestinal 

acidity as well as a greater quantity of SCFA (Yoshioka et al., 1983). In addition to reducing GIT pH, 

it also serves to protect against common pathogenic organisms. SCFAs are produced by bacteria in 

neonates through the fermentation of human milk oligosaccharide, which do not directly enter the 

host's digestive system, but rather provide a food source for colonic bacteria. Up to 107 bacteria can 

be found in 800 mL of breastmilk, including Staphylococcus, Bifidobacterium, Lactobacillus and 

Streptococcus, all of which act as inoculants for the neonate (Heikkilä & Saris, 2003; Martin et al., 

2003). There has been no definitive determination of the source of these maternal bacteria (Arrieta et 

al., 2014). 

Stellenbosch University https://scholar.sun.ac.za



29 

An increase in the variety of dietary substrates consumed by growing infants after a period of 

contraction of bacterial diversity (Pantoja- Feliciano et al., 2013; Dominguez-Bello et al., 2016), is 

associated with a change in bacterial composition. This change may also result in an increase in the 

ability of these bacteria to perform carbohydrate utilisation, amino acid synthesis, and produce 

vitamins (Bäckhed et al., 2015). By the age of 3, a child's microbiome should be comparable to that 

of adults in their population (Yatsunenko et al., 2012). 

The GIT bacterial microbiome also varies with gestational age. A longitudinal study of preterm 

infants showed that the pace of the GIT bacterial microbiome development was strongly determined 

by postconceptional age (La Rosa et al., 2014; Gibson et al., 2016). Preterm infants have a very 

different, 'sparse' microbiome compared to full-term infants. This developmentally challenged 

microbiota is dominated by enterococci, Staphylococcus coagulase-negative, yeasts and 

Enterobacteriaceae, as very few anaerobes are present (Adlerberth, 2009). Furthermore, a number of 

pre- and postnatal insults can also adversely affect the GIT microbiome of a preterm infant. Since 

these infants are delivered rapidly, they are less likely to be exposed to maternal vaginal and enteric 

bacteria. Mothers at risk of preterm delivery are usually hospitalised for an extended period and 

receive antibiotic treatment. This may alter the microbiome of the mother and her foetus. Compared 

with full-term infants, preterm infants are susceptible to several inflammatory factors during 

pregnancy (prenatal maternal illness, infection, smoking, and physiological stress) and postnatally 

(formula feeding, antibiotics, and medications that affect pH levels in the gastric area). As a result, 

they are also exposed to different microbial sources. Additionally, the hospital environment is likely 

to contain microbes and microbial resistance that differ from those in a home environment. 

Consequently, many preterm infants develop "neonatal intensive care unit" flora as they require 

prolonged hospitalisation (Brooks et al., 2014). In addition, preterm infants are commonly fed 

formula such as cow's milk or fortified human milk, causing their GIT microbiota to be completely 

different (Poroyko et al., 2011).  

The GIT of preterm babies are often underdeveloped, fragile, and vulnerable to complications from 

prolonged fasting and altered gastrointestinal motility and perfusion. This can lead to difficulties in 

gastrointestinal colonising and exacerbation of inflammation. The successional development of the 

microbiota will be influenced by the composition of the gastrointestinal microbiota of infants with 

very low birth weight, and significant niches will be occupied later in life by bacteria that was 

established early after birth. Compared to full-term infants, there is usually a delay in developing 

adult microbiota. The alterations and delays in commensal colonisation early in life may pre-empt 

gastrointestinal diseases and immune balances may shift. This may result in neurodevelopmental 

effects and atopic allergies during childhood and later life (Weng & Walker, 2013).  
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The development of the bacterial microbiome is also influenced by environmental factors, such as 

geographical location, family interactions and dust. More similarities are found in the bacterial 

microbiomes of individuals residing in the same household compared to those that do not 

(Yatsunenko et al., 2012). Firstborn children tend to have a less rich and diverse bacterial microbiome 

than children with a higher birth order, suggesting a transfer of bacteria from interactions with older 

siblings and / or modified sanitation practices of the parents as more children are born in the family 

(Laursen et al., 2015). There is evidence that the practice of sucking a baby's pacifier in order to clean 

it results in altered oral microbiota in infants, as well as a lower risk of allergies (Hesselmar et al., 

2013). Moreover, early exposure to animals and pets can have a protective effect on infants, since 

exposure to microbes stimulates the development of immune tolerance (Tamburini et al., 2016), and 

also decrease the occurrence of allergies and asthma (Ownby et al., 2002), although the mechanisms 

for this are not yet well understood. The decrease in Lactobacillus, Bifidobacterium adolecentis, and 

Clostridioides difficile (C. difficile) during the first 2 months of life, as well as the proliferation of 

Bifidobacterium in infants, is attributed to larger household sizes and increased exposure to dust, 

which is linked to the development of allergies (Sjögren et al., 2009).  

Only recently has the interaction between microbiota and host genetics been recognised to play a 

major role in human disease. When a diverse gastrointestinal microbiota composition is associated 

with metabolic disorders that a have genetic component (Herbert et al., 2006; Frayling et al., 2007; 

Turnbaugh et al., 2009; Qin et al., 2012; Karlsson et al., 2013), it is suggested that the host impaired 

bacterial regulation is a likely mechanism of pathogenesis. It is very difficult to interpret the 

interaction between host genetics and microbiota due to the large number of interactions between 

numerous bacterial species and numerous genetic polymorphisms (Knights et al., 2014). 

2.9.3 Effect of antibiotic use on the microbiome 

Antibiotic treatment targets not only pathogenic microorganisms but also the host-associated 

microbial communities in the GIT. Antibiotics are considered effective in treating a wide range of 

health conditions since most antibiotics possess a broad spectrum activity, but in addition to 

destroying pathogenic bacteria, other microbes are also affected. This results in a lasting negative 

impact on the microbiota of the GIT (Jernberg et al., 2007). 

Exposure to antibiotics and its influence on the human microbiome can begin in utero and continue 

through critical stages of foetal growth and development (Yang et al., 2019). The developing infant 

bacterial microbiome and accompanying enteric pathogen colonisation can be significantly altered 

by antibiotic usage and may fail to recover fully (Dethlefsen et al., 2008; Fouhy et al., 2012). 

Antibiotic use by pregnant women is linked to altered microbial compositions, depending on the type 
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of antibiotic administered (Azad et al., 2016; Coker et al., 2020). Additionally, it has been associated 

with developmental and cognitive impairments (Kenyon et al., 2008), diabetes development and 

immunological changes (Tormo Badia et al., 2014) and obesity (Mueller et al., 2015). Antibiotic use 

during infancy and childhood has been linked to altered metabolic functions and a change in the 

microbial composition (Korpela et al., 2016), as well as an increased risk for the development of 

asthma and allergies (Ni et al., 2019; Yamamoto‐Hanada et al., 2017), and obesity (Bailey et al., 

2014) later in life. 

The adult bacterial microbiome, however, seems to be more resilient to disruption by antibiotic usage 

(Lozupone et al, 2012), and will eventually recover despite sudden changes. A mouse model has been 

used to demonstrate that the microbial balance amongst bacteria, viruses and fungi can also be altered 

by antibiotic treatment. It can cause gastrointestinal fungal cells (Candida albicans) to multiply, 

causing a host of lung disorders facilitated by mast cell activation, interleukin (IL)-5, IL-13, and 

various inflammation-related mediators (Noverr et al., 2005). This may also be the reason for 

impaired immune responses to viral infections in humans (Gonzales-Perez et al., 2016). 

2.10 Impact of infant microbiota on health  

The composition of the neonatal gastrointestinal microbiota plays an important role in the 

development of the immune system, central nervous system (CNS), and metabolic processing of 

nutrients (Yao et al., 2021). 

2.10.1 Immune system development 

The mucosal surfaces in neonates and adults differ considerably. Among respiratory and digestive 

epithelia, permeability is much higher, and the neonatal epithelium does not produce antimicrobial 

peptides and enzymes. In addition, the pH in the infant stomach is higher, and the composition of the 

secreted mucus layer, as well as its glycosylation, differ from that of adults. Infants have fewer innate 

and acquired immune cells, including granulocytes, neutrophils, eosinophils, lymphocytes, and 

regulatory T cells, which are less able to produce antibodies, cytokines, and chemokines. It is 

particularly apparent in the body's largest immune tissue, the GIT (Martin et al., 2010). Upon 

pathogen invasion, the neonate's immune system preferentially develops tolerance, which is also why 

the immune system of a neonate is different from that of an adult (Forsthuber et al., 1996; Ridge et 

al., 1996; Sarzotti et al., 1996). 

As gastrointestinal microbiota digest exogenous, and ferment endogenous compounds, metabolites 

are produced, which can act directly on mucosal epithelial cells or enter the bloodstream. In order to 

modulate immunity, these metabolites may act through the following mechanisms:  
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(i)  microbes in the GIT digest fibre in food, producing SCFAs, which have a variety of immune-

modulating properties;  

(ii)  specific host receptors bind to GIT microbes, such as aryl hydrocarbon receptors (AHR), G 

protein-coupled receptors 41 and 43, Toll-like receptors, and Pregnane X receptors;  

(iii)  polyamines, which include spermine, putrescine, and spermidine, play an important role in gene 

transcription and translation and are found in the majority of cells.  

Pattern recognition receptors (PRR) are critical elements of innate immunity that detect, recognise, 

and coordinate self- and non-self-antigens (Rooks & Garrett, 2016). It is possible for these receptors 

to respond to peptidoglycans, lipopolysaccharides, formyl peptides, nucleic acids, and flagellins. A 

signal cascade linked to PRRs triggers the release of chemokines, apoptotic factors, and cytokines, 

possibly contributing to the development of disease (Yuan et al., 2021).  

Secretory IgA (sIgA) serves a vital regulatory function in this priming and immune maturation 

process. An important component of maintaining the diversity within the bacterial communities 

inhabiting the GIT mucosa is the presence of sIgA which targets a significant number of GIT bacteria 

and modulate their growth. Through the selective modulatory activity of sIgA, maternal antibodies 

must work together to support the development of an infant's immune system from the earliest stages 

of life (Levi Mortera et al., 2016). 

2.10.2 Gut-brain axis 

During early development, the infant brain gradually develops axons and dendrites, forms synapses, 

expands neurogliocytes, and becomes myelinated. Therefore, the first two years of life are also critical 

for establishing the GIT microbiota, as the infant's brain develops optimally when its GIT microbiota 

has been established (Diaz, 2016). The CNS is considered to be immune-privileged. Throughout the 

brain, blood vessels are formed by endothelial cells and tight junctions that form the blood-brain 

barrier (BBB). The BBB strictly controls movement of molecules, ions, and cells between the 

periphery and the brain (Engelhardt & Liebner, 2014). The BBB further protects the brain, neurons 

and their connections from pathogens and unwanted immune responses (Daneman & Prat, 2015). The 

CNS, intestine, and microbiota communicate through a complex bidirectional communication 

network called the Gut-Brain Axis (GBA), which mediates communication between intestines and 

the CNS (Sudo et al., 2004; Skonieczna-Żydecka et al., 2018). A range of pathways are involved in 

this axis, including the autonomic and enteric nervous systems, the endocrine system, the 

hypothalamic-pituitary-adrenal axis, the immune system, as well as the microbiota and its metabolites 

(Duvallet et al., 2017; Blacher et al., 2019; Burberry et al., 2020).  
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A number of neurotransmitters and metabolic products, such as essential vitamins, secondary bile 

acids, amino acids, and SCFAs, modulate several immune pathways, which affect behaviour, 

memory, learning, locomotion, and neurodegenerative diseases (Peng et al., 2009; Yano et al., 2015; 

Ellwardt et al., 2016; Engelhardt et al., 2016; Jenkins et al., 2016; Kipnis, 2016; O'Keefe, 2016; 

Kennedy et al., 2017; Mertens et al., 2017; Mittal et al., 2017; Skonieczna-Żydecka et al., 2018; Baj 

et al., 2019; Dalile et al., 2019; Feng et al., 2021). 

2.11 An overview of methods for studying gastrointestinal bacteria 

A reductionist approach was used in the past to study the human microbiome, using culture media 

and microscopes to identify and characterise single bacteria strains. Only culturable bacteria were 

initially identified and classified phylogenetically. Over 40% of GIT bacteria cannot survive outside 

their natural habitat and the application of culture-dependent as well as culture-independent analytical 

methods has therefore improved the understanding of gastrointestinal microbiota. The recent 

development of next-generation sequencing (NGS) in biological science has been a significant 

advancement. It uses metagenomic techniques based on 16S ribosomal RNA (16S rRNA) gene 

amplification by PCR and whole-genome sequencing (WGS) to study and define the human 

gastrointestinal microbiota (Singh, 2021). 

2.11.1 Culture-based methods 

For the identification of new species, culture-based methods are still widely regarded as the gold 

standard protocol. These are reliable and inexpensive methods for identifying bacteria, however, their 

effectiveness cannot be guaranteed against anaerobic and non-amenable bacteria (Singh, 2021). 

Furthermore, the value in detecting changes in the microbiota profiles is limited, due to a major 

underestimation of the diversity of bacteria present in the intestinal luminal contents. Consequently, 

these methods are not best suited to study gastrointestinal microbiota profiles and are only used for 

the analysis of individual culturable bacterial groups in specific clinical settings. In the late 20th 

century, several molecular approaches have been developed to overcome the limitations of culture 

technology and the study of bacterial genomic material and identification is now based on 16S rRNA 

sequences of the bacteria (Sarangi et al., 2019). 

2.11.2 Culture-independent methods 

The metagenomic technique was the first method of phylogenetically identifying 80% of uncultured 

microbes. The development of this culture-independent technique for the identification of 

microorganisms has revolutionised research into human microbiotas. 16S Amplicon sequencing 

protocols involve amplifying species-specific 1500-bp-long whole 16S rRNA genes by PCR using 
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nucleic acid extracted from the sample (Olsen et al., 1986). Additionally, it includes hypervariable 

regions, specifically, the V4-V5 region as a subset of the nine short hypervariable regions, from V1-

V9. DNA fragments are physically separated from each other using gel electrophoresis following 

PCR-based amplification with universal and specific primers (Lane et al., 1985). In contrast, shotgun 

DNA sequencing enables the analysis of metagenomics by sequencing the entire genome rather than 

amplifying specific gene regions (Quince et al., 2017). This application allows identification of a 

microbial community at the species/strain level by identifying all organisms present within it. Using 

this technique, it is possible to determine the biological functions of the microbiota present in the 

sample. Furthermore, the PCR does not amplify specific regions of the genome, thereby avoiding any 

bias arising from the amplification step itself or during primer selection (Hodkinson and Grice, 2015). 

While amplicon sequencing can be used to characterize and compare communities, the use of specific 

primers and multiple amplification cycles introduce inherent biases (Hodkinson and Grice, 2015). 

The cost of shotgun DNA sequencing is higher than 16S profiling, as it generates massive amounts 

of sequence data. Data analysis requires highly trained experts as well as expensive equipment and 

facilities to deal with the vast amounts of data generated. Furthermore, a large amount of information 

has been accumulated by several studies with regard to 16S profiling; however, due to the absence of 

a database on uncultured microorganisms and their functions, it is difficult to obtain the complete 

biological information by comparing the sequences obtained by experiments to those deposited in the 

database. Due to this, numerous attempts are being made to gather information regarding functional 

genes and to construct a database profile of the entire microbial genome. In addition, metagenomic 

analyses, which are based on DNA, do not reflect viable microbial communities, as the DNA used is 

extracted from microbial organisms that may or may not be alive at the time of analysis (Ercolini, 

2013). 

With the advent of DNA NGS, metagenomic and WGS methods have become more sophisticated 

and rapid. Recent methods such as 454 pyrosequencing, Illumina, SOLiD, Ion Torrent, and single-

molecule real-time (SMRT) circular consensus sequencing equipment from Pacific Biosciences (Lu 

et al., 2009) and Oxford Nanopore Technology (ONT) have provided a deeper understanding of the 

gastrointestinal microbiome through improved speed and analytic power (Nicholls et al., 2019). Using 

MinION™ nanopore sequencing technology, ONT has demonstrated that it can overcome PCR 

limitations when sampling gastrointestinal microbes, this includes temperature variations, cloning, 

and long and deep sequencing. (Singh, 2021). In addition to phylogenetic analysis, NGS analysis can 

also be used for the functional analysis of microbial communities. It provides a framework for omics-

based methods, such as metatranscriptomics, metaproteomics, and metabolomics, which have 
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enabled increased understanding of the function of metagenomes comprising whole microbial 

communities (Petriz & Franco, 2017). 

2.12 Post-mortem bacteriology 

2.12.1 Post-mortem samples: source of bacteria 

In addition to causing disease, bacteria can also travel through the blood without affecting health. At 

room temperature a deceased body will be putrefied due to post-mortem bacterial growth and tissue 

invasion, and contamination may occur during or after death (Weinbaum et al., 1997; Weinstein, 

2003). Furthermore, in the course of death, the mucosal surfaces become ischaemic, and the immune 

system becomes compromised, favouring bacterial invasion (Morris et al., 2006).  

Bacteria can be isolated from post-mortem mucosal and epithelial surfaces, including the GIT, oral 

cavity, and respiratory tract. The presence of the bacteria may be explained by either genuine 

positivity, agonal spreading, post-mortem translocation, or contamination (Morris et al., 2006). In the 

case of genuine positivity, bacteria are found in the body throughout life, and are still detectable after 

death. These may not necessarily result in disease; however, if an infection occurs prior to death and 

during the period of death, it cannot be ruled out as a contributing cause. In the case of agonal spread, 

bacteria are introduced during death or artificial resuscitation. Therefore, mixed bacterial growth may 

result from decreased mucosal integrity, leading to bacterial invasion. Post-mortem translocation 

refers to the movement of bacteria from the mucosal surface to blood and tissues following death and 

cessation of circulation (Morris et al., 2006). Consequently, this leads to polymicrobial growth in 

cultures and reduces the sterility of samples (Wilson et al., 1993). Lastly, contamination during 

sample collection by external sources may also result in mixed growths of microbes (Morris et al., 

2006). 

2.12.2 Effect of post-mortem interval 

It is challenging to determine the contribution of a detected microorganism to death following post-

mortem translocation, because the presence of a potentially pathogenic microorganism may result 

from an ante-mortem bacterial infection or a post-mortem event (Balzan et al., 2007; Yatsunenko et 

al., 2012). An increased post-mortem interval (PMI) is commonly associated with more positive 

cultures and an increased number of microbes isolated per culture (Wilson et al., 1993). Post-mortem 

translocation is less likely to occur if the body is stored at low temperatures or retrieved relatively 

soon after death (Morris et al., 2006). Weber et al. (2010) reported that a prolonged PMI does not 

result in a higher frequency of positive cultures or mixed-growth episodes as had been hypothesised 

with post-mortem translocations. Extended PMIs may therefore cause the death of microbes. While 
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interpreting positive microbiological culture results in SUDI post-mortem samples, a prolonged PMI 

of several days has not been shown to be associated with an increased risk of translocation. It is 

therefore recommended that routine microbiological sampling be conducted in all autopsies of SUDI 

cases, regardless of the PMI as more research is required into bacterial behaviour after death. 

2.12.3 Post-mortem interpretation of microbiology 

In addition to providing valuable information, microbiological cultures can sometimes raise some 

doubts. The most common challenge is determining whether the organism colonises or infects. 

Bacteria are sometimes isolated in the absence of signs and symptoms of disease, while in other 

instances, microbial cultures are negative in the presence of acute symptoms of an infectious disease. 

Interpretation of post-mortem microbiological tests is even more challenging, because their quality 

depends on a number of factors, namely the post-mortem interval, antibiotic treatment, and methods 

used to collect samples. Contamination may occur when specimens are not obtained in a sterile 

manner. Microbiological results can also be affected by the manner in which the body was handled 

after death as well as storage conditions. Consequently, the results could be compromised by 

microorganisms that colonize one part of the body but not another, which would result in a reduction 

in the quality of the results and a more complicated final assessment (Fujita et al., 2002; Morris et al., 

2007; Pryce et al., 2011; Christoffersen, 2015; Saegeman et al., 2017; Fernandes-Rodrigues et al., 

2019). 

In SUDI, viral detection depends on a number of factors, including the methods used, the method of 

sample collection, which viruses are tested, and whether the results are meaningful or not. A 

prolonged post-mortem interval may affect virus viability and nucleic acid integrity, resulting in an 

inability to detect viruses during molecular testing and culture (Weber et al., 2010). 

2.12.4 The interpretation of a true pathogen in a post-mortem setting 

Different diets, lifestyles, and geographical locations significantly affect the microbial ecology of a 

dead human body (Finley et al., 2015; Hauther et al., 2015). Microbiology results from post-mortem 

examinations may reflect an actual infection, but they may also occur as a result of contamination, 

commensal bacteria, and/or post-mortem bacterial translocation (PMBT) (Saegeman et al., 2021). 

Post-mortem bacterial translocation results in the proliferation and migration of endogenous 

commensal gut bacteria, such as Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, 

Enterococcus, and Clostridium species. Putrefactive decomposition is primarily caused by PMBT, 

which occurs approximately four minutes after death and is not primarily determined by the 

postmortem interval (Christoffersen, 2015; Finley et al., 2015; Bucheli & Lynne, 2016; Burcham et 
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al.,2016). Putrefaction begins with aerobic bacteria but is rapidly overtaken by anaerobes as time 

progresses. In most cases, peripheral blood samples are contaminated by coagulase-negative 

staphylococci that are introduced into the sample from the skin (Palmiere et al., 2016). The presence 

of mixed bacterial growth generally indicates contamination of the sample, whereas the presence of 

a single isolate is typically interpreted as a true positive (Morris et al., 2007; Lobmaier et al., 2009; 

Weber & Sebire, 2009). The presence of a single microorganism from a number of different sites may 

still indicate contamination rather than infection, even when samples are taken according to protocol 

(Palmiere et al., 2015; Palmiere et al.,2016). However, the identification of a pathogenic organism 

from multiple locations at autopsy indicates true ante-mortem bacteremia (Palmiere et al., 2015). 

Post-mortem microbiology yields are typically reduced with prolonged PMI and putrefaction 

(Saegeman et al., 2017). 

2.13 The microbiome and SUDI 

In forensic and paediatric medicine, it is essential to determine the cause of SUDI (García et al., 

2020). This is the most frequent cause of infant death (Carlin & Moon, 2017; Oliveira & Amorim, 

2018; Young & Shipstone, 2018; Horne, 2019) and accounts for 40–50% of all infant deaths in 

developed countries. The incidence is highest in the first few months of life and during the first year 

(Wu, 2010). The immunity and physiological processes of the host are influenced by microbiota and 

the relationship between changes in the GIT microbiota during neonatal development and paediatric 

disorders (Rautava et al., 2012) has profound implications for human health (Clemente et al., 2012). 

Weber et al. published multiple studies of unexplained SUDI, non-infectious explained sudden infant 

deaths, and bacterial-caused SUDI (Weber et al., 2008, 2010, 2011). An increase in bacterial isolates 

of Streptococcus pneumoniae, S. aureus, Neisseria meningitidis, beta-haemolytic Streptococcus type 

A and B, and E. coli was found in infants whose deaths were explained by non-infectious causes 

(Weber et al., 2008). No significant difference was found in the detection of viruses between sudden 

unexplained deaths and sudden deaths due to non-infectious causes, according to the results of 

virological testing (Weber et al., 2010). 

Highet et al. (2014) examined the intestinal contents of 52 SUDI cases and 102 samples from faeces 

of age- and sex-matched control infants. In SUDI babies, alterations in the GIT microbiome caused 

by increasing age were evident. Compared to the controls, SUDI samples showed significant 

increases in Bacteroides thetaiotaomicron, Clostridium innocuum (C. innocuum), and C. difficile. 

The number of cases with dual colonisation was significantly greater in SUDI than in healthy infant 

samples. The incidence of triple colonisation with C. difficile, C. perfringens, and C. innocuum was 

also significantly higher. SUDI babies placed to sleep in the prone position were more likely to 

contract S. aureus than those positioned on their sides or in the supine position. Additionally, more 
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than half of the organisms were isolated from sterile environments. In summary, it is still unclear 

whether the microbiomes of SUDI and healthy babies differ in a way that makes infants more prone 

to infection and, consequently, sudden death, and should be elucidated with larger and longer studies 

(Leong et al., 2017). 

2.14 Research aims and objectives 

The overall aim of this study was to investigate the bacterial as well as viral pathogens of the GIT in 

the medico-legal environment at the Tygerberg Medico-Legal Mortuary in the Western Cape, in order 

to assess the role of GIT colonisation in the process of determining the cause of death in cases of 

SUDI over a one-year period (June 2017-May 2018). Demographic data was also collected and 

analysed to assess potential risk factors for SUDI in this specific infant population (Chapter 3). 

2.14.1 Aim I 

Profile the bacterial and viral pathogens present in the GIT of SUDI cases admitted to the Tygerberg 

Medico-legal Mortuary, Cape Town. 

Objectives 

• To sub-type E. coli positive stool and swabs from different sections of the GIT in SUDI cases 

(Chapter 4). 

• To detect gastrointestinal viruses in the stool collected from the SUDI cases (Chapter 5). 

• To characterise the human group A RV genotypes in SUDI cases (Chapter 6). 

2.14.2 Aim II 

Profile the microbiome in stool samples collected from SUDI cases and age-matched, healthy infants 

with comparable sociodemographic status as the SUDI cases (Chapter 7). 

Objectives 

• To use full-length 16S rRNA gene amplicon sequencing to profile the microbiome 

• To describe alpha and beta diversity in the different infant groups. 
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Chapter 3: Characterisation of sociodemographic and risk factors in 

Sudden Unexpected Death in Infancy cases at the Tygerberg Medico-

legal Mortuary, Cape Town 

Abstract 

Background: Literature suggests that sudden unexpected death in infancy (SUDI) results from the 

combination of three individual risk factors, namely a susceptible infant, a critical developmental 

stage for homeostasis, and an external stressor. Investigation of risk factors is crucial for identifying 

the cause and manner of death in each case of SUDI. The aim of this study was to assess if there was 

any correlation between sociodemographic data and possible risk factors for SUDI in cases admitted 

to the Tygerberg Medico-legal Mortuary over a 1-year period. 

Materials and methods: A total of 186 SUDI cases were included in the study, and demographic 

and epidemiological data were collected. Statistical analysis was conducted to determine if 

sociodemographic factors were associated with the causes of death. 

Results: Male infants constituted 58% of the cases for this particular study period. At the time of 

death, the median age of the infants was 8.4 weeks, and most of the deaths occurred during the colder 

months of the year (66%). Among the sleep environment-related risk factors, bed-sharing accounted 

for 96%, while based on birth-related risk factors, 43% of babies were born premature. Age in weeks 

and the cause of death (p=0.007) showed a highly significant association. 

Conclusion: Sociodemographic and risk factors derived from this study appear to be in good 

agreement with the risk factors published in the literature. A valuable preventive measure is education 

and awareness of modifiable risks in the community. 
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3.1 Introduction  

The Triple Risk Model described in 1994 indicates that SUDI occurs when infants with latent 

vulnerabilities, e.g., brain stem or genetic abnormalities, are exposed to a trigger or extrinsic risk 

factor (prone sleeping, obstructions of the airway) during a critical developmental phase (Filiano & 

Kinney, 1994). The breathing, autonomic, and cardiac processes develop between the ages of two 

and four months, and a combination of intrinsic and extrinsic factors may lead to a life-threatening 

condition while the infant is sleeping. There is a significantly increased likelihood of SUDI occurring 

if protective mechanisms are ineffective during these episodes. However, if one of these factors is 

eliminated, SUDI will be less likely to occur (Moon et al., 2007; Goldstein et al., 2016).  

Extrinsic risk factors refer to physiological stressors that were experienced by the infant at the time 

of death, often caused by the infant's environment. Among these factors are sleeping in prone position, 

bedsharing, overheating, using soft bedding, sleeping on inappropriate surfaces, and covering the face 

of an infant while sleeping. Infants are more vulnerable to the influences of extrinsic risks due to 

intrinsic risk factors (Duncan & Byard, 2018). Several intrinsic factors can contribute to the risk of 

SUDI, including male sex (Lewak et al., 1979), prematurity (Horne, 2006), maternal alcohol 

consumption, and tobacco use (Schoendorf & Kiely, 1992; Strandberg-Larsen, 2009). 

A significant advancement has been the identification of factors that may be modified, particularly 

those that relate to the care of infants (Mitchell et al., 1992). As a result of the Back to Sleep campaigns 

that were implemented in the 1990s and early 2000s, SUDI rates have declined substantially (Hauck 

& Tanabe, 2008; 2010), however, it remains a global burden, despite a reduction in absolute numbers 

(Heron et al., 2009). 

It is crucial to investigate risk factors and circumstances for each case of SUDI in order to diagnose 

the cause and manner of death. Additionally, an analysis of the aggregate results of these 

investigations might assist in preventing or limiting the occurrence of SUDI in the future (Hunt & 

Hauck, 2006). The study investigated potential associations between sociodemographic data and 

possible risk factors, and SUDI.  

3.2 Materials and methods 

3.2.1 Study setting 

The Tygerberg Medico-legal Mortuary is an academic forensic pathology mortuary in Cape Town, a 

city of approximately 4.8 million people. This facility serves the Eastern Metropole of the City of 

Cape Town referral areas, including Khayelitsha, Tygerberg and the Eastern and Northern Sub 

Districts (Figures 3.1 and 3.2).  
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(SR=Salt River Mortuary; TBH=Tygerberg Hospital and Medico-legal Mortuary) 

Figure 3.1: Forensic Pathology centres in the Western Cape (Western Cape Government, 2014)  

 
Figure 3.2: The referral areas for the Tygerberg Forensic Pathology Medico-legal Mortuary 

depicted by the red outline (Western Cape Provisional Government, 2020) 
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The prevalence of SUDI in Cape Town was recently reported to be 3.7 per 1 000 live births (Elliot et 

al., 2020). In 2019, approximately 46% of the families residing in the City of Cape Town lived below 

the poverty line with a monthly income of less than R2 000, while a 2016 community survey showed 

that 18% of the population lived in informal dwellings, less than 1% had no access to sanitation and 

1.3% had no access to electricity (City of Cape Town Profile and Analysis District Development 

Model, 2020). The Tygerberg Medico-legal Mortuary has an average case load of approximately 

3 000-4 000 cases per annum of which infant deaths comprise 5-8% (personal communication with 

Dr Zandré Smith, Specialist Forensic Pathologist, 24/03/2023). 

3.2.2 Ethics  

The study was approved by the Stellenbosch University Health Research Ethics Committee 

(S16/10/214) and a waiver of consent was granted for the SUDI cases (Appendix A). Consent was 

obtained pursuant to section 3(a) of the Inquests Act (58 of 1959) and the Criminal Procedure Act 

(1977). The Western Cape Forensic Pathology Service, SUDI Questionnaire FPS006(b) is routinely 

completed at the time the infant is admitted to the Tygerberg Medico-legal Mortuary (Appendix B). 

As for the control group, informed consent was obtained from the parents or caregivers to non-

invasively collect stool samples from soiled nappies and a questionnaire was subsequently completed 

by all consentees to collect information similar to the SUDI cases (Appendix C). 

3.2.3 Sample collection  

Between June 2017 and May 2018, swabs were collected during autopsies from the ileum, colon, and 

rectum of 186 SUDI cases admitted to the Tygerberg Medico-legal Mortuary in Cape Town, along 

with stool samples taken through an incision in the large intestine. The swabs were placed in a Cary-

Blair transport medium and the stool samples were transported in leak-proof containers to the 

National Laboratory Health Service (NHLS) Medical Microbiology laboratory at Tygerberg Hospital 

within 3 hours of collection. For each case, demographic information was collected from the Forensic 

Pathology case files. These samples were collected and tested with the intention of reporting the 

results to the Division of Forensic Pathology in order to assist in the process of determining the cause 

of death. 

Baby sanctuaries and day-care centres provided stool samples from 45 apparently healthy and age-

matched infants to serve as controls. Samples were submitted to the NHLS Medical Microbiology 

laboratory at Tygerberg Hospital within 24 hours of collection. 
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3.2.4 Cause of death determination  

The South African Inquests Act (No. 58 of 1959) stipulates that all unnatural deaths, including SUDI, 

are required to undergo a medico-legal investigation. A comprehensive investigation into the cause 

of the infant's death includes external, internal, and X-ray examinations, along with measuring the 

infant's body to determine how he or she developed (Bajanowski et al., 2007). It is necessary to 

conduct three key investigations in SUDI, i.e., a review of the clinical history, an investigation of the 

death scene, and a post-mortem examination, which includes microbiology and virology testing. 

Death scene investigations in unexpected deaths are vital to determine risk factors and, possibly, 

indicate the cause of death. In most cases, macroscopic autopsies cannot reveal morphological 

changes related to the cause of death (Vorontsov & Kelmanson, 1990). In addition, all autopsies 

include histological examinations of major organ systems, and toxicology testing, as indicated 

(Dempers et al., 2016). If no cause of death can be ascertained through the medico-legal investigation 

in SUDI cases, the case is classified as sudden infant death syndrome (SIDS), which represents a 

diagnosis by exclusion (Willinger et al., 1991). 

3.2.5 Reviewing of case files 

A Microsoft Office® Excel spreadsheet was used to capture demographic and epidemiological data 

from all SUDI cases included in this study. Information collected included PMI, season, sex, area in 

which they reside (by sub district), age in weeks, prematurity, birth weight, feeding method , amount 

of people in the household, type of housing, medical history prior to death and cause of death the 

pathologists assigned to the cases.  

3.2.6 Statistical analysis 

Statistical analysis was performed using R software version 4.2.2. Associations were calculated using 

the Fisher Exact test for categorical data and Kruskal-Wallis rank test for numerical data. Statistical 

significance was observed at p<0.05 at a 95% confidence interval, with a strong significance observed 

at p<0.01. The categorical data included sex, prematurity, low birth weight, bedsharing, type of 

housing, season, the position the infant was placed to sleep, and cause of death, while the numerical 

data included age and birth weight. 

3.3 Results 

3.3.1 Sociodemographic profiles of the SUDI cases 

Due to incomplete questionnaires, information regarding the infant's death was not captured in every 

case.  
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The male to female ratio was 1.4:1, with 107 (58%) male cases. The median age of the infants at the 

time of death was 8.4 weeks (interquartile range [IQR]: 5.8–16.8) and the mean post-mortem interval 

(PMI) was 7±3.5 days. The majority of the cases (65.6%) presented during the colder months of the 

year (mid-March to mid-September) (Figure 3.3).  

 
Figure 3.3:  The seasonal distribution of the SUDI cases from June 2017 to May 2018, showing an 

increase of cases during autumn and winter 

3.3.2 Risk factors identified in the SUDI cases 

Risk factors associated with the sleep environment of the infant included bed-sharing in 96% of cases 

(154/161) and side sleeping position in 61% (91/150). Fifty-two percent (77/149) cases were reported 

to live in informal housing (Figure 3.4). Birth-related risk factors comprised 43% (74/172) of the 

babies being born prematurely and 47% (78/165) had birth weights of less than 2 500 g, representing 

low birth weight infants. 

3.3.3 Sociodemographic profile of the control group 

Some sociodemographic information was not available for all controls. This may be due to the fact 

that most of them live in baby sanctuaries and the caregiver was unaware of this information at the 

time of sample collection. 

The control group consisted of 24 male and 21 female infants, with a median age of 10.5 weeks (IQR: 

5.3–13). Bed-sharing was reported in 12% (4/34) of the controls, with side sleeping position in 66% 

(19/29). Thirty-three percent (8/24) of the infants were born prematurely. 
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Figure 3.4:  Distribution of the position the infant was placed to sleep, bed-sharing and housing 

reported in the SUDI group (n=186) 

3.3.4 Final cause of death classification in the SUDI cases 

At the date of submitting this thesis, the final cause of death had not been assigned for 1 of the 186 

SUDI cases. The most common cause of death in the remainder of cases was infection in 58% 

(107/185) of cases, followed by SIDS in 41% (76/185), while 1% (2/185) died of other causes 

(bronchopneumonia secondary to heart failure and cardiomyopathy and complications of prematurity 

in another). 

3.4 Statistical analysis 

3.4.1 Sociodemographic data and potential risk factors for SUDI 

This study compared sociodemographic risk factors with the final cause of death, i.e., SIDS, infection, 

and other. 

Table 3.1 summarises the sociodemographic factors for the three different final cause of death 

classifications. No significant association could be demonstrated between cause of death 

classification and categorical sociodemographic factors such as sex, prematurity, type of housing, 

seasonality, low birth weight, bedsharing, and the position the infant was placed to sleep. The actual 

birth weight in gram and final cause of death did not show any significant association (p=0.73) either.  

The only highly significant association was observed between age in weeks and final cause of death 

(p=0.009) where infants under the age of 13 weeks were more often assigned SIDS as final cause of 

death 6 weeks (interquartile range [IQR]: 7.16–12.44) compared to Infection 10 weeks (interquartile 
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range [IQR]: 11.89–12.44) ) (Table 3.1, Figure 3.5). The ages of the two infants that died of other 

causes were 10.7 and 41.1 weeks respectively. 

 

Table 3.1:  Associations between sociodemographic information and the different cause of death 
classification groups (n=185)  

 Final cause of death  

 SIDS Infection Other  

Number of cases 76 107 2  

Age in weeks (Median, (IQR)) 6 (7.16–12.44) 10 (11.89–
12.44) 

 0.009 

Risk factors* n (%)** n (%)** n (%)** p-value 

Sex (n=127): Male Sex 18 (14.2%) 37 (29.1%) 1 (0.8%) 0.43 

Gestation (n=172): Prematurity 27 (15.7%) 43 (25.0%) 2 (1.2%) 0.20 

Birth weight (n=165): Low birth weight 32 (19.4%) 45 (27.3%) 1 (0.6%) 0.97 

Bedsharing (n=161): Yes 64 (39.8%) 87 (54.0%) 2 (1.2%) 0.31 

Position placed to sleep (n=185)    

0.22 
Side 45 (24.3%) 26 (14.1%) 0 (0.0%) 

Prone 91 (49.2%) 49 (26.5%) 2 (1.1%) 

Supine 10 (5.4%) 7 (3.8%) 0 (0.0%) 

Housing (n=149): Informal 30 (20.1%) 46 (30.1%) 1 (0.7%) 0.99 

Seasons (n=185)    

0.08 

Summer 6 (3.2%) 18 (9.7%) 0 (0.0%) 

Autumn  16 (8.7%) 34 (19.4%) 0 (0.0%) 

Winter 33 (17.8%) 36 (19.5%) 2 (1.0%) 

Spring 21 (11.4%) 19 (10.3%) 0 (0.0%) 
*  Number in parenthesis represents the total number of observations available per risk factor 
** Percentages were calculated out of the total number of observations available per risk factor 
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Figure 3.5: Highly significant association between the Age in weeks and Cause of death (p < 0.01) 

3.5 Discussion 

In infants, sudden death has long been proposed as a multifactorial phenomenon, involving the 

interaction of a variety of factors, each of which on its own might not be sufficient to cause death, but 

can be a contributing element to sudden death when combined with other factors (Bergman, 1970). 

As part of this study, the socio-demographic profile of the study population were characterised, and 

the risk factors were compared across the different cause of death categories. 

In the literature, male infants account for approximately 60% of SUDI cases (Jørgensen et al., 1979; 

Fleming et al., 2015). This was also the case in the current study, where 58% of the SUDI cases were 

males, while 21% of the cases assigned a final cause of death of SIDS were males, compared to 31% 

males in the Infection group. There are several theories postulating why male infants are most affected 

by SUDI. Generally, females have higher Ig levels, suggesting better antigen response and humoral 

immunity to infection (Verthelyi, 2001; Whitacre, 2001; Fish, 2008). The cytokine response of males 

has also been found to be altered, which is associated with sudden unexpected deaths, SUDI, sepsis 

mortality, and trauma-related deaths, probably due to the influence of oestrogen and testosterone 

(Choudhry et al., 2007). The medullae of male infants are more likely to exhibit increased apoptotic 

neuronal cell death than females, altering arousal pathways and subsequently increasing the risk of 

SUDI (Paterson et al, 2006; Machaalani & Waters, 2008). Moscovis et al (2014) evaluated the effects 

of cigarette smoke, virus infection, and male sex on inflammatory responses in neonates at risk of 

SUDI and found that male infants had lower pro-inflammatory cytokine responses than females, 

suggests that a reduced pro-inflammatory response may limit damage when pathogenic stimuli are 

present, but may also make them more susceptible to initial pathogen invasion. 
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The peak incidence of SUDI is between 1 and 4 months of age (Shapiro-Mendoza et al., 2006); 

Fleming et al., 2015), with 90% of cases occurring before the age of 6 months (Moon & Task Force 

on Sudden Infant Death Syndrome, 2016).  

There was reasonable agreement between the average age of the SUDI cases included in this study 

and what has been reported in the literature. During this period, a number of factors may increase 

susceptibility to infection, in particular, the loss of maternal antibodies. From 1 to 5 months of age, 

males develop circadian rhythms, changes in their night-time cortisol levels, and testosterone surges 

(Blackwell et al.,2015). In addition to this, the infant brain undergoes significant changes as it 

develops, particularly in its systems that control homeostasis (Fleming et al., 2015). This could also 

explain the highly significant association between infection and age in weeks. 

SUDI occurs more often during the colder compared to the warmer months (Chang et al. 2008 ). This 

study also found a higher prevalence of SUDI cases in the colder months (65.6%). Research suggests 

that excessive clothing and overwrapping of infants may increase the risk of SUDI during colder 

months (Moon et al., 2007). Colder months are also associated with an increase in respiratory 

infections, and it has been found that respiratory infections are spread more easily to infants 

(Guntheroth et al., 1992). 

Sharing a bed with an infant is a common practice in many cultures in order to facilitate breastfeeding 

(Blair et al., 2010; Huang et al., 2013) and enhance the relationship between parent and child (Mosko 

et al., 1997). Despite the prevalence of bedsharing (96%) in most SUDI cases in the current study, 

the association between bedsharing and the causes of death was not significant. Several factors may 

contribute to the increased risk of SUDI associated with bedsharing, such as overheating and overlays 

(Carpenter et al., 2004; Tappin et al., 2005). Furthermore, the risk may also be increased when the 

person sharing the bed is intoxicated or overtired (Blair et al., 1999; Carpenter et al., 2004). Among 

infants whose mothers smoke, bedsharing is an additional risk factor, as the infant may suffer hypoxia 

as a result of rebreathing expired air from the mother (Scragg et al., 1993). The majority of the control 

infants did not share a bed, possibly because they lived in baby sanctuaries and slept in cots or cribs. 

Although SUDI is most commonly associated with prone sleeping (Groswasser et al., 2001), being 

placed to sleep on the side was the most prevalent position in the SUDI cases and controls in this 

study. Prone sleeping prone is a significant risk factor for SUDI, since it puts a significant physical 

strain on the heart and lungs (Mitchell et al., 2012), decreasing the protective reflexes to hypoxia and 

hypercapnia during sleep phases. Blood pressure, cerebral oxygenation, and cerebral blood flow are 

also reduced (Yiallourou et al., 2008; Wong et al., 2011). When term infants reach an age of 2 to 4 

months, decreased arousal and depressed baroreflex responses have been shown (Horne et al., 2001; 
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Yiallourou et al., 2008). The majority of these characteristics are also evident in premature babies 

when they are in a prone position (Witcombe et al., 2008; Fyfe et al., 2014). Due to the Back to Sleep 

campaign, the number of infants placed to sleep in the prone position has decreased significantly. 

Therefore, the side sleep position has now been recognised to be as significant as the prone position 

(Fleming et al., 1996; Mitchell et al., 1997; Oyen et al., 1997; Hauck et al., 2002; Li et al., 2003). In 

several SUDI cases, the infants were found in the prone position at the time of death, having been 

placed to sleep on their sides. The side sleeping position is quite unstable and allows infants to easily 

roll into the prone position (Li et al., 2003).  

Informal housing accounted for 52% of the cases in this study. Heathfield et al (2020) hypothesised 

that infants living in informal conditions are immunocompromised and that maternal IgG is more 

rapidly reduced than infants living in formal housing or settlements. Thus, infants in overcrowded 

living conditions cannot cope with the extent of microorganism exposure and the burden of disease 

and succumb to infections sooner (Webb et al., 1994; le Roux et al., 2015). Compared to babies born 

at term, premature or low birth weight babies have up to four times the risk of SUDI. As gestational 

age or birth weight decreases, this risk increases (Hoffman & Hillman, 1992; Malloy & Hoffman, 

1995; Blair et al., 2006). The immaturity of these infants' autonomic systems may contribute to their 

increased vulnerability (Duncan & Byard, 2018). Among the cases and controls in the present study, 

less than half were premature or had low birth weights and it was not possible to assess any 

associations with prematurity and low birth weight. 

In the present study, infection was the most common cause of death. This is consistent with the 

literature, which found that infection is the most common cause of explained SUDI (Weber et al., 

2008; du Toit-Prinsloo et al., 2013, Heathfield et al., 2020; Winterbach et al., 2021; Fitzgerald et al., 

2022). Indirect or direct interactions between bacterial and viral agents have been suggested as 

possible contributors to the pathogenesis of SUDI (Highet, 2008). 

3.6 Conclusion 

The sociodemographic information and risk factors derived from this study are generally in good 

agreement with risk factors published in the literature. In the study, the only highly significant 

association found was between age in weeks and infection. Infant mortality is at its highest between 

the ages of 2 and 4 months, probably due to the steady decline of maternal IgG levels following birth 

(Blackwell et al., 2005). In the wake of the successful Back to Sleep campaign, one of the most 

effective preventive measures is to educate and inform the public about other modifiable risks, 

especially for those who are responsible for the care of infants. 
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Chapter 4: Subtyping Escherichia coli in gastrointestinal samples from 

Sudden Unexpected Death in Infancy cases at the Tygerberg Medico-

legal Mortuary, Cape Town 

Abstract 

Background: Diarrhoea is the fifth leading cause of overall mortality in children under the age of 

five years. Most countries do not regularly screen for diarrhoeagenic Escherichia coli (DEC), leading 

to limited data on its presence in children. Various studies have suggested that bacterial infections, 

particularly strains of Escherichia coli (E. coli), are associated with sudden and unexpected death in 

infancy (SUDI). This study investigated the different E. coli strains in culture-positive post-mortem 

gastrointestinal tract (GIT) samples collected from SUDI cases at the Tygerberg Medico-legal 

Mortuary, Cape Town, over a one-year period. 

Materials and methods: GIT swabs and stool samples were collected from 156 SUDI cases between 

2017 and 2018. Routine bacterial culture was performed on all the samples. Real-time polymerase 

chain reaction (PCR) was performed on E. coli isolates for identification of DEC strains. 

Results: Only 14 SUDI cases were culture-negative and real-time PCR analysis was performed on 

434 isolates from 142 cases. Most cases tested positive for enteroaggregative E. coli (EAEC) (87.3%) 

and enteropathogenic E. coli (EPEC) (78.2%), followed by enterotoxigenic E. coli (ETEC) (50.7%), 

while the O157 strain was found to be the lowest among the cases (11.9%). 

Conclusion: The results from this study confirmed the presence of EPEC, EAEC and ETEC in SUDI 

cases. There is still a need to investigate the association between specific E. coli strains and SUDI to 

elucidate the potential role of E. coli in the death of these infants.  
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4.1 Introduction 

Almost 1.7 billion cases of childhood diarrhoeal disease are reported per year globally (WHO, 2017). 

In 2016, diarrhoea was the eighth foremost cause of mortality among children, accounting for an 

estimated 1.6 million deaths, and the fifth foremost cause of death in children under the age of five 

years (GBD 2016 Diarrhoeal Disease Collaborators et al., 2018). Developing countries in Africa, 

Asia and Latin America are most frequently affected, with diarrhoeal diseases largely due to low 

socio-economic conditions, such as insufficient water supply and poor hygiene and sanitation (Croxen 

et al., 2013). 

In developing countries, one of the most common causes of bacterial diarrhoea is E. coli (Saeed et 

al., 2015; Shrivastava et al., 2017). As a commensal bacterium, E. coli can be found in the intestinal 

microflora of several animals, including humans. However, some strains are harmful to human health 

and can cause debilitating, and even fatal, diseases (Bélanger et al., 2011). DEC is the foremost cause 

of bacterial paediatric diarrhoea (Canizalez-Roman et al., 2016) and is further divided according to 

specific virulence factors into EPEC, EAEC, ETEC, enteroinvasive E. coli (EIEC), 

enterohaemorrhagic E. coli (EHEC) and diffusely adherent E. coli (DAEC) (Bettelheim & Goldwater, 

2015). The EPEC strain can further be divided into two subtypes based on the existence of bundle-

forming pili. Typical EPEC (tEPEC) has fimbrial adhesins as a virulence factor, which are absent in 

atypical EPEC (aEPEC) (Tennant et al., 2009; Gomes et al., 2016). The specific adhesins carried on 

the diarrhoeagenic strains increase their capability to colonise the GIT. The strains differ in their 

disease patterns and intensity once they are established in the GIT (Nataro & Kaper, 1998). 

In developing countries, DEC strains account for 30 to 40% of diarrhoea cases in children, most 

notably EAEC, EPEC and ETEC (Cabrera-Sosa & Ochoa, 2020). In 2013, Kotloff et al. published 

results from the Global Enteric Multicenter Study indicating that aEPEC was the fifth most frequently 

detected pathogen in children under 12 months of age who died of acute gastroenteritis. Most 

countries, however, do not routinely screen for DEC in clinical samples and there is a lack of data 

relating to DEC strains isolated from children (Yu et al., 2015). As in many developing and sub-

Saharan African countries, South Africa has a high prevalence of diarrhoea among infants and 

immunocompromised adults (Tau et al., 2012). Due to the absence or poor quality of waste disposal 

and sanitation facilities, low-income individuals are disproportionately affected by such diseases 

(Baker et al., 2016). Studies investigating DEC in South Africa include site specific studies from 

clinical specimens (Msolo et al., 2020) and food and environmental sources (Adefisoye & Okoh, 

2016; Aijuka et al., 2018; Abdalla et al., 2021; Abdalla et al., 2022). There are, however, several gaps 

in the understanding of the prevalence of DEC pathotype(s) in cases of SUDI. 
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Various studies have suggested that bacterial infections, particularly strains of E. coli, are associated 

with SUDI where infants younger than one year die suddenly and without apparent cause (Bettelheim 

et al., 1989, 1990; Bettiol et al., 1994; Blackwell et al., 1999; Goldwater & Bettelheim, 2002; Pearce 

et al., 2004; Highet, 2008; Weber & Sebire, 2009). It has often been noted that these infants had mild 

clinical symptoms during the days leading up to death, with diarrhoea often being reported (Hoffman 

et al., 1988). In 2010, Pearce et al. investigated the diversity of E. coli serotypes found in the GIT 

contents of Australian infants who died of SUDI, compared with faecal material from healthy infants. 

They found that the seven frequent serotypes belonging to those linked with extra-intestinal infections 

in humans as listed above were more commonly isolated from SUDI cases. Significantly higher 

proportions were found among infants who died from other causes (13%, p < 0.05) or sudden infant 

death syndrome (SIDS) (18.7%, p=0.0002) than healthy infants (6%). They suggested a possible link 

between SUDI and specific patterns of E. coli strains. 

While E. coli is an integral part of the intestinal microbiome, it has been detected in infants who died 

suddenly and unexpectedly (Gilbert et al., 1992; Weber et al., 2008; Goldwater, 2009). Therefore, 

this study aimed to identify the different E. coli strains in culture-positive post-mortem GIT swabs 

collected from SUDI cases at the Tygerberg Medico-legal Mortuary, Cape Town. 

4.2 Materials and methods 

4.2.1 Study population 

A total of 156 SUDI cases have been collected between June 2017 and May 2018 and analysed in 

this chapter, as well as 10 apparently healthy and age-matched infants who served as controls. 

4.2.2 Isolation of E. coli  

All samples were sent to the National Health Laboratory Services (NHLS), Tygerberg Hospital, 

microbiology laboratory for routine identification of organisms. Salmonella and Shigella were 

detected using Xylose lysine deoxycholate agar (XLD agar) and MacConkey agar (MCC). The blood 

agar was used for detecting Vibrio cholera, while the charcoal cefoperazone deoxycholate (CCD) 

agar was used for detecting Campylobacter. The presence of E. coli was confirmed by inoculating 

the samples onto MacConkey agar plates and incubating the plates at 35°C for 24 hours in an aerobic 

incubator. Lactose-fermenting organisms, such as E. coli, produce acidic by-products that lower the 

pH, causing the pH indicator to turn pink (Jung & Hoilat, 2022). E. coli colonies were transferred to 

Microbank™ microbeads (Pro-lab Diagnostics, Canada) and stored at -80°C until further analysis 

was performed. On the day of analysis, the vials were removed from storage and one bead was 

aseptically inoculated directly onto a Tryptone Bile Agar (TBA) plate and incubated aerobically at 
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35°C overnight. Subsequently, a single E. coli colony was picked from the TBA plate, inoculated into 

Luria-Bertani (LB) broth, and incubated overnight aerobically on a shaker at 35°C. 

4.2.3 Nucleic acid extraction 

Deoxyribonucleic acid (DNA) was extracted from the E. coli contained in the LB broth using a Zymo 

Quick-DNA™ Miniprep Plus Kit (Zymo Research, USA). After centrifuging the E. coli cells for 2 

minutes at 5000 x g, the supernatant was removed and the pellets were resuspended in 200 µL DNA 

Elution Buffer, along with 10 µL GI-BP internal control (Seegene Inc, Korea), in preparation for 

Real-Time PCR. Thereafter, 200 µL BioFluid and Cell buffer as well as 20 µL Proteinase K were 

added. The tube was vortexed (S0200, Labnet, New Jersey, USA) for 10-15 seconds and incubated 

at 65°C for 10 minutes. Genomic binding buffer totalling 420 µL was added to the tube and vortexed 

for an additional 10-15 seconds. After adding the lysate stepwise to the Zymo-SpinTM IIC-XL column, 

the sample was centrifuged for 1 minute at 12 000 x g. Upon completion of centrifugation, the flow-

through was discarded and the column was placed in a new collection tube. The column was then 

washed with 400 μL DNA Pre-wash buffer and centrifuged at 12 000 x g for 1 minute. After 

discarding the flow-through again, the second wash step was conducted by adding 700 μL g-DNA 

wash buffer to the column and centrifuging it at 12 000 x g for 1 minute. Once more, the flow-through 

was discarded and 200 µL g-DNA wash buffer were added to the column and centrifuged for 1 minute 

at 12 000 x g. 

The DNA elution buffer was preheated to 65°C before being added to the matrix. A total of 50 µL of 

DNA elution buffer was added directly to the matrix and incubated at room temperature for 5 minutes. 

Afterward, the eluate was loaded again and incubated for 3 minutes at room temperature before it 

was centrifuged a second time. As a result, the overall yield was increased. The concentration and 

purity of the extracted DNA were determined using a NanoDrop ND-1000 spectrophotometer 

(ThermoFisher Scientific, USA). 

4.2.4 Qualitative real-time polymerase chain reaction 

The Allplex™ GI-Bacteria (II) Assay (Seegene Inc, Korea) was performed on a CFX96 system (Bio-

Rad, USA) according to the manufacturer’s instructions to detect genes for EHEC (stx1/stx2, E. coli 

O157), EPEC (eaeA), ETEC (lt/st) and EAEC (aggR) and internal control. The positive control 

consisted of 4 GI-bacteria and IC clones, while RNAse-free water was used as the negative control. 

A total volume of 25 µL was used in the reaction, with 20 µL of the master mix and 5 µL DNA 

template (Table 4.1). Real-time PCR was conducted in a 96-well skirted PCR plate sealed with 

adhesive Microseal® 'C' PCR Plate Sealing Film (Bio-Rad, USA). In each reaction, the positive 

control and negative control that were supplied were tested. 
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Table 4.1:  Reaction mixture for real-time PCR analysis 

Reagent Volume 

RNase-free Water 10 µL 

5X GI-B(II) MOM 5 µL 

5X Anyplex PCR Master Mix 5 µL 

Total volume of PCR Mastermix 20 µL 

PCR Mastermix 20 µL 

DNA Template 5 µL 

Total volume of reaction 25 µL 
 

Thermal cycling was carried out on a CFX96™ Real-time PCR machine (Bio-Rad, USA) and the 

thermal cycling conditions for each reaction are outlined in Table 4.2 and the fluorophores used to 

detect the analytes in Table 4.3. 

Table 4.2:  Real-time PCR thermal cycling conditions 

Step No. of cycles Temperature Duration 

1 
2 

1 50°C 
95°C 

20 min 
15 min 

3 
4* 
5* 

 
45 

95°C 
60°C 
72°C 

10 sec 
1 min 
30 sec 

6 REPEAT STEP 3-5, 44 TIMES 
*: Plate Read at Step 4 and 5. 

 

Table 4.3:  Fluorophores used to detect analytes 

Fluorophore Analyte 

FAM Shiga toxin (stx1/2) EPEC (eaeA) 

HEX Internal Control (IC) ETEC (lt/st) 

Cal Red 610 E. coli O157 (O157) EAEC (aggR) 
 

The Seegene Export tool was used to quantitate data obtained from the Seegene Allplex™ GI-

Bacteria (II) PCR performed on the CFX96™ were automatically saved in two folders (QuantStep4 

and QuantStep5). The QuantStep4 data file was imported into Seegene Viewer for Real-Time PCR 

instruments (V3), and the test kit (Novaplex™ GI-Bacteria (II) Assay (96 plate)) was selected from 

the product menu for analysis of the results for each well. A Ct value of ≤ 43 indicates a positive 

result, whereas a Ct value of > 43 or N/A (not detected) indicates a negative result. 
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4.2.5 Statistical analysis  

Statistica® version 14.0 statistical software (TIBCO Software, Inc.) was used for statistical analysis. 

Associations were calculated using the F-test for numerical data and the Fisher exact test for 

categorical data. Statistical significance was observed at p < 0.05 at a 95% confidence interval (CI), 

with a strong significance observed at p < 0.01. Logistic regression was used to analyse the 

associations between strains and sociodemographic risk factors. The data were adjusted to remove 

the effect of predictor variables when odds ratios (OR) were calculated for the main variables. 

Adjusted ORs ratios were reported. 

4.3 Results 

4.3.1 Epidemiological data 

The male to female ratio was 1.3:1. The median age of the infants at the time of death was 9 weeks 

(interquartile range [IQR]: 5.0–16.6) and the mean post-mortem interval (PMI) was 7±3.5 days. The 

control group consisted of seven male and three female infants, with a median age of 15.2 weeks 

(IQR: 9.8–23.9). 

4.3.2 Laboratory results  

Campylobacter was found in one case while Shigella was found in another case. Salmonella was 

detected in three cases. Only 14 (9%) of the 156 cases were culture-negative for E. coli. As there were 

so many cases positive for E coli, it was subtyped to determine if it was a true occurrence or 

contamination. The qualitative PCR results of E. coli isolates from the 142 culture-positive cases are 

summarised in Tables 4.4 and 4.5. One case was negative for all E. coli subtypes, while 14.1% had 

evidence of only one DEC pathotype. Mixed infections were common, with 121 (85.2%) having 

evidence of at least two different pathotypes. Although routine microbial culture confirmed the 

presence of E. coli in all 10 control samples, no pathogenic E. coli could be identified in any of them. 

Table 4.4:  Enteric pathogens detected in gastrointestinal samples from 142 SUDI cases 

Enteric pathogens n % 

EAEC (aggR) 124 87.3% 

EPEC (eaeA) 111 78.2% 

ETEC (lt/st) 72 50.7% 

O157 17 11.9% 

Negative 1 0.7% 
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Table 4.5:  Prevalence of single and multiple DEC pathotypes detected in GIT samples from SUDI 
cases (n=142) 

Infection combinations  n % 

Single pathotype 20 14.1% 

Mixed pathotypes 121 85.2% 

Two pathotypes 64 45.1% 

Three or four pathotypes 57 40.1% 
 

 

4.3.3 Statistical analysis 

EPEC was 4 times less likely to be present in premature than full-term infants (OR= 0.24; 95% Cl, 

0.07-0.78; p=0.02). However, in further statistical analyses confirmed it was observed that EPEC was 

significantly more prevalent in full-term infants (p < 0.01). Male infants were 3 times more likely to 

be positive for ETEC than female infants (OR= 3.19, 95% Cl, 1.29-7.89, p=0.01) (Table 4.6), further 

statistical analyses supported these results and confirmed a significant association between ETEC and 

sex (p=0.04) (Table 4.7). Male infants were more likely to have ETEC, and ETEC, EAEC and EPEC 

were more often confirmed in the colder months (p < 0.01). ETEC was significantly associated with 

breastfeeding (p=0.04) and the association between ETEC and low birth weight showed a trend 

toward significance (p=0.09).  

There was no significant association between the cause of death and the pathogenic strains of E. coli 

(Table 4.8). 

Positive correlations were found between the number of people in the household and ETEC (Figure 

4.1), as well as PMI and O157 (Figure 4.2). 
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Table 4.6:  Adjusted Odds Ratio for sociodemographic risk factors categorised by E. coli pathogenic 
strains (n= 141) 

Strain Sociodemographic risk factor Adjusted Odds Ratio (95% CI) p value 

EPEC (n=110)    

 Male Sex 1.14 (0.34-3.77) 0.83 

 Prematurity 0.24 (0.07-0.78) 0.02 

 Age (weeks) 0.98 (0.93-1.04) 0.55 

 Number of people in the 
household 

0.93 (0.65-1.31) 0.66 

ETEC (n=72)    

 Male Sex 3.19 (1.29-7.89) 0.01 

 Prematurity 0.96 (0.39-2.37) 0.92 

 Age (weeks) 1 (0.96-1.04) 0.96 

 Number of people in the 
household 

1.23 (0.94-1.62) 0.13 

EAEC (n=124)    

 Male Sex 3.47 (0.9-13.41) 0.07 

 Prematurity 1.2 (0.28-5.14) 0.81 

 Age (weeks) 1.03 (0.96-1.12) 0.39 

 Number of people in the 
household 

1.51 (0.9-2.55) 0.12 

O157 (n=18) 
   

 Male Sex 0.7 (0.18-2.78) 0.61 

 Prematurity 0.97 (0.22-4.3) 0.96 

 Age (weeks) 0.96 (0.88-1.04) 0.27 

 Number of people in the 
household 

0.63 (0.37-1.07) 0.08 

 

  

Stellenbosch University https://scholar.sun.ac.za



58 

Table 4.7:  Sociodemographic risk factors categorised by E. coli pathogenic strains (n= 141) 

Sociodemographic risk factor Strains n (%)  p value 

  ETEC (n=72)   

Male Sex 48 (58.5%)  0.04 

Seasons   <0.01 

Cold months 39 (54.2%)   

Warm months 33 (45.8%)   

Breastfed 61 (56.0%)  0.04 

Low birth weight 41 (58.6%)  0.09 

  EAEC (n=124)   

Seasons   <0.01 

Cold months 82 (66.1%)   

Warm months 42 (33.9%)   

  EPEC (n=110)   

Prematurity 41 (67.2%)  <0.01 

Seasons   <0.01 

Cold months 87 (79.1%)   

Warm months 23 (20.9%)   

Low birth weight 45 (64.3%)  <0.01 
 

Table 4.8:  Cause of death categorised by E. coli pathogenic strains (n=133) 

Cause of death EPEC n (%) ETEC n (%) EAEC n (%) O157 n (%) 

SIDS (n=53) 43 (41.4%) 25 (36.7%) 47 (39.8%) 9 (56.3%) 

Infection (n=80)  61 (58.7%) 45 (64.3%) 71 (60.2%) 7 (43.8%) 

p value 0.53 0.38 1.00 0.18 
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Figure 4.1:  Positive correlation between the number of people in the household and ETEC 

 

 
Figure 4.2:  Significant positive correlation between PMI and O157 (p < 0.03) 

 

4.4 Discussion 

Infections associated with DEC are a major health concern among children in developing countries 

due to the associated morbidity and mortality in children younger than 5 years old (Gomes et al., 

2016). Despite numerous post-mortem bacteriological cultures producing organisms in SUDI cases, 

the majority appear not to be associated with death. In cases of SUDI that are otherwise unexplained, 

a high rate of E. coli has been found, indicating a possible causal relationship (Weber et al., 2008). 

This study examined the occurrence of different E. coli strains in culture-positive post-mortem GIT 

samples collected from SUDI cases. 
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In the present study, EAEC was detected in more than 80% of cases, similar to findings from a 

previous study in South Africa, in which this strain was detected in just more than half of the samples 

from infants without and with diarrhoea (Tanih et al., 2014). Over the past few years, EAEC has been 

recognised as an emerging diarrhoeagenic pathogen, accounting for up to 15% of diarrhoeal cases in 

developed and developing countries (Aijuka et al., 2018; Lääveri et al., 2018; Fedor et al., 2019; Ellis 

et al., 2020). Severe diarrhoea in children is often associated with EAEC, which can cause chronic 

diarrhoea, especially in malnourished infants. It is also regarded as the second most frequent cause of 

travellers’ diarrhoea (Estrada-Garcia & Navarro-Garcia, 2012). According to a recent study 

conducted in South Africa investigating genes coding for virulence and phylogroups among E. coli 

isolated from children hospitalised due to diarrhoea in Limpopo Province, EAEC was the second 

most prevalent pathotype (Alfinete et al., 2022). 

EPEC is an important causative agent of infant diarrhoea in developing countries, mostly in children 

under 2 years old (Cabrera-Sosa & Ochoa, 2020), but it can also be detected in non-diarrhoeal samples 

(Chellapandi et al., 2017). For decades, global studies have shown that in developed countries, tEPEC 

was strongly associated with diarrhoea in infants (Nataro & Kaper, 1998; Trabulsi et al., 2002; Gomes 

& González-Pedrajo, 2010) and studies conducted in South Africa, Brazil, Chile, and Mexico showed 

that tEPEC caused 30-40% of infantile diarrhoea cases (Gomes et al., 1989; Ochoa et al., 2008; 

Gomes & González-Pedrajo, 2010). However, aEPEC was confirmed in a few studies on children 

from India (Wani et al., 2006; Nair et al., 2010; Rajeshwari et al., 2015), but most studies still report 

tEPEC as being more prevalent in causing diarrhoea than aEPEC (Alikhani et al., 2006). In addition, 

in developing countries such as Africa and Asia, tEPEC is still the major primary enteropathogen 

(Rajendran et al., 2010; Kotloff et al., 2013; Santona et al., 2013; Ben Salem-Ben Nejma et al., 2014; 

Langendorf et al., 2015; Odetoyin et al., 2016). Although EPEC was the second most common strain 

detected in this study, the subtypes of EPEC were not investigated. 

ETEC causes hundreds of millions of diarrhoeal illness cases globally (Khalil et al., 2018), 

particularly affecting young children under the age of 5 who have not yet developed immunity from 

prior exposure to ETEC (Qadri et al., 2007). In low- to middle-income countries, ETEC remains one 

of the most common causes of death from diarrhoeal illness among young children (Kotloff et al., 

2013) and approximately 30-60% of all cases of travellers’ diarrhoea are caused by ETEC (Gascón 

et al., 1998; Jiang et al., 2002). In various countries, ETEC has been described as the most frequent 

cause of diarrhoea amid all E. coli strains (Presterl et al., 2003; Shaheen et al., 2004; Jafari et al., 

2008; Moriel et al., 2012; Gomez-Duarte et al., 2013). In the current study, however, ETEC was 

found to be less prevalent than EAEC and EPEC. According to data on isolation rates by age, 10-
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20% of children under 12 months were infected with ETEC (Nguyen et al., 2005), this could explain 

the lower prevalence rate found in this study. 

A previous study from South Africa reported an O157 prevalence of only 3.8% (Tanih et al., 2014), 

which was considerably lower than the frequency detected in the current study (11.9%). This strain, 

also known as EHEC, is a subtype of Shiga toxin-producing E. coli (STEC) (Nataro & Kaper, 1998), 

which is mostly associated with outbreaks of diseases, such as haemorrhagic colitis and haemolytic 

uraemic syndrome (Parsons et al., 2016). Water sources contaminated by human and/or animal waste 

were likely to have played a role in the prevalence found in the current study (Mabika et al., 2021). 

Mixed DEC infections were described in studies conducted in Kenya (Iijima et al., 2017; Nyanga et 

al., 2017). The occurrence of mixed DEC infections is common in communities with limited access 

to water supplies and sanitation, where transmission takes place through food, water, and the 

environment (Nimri et al., 2004). E. coli are among the first bacteria to colonise neonatal GIT after 

birth (Mueller et al., 2015) and are typically found in the lower intestines of humans (Tenaillon et al., 

2010). This could explain the E. coli detected in the controls in this study. 

ETEC is predominantly transmitted from person to person via the faecal–oral route and from the 

environment through contaminated water, food, or soil (Madigan & Martinko, 2006). Similarly, close 

space sharing and host contacts may also be significant in the transfer of ETEC, as well as the other 

E. coli pathotypes (Blyton et al., 2014). UN-Habitat, 2021 defines overcrowding as the presence of 

more than three people in the same habitable room within a dwelling unit. With urbanisation 

increasing rapidly in many developing countries, such as South Africa, there is a shortage of housing, 

resulting in overcrowding. Various health outcomes are associated with household overcrowding, 

including respiratory infections and diarrhoeal illnesses (Nkosi et al., 2019), which supports the 

positive correlation found between the number of people in the household and the presence of ETEC 

in this study. 

The PMI showed a positive correlation with O157. It is unclear what role O157 plays during the PMI, 

and further research is needed to clarify this. Hurtado et al. (2018), however, concluded that 

Enterobacteriaceae infections are likely to be overestimated as contributors to death, especially if 

autopsies are conducted more than 24 hours after death. In such cases, it is not possible to confirm 

these bacteria to be the actual cause of death. It has also been demonstrated that E. coli can survive 

at temperatures of 4°C for extended periods of time, although prolonged storage at low temperatures 

may result in a loss of viability (Tuttle et al., 2022). 
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The significant association between male infants and ETEC found in this study was similar to a study 

in Egypt that also identified being male as one of the risk factors associated with ETEC-related 

infections (Mansour et al., 2014). In an Indian study, ETEC was also detected more often in stool 

samples of male than female children younger than 5 years (Yadav et al., 2020). Poor homeostatic 

mechanisms, caused by factors such as low birth weight, can increase an infant’s vulnerability to 

diarrhoeal infections caused by DEC and enteric viruses (Bobak & Guerrant, 2015), and this could 

possibly contribute to the presence of ETEC.  

Despite low birth weight and prematurity increasing the risk of infection in infants, EPEC is a major 

source of infection in children under 2 years of age in developing countries (Cabrera-Sosa & Ochoa, 

2020) and this may explain the high prevalence of EPEC in full-term infants of normal birth weight 

found in this study. 

Environmental and climate factors contribute to an infant’s susceptibility to infection and disease and 

could partly explain the associations between seasons and the prevalence of EAEC found in this 

study. Results from Bolivia showed a peak in EAEC infections during the colder months (April–

September). However, during the warmer months (October–March), a higher proportion of DEC-

positive samples was found (Gonzales et al., 2013). Awotiwon et al. (2016) also described a higher 

incidence of diarrhoea cases due to bacterial enteropathogens during the summer months in South 

Africa. 

França et al. (2011) determined that when opsonised by human colostrum supernatants, ETEC is 

destroyed by the phagocytes. The dominant antibody contained in human milk is secretory 

immunoglobin A. These antibodies provide protection against ETEC infection in fully breastfed 

infants (Hanson et al., 1994), but the results from the current study did not support this and found an 

association between ETEC and breastfed infants. Similarly, studies from Bangladesh and Egypt did 

not demonstrate protection against ETEC. These results suggest that the promotion of breastfeeding 

alone will not lead to an effective reduction of ETEC in children in underdeveloped countries (Abu-

Elyazeed et al., 1999).  

4.5 Conclusion  

In the present study, stool samples collected from SUDI cases showed a high prevalence of EAEC, 

EPEC and ETEC. These results agree with literature that found that children were commonly affected 

by these strains. The association between certain E. coli strains and death requires further 

investigation, as the exact mechanisms and roles need to be systematically elucidated. 
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The main strengths of this study was the relatively large sample size, and the fact that sampling was 

done from multiple areas of GIT, thus increasing chance of isolation of organisms. Some of the 

challenges encountered included the small control group, the variable PMI which may affect culture 

yield and the fact that characterisation of E. coli was done on cultured isolates only. Future research 

should investigate the value of performing PCR directly on stool samples. 
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Chapter 5: Screening for viral pathogens in the gastrointestinal tract 

from Sudden Unexpected Death in Infancy cases at the Tygerberg 

Medico-legal Mortuary, Cape Town 

Abstract 

Background: In 2013, diarrhoeal disease was estimated to be one of the leading causes of death in 

sub-Saharan Africa, in addition to HIV/AIDS, malaria and lower respiratory tract infections. Most 

paediatric gastroenteritis cases are caused by acute viral gastroenteritis, yet studies on viral 

enteropathogens in sudden unexpected death in infancy (SUDI) cases have not been conducted. The 

aim of this study was to describe specific viral pathogens in stool samples collected from SUDI cases 

and age-matched, apparently healthy infants in Cape Town, South Africa. 

Materials and methods: Stool samples were collected from 176 SUDI cases between June 2017 and 

May 2018. In addition, stool samples were collected from the nappies of 30 age-matched, apparently 

healthy infants as a control group. Real-time polymerase chain reaction (PCR) was performed on the 

stool samples for identification of the viruses.  

Results: A total of 111 SUDI cases were positive for viruses, while no viruses were identified in the 

remaining 65 cases. Most cases were positive for rotavirus (RV) (38.6%), followed by norovirus GI 

and GII (30.0%). However, in the control samples, norovirus (NoV) GII (36.7%) was more prevalent, 

followed by RV (33.3%).  

Conclusion: This study revealed that RV and NoV were the most prevalent viruses in infants, 

highlighting the importance of RV-A vaccinations. It is also necessary to emphasise the significance 

of norovirus infection in children.  
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5.1 Introduction 

The sudden and unexpected death of seemingly healthy infants has been recognised since ancient 

times (Fleming et al., 2015). SUDI is not a clinical or pathological diagnosis and is different from 

sudden infant death syndrome (SIDS). SUDI includes all deaths in infants younger than 1 year (often 

restricted to 7-365 days) that present suddenly and unexpectedly (Weber & Sebire, 2009), or at least 

without a clearly identifiable cause at the time of death and before any investigations have been 

performed. SIDS is defined as the unexpected death of an infant under the age of one, which appears 

to occur during sleep, where no explanation can be found after a thorough investigation has been 

conducted. This includes an autopsy and an examination of the circumstances of death and medical 

history (Krous et al., 2004). 

Viruses can either directly or indirectly, through synergistic interactions with bacterial virulence 

features or immunoregulatory polymorphisms, enhance the noxiousness of bacterial toxins in SUDI 

(Jakeman et al., 1991; Blackwell et al., 2005). Viruses in the respiratory tract of an infant can cause 

sublethal bacterial toxin levels to become lethal (Highet, 2008). The mechanism behind this, however, 

is not yet entirely understood (Doughty et al., 2006). Virus-induced diarrhoea is caused by viral 

pathogens colonising different environments of the small intestine, disrupting the natural fluid 

balance of the GIT. Enteric viruses are stable at low pH and resistant to digestive enzymes, 

characteristics that enhance their ability to infect (Michelangeli & Ruiz, 2003). 

Despite a global decrease in deaths caused by diarrhoeal disease from 2.6 million to 1.3 million in 

2013, diarrhoeal disease remains a significant health concern, especially in Africa. During this time, 

diarrhoeal disease was estimated to be one of the leading causes of death in sub-Saharan Africa, in 

addition to human immunodeficiency virus (HIV) infection and associated acquired 

immunodeficiency syndrome (AIDS), malaria and lower respiratory tract infections (GBD 2013 

Mortality and Causes of Death Collaborators, 2015). Globally, acute gastroenteritis still accounts for 

up to 10% of hospitalisations and 19% of deaths in children under the age of five years (Adadey & 

Quaye, 2017). In developing countries, where inadequate supply of clean drinking water and 

suboptimal sanitation are major contributing factors (Chakravarty et al., 2017; Squire & Ryan, 2017), 

diarrhoea is the second major cause of infant death (Platts-Mills et al., 2015; Kotloff, 2017). Annually, 

12.5% one in eight deaths amongst children under the age of five in Africa, South America and Asia 

is the result of diarrhoea (Keddy et al., 2016; Kotloff, 2017). Acute gastroenteritis can be caused by 

a variety of viral, bacterial, parasitic, and fungal infections (Ciccarelli et al., 2013), with acute viral 

gastroenteritis comprising almost 70% of all incidents in children (Webb & Starr, 2005). More than 

20 different viruses have been confirmed as aetiological agents of gastroenteritis (Wilhelmi et al., 

2003). Cases present with mild fever, watery diarrhoea without blood and damage to the intestinal 
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enterocytes. Dehydration, which may lead to electrolyte disturbance and metabolic acidosis, is the 

most common and dangerous complication. The risk of complications is increased in children with 

poor nourishment (Elliott, 2007). 

Globally, RV is the most frequently identified viral enteropathogen in infants and young children 

(Kotloff et al., 2013), particularly in acute diarrhoea. Each year, RV infections result in the 

hospitalisation of two million children under 5 years of age and approximately 527 000 deaths 

(Enweronu-Laryea et al., 2012). It has been estimated that over 200 000 children under 5 years of age 

have died from RV infection in developing countries in sub-Saharan Africa and Southeast Asia in 

2013. RV group A (RV-A) is responsible for the majority of human infections (Desselberger, 2017) 

and since the introduction of the RV vaccine, there has been a marked reduction in RV-specific 

diarrhoea and a 38% reduction in all-cause diarrhoea (Burnett et al., 2017). Four live-attenuated RV 

vaccines are currently prequalified by the World Health Organisation (WHO) (Rotarix, RotaTeq, 

Rotavac and RotaSiil) (Mphahlela et al., 2021). The South African Expanded Programme on 

Immunisation (SA-EPI) introduced the RV vaccines in 2009 (National Department of Health, 2012), 

leading to a 33-57% national decline in all-cause diarrhoea (Msimang et al., 2013; Groome et al., 

2014, 2016). 

Since the RV vaccine significantly reduced RV-specific diarrhoea, NoV has been recognised as the 

primary cause of severe viral gastroenteritis (Hemming et al., 2013; Payne et al., 2013). Genetic 

variations in the expression of Histo-blood group antigen (HBGA) in the mucosa play a significant 

role in norovirus infection risk, and rotavirus infections may follow a similar pattern across 

populations (Payne et al., 2015). Most human infections are caused by NoV GII strains; specifically, 

genotype GII.4 is accountable for approximately 55-85% of cases globally (Ramani et al., 2014). In 

children, NoV disease is mostly moderate. Acute infections require hospitalisation in between 7.2 

and 16 per 10 000 children under 5 years of age, and diarrhoea is involved in approximately 10-12% 

of deaths annually (Hall et al., 2013; Lopman et al., 2015). In 2017, NoV was detected in 15% of 

hospitalised South African children under 5 years of age with diarrhoea with the majority being under 

the age of two years (Page et al., 2017). NoV vaccine development has been identified as a high 

priority, but due to genetic and antigenic diversity and the presence of multiple co-circulated variants 

of different genotypes, it remains challenging (Chhabra et al., 2019). Clinical trials are currently 

underway for recombinant VP1-based virus-like particles (VLPs), which mimic major antigens from 

NoVs and are safe, immunogenic, and protective, suggesting the potential for developing an effective 

NoV vaccine (Tan, 2021). 
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In countries where RV vaccination coverage is high, sapovirus (SaV) has emerged as the second 

major viral enteropathogen following NoV (Bucardo et al., 2014). SaV is associated with both 

sporadic and epidemic cases of acute gastroenteritis, but children are more often affected than adults 

(Liu et al., 2015, 2016; Pongsuwanna et al., 2017). Unlike NoV, SaV research is not progressive (Oka 

et al., 2015). Prevalence rates in children under 5 years of age have been reported in a few sub-Saharan 

African countries, ranging from approximately 6% in Tanzania (Liu et al., 2011; Elfving et al., 2014), 

to 8% in Malawi (Dove et al., 2005), 10% in Gabon (Lekana-Douki et al., 2015) and 18% in Burkina 

Faso (Matussek et al., 2015). A five-year study on children under the 5 years of age who were 

hospitalised for diarrhoea in a South African setting with a high HIV prevalence, found an 8% 

prevalence for SaV with many children being infected during their second year of life. SaV was 

confirmed to be the sole cause of death in two patients and was also present as coinfection in 11% of 

the fatal cases (Page et al., 2016b).  

The majority of diarrhoeal diseases caused by astrovirus (AstV) have been described in children under 

5 years of age, the elderly (Bosch et al., 2014; Jarchow-Macdonald et al., 2015) and immunosuppressed 

individuals of all ages (Grohmann et al., 1993; Liste et al., 2000; Vu et al., 2017). Numerous African 

countries have detected AstV in children with diarrhoea, such as Mali where up to 3% of confirmed 

AstV cases were found in children under the age of five (Liu et al., 2016). Other countries have also 

reported positive cases in children, with prevalence rates varying from a low of 2% in Burkina Faso 

(Phan et al., 2014), to 3% in Ghana (Silva et al., 2008), 4% in Tunisia (Monastiri et al., 2016), 6% in 

Egypt (Ahmed et al., 2011) and Kenya (Kiulia et al., 2007), 10% in The Gambia (Meyer et al., 2015) 

and a high of 40% in Nigeria (Ayolabi et al., 2012). In a 5-year South African epidemiological study 

among hospitalised children under 5 years of age, AstV was detected in 7% of cases, of which 9% 

were infants between the ages of 7 and 12 months (Nadan et al., 2019). 

Globally, human adenovirus (AdV) was responsible for the deaths of about 13% of children under 5 

years of age in 2016 (GBD 2016 Lower Respiratory Infections Collaborators, 2018). Gastroenteritis 

associated with AdV is commonly caused by types 40 and 41 (Ghebremedhin, 2014; Ouedraogo et 

al., 2016; Reis et al., 2016; Khanal et al., 2018). A meta-analysis investigating the aetiology of enteric 

pathogens associated with gastroenteritis in children under 5 years of age in sub-Saharan Africa 

reported that in a pooled sample, AdV was the least detected virus in only about 1% of cases (Oppong 

et al., 2020).  

To date, no studies have investigated the role of viral enteropathogens in SUDI cases. This study 

therefore aimed to describe specific viral pathogens present in stool samples collected from SUDI 

cases and age-matched, clinically healthy infants in Cape Town, South Africa. 
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5.2 Materials and methods 

5.2.1 Sample collection 

Stool samples were collected from 176 SUDI cases admitted to Tygerberg Medico-legal Mortuary in 

Cape Town between June 2017 and May 2018. Moreover, stool samples were obtained non-

invasively from the nappies of 30 age-matched, apparently healthy infants as controls.  

5.2.2 Nucleic acid extraction 

Stool samples were collected in sterile leakproof containers and stored in DNA/RNA Shield™ (Zymo 

Research, California, USA) at -80°C until analysis. Approximately 60 mg of stool was dissolved in 

600 µL of phosphate-buffered saline (PBS) (Gibco®, California, USA) containing five metal beads. 

The stool was disrupted with the Qiagen TissueLyser LT (QIAGEN, Hilden, Germany), followed by 

centrifugation for 2 minutes at 11 000 x g (5424 Microcentrifuge, Eppendorf, Hamburg, Germany). 

Viral DNA and RNA were extracted using NucleoSpin Virus Kit (Macherey-Nagel, Düren, Germany) 

according to the manufacturer’s instructions. In the 1.5 mL tube provided, 200 µL of supernatant was 

added along with 10 µL of GI-V internal control, 5 µL of proteinase K liquid (Zymo Research, 

California, USA) and 200 µL lysis Buffer VL added after mixing by pipetting. The tube was vortexed 

(S0200, Labnet, New Jersey, USA) for 10-15 seconds prior to the addition of 5.6 µL of the supplied 

carrier RNA. After vortexing the mixture again, it was incubated at room temperature for 3 minutes. 

Following incubation, 200 μL molecular biology grade ethanol (Sigma-Aldrich, USA) was added and 

briefly vortexed before the tube was incubated for five minutes. To remove drops from the lid, the 

tube was centrifuged for 1 second at 2000 x g.  

The lysate was added stepwise to the column and centrifuged for 3 minutes at 4 000 x g. After 

centrifugation was completed, the flow-through was discarded and the column was placed in a new 

2 mL collection tube. The column was then washed with 400 μL wash buffer VW1 and centrifuged 

at 11 000 x g for 30 seconds. After discarding the flow-through again, the column was placed in a 

new collection tube. A second wash step was performed by adding 400 μL wash buffer VW2 to the 

column and centrifuging it for 11 000 x g for 30 seconds. Once again, the flow-through was discarded 

and a new collection tube was placed in the column. As a final step, 200 µL VW2 were added to the 

column and centrifuged for 5 minutes at full speed. After placing the column in the clean 1.5 mL 

Elution tube provided, it was incubated at 56°C for 5 minutes with the lid open. As a final step, 30 µL 

of RNase-Free H2O heated to 70°C was added to the column in order to elute viral RNA and DNA. 

The concentration and purity of the extracted DNA/RNA were determined using the NanoDrop ND-

1000 spectrophotometer (ThermoFisher Scientific, USA).  
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5.2.3 Qualitative real-time polymerase chain reaction 

Multiplex PCR using the Allplex ™ GI-Viral Assay (Seegene Inc, Korea) was performed following 

the manufacturer’s instructions for detection of NoV GI, NoV GII, RV-A, AdV-F (Serotype 40/41), 

AstV and SaV (Genogroups G1, 2, 4) and an internal control. The positive control consisted of 6 GI-

virus and internal control (IC) clones, while RNAse-free water was used as the negative control. A 

total volume of 25 µL was used in the reaction, with 20 µL of the master mix and 5 µL DNA/RNA 

template (Table 5.1). Real-time PCR was conducted in white, low profile 0.2 mL 8-Tube PCR Strips 

without caps and sealed with clear, flat optical 0.2 mL 8-strip PCR caps (Bio-Rad, USA). In each 

reaction, the positive control and negative control that were supplied were tested. 

Table 5.1:  Reaction mixture for real-time PCR analysis 

Reagent Volume 

RNase-free Water 8 µL 

5X GI-V MOM 5 µL 

5X Real-time One-step Buffer 5 µL 

Real-time One-step Enzyme 2 µL 

Total volume of one-step RT-PCR Mastermix 20 µL 

One-step RT-PCR Mastermix 20 µL 

DNA/RNA Template 5 µL 

Total volume of reaction 25 µL 
 

The thermal cycling conditions for each reaction carried out on a CFX96TM Real-Time PCR System 

(Bio-Rad, USA) are outlined in Table 5.2 and the fluorophores used to detect the analytes in Table 

5.3. 

 

Table 5.2:  Real-time PCR thermal cycling conditions 

Step No. of cycles Temperature Duration 

1 
2 

1 50°C 
95°C 

20 min 
15 min 

3 
4* 
5* 

 
45 

95°C 
60°C 
72°C 

10 sec 
1 min 
30 sec 

6 REPEAT STEP 3-5, 44 TIMES 
*: Plate Read at Step 4 and 5. 
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Table 5.3:  Fluorophores used to detect analytes 

Fluorophore Analyte 

FAM AstV NoV GII 

HEX IC AdV-F 

Cal Red 610 SaV NoV GI 

Quasar 670 RV-A  
 

The Seegene Export tool was used to obtain the quantitation data from the Seegene Allplex ™ GI-

Viral PCR performed on the CFX was automatically saved in two folders (QuantStep4 and 

QuantStep5). The QuantStep4 data file was imported into Seegene Viewer for Real-Time PCR 

instruments (V3), and the test kit (Allplex ™ GI-Virus Assay (8 strip)) was chosen from the product 

menu for analysis of the results for each well. A Ct value of ≤40 indicates a positive result, whereas 

a Ct value of > 40 or N/A (not detected) indicates a negative result. 

5.2.4 Histology 

Tissue samples from the gastrointestinal tract (GIT) (duodenum, small and large intestine) were 

collected for histological analysis and placed in Tissue-Tek Uni-Cassettes and fixed in 10% formalin 

for up to 24 hours to harden and preserve the tissue. Following preservation, the preserved tissue was 

processed using the Tissue-Tek® VIPTM 5 Vacuum Infiltrator Processor (Sakura® Finetek, Europe). 

The fixation process involved 12-24 hours in formalin, followed by the dehydration of the tissue and 

xylene submersion. The processed tissue samples were then embedded in paraffin wax blocks. The 

embedded tissue was cut into 3-5 µm thick sections using an Accu-Cut® SRMTM microtome 

(Sakura® Finetek, Europe) and then placed in the AWB 210 Water Bath (Amos Scientific, Australia) 

at 60°C to remove folds. To facilitate the attachment of tissue to the microscope slide, sections were 

mounted on glass microscope slides (Starfrost®, UK) and incubated (Scientific Series 9000) for 30 

minutes at 77°C. The tissue was stained with haematoxylin and eosin (H&E) (Sigma-Aldrich, South 

Africa) for visualisation under light microscope (Titford, 2005) The H&E staining technique allowed 

identification of the morphological changes within GIT tissue. An Olympus® BX41 light microscope 

was used to analyse the stained microscope slides at magnifications of 40x, 100x and 200x. The 

histology slides were analysed to identify features such as lymphocytic and neutrophil infiltrates, 

oedema, and inflammation. 

5.2.5 Statistical analysis 

Statistica® version 14.0 Statistical Software (TIBCO Software, Inc.) was used to perform analyses. 

Associations were calculated using the Mann-Whitney U test for numerical data and the Fisher exact 
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test for categorical data. Statistical significance was observed at p < 0.05 at a 95% confidence interval, 

with a strong significance observed at p < 0.01. In the case of non-normally distributed data, the 

Mann-Whitney U and Fisher exact tests were used. 

5.3 Results 

5.3.1 Epidemiological data 

A total of 176 cases (57.4% males and 42.6% females) were included in the study group. The median 

age of the infants at the time of death was 8.3 weeks (interquartile range [IQR]: 4.8-16.6), and the 

mean post-mortem interval (PMI) was 6.6±3.5 days. The control group consisted of 12 (40%) males 

and 18 (60%) females, with a median age of 24 weeks (IQR: 9-38).  

5.3.2 Laboratory results 

Viruses were detected in 111 of the 176 (63%) SUDI cases. A single virus was detected in 63 SUDI 

cases and 17 controls. NoV GII was detected in 11 samples, while 10 were negative for all viruses 

(Table 5.4). Among the enteric viruses detected, 36 cases had co-detections of 2 viruses, while 3 

controls had co-detections of 2 viruses (Table 5.5). Viral and bacterial co- infections were not detected 

in 93 (53%) cases while co-infections were detected in 83 (47%) cases. The most prevalent co-

infections were one virus and two or more bacteria (Table 5.6). The most prevalent virus and bacteria 

co-infections patterns were NoV (GI/GII) and DEC 21(25.3%) as well as RV-A and DEC 21(25.3%). 

Seasonal variations in the occurrence of enteric viruses were evident (Figure 5.1). RV-A, NoV GI, 

NoV GII, AdV-F and AstV were more frequently detected in the colder months (49.5%, 33.3%, 

22.5% and 8.1% respectively) compared to the warmer months, with SaV the least frequently detected 

(0.9%). 

 

Table 5.4:  Frequency (n, %) of GIT viruses detected in 176 SUDI cases and 30 control samples 

GIT viruses SUDI Cases Controls 

RV-A 68 (38.6%) 10 (33.3%) 

NoV 53 (30.0%) 11 (36.7%) 

AdV-F 28 (15.9%) 0 (0.0%) 

AstV 17 (9.7%) 0 (0.0%) 

SaV 1 (0.6%) 2 (6.7%) 

Negative 65 (36.9%) 10 (33.3%) 
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Table 5.5:  Prevalence of virus and virus co-infections detected in the cases and control group 

No. of viruses Virus combinations SUDI Cases 
(n=48) 

Controls 
(n=3) 

Two NoV GII + RV-A 
AdV-F + RV-A 
NoV GII + AdV-F 
ASV + RV-A 
NoV GI + RV-A 
ASV + SaV 
NoV GII + NoV GI 
Double infections in total (%) 

8 
8 
3 

13 
1 
1 
2 

36 (75.0%) 

3 
0 
0 
0 
0 
0 
0 

3 (100.0%) 

Three NoV GII + AdV-F + RV-A  
NoV GII + AdV-F + NoV GI 
Triple infections in total (%) 

10 
1 

11 (22.9%) 

0 
0 

0 (0.0%) 

Four ASV + NoV GII + NoV GI + RV-A 
Quadruple infections in total (%) 

1 
1 (2.1%) 

0 
0 (0.0%) 

 

Table 5.6: Prevalence of virus and bacteria co-infections detected in the cases (n=176) 

Virus and bacteria co-infection  Virus and bacteria combinations SUDI cases 

One virus + two or more bacteria NoV (GI/GII) +DEC  
RV-A+DEC 
ADV-F+DEC 
Total co-infections (%) 

21 
21 
4 

46 (26.1%) 

Two viruses + two or more bacteria ASV+RV-A+DEC 
ADV-F+RV-A+DEC 
NoV (GI/GII)+RV-A+DEC 
NoV (GI/GII)+ADV-F+DEC 
Total co-infections (%) 

7 
5 
5 
2 

19 (10.8%) 

Three viruses + two or more bacteria NoV (GI/GII)+ADV-F+RV-A+DEC 
Total co-infections (%) 

6 
6 (3.4%) 

One virus + one bacterium NoV (GI/GII) +DEC 
RV-A+DEC 
ADV-F+DEC 
Total co-infections (%) 

3 
1 
1 

5 (2.8.7%) 

Three viruses + one bacterium NoV (GI/GII)+ADV-F+RV-A+DEC 
Total co-infections (%) 

3 
3 (1.7%) 

Two viruses + one bacterium NoV (GI/GII) +DEC 
ADV-F+DEC 
Total co-infections (%) 

2 
1 

3 (1.7%) 
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Figure 5.1:  Seasonal variation of viruses detected in the SUDI cases from June 2017 to May 2018 

 

5.3.3 Histology results 

Histopathological analysis did not provide any significant results. Autolysis was prevalent on most 

slides, and it was thus not possible to determine whether autolysis have obscured any morphological 

changes. 

5.3.4 Statistical analysis 

In the SUDI group, a highly significant association was observed between RV-A, NoV GII, AdV-F, 

AstV and season (Fisher exact test, p < 0.01). NoV GI and SaV displayed no association with season. 

None of the viruses were associated with sex, prematurity, bed-sharing, PMI, or number of people in 

the household. AdV-F showed significant associations with both age in weeks and birth weight 

(Mann-Whitney U test, p=0.01), while NoV GI had a significant association with the position the 

infant was placed to sleep (Fisher exact test, p=0.03) and medical history (Fisher exact test, p=0.04). 

5.4 Discussion 

Globally, enteric viruses have been recognised as the most common cause of gastroenteritis (Bányai 

et al., 2018). In the current study, enteric viruses were detected in more than 60% of both SUDI cases 

and controls. A similar prevalence was found in Gabon (Lekana-Douki et al., 2015) but it was 

considerably lower than Burkina Faso (Ouédraogo et al., 2016). In contrast, lower prevalence rates 

between 30% and 54% were found in Cameroon (Ayukekbong et al., 2011), India (Chitambar et al., 

2012), Nigeria (Arowolo et al., 2019), Europe (Flahault & Hanslik, 2010) and Italy (Biscaro et al., 

2018). It is therefore apparent that the viral gastroenteritis burden varies among locations and 
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countries, but it is clear that low‐ and middle‐income countries are affected more severely (Arowolo 

et al., 2019). 

RV-A was the most prominent pathogen detected in the SUDI cases. Previous South African studies 

described the distribution and diversity of enteric viruses in stool samples collected from children 

younger than five years (Rossouw et al., 2021) as well as the possible mixed diarrhoeal aetiology in 

stool samples collected from children younger than four years (Chukwu et al., 2019). RV-A was the 

predominant enteric virus in children (22% and 82%, respectively). In developing countries such as 

South Africa, RV is still the primary cause of viral gastroenteritis hospitalisations, despite routine 

vaccination programmes (Operario et al., 2017). 

NoV, predominantly NoV GII, was the second most frequently detected virus in the SUDI cases and 

the most frequent virus in the control group. Similarly, genogroup NoV GII has been found in clinical 

cases and disseminated in communities globally (Patel et al., 2008; Siebenga et al., 2009; Hoa Tran 

et al., 2013). Generally, children living in areas with poor sanitation and hygiene practices are at 

increased risk of exposure to enteropathogens, which, similar to other developing countries such as 

Mexico, Brazil, Bolivia and China, could be associated with high reported NoV GII prevalence rates 

(García et al., 2006; Ferreira et al., 2010; Zou et al., 2015; McAtee et al., 2016). 

The low prevalence of AdV-F found in this study is marginally higher than in previous South African 

studies that found AdV in 7-12% of cases (Govender et al., 2017; Rossouw et al., 2020; 2021). The 

marginally higher prevalence rate is likely to result from the virus being more endemic in the sampling 

region in comparison to the other study regions. In contrast, a study from Ethiopia describing the 

prevalence and genetic diversity of human AdV and human AstV in stool samples collected from 

infants and children with diarrhoea found a much higher AdV prevalence (32%) (Gelaw et al., 2019). 

The lower prevalence in the current study may be the result of the use of a less sensitive assay than 

that used in the study in Ethiopia, which was more sensitive and able to detect all known types of 

human AdV. 

AstV usually causes milder infections not requiring hospitalisation (Bosch et al., 2014). A study from 

Kenya and Gambia investigated the prevalence and diversity of both classic and novel AstV in 

children under five and confirmed the presence of AstV in 10% of cases (Meyer et al., 2015). 

However, a Nigerian study examining the prevalence, seasonality, and risk factors of enteric viruses 

in stool samples of children with acute gastroenteritis found AstV in 20% of these cases (Arowolo et 

al., 2019). In contrast to the current study, a retrospective South African study (Nadan et al., 2019) 

screened diarrhoeagenic stool samples from children under the age of five for viruses, bacteria and 

parasites and found AstV in only about 6% of infants who died during the course of the study. Infants 
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in the current study died suddenly and unexpectedly before hospitalisation could possibly occur, 

whereas those in the retrospective study were hospitalised for an average of four days before passing 

away. This may explain the higher prevalence observed. Furthermore, it is likely that the higher 

prevalence rate may be due to the fact that AstV infection is frequently associated with the lack of a 

source of indoor water, and contaminated water sources such as boreholes, cisterns, communal taps, 

and rivers (Hwang et al., 2015).  

Although SaV was the least prevalent virus in the cases in this study, found in less than 1%, the 

prevalence found in the control group was comparable to the 8% found in hospitalised children under 

five years old with acute diarrhoea between 2009 and 2013 (Page et al., 2016b). In comparison to RV 

or NoV, SaV can present with a rather mild clinical presentation (Pang et al., 2000; Sakai et al., 2001), 

and although mortality associated with SaV is rare, outbreaks have been reported in elderly long-term 

care facilities (Oka et al., 2015). This may explain the higher prevalence in the control group than in 

the cases. The Malnutrition and Enteric Disease Study (MAL-ED) reported a 23% SaV detection rate 

globally, including South Africa (Liu et al., 2016). Different prevalence rates amid distinct studies 

are common and may possibly be linked to different study designs, study settings, sample sizes, 

sampling seasons, socioeconomic status of the population and viral detection procedures used during 

the investigations (Kotloff et al., 2019). 

Almost half of the current cases had coinfections, which was about 10% more than a previous study 

of South African children under five years of age hospitalised for gastroenteritis (Rossouw et al., 

2020, 2021). Similarly, a study in Burkina Faso reported enteric viruses in 35% of children under five 

years of age (Ouédraogo et al., 2016). The most commonly reported coinfection in this study was 

between AstV and RV-A, which is in agreement with previous findings from South Africa (Rossouw 

et al., 2020, 2021). The prevalence rate was, however, much lower than reports from Nigeria (59%) 

(Arowolo et al., 2019). This study also found coinfections between NoV GII, RV-A and AdV more 

frequently than results from Kuwait (21% versus 8%) (Mohammad et al., 2020). There are biological 

and epidemiological implications of mixed viral infections whereby viruses interact either 

synergistically or antagonistically, changing the concentration of either or both viruses and impacting 

the outcome of the infection (Mohammad et al., 2020). 

Co-infections with bacteria and viruses were detected in 47% of cases. Similarly, a study conducted 

in South Africa to determine the prevalence of individual and multiple diarrhoea-causing pathogen 

combinations among children suffering from diarrhoea in rural and peri urban communities reported 

a 47% prevalence of bacterial and viral co-infection (Potgieter et al., 2023). The prevalence of co-

infection between NoV (GI/GII) and DEC as well as RV-A and DEC in this study was higher than 
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that in Southwest China (25.3% versus 1.1% and 25.3% versus 2.3%, respectively) ( Zhang et al., 

2016). The effects of co-infections on the intestinal flora have been shown to alter its composition, 

reduce its diversity, and increase the frequency of intestinal flora disorders (Li et al., 2020; Sabey et 

al., 2021). Inflammatory processes may be triggered by microbiota that directly interact with 

epithelial cells (Mathew et al., 2019). 

In the GIT, autolysis is more rapid due to the presence of self-digesting enzymes (What is Autolysis? 

- Definition & Histology, 2021), possibly explaining the frequency of autolysis found in the histology 

slides. Compared with histology slides of other organs, such as the lung and heart, which are routinely 

examined, it was difficult to analyse the GIT slides in this study due to PMI and autolysis. As a longer 

PMI has the effect of deteriorating the quality of the tissues and consequently, the results obtained 

(Heimesaat et al., 2012) 

Colder months have repeatedly been associated with a spike in infant deaths compared to warmer 

months (Chang et al. 2008). Different mechanisms may be at play. Cold weather increases the 

likelihood of close contact among people who may have been exposed to fomites contaminated with 

viruses, thereby increasing the risk of transmission from person to person (Arowolo et al., 2019). 

These conditions may contribute to the organism’s spreading, transmitting, and maintaining itself 

(D’Souza et al., 2008), which was supported by the incidence of viral peaks during the colder months 

in this study. 

The highest incidence of SUDI has repeatedly been shown to occur in early infancy (2-4 months) 

when immune responses are still immature, and levels of maternal antibodies are declining (Raza & 

Blackwell, 1999). Birth weight below 2 500 grams is also associated with a higher risk of infection 

(Read et al., 1994) as well as impaired homeostasis, which can lead to infection (Bobak & Guerrant, 

2015). This supports the associations observed between age and AdV-F as well as birth weight. As 

opposed to other GIT viruses, AdV infections can be contracted throughout the year, which may 

explain the statistical associations observed, especially among infants with compromised immune 

systems. 

An association was observed between NoV GI and GII and the position the infant was placed to sleep 

as well as the medical history of the infant. It has been reported in a study conducted in Tasmania 

that SIDS can occur in the prone position if accompanying symptoms, such as cough, fever, nasal 

congestion, vomiting, or diarrhoea, are present on the day of death or the day prior. Among infants 

in the prone position, the risk of SIDS was higher for those who were ill than for those who were 

healthy (Ponsonby et al. 1993). This could explain the association observed in the current study. 
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5.5 Conclusion 

Based on the results of this study, RV-A and NoV were identified as the most common enteric viruses 

in infants under 12 months of age. It is imperative to highlight both the importance of RV-A 

vaccinations and the significance of NoV infection in children following RV vaccination. It is 

particularly critical in a developing country such as South Africa where infections caused by RV-A 

remain the leading cause of viral gastroenteritis despite routine vaccinations. It has been demonstrated 

that co-infection with multiple microbes can increase both morbidity and mortality. The identification 

of pathogens in infants with diarrhoea is therefore imperative. 
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Chapter 6: Characterisation of human rotavirus group A genotypes in 

Sudden Unexpected Death in Infancy cases at the Tygerberg Medico-

legal Mortuary, Cape Town 

Abstract 

Background: Rotavirus (RV) affects neonates and children under the age of five in both in developed 

and developing countries each year. Among young children, RV-A is the most common cause of 

seasonal endemic diarrhoea. RV particles have outer capsid proteins, VP7 and VP4, that can 

independently elicit an immune response and were used during the development of vaccines. The 

distribution of RV strains in cases of sudden and unexpected deaths in infancy (SUDI) is unknown; 

therefore, the aim of this study was to characterise RV strains in SUDI cases and controls. 

Materials and methods: Thirteen previously extracted and confirmed RV positive samples from the 

main SUDI study were included in this sub-study. Genotyping was conducted using standard 

methods. 

Results: G1P[8] was the most frequent combination of G type and P type (4/10, 40%). This was 

followed by G2P[4] (3/10, 30%) while G9P[8] was present in only two cases (20%) and G8P[4] was 

the least prevalent in a single case only (10%). 

Conclusion: In this study, G1P[8] was the most prevalent genotype combination, followed by 

G2P[4]. This finding agrees with the literature; however, further research with a larger sample size 

will enable a better understanding of the genotypes prevalent in this specific study population. 
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6.1 Introduction 

In South Africa, diarrhoea accounts for 7.2% of infant mortality, making it the third leading cause of 

infant death (Statistics South Africa, 2018a). Malnutrition is a major risk factor in the development 

of diarrhoeal disease in children, as well as inadequate access to clean water, and unsanitary 

conditions. These risk factors are responsible for 84% of all childhood deaths due to diarrhoeal 

diseases. RV affects neonates and children under five years in both developed and developing 

countries, causing around 258 million cases of morbidity and 128 000 diarrhoeal deaths every year 

al, 2018). Approximately 80% of these deaths occur in Sub-Saharan African countries (Troeger et al, 

2018; Steele & Groome, 2020).  

As a result of its segmented genome, RV can adopt remarkable genetic diversity (Zeller et al., 2015). 

There are a number of new strains arising every year as a result of recombination of genes, genomic 

re-assortment, point mutation accumulation, and inter-species transmission mechanisms (Kirkwood, 

2010; Seheri et al., 2018). Humans are susceptible to RV groups A-H, with RV-A being the most 

common cause of seasonal endemic diarrhoea among young children. In addition to infecting 

mammals, RV-A is also capable of infecting birds (ICTV, 2021).  

A binary classification system was devised based on the antigenic reactivity of VP4 and VP7, which 

induce neutralising antibodies independently (Estes & Kapikian, 2007; Matthijnssens et al., 2011). 

VP7 and VP4 are two outer capsid proteins that are genetically distinct, and this allows the virus to 

be classified into two genotypes, G (glycoprotein) and P (protease-sensitive), respectively (Estes & 

Kapikian, 2007). Through the use of reverse transcription-polymerase chain reaction (RT-PCR) and 

sequencing techniques, 36 different G genotypes and 51 different P genotypes have been described 

so far (Steger et al., 2019).  

Wa-like and DS-1-like genotype constellations are two major genotype constellations found in 

humans (Matthijnssens et al., 2009). P[8] genotypes are frequently associated with a Wa-like 

genotype constellation, whereas P[4] genotypes are usually associated with a DS-1-like genotype 

constellation. The Wa-like genotype constellation is the most important genotype in humans and it is 

responsible for more than 90% of all infections caused by RV (Bányai et al., 2012; Matthijnssens & 

Van Ranst, 2012). The dominant genotypes of VP7 RV on the African continent are G1, G2, G3, G4, 

G8, G9 and G12; G4 strains predominated in the 1980s and 1990s, but have since declined greatly 

(Steele et al., 2003). In terms of VP4 genotypes, the most frequently circulating ones are P[8], P[6], 

and P[4] (Mwenda et al., 2010; Seheri et al., 2014; Nyaga et al., 2018). Prior to the introduction of 

RV vaccines in Africa, genotype G1P [8] strains were prevalent (Seheri et al., 2018). 
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Currently, four RV vaccines have been prequalified for routine use by the WHO: RotaTeq (Merck 

and Co., West Point, PA. USA), Rotarix (GlaxoSmithKline Biologicals, Rixenstart, Belgium) in 2008 

and 2009, respectively and two vaccines manufactured in India, Rotavac (Bharat Biotech, Hyderabad, 

India) and RotaSil (Serum Institute of India) in 2018 (Global Alliance for Vaccines and 

Immunizations Detailed Product Profiles/Gavi, the Vaccine Alliance). Based on a sub-analysis of 

high-mortality countries in Africa and Asia, the 4 vaccines were similar in their efficacy against 

severe rotavirus gastroenteritis at 1 year of follow-up, with vaccine efficiencies ranging from 48% to 

57% (WHO, 2021). According to an analysis of data from 69 countries participating in the Global 

Rotavirus Surveillance Network (GRSN), rotavirus prevalence decreased by 40% following the 

introduction of the rotavirus vaccine (Aliabadi et al., 2019). Vaccination has also been shown to 

reduce hospitalisations associated with rotavirus infections, all cause acute gastroenteritis 

hospitalisations, and gastroenteritis mortality in several countries (WHO, 2021). As of August 2009, 

the RV vaccine was introduced into the South African Expanded Programme of Immunisation (SA-

EPI) (Hemming et al., 2013). Despite improved vaccination coverage, studies have documented 

alarming rates of RV-associated diarrhoeal morbidity and hospitalisation in certain regions in South 

Africa over the past decade (Iyaloo et al., 2013, Asowata et al., 2018).  

Efficacy trials on Rotarix and RotaTeq showed that they were more effective in developed countries 

with low diarrhoeal mortality than in developing countries with high diarrheal mortality (Bergman et 

al., 2021). The lower efficacy of rotavirus vaccination in developing countries is likely to be a 

multifactorial phenomenon due to differences in rotavirus epidemiology with high levels of infection, 

deficiencies in essential vitamins and minerals, exposure to certain pathogens prior to vaccination, 

and chronic diseases such as malaria and human immunodeficiency virus (HIV). Consequently, the 

poor GIT response to the live vaccine has a negative impact on the efficacy thereof (Parker et al., 

2018). There is currently no research that characterises the distribution of RV in SUDI cases; 

therefore, this study aimed to characterise the RV strains in SUDI cases and control samples. 

6.2 Materials and methods 

6.2.1 Samples 

A total of 13 RV positive PCR products were successfully sequenced in the study. These PCR 

products were obtained from previously extracted RV positive samples. It included 7 cases and 3 

controls, of whom vaccination statuses were unknown for 6 infants, while 2 did not receive 

vaccinations, and 2 only received the first vaccination dose. Among the seven cases, two amplified 

both VP7 and VP4 genes, while the remaining five amplified either VP4 or VP7 genes. This resulted 

in nine successfully sequenced PCR products. Among the three controls, one control amplified both 
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the VP7 and VP4 genes, while the remaining two controls amplified either the VP4 or VP7 genes. 

This resulted in four successfully sequenced PCR products. 

6.2.2 cDNA synthesis and conventional PCR 

The complimentary deoxyribonucleic acid (cDNA) was synthesised on the extracted ribonucleic acid 

(RNA) template using the LunaScript RT Supermix Kit (New England Biolab, USA). A total of 8 µL 

RNA template was added to 2 µL LunaScript RT Supermix at the following cycling parameters: 25°C 

for 2 minutes, 55°C for 10 minutes, 95°C for 1 minute, and 4°C hold. Following the addition of the 

reaction mixture to the SimpliAmp™ thermal cycler (Life Technologies, Applied Biosystems® by 

ThermoFisher Scientific™, Randburg), the cDNA synthesis was then initiated.  

The GoTaq® Flexi DNA Polymerase Kit (Promega, USA) was used to conduct conventional PCR on 

both the VP7 and the VP4 genes. The components and volumes for the PCR master mix are listed in 

Table 6.1 and the primer sequences are shown in Table 6.2. Geneious Prime® 2021.1.1 was used to 

determine primer annealing temperature and target specificity. PCR mixtures were prepared in sterile 

1.5 mL Eppendorf tubes and 47 µL was aliquoted into sterile 0.2 mL PCR strips with strip caps 

(STARLAB International, Hamburg). Following the addition of the template to the PCR tubes, the 

mixture was centrifuged to eliminate any bubbles that were present. A total volume of 50 µL was 

used for the PCR assay. The PCR runs included a positive control, a negative control, and a non-

template control in order to avoid false-positive results. As a positive control, a cultured RV positive 

sample was used.  

For the PCR, the reaction mixture was placed into a SimpliAmp™ thermal cycler (Life Technologies, 

Applied Biosystems® by ThermoFisher Scientific™, Randburg) according to the conditions outlined 

in Tables 6.3 and 6.4. 

Table 6.1:  PCR master mix volume of each reagent used per reaction s 

Reagent Volume per run (µL) 

GoTaq Flexi buffer 10 

Primer (forward) 5 

Primer (reverse) 5 

dNTP mix 1 

GoTaq DNA polymerase 0.25 

Template 3 

Nuclease-free water 23.75 

Total volume 50 μL 
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Table 6.2:  The consensus primers used in this study 

Primer Primer sequence 5’-3 Reference Product 
size 

VP7-F 5´ ATG TAT GGT ATT GAA TAT ACC AC 3´ 
Iturriza-Gómara et al., 2004 842bp 

VP7-R 5´ AAC TTG CCA CCA TTT TTT CC 3´ 

VP4-F 5´ TAT GCT CCA GTN AAT TGG 3´ 
Simmonds et al., 2008 624bp 

VP4-R 5´ ATT GCA TTT CTT TCC ATA ATG 3´ 
 

Table 6.3:  VP4 PCR thermocycling conditions 

Step Temperature (°C) Duration Cycle 

1 95°C 2 min  1 

2 94°C 45 sec 

35 3 45°C 45 sec 

4 72°C 1 min 

5 72°C 5 min 
1 

6 4°C ∞ 
 

Table 6.4:  VP7 PCR thermocycling conditions 

Step Temperature (°C) Duration Cycle 

1 95°C 2 min  1 

2 94°C 45 sec 

25 3 50°C 45 sec 

4 72°C 51 sec 

5 72°C 5 min 
1 

6 4°C ∞ 
 

6.2.3 PCR product visualisation 

Visualisation of the PCR products was carried out by gel electrophoresis, using sodium borate (SB) 

buffer, which has a lower conductivity, operates at a faster speed, and produces brighter bands than 

standard buffers (Brody & Kern, 2004). To prepare a 20X SB buffer stock solution, 8 grams of sodium 

hydroxide and 45 grams of boric acid were dissolved in 1 litre of distilled water from Milli-Q® (Merck 

Millipore, Germany). A 1X SB buffer working solution was subsequently prepared by diluting 5 mL 

of SB buffer stock solution in 995 mL of MilliQ water. 
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A 2% agarose gel was prepared by dissolving 2 grams of Lonza® LE agarose (Lonza BioWhittaker, 

Verviers, Belgium) in 1X SB buffer to make a 100 mL mixture. It was then heated in a microwave 

oven for 3 minutes or until the solution was clear. After the gel mixture had cooled down sufficiently, 

5 µL of Condasafe gel dye was added to it (Laboratorios CONDA, Madrid, Spain) and the gel mixture 

was poured into an electrophoresis tray with a 1 mm gel comb. This was left at room temperature for 

approximately 30 minutes before the comb was removed. The gel was placed in the EnduroTM 

Electrophoresis System (Labnet, USA) and 1X SB buffer was added to completely cover the gel to 

allow for effective electricity conduction. A 3 µL ready-to-use GeneRuler™ 100 bp DNA ladder 

(ThermoScientific, USA) was loaded in the first and last wells of the gel to provide a size reference. 

To load the rest of the wells, 5 µL of the PCR product was mixed with 1 µL of 6X orange loading 

dye (ThermoScientific, USA). After electrophoresis at 100V for 40 minutes, the gels were visualised 

using ChemiDocTM Imaging Systems (Bio-Rad, USA). 

6.2.4 PCR product purification 

The unpurified PCR products were frozen at -20°C and delivered on ice to Inqaba Biotechnical 

Industries (Pty) for the purification of PCR products and sequencing. Purification of PCR products 

was carried out using the Rapid PCR Cleanup Enzyme Set (New England Biolabs, USA). By adding 

50 µL Exonuclease I and 200 µL Shrimp Alkaline Phosphatase, a master mix of Exo/SAP was 

prepared. To 10 µL amplified PCR product, 2.5 µL Exo/SAP master mix was added. After mixing 

thoroughly, the mixture was incubated for 15 minutes at 37°C. Following this, it was heat inactivated 

at 80°C for 15 minutes. 

6.2.5 Sequencing PCR 

Sanger sequencing was performed using the Brilliant Dye™ Terminator Cycle Sequencing Kit V3.1 

(NimaGen, The Netherlands). In order to sequence the specific region of interest, a master mix was 

prepared for each primer used. In accordance with the manufacturer's instructions, 1 µL of purified 

PCR product was added to a reaction mix containing the reagents shown in Table 6.5. Based on the 

cycling parameters described below, the reaction was performed on either a GeneAmp® 9700 thermal 

cycler or a Veriti® (Applied Biosystems, USA). The following parameters were used: 96°C for 45 

seconds, 25 cycles at 96°C for 10 seconds, 50° C for 5 seconds, and 60°C for 4 minutes. 
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Table 6.5:  The volume of each reagent per reaction used in the sequencing PCR assays. 

Reagent Volume per run (µL) 

BrilliantDye v3.1 rr Premix 1 

5x Sequencing Buffer 1.5 

Primer  1 

Template 1 

nuclease-free water 5.5 

Total volume 10 μL 
 

6.2.6 Sequencing clean-up 

The labelled products were then cleaned with the ZR-96 DNA Sequencing Clean-up Kit (Zymo 

Research, USA) by adding 240 µL of Sequencing Binding Buffer to 5-10 µL sequencing reaction. 

The mixture was transferred to the Zymo-Spin™ IB-96 plate mounted on a collection plate provided. 

Following centrifugation at 3 000 x g for 2 minutes, 300 µL of Sequencing Wash Buffer was added 

to each well of the collection plate. It was then centrifuged at ≥ 3 000 x g for 5 minutes. Water (15-

20 µL) was added directly to the column matrix filter plate. The Zymo-Spin™ IB-96 plate was placed 

on top of the 96-Well PCR plate and the assembly was mounted onto the collection plate. The plate 

was centrifuged for 2 minutes at 3 000 x g to elute the DNA. The cleaned-up products were injected 

into the Applied Biosystems ABI 3500XL Genetic Analyser or Applied Biosystems ABI 3730XL 

Genetic Analyser (ThermoFisher Scientific, USA) with a 50 cm array, using POP7. 

6.2.7 Phylogenetic Analysis 

For each sample, sequence data files were uploaded to Geneious Prime® 2023.1 (Biomatters Inc., 

USA) and consensus sequences were assembled with the De Novo Assemble tool and primers were 

trimmed accordingly. The National Center for Biotechnology Information's (NCBI) online Basic 

Local Alignment Search Tool (BLAST) was used to verify that the obtained sequences were human 

RV-A. GenBank® was used to download the related sequences. Appendix D includes a list of 

GenBank® sequences downloaded. 

Multiple sequence alignment of the nucleotide sequences was performed using Multiple Alignment 

using Fast Fourier Transformation software version 7 (https://mafft.cbrc.jp/alignment/server/). To 

determine the best model test, maximum likelihood tree, and bootstrapping support, Randomised 

Axelerated Maximum Likelihood (RAxMLGUI 2.0) was used. Bootstrap analysis of 1 000 replicates 

were performed and only clusters with 70% or more support were considered significant. The 

HKY+G4 model (Hasegawa-Kishino-Yano with gamma distributed rates) was found to best fit the 

Stellenbosch University https://scholar.sun.ac.za



85 

sequence data for the VP4 and VP7 genes, respectively (Hasegawa et al., 1985). FigTree version 1.4.4 

was used to edit the trees (Rambaut, 2018). 

6.3 Results 

6.3.1 Phylogenetic analyses based on the VP7 and VP4 genes 

During the current study, six sequences were obtained using conventional PCR targeting a fragment 

of 842 bp of the VP7 gene. Additionally, seven sequences were obtained using conventional PCR 

targeting a fragment of 624 bp of the VP4 gene. 

In Figure 6.1, at position one, the sequence derived from sample 1174_2 clusters with other RV strains 

from South Africa (Genbank IDs MW552597, MW552146, MW552685, unpublished study by 

Nyaga et al., 2021) and Kenya (Genbank IDs MZ096975, unpublished study by Lambisia et al., 2021, 

and MN194385, unpublished study by Mwanga et al., 2020). This sample was 100% identical to a 

strain genotyped as G2P[4]. At position two, the sequence from 897_VP7 does not appear to cluster 

directly with other RV sequences. Instead, it is positioned close to clusters of RV strains from Kenya 

(Genbank IDs MK434785, MK434784 and MK434780, unpublished study by Mwanga et al., 2019; 

Genbank ID MH402590, unpublished study by Owor et al., 2018; Genbank ID MZ093894, 

unpublished study by Lambisia et al., 2021). In addition, this sample was 99% identical to an isolate 

and strain that was genotyped G8P[4]. 

At position three, sequence H16_2 clusters with RV strains (Genbank ID MN787037, unpublished 

study by Kuča and Mans, 2021) from South Africa and Zimbabwe (Genbank IDs KJ752797, 

KJ753710, KJ753539 direct submission by Wentworth et al., 2015 and Genbank ID KP753098, direct 

submission by Das et al., 2015). There was 99% similarity between this sample and an isolate and 

strains genotyped as G9P[8]. At position four, the sample sequences from 1606_2, H12_2 and 0124_2 

are seen to cluster with RV strains from Belguim (Genbank IDs ON855111 and ON855125, published 

study by Simsek et al., 2022), South Korea (Genbank IDs MG922993 and MG922997, unpublished 

study by Tran & Kim, 2018), Brazil (Genbank IDs MG590362 and MG590364, unpublished study 

by Pankov et al., 2018; Genbank ID MT633136 published study by Silva-Sales et al., 2021), Japan 

(Genbank ID KY616899, published study by Kaneko et al., 2018) and Venezuela (Genbank ID 

MG571803, unpublished study by Siqueira et al., 2018). These samples were between 99-100% 

identical to isolates and strains genotyped as G1P[8]. Additionally, sequences from H12_2 and 

0124_2 also showed strong phylogenetic relatedness to a Rotarix vaccine strain from Brazil (Genbank 

ID MH884610, unpublished study by Gelaw et al., 2019).  
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Figure 6.1: Phylogenetic analysis of the Rotavirus VP7 gene (842 bp) 

Phylogenetic inference was performed by the Maximum Likelihood method with 1 000 bootstrap 

replicates in RAxMLGUI 2.0. The Hasegawa-Kishino-Yano model with gamma distributed rates was 

used (HKY+G4). The tree was rooted with RV-A/Human-tc/USA/DS-1/1976/G2P[4] 

(HQ650124_1). The scale bar indicates the number of nucleotide substitutions per site.  

As shown in Figure 6.2, at position one, the sequence derived from sample 0897_VP4 clusters with 

that of other RV strains from South Africa (Genbank IDs MW392029, MW392039, MW392041, 

MW392006, unpublished study by Rossouw et al., 2021), as well as Kenya (Genbank IDs MZ094320, 

unpublished study by Lambisia et al., 2021). In addition, this sample was 100% identical to an isolate 

that was genotyped G8P[4]. At position two, the sequence from samples 1366_VP4, 1525_2 and 

1174_2 appears to cluster with other RV strains from South Africa (Genbank IDs MW552576, 

MW552642 and MW552554, unpublished study by Nyaga et al., 2021; Genbank ID MW392003, 
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unpublished study by Rossouw et al., 2021). These sequences further clustered with a RV strain from 

Kenya (Genbank ID MZ096973, unpublished study by Lambisia et al., 2021) and 100% identical to 

isolates and strains genotyped as G2P[4].  

 
Figure 6.2: Phylogenetic analysis of the Rotavirus VP4 gene (624 bp) 

At position three, H12_2 and R31_2 sample sequences were clustered with RV strains from Brazil 

(Genbank IDs MN366066, MN366074 and MN366057, unpublished study by Cantelli et al., 2020; 

Genbank ID MG590348, unpublished study by Pankov et al., 2018), the USA (Genbank ID 

MN478758, unpublished study by Esona et al., 2021) and Tanzania (Genbank ID MW718952, direct 

submission by Malakalinga et al., 2022). The two control samples were also 100% similar to an isolate 

and strains genotyped as G1P[8].  
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Moreover, at position four, the sequence from 1677_2 is clustered with RV strains from South Africa 

(Genbank ID MW392028, published study by Rossouw et al., 2021) and China (Genbank IDs 

MN527952, MN527836, MN527845 and MN527837, unpublished study by Gao et al., 2022). There 

was a 100% similarity between this sample and an isolate genotyped as G9P[8]. 

Phylogenetic inference was performed by the Maximum Likelihood method with 1 000 bootstrap 

replicates in RAxMLGUI 2.0. The Hasegawa-Kishino-Yano model with gamma distributed rates was 

used (HKY+G4). The tree was rooted with RV-A/Human-tc/USA/DS-1/1976/G2P[4] (HQ650119.1). 

The scale bar indicates the number of nucleotide substitutions per site. The prevalence of the 

genotypes confirmed in this study is summarised in Table 6.6. 

Table 6.6:  Prevalence of genotypes in the study (n=10) 

Genotype Prevalence (n, %) 

G1P[8]  4 (40%) 

G2P[4] 3 (30%) 

G9P[8] 2 (20%) 

G8P[4] 1 (10%) 
 

6.4 Discussion 

Among the most common G and P genotype combinations worldwide are G1P[8], G2P[4], G3P[8], 

G4P[8], and G9P[8], with G1P[8] being the most common (Santos & Hoshino, 2005; Rahman et al., 

2007; Matthijnssens et al., 2009). During the past few years, the epidemiological relevance of unusual 

RV genotypes, such as G1P[4], G2P[8], G9P[4], G12P[4], G8P[6], G8P[8], and G12P[6], has 

increased on the African continent (Moure et al., 2018; Seheri et al., 2018). It is estimated that over 

90% of cases of RV gastroenteritis in young children are caused by strains G1P[8], G2P[4], G3P[8], 

and G9P[8] (Linhares et al., 2011; Patel et al., 2012). 

Phylogenetic analysis in the current study has shown that the genotype combination G1P[8] clusters 

closely with other genotypes G1P[8] described throughout the world. This includes Brazil, the USA, 

Tanzania, Belguim, Venezuela, Japan, and South Korea. This genotype may reflect the impact of 

human movements across the borders of South Africa. Globally, G1P[8] is one of the most prevalent 

and clinically important strains of RV-A (Dóró et al., 2014). VP4 and VP7 variants persist despite 

antigenic and genetic heterogeneity among G1P[8] strains, and their epidemiological fitness may 

account for their global prevalence (Santos et al., 2019). 
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In this study, the most prevalent combination of G type and P type was G1P[8] (4/10, 40%), which 

contrasts with South African studies by Rossouw et al. (2021) who found G3P[4] to be most 

prevalent, and Page et al. (2016a) who found G3P[8] and G9P[8]. There was, however, a similar 

finding in a review article which explained genetic diversity of RV, potential changes in strain types, 

and changes in the burden of RV after the introduction of RV vaccination in children under five years 

old in Tanzania, where G1P[8] was also found to be the most prevalent genotype (Malakalinga et al., 

2019). As shown by Magagula et al. (2015), all G1P[8] strains displayed Wa-like genetic 

constellations and shared a moderate degree of nucleotide identity with Rotarix and RotaTeq G1P[8]. 

There is evidence that vaccine-derived virus is shed in faeces during the first 28 days following the 

initial dose and 15 days following the second dose, with the G1P[8] RV1 virus detected at higher 

levels following the first dose (Phua et al., 2005; Anderson, 2008; do Carmo et al., 2011; Atchison et 

al., 2016; Roczo-Farkas et al., 2018; Bruun et al., 2021). Other countries have reported a higher 

incidence of acute gastroenteritis due to vaccine shedding or horizontal transmission of the vaccine 

strain (Payne et al., 2010; Kaneko et al., 2017; Bennett et al., 2019). This study detected that samples 

sequences H12 and 0124 were phylogenetically related to a Rotarix vaccine strain. This is further 

supported by the similarity to genotype G1P[8]. However, the vaccination status of the infants in 

these two samples is unknown. To determine whether the observed vaccine strain is the result of 

vaccine shedding or horizontal transmission, additional research will be required. 

It has been reported that after the introduction of Rotarix® in South Africa, the number of non-G1P[8] 

strains such as G2P[4], which are not included in the monovalent G1P[8] vaccine, has significantly 

increased (Page et al., 2018). G2P[4] tends to possess the DS-1-like genogroup and its dominance 

has been documented in certain geographic areas (Doan et al., 2011; Vizzi et al., 2017; Khandoker et 

al., 2018; Thanh et al., 2018). During 1984, 1990, and 1993, the South African G2 strains 

predominated alongside the G1 strains. A ten-year cyclic pattern was observed between 1987 and 

1997 with major epidemics in both years (Page & Steele, 2004). In the phylogenetic analysis, 

genotype G2P[4] clustered closely with other genotype G2P[4] described in South Africa between 

2013 and 2017. It was reported in South Africa that the frequency of G2P[4] increased between 2012 

and 2014 but decreased between 2015 and 2016 (GERMS-SA Annual Report, 2017). The presence 

of G2P[4] in these samples may suggest that it was still circulating in South Africa at the time they 

were collected. Kenya is one of the top ten countries in terms of the number of tourists visiting South 

Africa from other African countries (Statistics South Africa, 2018b), and it is possible that the 

circulating genotypes of Kenya could be transmitted into the country through tourists. 

G2P[4] (3/10, 30%) was the second most prevalent genotype in this study. A diarrhoeal surveillance 

in South Africa (GERMS-SA Annual Report, 2017) as well as studies in Tanzania (Malakalinga et 
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al., 2019) and Benin (Agbla et al., 2020) also revealed this genotype to be the second most prevalent. 

In Latin America, Belgium, Botswana, and Australia, despite reports of widespread vaccination with 

Rotarix, diarrhoeal episodes were consistently associated with the heterotypic G2P[4] RV genotype 

(Zeller et al., 2010; Gastañaduy et al., 2016; Santos et al., 2017; Roczo-Farkas et al., 2018). A higher 

prevalence of G2P[4] genotypes appear to be associated with older individuals (European Centre for 

Disease Prevention and Control, 2017), and some studies have suggested that older people not eligible 

for vaccination may serve as a permanent reservoir for G2P[4] infection in children (Markkula et al., 

2017). This may account for the prevalence found in the current study. 

RV genotype G9 was first detected in 1983-1984 in the USA, causing diarrhoea in infants. 

Subsequently, G9 associated with diarrhoea was reported in several countries during the 1990s 

(Santos & Hoshino, 2005). G9P[8] is one of the six most common genotypes worldwide (along with 

G1P[8], G2P[4], G3P[8], G4P[8], and G12P[8]), causing 90% of severe RV cases that require 

hospitalisation (Santos & Hoshino, 2005; Dhita et al., 2017). Study sequences from G9P[8] grouped 

with other genotype G9P[8] from South Africa, Zimbabwe, and China based on phylogenetic 

analysis. In China, G9P[8] RV-A has been the dominant genotype since 2012 (Zhou et al., 2020), 

while G9P[8] was the third dominant genotype in Zimbabwe (Seheri et al., 2018). Due to its proximity 

to Zimbabwe on the north and the influx of Chinese tourists, the presence of this genotype in South 

Africa may be attributed to human movement across national borders. 

A low prevalence of G9P[8] was observed in this study (2/10, 20%). Similar findings were previously 

reported from Zimbabwe and Zambia, where G9P[8] accounted for 20% of the circulating genotypes 

(Seheri et al., 2014). In South Africa, G9P[8] was the most prevalent genotype in stool samples 

collected between 2014 and 2015 (Asowata et al., 2018), but in 2017 this genotype was the least 

prevalent genotype (GERMS-SA Annual Report, 2017). 

While RV-A genotypes such as G8P[4] are substantially prevalent in Africa, they are relatively 

uncommon throughout the rest of the world (Mwenda et al., 2010; Bányai et al., 2011; Dóró et al., 

2014; Seheri et al., 2018). There is evidence that G8 genotype is more common in Africa as a result 

of RV transmission between humans and cattle (Cunliffe et al., 2000; Esona et al., 2009; Jere et al., 

2012). This supports the phylogenetic analysis, as G8P[4] was grouped with genotypes from South 

Africa and Kenya. Among the genotype combinations in the current study, G8P[4] was the least 

frequently detected. This genotype was predominant in South Africa in 2017, however, in 2018 it was 

less prevalent, which is also in line with the results of this study (GERMS-SA Annual Report, 2017, 

2018). It may represent a hybrid RV between humans and animals. As a result, it is likely that human 

and bovine RVs have dynamic interactions and are able to transmit across species, which could 
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provide a mechanism for generating more genetic diversity through reassortment of genomes 

(Omatola et al., 2021). 

There were only a limited number of samples included in this part of the study, which may be a result 

of low viral loads (Ct > 32) or mutations in primer binding sites which inhibit specific primers, 

preventing many samples from being amplified (Rossouw et al., 2020). 

6.5 Conclusion 

The most prevalent genotype combination in this study was G1P[8], followed by G2P[4]. Although 

this is similar to what has been described in the literature, further research with a larger sample size 

will enable a better understanding of the genotypes prevalent in this specific study population. It will 

be necessary to conduct additional analyses in order to determine whether the observed vaccine strain 

was caused by vaccine shedding or horizontal transmission. Additionally, whole genome sequencing 

should be considered since it will provide a more comprehensive view of RV epidemiology by 

providing insight into the specific strains detected, their origins, and their reassortments. 
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Chapter 7: Profiling the human gastrointestinal microbiome in Sudden 

and Unexpected Death in Infancy cases at the Tygerberg Medico-legal 

Mortuary, and healthy infants in Cape Town 

Abstract 

Background: Infancy is an extremely critical period for establishing the gastrointestinal microbiome, 

a long-term process that affects health and disease risk. Various studies have investigated possible 

associations between the infant's intestinal microbiome and sudden unexpected death in infancy 

(SUDI). Research on the microbiome and its specific role in SUDI have been largely unexplored, 

particularly in South Africa. For Aim II of this study, the microbiomes in stool samples collected 

from SUDI cases were compared with those collected from age-matched, apparently healthy infants. 

Materials and methods: Stool samples were collected from 34 SUDI cases, as well as 11 age-

matched, apparently healthy infants between June 2017 and May 2018. Full-length 16S rRNA gene 

amplicon sequencing was performed on the PacBio Sequel IIe System platform to profile the 

microbiome. 

Results: The predominant taxonomic phylum in control samples was Bacteroidota (90.9%, n=10/11), 

while Proteobacteria were more prevalent in cases with gastroenteritis (50.0%, n=2/4), Firmicutes 

were more prevalent in cases with respiratory tract infections (42.9%, n=6/14) and Actinobacteriota 

were more prevalent in sudden infant death syndrome (SIDS) cases (37.5%). 

Conclusion: The findings from this study suggested that the gastrointestinal composition of infants 

who died from infection and SIDS was different than that of the control group. Although the current 

results show promise, it is not yet possible to show temporality between the composition of the 

microbiome and ultimate occurrence of SUDI and will be particularly beneficial. 
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7.1 Introduction 

The microbiome is described as collections of organisms or microbial genomes that inhabit an 

ecological niche (Bäckhed et al., 2005; Ley et al., 2006; Turnbaugh et al., 2007). Each individual has 

microflora consisting of 10 to 100 trillion mutualistic cells (Turnbaugh et al., 2007). There is a variety 

of diverse microbial communities present in various areas of the human body, including the oro-

nasopharyngeal sphere, the skin, the vagina, and the gastrointestinal tract (GIT). The human GIT 

microflora consists mostly of bacteria, a few archaea, eukaryotes, and viruses. Health and disease are 

influenced by the interaction between these microbial communities and the host (Rajilić-Stojanović 

& de Vos, 2014). 

During pregnancy, the mother’s microbiota impacts foetal development, particularly the brain. In 

addition, maternal microbiota disorders can adversely affect pregnancy outcomes and pose a serious 

health risk to the foetus. Both environmental and genetic factors affect the healthy growth of the 

infant's microbiota following birth (Yao et al., 2021).  

A woman's oral cavity, GIT, and vaginal microbiota are significantly altered during pregnancy. A 

number of factors contribute to these changes, including dietary factors such as weight and nutrition, 

infections, antibiotic use, stress, and the genetic makeup of the individual (Baker et al., 2004; 

Goodrich et al., 2016; Jašarević et al., 2017; Kim et al., 2017; Codagnone et al., 2019; Zhou et al., 

2020). 

The maternal GIT microbiota may affect the well-being of the infant and nutrition may account for 

at least part of this regulation (Morrison & Regnault, 2016). Due to the abundant use of processed 

foods, dietary fat, and sugars in the typical Western diet, it promotes excessive weight gain, dysbiosis 

of the GIT, and is associated with adverse effects on both maternal and child health (Luoto et al., 

2013; Dunlop et al, 2015; Morrison & Regnault, 2016). During pregnancy, mothers who adhere to 

recommended dietary allowance for fat and fibre may experience beneficial changes in their GIT 

microbiota composition, such as high GIT microbiota diversity (Röytiö et al., 2017). As early as in 

utero and during delivery, the changes in the mother's microbiota can affect the infant's microbiota. 

A difference in bacterial microbiota patterns is observed among infants born to obese mothers 

compared to those born to lean mothers. The differences in intestinal microbiota that result from 

maternal obesity last for at least one year, demonstrating the long-term impact of maternal obesity on 

the microbiota of their offspring (Collado et al., 2010; Galley et al., 2014; Zheng et al., 2015; Garcia‐

Mantrana & Collado, 2016). 
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Antibiotic use during pregnancy also affects the GIT microbiome of the infant (Zou et al., 2018; 

Zhang et al., 2019; Coker et al., 2020), and it may lead to increased hospitalisation of the infant due 

to infections (Miller et al., 2018). In comparison to mothers who used oral antibiotics prior to delivery, 

infants born to mothers who received pre-delivery antibiotics showed microbial changes in the GIT 

for as long as 12 months after delivery (Azad et al., 2016).  

It has been demonstrated that supplementing the GIT with probiotics using established bacterial 

strains facilitates the colonisation of the GIT flora. Probiotics have been shown to reduce the 

incidence and mortality of necrotising enterocolitis and septicaemia in very low birth weight and / or 

preterm infants (Thomas et al., 2017). It is furthermore possible to minimise the adverse effects of 

antibiotics by co-administering probiotics (Arboleya et al., 2016).  

Neonates delivered by caesarean section are not exposed to their mother’s vaginal fluid and 

microbiota during birth. Vaginal seeding is often performed by inoculating a cotton gauze or a cotton 

swab with vaginal fluids to transfer the vaginal flora to the mouth, nose, or skin of the neonate 

immediately after delivery. The purpose this procedure is to transfer maternal vaginal bacteria to the 

neonate, which theoretically contributes to the diversification of GIT microbiota in treated infants to 

counteract the decreased microbial diversity seen in caesarean sections. A study conducted in 2016 

confirmed that infants delivered by caesarean section and that received vaginal seeding had a similar 

microbiota as their vaginally delivered counterparts. While the study was relatively small, women 

who carried possible vaginal pathogens were excluded, and the clinical outcome of the infants was 

not addressed (Dominguez-Bello et al., 2016). As a result of the lack of studies and information 

regarding the safety and lasting effects of vaginal seeding, this practice is still widely disparaged 

(Cunnington et al., 2016).  

The faecal microbiota transplantation procedure could also be an excellent alternative for introducing 

neonates to their mother’s GIT microbiota when vaginal delivery is not possible. A proof-of-concept 

study conducted by Korpela et al. (2020) in Finland suggests that this approach may be feasible. 

Although no concrete evidence exists yet, vaginal seeding combined with faecal microbiota 

transplantation may be able to establish an environment resembling that of a vaginally delivered 

infant.  

During the perinatal period, the mode of delivery and gestational age at birth have a significant impact 

on the infant GIT microbiome. Mode of feeding, maternal nutrition, host genetics and environmental 

factors influence infant GIT microbiota development in early life (Yao et al., 2021). Infancy 

represents an extremely crucial period for the establishment of the GIT microbiome, an intricate 

process that has long-term implications for health and disease. The colonisation of the GIT by 
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microorganisms is fundamentally related to metabolic programming, immunological maturation, and 

proper development of the GIT (Collado et al., 2012; Bäckhed et al., 2015). At birth, a variety of 

beneficial and pathogenic microbes colonise the infant’s intestines, making them crucial to their 

health (Rodríguez et al., 2015), especially the microbes from the mother (Korpela & de Vos, 2018). 

Both environmental and genetic factors affect the infant microbiota after birth, which is necessary for 

healthy growth (Yao et al., 2021). Disturbances in the infant GIT microbiome characterised by the 

overrepresentation of potentially harmful taxa have been linked to persistent disease, including 

immunological disorders later in life and acute chronic inflammation (Prescott, 2013; Cox et al., 2014; 

Stiemsma & Turvey, 2017; Olin et al., 2018). It has also been demonstrated that factors related to the 

establishment of the GIT microbiome, such as delivery mode and feeding type (Schwartz et al., 2012; 

Jakobsson et al., 2014; Bäckhed et al., 2015; Madan et al., 2016; Reyman et al., 2019), are important 

factors in the development of infections (Laubereau et al., 2004; Duijts et al., 2010; Ladomenou et 

al., 2010; Dieterich et al., 2013; Bosch et al., 2016; Reyman et al., 2019 ).  

Numerous theories have been proposed to explain sudden unexpected infant death (SUDI), including 

microbiological and immunological factors (Gleeson et al., 2004). In 2017, Leong et al. investigated 

whether the infant's intestinal microbiome, such as carriage of toxigenic bacteria, could be associated 

with SUDI. Stool samples from 44 cases and 44 age-matched controls were collected. Both bacterial 

alpha diversity and unconstrained ordination were used to study the microbiota composition and 

compare the results between the two groups. The intestinal carriage of Staphylococcus aureus (S. 

aureus), Clostridioides difficile and pathogenic Escherichia coli were detected using quantitative 

polymerase chain reaction (PCR) assays. The microbiota diversity in SUDI cases was not 

significantly different from the controls. Species richness and age were positively associated. Only a 

few South African studies have examined the microbiome of the human GIT. These are usually birth 

cohort studies involving infants under one year of age (Claassen-Weitz et al., 2018; Wood et al., 

2018; Brown & Jaspan, 2020; Naudé et al., 2020). There has been very little research on the GIT 

microbiome and its role in SUDI, especially in South Africa. This section aims to profile the 

microbiome in stool collected from SUDI cases compared to stool collected from age-matched, 

apparently healthy infants. 

7.2 Materials and methods 

7.2.1 Sample collection 

Stool samples from 34 SUDI cases were included in this study. In accordance with the Forensic 

Pathology case record files, 16 deaths were attributed to SIDS, 4 to gastroenteritis, and 14 to 
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respiratory tract infections. As a control group, stool samples were collected from 11 age-matched, 

apparently healthy infants. 

7.2.2 DNA Extraction  

Stool samples were collected in sterile leak-proof containers and stored in DNA/RNA Shield™ 

(Zymo Research, California, USA) at -80°C until analysis. DNA was extracted using QIAamp® 

PowerFecal® Pro DNA Kit (QIAGEN®, Cape Town) according to the manufacturer’s instructions. A 

mixture of approximately 250 mg of stool and 800 µL of Solution CD1 was added to the PowerBead 

Pro tube. Brief vortexing was performed to ensure that the contents were thoroughly mixed. After 

disrupting the stool with the Qiagen TissueLyser LT (QIAGEN, Hilden, Germany) for 5 minutes at 

25 Hz, it was centrifuged for 1 minute at 15 000 x g.  

The supernatant was transferred to a clean 2 mL microcentrifuge tube provided, and 200 µL Solution 

CD2 was added and vortexed for 5 seconds. After centrifugation for 1 minute at 15 000 x g, 700 µL 

supernatant was transferred again to a clean 2 mL microcentrifuge tube. A total of 600 µL of Solution 

CD3 was then added and vortexed for 5 minutes and 650 µL of the lysate was loaded onto the MB 

Spin Column and centrifuged for 1 minute at 15 000 x g. The flow-through was discarded and the 

rest of the lysate was passed through the MB Spin Column. The column was placed in a 2 mL 

collection tube, washed with 500 µL of Solution EA and centrifuged at 15 000 x g for 1 minute. Once 

again, the flow-through was discarded and the column washed a second time with 500 µL Solution 

C5 and centrifuged at 15 000 x g for 1 minute once again. Once more, the flow-through was discarded, 

and the column was transferred to a new 2 mL tube and centrifuged at 16 000 x g for 2 minutes. After 

the column was placed in a new 1.5 mL elution tube, 50 µL of Solution C6 was added to the matrix. 

This was centrifuged at 15 000 x g for 0 minute. 

The Qubit® dsDNA HS Assay Kit (Life Technologies™, Johannesburg) was used according to the 

manufacturer's instructions, Briefly, the reactions were set up with two standards for each sample. 

The Qubit® working solution was prepared in a 1:200 dilution with Qubit® DNA in Qubit® DNA 

Buffer (Table 7.1). 

Table 7.1:  Reagents used for DNA quantification 

Reagent Volumes for Standards Volumes for Samples 

Working solution 190 μL 199 μL 

Standard 10 μL - 

Sample - 1 μL 

Total volume 200 μL 200 μL 
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7.2.3 PCR assay 

The genomic DNA was diluted to 5 ng/µL, frozen at -20°C and delivered on ice to Inqaba 

Biotechnical Industries (Pty) for PCR amplification. The PacBio Sequel IIe System platform was 

used to sequence the full-length 16S rRNA gene amplicon. The PCR was performed using the Q5® 

High-Fidelity 2X Master Mix (New England Biolab, USA), the reaction volume was 25 µL, 

consisting of 12.5 µL Q5 High-Fidelity 2X Master Mix, 1.25 µL each of amplicon PCR 27 Forward 

and 1492 Reverse primers (10 μM each) (Table 7.2), 1 µL template DNA and 9 µL nuclease-free 

water. Table 7.3 illustrates the cycling parameters. 

Table 7.2:  Modified (5’amino-PB M13 adaptor) universal full length 16S primers 

Primer name Primer sequence 5’-3’ Reference 

27f 5AmMC6/gtaaaacgacggccagt AGRGTTYGATYMTGGCTCAG Lane, 1991 

1492r 5AmMC6/caggaaacagctatgac RGYTACCTTGTTACGACTT Lane, 1991 
 

Table 7.3:  PCR thermocycling conditions 

Step Temperature (°C) Duration Cycle 

Initial denaturation 95°C 3 min 1 

Denaturation 98°C 20 sec 1 

Annealing 57°C 15 sec 2 

Extension 

72°C 60 sec 

20 
98°C 20 sec 

65°C 15 sec 

72°C 60 sec 

Final extension 72°C 5 min 1 

 4°C 5 min 1 

Hold 10°C ∞  
 

7.2.4 PacBio full-length 16S rRNA sequencing 

The Unsupported Full-Length 16S Amplification, SMRTbellTM Library Preparation and Sequencing 

Protocol (Pacific Biosciences of California, Inc) was followed to prepare amplicons for PacBio 

SMRT sequencing. PacBio M13 barcodes were used to label the full-length 16S rRNA amplicons 

from the first PCR for multiplexing in a second round PCR. The PCR was performed using the Kapa 

HiFi HotStart ready reaction mix (Kapa Biosystems, Roche, Basel, Switzerland).  
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The reaction volume was 25 µL, consisting of 12.5 µL KAPA HiFi Hotstart ReadyMix; 2.5 µL each 

of M13 forward Barcoded Primer and M13 reverse Barcoded Primer (0.3 μM each), 1 µL Round 1 

PCR products and 6.5 µL HPLC Water. PCR cycling conditions are outlined in Table 7.4. Following 

PCR amplification, the second-round products were visualised on an agarose gel. AMPure PB beads 

were used to purify amplicons (PacBio, USA). The PCR reaction volume of 25 µL was filled with 

25 µL of nuclease-free water, followed by 30 µL of bead solution. Following purification, Qubit 

dsDNA HS was used to quantify the amplicons and normalised to 10 nM for pooling. 

Table 7.4:  Cycling conditions for the 2nd round PCR 

Step Temperature (°C) Duration 

1 95°C 3 min  

2 98°C 20 sec 

3 60°C 15 sec 

4 72°C 60 sec 

5 Repeat steps 2 to 4 

6 98°C 20 sec 

7 65°C 15 sec 

8 72°C 60 sec 

9 Repeat steps 6 to 8 (20 cycles total) 

10 72°C 5 min 

11 4°C ∞ 
 

SMRTbell Express Template Prep Kit 2.0 (PacBio, USA) was used for the construction of the 

SMRTBell library on the pooled, barcoded amplicon samples. As part of the library construction 

process, DNA damage repair, DNA end repair/A-tailing and adapter ligation were performed prior to 

purification with AMPure PB beads. To remove damaged SMRTbell templates, each library sample 

was nuclease-treated, followed by a second purification step with AMPure PB beads. The PacBio 

Sequel II system was used for sequencing the pooled amplicon mixes. 

7.2.5 Sequence Data Analysis 

Raw subreads were processed through the SMRTlink (v9.0). Based on the Circular Consensus 

Sequences (CCS) algorithm, highly accurate reads (> QV20) were generated. To process these highly 

accurate reads, vsearch (https://github.com/torognes/vsearch) was used to perform trimming, 

dereplication, chimeral removal and OTU clustering (at 97%). On the Stellenbosch University high 

performance computing cluster 2, demultiplexed single-end FASTQ sequences were imported and 
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analysed utilising the Quantitative Insights Into Microbial Ecology (QIIME2 2022.8) bioinformatics 

platform (Bolyen et al., 2019).  

Sequence QC was performed using DADA2 plugin and taxonomic analysis was performed on the 

SILVA 138 99% OTU V4 region database (https://docs.qiime2.org/2022.8/data-resources/). 

Phylogenetic diversity analysis was performed using mafft-fasttree plugin (Appendix E). 

At a sampling depth of 8 062 bp, alpha diversity (diversity within samples) was performed using the 

observed features diversity metrics (richness of a community as measured qualitatively) (Faith, 1992). 

As part of the beta diversity (diversity between samples), the unweighted Uni-Frac (dissimilarities 

between communities are assessed qualitatively using phylogenetic relationships between the 

features) (Lozupone & Knight, 2005) and weighted Uni-Frac (dissimilarities between communities 

are assessed quantitatively using phylogenetic relationships between the features) (Lozupone et al., 

2007) dissimilarity metrics were used.  

To determine statistical significance for alpha diversity, Kruskal–Wallis pairwise tests and 

Benjamini–Hochberg False Discovery Rate corrections (Benjamini and Hochberg 1995) were used 

when necessary. For beta diversity, PERMANOVA with BH-FDR adjustment was used to determine 

the significance of differences. A p value of < 0.05 was considered statistically significant for both 

alpha and beta diversity. 

7.3. Results 

7.3.1 Epidemiological data 

A total of 45 stool samples were analysed, including 34 SUDI cases (61.8% males and 38.2% females) 

with a median age of 10 weeks (Interquartile Range [IQR]: 6–20) and 11 samples (45.4% males and 

54.6% females) from apparently healthy infants with a median age of 22 weeks (IQR: 10.5–36.25) 

(Table 7.5). 

7.3.2 Taxonomic profile of controls and various causes of death 

The various causes of death were categorised as gastroenteritis, respiratory tract infections and SIDS. 

It was observed that Bacteroidota was the most phylum in control samples (10/11, 90.9%), while 

Proteobacteria were more abundant in gastroenteritis cases (2/4, 50%), Firmicutes were more 

abundant in respiratory tract infections (6/14, 42.9%) and Actinobacteriota in SIDS cases (6/16, 

37.5%) (Figure 7.1). Control group is indicated by the red block. 
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Table 7.5:  The sociodemographic profiles of the SUDI and control groups 

Sociodemographic factors SUDI Cases (n, %) Controls (n, %) 

Age in weeks (Median, (IQR)) 10 (6.0-20.0) 22 (10.5-36.3) 

Sex Male 21 (61.8) 5 (45.4) 

 Female 13 (38.2) 6 (54.6) 

Mode of Delivery Normal Vaginal Delivery 16 (47.1) 6 (54.6) 

 Caesarean Section 16 (47.1) 5 (45.4) 

 Unknown 2 (5.8) 0 (0.0) 

Feeding method Breastfed 14 (41.2) 1 (9.1) 

 Bottle-fed 6 (17.6) 7 (63.6) 

 Mixed bottle- and breastfed 11 (32.4) 3 (27.3) 

 Unknown 3 (8.8) 0 (0.0) 

Premature Yes 13 (38.2) 3 (27.3) 

 No 21 (61.8) 5 (45.4) 

 Unknown 0 (0.0) 3 (27.3) 

Place of birth Hospital 25 (73.5) 9 (81.8) 

 Clinic 3 (8.8) 0 (0.0) 

 Home 3 (8.8) 2 (18.2) 

 Unknown 3 (8.8) 0 (0.0) 

Position placed to sleep Prone 9 (26.5) 1 (9.1) 

 Supine 2 (5.9) 5 (45.4) 

 Side 15 (44.1) 5 (45.4) 

 Unknown 8 (23.5) 0 (0.0) 

Cause of death SIDS 16 (47.1) N/A 

 Respiratory infection 14 (41.2) N/A 

 Gastroenteritis 4 (11.8) N/A 
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Figure 7.1:  Phylum-level taxonomic profiles of the control and the various causes of death 

7.3.3 Taxonomic profile according to age in weeks 

Among both young (< 25 weeks of age) and older infants (> 25 weeks of age), Bacteroidota (18/45, 

40%) and Actinobacteriota (11/45, 24.4%) were the most abundant phyla (Figure 7.2). 

 
Figure 7.2:  Phylum-level taxonomic profiles of samples according to age in weeks 

7.3.4 Taxonomic profiles of controls and cause of death according to mode of delivery 

The mode of delivery was classified as either normal vaginal delivery or caesarean section. In the 

control group, Bacteroidota was the most abundant phyla in both vaginal delivery (6/11, 54.6%) and 

caesarean section (4/11, 36.4%). However, Firmicutes (5/9, 55.5%) dominated caesarean sections 

while Bacteroidota (3/8, 37.5%) dominated vaginal deliveries in the infection cases. Among SIDS 

cases, both Actinobacteriota (3/7, 42.9%) and Firmicutes (3/7, 42.9%) were observed in the caesarean 
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sections, whereas Bacteroidota (4/8, 50%) were abundant in vaginal deliveries. Due to unknown 

delivery modes, two samples were excluded from the visualisation (Figure 7.3).  

 
Figure 7.3:  Phylum-level taxonomic profiles of controls and cause of death according to mode of 

delivery 

7.3.5 Taxonomic profiles of controls and cause of death according to feeding method 

The feeding method of the infants were classified into three categories: bottle-fed, breastfed or both 

bottle-fed and breastfed. In the control group, Bacteroidota (10/11, 90.9%) was abundant in all three 

categories, with most of the controls being bottle-fed (7/11, 63.6%). According to the infection cases 

among the bottle-fed infants, Actinobacteriota (1/4, 25%), Firmicutes (1/4, 25.0%), Bacteroidota 

(1/4, 25.0%), and Proteobacteria (1/4, 25.0%) were equally abundant. Actinobacteriota (3/8, 37.5%) 

and Firmicutes (3/8, 37.5%) were more abundant among breastfed infants, whereas Firmicutes (3/6, 

60.0%) were more abundant among bottle and breastfed infants. In SIDS cases, Actinobacteriota (3/5, 

60.0%) were the most abundant phyla found in bottle and breastfed infants, while Bacteroidota (1/2, 

50%) and Firmicutes (1/2, 50%) were abundant in the bottle-fed infants. Bacteroidota (2/6, 33.3%), 

Firmicutes (2/6, 33.3%), and Actinobacteriota (2/6, 33.3%) were equally abundant in breastfed 

infants. There were three samples omitted from the visualisation due to their unknown feeding method 

(Figure 7.4). 
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Figure 7.4:  Phylum-level taxonomic profiles of controls and cause of death according to feeding 

method 

7.3.6 Taxonomic profiles of controls and cause of death according to the position the infant 

was placed to sleep 

The position the infants were placed to sleep is referred to as sleeping position for the purpose of this 

study and were classified into supine, side, and prone sleeping positions. In the control group, 

Bacteroidota were abundant in all three sleeping positions (10/11, 90.9%). Among the infection cases, 

Bacteroidota (3/6, 50%) were abundant in the supine and side sleeping positions, while Firmicutes 

(5/7, 71.4%) were abundant in the prone sleeping position. Among the SIDS cases, Firmicutes (4/10, 

40%) were abundant in the side sleeping position, Actinobacteriota (10/10, 100%) in the supine 

sleeping position, and Bacteroidota (5/10, 50%) and Proteobacteria (5/10, 50%) in the prone sleeping 

position. As a result of their unknown sleeping position, eight samples were omitted from the 

visualisation (Figure 7.5). 

 
Figure 7.5:  Phylum-level taxonomic profiles of controls and cause of death according to the position 

the infant was placed to sleep 
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7.3.7 Taxonomic profiles at the genus level of the control and the various causes of death 

Bifidobacterium were abundant among respiratory tract infection cases and SIDS cases, Bacteroides 

were abundant among controls, and Escherichia - Shigella abundant in gastroenteritis cases (Figure 

7.6). 

 
Figure 7.6:  Genus-level taxonomic profiles of the control and the various causes of death 

7.3.8 Alpha diversity 

Alpha diversity was significantly high in the control group compared to the infection and SIDS cases 

(Figure 7.7(c); (p=0.03 and p=0.007) respectively. In addition, normal vaginal births were associated 

with significantly higher diversity (Figure 7.7(a); p=0.01), while bottle-fed infants had a significantly 

higher diversity than both bottle- and breastfed infants (Figure 7.7(b); p=0.006). 

 
Fig 7.7 (a): Alpha diversity between mode of delivery 
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Fig 7.7(b): Alpha diversity according to infant feeding method of infants 

 
Fig 7.7(c): Alpha diversity between infection, SIDS, and the control group 

Figure 7.7:  Alpha diversity was measured by calculating observed features and Kruskal–Wallis 
pairwise test was used to perform statistical analysis 

7.3.9 Beta diversity  

According to the unweighted Uni-Frac dissimilarity metrics, a significant difference between 

infection cases and the control group (Figure 7.8(b); p=0.004). There were also significant differences 

between vaginal delivery and caesarean sections (Figure 7.8(a); p=0.03), Weighted Uni-frac 

dissimilarity metrics revealed a significant difference when the control group was compared to the 

infection and SIDS cases (Figure 7.8(f); p=0.001 and p=0.006) respectively.  

Significant differences were observed between bottle-fed infants and those that were both bottle- and 

breastfed, as well as bottle-fed compared to breastfed infants (Figure 7.8(c); p=0.02 and p=0.01) 

respectively. In addition, significant differences were also observed between vaginal delivery and 
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caesarean sections (Figure 7.8(d); p=0.009) as well as between the supine and prone sleeping 

positions (Figure 7.8(e); p=0.04). 

 
Fig 7.8(a): Unweighted Uni-Frac showing differences between mode of delivery 

 
Fig 7.8(b): Unweighted Uni-Frac showing differences between cause of death and the control group 

 

Fig 7.8(c): Weighted Uni-Frac showing differences between feeding method 
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Fig 7.8(d): Differences between modes of delivery as shown by weighted Uni-Frac 

 
Fig 7.8(e): Differences between the position the infant was placed to sleep as shown by weighted Uni-Frac 

 
Fig 7.8(f): Weighted Uni-Frac showing differences between cause of death and the control group 

Figure 7.8:  Beta diversity was measured using unweighted Uni-Frac and weighted Uni-Frac 
dissimilarity metrics and PERMANOVA was used to perform statistical analysis 
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7.4. Discussion 

This pilot studied aimed to describe the GIT microbiota of apparently healthy controls and SUDI 

cases with a final cause of death of SIDS or infection. In addition, the risk factors associated with 

SUDI were analysed using diversity metrics and the taxonomic composition profiled. 

Among the most abundant organisms in the GIT are Firmicutes, Bacteroidota, Proteobacteria, and 

Actinobacteria (Brown et al., 2013; Power et al., 2014). These organisms were also confirmed in the 

control group as well as the SUDI cases. It has been reported in the literature that anaerobes such as 

Bifidobacteria proliferate during periods of low oxygen availability and nutrient scarcity (Gates et 

al., 2021), and this could possibly be the reason for the high abundance of Bifidobacteria in SIDS and 

infection cases in the current study. Similarly, Li and colleagues found an enrichment of phyla such 

as Firmicutes among paediatric patients with frequent respiratory tract infections (Li et al., 2019). 

Gram-negative bacteria, particularly Proteobacteria, can inhibit certain innate immune responses, 

causing acute gastroenteritis due to the production of flagellin or toxigenic lipopolysaccharides (Adler 

et al., 2005). Proteobacteria and Escherichia - Shigella were found to be comparatively abundant in 

cases with gastroenteritis. 

There was an abundance of Actinobacteria in the younger infants, whereas Bacteroidota were 

abundant in the older infants. This is consistent with Actinobacteria genus Bifidobacterium, becoming 

abundant soon after birth. The Bifidobacterium-dominated microbiota persists until solid foods are 

introduced (Palmer et al., 2007; Vallès et al., 2014). As solids are introduced to older infants, there is 

an increase in phyla abundance, especially an increase in Bacteroidota (Koening et al., 2011; Vallès 

et al., 2014). 

During vaginal delivery, infants are colonised by similar flora to that colonising the maternal vagina, 

while during caesarean delivery, infants are colonised by maternal skin bacteria rather than vaginal 

bacteria (Dominguez-Bello et al., 2010; Montoya-Williams et al., 2018). In the absence of mother-

to-child transfer during vaginal delivery, the GIT is colonised primarily by microbes from the 

environment (Stokholm et al., 2016). Vaginally delivered infants have a high abundant of Bacteroides 

species in their GIT (Fouhy et al., 2012; Milani et al., 2017), as in the current study, Bacteroidota 

was found in all the vaginally delivered infants. Actinobacteria were detected in less than 50% of 

caesarean-born infants among the SIDS cases. This finding is similar to previous reports that 

caesarean-born infants harbour fewer Bifidobacterium and Bacteroides species (Adlerberth et al., 

2006; Penders et al., 2006; Biasucci et al., 2008). The dominance of Firmicutes in caesarean-born 

infants in infection and SIDS cases in the current study is similar to previous reports that showed 
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caesarean section delivery exhibited decreased Bacteroidetes colonisation and increased Firmicute 

abundance (Jakobsson et al., 2014; Rutayisire et al., 2016; Yang et al., 2019).  

Neonatal GIT microbiota colonisation patterns are heavily influenced by nutrition, whether 

breastmilk or formula (Gritz & Bhandari, 2015). In breastfed infants, Bifidobacterium species 

represent the abundant Actinobacteria (Harmsen et al., 2000; Jost et al., 2012) and lactic acid bacteria 

represent the abundant Firmicutes phylum (Turroni et al., 2012; Bergström et al., 2014). This is 

similar to the phyla found in the current study. In the breastfed SIDS cases and controls, Bacteroidota 

may be present due to non-digestible carbohydrates in breastmilk that ferment in the colon and 

support the growth of probiotics Bifidobacterium and Bacteroides (Jain & Walker, 2015). The GIT 

microbiota of formula-fed infants is dominated by Bifidobacterium and Bacteroides (Harmsen et al., 

2000), in addition to Escherichia coli, Clostridioides difficile, Prevotella, and Lactobacillus 

(Piacentini et al., 2010; Madan et al., 2012; Jost et al., 2012; Di Mauro et al., 2013; Gomez-Llorente 

et al., 2013; Torrazza & Neu, 2013; Power et al., 2014; Jain & Walker, 2015).  

The presence of Bacteroidota in the controls, who were both bottle- and breastfed, suggests that these 

infants had GIT microbiota similar to formula-fed infants. Similarly, it has been reported that 

supplementing breastfed infants with formula, even in relatively small amounts, can result in the 

transition in feeding pattern from breastfed to formula-fed (Mackie et al., 1999; Guaraldi & Salvatori, 

2012). In 2011, Hascoët et al. published a study that demonstrated that if infants were fed a formula 

consisting mainly of whey protein, containing low levels of phosphate and protein, similar in 

composition to human milk, they developed a faecal microbiota profile resembling that of breastfed 

infants. It was also found that the GIT composition of breast- and bottle-fed infants in the infection 

and SIDS cases was comparable to that of breastfed infants. 

SUDI has been most often associated with the prone sleeping position (Willinger et al., 1994). In a 

study conducted by Highet et al. (2014), the prevalence of S. aureus colonisation among SUDI cases 

found in the prone position was higher than among those found on their sides or in the supine position. 

This contrasts with the bacteria found in the current study. Currently, there is no other literature 

describing the composition of the infant's GIT in relation to various sleeping positions. Novel results 

have thus been obtained in this study. The phyla identified in the study are however prominent in the 

GIT (Brown et al., 2013; Power et al., 2014). 

The statistically significant differences in alpha and beta diversity (unweighted and weighted Uni-

frac) observed between vaginal delivery and caesarean section may be a result of complications 

during pregnancy, antibiotics being administered during delivery and inactivity of the mother that 

occurs during a caesarean section (Stinson et al., 2018). The first inoculum in caesarean section babies 
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is not derived directly from the mother's vaginal microbiota during delivery. Instead, it originates 

from other maternal sources, such as the mother's skin or mouth, or from non-maternal sources, such 

as the environment in which the baby was delivered (Milani et al., 2017). To restore the GIT 

microbiota of an infant after a caesarean section, Dominguez-Bello et al. (2016) exposed infants to 

vaginal fluid. In the 30 days following the delivery of the infant, the microbiota of the mouth, GIT, 

and skin improved significantly. In accordance with these findings, it is evident that the vertical 

transfer of maternal vaginal microbes following delivery can be partially reversed. 

In the current study, the beta diversity metric (weighted Unifrac) indicates that the diversity of bottle-

fed infant groups is lower than that of breastfed infants. A comparison of human breastmilk and 

formula has shown that breastmilk has superior health benefits for infants, particularly in protecting 

intestinal barrier integrity and mucosal defences (Stewart et al., 2018). Additionally, immunoactive 

factors, such as polymeric IgA, antibacterial peptides, and elements of the innate immune response, 

can influence health-promoting microorganisms (Walker & Iyengar, 2015). Although commercial 

formulas are increasingly similar in composition to breastmilk, the microbiota of breastfed and 

formula-fed infants differs (Baumann-Dudenhoeffer et al., 2018). Breastfed infants generally have 

higher levels of faecal short-chain fatty acids, which are the main products of human milk 

oligosaccharides fermentation (Salli et al., 2019). Moreover, supplementing infants who do not 

receive breastmilk exclusively with a breastmilk-like formula may allow them to develop a partially 

breastfed GIT microbiota (Gritz & Bhandari, 2015), explaining the significant differences observed 

in the alpha and beta (weighted Uni-frac) diversity metrics between bottle-fed infants and those who 

were both bottle- and breastfed. 

Escherichia-Shigella was the predominant genus among infants placed to sleep in the prone position, 

whereas the genus Bacteroides dominated among infants placed to sleep in the supine position in the 

current study. This supports the difference observed in beta diversity (weighted Uni-frac) between 

the prone and supine sleeping positions. Other studies compared the gut microflora of 52 SIDS infants 

with 102 faecal samples from age-matched live comparison infants and found that S. aureus was 

significantly associated with the prone sleeping position. This suggests sleeping in the prone position 

could increase the risk of ingesting or inhaling bacteria that are present on the bed surface (Highet et 

al., 2014). Additionally, skin scales containing S. aureus and E. coli are shed onto sleeping surfaces, 

causing the infants to inhale or ingest these bacteria (Goldwater & Bettelheim, 2013). The prone 

sleeping position also increases the risk of colonisation by inducing temperature-dependent toxins, 

such as pyrogenic toxins of S. aureus, since prone sleeping significantly increases the nasal 

temperature of the infant (Molony et al., 1999). 
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The results suggest that the diversity and abundance of the GIT microbiota in infection cases 

significantly decreased compared to the control group. Studies have shown that gastrointestinal 

infections may affect aerobic bacteria since these bacteria use oxygen to obtain energy and 

metabolism (Swidsinski et al., 2008; Conway & Cohen, 2015; Gao et al., 2018). Moreover, 

respiratory tract infections can promote the emergence of potentially harmful bacteria. The presence 

of infection appears to inhibit bacteria growth that benefits health (Wang et al., 2014). Significant 

differences were observed in alpha diversity and beta diversity (weighted Uni-frac) between the cases 

of SIDS and the control group. In comparison to healthy controls, SUDI may be associated with an 

altered GIT microbiome characterised by innate lymphoid cells and pro-inflammatory 

microorganisms (Goldwater, 2015).  

7.5 Conclusion  

In SUDI cases and controls, the GIT microbiome was similar to that described previously for infants 

in the first year of life, the predominant bacteria belonged to the phyla Firmicutes, Bacteroidota, 

Proteobacteria and Actinobacteria. The study also revealed that the GIT composition of infants who 

died from infection and SIDS was different than the GIT composition of the control group. Other 

studies specifically screened for C. innocuum, C. Perfringens, C. difficile, Bacteroides 

thetaiotaomicron and S. aureus, but this was the first study to perform full-length sequencing to 

identify organisms in infants who died from infection and SIDS and apparently health, live infants. 

Further research with a larger sample size may be particularly useful in determining whether these 

differences contribute to the development of SUDI. 
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Chapter 8: Conclusion 

The overall aim of this study was to investigate the presence of bacterial and viral pathogens in the 

gastrointestinal tract in SUDI cases admitted to Tygerberg Medico-Legal Mortuary over a 1-year 

period between June 2017 and May 2018, thus including all four seasons in a single year. As an 

exploratory pilot study, the GIT microbiome of the SUDI cases was compared to the GIT microbiome 

of seemingly healthy living infants who served as a control group. 

Several sociodemographic risk factors were compared with the cause of death, with the only highly 

significant association being observed between the age in weeks and the cause of death. The results 

suggest that younger infants may have a higher probability to be classified as SIDS compared to 

infection. This is in line with common practices where older infants are usually exposed to more 

pathogens when attending creches or day-care centres and have a higher probability of contracting 

infection from the environment or other individuals.  

The identification of certain sociodemographic risk factors has been the focus of research worldwide 

and is primarily aimed at finding positive predictive factors to guide modifiable behaviour in parents 

and communities to lower SUDI rates. This is an essential first step in investigating a disease with no 

known cause. 

E. coli was detected in the majority of the SUDI cases. Qualitative analysis confirmed that the most 

common pathogenic E. coli strains (EAEC, EPEC, and ETEC) found in these cases are similar to 

those previously described in the literature. Coinfections between two or more strains were the most 

common. Literature describes similar mixed DEC infections. Although PMI and O157 showed a 

significant association in this study, it is unclear what role O157 plays during the PMI, and further 

research is necessary to clarify this. 

The study further indicated that RV continued to be the most prevalent enteric virus despite the 

availability of the RV vaccine as part of the SA-EPI. In addition, NoV has emerged as a predominant 

paediatric viral enteric pathogen since the RV vaccine introduction. As Histo-blood group antigen 

expression in the mucosa can influence the risk of NoV infection, RV infections may also follow a 

similar pattern. The frequency of autolysis on the histological slides made analysis difficult. As a 

result of the statistical significance observed between NoV GI and GII and the position the infant was 

placed to sleep, it is imperative that continuous campaigns are conducted throughout the community 

to raise awareness of the risks associated with prone sleeping. 

The study revealed that G1P[8], G2P[4], G9P[8] and G8P[4] were the most prevalent genotypes of 

RV, with G1P[8] and G2P[4] having the highest prevalence. The presence of these genotypes at the 
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time the samples were collected may suggest that they were still circulating in South Africa. An 

accurate conclusion, however, would require a larger sample size. According to the phylogenetic 

analysis, two samples from the current study were closely related to the Rotarix vaccine strain. 

However, it was unknown whether these infants had indeed received the vaccine. Additional studies 

will be necessary to determine whether observed vaccine strains were transmitted horizontally or 

could be a result of vaccine shedding. 

Finally, this study described the GIT microbiome of apparently healthy controls and infants who died 

from SIDS or infection. The findings indicated that the most prevalent organisms in the GIT of the 

infants included in this study were Firmicutes, Bacteroidota, Proteobacteria, and Actinobacteria, in 

agreement with the literature, with Bifidobacterium being more prevalent in SIDS and infection cases. 

This may suggest that there is a difference in GIT microbiota between the control group and the cases. 

However, further research is required to determine the extent of these differences and their impact in 

causing death. 

8.1 Limitations of the study 

A major limitation of this study was the small number of controls included. A suitable control group 

would be infants who died from unnatural causes. However, due to several factors and ethical 

constraints, this was not possible, as samples of these infants were not used for determining the cause 

of death, and therefore are not covered by the waiver of consent. Healthy babies represent the closest 

control group from which samples could be collected, but the findings would have been more 

significant if a larger number of control samples were available for comparison purposes. 

The medical history of the SUDI cases, i.e., whether they had diarrhoea before death, was not always 

available or subject to recall bias when the parents completed the questionnaire upon admission of 

the infant to the Tygerberg Medico-legal Mortuary.  

A lack of resources prevented further subtypes of EPEC from being studied.  

As a result of the long PMI, reviewing histological slides was generally difficult. The constant volume 

of cases admitted to the Tygerberg Medico-legal Mortuary, criminal cases often take precedence over 

infant cases, often resulted in a longer PMI. Furthermore, these infants must be identified by their 

parent(s) and their sociodemographic and medical history must be provided to the pathologist before 

an autopsy can be conducted. 

It is not possible to accurately predict the viral genotypes circulating in the study population due to 

the small sample size and unequal distribution of samples between cases and controls. As a result of 
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time constraints, it was not possible to conduct further troubleshooting in order to include more 

samples in the study. 

Based on the small sample size and convenient sampling method used for the microbiome section of 

this study, bias was introduced. Due to the high cost of microbiome research, the number of samples 

that could be used in the study was also limited. As the laboratory work for this area was outsourced, 

the negative controls indicated that environmental contamination might have occurred during the 

PCR process.  

8.2 Future directions 

It is recommended that future studies include larger case and control groups. As a result, a better 

understanding of how these two groups compare can be gained, and bias will be reduced.  

Additional subtyping of EPEC would be beneficial, as aEPEC is the fifth most commonly detected 

pathogen in infants who die from acute gastroenteritis. An in-depth investigation of the association 

between certain strains of E. coli and death is necessary, as the exact mechanisms and roles need to 

be systematically understood. 

Additional analysis is necessary to determine whether the observed RV vaccine strain was the result 

of shedding or horizontal transmission. It is also recommended to consider whole genome sequencing 

in order to gather a more comprehensive picture of RV epidemiology by providing insight into the 

strains detected, their origins, and reassortment patterns. 

The extent of the differences in the GIT microbiota between the cases and the controls needs to be 

established to determine their impact on death. Additionally, further investigation is needed regarding 

the GIT microbiota when sleeping in different positions, as previous studies have only investigated 

prone sleeping positions. As part of further microbiome analysis, shotgun metagenomics could be 

used as a more sensitive method. 

Future research should not only focus on the viruses that are present, but also into their characteristics 

and significance.  

It would be useful to conduct a multi-center study in which post-mortem samples could be collected 

from a larger number of deceased infants and the findings compared across numerous medico-legal 

mortuaries.  

Furthermore, it would be beneficial to investigate the markers of inflammation. 
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Further troubleshooting and rerunning of the denoising step were also not possible to prevent the loss 

of so many reads for differential abundance analysis. 

There may be value in expanding the studies to also include virome profiling in such cases. It has 

been widely demonstrated that bacterial communities play an important role in human health and 

disease. It is, however, becoming increasingly apparent that the GIT virome also plays an important 

role in the pathogenesis of many diseases. Profiling the GIT virome will therefore provide insight not 

only into the viruses that are present, but also into their characteristics and significance. 
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Appendix C: Informed consent and Questionnaire – Control cases 

 

STELLENBOSCH UNIVERSITY 
CONSENT TO PARTICIPATE IN RESEARCH 

INVESTIGATING PATHOGENS OF THE GASTROINTESTINAL TRACT (GIT) IN SUDDEN AND UNEXPECTED 
DEATH IN INFANCY (SUDI) CASES AT THE TYGERBERG MEDICO-LEGAL MORTUARY, COMPARED TO AN AGE-
MATCHED HEALTHY CONTROL GROUP. 

HREC Number S16/10/214 Approved on 30/01/2018. 

Sudden and unexpected death in infancy (SUDI) is where an infant dies suddenly and without obvious cause, or cot-death, 
before the age of 1 year. 

You are hereby invited to take part in a research study conducted by Ms Danielle Cupido [BSc (Medical Bioscience), 
BSc (Honours) (Medical Bioscience), MPhil (Biomedical Forensic Science)], from the Department of Pathology, Division 
of Medical Virology at Stellenbosch University. The results from this research will be used to write a research dissertation 
and articles in medical and/or scientific journals.  

Your infant was selected as a healthy control to collect information on the bacteria and viruses present in the digestive 
tract of infants. This will be compared to the bacteria and viruses that are found in cot-death cases to try and understand 
what makes certain infants more prone to cot-death than others. This is the first study of its kind in South Africa. 

1. PURPOSE OF THE STUDY 

The goal of this study is to identify pathogens that are present in the digestive tract of infants that died as a result of cot-
death and were admitted to the Tygerberg Medico-Legal Mortuary. Stool samples will be collected from healthy control 
infants and the results will be compared to the pathogens found in digestive tract of the cot-death cases. 

2. PROCEDURES 

If you agree to take part in this study, the following will be done: 

Once your infant’s nappy has been soiled, the informed consent form will be read and explained to you. If you understand 
and agree to take part in the study, you will be asked to sign the form. A copy of the signed form will be given to you. 

A small amount of the stool inside the nappy will be collected directly from the nappy and placed into a special container. 
Where it isn’t possible to collect stool, a swab sample will be taken from the soiled nappy. No samples will be collected 
from your baby. 

You will be asked specific questions and your answers will be written down on a questionnaire. These questions include 
general information, such as date of birth, gender (male or female), type of birth (normal birth or caesarean section), 
gestational age (at how many weeks pregnancy was the baby born), feeding (breast vs bottle), home and sleeping 
environment (type of home and room, type of bedding, sharing of beds, position in which the baby sleeps), etc. Other 
information that might be important for us will also be collected, such as any medication (e.g., antibiotics) your baby has 
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received or is currently using, signs and symptoms of any illness (e.g., diarrhoea, cold, coughing, etc) over the last 3 to 4 
weeks, vaccinations received to date, etc. 

3. POTENTIAL RISKS AND DISCOMFORTS 

There are no risks involved, because we will only collect stool from the nappy and not directly from the baby.  

4. POTENTIAL BENEFITS TO SUBJECTS AND/OR TO SOCIETY 

You will most personally benefit from this study, but we hope to identify risk factors that increase the chances of cot-
deaths. If early detection can lead to prevention of sudden infant deaths, it could lead to a decrease in the number of cot-
deaths in the community. If any treatable condition of your baby is identified through our research, we will inform you 
immediately to enable you to seek medical care. 

5. PAYMENT FOR PARTICIPATION 

There will be no payment received for participation in this study.  

6. CONFIDENTIALITY 

All information collected from you or obtained from your infant’s stool sample that can identify you will remain 
confidential and will only be made known with your permission or as required by law. Confidentiality will be ensured by 
using patient numbers instead of names and only the research team will have access to this information. 

7. PARTICIPATION AND WITHDRAWAL 

If you prefer not to have your infant take part or withdraw after the stool sample was collected, it will not affect your or 
your child's treatment at any healthcare facility in any way. 

8. IDENTIFICATION OF INVESTIGATORS 

If you have any questions or concerns about the research, please feel free to contact: 

Ms Danielle Cupido (Ph.D. Candidate/ Principal Investigator) 
Division of Medical Virology, Faculty of Medicine and Health Sciences 
Stellenbosch University/ NHLS, PO Box 241; CAPE TOWN, 8000, South Africa 
Cell: 0727996254, Email: daniellec@sun.ac.az 

Prof Corena de Beer (Supervisor) 
Division of Medical Virology, Faculty of Medicine and Health Sciences 
Stellenbosch University / NHLS, PO Box 241; CAPE TOWN, 8000, South Africa 
Tel: +27 21 938-9453; Fax: +27 86 6213268 
Email: cdeb@sun.ac.za 

Prof Andrew Whitelaw (Co-supervisor) 
Division of Medical Microbiology, Faculty of Medicine and Health Sciences 
Stellenbosch University / NHLS, PO Box 241; CAPE TOWN, 8000, South Africa 
Tel: +27 21 938-4032; Fax: +27 21 938-4005 
Email: awhitelaw@sun.ac.za 
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5. RIGHTS OF RESEARCH SUBJECTS 

You may change your mind at any time and withdraw from the study. You are not waiving any legal claims, rights or 
remedies because of your participation in this research study. If you have questions regarding your rights as a research 
subject, contact Ms Maléne Fouché [mfouche@sun.ac.za; 021 808 4622] at the Division for Research Development. 

SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE 

The information above was described to [me/the subject/the participant] by ___________________________________ 
[name of relevant person] in [Afrikaans/English/Xhosa/other] and [I am/the subject is/the participant is] in command of 
this language or it was satisfactorily translated to [me/him/her]. [I/the participant/the subject] was given the opportunity 
to ask questions and these questions were answered to [my/his/her] satisfaction.  

I hereby consent that the subject/participant may participate in this study. I have been given a copy of this form. 

________________________________________ _____________________________________________ 
(specify) 
Name of person giving consent Capacity of person giving consent (parent/guardian/caregiver) 

________________________________________ 
Name of Legal Representative (if applicable) 

________________________________________   ______________ 
Signature of Parent / Guardian or Legal Representative   Date 

SIGNATURE OF INVESTIGATOR  

 

I declare that I explained the information given in this document to ________________________________ [name of the 
subject/participant] and/or [his/her] representative ________________________________________ [name of the 
representative]. [He/she] was encouraged and given ample time to ask me any questions. This conversation was 
conducted in [Afrikaans/*English/*Xhosa/*Other] and [no translator was used/this conversation was translated into 
_________________________ by _______________________]. 

________________________________________  ______________ 
Signature of Investigator      Date 

Stellenbosch University https://scholar.sun.ac.za



213 

 

Stellenbosch University  
Faculty of Medicine and Health Sciences  

Infant Healthcare and Socio-Demographics Questionnaire  

SECTION A: 
About the infant 

1. Patient number:   

2. Gender:   

3. Race:  

4. Date of birth:  

5. Age:  

6. Where was the baby born?  Hospital Clinic Home Other 

 How was the baby born?   Normal vaginal delivery Caesarean section 

7. Name of hospital / clinic / other 

8. How much did the baby weigh? 

9. Was the baby  Premature Full Term Post-dates (Overdue) 

10. If the baby was premature, how premature was it? 

11. Does the mother carry the baby on her back? 

12. Is the baby  Breast fed Bottle / formula fed Both 

13. What other food is used to feed the baby? 

14. Is the baby placed on a bed / cot to sleep? 

15. If placed on a bed / cot, what type of mattress 

16. Was the mattress covered with a blanket or sheet? Yes No 

17. In what position is the baby placed when put to sleep? Back Stomach Side Other 

18. Does the baby sleep in the same bed as the mother? 

19. How many other people sleep on the same bed as the baby? 

SECTION B: 
Infant’s medical history 

1. At any time in the infant’s life, does s/he have a history of?  

a. Allergies (food, medication, or other) 

b. Abnormal growth or weight gain/ loss) 

c. Others  

Unknown Yes No 

2. Does the infant have any birth defect(s)? Yes No 
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3. Describe 

4. Is the baby ill?  

If yes, what is wrong and for how long? 

5. Has the baby received any medication (e.g., antibiotics) or is the baby currently using any medication? 

If yes, what medication? 

6. Which vaccinations has the baby received to date? 
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Appendix D: Blast results for all obtained sequences from the screening of the VP7 and VP4 

genes. 
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Appendix E: QIIME input commands 

#Import sequence reads (fastq) as a qiime artifact 
qiime tools import \ 
 --type 'SampleData[SequencesWithQuality]' \ 
 --input-path danielle-manifest.txt \ 
 --output-path single-end-demux.qza \ 
 --input-format SingleEndFastqManifestPhred33V2 

#Denoise pacbio data and chimaera removal with dada2; also generates ASVs and the resulting feature table 
and representative sequences 

#The sequences given are the 27F and 1492R 16S primers used during for the sequencing run 
qiime dada2 denoise-ccs \ 
 --i-demultiplexed-seqs single-end-demux.qza \ 
 --p-front AGRGTTYGATYMTGGCTCAG \ 
 --p-adapter RGYTACCTTGTTACGACTT \ 
 --p-n-threads 10 \ 
 --o-table table.qza \ 
 --o-representative-sequences rep-seqs.qza \ 
 --o-denoising-stats stats.qza 

#Generate statistics from the dada2 run  
qiime metadata tabulate \ 
  --m-input-file stats.qza \ 
  --o-visualization stats.qzv 

#Generate statistics from the dada2 run - tells you how much data passed filters 
qiime metadata tabulate \ 
  --m-input-file stats.qza \ 
  --o-visualization stats.qzv 

#Generate visualisations for the feature table and representative sequences 
qiime feature-table summarize \ 
  --i-table table.qza \ 
  --o-visualization table.qzv \ 
  --m-sample-metadata-file danielle-metadata.tsv 

qiime feature-table tabulate-seqs \ 
  --i-data rep-seqs.qza \ 
  --o-visualization rep-seqs.qzv 

#Assign taxonomy to sequences using a classifier trained on the full-length 16S region from the SILVA 
database 
qiime feature-classifier classify-sklearn \ 
  --i-classifier silva-138-99-nb-classifier.qza \ 
  --i-reads rep-seqs.qza \ 
  --o-classification taxonomy.qza 

qiime metadata tabulate \ 
  --m-input-file taxonomy.qza \ 
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  --o-visualization taxonomy.qzv 

qiime taxa barplot \ 
  --i-table table.qza \ 
  --i-taxonomy taxonomy.qza \ 
  --m-metadata-file danielle-metadata.tsv \ 
  --o-visualization taxa-bar-plots.qzv 

# Feature tables must be created in order to filter data 

# Create a text file that contains only the sample-ids to be kept in the table 
qiime feature-table filter-samples \ 
  --i-table table.qza \ 
  --m-metadata-file samples-only.tsv \ 
  --o-filtered-table samples-only-filtered-table.qza 

 qiime taxa barplot \ 
  --i-table samples-only-filtered-table.qza \ 
  --i-taxonomy taxonomy.qza \ 
  --m-metadata-file danielle-metadata-unknown-blank.tsv \ 
  --o-visualization samples-only-taxa-bar-plots.qzv 

#Generate a phylogenetic tree - needed for some of the diversity metrics 
qiime phylogeny align-to-tree-mafft-fasttree \ 
  --i-sequences rep-seqs.qza \ 
  --o-alignment aligned-rep-seqs.qza \ 
  --o-masked-alignment masked-aligned-rep-seqs.qza \ 
  --o-tree unrooted-tree.qza \ 
   --o-rooted-tree rooted-tree.qza 

# Determine whether you need to rarefy your data and if so, at what sequencing depth 
qiime diversity alpha-rarefaction \ 
  --i-table table.qza \ 
  --i-phylogeny rooted-tree.qza \ 
  --p-max-depth 28303 \ 
  --m-metadata-file danielle-metadata.tsv \ 
  --o-visualization alpha-rarefaction.qzv 

#Run the core diversity metrics 
qiime diversity core-metrics-phylogenetic \ 
  --i-phylogeny rooted-tree.qza \ 
  --i-table samples-only-filtered-table.qza \ 
  --p-sampling-depth 8062 \ 
  --m-metadata-file danielle-metadata-unknown-blank.tsv \ 
  --output-dir core-metrics-results 

# Additional statistical testing for each group, based on metrics and groups of interest 
qiime diversity alpha-group-significance \ 
  --i-alpha-diversity core-metrics-results/shannon_vector.qza \ 
  --m-metadata-file danielle-metadata-unknown-blank.tsv \ 
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  --o-visualization core-metrics-results/shannon-group-significance.qzv 

qiime diversity alpha-group-significance \ 
  --i-alpha-diversity core-metrics-results/observed_features_vector.qza \ 
  --m-metadata-file danielle-metadata-unknown-blank.tsv \ 
  --o-visualization core-metrics-results/observed_features_vector.qzv 

qiime diversity beta-group-significance \ 
  --i-distance-matrix core-metrics-results/unweighted_unifrac_distance_matrix.qza \ 
  --m-metadata-file danielle-metadata.tsv \ 
  --m-metadata-column status \ 
  --o-visualization core-metrics-results/unweighted-unifrac-status-significance.qzv \ 
  --p-pairwise 

qiime diversity beta-group-significance \ 
  --i-distance-matrix core-metrics-results/weighted_unifrac_distance_matrix.qza \ 
  --m-metadata-file danielle-metadata.tsv \ 
  --m-metadata-column mode-of-birth \ 
  --o-visualization core-metrics-results/weighted-unifrac-birth-significance.qzv \ 
  --p-pairwise 

#Differential abundance with ANCOM 

#ANCOM recommends that features be present in at least 25% of samples and at least 20 times overall (p-
min-frequency) in order to remove filters 
qiime feature-table filter-features \ 
  --i-table samples-only-filtered-table.qza \ 
  --p-min-frequency 20 \ 
  --p-min-samples 11 \ 
  --o-filtered-table feature-frequency-filtered-table.qza 

#Add pseudocount (ANCOM does not like 0s) 
 qiime composition add-pseudocount \ 
  --i-table samples-only-filtered-table.qza \ 
  --o-composition-table comp-samples-only-filtered-table.qza 

#Run ANCOM based on different metadata column 

#Create a filtered table that excludes samples with no information for that column, and then run ancom on this 
table 
qiime composition ancom \ 
   --i-table comp-samples-only-filtered-table.qza \ 
   --m-metadata-file danielle-metadata.tsv \ 
   --m-metadata-column status \ 
   --o-visualization ancom-status.qzv 

#Run ANCOM at different taxonomic levels (e.g., L2=Phylum, L6=genus) 
qiime taxa collapse \ 
  --i-table feature-frequency-filtered-table.qza \ 
  --i-taxonomy taxonomy.qza \ 
  --p-level 6 \ 
  --o-collapsed-table samples-only-filtered-table-l6.qza 
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qiime composition add-pseudocount \ 
  --i-table samples-only-filtered-table-l6.qza \ 
  --o-composition-table comp-samples-only-filtered-table-l6.qza 

qiime composition ancom \ 
  --i-table comp-samples-only-filtered-table-l6.qza \ 
  --m-metadata-file danielle-metadata.tsv \ 
  --m-metadata-column status \ 
  --o-visualization l6-ancom-status.qzv 
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