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ABSTRACT 

 

Image classification has long been used in earth observation and is driven by the need for accurate maps to 

develop conceptual and predictive models of Earth system processes. Synthetic aperture radar (SAR) 

imagery is used ever more frequently in land cover classification due to its complementary nature with 

optical data. There is therefore a growing need for reliable, accurate methods for using SAR and optical 

data together in land use and land cover classifications. However, combining data sets inevitably increases 

data dimensionality and these large, complex data sets are difficult to handle. It is therefore important to 

assess the benefits and limitations of using multi-temporal, dual-sensor data for applications such as land 

cover classification. This thesis undertakes this assessment through four main experiments based on 

combined RADARSAT-2 and SPOT-5 imagery of the southern part of Reunion Island. 

 

In Experiment 1, the use of feature selection for dimensionality reduction was considered. The rankings of 

important features for both single-sensor and dual-sensor data were assessed for four dates spanning a 6-

month period, which coincided with both the wet and dry season. The mean textural features produced 

from the optical bands were consistently ranked highly across all dates. In the two later dates (29 May and 

9 August 2014), the SAR features were more prevalent, showing that SAR and optical data have 

complementary natures. SAR data can be used to separate classes when optical imagery is insufficient.  

 

Experiment 2 compared the accuracy of six supervised and machine learning classification algorithms to 

determine which performed best with this complex data set. The Random Forest classification algorithm 

produced the highest accuracies and was therefore used in Experiments 3 and 4. 

 

Experiment 3 assessed the benefits of using combined SAR-optical imagery over single-sensor imagery 

for land cover classifications on four separate dates. The fused imagery produced consistently higher 

overall accuracies. The 29 May 2014 fused data produced the best accuracy of 69.8%. The fused 

classifications had more consistent results over the four dates than the single-sensor imagery, which 

suffered lower accuracies, especially for imagery acquired later in the season. 

 

In Experiment 4, the use of multi-temporal, dual-sensor data for classification was evaluated. Feature 

selection was used to reduce the data set from 638 potential training features to 50, which produced the 

best accuracy of 74.1% in comparison to 71.9% using all of the features. This result validated the use of 

multi-temporal data over single-date data for land cover classifications. It also validated the use of feature 

selection to successfully inform data reduction without compromising the accuracy of the final product. 

 

Multi-temporal and dual-sensor data shows potential for mapping land cover in a tropical, mountainous 

region that would otherwise be challenging to map using single-sensor data. However, accuracies 
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generally remained lower than would allow for transferability and replication of the current methodology. 

Classification algorithm optimisation, supervised segmentation and improved training data should be 

considered to improve these results. 

 

KEYWORDS 

Land cover classification, RADARSAT-2, SPOT-5, object-based, feature selection, fusion, random forest, 

remote sensing. 
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OPSOMMING 

 

Beeld-klassifikasie word al ‘n geruime tyd in aardwaarneming gebruik en word gedryf deur die behoefte 

aan akkurate kaarte om konseptuele en voorspellende modelle van aard-stelsel prosesse te ontwikkel. 

Sintetiese apertuur radar (SAR) beelde word ook meer dikwels in landdekking klassifikasie gebruik as 

gevolg van die aanvullende waarde daarvan met optiese data. Daar is dus 'n groeiende behoefte aan 

betroubare, akkurate metodes vir die gesamentlike gebruik van SAR en optiese data in landdekking 

klassifikasies. Die kombinasie van datastelle bring egter ‘n onvermydelike verhoging in data 

dimensionaliteit mee, en hierdie groot, komplekse datastelle is moeilik om te hanteer. Dus is dit belangrik 

om die voordele en beperkings van die gebruik van multi-temporale, dubbel-sensor data vir toepassings 

soos landdekking-klassifikasie te evalueer. Die waarde van gekombineerde (versmelte) RADARSAT-2 en 

SPOT-5 beelde word in hierdie tesis deur middel van vier eksperimente geevalueer. 

 

In Eksperiment 1 is die gebruik van kenmerk seleksie vir dimensionaliteit-vermindering toegepas. Die 

ranglys van belangrike kenmerke vir beide enkel-sensor en 'n dubbel-sensor data is beoordeel vir vier 

datums wat oor 'n tydperk van 6 maande strek. Die gemiddelde tekstuur kenmerke uit die optiese lae is 

konsekwent hoog oor alle datums geplaas. In die twee later datums (29 Mei en 9 Augustus 2014) was die 

SAR kenmerke meer algemeen, wat dui op die aanvullende aard van SAR en optiese data. SAR data dus 

gebruik kan word om klasse te onderskei wanneer optiese beelde onvoldoende daarvoor is. 

 

Eksperiment 2 het die akkuraatheid van ses gerigte en masjien-leer klassifikasie algoritmes vergelyk om te 

bepaal watter die beste met hierdie komplekse datastel presteer. Die random gorest klassifikasie algoritme 

het die hoogste akkuraatheid bereik en is dus in Eksperimente 3 en 4 gebruik. 

 

Eksperiment 3 het die voordele van gekombineerde SAR-optiese beelde oor enkel-sensor beelde vir 

landdekking klassifikasies op vier afsonderlike datums beoordeel. Die versmelte beelde het konsekwent 

hoër algehele akkuraathede as enkel-sensor beelde gelewer. Die 29 Mei 2014 data het die hoogste 

akkuraatheid van 69,8% bereik. Die versmelte klassifikasies het ook meer konsekwente resultate oor die 

vier datums gelewer en die enkel-sensor beelde het tot laer akkuraathede gelei, veral vir die later datums. 

 

In Eksperiment 4 is die gebruik van multi-temporale, dubbel-sensor data vir klassifikasie ge-evalueer. 

Kenmerkseleksie is gebruik om die data stel van 638 potensiële kenmerke na 50 te verminder, wat die 

beste akkuraatheid van 74,1% gelewer het. Hierdie resultaat bevestig die belangrikheid van multi-

temporale data vir grond dekking klassifikasies. Dit bekragtig ook die gebruik van kenmerkseleksie om 

data vermindering suksesvol te rig sonder om die akkuraatheid van die finale produk te belemmer. 
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Multi-temporale en dubbel-sensor data toon potensiaal vir die kartering van landdekking in 'n tropiese, 

bergagtige streek wat andersins uitdagend sou wees om te karteer met behulp van enkel-sensor data. Oor 

die algemeen het akkuraathede egter te laag gebly om vir oordraagbaarheid en herhaling van die huidige 

metode toe te laat. Klassifikasie algoritme optimalisering, gerigte segmentering en verbeterde opleiding 

data moet oorweeg word om hierdie resultate te verbeter. 

 

TREFWOORDE 

Landdekking, RADARSAT-2, SPOT-5, geografiese objekgebaseerde beeldanalise, kenmerkseleksie, 

random forest, afstandswaarneming. 
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CHAPTER 1 INTRODUCTION 

 

This chapter introduces the study and provides initial background information for context. The problem 

formulation, aim, and objectives are discussed. The methodology and research design are briefly 

summarised and the structure of the rest of the thesis is given.  

 

1.1 BACKGROUND TO THIS STUDY 

 

Land cover classification involves assigning real-world land cover types to pixels or areas on an image. It 

is one of the most important applications of satellite remote sensing (Lee, Grunes & de Grandi 1999), as 

agricultural planning and natural resource allocation can be optimised by the correct classification of the 

Earth’s terrain. Remotely sensed imagery provides spatially consistent data with large coverage, a variety 

of information from different sensors, and a short revisit time thereby reducing the need for continual field 

visits (Herold, Goldstein & Clarke 2003; Pal & Mather 2004). Polarimetric synthetic aperture radar 

(PolSAR) imagery has shown potential as a unique, rich source of information about the Earth’s varying 

land surfaces. Unlike optical sensors, there are very few limitations to collecting synthetic aperture radar 

(SAR) image data during inclement weather or at night (Moreira et al. 2013). It is important to focus 

research efforts on land cover mapping and change analysis around this data type as many new SAR 

satellites will be launched in the next few years, providing high resolution, accessible multi-temporal SAR 

data (Moreira et al. 2013).  

 

Developing land cover classifications using remotely sensed data is an area of ongoing research 

(Rodriquez-Galiano et al. 2012). The increased availability of data from different, complementary sensors 

and sources has allowed research to focus on using this data for various land cover applications. Although 

pixel-based classifications have effectively created land cover classifications with acceptable accuracy 

standards, they have received less attention recently and the focus has shifted to object-based approaches 

(Lu & Weng 2005). This is due to object-based image analyses' many advantages including the ability to 

exploit more than just spectral values to differentiate classes and incorporate elements such as texture into 

analysis (Blaschke 2010). Object-based approaches are particularly important for applications in areas 

displaying typical spatial patterns, such as agricultural areas similar to this study area, as these inherent 

patterns can be exploited to improve classifications (Waske & Van der Linden 2008).  

 

There has recently been a shift from traditional statistical approaches to more powerful, flexible machine-

learning algorithms for land cover classification. Numerous new techniques and applications have been 

developed in response (Waske & Van der Linden 2008). The increase in computational power, data size, 
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and data complexity available to an ever-widening user base has also allowed many new applications to be 

tested (Waske & Van der Linden 2008).  

 

Single-sensor image data can have limitations; for example, they can generate incomplete, inconsistent, or 

imprecise information (Fatone, Maponi & Zirilli 2001). The integrity of monitoring studies can also be 

compromised by the inability to collect data at critical points in time. These risks of single-sensor data 

reliability need to be mitigated (McNairn et al. 2009) and a fusion approach is an effective tool for 

overcoming these limitations. Data fusion can be defined as combining data from different sources to 

improve the interpretation performance and potential value of the raw data (Zhang 2010). Merging 

multiple data sets allows the exploitation of bands from different areas of the electromagnetic spectrum 

(Haack & Bechdol 2000). 

 

Fusion techniques have many benefits over single-sensor data use. Images can be sharpened by combining 

different spatial resolutions and improving geometric corrections. Fusion also allows stereo viewing and 

the enhancement of features that are not otherwise visible in a single image. Applications such as 

classifications and change detection can be improved by combining data from different sources, thus 

supplementing missing information and replacing defective data (Amarsaikhan et al. 2010).  

 

Fusing optical and SAR data exploits the benefits of both data types. Each sensor type discerns certain 

land cover types better than the other (Lu & Weng 2005). Radar imagery alone can struggle to delineate 

urban areas well whereas optical data can be ineffective in discerning natural vegetation (Haack & 

Bechdol 2000). Combining these data sets derived from different sources can correct these 

misclassifications, improving poorly separated classes of single data sets and poor accuracies (Hill et al. 

2005).  

 

Single-date imagery is frequently used for land cover classifications, but can pose some limitations. 

Vegetation classes can be difficult to differentiate, which can be exacerbated by only using a single-date 

image. There may exist an optimum time of year at which certain vegetation types display the strongest 

differences due to growth phases, and this seasonality is key for accurate land cover classifications 

(Lunetta et al. 2006). A multi-temporal approach is beneficial as it can help overcome some of the 

limitations of single-date imagery and can allow each land cover to be mapped at its optimum time for 

discrimination (McNairn et al. 2009). This is particularly relevant when using SAR data, as the signal is 

affected by the presence of exposed soil at the beginning of vegetation growth (McNairn et al. 2009). The 

differences between types of vegetation, especially in VH backscatter (vertically transmitted and 

horizontally received polarised radar signal), are more prominent later in the growing season, thus 

allowing for better class discrimination (McNairn et al. 2009).  
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SAR data is becoming more available and accessible as there are more sensors available and a larger user 

community. This has resulted in a transition from purely research-oriented projects to more operational 

uses of the data (Cable et al. 2014). Operational uses include products that decision makers can use 

immediately, such as crop yield estimates for harvest planning or land cover classifications to aid in land 

assignment to different uses, such as agriculture. Although multi-frequency and multi-polarisation SAR 

data is preferable for most applications, it is not always practical to obtain such data for operational 

purposes as such projects often have resource restrictions that limit the type of data that can be used. The 

ability to define the data requirements for a project's particular output is therefore important. Reliance on a 

single source of data can also limit operational projects as information derived from multiple sensor 

sources can mitigate the risk of missed acquisitions and ensures data availability all year round. 

 

There is an opportunity to merge and exploit the promising developments in approaches for classifying 

remotely sensed data. The fusion of multi-sensor and multi-temporal data sets with an object-based 

approach and inclusion of texture variables holds compelling application promise for land cover 

classification and change detection. Due to the practical restrictions of operational projects, it is important 

to quantify the benefits of using multi-temporal and dual-sensor imagery.   
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1.2 PROBLEM FORMULATION 

 

Traditionally, land cover analysis using remote sensing has been performed on optical sensor imagery. 

However, optical image data has some limitations, as it cannot be captured during inclement weather or at 

night. SAR imaging sensors overcome these limitations by using the microwave portion of the 

electromagnetic spectrum and provide their own energy source. The current reliance on single-sensor data, 

mostly from optical sensors, introduces a level of risk when research projects are translated into 

operational outputs. Fusing image data from multiple sources shows promise in mitigating this risk 

(McNairn et al. 2009).  

 

Although fusion can overcome some of the limitations posed by single-sensor reliance, it also increases 

the data volume and complexity and it is difficult to process and analyse high dimensional data (Zhang 

2004). Feature selection can help to emphasise which parts of the data are most useful and thus inform 

feature reduction (Amarsaikhan et al. 2010). Feature selection holds potential to also inform which types 

of data, and from which types of sensor, the most useful information for discriminating different land 

cover classes can be derived (Laliberte, Browning & Rango 2012).  

 

Several classification algorithms are available for land cover differentiation, each with their own statistical 

approach, advantages, and disadvantages (Pal & Mather 2003). Thus, it is important to investigate which 

classification algorithm can handle both the non-normal distribution characteristic of SAR data and the 

large volume of features that comes with introducing a multi-sensor and multi-temporal data set.  

 

Single-date imagery can have limitations when it comes to mapping vegetation classes, as most classes 

will exhibit an opportune time of year, or growth stage, for discriminating one from another (Blaes, 

Vanhalle & Defourney 2005; El Hajj et al. 2009; Jewell 1989; Shang et al. 2009). Multi-temporal image 

data sets are not always readily available or practical with research project restraints. 

 

Literature does suggest that multi-temporal data sets are better than single-date imagery for land cover 

classification (Lunetta et al. 2006; Ma et al. 2013; McNairn et al. 2009; Niu & Ban 2013). However, as 

with multi-sensor data, the benefits of multiple image dates should be quantified. It is also not yet known 

whether certain features from specific dates are considered more useful for discriminating between classes 

when applying feature selection on a multi-temporal and multi-sensor data set.  

 

In summary, this thesis addressed four key questions:  

1. How can feature selection be used to determine which are the important features for class 

discrimination, and do these features differ between single-sensor and dual-sensor data sets and 

between image dates?  
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2. Which classification algorithm best handles the increased data dimensionality of fused image data 

sets and produces the highest accuracies?  

3. Does the fusion of optical and SAR data improve accuracy in a single-date classification 

sufficiently to warrant the additional expense of using two data sources?  

4. Does the inclusion of a multi-temporal data set improve accuracy sufficiently over a single-date 

classification to warrant the additional expense of extra data?  

 

1.3 AIM AND OBJECTIVES 

 

The aim of this study was to assess the benefits and limitations of combining multi-temporal fully 

polarimetric SAR data with optical image data for creating land cover using an object-based approach. 

The assessment was carried out for land cover in a tropical region. 

 

This aim was divided into 6 major analytical components, addressed in the following objectives: 

 

1. Assess feature selection as a method for informing feature reduction. 

2. Assess whether feature importance rankings exhibit temporal trends across both combined and 

single sensor data. 

3. Determine which classification algorithms handle large dual-sensor data sets better. 

4. Quantify the potential benefits of combined SAR and optical data against single-sensor data for 

land cover classification on single-date imagery. 

5. Assess temporal trends of combined SAR and optical data against single-sensor data for land 

cover classification on single-date imagery. 

6. Evaluate multi-temporal, dual-sensor SAR-optical data for land cover classification in a tropical 

region. 
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1.4 METHODOLOGY AND RESEARCH DESIGN 

 

An overview of the research design is provided in Figure 1.1. An empirical research approach, using 

primary quantitative data, based on the six main objectives was followed. Prior to analysis, data 

acquisition and image pre-processing were conducted. In situ information was acquired through fieldwork 

and image interpretation. The objectives were addressed in four key experiments. Experiment 1 

investigated feature selection as a possible method of optimal data selection, and thus data reduction, 

using the Classification and Regression Trees (CART) and random forest (RF) algorithms. In Experiment 

2 six classification algorithms were tested on the combined image data collected to determine the 

classification algorithm most suited for the study area. This classification algorithm was then used in 

Experiments 3 and 4. In Experiment 3 single-date object-based classifications were conducted on four 

separate image dates and the effect of dual-sensor imagery versus single-sensor imagery performance was 

assessed. Finally, in Experiment 4 multi-temporal classifications were conducted and compared with the 

single-date classifications of Experiment 3. 

 

A detailed explanation of the methods used is given in Chapters 3 and 4. 
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1.5 STUDY SITE 

 

The primary study site, seen in Figure 1.2, is situated in the south of Réunion Island, around the town of St 

Pierre. The extent was determined by the availability of RADARSAT-2 imagery and was complemented 

by SPOT-5 imagery overlapping the same extent.  

 

 

 

Réunion Island is situated in the western Indian Ocean and is approximately 2 500 km² in size 

(Villeneuve, Bachélery & Kemp 2014). It is located in the tropics and thus has a humid tropical climate. 

The terrain on Réunion Island comprises mostly rugged mountainous regions in the interior and fertile 

lowlands running along the coast. The two main seasons are a wet, hot summer from November to March 

and a cooler, drier winter from April to October. 

 

Figure 1.2 The study extent, shaded in red, located on Réunion Island (France) in the South-western 

Indian Ocean. 
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Rainfall is high (>750 mm) nearly all year round for all areas on the island (Figure 1.3). This tropical 

climate, coupled with the dense vegetation that is noticeable across nearly the entire island has limited the 

accurate mapping of the land cover in this area. 

Source: Kemp (2010:27) 

Figure 1.3 Mean annual rainfall, with isohyets having a contour interval of 500 mm. 

 

 

Sixty percent of the cropped area, approximately 26 000 hectares, is planted with sugarcane (Lebourgeas 

et al. 2010). The sugarcane growth cycle takes about 12-14 months, with harvesting lasting 4-6 months. 

Harvesting usually begins in the cool season at the beginning of July and spans more than 20 weeks, until 

the end of November (Lejars & Siegmund 2004). The main difficulties in mapping sugarcane are very 

high spatio-temporal variability between fields and the long harvesting phase, which is difficult to monitor 

if gaps in image acquisitions exist (El Hajj et al. 2009). 

 

Another important terrain feature of Réunion are the deep ravines, which are particularly noticeable 

flanking either side of the study area. The steep gradients of this terrain cause distortion in the radar 

imagery and makes these areas impossible to map using such data. Rugged terrain resulting in local 

geometry changes has been noted to affect backscatter values to up to 5 decibels (Loew & Mauser 2007). 

Thus, Réunion offers a unique and suitable area to assess the benefits of combined SAR-optical data for 

land cover classification as SAR imagery alone is affected greatly by the terrain and optical imagery is 

affected greatly by the frequent cloud cover in this tropical region.  
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1.6 STRUCTURE OF THE THESIS 

 

The rest of the thesis is structured as follows: Chapter 2 presents a review of the literature, provides 

contextual information for the study, and defines important concepts. Chapter 3 gives detail on the data 

acquisition and pre-processing methods applied to the imagery. Chapter 4 presents the methods followed 

to process and evaluate the data, according to the four main experiments. Chapter 5 presents and discusses 

the study results. Finally, Chapter 6 evaluates the results, draws conclusions, and makes recommendations 

for future work.  
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 CHAPTER 2 LITERATURE REVIEW 

 

2.1 REMOTE SENSING AND LAND COVER CLASSIFICATION  

 

The field of remote sensing has a long history of image classification (Chen et al. 1996). It is driven by the 

need for high accuracy maps and, more fundamentally, for the development of conceptual and predictive 

models for understanding Earth’s system processes (Dickinson et al. 2013; Dobson, Pierce & Ulaby 

1996). 

 

Knowledge of the spatial distribution of land use and land cover (LULC) is needed to accurately manage 

land resources (Parihar et al. 2014). This information is used to establish baselines and monitor ongoing 

change (Evans & Costa 2013). Mapping land cover was originally based on aerial photographs. However, 

this is expensive, has a small coverage, and is based on interpretation, which leads to problems in 

repeatability (Evans & Costa 2013). With the recent developments in spatial and spectral characteristics of 

sensors and improvements in classification algorithms, remotely sensed data are increasingly used to 

develop LULC maps (Adam et al. 2014).  

 

There are three main factors driving the development in land cover classification using remotely sensed 

data. First, more data are available from different and complementary sensors and sources today. Second, 

there has been a shift from traditional statistical approaches to more powerful, flexible machine-learning 

algorithms for land cover classification. Third, new image segmentation and object-based classification 

approaches allow data from multiple scales to be processed together, which was not possible with pixel-

based classifications. Development has also been bolstered by the increase in computational power, 

quantity of data, and data complexity available to the widening user base (Waske & Van der Linden 

2008). 

 

LULC classification is an important application of remotely sensed data tasks, specifically for PolSAR 

(Alberga 2007; Lee, Grunes & de Grandi 1999; Pottier & Lee 2000). Urbanisation, population growth, and 

industrial development drive rapid land use changes. Regional, continental, and global coverage are 

needed to monitor this change, its sustainability, and the possible adverse environmental effects (Dobson, 

Pierce & Ulaby 1996). Urbanisation and the impact of human activities and settlements are two of the 

main causes of global environmental degradation (Ban, Hu & Rangal 2007). By 2008, half of the world's 

population lived in cities, and this number is growing exponentially. The mapping and monitoring of 

urban LULC and how they are changing is of great importance (Ban, Hu & Rangal 2007). 

 

Remote sensing provides an ideal platform for gathering empirical data, such as global climate change 

mapping, to aid decision-makers and support policies that ensure a suitable balance between land 
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development and environmental protection (Dickinson et al. 2013). Timely LULC information is thus 

necessary for natural resource and urban planning and management (Parihar et al. 2014). 

 

This literature review introduces some of the elements that should be considered when using remotely 

sensed data to generate land cover classifications. It also overviews studies that have explored these 

different elements. The two main kinds of data, optical and SAR imagery, are discussed. Image 

acquisition considerations, such as data scale and scene selection, are reviewed. The merits of pixel-based 

and object-based classifications are discussed based on past studies, and the steps of object-based 

classification are introduced, from pre-processing through image segmentation, to feature selection and the 

choice of classifier.  

 

2.2 OPTICAL IMAGERY FOR LAND COVER CLASSIFICATION 

 

Optically based remote sensors are passive sensors that generally use the sun’s energy to record 

reflectance from the Earth’s surface (Campbell 2006). Images therefore cannot be collected at night or 

during inclement weather. The data from these sensors have long been used in land cover-based 

applications. As tried and tested methods coupled with cost effective, high quality optical data are now 

available, optical data can be effectively used in applications ranging from resource monitoring to urban 

planning (El Hajj et al. 2009). Optical data from sensors such as Landsat and SPOT can represent the 

properties of vegetation and crop fields, including retrieving surface characteristics that can be used for 

crop classification (Guershman et al. 2003; Lebourgeas et al. 2010; Reese et al. 2002; Turker & Arikan 

2005). The amount of visible and infrared energy reflected by vegetation is directly related to plant 

pigmentation, the internal leaf structure, and the leaf and canopy moisture (McNairn et al. 2009). 

Techniques such as principal component analysis (PCA) can be applied to optical data to select the most 

useful bands. Hill et al. (2005) used PCA for feature selection to find that the blue band contributed very 

little towards the mapping of pasture types, and could be discarded in further processing. The use of multi-

temporal optical data may significantly improve remotely sensed data applications, especially land cover 

classifications (El Hajj et al. 2009; Van Niel & McVicar 2004).  

 

A new generation of time series optical sensors, including the SPOT-6 and Landsat 8 satellites, holds 

potential for detecting and monitoring changes in land cover (El Hajj et al. 2009). The finer spatial 

resolution provided by these new sensors is particularly useful in urban mapping, where the characteristics 

of the land cover are often small and very mixed (Lu & Weng 2005). However, missing acquisitions 

resulting from local weather conditions and uncertain radiometric values due to atmospheric conditions 

and sensor calibration are problematic for the use of both single-date and multi-temporal optical data (El 

Hajj et al. 2009). Classification accuracy can be severely affected if even one optical image from an 

important time in a crop calendar is missing (Blaes, Vanhalle & Defourney 2005; Jewell 1989). Mid-to-
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late-season images are essential for accurate crop classification and thus missing acquisitions during key 

periods can cause major accuracy deficiencies (Shang et al. 2009). El Hajj et al. (2009) documented this 

issue on Réunion Island, supplementing a SPOT-5 time series with crop growth modelling and expert 

knowledge as the optical data time series alone was inadequate. Even if images are acquired at every point 

in the growing season, cloud cover may still render some images unusable, especially in tropical regions. 

For example, the Global Environmental Facility needed a selection of Landsat imagery collected over five 

years to create a single cloud-free mosaic of the Brazilian Panatal Wetlands (GEF 2004).  

 

It is important to quantify the potential accuracy gains of using data from the new generation of high 

spatial and spectral resolution sensors against the additional cost of using this high level imagery. Novack 

et al. (2011) found that 10 out of 16 classifications achieved higher Kappa values with the inclusion of 

features derived from the additional bands, Coastal Blue, Yellow, Red Edge, and Near Infrared-2, 

available from Worldview-2 imagery. All of the classifications also achieved higher overall accuracies 

when using features from the additional bands, and showed improved distinction of bare soils and ceramic 

roof tiles (Novack et al. 2011). The newly introduced Red Edge band (705 - 745 nm) also improved 

classifications and can affect both classification and modelling accuracy (Adam et al. 2014). Adam et al. 

(2014) used imagery from the RapidEye sensor to map a heterogeneous coastal landscape and found that 

the overall accuracy dropped by 4.5% when the Red Edge band was omitted.  

 

Some land covers, especially vegetation, can share similar spectral responses for multiple sensor types. 

Crop separation based solely on spectral signatures can be difficult due to variations in soil properties, 

fertilisation practices, pest conditions, intercropping, tillage practices, irrigation, and planting dates (Yang, 

Everitt & Murden 2011). These factors can result in similar reflectance from different crops or even field-

to-field variability in the plant reflectance of the same crop and spatial and spectral variability within 

fields (Yang, Everitt & Murden 2011). Using the short wave infra-red (SWIR) band and taking images 

during the optimum crop discrimination time can improve reflectance variability issues during 

classification (Yang, Everitt & Murden 2011). However, crop signatures alter as they grow, due to 

changes in water content and structure. There is usually an optimum time to map each kind of land cover 

for optimum discrimination (McNairn et al. 2009). This is the underlying reasoning for using multi-

temporal data sets if change analysis is not the focus of a study.  

 

As only the top few millimetres of the vegetation canopy are considered by optical data in vegetation 

mapping, limited information about the underlying vegetation and soil characteristics can be inferred 

(Picoli et al. 2013). The effects of solar illumination and the solar azimuth angle must also be considered 

when interpreting optical imagery (Picoli et al. 2013). Optical data can have significant deficiencies when 

captured in an area of exposed bright soil, spectrally indeterminate vegetation (a high variability in the 

spectral signatures within a single vegetation species or class), or in an area with a dead vegetation 

component that can interfere with the vegetation interpretation (Huang et al. 2010).  
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Optical imagery can be ineffective for mapping certain urban classes, as some built-up classes generally 

have similar spectral signatures. As urban areas also display both complex spatial and spectral 

heterogeneous land cover characteristics, optical imagery alone can be insufficient for classification 

(Corbane et al. 2008). Accurate repeated mapping of urban areas is an important remote sensing task: 

these areas are vulnerable due to the complex interactions between infrastructure, humans and the 

environment and the ever-expanding nature of urban areas (Corbane et al. 2008). Additional information, 

such as spatial information, should be exploited to accurately differentiate these types of classes (Ban, Hu 

& Rangal 2007). 

 

2.3 AN OVERVIEW OF SYNTHETIC APERTURE RADAR 

 

SAR has qualities that are advantageous over optical data in remote sensing applications, particularly in 

target detection mapping and Earth resource management. The key differences between optical and SAR 

sensors can be found in Table 2.1. SAR sensors provide a wide global perspective with high temporal and 

spatial coverage (Dickinson et al. 2013). They are sensitive to small changes in surface roughness, slope, 

and moisture (Deroin, Al-Ganad & Al-Thari 2007), and are illumination-independent, operating both day 

and night (McCandless & Jackson 2004). SAR is able to capture the large spatial and temporal variability 

associated with vegetation type, conditions, and soil moisture (McNairn et al. 2000). Most importantly, 

unlike conventional optical sensors, SAR sensors are unaffected by cloud cover, as they use the 

microwave region of the electromagnetic spectrum (Dekker 2003). 

 

Table 2.1 Key differences between optical and SAR sensors. 

 

A SAR image comprises the recorded backscatter response from targets on the Earth’s surface. This 

backscatter is the signal response (Figure 2.1), or return based on the physical and dielectric properties of 

the ground target. The transmitted signal (Figure 2.1) and received echo can be oriented in specific 

directions and this is known as polarisation. The signals can be oriented either horizontally (H) or 

vertically (V). Thus, the HH “band” refers to horizontally transmitted and horizontally received 

backscatter. SAR has been successfully used in a range of applications, from forest mapping (Karjalainen 

et al. 2012) to the detection and characterisation of hedgerows (Betbeder et al. 2014). SAR imagery at the 

 Optical Multi-spectral SAR 

Platform Airborne/space borne Airborne/space borne 

Radiation Reflected or emitted sunlight Own radiation 

Spectrum Visible/infra-red/thermal Microwave 

Acquisition Time Day Day/night 

Weather Blocked by clouds See through clouds 
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pixel level contains three sets of important information that can be exploited: the radar backscatter 

intensity, the phase of the backscattered signal, and the range movement based on the time of flight 

information of the radar pulse (Karjalainen et al. 2012). 

 

2.3.1 Factors affecting backscatter in synthetic aperture radar 

 

The backscattered SAR signal is dependent on sensor parameters such as polarisation, incidence angle 

(Figure 2.2), frequency, and wavelength, and on surface parameters such as topography, surface 

roughness, and the dielectric properties of the target (Baghdadi et al. 2008).  

 

 

 

The different wavelengths interact with surface roughness in different ways because of their size. 

Wavelengths will interact with objects of similar or larger size as their wavelength. Ulaby, Moore and 

Fung (1986) performed a series of experiments to illustrate this phenomenon and a portion of his results 

Source: CRISP (2001) 
Figure 2.1 (a) Incident ray also known as the transmitted signal, and the resultant (b) backscatter or echo 

from ground targets. 
 

a) b) 

Source: ESA (2014) 

Figure 2.2 Geometry of a radar pulse, showing the incidence angle. 
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can be seen in Figure 2.3. Figure 2.3 maps the changing backscatter return that the L- (a), C- (b), and X- 

(c) bands experience depending on the relative surface roughness, soil moisture present and incidence 

angle. It is important to note that the majority of space radar sensors use an incidence angle of between 

20° and 50° thus the right hand portion of each graph is of more importance. The larger the incidence 

angle (shallow), the lower the backscatter return generally is across all wavelengths. The longest 

wavelength, the L- band, is most affected by the changing incidence angle and is most sensitive to the 

change in roughness. The larger the roughness (e.g. 4.1 cm), the higher the backscatter return for all 

wavelengths. The change in backscatter depending on the roughness is more exaggerated by the longer 

wavelength (L-band) than the shorter wavelengths (C- and X-bands). Soil moisture also has an important 

effect on the resulting radar signal strength. As soil moisture increases under wet conditions, the radar 

signal response generally increases (Baghdadi et al. 2008).  

 

 

 

 

Due to the complex relationships that exist between the backscatter intensity, frequency, incidence angle, 

and soil moisture, it can be difficult to determine the optimum scene selections for mapping general land 

covers. Ulaby & Batlivala (1976) found that like polarisations (HH or VV) at the C-band frequency with 

small incidence angles (7°-15°) provided the optimum radar parameters for mapping soil moisture, as the 

sensitivity to surface roughness and soil texture effects were minimised. However, Autret, Bernard and 

Vidal-Madjar (1989) found that for very small incidence angles, two polarisations, for example the 

combined HH and VV bands, were necessary to reduce the surface roughness effects.  

 

c) b) a) 

Source: Ulaby, Moore & Fung (1986:1825) 

Figure 2.3 The effect of incidence angle and surface roughness have on the backscatter intensity for L- 

band (a), C- band (b) and X-band (c) SAR. 
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The intensity of the incident energy scattered by vegetation is primarily a function of the canopy 

architecture, dielectric properties, and cropping characteristics (McNairn et al. 2009). The canopy 

architecture has properties such as shape, size, and orientation, which all affect the return signal. Strong 

signal returns are recorded for buildings due to double bounce off the walls that are perpendicular to the 

ground. Bare surfaces will have varying returns based on the roughness and, as explained above, the 

wavelength being used. Water returns very weak signals back to the signal origin, as the incident ray is 

reflected in all directions.  

 

Both horizontal and vertical surface roughness are dependent on the wavelength and incidence angle of 

the incoming incident energy. An increase in incidence angle results in an increase in sensitivity to 

roughness changes and the strength of the radar signal (Baghdadi et al. 2008). Larger (shallower) 

incidence angles discriminate between rough and smooth areas better than smaller (steep) incidence angles 

(Baghdadi et al. 2008). Betbeder et al. (2014) used a moderate incidence angle of 37° to map hedgerows 

as smaller (steeper) angles are more sensitive to ground surfaces, whereas medium to higher angles are 

more sensitive to vegetation roughness, which is beneficial when mapping vegetation such as hedgerows. 

When fields appear rough relative to the incident wavelength, multiple scattering is experienced and the 

response from the HH and VV polarisations are similar (McNairn et al. 2002). 

 

Single-frequency SAR data collected on a single image date can provide limited information for accurate 

class separability (McNairn & Brisco 2004). Multi-frequency, fully polarimetric data is most useful but is 

not always accessible or obtainable. The frequency and polarisations of the images used must 

consequently be carefully selected when designing SAR missions and determining research data 

requirements (Lee, Grunes & Pottier 2001). 

 

2.3.2 Advantage of phase information 

 

The presence of the phase information inherent in SAR data allows for an array of tools for investigating 

the geometric properties of the data (Cable et al. 2014). Without the contribution of phase information, the 

advanced applications of SAR data, including polarimetry and interferometry, cannot be realised. Co-

polarised (HH or VV bands) phase information helps to improve discrimination between different targets 

with the same backscatter intensity, which could otherwise be misclassified (Cable et al. 2014). Phase 

information can also be used to make polarimetric response plots, which are three-dimensional 

representations of the transmitted and received polarisations. The peaks and valleys in these plots indicate 

the minimum and maximum responses respectively (Cable et al. 2014). Co-polarised phase differences 

make a statistically significant contribution to classification accuracies, especially when mapping crops 

(Lee, Grunes & Pottier 2001). 
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2.3.3 Synthetic aperture radar data acquisition considerations 

 

2.3.3.1 Scene selection 

 

There are three major considerations when selecting scenes for a study: seasonality, moisture conditions, 

and scene overlay (Kellndorfer & Pierce 1998). Seasonality can have a significant impact on the ability to 

discriminate between land cover types, especially vegetation types. Imagery dated at the peak of the 

phenological year should be selected when using single-date imagery (Kellndorfer & Pierce 1998). As 

radar is sensitive to moisture changes in the soil and in vegetation canopies, it is better to choose an image 

acquired during a relatively dry period. Finally, scene overlap, the section of the scene that is overlapped 

by multiple images, is particularly important for multi-sensor studies, which should have both time and 

space overlap (Kellndorfer & Pierce 1998).  

 

2.3.3.2 Wavelength 

 

SAR sensors are available in an array of wavelengths within the microwave region of the electromagnetic 

spectrum, the most common being the X-, C-, L-, and P-band frequencies (Table 2.2). The use of the 

microwave region has many advantages for land cover classification applications, such as monitoring 

vegetation with fast growing cycles, especially with the fine spatial resolution and short revisit times 

available now with the newer sensors. As a sensor's microwaves reach all parts of a plant, unique 

information about the size, shape, and orientation of the plant can be derived (Lopez-Sanchez et al. 2014). 

 

Table 2.2 Common frequency bands for SAR sensors, and their frequencies and wavelengths. 

 

The X-band uses very short wavelengths and is not suitable for estimating vegetation parameters, as the 

radar signal does not penetrate deep into the vegetation and is quickly saturated (Baghdadi et al. 2009). 

However, Baghdadi et al. (2009) found that the X-band differentiated between ploughed fields and 

Frequency 

band 

Ka Ku X C S L P 

Frequency 

(GHz) 

40 - 25 17.6 - 12 12 - 7.5 7.5 - 3.75 3.75 - 2 2 - 1 0.5 - 

0.25 

Wavelength 

(cm) 

0.75 - 

1.2 

1.7 - 2.5 2.5 - 4 4 - 8 8 - 15 15 - 30 60 - 120 

Example of a 

sensor 

Military 

Domain 

Military 

Domain 

TerraSAR-

X-1 

COSMO-

SkyMed 

ERS-1/2  

RADARSAT-

1/2 

ENVISAT 

ASAR 

Almaz-1 JERS-1 

SAR 

ALOS 

PALSAR 

AIRSAR 
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vegetated fields better than the L- and C-bands. The X-band also cannot be used to map surface roughness 

at useful limits (Baghdadi et al. 2008). 

 

Polarimetric C-band SAR was originally only acquired using airborne sensors, which limited the use and 

scope of these data (Cable et al. 2014). With the introduction of space-borne sensors such as 

RADARSAT-2, fully polarimetric C-band data are now more readily available to a larger user community 

(Cable et al. 2014).  

 

The C-band is generally helpful in discriminating between crop types (Baghdadi et al. 2009) and 

outperforms the L-band in discriminating between lower biomass crops (Shang et al. 2009). Lower 

biomass crops with their stable vegetation structures allow for greater penetration through the top canopy. 

Using a shorter wavelength to visualise these areas, such as the C-band, minimises the soil contribution to 

the signal response (Shang et al. 2009). However, Lee, Grunes and Pottier (2001) found that the L-band 

produced better accuracies for mapping crops than the C- and P-bands, as it produced better contrast 

between the fields. This could have been due to the crop and field type in that study area (Lee, Grunes & 

Pottier 2001).  

 

C-band data cannot be used to discriminate between roughness classes greater than 1.5 cm (Baghdadi et al. 

2008). Baghdadi (2002) recommended using three classes of roughness when taking field measurements 

and observations: smooth, up to and equal to 1 cm roughness; moderately rough, from between 1 and 2 

cm; and greater than 2 cm roughness. 

 

Comparing C- and L- band, Turkar et al. (2012) found that the C- band produced better accuracies for the 

water and wetlands class, with accuracies of 100% and 95.54%, in comparison with the L-band accuracies 

of 87.9% and 73.4%. However, the longer wavelength L-band was marginally better (less than 2%) at 

describing the urban class, with an accuracy of 100%. In the same study, when a Neural Network classifier 

was used, the C-band was able to discriminate between two slum classes and various built-up classes, with 

class accuracies over 80%. Prakoso (2003) found that the L-band was better than the C-band at 

distinguishing between burnt and non-burnt regions of primary forest, showing that the longer wavelength 

is useful for the denser, larger vegetation found in forests.  

 

When comparing the class performance for the P- and L-bands, Shimoni et al. (2009) found that longer 

wavelength, specifically the P-band, produced better producer’s accuracies for the residential, bare soil, 

abandoned area and road class. Only the river class achieved a better producer’s accuracy (23.9%) in the 

L-band, and this was only a 2% difference between the two bands. When combining the P- and L-band, all 

the above-mentioned classes showed an improved user’s accuracy and only the residential class suffered a 

small decrease to 90.3% in the producer’s accuracy. The combined frequencies thus defined these urban 

and bare soil classes far better than the either of the single wavelengths.  
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The P-band produces better results than the L- and C-bands for forest age classification due to its longer 

wavelength and higher penetration ability (Lee, Grunes & Pottier 2001). This was supported by Li et al. 

(2012) who found that the L- and C-band on their own could not accurately separate the detailed forest 

class. Karjalainen et al. (2012) found that the L- and P-bands could be used to estimate stem volume in 

forests. Haack and Bechdol (2000) found that L-band SIR-C data produced a slightly better classification 

than C-band data (88.1% versus 87.8%). However, the two bands differentiated between the vegetation 

classes equally well, as the area included thick complex canopies that restricted penetration of either 

wavelength. The L-band has also shown potential in mapping wetland regions with overall accuracies of 

over 80%, depending on the level of detail included in the classification scheme (Evans & Costa 2013). 

 

Using data from single-frequency sensors can pose limitations for accurate land cover discrimination as 

they provide limited information. Sensors that also provide polarisation and frequency diversity offer more 

detailed information about ground targets, resulting in far higher classification accuracies (Shang et al. 

2009). However, although multi-frequency and fully polarimetric multi-temporal data are desirable, they 

are difficult and expensive to acquire and are beyond the scope of many research and operational projects.  

 

The use of multi-channel SAR imagery for classification has interesting applications. A range of input 

features can be derived from a multi-channel SAR data set, such as radiometric, polarimetric, 

interferometric, and spatial information. This creates a rich data set with a variety of possible features that 

can be used in the classification. Borghys et al. (2006) investigated the use of combined P-, L-, C-, and X-

band SAR data for the supervised classification mapping of potential areas of minefields. With this aim, 

they found that using logistic regression and multinomial regression, to combine features from the multi-

channel SAR imagery, produced a user’s accuracy of 80% for the key land cover class, namely abandoned 

land (Borghys et al. 2006). In general, the C-band is sensitive to leaves and small branches, the L-band to 

intermediate branches, and the P-band to trunks and the largest branches in vegetation (Huang et al. 2010). 

Thus, using a combination of wavelengths can improve the classification accuracy. Adding multi-

polarisation SAR data to the combined bands was shown to give an overall accuracy of 95% for a 

classification with 13 land cover classes (Chen et al. 1996). Turkar et al. (2012) supported this result, 

finding that the best classification accuracies were achieved when combining X-, C-, and L-band data, in 

comparison with just using a single wavelength. The best single wavelength classification (L-band) gave 

an overall accuracy of 89.6%, whereas combining the three bands generated an overall accuracy of 97.4% 

and 100% class accuracies for both the water and urban classes.  
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2.3.3.3 Incidence angle 

 

The incidence angle is the angle formed between the radar beam and a line perpendicular to the surface. A 

greater incidence angle magnifies radar pulse attenuation, reduces single and double scattering (McNairn 

et al. 2002), and increases volume scattering. At a large incidence angle of 51°, surface moisture does not 

have a significant correlation with any radar parameter. At a more moderate angle of 30-40°, surface 

roughness and residue cover contribute significantly to linear polarised radar backscatter (McNairn et al. 

2002). A steeper incidence angle results in a more perpendicular signal to the target, which reduces 

specular reflectance and increases backscatter intensity (Cable et al. 2014).  

 

A change in the incidence angle results in larger differences in the VV and HH band responses than in the 

other bands. The marsh and water classes have shown larger changes in response to a change in the 

incidence angle than any other class in a land cover classification. (Cable et al. 2014). At small incidence 

angles, the HH and VV responses are very similar for areas with little to no residue vegetation cover, 

whereas at higher incidence angles the responses for HH and VV will differ more, with the H-polarisation 

penetrating vegetation canopies to a greater extent and providing more information about soil conditions 

(McNairn & Brisco 2004; McNairn et al. 2002). Rosenthal and Blanchard (1984) suggested that shallower 

incidence angles improve crop discrimination, as they minimise the soil contribution. Molch (2009) 

reported on the effects of incidence angle on mapping urban structures by comparing the responses from 

an HH band with incidence angles of 22° and 40°. The larger angle (40°) was better for the differentiation 

of urban structures, and specifically for differentiating between urban and vegetation (Molch 2009). 

However, larger incidence angles result in longer shadows, which can have a detrimental effect on 

classification results (Molch 2009). 

 

Coulibaly et al. (2012) quantified the effect of the incidence angle on forest classes by comparing 

RADARSAT-2 images with incidence angles of 26° and 45°. The 45° image produced the best overall 

accuracy of 79.1%, in comparison with 72.4% from the 26° image, and also produced better forest classes. 

The 26° image produced better classes for streams and roads. The incidence angle is therefore an 

important factor to consider when selecting imagery for a specific application. 

 

2.3.3.4 Polarisation 

 

Radar frequency and polarisation are two of the most crucial parameters to be chosen when designing data 

acquisition and requirements (Lee, Grunes & Pottier 2001). PolSAR imagery discriminates better between 

different scattering mechanisms than single-polarisation SAR (Lee et al. 2011; Qi et al. 2012). Targets can 

also be better distinguished by using both the amplitude and phase information (Van Zyl 1989) contained 

in PolSAR data, allowing for the advance applications of polarimetry and interferometry to be exploited. 
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PolSAR can transmit and receive both orthogonal components of the electromagnetic wave (Alberga 

2007). The extra information provided by the two polarisation states allows the polarisation response of a 

target to be analysed and the dominant scattering mechanism to be identified (Van Zyl 1989). Li et al. 

(2012) showed that single polarisations were not able to effectively separate vegetation types.  

 

The benefits of PolSAR data for land cover classification have been quantified: PolSAR frequently results 

in higher accuracies than single-polarisation SAR (Chen et al. 1996; Da Costa Freitas et al. 2008; Li et al. 

2012; Ouarzeddine, Souissi & Belhadj-Aissa 2007). Even for easily mixed classes, such as the low 

backscatter targets of water, shadow, cement road and bare soil, separability can be improved by using the 

polarimetric information that can be derived from PolSAR data (Shi 2012). It is however not always 

possible to attain PolSAR data due to restrictions in project budgets, resolution or area of coverage 

requirements (Lee, Grunes & Pottier 2001). Lee, Grunes and Pottier (2001) found that if PolSAR data 

were unavailable, then the combination of HH and VV polarisations was preferable to other combinations 

of bands.  

 

Each polarisation is most effective for certain land cover type mapping. Vertically oriented waves interact 

predominantly with the vertical structure of most vegetation, and provide a good contrast between crop 

types with different vertical canopy structures (Silva et al. 2009; Soria-Ruiz et al. 2007). Differing vertical 

structures can also be caused by growth stage or health. However, vertically oriented waves experience a 

lower penetration into the vegetation canopy than HH waves (McNairn et al. 2000). In contrast, 

horizontally orientated electromagnetic waves penetrate deeper into vegetation canopies and interact better 

with dense horizontal-leaved canopies. They provide information about the underlying soil condition (Hill 

et al. 2005; Soria-Ruiz et al. 2007). The steeper the incidence angle, the better the HH wave penetrates the 

vegetation canopy (McNairn et al. 2000). However, this ability to differentiate crop height does saturate. 

The backscatter coefficient from HH polarisation has a strong correlation with the Normalised Difference 

Vegetation Index (NDVI) for the mature and harvesting stages of sugarcane (Baghdadi et al. 2009), which 

is useful for mapping this land cover. When surface scattering dominates, the VV response is often greater 

than the HH response (McNairn et al. 2002). The HH band also shows better differentiation for urban 

areas, as the VV has a reduced ability to differentiate urban areas from vegetation (Molch 2009).  

 

The cross-polarisation channels (HV and VH) show potential for vegetation mapping, particularly for the 

mapping of sugarcane harvesting (Baghdadi et al. 2009). These channels are related to multiple reflections 

within the vegetation volume (Silva et al. 2009). They are thus sensitive to crop structure within the total 

canopy volume. The cross-polarisation bands are particularly good for separating grain crops from other 

crops (McNairn et al. 2000). 

 

Da Costa Freitas et al. (2008) investigated the use of different combinations of polarisations from airborne 

P-band SAR data. The HV band was efficient in differentiating forest from other land covers, whereas the 
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VV band improved the classification of bare soils. They achieved the best overall accuracy using the VV-

HV band combination, with the HH band giving little to no contribution. Li et al. (2012) found that if a 

single polarisation was to be chosen for land cover classification, for their tropical study area, the HH 

band provided better class separability than the HV band.  

 

The HH band has been found to discriminate between different ice types whereas the cross-polarised 

channel HV picks up ice edges better (Deroin, Al-Ganad & Al Thari 2007). Both cross-polarised channels, 

HV and VH, can successfully identify fire scars while VV has been used to identify oil spills (Deroin, Al-

Ganad & Al Thari 2007). 

 

Dual-polarised sensors are able to collect HH-VV, HH-VH or VV-HV bands. They generally have wider 

swaths and greater area coverage than quad-polarised sensors (HH-HV-VH-VV), which is an advantage 

(Ainsworth, Kelly & Lee 2009). However, the per-pixel information content of data gathered from dual-

polarised sensors is vastly inferior to that of quad-polarisations. Quad-polarised sensors are thus favoured 

over dual-polarised sensors (Ainsworth, Kelly & Lee 2009).  

 

Silva et al. (2009) investigated the effect of using different polarisation bands by performing crop 

classifications on single polarisations, dual polarisations, and fully polarimetric L-band data. Of the single 

polarisations, only the HH band was able to distinguish some pasture fields, yielding a Kappa value of 

only 0.46. Their best dual-polarisation result was achieved with the VV-HH combination, giving a kappa 

value of 0.74. Due to the HV and VH band often containing similar information, HV is often only used. 

Using all three polarisation bands (HH, HV, and VV) yielded the best classification, with an overall 

accuracy of 91% and a kappa value of 0.89. This result is strong evidence for the use of PolSAR data, 

rather than dual- or single-polarisation data.  

 

Quad-polarised SAR has also been found to be useful in identifying informal settlements (Kleynhans & 

Salmon 2012). The ability to extract the polarimetric information, and in particular double bounce, from 

the polarimetric data (HH, VV, and HV bands) allowed for informal settlements along the boundary of the 

SabiSands game reserve to be delineated (Kleynhans & Salmon 2012). 

 

PolSAR may be useful for retrieving soil moisture measurements with high spatial and temporal 

resolution, which would be helpful in predicative modelling. However, this potential use has not yet been 

fully realised as it is not trivial to separate the contributions of soil moisture and surface roughness from 

the backscatter signal. Inversion techniques can be used to retrieve the surface parameters of soil moisture 

and surface roughness from PolSAR data (Hajnsek, Pottier & Cloude 2003).  
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2.3.3.5 Multi-temporal synthetic aperture radar 

 

The use of multi-temporal data enhances land cover applications as it improves class separation. In single-

date imagery, if class histograms overlap, separability is poor and confusion between classes with similar 

response patterns is common. Introducing a multi-temporal aspect to a study allows for explorative data 

analysis prior to classification, during which the coefficient of variation that shows the overlap between 

classes can be improved (Erasmi & Twele 2009). In support, Ma et al. (2013) tested combinations of 

multi-temporal data and found that accuracy increased with more imagery dates. When testing between 

one and five imagery dates, they obtained the highest accuracy (91%) with all five dates. However, their 

most significant enhancement in classification accuracy was achieved when moving from a single-date to 

two dates, with an increase in accuracy of about 20%. Increasing from four to five dates only generated an 

accuracy increase of 1%. Their results show that studies will have a threshold beyond which the cost of 

extra imagery will outweigh the accuracy benefits. 

 

Multi-temporal data is particularly useful for classifying various types of vegetation. Imagery from 

particular times in the growing season allows for greater discrimination between types, due to plant 

structure, water content, and growth stage (McNairn et al. 2009). Crop yield estimates can be calculated 

and subsidies controlled by mapping at specific time and growth stages (Mahmoud et al. 2011). Multi-date 

RADARSAT-1 imagery has been shown to adequately discriminate between major crop types due to these 

differences at critical times in the growing season (McNairn et al. 2002). Tso and Mather (2010) achieved 

overall accuracies of more than 75% using multi-temporal ERS-1 data, even though they only used a 

single polarisation (VV).  

 

Niu and Ban (2013) achieved a Kappa of 0.91 in a land cover classification focusing on detailed mapping 

of urban areas using a six-date RADARSAT-2 data set. Urban area classification remains challenging, 

especially when only using SAR data, as the polarimetric properties of urban scatterers are complex and 

difficult to interpret (Niu & Ban 2013). The multi-temporal classification improved on the single-date 

Kappa coefficients, which ranged from 0.51 to 0.67 (Niu & Ban 2013). Even the combination of just three 

of the dates improved the Kappa coefficient to 0.86. In addition to better accuracies, the multi-date 

imagery improved the object-based segmentation. 

 

2.3.4 Polarimetric decomposition 

 

The polarimetric parameters related to the physical properties of targets are extracted for land 

classification (Qi et al. 2012) through methods such as polarimetric decomposition (Cloude, Pottier & 

Boerner 2002). Decompositions are algorithms developed to identify and extract useful information about 

the individual scattering components of ground targets from SAR data (Cable et al. 2014).  
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A comprehensive scene can be developed from fully polarised waves. The observed polarimetric 

signatures of objects are backscattered, recorded, and interpreted as the scattering properties of the objects 

(Qi et al. 2012). Processing methods such as decompositions separate the received signal into a 

combination of scattering responses of simple objects (Qi et al. 2012), simplifying physical interpretation 

so that the corresponding target type of each object in the image can be determined and extracted.  

 

Signal separation requires each target’s scattering matrix, from which the targets’ physical properties can 

be inferred (Cloude & Pottier 1996). This matrix is then decomposed into characterised scattering 

mechanisms for each target. In general, the matrix is composed of four complex variables, SHH, SHV, SVH, 

and SVV (Equation 2.1), which relate to the scattering component of each polarisation (Wang et al. 2009). 

The matrix is thus the full description of the ground parameters, which changes the incident electrical 

signal (Ei) into the scattered electrical signal (Es).  

 

Equation 2.1 

[
𝐸𝐻
𝑠

𝐸𝑉
𝑠] = [

𝑆𝐻𝐻 𝑆𝐻𝑉
𝑆𝑉𝐻 𝑆𝑉𝑉

] [
𝐸𝐻
𝑖

𝐸𝑉
𝑖 ] 

  

For ease of operation, this matrix is often restructured as a 3x3 matrix known as the T3 matrix which 

forms the starting point for most decompositions (Moreira et al. 2013). Decompositions allow the main 

scattering mechanism to be determined by expressing an average scattering matrix as the sum of 

independent matrices, all relating to the different scatter types displayed in the particular region of interest 

(Agashe 2013). There are two types of decompositions, coherent and incoherent decompositions. Coherent 

decompositions use first-order matrices and are best used to study coherent, or pure, targets, such as man-

made objects (Turkar & Rao 2011). They provide detailed information on scattering mechanisms (Cable et 

al. 2014). Examples of coherent decompositions are the Freeman-Durden (1998) and Cloude-Pottier 

(1995) decompositions.  

 

Incoherent decompositions were developed to characterise distributed, natural scatterers (Turkar & Rao 

2011) and are based on second-order matrices. Examples are the Van Zyl (1989) and Yamaguchi (2005) 

decompositions. As coherent and incoherent decompositions characterise different land covers best, using 

a combination of decompositions from both classes can be beneficial. Thus, in this study, a combination of 

different decomposition parameters were used to train the classifiers. 

 

Helix scattering is a useful added polarimetric parameter introduced by the coherent Krogager 

decomposition (1988). It is a general scattering mechanism that is seen in urban areas, but almost never 

appears in natural scattering. The Krogager and Yamaguchi decompositions take advantage of this 

scattering to separate man-made and natural targets (Turkar & Rao 2011). 
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Turkar and Rao (2011) compared classifications based on different decomposition algorithms. They found 

that the Van Zyl incoherent decomposition resulted in the highest classification accuracy. When features 

from all of the decompositions were combined, volume scattering from the Van Zyl and Freeman-Durden 

decompositions contributed the most to the overall accuracy. The odd bounce parameters added additional 

accuracy pay-offs. Similarly, Shi (2012) showed that using entropy and phase standard deviation extracted 

from X-band polarimetric interferometric SAR data improved the separability of low backscattering 

targets, with user’s accuracies of between 70% and 92.4%, producer’s accuracies between 79.5% and 

96.2%, and an overall accuracy of 82.8% when classifying roads, water, and bare soil.  

 

2.3.5 Synthetic aperture radar pre-processing  

 

SAR imagery, as with all remotely sensed imagery, requires initial pre-processing steps prior to 

classification. Pre-processing involves correcting terrain distortions, masking out inherent distortions such 

as radar layover and shadow, and co-registering multiple image dates to ensure that they overlay correctly. 

The following section will provide more detail on studies that have investigated the pre-processing steps 

crucial to preparing SAR imagery for classification. 

 

2.3.5.1 Terrain correction and geocoding 

 

Scenes with hilly or mountainous terrain require a pre-processing step for terrain correction. Rugged 

terrain, and therefore changing local geometry, results in changes in the local scattering area and in the 

scattering mechanism as the incidence angle changes. Terrain therefore affects backscatter responses by 

up to 5 decibels (Loew & Mauser 2007). Relief-induced backscatter changes should be treated as a 

systematic error and should be compensated for when retrieving surface characteristics. Terrain correction 

is particularly important when the analysis is focused on multi-temporal data, as systematic terrain 

distortion must be removed for multiple images to be accurately co-registered (Loew & Mauser 2007).  

 

The side-looking geometry of SAR sensors introduces significant distortions due to height differences in 

the across track direction. These distortions are corrected by geocoding. In geocoding, the image is 

reconstructed by finding each pixel’s corresponding correct position on the Earth (Loew & Mauser 2007). 

A forward or backwards geocoding approach can be followed. Forward geocoding uses the Range-

Doppler equation to calculate the position of each image pixel on the Earth’s surface. Backwards 

geocoding calculates the image pixel nearest the Range Doppler co-ordinate for each digital elevation 

model (DEM) element. The Range Doppler algorithm uses a backwards transformation to convert the 

position of the backscatter elements into slant range image co-ordinates (Badurska 2011). The difference 
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between the slant range and ground range is explained in Figure 2.4. A truly robust radiometric calibration 

should incorporate corrections for local incidence angles and antenna pattern distribution effects (Small et 

al. 1997). 

 

 

Height information is extracted from DEMs and used to geometrically correct each pixel displacement, in 

a process called orthorectification (Kellndorfer & Pierce 1998). When geocoding SAR data, the range 

information and georeferencing information from the SAR antenna is combined with the DEM 

information (Karjalainen et al. 2012) to transform the image into a common reference map geometry 

(Badurska 2011). 

 

2.3.5.2 Radiometric calibration 

 

Once the accurate description and reconstruction of the SAR imaging geometry is complete (geocoding 

and terrain correction), the output can be used for more precise radiometric corrections (Loew & Mauser 

2007). Geometric correction of SAR imagery transforms the image from ground or slant range geometry 

to a map reference (Small et al. 1997), whereas radiometric calibration corrects the local incidence angle 

and the image power replica adjustment (Kellndorfer & Pierce 1998). Radiometric correction removes the 

terrain-induced distortions that are inherent in radar imagery (Small et al. 1997). Radiometric correction 

also produces important value-added products that can be used in subsequent processing steps, such as 

layover and shadow masks.  

 

Source: ESA (2014)  

Figure 2.4 Difference between the slant range and ground range, with an example based on the sensor ERS-

1 to show how the conversion can be done. 
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After radiometric calibration, the average backscattering coefficient over a large number of image pixels 

should be independent of the local imaging geometry (Loew & Mauser 2007). This backscattering 

coefficient (called "sigma naught") is a normalised, dimensionless number that expresses the strength of 

the radar return signal. Although backscattering coefficients tend to decrease as the incidence angle 

increases, these coefficients tend to be more stable after correction (Loew & Mauser 2007). Calibration 

has to occur for multiple SAR scenes to be compared. 

 

2.3.5.3 Synthetic aperture radar filtering 

 

SAR imagery is more susceptible to speckle noise than traditional sensors as the images are generated 

through coherent processing of the scattering signal (Chen et al. 1996). Speckle is a grainy “salt and 

pepper”-like noise that results from constructive and destructive interference of the pulse by different 

scatterers (McCandless & Jackson 2004). Speckle filtering has been an area of active research for more 

than 20 years (Lee et al. 2009). 

 

The high spatial resolution achieved in SAR data has a trade-off with poor radiometric resolution. Speckle 

causes problems in recognising and distinguishing targets during classification (Wang et al. 2009) and can 

have a large effect on the accuracy of LULC classifications (Lee et al. 2006). Areas on the ground that 

should be homogenous are represented with a granular look and a statistical distribution that may be 

skewed (Durand, Gimonet & Perbos 1987). Speckle degrades both segmentation and classification 

accuracy (Foucher, Benie & Boucher 2001; Lee, Grunes & de Grandi 1999). It is therefore especially 

problematic if automatic image segmentation is to be performed on the imagery (Touzi & Lopes 1994). 

SAR images require a preliminary filtering step to remove speckle (Cloude & Pottier 1996; Ferro-Famil, 

Pottier & Lee 2001). This filtering is applied prior to information extraction (Lee et al. 2009) and has a 

positive effect on the accuracy of land cover classifications (Lee et al. 2006). Ban & Wu (2005) compared 

land cover classifications on five filtered and unfiltered SAR C-band images and found that the overall 

accuracies improved from just 37.3% to over 70% with the addition of speckle filtering. 

 

The general approaches for filtering are heuristic filtering, statistical adaptive, and wavelet theory 

(Foucher, Benie & Boucher 2001). Heuristic or “first” filtering techniques were designed for additive 

noise, so do not correct speckle effectively due to its multiplicative nature (Foucher, Benie & Boucher 

2001). Statistical adaptive approaches use optimisation criteria to adapt a filter to the local image 

information content (Foucher, Benie & Boucher 2001).  

 

As most speckle filtering algorithms are not designed to deal with point target preservation, the resulting 

targets are severely blurred or suppressed (Lee et al. 2009). In comparison, adaptive filters, such as the 

min-mean square error filter, are moderately effective in point preservation (Lee et al. 2009). Isolated dark 
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pixels therefore remain unfiltered due to their very low intensities and resulting very small sigma ranges 

(Lee et al. 2009).  

 

There are many filters available in open source software packages. The Lee sigma filter (1983) is popular 

due to its effectiveness and simplicity. It is based on a simple 2-sigma probability that is computationally 

efficient. However, it produces biased estimates, which result in unfiltered dark spotty pixels. The filter 

fails to maintain mean values, particularly when there are a number of looks involved (Lee et al. 2009). It 

can also result in the blurring and depressing of strong reflected targets. The boxcar filter has similar 

limitations, such as image quality degradation and blurred edges (Lee, Grunes & de Grandi 1999). These 

deficiencies and the increasing availability of high-resolution, high-dimension SAR data have created a 

demand for better, more effective speckle filters (Lee et al. 2009).  

 

The refined Lee filter (Lee, Grunes & de Grandi 1999) is an improved version of the original Lee filter 

(Lee 1981) that offers improved edge preservation. Redundant cells are located within changing 

neighbourhoods of eight cells, allowing for more accurate filtering of noise (Ju & Molony 1997). It is also 

available in the free open source software package PolSARPro 4.2 making it a promising option for 

filtering. This filter effectively preserves polarimetric information and subtle details (Qi et al. 2012).  

 

Lee et al. (1994) suggested five criteria for analysing the performance of a filter and comparing filters: 

1. mean value retention in homogenous areas; 

2. speckle reduction capability; 

3. edge sharpness; 

4. thin feature preservation; and 

5. point target preservation. 

 

Computational efficiency and the retention of textural information are also important when choosing a 

filter (Li et al. 2012). When polarimetric information is to be derived, the polarimetric properties must be 

preserved by filtering each individual term of the covariance matrix by the same amount (Lee, Grunes & 

de Grandi 1999). Boundary preservation between fields and the mean value retention within fields is 

particularly important when the study area includes agricultural areas. Although recent literature discusses 

the need to apply a polarimetric filter, few studies have quantitatively compared the filters that are 

currently available in open source software such as PolSARPro 4.2. The choice of filter can also be based 

on the median size of objects, for example the field width. When the size of the moving window is 

determined using this median object size, boundaries are preserved while object homogeneity is 

maintained.  
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2.4 DATA FUSION 

 

2.4.1 Introduction to fusion 

 

As discussed before, single-sensor and single-date data can have limitations, as the information provided 

may be incomplete, inconsistent, or imprecise (Fatone, Maponi & Zirilli 2001). Reliance on single-sensor 

image data can introduce a level of risk for operational projects (McNairn et al. 2009). A fusion approach 

can be used as an effective tool to overcome these limitations. Fusion combines data from different 

sources to improve the interpretation and potential value of the raw data (Zhang 2010). Research into 

using different types of sensors for detection and recognition of specific ground targets has been ongoing 

for many years, driven by factors such as improved coverage and target recognition (Hauter, Chang & 

Karp 1997). Results from the classifications of fused data are regarded as more reliable, as they are 

generated by exploiting data with different characteristics (Pohl & Van Genderen 2010). Fusion has been 

successfully used in a range of applications, including object detection and recognition, classification, 

change detection, and decision making (Zhang 2010).  

 

Data merging allows the exploitation of bands from different areas of the electromagnetic spectrum 

(Haack & Bechdol 2000). Using fused data has many benefits over single-sensor data use. Images can be 

sharpened, as spatial resolutions can be combined, and geometric corrections can be improved 

(Amarsaikhan et al. 2010). Fusion allows features to be enhanced that are not otherwise visible in a single 

image (Amarsaikhan et al. 2010). For example, Hu, Tao and Hu (2004) successfully detected and 

extracted road networks by combining Lidar data with high resolution optical imagery. Missing 

information can be supplemented and defective data replaced when combining data from different sources, 

thereby improving applications such as classifications and change detection (Amarsaikhan et al. 2010).  

 

Attempting to fuse multiple data sources is challenging, as the imagery must be accurately co-registered, 

temporal and spectral variations occur within and between the data sources, and the landscape is often 

complex (Lu & Weng 2005; Zhang 2010). Finding common ground control points (GCPs) to co-register 

imagery from different sources can be difficult, as the imagery contains different types of information, for 

example reflection in optical imagery and backscatter in SAR imagery. Temporal variations due to 

different image acquisition dates and geometries can cause problems with fusion as discrepancies in the 

landscape can cause inaccurate co-registering or make interpretation of the fused product difficult. 

 

Fusion can be applied at the pixel, feature, or decision level (Shimoni et al. 2009). Remote sensing 

applications often use a combination of all three levels. At the pixel level, data from different sources are 

combined into a single resolution data set. The combined data set is expected to be more informative than 

the input sources individually, or may reveal changes in multi-temporal data. The spatial resolution of 
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optical images, for example, can be improved and the structural and textural details are enhanced while 

preserving the spectral fidelity of the data set (Zhang 2010). Pan-sharpening is a pixel-level fusion 

approach in which a singular higher resolution optical band is used to improve the rest of the coarser 

multispectral bands for a single-sensor image. Pixel-level fusion is achieved using component substitution, 

modulation-based fusion, or multi-resolution analysis-based fusion algorithms.  

 

Feature-level fusion involves extracting features, such as texture, lines, and edges, from different data 

sources and combining these features into one or more feature maps. Feature maps can be used in further 

processing steps, such as classification. Feature-level fusion is particularly relevant when considering data 

sets with too many bands to analyse individually, but it involves precise pixel-to-pixel co-registration. 

Pixel-level fusion can sometimes result in the deterioration of either the spectral features or backscattering 

information contained in the original imagery. It is therefore predominantly used when combining optical 

and SAR, Lidar and optical, optical and GIS, and satellite and aerial data, where deterioration of the 

original imagery from pixel-based fusion should be avoided to maintain classification accuracies. 

Combining the classification results produced from different classifiers can be an effective means of 

fusing these complex data sets. Bayesian formulation is often used to fuse multi-temporal and multi-sensor 

data for land use classification (Zhang 2010).  

 

Decision-level fusion involves training classifiers with the same data, then combining the outputs 

(Petrakos & Benediktsson 2001). It allows results from multiple algorithms or processes to be combined 

for a final fused decision data set. Decision-level fusion can be conducted using soft fusion, which 

expresses results as confidences, using hard fusion, which expresses results as decisions, or using 

statistical or fuzzy logic-based methods (Zhang 2010). It has become popular for image classification on 

remotely sensed imagery as different classifiers may perform better in different regions of a study area 

(Petrakos & Benediktsson 2001).  

 

Fusion does not only apply to single-date imagery, but can also be applied to multi-temporal, multi-sensor, 

multi-frequency, multi-polarisation, and multi-resolution data sets (Simone et al. 2002). The literature 

generally proposes the use of statistical, symbolic, or neural network fusion methods for multi-temporal 

and multi-sensor data (Simone et al. 2002).  

 

2.4.2 Fusing optical and synthetic aperture radar data 

 

Fusing optical and SAR data exploits the benefits of each and allows data from different parts of the 

electromagnetic spectrum to be exploited in a complementary manner (Ban, Hu & Rangal 2007). As each 

sensor type discerns certain land cover types better than the other, a more robust, accurate classification 

can be obtained. Improvements are thus seen in classification accuracies when dual-sensor imagery is used 
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(Blaes, Vanhalle & Defourney 2005). SAR data can also fill gaps caused in multi-temporal optical image 

acquisitions due to cloudy or hazy days (Ban, Hu & Rangal 2007). Radar imagery alone does not delineate 

urban areas very well, whereas optical data struggles to discern natural vegetation. For example, Haack 

and Bechdol (2000) found an urban class accuracy of only 38.9% using SAR data and a vegetation class 

accuracy of 66.9% using optical data. Combining data sets corrects the misclassifications and poorly 

separated classes of single data sets (Hill et al. 2005). 

 

Ban, Hu and Rangal (2007) successfully used decision-level fusion by vectorising a RADARSAT 

classification into a thematic map and fusing it with a Quickbird (optical) classification. A new level of 

segmentation was then performed based on the thematic layer, creating a link between the SAR and 

optical results. The fusion increased the classification accuracy of the vegetation classes by 17-25% and 

the low-density building class accuracies by 3.9% and 3.6%, respectively. The overall accuracy of the 16-

class classification increased from 87.9 to 89.5% and the kappa value increased from 0.868 to 0.885. In 

agreement with these results, McNairn et al. (2009) found that target overall accuracies of 85% could not 

be achieved using individual optical or SAR images, but could be achieved when the two data sets were 

combined. Similarly, Laurin et al. (2013) found that using optical data produced a maximum overall 

accuracy of 80.4% and using SAR data, 49.9%. When they used texture variables and fused the data sets, 

they achieved an overall accuracy of 85.7% with a maximum likelihood classifier and an accuracy of 

95.6% with a neural network classifier.  

 

Michelson, Liljeberg & Pilesjo (2000) also found fusion of SAR and optical data to be beneficial for 

vegetation mapping, specifically for forest and agricultural land cover classes. The percentage of totally 

separable class pairs was increased from just 17.5% with optical data only and 48.3% with SAR data only 

to 63.3% with the combined data. Furthermore, the overall accuracies for the classifications were 

improved in all three instances using different classifiers, showing that the benefits of fusion are not 

limited to certain cases (Michelson, Liljeberg & Pilesjo 2000) 

 

Urban mapping continues to be a challenging task as it is a highly heterogeneous and complex land cover 

type (Lu & Weng 2005). However, it remains an important application for monitoring the loss of both 

natural and agricultural land to urban centres (Pacifici et al. 2008). SAR alone can struggle to delineate 

these areas due to confusion with rough or wet bare soils, as these areas all have strong radar return signals 

and thus appear bright in the image (Corbane et al. 2008). Corbane et al. (2008) assessed urban mapping 

using combined SAR/optical data (RADARSAT-1 and SPOT-4) against single-sensor performance using 

texture features and a fuzzy classification approach. Information fusion was conducted, allowing for 

improved precision and accuracy, and the use of flexible fuzzy approaches. The automatic delineation of 

urban areas was tested and the combined data set resulted in a more precise delineation of the urban area 

and less false positives. Using just SAR imagery of the same area resulted in an underestimation of urban 

expanse of nearly 16.1 km², whereas the optical-only imagery led to an overestimate of nearly 13 km². 
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Work done by Pacifici et al. (2008) supports this result; they achieved a kappa value of 0.9393 for a 

classification based on combined SAR-optical data using a neural network classifier. They attributed their 

result to the C-band SAR data providing additional scattering information to the optical data, which 

improved the separation of the closely situated vegetation and water, which had low returns, from the 

buildings and roads, which exhibited high returns (Pacifici et al. 2008). 

 

Zhu et al. (2012) provides further evidence of the benefits of combined SAR and optical data for urban 

land cover mapping. Their classification included 17 land cover classes and compared classifications on 

multi-temporal Landsat ETM+ and L-band PALSAR data, alone and combined. Their best SAR 

classification had an overall accuracy of 72.2% and their best optical classification, based on three 

seasons, had an overall accuracy of 93.8% (Zhu et al. 2012). The magnitude of the optical classification 

limited the possible increase of the combined classification. However, a statistically significant increase of 

1.1% was achieved, predominantly from three urban classes (Zhu et al. 2012). 

 

Combined high resolution SAR and optical data was further proved to be successful in classifying urban 

areas, particularly in delineating built-up areas and roads, with an overall accuracy for urban classification 

of 91% (Amarsaikhan et al. 2010). Similarly, Huang, Legarsky and Othman (2007) achieved class 

accuracies of over 72% for density-building classes, forest, open ground, and water using combined 

RADARSAT-1 and Landsat-7 ETM+ data. 

 

Combined optical and SAR data have also been successfully used for vegetation mapping. Crop 

classifications have been reported to have improved by 20-25% when radar and very high resolution 

optical sensors are combined (Brisco, Brown & Manore 1989; Rosenthal & Blanchard 1984). It also 

shows potential in wetland monitoring (Li & Chen 2005). Landsat-7 ETM+ data were used with 

RADARSAT-1 data and a DEM to produce accuracies ranging from 71% to 92% for wetland 

classification at three sites, in comparison with accuracies of 24% to 89% produced from single-sensor 

classifications (Li & Chen 2005). Hill et al. (2005) used decision-level fusion, in which classifications 

from AirSAR and Landsat TM data were combined to improve the mapping of pasture types in Australia. 

Moghaddam, Dungan and Acker (2002) saw improvements in foliage mass classification, with the root 

mean square error improving by a factor of two with combined SAR-optical data over just using optical 

data. 

 

Fusion can also be performed on independent classifications based on different data types. For example, 

classifications can be performed independently on optical and SAR data, then combined to exploit the 

“greenness,” brightness, and bareness information contained in the optical classification and the height, 

structure, and water content information in the SAR classification (Hill et al. 2005).  
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Although the general trend in land cover classifications using optical and radar fusion is to use only the 

backscatter values extracted from the radar imagery in combination with the optical bands (Laurin et al. 

2013), other approaches are also possible. Digital number values can be extracted from multiple optical 

and radar bands for each land cover type to test the separability through statistical measures, such as the 

mean and standard deviation of each potential class. Sheroan and Haak (2013) successfully used this 

method on PALSAR L-band data for crop-type mapping. Polarimetric information can also be extracted 

and added to the fused data set. This approach is investigated in this study. 

 

2.5 IMAGE CLASSIFICATION 

 

Classification involves the assignment of regions on an image to a real-world “class” (Campbell 2006). 

Commonly, as in the case of this study, these are land cover classes and refer to real-world ground covers 

that exist in the study area. Classification is performed on pre-processed, prepared imagery and can be 

done using an array of approaches, classifiers, and considerations.  

 

2.5.1 Object-based vs. pixel-based classification 

 

In pixel-based classification, each individual pixel is classified as a particular land cover type. Although 

innovative per-pixel classification approaches for improved accuracy continue to be popular, they suffer 

from spectral confusion and mixed pixels (Bhaskaran, Paramananda & Ramnarayan 2010). Per-pixel 

approaches also have limited ability to accurately represent real-world, complex, individual land forms 

and non-uniform surfaces (Saha, Wells & Munro-Stasiuk 2011). This has particularly become a problem 

with the new generation of high resolution sensors, such as Worldview and Ikonos. As a result, there has 

been a paradigm shift from the per-pixel approach to the object-oriented approach. 

 

In object-based classification, pixels are first grouped together into “objects” in a process called 

segmentation. These objects are then each classified as a particular land cover type. The idea behind 

representing images through objects is based on mimicking the human brain’s ability to recognise and 

interpret images as distinct regions (Devereux, Amable & Posada 2004). An “object” refers to a group of 

neighbouring pixels that have been grouped together based on some homogenous characteristics, such as 

their spectral values. The popularity of object-based approaches has increased due to developments in 

ecology and the understanding that landscapes inherently embody patchworks of land cover that can be 

better represented by homogenous objects than by individual pixels (Devereux, Amable & Posada 2004). 

It is believed that object-based approaches result in a more robust, flexible analysis of landforms and a 

better representation of the inherent patterns in, and mutual relationships between, the objects (Gamanya, 

De Maeyer & De Dapper 2007; Saha, Wells & Munro-Stasiuk 2011). There is thus a demand for land 
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cover object outlines for large areas and object-based classifications remain an important research focus 

(Devereux, Amable & Posada 2004).  

 

Object-based classification is more appropriate for applications in which the study area has inherent object 

features, such as the inherent parcel structure of fields in agricultural areas (Mahmoud et al. 2011). For 

example, a field-based land cover classification using 3 m resolution TerraSAR-X data, texture features, 

and an object-based approach resulted in a 95.5% overall accuracy (Mahmoud et al. 2011). However, the 

underlying segmentation should not be based heavily on field boundaries in these applications, as this 

continues the dependence on digitised layers, produced through manual editing, and not on potentially 

automated, and therefore more efficient, methodologies.  

 

The two main driving forces behind the growth in object-oriented classifications are the vast quantities of 

remotely sensed data now available from a multitude of satellite sensors and the increase in the power of 

geographic information systems (GIS), in particular their computational power and the complexity of the 

available software and algorithms used to analyse and process image data (Devereux, Amable & Posada 

2004). With the popularity and power of object-based classification increasing, it is important for research 

to focus on producing generalised, standardised image analysis approaches (Gamanya, De Maeyer & De 

Dapper 2007).  

 

Object-based and pixel-based approaches to classification primarily differ in their classification units and 

in the features used to separate classes (Liu & Xia 2010). The segmented objects used in the object-based 

approach reduce the salt-and-pepper effect and spectral variability within classes, but can also result in 

under- or over-segmentation (Liu & Xia 2010). Pixel-based classifications can be limited as they cannot 

make use of spatial information (Mas, Gao & Pacheco 2010), whereas object-based classifications 

characterise objects using a wide variety of features, including spatial, spectral and textural features (Liu 

& Xi 2010). Relationships between objects can also be exploited (Im, Jensen & Tullis 2014). However, 

geographic object-based image analysis (GEOBIA) is more likely to be affected by increased data 

dimensionality, due to the larger number of features and small training sets used to train its statistical 

classifiers (Myburgh & Van Niekerk 2014). 

 

Object-based approaches are particularly important for applications based in predominantly agricultural 

areas, such as the study area, as they display typical spatial patterns (Waske & Van der Linden 2008). 

These inherent patterns can be exploited to improve classifications. The segmentation used to produce 

objects can also level out the internal variance in spectral reflectance and the backscatter intensity within 

objects belonging to the same class, caused by differences in soil moisture and plant interactions (Waske 

& Van der Linden 2008). This helps to reduce the effect of speckle inherent in radar imagery and to 

decompose the image into piecewise smooth regions (Fatone, Maponi & Zirilli 2001; Qui et al. 2012). In 
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change analysis applications, pixel-based approaches are over-sensitive to noise and therefore lack the 

spatial consistency needed for accurate change detection (Im, Jensen & Tullis 2014). 

 

2.5.2 Segmentation 

 

Segmentation is the process of dividing an image into non-overlapping, discrete objects that each 

represent a homogenous zone on the ground (Devereux, Amable & Posada 2004). It is the first and one of 

the most important steps in an object-oriented classification as the quality of the classification is directly 

dependent on the quality of the objects (Gamanya, De Maeyer & De Dapper 2007). The aim of 

segmentation is to ensure local homogeneity within objects, while still representing the global 

heterogeneity within the image (Su et al. 2008). Segmentation can be based on either very basic 

parameters, such as spectral contrast, or can take into account a variety of contributing factors (Devereux, 

Amable & Posada 2004). A scale factor is used to determine the size of the objects and is set based on the 

heterogeneity evident in the landscape (Gamanya, De Maeyer & De Dapper 2007). Colour and shape 

factors can also be weighted, depending on the type of land cover classification being performed, to 

produce objects that best represent the real world land targets (Su et al. 2008).  

 

Segmentation algorithms are classified as region-growing/merging, boundary detecting, or a combination 

of both (Stuckens, Coppin & Bauer 2000). Multi-resolution segmentation (MRS) is a region-merging, 

bottom-up technique (Gamanya, De Maeyer & De Dapper 2007). It begins with single-pixel objects and 

merges them with neighbouring pixels to form objects, based on the neighbouring pixels’ characteristics 

and heterogeneity within user-defined thresholds (Gamanya, De Maeyer & De Dapper 2007). It is a local 

optimisation procedure: it considers each step in the growth process against the defined threshold. If the 

threshold is exceeded, the process stops. It then starts with the next single-pixel starting object (Gamanya, 

De Maeyer & De Dapper 2007). The scale factor determines the maximum change in total heterogeneity 

allowed when merging pixels into an object (Dragut & Blaschke 2006). It is important to note that there is 

no general “ideal” segmentation, especially as the “scale” factor in eCognition is unitless and difficult to 

directly relate to spatial relationships (Hay et al. 2005). Trial and error is usually needed, thus making this 

step difficult to optimise (Taubenböck, Esch & Roth 2006). Although MRS generates meaningful objects, 

it is computational intensive and can be unsuitable for large data sets (Li et al. 2014). 

 

Other segmentation algorithms available include multi-threshold segmentation, chessboard segmentation, 

and quadtree segmentation. Multi-threshold segmentation splits objects with spectrally high contrast, but 

does not take the shape of the object into consideration and needs training (Li et al. 2014). Chessboard 

segmentation is fast and produces regular square objects, but does not take into account the spectral values 

of the objects and does not produce meaningful objects (Li et al. 2014). Similarly, quadtree segmentation 

produces square objects of varying sizes. 
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Li et al. (2014) used a combination of the MRS, chessboard, quad tree, and multi-threshold algorithms in 

an object-based classification. Although the chessboard and quadtree segmentations are quite rudimentary, 

they can be useful for creating different hierarchical levels of segmentation. By using all four of these 

segmentation types together, at varying scales, a good balance was found between computation time and 

accuracy (Li et al. 2014). An overall accuracy of 91.9% and Kappa of 0.9 was achieved for a 10-class land 

cover classification (Li et al. 2014). This was nearly a 20% accuracy improvement on a pixel-based 

classification run on the same imagery. These results show the importance of well-segmented image data 

for a successful classification. 

 

In agreement with the idea behind using multiple segmentations together, Martha et al. (2011) used the 

MRS and chessboard segmentations together to delineate landslide object boundaries. The MRS was used 

first, then the objects were refined and merged using chessboard segmentation. The resulting classification 

had a 76.4% recognition accuracy for landslides (Martha et al. 2011). The same combination of 

segmentation algorithms was used by Su et al. (2009) for mapping general land cover using SPOT-5 

imagery, obtaining a final overall accuracy of 86.5% and kappa of 0.79. 

 

Hay et al. (2005) designed and implemented a multi-scale segmentation routine to segment meaningful 

forest-objects at various scales. This approach provided an overview of the dominant structures found in 

the scene based on the scene components. Although successful, this method was constrained to high 

resolution imagery and was designed specifically for forest mapping (Hay et al. 2005). 

 

Meinel and Neubert (2004) presented an approach to assess the quality of segmentations and tested it on 

various segmentation-producing software. Algorithms tested included eCognition 2.1 and 3.0, Data 

Dissecting Tools, CAESAR 3.1, InfoPACK, Minimum Entropy Approach SPRING 4.0, and the ERDAS 

Imagine extension for segmentation. Even though outdated versions were used, the eCognition 

segmentations were deemed the best overall, based on characteristics such as conformity of objects and 

average difference to the reference areas’ perimeters, area, and shape index (Meinel & Neubert 2004).  

 

Over-segmentation occurs when a semantic object is divided into multiple smaller objects, whereas under-

segmentation occurs when a single object contains multiple different semantic objects (Liu & Xia 2010). 

If features are extracted from mis-segmented objects, either due to under- or over-segmentation, they will 

not represent the properties of the real ground objects. Both under- and over-segmentation can negatively 

affect the resulting classification. In over-segmentation, however, each object can still belong to a single 

class. Although too many objects are produced, it is still possible to obtain an accuracy of 100% (Liu & 

Xia 2010). In contrast, under-segmentation results in objects that contain multiple classes. It therefore 

introduces classification errors and makes it impossible to achieve 100% classification accuracy (Liu & 

Xia 2010). Over-segmentation has less of an effect if a subsequent classification will be performed, as the 
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classifier will merge parcels of the same land cover type to create more generalised products. In contrast, 

it is impossible for a classifier to split the segments in an under-segmented image (Devereux, Amable & 

Posada 2004).  

 

The trade-off between accuracy and cost must be considered in light of the requirements of a particular 

study when choosing the segmentation scale. Using a very fine scale may result in over-segmentation, 

which can be computationally and resource-expensive, but will result in high accuracy. Processing with 

less units is more time- and cost-efficient, but is less accurate (Im, Jensen & Tullis 2014).  

 

2.5.3 Feature selection 

 

One of the strengths of object-based classification is that it incorporates the elements that are traditionally 

used in aerial photograph interpretation, including shape and size. These elements, or features are 

characteristics that can be derived for an object. They can include the mean spectral value for a specific 

band for all pixels within that object, a shape characteristic relating to the geometry of the object, or a 

derived index using band combinations. Features can also be derived from the decompositions of radar 

imagery, such as the Pauli, Freeman-Durden, Krogager, and H/A/alpha (Cloude-Pottier) decompositions 

(Chen, Chen & Lee 2003). 

 

This strength is, however, one of the biggest challenges of the object-based approach as the availability of 

hundreds of spectral, spatial, and contextual features means that data dimensionality can be exceptionally 

high (Gao et al. 2011; Laliberte, Browning & Rango 2012). This “curse of dimensionality” can result in 

over-trained classification algorithms, resulting in poor models, poor representations of real-world 

phenomena, and low classification accuracies. It can therefore be beneficial to only use a subset of 

features in processing steps such as training classification algorithms. There are numerous ways in which 

to select these subsets of features. Although user knowledge and past experience can often be some of the 

main informers of feature selection, they are not always a viable solution (Duro, Franklin & Dube 2012). 

A commonly used method is PCA which has been discussed extensively in literature and has been 

successfully applied to many types of remote sensing data (Byrne, Crapper & Mayo 1980; Celik 2009; Li 

& Yeh 1998; Liu et al. 2003; Townsend, Justice & Kalb 1987; Yonghong 1998).  

 

An alternative to using PCA is to generate rankings of important features for class separation that can 

inform feature selection and reduction and can be optimised to promote accurate class representations 

(Laliberte, Browning & Rango 2012). Feature selection is one of the main difficulties in an object-based 

approach and has received attention in literature (Amarsaikhan et al. 2010; Qi et al. 2012). Feature 

selection depends on the type of imagery used, the land cover depicted, and the specific output required. It 
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is therefore difficult to specify a definitive set of features that is applicable to every application. In 

general, statistical, textural, spatial, and shape-based indicators can be used.  

 

Feature selection algorithms can be assessed based on their efficiency and ease of use, ability to rank and 

reduce features, and the resultant classification accuracies (Laliberte, Browning & Rango 2012). Many 

feature selection algorithms have been proposed. A selection of the most common algorithms are 

presented below. 

2.5.3.1 Classification tree analysis 

 

Classification tree analysis (CTA) is non-parametric, fast, and powerful in reducing and ranking features. 

It can obtain features or specific rules, depending on the user selection. It does not, however, provide class 

separation distances and can over-fit the decision tree (Laliberte, Browning & Rango 2012). Over-fitting 

occurs when the parameters fed into an algorithm are too complex or large, and the resultant model 

describes noise and exaggerates small fluctuations in the data rather than showing general trends. CTA is 

most useful for applications that have many classes and/or features or that do not need separation 

distances. It is also useful with data that have non-normal distributions.  

 

Laliberte, Browning and Rango (2012) found that CTA produced better accuracies than feature space 

optimisation or the Jeffreys-Mutusita distance on sub-decimetre resolution L-band SAR imagery. CTA has 

been shown to be an effective way to select important features and has been applied successfully within a 

GEOBIA environment (Chubey, Franklin & Wulder 2006; Laliberte et al. 2007; Yu et al. 2006).  

 

2.5.3.2 Separability and thresholds algorithm  

 

The separability and thresholds algorithm (SEaTH) automatically identifies the relevant features with a 

purely statistical approach using training samples. It identifies the features that best separate a class pair, 

then identifies the separation threshold for each feature (Gao et al. 2011). SEaTH uses the Jeffreys-

Mutusita distance to measure object separability. It outputs the Jeffreys-Mutusita distances and rules, 

which makes its output compatible with eCognition software. However, it involves multiple steps, making 

it less efficient and user friendly. It assumes data normality and performs no initial feature reduction 

(Laliberte, Browning & Rango 2012).  

 

SEaTH is useful for applications that require separation distances or that have a limited number of classes 

and features. Gao et al. (2011) found that SEATH outperformed the Nearest Neighbour and Maximum 

Likelihood classifiers with overall accuracies of 79% versus 66% and 69%, respectively. As with other 

feature selection methods, it is important to use the first few features that provide the maximum 
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separability between classes in SEaTH. To maintain method transferability, the minimum number of 

features possible should be used (Nussbaum, Niemeyer & Cantry 2006). If too many features are used to 

separate each class pair, there is a risk of introducing features that are only applicable to local conditions.  

 

2.5.3.3 Feature space optimisation 

 

Feature space optimisation is faster than other feature selection methods, especially when used with 

texture measures. It provides separation distances and can be used for feature reduction with eCognition. It 

is, however, a black box approach and gives unclear feature ranking without rules. It is most applicable for 

applications that require feature reduction for neural network classifications (Laliberte, Browning & 

Rango 2012).  

 

2.5.3.4 Random forest algorithm 

 

The random forest (RF) classifier has the capability to assess and rank features by importance (Rodriguez-

Galiano et al. 2012). This is particularly useful for multi-source studies with high data volumes. 

Importance rankings can be used to select the most useful features for training a classifier. The RF feature 

selection ranks features by systematically switching a random input variable while keeping the rest 

consistent. It then considers how the classification accuracy changes with this variable input alteration and 

uses this to rank the features by importance (Rodriguez-Galiano et al. 2012). 

 

2.5.4 Use of texture in classifications 

 

There exists a variety of features that can be used to train classification algorithms. These include layer 

values such as the mean or standard deviation for a particular satellite image band as well as derived 

indices such as NDVI. Furthermore, geometric properties of the actual objects can be assessed. Texture 

measures have been highlighted in literature as being particularly useful in object-based classifications and 

especially fusion classifications (Amarsaikhan et al. 2010; Chan, Laporte & Defries 2003; Haack & 

Bechdol 2000; Herold, Haack & Solomon 2004; Laurin et al. 2013; Nyoungui, Tonye & Akono 2002; 

Sheroan & Haak 2013). 

 

Texture is a measure of the variation in the reflection intensity of a surface and provides important 

information about the arrangement of objects and their spatial relationships (Rodriguez-Galiano et al. 

2011). It quantifies properties such as smoothness, coarseness, and regularity (Zhang 2010). Texture 

analysis allows the spatial relationship between neighbouring pixels to be explored within a defined 

window size, which provides descriptors to separate spectrally similar land cover classes (Chan, Laporte 
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& Defries 2003). Texture has been shown to improve class separability in land cover classifications, 

thereby improving mapping accuracy (Berberoglu et al. 2007; Lloyd et al. 2004). It provides useful 

additional information that can be combined with backscatter information from SAR imagery (Schistad 

Solberg & Jain 1997). As texture measures vary with the relative depression angle, incidence angle, look 

direction, and acquisition date, they are a complex addition to a classification (Herold, Haack & Solomon 

2004).  

 

The addition of texture measures does, however, considerably increase the data dimensionality of a 

classification (Rodriguez-Galiano et al. 2011). Often, this increase in data size, and specifically an 

increased number of features, exceeds the ability of most classifiers (Rodriguez-Galiano et al. 2011). 

Thus, the classifier must be carefully chosen when using large data sets, such as in this study. 

 

2.5.4.1 Texture measures 

 

Texture analysis can be performed on different orders of statistics. First-order statistics are the simplest 

and generally result in poor class discrimination (Munoz 2013). They include measurements such as mean, 

variance, and average energy, and give information about the distribution of grey levels in an image. 

Second- and third-order derived texture variables are generally considered best for applications such as 

land cover classification (Nyoungui, Tonye & Akono 2002). Second-order statistics operate on a 

probability function, also known as a co-occurrence matrix (Munoz 2013). These statistics give the 

probability that a pair of pixel values will occur some vector apart.  

 

The grey level co-occurrence matrix (GLCM) is one of the most popular textural features (Su et al. 2008). 

Co-occurrence texture features are based on grey-level spatial dependencies (Haralick, Shanmugam & 

Dinstein 1973). The computed co-occurrence matrix contains the relative frequencies of all pair-wise 

combinations of backscatter values, computed at a given distance and direction within a local moving 

window (Schistad, Solberg & Jain 1997). It can be used to derive a variety of texture measures, such as the 

second angular moment, contrast, entropy, dissimilarity, mean, and homogeneity. The homogeneity and 

second angular moment indices describe homogeneity within the objects, whereas the contrast and entropy 

indices indicate heterogeneity (Su et al. 2008). Correlation measures the grey level linear dependence 

between specified pixels (Albregsten 2008).  

 

The grey level difference vector (GLDV) counts the occurrence of the absolute difference between a 

reference pixel and its neighbours (Chan, Laporte & Defries 2003). It is derived from the GLCM and 

provides additional texture values from those derived solely from the GLCM. 
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2.5.4.2 Impact of texture measures on classification accuracy 

 

The use of radiometric data alone for a classification is often not sufficient and the addition of textural 

measures that use inherent spatial information can improve classification accuracy (Li et al. 2012). 

Texture measures improve class separability by decreasing the coefficient of variation between classes 

(Erasmi & Twele 2009). Li et al. (2012) found that adding even one texture measure to L- and C-band 

data provided a better classification and that using all available radiometric and textural images resulted in 

a 6.6% increase in overall accuracy.  

 

Textural information distinguishes between easily confused classes such as lawn and water (Qi et al. 

2012). Herold et al. (2004) included texture variables in a classification on a single wavelength (HH) C-

band RADARSAT image, which improved both the overall accuracy and the accuracy of the urban and 

forest classes. They found that major misclassifications existed between tea plantations and other 

agricultural areas when only texture was used, but that combining texture and the HH band improved the 

producer’s accuracy of the tea plantation class and general agriculture class by 6% and 1%, respectively 

(Herold et al. 2004). Combining the textural information with L-band SAR increased the producer’s 

accuracy by 28% and 3% for the water and urban classes, respectively (Herold et al. 2004). These results 

illustrate the potential that texture variables hold for improved land cover classifications, especially for 

traditionally confused classes.  

 

Ban and Wu (2005) found that the addition of the mean, standard deviation and correlation texture 

measures improved overall accuracies from just more than 70%, based only on five C-band SAR images, 

to 89.7%, with a kappa value of 0.9. All of the land cover classes, ranging from urban classes to water and 

forest, showed producer’s accuracies of 74% and above, as well as user’s accuracies of 84% and above 

(Ban & Wu 2005). 

 

Although recent studies have investigated the use of texture variables to improve classifications, it is still 

unclear which texture measures are useful for improving the separability of vegetation types, especially in 

tropical moist regions (Li et al. 2012). Vegetation, particularly tropical vegetation, has complex structures 

and species compositions. Difficulties also arise from texture variations in the landscape, selecting the size 

of the moving window, and from the image itself (Li et al. 2012). Choosing the texture images to include 

in a classification can be difficult. Li et al. (2012) suggested identifying potential combinations using a 

separability analysis, then choosing the best combinations according to the standard deviation and 

correlation coefficients.  

 

Texture also has been successfully used in other applications. Kuplich, Curran and Atkinson (2005) found 

that the correlation between backscatter and biomass increased from 0.7 to 0.8 when the GLCM contrast 

texture measure was added to SAR data and showed the potential of SAR and texture to produce biomass 
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evaluations of tropical forests. Chan, Laporte and Defries (2003) saw similar benefits with forest mapping 

using optical data and texture: the addition of textural measures increased the accuracy of the logged forest 

class by 36%. However a, trade-off was seen in the accuracies of the other classes and the class accuracy 

of logged forests remained low at 46.7%.  

 

Addition of texture is especially useful for the characterisation of urban areas as they are described by 

their structure more than by their reflectance or backscatter alone (Corbane et al. 2008). Su et al. (2009) 

found that adding GLCM textural measures to spectral imagery improved overall classification results for 

the city centre of Kuala Lumpur from 81.6% and a kappa of 0.8 to 87.3% and a kappa of 0.8. 

 

The above-mentioned literature shows that texture can have a positive effect, as it leads to accuracy gains 

and improves classifications over a range of land cover types. It is thus an important addition to the feature 

set derived from the data set in this study. 

 

2.5.5 Classification algorithms 

 

Once the image objects have been created and features have been selected, a classifier is used to group 

objects into land cover types based on their feature values. Data requirements, the availability and 

sensitivity of training data, and computational and operational requirements must all be considered when 

selecting a classifier (Shang et al. 2009). Automated, efficient methodologies are required to deal with the 

increasing volume of data available (Chan, Laporte & Defries 2003). Unsupervised classifiers classify 

pixels into classes based on their reflectance values and require no prior training. They can, however, 

cause naturally occurring clusters within the image data to drift away from the class centres, resulting in 

misclassifications (Lee, Grunes & Pottier 2001). More advanced supervised and machine learning 

algorithms have therefore become popular as they are generally able to handle large volumes of complex 

data and train quickly and efficiently (Chan, Laporte & Defries 2003; Rodrigeuz-Galiano et al. 2012). 

These algorithms do not assume normal data distribution and generally produce higher accuracies than 

unsupervised classifiers (Rodriguez-Galiano et al. 2012). 

 

Supervised learning approaches are generally better than unsupervised approaches as they incorporate 

prior knowledge into the classification process. However, they require labelled training data to be 

provided manually by a human expert (Uhlmann, Kiraryz & Gabbouj 2014), which can introduce 

problems. These problems include having the necessary training data, the introduction of human error and 

effective training, or parameter setting, of the classifier. Small training data sample sizes often cause the 

underlying classifier to lack discrimination and generalisation capabilities, a phenomenon known as ill-

posed data (Myburgh & Van Niekerk 2013; Uhlmann, Kiraryz & Gabbouj 2014). Semi-supervised 

learning can be used to overcome small sample sets. This approach first uses a small set of labelled data to 

Stellenbosch University  https://scholar.sun.ac.za



44 

 

train the classifier, then uses a large amount of unlabelled data to improve the classifier. Choosing reliable 

training data is crucial in both supervised and semi-supervised approaches (Uhlmann, Kiraryz & Gabbouj 

2014). 

 

Past studies using some of the common supervised and machine learning classifiers are discussed next.  

 

2.5.5.1 Maximum likelihood supervised classifier 

 

The maximum likelihood (ML) classifier is a well-known, commonly used classifier of both optical and 

SAR remotely sensed data (McNairn et al. 2009). It is based on the mean, variance, and covariance 

statistics of each class’s signal responses (Ma et al. 2013). This classifier can be based on different types 

of distributions, including the Gaussian and Wishart distributions. The Gaussian-based ML classifier has 

been widely used in optical remote sensing, but is not considered suitable for SAR imagery due to the 

speckle noise inherent in SAR (Ma et al. 2013). However, the classifier can be applicable if sufficient 

“looks” are available, which allows the speckle noise to be reduced and makes a Gaussian probability 

feasible (Ma et al. 2013). It has been successfully used in land cover classifications, attaining an overall 

accuracy of 84.4% when using combined RADARSAT-1 and Landsat-7 ETM+ imagery (Huang, 

Legarsky & Othman 2007). The ML classifier is sensitive to small training samples, which can be a 

limiting factor for using it in certain projects (Clausi 2002). The complex Wishart ML classifier is often 

used for LULC classifications on PolSAR data, as it is based on the assumption that the data is 

uncorrelated and is suitable for multi-temporal imagery (Ma et al. 2013).  

 

Although the Wishart classifier is often used, it does not consider phase information (Shimoni et al. 2009). 

Chen et al. (2007) found that using a supervised Wishart ML classifier on the coherency matrix of L-band 

PolSAR data achieved better accuracies for each class than numerous other classifiers, but had an overall 

accuracy of 75.2%. In comparison, the ECHO classifier achieved the highest overall accuracy of 81.3% 

when applied to all six intensity and three phase images in the data set, but achieved class accuracies as 

low as 17.8% (Chen et al. 2007). Thus, it is important to choose the correct classifier for the specific 

application to maximise both overall and individual class accuracies.  

 

Models based on Gaussian and Wishart distributions can be ineffective when texture is present. The 

integration of the K-means distribution is recommended in applications with texture, such as forest species 

mapping (Coulibaly et al. 2012).  
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2.5.5.2 Decision tree classifiers 

 

Decision tree classifiers allow for a multi-stage or sequential approach and do not rely on assumptions 

about the distribution of the input data (McNairn et al. 2009; Pal & Mather 2003). As non-parametric, 

sequential classifiers, they are particularly suitable for generally non-normal SAR data (Shang et al. 2009). 

They are able to handle nonlinear relationships between features and classes, and between defining 

features (Pal & Mather 2003). They are easier to interpret, quicker to train and execute, and more efficient 

than artificial neural networks (Friedl & Brodley 1997; McNairn et al. 2009; Qi et al. 2012). Decision tree 

classifiers are ideal when data gaps are present, for example for cloud masking in optical data or radar 

layover masking in SAR data (Shang et al. 2009). Decision trees were successfully implemented for 

feature selection and classification on polarimetric RADARSAT-2 data for LULC classification with an 

overall accuracy of 86.6%. In comparison, a Wishart supervised classification on the same data achieved 

only 69.7% (Qi et al. 2012). 

 

2.5.5.3 Support vector machine classifiers 

 

Support vector machine (SVM) classifiers have superior image handling abilities as they can synthesise 

regression, classify functions based on either discrete or continuous data sets, are insensitive to noise and 

over-training and can handle unbalanced data sets (Adam et al. 2014). In comparison with other statistical 

classifiers, SVM is particularly effective when dealing with large data sets and is less prone to suffering 

from the Hughes effect than the ML classifier, for example (Oommen et al. 2008). SVM is becoming 

increasingly popular for classification, recognition, and detection as it can deal with high dimension data 

(Zhang 2010). SVM also handles smaller training sets well (Myburgh & Van Niekerk 2013; Pal & Mather 

2005; Lizarazo 2008; Mountrakis, Im & Ogol 2011). This is true not only for pixel-based classifications, 

but also for object-based classifications (Niu & Ban 2013). Duro, Franklin & Dube (2012) found that 

SVM produced a statistically significantly better vegetation-focused land cover classification than the 

decision tree classifier, using an object-based approach. However, SVM can be prone to longer training 

times and can require parameter tuning to produce the most accurate results (Chan, Laporte & Defries 

2003).  

 

2.5.5.4 Artificial neural networks 

 

Conventional statistical classifiers are not optimal for high-dimension data as they do not allow factor 

weighting and cannot handle large, complex data sets efficiently (Waske & Braun 2009). Although 

artificial neural networks can be successfully used for larger data sets, they require long training times and 

have no consistent rules for design or performance (Waske & Braun 2009).  
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Neural networks outperform statistical classifiers, especially when the feature space is complex and the 

source data have differing statistical distributions (Nyoungui, Tonye & Akono 2002). They draw their own 

input-output relations from the data and do not assume a normal distribution (Pacifici 2008). They provide 

a more rapid performance and allow a priori knowledge and realistic physical constraints to be 

incorporated into the classification process (Nyoungui, Tonye & Akono. 2002). They tend to suffer less 

from noise and saturation in L-band SAR data (Del Frate & Solimini 2004). Laurin et al. (2013) found that 

a neural network classifier improved accuracy results by 1.6-1.9% over a ML classifier, although the 

increase was small, it was statistically insignificant. Chen et al. (1996) achieved overall accuracies up to 

95% for land cover classification using multi-frequency PolSAR data, showing this classifier’s ability to 

handle the non-normal distribution of SAR data. 

 

2.5.5.5 Random forest classifier 

 

The RF classifier uses the best split of a random sample of the input features at every node division in a 

decision tree (Rodriguez-Galiano et al. 2011). It iteratively creates multiple decision trees in this way and 

reduces generalisation error (Rodriguez-Galiano et al. 2011). The RF classifier is able to compute large 

time series efficiently even if feature selection is not first conducted on the data set. It also needs limited 

guidance for parameter setting (Rodriguez-Galiano et al. 2012). The RF classifier is noted specifically for 

advantages that include (Breiman 2001): 

1. It is robust towards outliers and noise; 

2. It is efficient with large data bases, such as in this study; 

3. It has superior accuracy over other current algorithms; 

4. It is computationally lighter than other machine learning algorithms; and 

5. It has the capability to determine variable importance (Rodriguez-Galiano et al. 2012). 

 

The RF classifier produced better results than SVM when classifying a heterogeneous coastal landscape, 

producing an overall accuracy of 93.1% (Adams et al. 2014). Novack et al. (2011) found similar results, 

with RF producing the best overall accuracies when compared with the SVM, regression tree, and decision 

tree classifiers, using an object-based approach on WorldView-2 and Quickbird-2 simulated imagery. RF 

is well-suited for classifications based on multi-temporal data and can perform well even with small 

training sets (Waske & Braun 2009). Although some classes were poorly separated with this classifier, 

Waske and Braun (2009) found that adding a single optical image to a SAR time series improved the 

separation between the urban and forest classes. Performing classification using only SAR data, Du et al. 

(2015) found that the RF classifier was suited to handling PolSAR data and achieving an overall accuracy 

of 83.8% and Kappa value of 0.8. Rodriguez-Galiano et al. (2012) saw a positive result from using the RF 
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classifier for a complex study area and a large number of land cover classes, gaining an overall accuracy 

of 92%.  

 

A limitation of this classifier is, however, that the splitting rules are unknown and that it is a “black box” 

type of classifier (Rodriguez-Galiano et al. 2012). 

 

2.5.6 Training data 

 

Training data are necessary when using the above mentioned supervised and machine learning algorithms. 

It trains the classifier by providing information, or characteristics, about the land cover classes based on 

samples that are generally collected through field work. Collecting sufficient, accurate, well-distributed 

ground truth data is often a limiting factor for classifications that rely on remotely sensed data (Lu & 

Weng 2005). However, a sound ground truth data set is imperative for a successful classification when 

using supervised classifiers (Myburgh & Van Niekerk 2014). 

 

In an object-based environment, the training data will be information, or features, derived for certain 

objects known to belong to specific land cover classes. The classifiers will then associate the respective 

values of the features to characterize each land cover class. Based on these, the classifier can then classify 

other unknown objects based on their values for the specific defining features. 

 

Inaccurate training data will invariably cause an inaccurate classification. Added to this, if training 

samples are too few or too many, classification can also be affected. If too few samples exist, the classifier 

will not be provided enough information to be able to accurately classify the rest of the image. 

Conversely, if a classifier is over-trained with too many features, misclassifications can also occur. 

Mislabelling is also a major human error that can cause classification inaccuracies (Rodriguez-Galiano et 

al. 2012). This can be reduced through inspections as well as using a classifier that is robust against 

outliers, such as the RF classifier (Rodriguez-Galiano et al. 2012). 
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 CHAPTER 3 DATA ACQUISITION AND PRE-PROCESSING 

 

The data acquisition details and data types used are introduced in this chapter. The classification scheme 

and land cover classes used in the resultant classifications are also presented, followed by the pre-

processing performed on the imagery.  

 

3.1 DATA ACQUISITION 

 

Two sets of remotely sensed data were used for this study: RADARSAT-2 SAR imagery and SPOT-5 

optical imagery. Fully polarimetric RADARSAT-2 C-band image data in descending fine beam mode with 

an incidence angle of 37° was captured every 24 days from January to December of 2014, generating a 

time series of 13 images. The images were received in the Single Look Complex (SLC) format. The 

spatial resolution for the raw imagery was 11 m x 9 m. RADARSAT-2 image data is sold under license 

from MacDonald Dettwiler and Associates. The SEAS-OI station, a partner in this research collaboration, 

had an existing contract to obtain a quota of RADARSAT-2 image data, under which the data required for 

this study was captured and obtained. 

 

SPOT-5 optical image data is sold by Airbus Defence & Space and also obtained through SEAS-OI's 

contract, who routinely capture this imagery over the extent of Réunion Island. SPOT-5 images were 

selected as close to the acquisition dates of the RADARSAT-2 image data as possible. Thus, a 13-image 

multi-temporal series was obtained from SEAS-OI to compliment the RADARSAT-2 images. The 

multispectral bands had a spatial resolution of 10 m and the panchromatic band had a spatial resolution of 

2.5 m.  

 

A set of criteria were assessed to identify candidate SPOT-5 and RADARSAT-2 image pairs to be 

included in the classifications. Firstly, the window period between the image acquisition dates were 

assessed as a smaller time gap between the two images is favoured in minimize temporal changes within 

an image pair. Cloud cover in the SPOT-5 image was assessed and images with minimal cloud were 

favoured. Four images pairs satisfied these criteria and were chosen for classifications. Table 3.1 lists all 

of the image pairs and their acquisition dates. 
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Table 3.1 2014 acquisition dates of the 13 pairs of SAR and optical data images. Dates highlighted in grey 

were used in classifications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 CLASSIFICATION SCHEME DESIGN 

 

One method of organising land cover information is to use a classification scheme (Jensen & Cowen 

1999). Determining a suitable classification scheme is one of the major steps in an image classification 

(Turkar & Rao 2011). A classification scheme defines the land cover classes to be used to classify an 

image and details their possible hierarchy and any natural breaks between super classes, such as between 

non-vegetated areas and vegetated areas. A detailed investigation was made of the land covers apparent in 

the study area through field visits and inspection of high-resolution imagery, and examples of these land 

covers can be seen in Figure 3.1 A land cover class hierarchy of nine classes (Figure 3.2) was then 

developed with the aid of the South African full Land Cover Class System (LCCS) classification produced 

by the Council for Scientific and Industrial Research (CSIR) (2010). 

RADARSAT-2 SPOT-5 Days Difference 

22 February 22 February 0 

18 March 15 March 3 

11 April 20 April 9 

5 May 1 May 4 

29 May 1 June 3 

22 June 22 June 0 

16 July 18 July 2 

9 August 12 August 3 

2 September 2 September 0 

26 September 23 September 3 

20 October 20 October 0 

13 November 14 November 1 

7 December 11 December 4 
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Figure 3.1 Aerial photograph showing some of the typical land covers in the study area: a) natural 

vegetation, b) grass fields, c) sugarcane, d) harvested sugarcane, e) orchards and f) ravine vegetation. 

Figure 3.2 Classification scheme used in this study. 

1. PRIMARILY NON-

VEGETATED AREAS 

2. PRIMARILY VEGETATED 

AREAS 

2.1 NATURAL 

VEGETATION 

2.2 CULTIVATED 

VEGETATION 

1. Artificial Bare 

Surfaces 

1. 2. Bare Soil 

1. 3. Water 

2.1.1 Herbaceous 

Shrubs and Bushes 

2.1.2 Trees 

2.2.1 Herbaceous 

Graminoids 

2.2.2 Herbaceous 

Non-Graminoids 

2.2.4 Managed 

Grass 

2.2.3 Trees 
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The following section will provide a brief description on each of the land cover classes. At the end of 

Section 3.2.2, Figure 3.3 is presented. This gives photographic examples of each land cover class, as well 

as the variations within each class. It is referred to within the descriptions of each land cover class but is 

presented at the end of the section for ease of reference. 

 

3.2.1 Primarily non-vegetated area classes 

 

3.2.1.1 Artificial bare surfaces  

 

Artificial bare surfaces are areas that have artificial coverings due to human activities. They include built-

up areas, urban areas, transportation (roads and airport runways), extraction (quarries and open minds), 

and waste disposal. According to the South African LC Field Guide (CSIR 2010), this class includes built-

up, non-linear, and built objects.  

 

Features of interest included the St Pierre runway, located in the south-west corner of the study area, and 

the built-up coastal towns of St Pierre and St Joseph. Photographic examples of this land cover class can 

be found in Figure 3.3; a built up residential area along the coast can be seen in Figure 3.3m with a field of 

solar panels seen in Figure 3.3n. 

 

3.2.1.2 Bare soil 

 

This class can encompass bare soil found in cultivated areas (bare fields), but predominantly refers to 

naturally occurring exposed soil. These are areas without an artificial covering and have vegetation cover 

of less than 4%, as defined by the CSIR LCCS. The class includes bare rock, sand, consolidated material 

on the face of cliffs, landslides, and steep riverbed embankments.  

 

As naturally occurring bare soil was uncommon within the study area and this class was expected to be 

difficult to classify. The river bed found in the south-western part of the study area is an interesting feature 

as it is bare at certain times of the year. It was expected that it would be classified into this class at some 

times of the year and classified as water at other times. This river bed can be seen in Figure 3.3o.  

 

3.2.1.3 Water 

 

The water class refers to areas that are naturally and artificially covered by water. It includes lakes, dams, 

rivers, and the surrounding ocean. It is important to note when river beds are dry and exposed, these areas 
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may be classified differently on images from different times of the year. The river bed, with a low water 

level, can be seen in Figure 3.3o. 

 

The study area did not contain any large lakes. However it contained many small dams that service the 

agricultural practices in this area and was bordered by the ocean in the south. 

 

3.2.2 Primarily vegetated area classes 

 

3.2.2.1 Natural herbaceous shrubs and bushes 

 

As defined by the LCCS (CSIR 2010), natural vegetation occurs in areas where the vegetation cover is in 

balance with the abiotic and biotic forces of its biotope. This class includes semi-natural vegetation, which 

is naturally occurring vegetation that is affected by human activities. It also includes previously cultivated 

areas that have been abandoned, in which the vegetation is regenerating to a natural state, undisturbed by 

human activities. 

 

The study area did not contain large expanses of naturally occurring vegetation outside of ravine areas. 

Small pockets of natural vegetation did occur within the urban areas and around cultivated fields. 

However the image resolution of 8 m made accurate depictions of these small areas unlikely. Two 

variations of this land cover can be found in Figure 3.3a and b. Figure 3.3c) depicts a ravine area, showing 

the dense vegetation characteristic of these regions.  

 

3.2.2.2 Natural trees 

 

Natural trees includes areas with a tree cover density of 15% or higher. An area is considered to contain 

trees when it holds woody vegetation with a distinct elevation at the top of the canopy no less than 1.5 m 

above ground level. It can also contain a ground cover of shrubs and bushes no more than twice the area of 

the tree cover. This class includes indigenous and alien forests.  

 

This study aimed to only classify naturally occurring forests and plantation forests within this class, while 

excluding trees occurring in cultivated orchards. An example of a natural forest can be seen in Figure 3.3d. 

The forests and orchards display very different types of vegetation and structural properties and thus were 

separated.  
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3.2.2.3 Cultivated herbaceous non-graminoids 

 

This class includes areas where the natural vegetation has been cleared or modified to grow vegetation of 

anthropogenic origin and uses. This vegetation is “artificial” and requires human activities for 

maintenance. There may be times of the year when this land has little to no vegetation covering, 

depending on harvesting and planting regimes. It is possible that these areas may be classified as bare soil 

on images acquired at certain times of the year, if they remain bare for extended periods. 

  

The crop types in the study area that fell within this class included pineapple fields, commercial gardening 

containing vegetables and flowers, and herb fields. Two variations of this class can be found in Figure 3.3j 

and k. 

 

3.2.2.4 Cultivated herbaceous graminoids (Sugarcane) 

 

Within the study area, the main crop type that fell within this land cover class was sugarcane. Fields with 

any sugarcane growth stages were included in this class. Figure 3.3g, h and i show varying stages in the 

sugarcane life cycle: Figure 3.3g depicts a harvested field with completely exposed bare ground. At this 

stage, these areas should be classified as Bare Soil. Figure 3.3h depicts young sugarcane with Figure 3.3i 

showing the height of full grown sugarcane relative to a vehicle.  

 

3.2.2.5 Cultivated trees 

 

Trees planted and maintained by human activities for commercial purposes fall within this class. It 

includes cultivated orchards, such as banana trees and mango orchards. Uniform rows and spacing 

between the trees is characteristic of these areas and is an important consideration when segmenting these 

images. If segmentation is set at too small a scale, the rows of trees will be separated from the rest of the 

underlying vegetation, causing classification errors. An example of a mango orchard is shown in Figure 

3.3l. 

 

3.2.2.6 Managed grass 

 

Managed grass includes all areas of grass that are managed in some way by human activities, including 

meadows used for animal grazing and grass fields cultivated for harvest and animal feed, and sports and 

recreational fields. An example of a Managed Grass is depicted in Figure 3.3e. 
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Figure 3.3 Photographs of the land cover classes: a), b) and c) Natural Herbaceous Shrubs and Bushes, d) 

Natural Trees, e) Managed Grass, f) the proximity of different and covers, g) Bare Soil, h) and i) 

Cultivated Herbaceous Graminoids, j) and k) Cultivated Herbaceous Non-Graminoids, l) Cultivated Trees, 

m) and n) Artificial Surfaces and o) the river bed showing both Bare Soil and Water.  
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The study area consists of very limited bare areas. This can be seen in Figure 3.3f. This is an important 

feature of the study region to note, as the small pockets of varying land cover types lying adjacent to each 

other, coupled with the high intra-class variability pose limitations in accurately mapping regions such as 

this.  

 

3.2.3 Naming convention for classes 

 

For ease of reference, a shorthand naming convention for the land cover classes, shown in Table 3.2 is 

used in the tables and graphs throughout this document: 

 

Table 3.2 Naming convention for the land cover classes used in this document 

 

Name in the classification scheme (Section 

3.2.1 and 3.2.2) 

Abbreviation used in the rest of this 

document 

Artificial Bare Surfaces Artificial Surfaces 

Bare Soil Bare Soil 

Cultivated Herbaceous Graminoids Cultivated HG 

Cultivated Herbaceous Non-Graminoids Cultivated HNG 

Cultivated Trees Cultivated Trees 

Managed Grass Managed Grass 

Natural Herbaceous Shrubs and Bushes Natural HSB 

Natural Trees Natural Trees 

Water Water 

 

 

3.3 SYNTHETIC APERTURE RADAR IMAGE PRE-PROCESSING 

 

Terrain correction and geocoding was done in two parallel stages. The first stage dealt with the backscatter 

intensity bands. The second stage corrected the polarimetric coherency (T3) matrix, which was extracted 

from the SLC data using the PolSARPro 4.2 software. The backscatter bands and T3 matrix components 

were then filtered and polarimetric decompositions were extracted from the T3 matrix. The full pre-

processing procedure applied to each SAR image date can be seen in Figure 3.4, which shows the parallel 

preparation of the backscatter bands and decomposition parameters. The rest of this section will describe 

how these pre-processing steps were applied to the SAR imagery.  
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 IMAGE PRE-PROCESSING 

Figure 3.4 Pre-processing chain for the preparation of SAR data. 

GEOMETRIC AND RADIOMETRIC 

CORRECTION 

GEOMETRIC CORRECTION 

EXTRACT T3 MATRIX 

APPLY POLARIMETRIC FILTER  

(Refined Lee 3x3) 

POLARIMETRIC 

DECOMPOSITIONS  

DE GRANDI MULTI-TEMPORAL 

FILTER 

COREGISTERATION BETWEEN 

ALL BANDS FROM EACH DATE 

(First date used as reference the layer) 

SAR BANDS (HH, HV, VH, VV) 

OUTPUTS: 

1. Cloude and Pottier Decomposition 

 Entropy, Anisotropy and Alpha 

2. Freeman Durden  

Decomposition 

 Single, Double and Volume 

3. Krogager Decomposition 

 Helix, Diplane and Sphere 

4. Van Zyl Decomposition 

 Odd, Even and Double  

5. Yamaguchi Decomposition 

 Helix, Double, Single and Volume 

 

OUTPUTS: 

1. Filtered backscatter 

 HH, HV, VH, VV 

2. Unfiltered backscatter 

 HH, HV, VH, VV 
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3.3.1 Pre-processing the backscatter bands 

 

When there are two or more images of different dates, of the same scene, multi-temporal filtering can be 

performed. This exploits the correlation that exists between the speckle found in each of the images. The 

De Grandi multi-temporal filter can thus be applied to remove this multiplicative noise. This filter is, 

however, based on the assumption that resolution is the same and that a ground target in one image is in 

the exact co-ordinates of all the other images. Therefore, co-registration among all the backscatter bands 

was applied first, followed by the De Grandi multi-temporal filter in Envi using the SARScape toolbox to 

remove speckle from the time series. This improved both the visual and radiometric quality of the images, 

as the grainy salt-and-pepper-like noise was reduced, and this can be seen in Figure 3.5 showing a portion 

of the scene before and after filtering. This method was preferred as no spatial resolution is lost while 

speckle is still improved. The bands were then geocoded in SARScape, using a current 5 m Lidar DEM 

provided by CIRAD. During the geocoding and terrain correction step, the image data were also 

radiometrically calibrated to sigma-0 (backscattering coefficient) in decibels using the local incidence 

angle, so that the backscatter intensity could be used in further processing steps.  

 

 

A layover and shadow mask was produced during the calibration step. Radar layover and shadow, which 

were apparent in the image data and inherent in radar, can cause distortion in the backscatter signal and 

result in misclassification of the affected areas. Two steep ravines flanked the study area, causing large 

areas of layover on the west and east sides of the images. The layover and shadow mask was prepared for 

use in eCognition 9.0.3 software for subsequent processing steps.  

 

 

a) 

Figure 3.5 The (a) raw backscatter is improved using the De Grandi multi-temporal filter resulting in a 

more usable (b) product. 

b) 

a) 

b) a) 
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3.3.2 Pre-processing the T3 matrix 

 

ASF MapReady was used to geocode the T3 matrix elements that had been extracted from the SLC data in 

PolSARPro 4.2. The 5 m DEM described in Section 3.3.1 was used. The output was generated in 

PolSARPro-ready formats. Orthorectification of the T3 matrix in MapReady created a longitude 

coordinate error in the header files, which had to be manually corrected. 

 

3.3.3 Filtering of the T3 matrix 

 

For preserving the full polarimetric phase information of each scene, a multi-temporal filter, like the De 

Grandi Filter, is not an option for the T3 matrix. Thus, spatial filters need to be used. A review of the 

current literature available on speckle filtering reveals that there is no definitive opinion on how to choose 

the optimum method and algorithm for polarimetric filtering. There is thus uncertainty surrounding the 

choice of filter and the optimum parameters for each filter. Different filters and parameter combinations 

had to be tested to make a definitive decision on the best choice to use in filtering the T3 matrix for each 

image data.  

 

Five of the filters available in PolSARPro 4.2 that are commonly used in the literature were selected for 

this project: the Refined Lee, Sigma Lee, Gaussian Box, Box Car and Lopez filters. Each filter was run on 

the same RADARSAT-2 image of the study site, dated 22 February 2014. At least three window sizes 

were tested for each filter (3x3, 5x5, and 7x7). If a filter had additional parameters, as does the Sigma Lee 

filter, these parameters were varied independently of each other to determine the effect each one had on 

the resultant output. Table 3.3 shows one example of assessing the effects of a filter’s parameters on the 

output. 

 

Table 3.3 Parameters tested for the Sigma Lee filter and the smoothing effects each one has on the 

resultant output. 

 

 

 

 

 

 

 

 

 

 

 

Sigma Lee Min Max 

Target Window Size 3 5 

More Pixelated More Smooth 

Filter Window Size 7 9 

More Pixelated More Smooth 

Sigma Value 0.5 0.9 

More Pixelated More Smooth 

Number of Looks 1 3 

More Smooth More Pixelated 
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The outputs were visually inspected to determine which parameter values for each filter had a generalising 

(smoothing) or pixelating effect. This was done using the Pauli decomposition as it visualizes a range of 

scattering mechanisms (ESA 2000). The window size for averaging caused the most smoothing. Figure 

3.6 shows the effect of changing window size on the Box Car filter and the Refined Lee filter. From these 

observations, a “most pixelated” and “most smoothed” output was generated for each filter by 

compounding the effects of each parameter value choice. The two outputs for each filter were compared 

using visual interpretation of the five criteria stated in Section 2.3.5.3, along with available literature. The 

Box Car filter and Refined Lee filter were chosen for further investigation based on the supporting 

literature and visual inspection of the output. 

 

 

 

A second level of filtering can be introduced at the decomposition stage of the processing chain. This is 

not an independent filtering step. Instead it determines the window used to estimate the polarimetric 

parameters, which can have a filtering effect. The outputs from the two chosen filters, the Box Car and 

Refined Lee filters, were used to extract polarimetric decompositions. The decompositions were extracted 

without applying an averaging window, ensuring that no further filtering was applied. The outputs were 

assessed visually and the Refined Lee filter was found to have the most beneficial effect. This filter was 

thus chosen for use in the study based on its performance as measured by the criteria listed in Section 

2.3.5.3. The geocoded and terrain corrected T3 matrix for each image date was subsequently filtered using 

Figure 3.6 Filtering using a) the Box Car filter with a window of 3x3, b) the Box Car filter with window of 

7x7, c) the Refined Lee filter with a window of 3x3, and d) the Refined Lee filter with a window of 7x7, 

displayed in the Pauli decomposition RGB. 

a) 

b) 

c) 

d) 
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the Refined Lee filter with a moving window of 3x3. Polarimetric decompositions were performed on the 

T3 matrices in PolSARPro 4.2, allowing the following polarimetric parameters to be extracted: 

 

1. Cloude-Pottier Decomposition: Entropy, Anisotropy, and Alpha. 

2. Freeman-Durden Decomposition: Volume, Double Bounce, and Single Bounce. 

3. Yamaguchi Decomposition: Helix, Single, Double, and Volume. 

4. Krogager Decomposition: Helix, Sphere, and Diplane. 

5. Van Zyl Decomposition: Odd, Even, and Double Bounce. 

 

These parameters were used as inputs for the feature selection investigations and object-based 

classifications (Chapter 4). 

 

3.4 OPTICAL IMAGE PRE-PROCESSING 

 

The SPOT-5 time series contained 13 images, acquired approximately once every month. The imagery 

was already orthorectified and atmospherically corrected to ensure radiometric fidelity. Cloud cover can 

obscure further processing steps and results, and is particularly a problem in multi-temporal data sets over 

tropical areas. Clouds therefore were manually digitised using ArcMap 10.1, so that areas of cloud cover 

could be masked out.  

 

The SPOT-5 images were cropped to the same extent as the RADARSAT-2 images to improve processing 

time and computer resource allocation. 

 

Not all of the 13 RADARSAT-2/SPOT-5 image pairs could be used in the classifications due to large 

expanses of cloud cover that removed usable portions of the imagery and large time periods between the 

acquisitions of the two types of images. RADARSAT-2/SPOT-5 image pairs were selected with the 

fewest number of days between their acquisition dates and with minimal cloud cover in the SPOT-5 

image. Four image date pairs were chosen. These dates corresponded to the RADARSAT-2 imagery 

acquired on 22 February 2014, 5 May 2014, 29 May 2014, and 9 August 2014. A comprehensive 

evaluation of all 13 image pairs and why each was included or disregarded can be seen in Table 3.4. 
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Table 3.4 Evaluation of all 13 SPOT-5 images for inclusion in the time series, based on cloud cover and 

number of days between RADARSAT-2 and SPOT-5 image acquisition dates. 

     

SPOT-5: 2014-02-22 

RS-2: 2014-02-22 

 

Included based on 

identical acquisition 

dates and areas of 

interest unaffected by 

cloud cover 

SPOT-5:2014-03-15 

RS-2:2014-03-18 

 

Disregarded based on 

cloud cover. 

SPOT-5:2014-04-20 

RS-2:2014-04-11 

 

Disregarded based on 

haze and cloud cover, 

and an unacceptable 

window between the 

acquisition dates. 

SPOT-5: 2014-05-01 

RS-2:2014-05-05 

 

Included based on 

limited cloud cover and 

an acceptable number 

of days between the 

acquisition dates. 

SPOT-5: 2014-06-01 

RS-2: 2014-05-29 

 

Included based on an 

acceptable number of 

days between the 

acquisition dates and 

limited cloud cover. 

 

     

SPOT-5:2014-06-22 

RS-2:2014-06-22 

 

Disregarded based on 

cloud cover and the 

loss of numerous 

ground truth points if 

included. 

SPOT-5:2014-07-18 

RS-2:2014-07-16 

 

Disregarded based on 

cloud cover. 

SPOT-5: 2014-08-12 

RS-2:2014-08-09 

 

Included based on the 

absence of cloud cover 

and an acceptable 

number of days 

between the acquisition 

dates. 

 

SPOT-5:2014-09-02 

RS-2:2014-09-02 

 

Disregarded based on 

cloud cover and areas 

of shadow resulting 

from the cloud cover. 

SPOT-5:2014-09-23 

RS-2:2014-09-26 

 

Disregarded based on 

cloud cover, resulting 

in the loss of many 

ground truth points. 

   

  

SPOT-5:2014-10-20 

RS-2:2014-10-20 

 

Disregarded based on 

the amount of cloud 

cover. 

SPOT-5:2014-11-14 

RS-2:2014-11-13 

 

Disregarded due to the 

loss of more than 60 

ground truth points. 

SPOT-5:2014-12-11 

RS-2:2014-12-07 

 

Disregarded due to 

haze over most of the 

image.  
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3.5 TRAINING AND GROUND TRUTH DATABASE 

 

Ground truth data are crucial for training supervised and machine learning classification algorithms and 

for validating the accuracy of classifications. A common method of ground truth data collection is through 

field visits to collect GCPs. However, this can prove difficult if parts of the study area are inaccessible or 

the study area is large. High resolution imagery is often used as a substitute.  

 

For this study, GCPs were needed for all nine land cover classes. The aim was to collect at least 40 points 

for each class, which would be divided between training and validation. Reaching this aim proved difficult 

for land cover classes that did not extend over large areas or that were not present in large quantities in the 

study area. The study area had dense vegetation cover, which made accessing some areas at certain times 

difficult, particularly naturally occurring vegetation. A combination of GCP collection methods was thus 

used. 

 

Over the course of 2014, field visits were conducted to a selection of predominantly agricultural areas 

within two days of every RADARSAT-2 image acquisition. These areas were chosen primarily due to 

access (i.e. permission) to the target areas. GPS co-ordinates, photographs, and general notes of the type of 

land cover present were collected. The collection of these points was done by the author during June to 

September 2014 and by a collaborator (Bellon 2014) during February to May 2014. The field visits 

accounted for most of the ground truth data collected for the classes Cultivated Trees, Cultivated HG and 

Cultivated HNG.  

 

In addition to field visits, a tour of the study area was conducted by vehicle over several days in August 

2014. With the addition of aerial imagery brought along on these trips, GCPs were selected for all of the 

land cover classes. These points were restricted to areas that could be seen from roads.  

 

To supplement land covers with limited GCPs after the first two steps, high resolution (6 cm) Pleiades 

imagery was used to perform a purposive desktop collection of points. This was done for easily 

identifiable classes such as Artificial Surfaces and Water. 

 

Any points in the final, combined ground truth database that fell within areas of layover, shadow, or cloud 

(for any or all dates) were removed. Training and validation were performed using the same set of points 

for each image date. The final data set covering all of the classes included 701 points. It was randomly 

split in half in a class-wise manner using QGIS, forming a training data set (a) of 349 points and an 

accuracy assessment data set (b) of 351 points, seen in Figure 3.7.  
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The training points were used to select the corresponding image objects after segmentation was applied to 

the satellite imagery in eCognition 9.0.3. The training objects were thus automatically selected for each 

class. The number of training objects per land cover class is shown in Table 3.5. 

  

Table 3.5 Number of training objects per class used for feature selection and classifier training. 

 

Land Cover Class Total Training Objects 

Artificial Surfaces 41 

Bare Soil 30 

Cultivated HG 39 

Cultivated HNG 63 

Cultivated Trees 17 

Managed Grass 32 

Natural HSB 56 

Natural Trees 25 

Water 46 

 
b) 

Figure 3.7 Distribution of a) training and b) validation GCPs, colour coded per land cover class. 

b) a) 
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 CHAPTER 4  DATA ANALYSIS 

 

The following sections give detailed information about the methods and processes used to fulfil the aim of 

this study and complete the four experiments. The steps followed to conduct the features selection on 

single-date, multi-date, single-sensor, and dual-sensor data are presented in Experiment 1. Object-based 

single-date classifications using various classification algorithms are presented in Experiment 2. 

Experiment 3 compares single-date classification using fused and single-sensor data. Experiment 4 

compares multi-temporal and single-date classification. Due to the variety of processes run to fulfil the 

four experiments, a range of software packages were used in conjunction with each other. Figure 4.1 

shows a breakdown of the methods used to accomplish the data processing and the analysis of the 

prepared data.  
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Figure 4.1 Experimental design. 

FEATURE SELECTION 

TEST DIFFERENT CLASSIFIERS 

COMPARE SINGLE-SENOR TO FUSED CLASSIFICATION ON SINGLE-DATES 

COMPARE SINGLE-DATE TO MULTI-TEMPORAL CLASSIFICATION 

 DATA RESULTS AND INTEPRETATION 

 Extract indices, textural, mean, standard deviations, geometric and shape features from 

the training data of both types of imagery 

 Run RF and CART feature selection on both the single-sensor and fused-sensor data 

 

 Use combined RADARSAT-2 and SPOT-5 imagery 

 Run: RF, CART, decision tree, SVM, maximum likelihood and kNN classifiers 

 Use default settings for all 

 Run the RF classifier on three iterations: 

o Fused imagery 

o Only SPOT-5 imagery 

o Only RADARSAT-2 imagery 

 

 Use the combined RADARSAT-2 and SPOT-5 imagery 

 Conduct feature selection using the RF algorithm 

 Run the RF classifier on increasing numbers of features for training 

 

DATA ANALYSIS 

Experiment 1 

Experiment 2 

Experiment 3 

Experiment 4 

 Perform accuracy assessments on Experiments 2, 3 and 4 

 Create standard confusion matrices and error metrics based on same validation data set 
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4.1 PREPARATION FOR THE EXPERIMENTS 

 

The data had to be set up in the correct formats for each software prior to any analysis. This section 

explains the image stacking to combine all of the image layers together, the segmentation performed on 

these layers in eCognition 9.0.3, and the extraction of the training objects and their features for the feature 

selection in Experiment 1, as well as the training of the classifiers in Experiments 2, 3 and 4. 

 

4.1.1  Multi-layer stack 

 

Twenty-eight input layers were prepared from each optical and SAR image pair for input into the object-

based classifications. The 28 image layers in each SPOT-5/RADARSAT-2 image pair were converted into 

a single image stack in ENVI and resampled to 8 m resolution. This stack was imported into eCognition 

9.0.3. 

 

The 28 image layers from each SPOT-5/RADARSAT-2 image pair are: 

1. Green (SPOT-5 band) 

2. Red (SPOT-5 band) 

3. NIR (SPOT-5 band) 

4. SWIR (SPOT-5 band) 

5. HH (RADARSAT-2 backscatter band, filtered) 

6. HH (RADARSAT-2 backscatter band, unfiltered) 

7. HV (RADARSAT-2 backscatter band, filtered) 

8. HV (RADARSAT-2 backscatter band, unfiltered) 

9. VH (RADARSAT-2 backscatter band, filtered) 

10. VH (RADARSAT-2 backscatter band, unfiltered) 

11. VV (RADARSAT-2 backscatter band, filtered) 

12. VV (RADARSAT-2 backscatter band, unfiltered) 

13. Alpha (derived from the Cloude-Pottier decomposition) 

14. Anisotropy (derived from the Cloude-Pottier decomposition) 

15. Entropy (derived from the Cloude-Pottier decomposition) 

16. Freeman Durden Double Bounce (derived from the Freeman-Durden decomposition) 

17. Freeman Durden Volume (derived from the Freeman-Durden decomposition) 

18. Freeman Durden Odd (derived from the Freeman-Durden decomposition) 

19. Krogager Diplane (derived from the Krogager decomposition) 

20. Krogager Sphere (derived from the Krogager decomposition) 

21. Krogager Helix (derived from the Krogager decomposition) 

22. Van Zyl Double Bounce (derived from the Van Zyl decomposition) 
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23. Van Zyl Volume (derived from the Van Zyl decomposition) 

24. Van Zyl Odd (derived from the Van Zyl decomposition) 

25. Yamaguchi Double Bounce (derived from the Yamaguchi decomposition) 

26. Yamaguchi Volume (derived from the Yamaguchi decomposition) 

27. Yamaguchi Helix (derived from the Yamaguchi decomposition) 

28. Yamaguchi Odd (derived from the Yamaguchi decomposition) 

 

4.1.2 Segmentation 

 

The multiresolution segmentation (MRS) algorithm available in eCognition 9.0.3 was used to produce 

useful image objects. Only the SPOT-5 bands (Red, Green, NIR and SWIR) and SAR multi-temporal, 

filtered backscatter bands (HH, HV, VH and VV) were used in the segmentation, as this created the most 

useful objects. The decomposition parameter layers do not contain what would be visually considered 

“logical” real world objects, so were omitted from segmentation. However, segmentation was applied to 

the entire multi-layer stack, containing all of the layers.  

 

Segmentation was performed with a scale parameter (10) that ensured a slight over-segmentation, rather 

than under-segmentation. This scale provided the best represented objects determined by visual inspection. 

Weightings for all layers were kept equal. The MRS parameters were kept constant so that the 

classifications could be directly compared with one another. 

 

Segmentations were based on a varying set of layers to analyse feature selection as well as resultant 

classifications on single-sensor versus dual-sensor data. Firstly, for fused data, segmentation was based on 

equal weightings for the four filtered backscatter (HH, HV, VH and VV) SAR bands and the four optical 

bands (Green, Red, NIR, and SWIR). To compare this to single-sensor data, segmentations were also run 

on just the four backscatter SAR bands and independently on just the four optical bands.  

 

Thematic layers (additional shapefiles) were used to mask out cloud and radar shadow, as well as layover. 

Training objects for each class were extracted using a thematic layer containing the training points. 

Objects containing a training point were selected and classified automatically as the correct land cover 

class based on the attribute information inherent in the point shapefile. 

 

4.1.3 Feature derivation 

 

Features are derived from the input layers, and can include parameters such as “mean green reflectance” 

or “standard deviation of HH” or “NDVI” per object. Different threshold values for each feature can be 

used to classify the objects created from an initial segmentation and to train classifiers. Feature selection 
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depends on the type of imagery used, the land cover depicted and the specific output required. It is 

therefore difficult to specify a definitive set of features that is applicable to every study. 

 

Features were derived from both sets of image data. This included brightness values from the visible 

spectrum bands, backscatter and mean digital numbers from the polarisation bands, derived features such 

as the texture and vegetation indices, geometric features and contextual features. The features were 

exported for every training object into a single shapefile, which was used in subsequent processing steps, 

including feature selection. The full list of features derived per image date are presented in Table 4.1.  

 

Table 4.1 Features derived for use in feature selection and classification. 

 

CATEOGRY TYPE 

Customised Normalised difference vegetation index (NDVI) 

(NIR - Red) / (NIR + Red) 

Layer values Mean  

Standard deviation 

Brightness 

Max difference 

Geometry (extent) Area 

Border length 

Length 

Length/thickness 

Length/width 

Thickness 

Width 

Geometry (shape) Asymmetry 

Border index 

Compactness 

Density 

Elliptical fit  

Shape index 

Rectangular fit 

Roundness 

Texture (GLCM) Angular second moment 

Contrast 

Correlation 

Dissimilarity 

Entropy 

Homogeneity 

Mean 

Standard deviation  
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Texture (GLDV) Angular second moment 

Contrast 

Entropy 

Mean 

 

Each fused SAR/Optical image pair resulted in 208 image features per training object. Only features 

derived from that sensor's image data were considered when taking into account single-sensor data. For 

example, NDVI was not considered in feature selection or classifier training for SAR-only data, as it is an 

optically based vegetation index.  

 

4.2 EXPERIMENT 1: FEATURE SELECTION 

 

The most useful features were selected by performing a CART analysis and RF classification using the 

default settings of the Salford Systems modelling software (The Salford Predictive Modeller Software 

Suite 2000-2013). These two algorithms were chosen based on their performance in the above-mentioned 

literature, efficiency, suitability to multi-source data sets and their availability and ease of use. 

Furthermore, they both produce rankings with importance scores out of 100 making them directly 

comparable. They are efficient and quick to run, and the potential agreement between the two sets of 

rankings allows for more definitive conclusions to be drawn. The CART importance scores are calculated 

and ranked based on the frequency and significance of a feature as a primary or surrogate splitter of 

classes in the classification tree (Yu et al. 2006).  

 

The training objects with all of their feature values were imported into the software and the predictors and 

target variable (land cover class) were selected. Feature selection was performed on the fused and single-

sensor image data. For the fused data (dual sensor), 208 features were considered. Only features derived 

from the four optical bands and the geometric and shape features were used for the SPOT-5 feature 

selection resulting in 88 features. Similarly, for the RADARSAT-2 feature selection, features derived from 

the backscatter bands and the polarimetric parameters were used with the geometric and shape features, 

totalling 149 features. This was done for all image dates and using both CART and RF feature selection 

algorithms.  

 

The outputs for these algorithms included a ranking of features from the most important to the least 

important. "Scores" out of 100 are also provided. The CART analysis also generates a decision tree with 

suggested features and thresholds to split the classes in the most optimal way. The results of Experiment 1 

are presented in Section 5.1. 

 

Stellenbosch University  https://scholar.sun.ac.za



70 

 

4.3 EXPERIMENT 2: TESTING DIFFERENT CLASSIFICATION ALGORITHMS 

 

A comparison among six of the available classifiers in eCognition 9.0.3 was conducted to determine their 

relative performance. Two dates were chosen to account for possible variations in classifier performance 

due to image acquisition date and to allow for more general conclusions. The result informed Experiments 

3 and 4 and allowed for the most suitable classification algorithm to be chosen.  

 

The fused image data set was classified using classifiers implemented in eCognition 9.0.3. All of the 

classifiers were trained using the same set of features (Section 4.1.3) which included texture, layer values 

and geometric and shape features. The classifiers tested on the 5 May and 8 August 2014 images were: 

 

1. Maximum likelihood (Bayes Classifier); 

2. Decision tree; 

3. Random forest; 

4. K-means nearest neighbour; 

5. SVM; and 

6. Classification based on the rule set derived from the CART decision tree (Section 4.2). 

 

Performance was measured purely based on the accuracies achieved by the classification algorithms. This 

was calculated using the same validation data set, using standard confusion matrices and error metrics. 

The results for Experiment 2 are presented in Section 5.2. 

 

4.4 EXPERIMENT 3: SINGLE-DATE OBJECT-BASED CLASSIFICATIONS 

 

The aim of Experiment 3 was to assess the benefits of fused image data sets over single-sensor imagery 

for land cover classification, as well as providing a baseline set of single-date classifications to compare 

with results from Experiment 4 (multi-temporal classifications). Four image dates were therefore used to 

perform three iterations of classifications. Firstly, a classification based on the combined optical-SAR 

imagery data, followed by classifications performed using only SAR and only optical data.  

 

The classification algorithm was chosen based on the results obtained from Experiment 2 and thus the RF 

classifier was used. These single-date classifications were all produced in eCognition 9.0.3 and then 

assessed based on confusion matrices and error metrics in ArcMap 10.1 using the same validation data set 

as used in both Experiment 2 and 4. Results for Experiment 3 are presented in Section 5.3. 
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4.5 EXPERIMENT 4: MULTI-TEMPORAL CLASSIFICATION 

 

A multi-temporal classification was performed to assess whether using multiple image dates improves the 

classification accuracy obtained from single-date classifications in Section 5.3.  

 

A multi-layer stack of all of the layers from all four image dates was created, resulting in a final stack of 

112 input layers. The MRS was applied to the stack using a scale parameter of 10 and equal weightings for 

all of the filtered backscatter bands and optical bands. These parameters ensured consistency between this 

segmentation and the segmentation performed on the single-date classifications (Experiment 3).  

 

Features were extracted from all of the layers using the same training data set described in Section 4.1.3. 

Feature selection was run on a total of 638 features using the RF algorithm in the Salford Systems 

software. Since the RF classifier emerged as the best performer in the result of Experiment 2, it was used 

for the multi-temporal classification. The classifier was trained using increasing numbers of top-ranked 

features, to quantify the benefits of iteratively increasing the number of features. The first 20, 40, 50 and 

60 features as well as all of the features was assessed. Results for Experiment 4 are presented in Section 

5.4.  

 

4.6 VALIDATION AND ACCURACY ASSESSMENT 

 

A standard accuracy assessment was used to gauge the success and reliability of the classifications. 

Confusion matrices and standard error metrics (overall accuracy, kappa, errors of omission and 

commission and user and producer’s accuracies) were used to quantify the accuracy measurement. 

Accuracy was assessed using 351 reference points. The same point data set was applied to each 

classification output, allowing direct comparisons between class and overall accuracies.  

 

This chapter presented the detailed methods used to fulfil the study objectives. The following chapter will 

present and discuss the study results. 
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 CHAPTER 5 RESULTS AND DISCUSSION 

 

This thesis aimed to assess the benefits and limitations of using a multi-temporal, dual-sensor image data 

set for land cover classifications using an object-based approach. Four key questions were explored:  

1. How can feature selection be used to determine which are the important features for class 

discrimination, and do these features differ between single-sensor and dual-sensor data sets and 

between image dates?  

2. Which classification algorithm best handles the increased data dimensionality of fused image data 

sets and produces the highest accuracies?  

3. Does the fusion of optical and SAR data improve accuracy in a single-date classification 

sufficiently to warrant the additional expense of using two data sources?  

4. Does the inclusion of a multi-temporal data set improve accuracy sufficiently over a single-date 

classification to warrant the additional expense of extra data?  

 

As the results of the investigation of each question were used to optimise the next investigation, the results 

and discussion of each investigation are presented sequentially.  
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5.1 EXPERIMENT 1: FEATURE SELECTION 

 

When using multi-temporal and multi-sensor data sets, the large data volume can result in increased 

computational time and negatively affect the efficiency and ability of classification algorithms to manage 

these data sets. Feature reduction will counteract these problems. Trends in feature importance can be used 

to inform feature reduction. Similarities and common important features across dates and between data 

sets from different sources (fused and single-source) are also useful in determining key features for class 

separability and the possibility of different sensors changing prevalence in importance across different 

times of the year.  

 

Feature selection was conducted on all of the features derived from both the optical and SAR image layers 

(separately and together) using the CART and RF feature selection algorithms available in the Salford 

Systems software. Selection considered 208 features for the fused data sets, 149 for SAR-only data set, 

and 88 for the optical-only data set. The features were ranked according to their importance value, which 

was scored out of 100. The features that scored 0 were disregarded from the analysis.  

 

The Brightness feature was not the same in each iteration of the feature selection. Brightness was 

calculated using only the layers under consideration for a particular feature selection. In the fused data set 

classifications, it was calculated using both the SAR and optical image layers, whereas in the optical-only 

classifications, it was calculated using only the optical bands from the images. 

 

Feature selection was conducted on four image dates from different seasons to determine whether time of 

year affects the optimal set of features to train the classification algorithm. The February date corresponds 

to late-summer (the wet season) when vegetation is densest and the sugarcane is generally nearly fully 

grown. The two May images correspond to the beginning of winter, which is a drier season. Harvesting of 

sugarcane, which covers 60% of the cropped area, begins in July, thus the August image date is during 

harvesting season.  

 

The results for Experiment 1 will be presented as follows: the results from feature selection on each date 

will be discussed for the fusion data sets, including the CART decision trees produced in Section 5.1.1, 

followed by the single-sensor data sets in Section 5.1.2. Lastly, Section 0 will discuss the feature selection 

performed on the multi-temporal (all four images combined) fused data set. 

  

  

Stellenbosch University  https://scholar.sun.ac.za



74 

 

5.1.1 Feature selection on the fused data sets  

 

The results of feature selection on the fused optical and SAR data are presented for each date, after which 

the general findings are summarised. For ease of interpretation, Table 5.1 presented at the end of this 

section, shows a condensed list of the 15 highest ranked features for both algorithms across all four dates. 

A glossary defining the features can be found in APPENDIX A. 

 

5.1.1.1 2014-02-22 

 

The RF and CART feature rankings agreed with one another in this late summer image. Seven of the 10 

most valued features were selected by both algorithms. Both algorithms ranked the mean texture features 

derived from the optical bands highly, ranking many of them in the top 20 features. As expected, the 

NDVI was ranked highly for both algorithms; this vegetation index is usually important for class 

separability in land cover classifications (DeFries & Townsend 1994; Hansen et al. 2000; Pu et al. 2008).  

 

CART introduced a unique feature to the rankings for this date namely GLCM Contrast based on the 

Green band. It was not ranked highly for any of the other dates. It was allocated an importance score of 

48.4 out of 100, ranking it the 9th most useful feature. The RF selection produced an importance score of 

only 35.8 for the same feature, dropping it to a rank of 67th. If an identifier is particular to a season or time 

of year, then it may be important for temporal classification. However, as the two algorithms did not agree 

on the importance of the feature, its usefulness is inconclusive for temporal classification.  

 

RF ranked one SAR-based feature (8th) in the top 10, namely standard deviation based on the VV image 

band. In contrast, CART did not rank such features in the top 10. At most, CART gave the mean of the 

unfiltered HH and the filtered HH almost identical CART importance scores of 19th and 20th. 

 

CART highlighted the importance of features derived from the Green image band for this late summer 

image date, selecting 8 of its top 20 features from this band. In contrast, RF only selected four features 

from this band for its top 20.  

 

When considering the classification decision tree produced from the CART process, seen in Figure 5.1, 

nine (33.3%) out of the 27 features used to split the classes are SAR features. The SAR-derived features 

are from both the backscatter (three) and polarimetric parameters (six). This shows that the reliance on 

only backscatter in previous studies is insufficient for optimum class separation. The importance of NDVI 

and the optical-derived features, seen in the rankings, is mimicked in the decision tree.  
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5.1.1.2 2014-05-05 

 

Feature selection for this May imagery, an autumn date, shows a similar trend to the February image. 

Once again, CART and RF feature selection have similar results, with six common features across the two 

top 10 ranked lists. NDVI again featured within the top 10 and the majority of the highly ranked features 

were derived from the optical image bands.  

 

The 1st ranked SAR-only features were the mean of HH, ranked 8th by RF, and the mean of VV, ranked 

19th by CART. This again shows the limited value of SAR-derived features.  

 

The CART decision tree for this date (Figure 5.2) was by far the most complex, with 32 features used as 

splitters in comparison to 27 for the February date, 23 for the 29 May data set and 11 for the August date. 

Out of the 32 features, 12 are SAR-derived (37.5%), showing a similar dependence on the optical-derived 

bands as the other dates. The split between backscatter and polarimetric features is similar to the 29 May 

and August data sets, with a near even split of five backscatter to seven polarimetric parameters.  

 

Figure 5.1 CART decision tree (2014-02-22) showing the features used as splitters for class separation. 

Key 

Black: feature derived from optical/SAR 

Dark blue: feature derived from SAR 

Green: feature derived from optical 
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5.1.1.3 2014-05-29 

 

Feature selection for the second autumn date showed less agreement between the CART and RF feature 

rankings, with only four features in common between the two top 10 lists.  

 

The RF top-20 included seven SAR-based features, including the Standard Deviations of HH and HV in 

the top 10 and the mean texture value of alpha ranked 11th. This suggests a difficulty in separating classes 

based solely on reflectance at this time of year, and the potential of SAR for supplementing optical 

imagery. The CART rankings introduced the means of VV and HH at 12th and 13th positions, respectively. 

It included five SAR-based features in the top 20, the second highest number among all four image dates, 

after the August image date.  

 

The CART decision tree (Figure 5.3), shows similar trends as the other dates, with nine out of the 23 

(39.13%) features used as splitters being derived from SAR bands. There is a five-four split between 

polarimetric and backscatter features, reiterating the need for both types of features for good class 

separation.  

 

Figure 5.2 CART decision tree (2014-05-05) showing the features used as splitters for class separation. 

Key 

Black: feature derived from optical/SAR 

Dark blue: feature derived from SAR 

Green: feature derived from optical 
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5.1.1.4 2014-08-09 

 

Compatibility between the two feature selection algorithms was fair for the August image, with five 

common features in the top 10 ranked features. Both algorithms favoured SAR-based features, ranking 

eight SAR-based features in their top-20 lists. This result indicates a need for data complimentary to 

optical data for class separability at this time of year. Much of the sugarcane harvesting occurs from July 

during the drier season. The changing land cover could result in more information than just the reflectance 

values being needed. It is also possible that the SAR data at this time is potentially less afflicted by soil 

moisture issues than in the rainy season. The signal therefore contains more information about vegetation 

structure and helps in class separability. 

 

CART ranked the mean values for HH and VV and the mean texture value based on the Alpha layer in its 

top 10, reiterating the importance of both backscatter and polarimetric SAR features for class separability 

for this date.  

 

The CART decision tree for this winter date (Figure 5.4) is far simpler than the other three dates, with 

only 11 features being used to separate the nine land cover classes. Similar to the other dates however, 

four of these 11 (36.6%) are SAR-derived, with an even split between polarimetric and backscatter 

Figure 5.3 CART decision tree (2014-05-29) showing the features used as splitters for class separation. 

Key 

Black: feature derived from optical/SAR 

Dark blue: feature derived from SAR 

Green: feature derived from optical 
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features. These four SAR features come from just the HH band and the Alpha parameter. The optical 

features chosen are also mostly derived from the SWIR band. The prevalence of just three bands in this 

decision tree, which is a completely different pattern to the other three dates, shows the importance of 

these three key image bands for classification at this specific time of year.  

 

  

Figure 5.4 CART decision tree (2014-08-09) showing the features used as splitters for class separation. 

Key 

Black: feature derived from optical/SAR 

Dark blue: feature derived from SAR 

Green: feature derived from optical 
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Table 5.1 Top 15 ranked features for the RF and CART feature selections on the fused data sets for the 

four image dates.  

RANKING 2014-02-22 2014-05-05 2014-05-29 2014-08-09 

 CART RF CART RF CART RF CART RF 

1 GLCM Mean 

of Red 

GLCM Mean 

of SWIR 

GLCM Mean 

of Red 

Mean of 

Green 

GLCM Mean 

of Red 

GLCM Mean 

of Red 

GLCM Mean 

of Green 

Mean of 

Green 

2 Mean of Red Brightness Mean of Red Mean of Red Mean of Red NDVI GLCM Mean 

of Red 

Maximum 

Difference 

3 Brightness GLCM Mean 

of Green 
Brightness GLCM Mean 

of Green 

GLCM Mean 

of Green 

GLCM Mean 

of NIR 
Mean of VV GLCM 

Mean of 
Green 

4 GLCM Mean 

of NIR 

Mean of 

Green 

GLCM Mean 

of Green 

Mean of 

SWIR 

Mean of 

Green 

Mean of 

Green 
Mean of HH Brightness 

5 Mean of NIR GLCM Mean 

of all bands 

Mean of 

Green 

GLCM Mean 

of Red 

GLCM Mean 

of all bands 

GLDV 

Angular 2nd 
Moment of 

Red 

Maximum 

Difference 

GLCM 

Mean of 
SWIR 

6 GLCM Mean 

of Green 

GLCM Mean 

of Red 

GLCM 

Homogeneity 

of Red 

Maximum 

Difference 
Brightness Mean of Red Mean of 

Green 
Mean of Red 

7 GLCM Mean 

of all bands 
NDVI GLCM 

Dissimilarity 

of Red 

GLCM Mean 

of SWIR 

GLCM 

Contrast of 

NIR 

Standard 

Deviation of 

HH 

NDVI GLCM 

Mean of NIR 

8 Mean of 

Green 

Standard 

Deviation of 
VV 

GLCM Mean 

of all bands 
Mean of HH GLCM 

Dissimilarity 
of NIR 

GLDV 

Entropy of 
Red 

Mean of 

Alpha 

Standard 

Deviation of 
HH 

9 GLCM 

Contrast of 
Green 

GLCM Mean 

of alpha 

Maximum 

Difference 

Mean of 

Alpha 

GLDV Mean 

of NIR 

GLCM Mean 

of Green 

GLCM Mean 

of SWIR 
NDVI 

10 NDVI Mean of NIR NDVI NDVI GLDV 

Entropy of 

NIR 

Standard 

Deviation of 

HV 

Mean of 

SWIR 

Mean of 

Freeman-

Durden Odd 

Bounce 

11 GLCM 

Entropy of 
Green 

Mean of 

SWIR 

GLCM Mean 

of NIR 
Brightness NDVI GLCM Mean 

of Alpha 

GLCM Mean 

of Alpha 

GLCM 

Mean of Red 

12 GLCM Mean 

of SWIR 

Standard 

Deviation of 
HH 

Mean of 

SWIR 
Mean of NIR Mean of VV GLCM Mean 

of SWIR 
Mean of NIR Mean of NIR 

13 Maximum 

Difference 

Mean of 

Yamaguchi 

Double 

Bounce 

Mean of NIR Standard 

Deviation of 

VH 

Mean of HH Maximum 

Difference 
Mean of Red Standard 

Deviation of 

VV 

14 GLCM 

Standard 

deviation of 

Green 

Maximum 

Difference 

GLCM 

Homogeneity 

of SWIR 

Standard 

Deviation of 

HV 

Maximum 

Difference 

Standard 

Deviation of 

VV 

GLCM Mean 

of NIR 
Mean of HH 

15 Mean of 

SWIR 

GLCM 

Homogeneity 

of Green 

GLCM 

Dissimilarity 

of SWIR 

Mean of HV Mean of 

Unfiltered 

VV 

Mean of HH Mean of 

Freedom-

Durden Odd 

Bounce 

Mean of 

Unfiltered 

HH 
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5.1.1.5 General findings on combined SAR-optical feature selection 

 

Feature selection on the combined optical and SAR imagery showed definite trends. The importance of 

textural features was evident. In particular, the Mean GLCM texture measure derived from the Red optical 

band was either the highest or second highest ranked features for all dates and was ranked highly by both 

feature selection algorithms. The Mean GLCM derived from the Green optical band was also consistently 

highly ranked. The added value that texture features provide for separating classes is therefore undeniable, 

validating the choice of an object-based approach in this study.  

 

The vegetation index, NDVI, was important in class separability for the fused data sets, which mimics its 

importance in traditional, optical-based classifications. It was consistently ranked highly as an important 

feature by both CART and RF feature selection. The decision trees created by CART showed that NDVI 

was used consistently as a primary splitter and was an important splitter specifically for separating 

vegetation classes (e.g. the cultivated classes) from the non-vegetation classes (e.g. Artificial Surfaces, 

Bare Soil, and Water). A threshold of around 0.44-0.46 was seen to be useful for separating these two 

distinct super-classes in the classification hierarchy. 

 

The majority of the top features ranked by both CART and RF were optically based. However, the RF 

feature selection algorithm tended to rank the SAR-based features higher than CART. Although few SAR 

features were selected, it is important to note that classifications produced on the combined imagery 

consistently produced better overall accuracies than those produced on optical imagery alone (see results 

in Section 5.3). In the CART decision trees across the four dates, there was a relatively stable dependency 

on SAR features, ranging from 33.3% to 39.13% of features used as splitters being derived from SAR. 

Figure 5.5 shows the contribution of SAR-only, optical-only, and combination features to the 20 highest-

ranked features for each date. The rankings clearly show that the focus on SAR-based features changed 

during the year, with later dates showing more and higher-ranked SAR-based features. SAR imagery and 

the features derived from it may therefore be useful for separating classes during vegetation growth stages, 

and in particular plant senescence, that cause confusion when using optical imagery only. In the drier 

times of the year and late in the season, the aging plants will have a decrease in NDVI values but SAR can 

still detect the vegetation structure regardless of the vegetation's chlorophyll productions. Therefore, the 

SAR data is most complimentary during this senescence stage. This possibility is supported by the single-

date classification results in Experiment 3 and is discussed further in Section 5.3. 
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Figure 5.5 Contribution of features derived from the optical data, SAR data and a combination for both, in 

the top 20 rankings of features for both CART and RF feature selection for all four image dates. 

 

The mean value produced from the Green optical band was ranked consistently highly in all four image 

dates. The GLDV-derived features and geometric-based features were of limited importance throughout 

the year. Thus, if time and computational resources are limited, these features could be disregarded from 

classifier training, as they are not useful for separating classes. Feature selection based on the CART and 

RF algorithms has therefore informed feature reduction in the large dual-sensor data set in this study. The 

algorithms may be useful in other studies with large data sets, to provide valuable rankings of important 

features to inform feature reduction. The effectiveness of the feature reduction and its potential effect on 

classification accuracy was investigated further in Experiment 4 and is described in Section 5.4.  
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5.1.2 Feature selection using single-sensor data 

 

Feature rankings for single-sensor data are presented and discussed for each image date. Optical-only data 

is discussed first, followed by SAR-only data. Table 5.2 and Table 5.3 are presented at the end of the 

discussion and show the top 10 ranked features for both of these datasets across all four dates. The section 

concludes with a discussion comparing the general findings on feature selection on single-source data sets 

with the findings of in Section 5.1.1 on feature selection on fused data sets. 

 

5.1.2.1 Optical-Based Feature Selection 

2014-02-22 

 

The two selection algorithms had a high agreement for the February image, with nine features in common 

across their top-10 lists. Nearly all of these features were either derived from the mean layer values or 

mean texture values, showing the importance of using combined and averaged pixel values from whole 

objects to determine class separability. The fused data feature selection also emphasised these two types of 

features. What is noticeable is the near-complete lack of geometry and shape-based features in the ranked 

lists. CART assigned an importance score of 0 to all of these features, and RF’s highest-ranked geometry 

feature, area in pixels, was only 59th. Although this low rating of the usefulness of the geometry features 

could have been due to poorly defined objects from the segmentation, visual inspection of the real-world 

objects and how they were delineated found this to be unlikely. 

 

2014-05-05 

 

Agreement between the two selection algorithms was slightly lower for the first May date than for the 

February date, dropping from nine to six features in common between the two top-10 lists. The 2014-05-

05 image date was the only date that did not rank the mean value of Green highest in the CART ranking. 

Instead, the mean texture feature derived from Red was ranked highest. There may be a temporal factor 

that makes the Red optical band more useful at this time of year. This is supported by the high (2nd) 

importance of the Red mean value in both algorithms. 

 

Similarly to the results from the February date, the geometry-based features were not ranked highly. They 

first appeared at position 31 on the CART ranking, with the border index. The geometry features were 

ranked with low importance and this was supported by similar results with the other three image dates. 

Completely disregarding these types of features for classifications would thus be detrimental to accuracy. 

This result further substantiates that poor segmentation was unlikely to have contributed to the absence of 

these features in feature selection on the February image date. This first May image showed a wider 
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variety of types of texture measures that were highly ranked. Six of the top 10 CART-ranked features were 

texture measures, four of which were mean texture values derived from the combination of all four optical 

image bands. This result shows the prevalence of this type of feature and is in agreement with the fused 

data feature selection. 

 

2014-05-29 

 

The two feature selection algorithms again agreed well with one another on the second May image date, 

ranking seven common features in their top-10 lists for optical-only features. Once again, the majority of 

the highly ranked features were derived from the green and red bands. Eight features in the top 10 were 

also in common with the top 10 from the 5 May and 22 February images, and seven were in common with 

the 9 August image date. Time of year may thus have a limited effect on feature selection in optical 

imagery. The two May dates had similar rankings for the geometry features, as the highest ranked 

geometry feature for the second date was the border index, ranked 28th.  

 

2014-08-09 

 

Agreement between the two selection algorithms was again high for the August date for optical-only 

features, with eight features in common between the two top-10 lists. In agreement with the February and 

29 May image dates, the mean value of the green band was again the highest-ranked feature by the CART 

algorithm. Similarly to the other image dates and the fused data sets, both top-10 lists were dominated by 

mean texture values derived from various bands.  
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Table 5.2 Top 10 ranked features for the RF and CART feature selections on the optical data sets only for 

the four image dates. 

 

  

RANKING 2014-02-22 2014-05-05 2014-05-29 2014-08-09 

CART RF CART RF CART RF CART RF 

1 Mean of 

Green 

Mean of 

Green 

GLCM 

Mean of Red 

GLCM Mean 

of Red 

Mean of Green Mean of 

Green 

Mean of 

Green 

GLCM Mean 

of Green 

2 Mean of Red GLCM 
Mean of 

Green 

Mean of Red Mean of Red GLCM Mean 
of Red 

GLCM 
Mean of 

Red 

GLCM Mean 
of Green 

GLCM Mean 
of Red 

3 GLCM 

Mean of Red 

GLCM 

Mean of all 

bands 

GLCM 

Mean of 

Green 

Mean of 

Green 

Mean of Red Mean of 

Red 

GLCM Mean 

of Red 

Mean of 

Green 

4 GLCM 

Mean of 
Green 

NDVI GLCM 

Mean of all 
bands 

Mean of 

SWIR 

GLCM Mean 

of Green 

GLCM 

Mean of 
Green 

Mean of Red GLCM Mean 

of all bands 

5 GLCM 

Mean of all 
bands 

GLCM 

Mean of NIR 

Mean of 

Green 

GLCM Mean 

of SWIR 

GLCM Mean 

of all bands 

GLCM 

Mean of 
SWIR 

Mean of NIR Brightness 

6 Brightness Mean of Red Brightness NDVI Brightness NDVI GLCM Mean 

of NIR 

NDVI 

7 Mean of NIR Brightness NDVI GLCM Mean 
of NIR 

GLCM 
Dissimilarity of 

all bands 

GLCM 
Mean of all 

bands 

GLCM Mean 
of SWIR 

Mean of NIR 

8 Mean of 

SWIR 

Mean of NIR GLCM 

Dissimilarity 
of all bands 

Mean of NIR NDVI Mean of 

SWIR 

Brightness GLCM Mean 

of NIR 

9 GLCM 

Homogeneit
y of all 

bands 

GLCM 

Mean of Red 

GLCM 

Homogeneit
y of all 

bands 

GLCM Mean 

of all bands 

GLCM 

Standard 
Deviation of all 

bands 

Brightness GLCM 

Dissimilarity 
of all bands 

Mean of Red 

10 NDVI Mean of 

SWIR 

GLDV Mean 

of all bands 

GLCM Mean 

of Green 

GLDV 

Contrast of all 
bands 

GLCM 

Mean of 
NIR 

NDVI Mean of 

SWIR 
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5.1.2.2 SAR-Based Feature Selection 

2014-02-22 

 

Feature selection performed on SAR-based features for the February image resulted in a far lower 

agreement between the two algorithms than found with the combined and optical-only feature selections. 

Only three features were found in both algorithms’ top 10 lists for this February image. The mean- and 

standard deviation-derived features dominated the CART top-10 list, and only one texture measure 

appeared. Similarly, RF only ranked two texture measures in its top 10. This was quite different to what 

was found in the feature selections based on optical features, where texture measures were highly ranked 

and were prominent in both top 10 lists. Features derived from the backscatter bands were not as prevalent 

as was expected based on the literature where studies have focussed nearly entirely on the use of only 

backscatter (Pacifici et al. 2008; McNairn et al. 2009; Michelson, Liljeberg & Pilesjo 2000). CART and 

RF ranked only two and three of these backscatter features in their top 10 lists respectively. The higher-

ranked features were predominantly derived from polarimetric features. This was unexpected, as the 

highest-ranking SAR features found in the fused feature selections were generally based on backscatter. 

This shift towards the polarimetric parameters when only using SAR-based features is worth noting. When 

using dual-sensor data, it is generally adequate to derive features from fewer image layers. However, using 

more derivatives when dealing with single-sensor data is recommended.  

 

2014-05-05 

 

Feature selection performed on only the SAR-derived features for this early May image resulted in good 

agreement between the two algorithms, with eight features in common between their top 10 lists. Unlike 

the February image date, the prevalence of backscatter features was high, as expected from the literature, 

with seven and six backscatter-derived features in the CART and RF top 10 lists, respectively. Similarly to 

the February image date, texture was not prevalent, with only two texture features on both the CART and 

RF top 10 list. As in the optical-based feature selection, the geometry- and shape-based features showed 

little to no importance. In particular, the majority of these features in the CART ranking received an 

importance score of zero.  

  

2014-05-29 

 

Feature selection based solely on SAR features for this later May image resulted in poor agreement 

between the two algorithms, with only four common feature in their top 10 lists. As with the other image 

dates, texture was not prominent in the CART rankings, with only two in the top 10 list. However, four 

texture features were ranked in the top 10 by RF. There was no obvious reliance on backscatter- derived 
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features over polarimetric-derived features, with a near-even split of four versus six features in the top 10 

CART list, respectively 

2014-08-09 

 

The August image showed the greatest agreement between the two selection algorithms, with eight 

features in common between the two top-10 lists. Similarly to the 29 May feature selection, both 

algorithms relied equally on the backscatter and polarimetric parameters. Texture was again of less 

importance, with only two texture-based features appearing in the top-10 for both the CART and RF list.  

 

Table 5.3 Top 10 ranked features for the RF and CART feature selections on the SAR data sets only for 

the four image dates. 

 

 

RANKING 2014-02-22 2014-05-05 2014-05-29 2014-08-09 

CART RF CART RF CART RF CART RF 

1 Mean of 

Krogager 

Sphere 

GLCM 

Mean of all 

bands 

Mean of VH Mean of 

Alpha 

Mean of 

Entropy 

GLCM 

Mean of all 

bands 

Mean of 

Alpha 

GLCM 

Mean of all 

bands 

2 GLCM 

Mean of all 

bands 

Mean of 

Freeman 

Durden Odd 
Bounce 

Mean of VV Mean of VV GLCM 

Mean of 

Alpha 

Mean of 

Alpha 

Mean of HH Mean of HV 

3 Mean of Van 

Zyl Odd 

Bounce 

Mean of 

Yamaguchi 

Double 
Bounce 

Mean of HH GLCM 

Mean of all 

bands 

Mean of 

Anisotropy 

Mean of 

Entropy 

Mean of VV GLCM 

Mean of 

Alpha 

4 Mean of 

Yamaguchi 
Odd Bounce 

Standard 

Deviation of 
HH 

Mean of HV Mean of HV Mean of 

Alpha 

GLCM 

Mean of 
Alpha 

Mean of HV Mean of 

Freeman-
Durden Odd 

Bounce 

5 Mean of Van 

Zyl Double 
Bounce 

Mean of 

Alpha 

GLCM 

Mean of all 
bands 

Standard 

Deviation of 
VH 

Mean of 

Unfiltered 
VV 

Standard 

Deviation of 
VH 

Mean of VH Mean of VV 

6 Standard 
Deviation of 

Van Zyl 

Double 
Bounce 

GLCM 
Dissimilarity 

of all bands 

Mean of 
Unfiltered 

VH 

Standard 
Deviation of 

VV 

Mean of VV Standard 
Deviation of 

VV 

GLCM 
Mean of all 

bands 

Standard 
Deviation of 

HH 

7 Standard 

Deviation of 
Freeman 

Durden Odd 

Bounce 

Standard 

Deviation of 
HV 

Standard 

Deviation of 
HV 

Standard 

Deviation of 
HV 

Mean of HH GLCM 

Contrast of 
all bands 

GLCM 

Mean of 
Alpha 

Mean of 

Van Zyl 
Double 

Bounce 

8 Mean of 

Krogager 

Diplane 

Standard 

Deviation of 

VH 

GLCM 

Mean of 

Alpha 

Mean of 

Entropy 

Mean of 

Unfiltered 

HH 

Standard 

Deviation of 

HV 

Standard 

Deviation of 

HH 

Mean of 

Alpha 

9 Standard 

Deviation of 
HH 

Mean of 

Krogager 
Diplane 

Standard 

Deviation of 
VH 

Mean of HH Standard 

Deviation of 
Entropy 

GLDV 

Entropy of 
all bands 

Mean of 

Freeman-
Durden Odd 

Bounce 

Mean of VH 

10 Standard 
Deviation of 

VV 

Mean of 
Entropy 

Mean of 
Alpha 

GLCM 
Mean of 

Alpha 

GLCM 
Mean of all 

bands 

Standard 
Deviation of 

HH 

Mean of 
Yamaguchi 

Odd Bounce 

Standard 
Deviation of 

HV 
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5.1.2.3 General findings on single sensor feature selection 

 

Feature selection based on single-sensor data produced some interesting trends. Similarly to the feature 

selection performed on the fused imagery, selection on the SPOT-5 features alone consistently ranked the 

NDVI, mean GLCM, and mean features as important. The geometric features were of little importance. 

Brightness was more important in the SPOT-5-only feature selection than the selection on fused imagery.  

 

Beyond the top 10, feature selection on the SPOT-5 data for each image ranked features that were unique 

for that image and thus time of year. This result suggests that a few key features from specific dates may 

be useful for optimal class separability, which would be very useful when dealing with a multi-temporal 

data set. Figure 5.6 shows the SPOT-5-only features and their accumulated occurrence in the top 10 

rankings for both algorithms over all four images. Features with a value of 4, such as the NDVI, were 

ranked in the top 10 for all four dates, whereas features with a value of 1 were ranked in the top 10 for a 

single-date. Certain features were important for class separation throughout the year, such as the NDVI, 

the mean values of red and green, and the textural mean of red and green. There thus exists a definitive set 

of features that must be included in single-sensor classifications and a second set of features that are useful 

only at certain times of year. This temporal trend was much stronger in the SPOT-5-only feature selection 

than the SAR-only feature selection.  

 

 

 

Figure 5.6 Frequency of occurrence of features in all four dates for optical-only data sets. 

0

1

2

3

4

CART

RF

Key 

1: feature occurs in the top 10 rankings for one date 

2: feature occurs in the top 10 rankings for two dates 

3: feature occurs in the top 10 rankings for three dates 

4: feature occurs in the top 10 rankings for all dates 

Stellenbosch University  https://scholar.sun.ac.za



88 

 

Feature selection performed on the SAR-only features showed less reliance on the texture measures than 

the fused data sets. However, the texture measures were still ranked more highly than in the SPOT-5-only 

feature selection. Feature selection on the SAR-only data resulted in more prominent use of the mean- and 

standard deviation-based features than selection on the fused data set. The time of year affected the 

reliance on backscatter-derived and polarimetric-derived features: earlier in the year, there was a greater 

reliance on the polarimetric features, for the 5 May date this changed completely to a heavy reliance (7 out 

of top 10) on backscatter-derived features for both algorithms. Later in the year, there was approximately 

equal reliance on the two sets of features. As in many previous studies, the use of backscatter-derived 

features alone was not sufficient for optimum class separation. 

 

Figure 5.7 shows the occurrence of features in the top-10 SAR-only rankings for both algorithms across 

all four dates. The general trend is very different to that seen in the optical-only feature selection (Figure 

5.6). As there were far fewer features in common across the rankings and thus far more features in total 

from all eight sets, only features that occurred in at least two top-10 rankings were included in the Figure 

5.7. Far fewer features were included in the top-10 rankings for all four dates than in the optical feature 

selection. Only the mean textural feature produced from all bands was included in both algorithms’ lists 

for all four dates. The time of year that a SAR image is acquired is therefore of great importance, as a 

different set of SAR features will better separate a set of classes as the seasons change. As the SAR feature 

selection did not offer a definitive set of features for use all year round, the optical data set must also be 

considered, regardless of the time of year. 

Figure 5.7 Frequency of occurrence of features in all four dates for SAR-only data sets. 
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5.1.3 Feature selection using multi-temporal data 

 

Feature selection on all 638 of the features derived from all four image dates, and from both sensors, was 

performed using the RF feature selection algorithm. The geometry- and shape-based features were 

calculated and added to the feature data set once, as all of the image dates were segmented using the same 

set of objects. The brightness and maximum difference features were derived for each date and an NDVI 

layer was calculated for each image. Once again, the features were ranked by their importance score. The 

full rankings of all features can be found in APPENDIX B, with Table 5.4 showing just the 20 highest 

ranked features, colour coded by the image date the features were derived from, for ease of interpretation. 

 

Table 5.4 Top 20 ranked features, based on the RF feature selection algorithm, on the multi-temporal, 

combined SAR-optical data set, colour coded by date. 
 

Ranking Feature 
Importance Score 

(out of 100) 

1.  2014-02-22 GLCM Mean of Green 100.0 

2.  2014-08-09 Maximum Difference 75.3 

3.  2014-02-22 GLCM Mean of Red 72.0 

4.  2014-02-22 NDVI 68.0 

5.  2014-05-29 GLCM Mean of Green 66.4 

6.  2014-08-09 Mean of Red 64.6 

7.  2014-02-22 GLCM Mean of NIR 61.5 

8.  2014-08-09 NDVI 59.9 

9.  2014-05-29 Standard Deviation of VH 59.7 

10.  2014-08-09 GLCM Mean of all bands 57.2 

11.  2014-08-09 GLCM Mean of Green 56.7 

12.  2014-05-29 GLCM Mean of Red 56.0 

13.  2014-08-09 Brightness 55.2 

14.  2014-02-22 Mean of Red 52.8 

15.  2014-05-05 Brightness 52.2 

16.  2014-02-22 Mean of Green 52.1 

17.  2014-02-22 Standard Deviation of VV 51.7 

18.  2014-08-09 Mean of Green 50.9 

19.  2014-05-29 Mean of Red 49.4 

20.  2014-05-05 Mean of Green 49.2 

 

The features from the 2014-02-22 and 2014-08-09 images dominated the top 10, 20, 30, 40, 50 and 60 

lists: 40 of the top 60 features were generated from just these two image dates, as seen in Figure 5.8. This 
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result supports the premise that certain dates will be more useful in separating land cover classes than 

other dates. These two images may have provided the highest contribution because they were acquired six 

months apart, thereby accounting for most of the temporal variance in the study area. 

 

 

Figure 5.8 Frequency of occurrence of features from each image date found in the top rankings of the RF 

feature selection performed on the multi-temporal combined SAR-optical data set. 

 

Two NDVI layers were ranked in the 10 most important features, pointing to the need for vegetation 

indices from different times of the year when attempting to classify land covers containing multiple 

vegetation classes. These features were also derived from the 22 February and 9 August image dates, 

further supporting the importance of these two dates in the multi-temporal data set. The top-ranked SAR-

derived feature was the standard deviation of the VH layer from 29 May, which was ranked ninth. The 

SAR-derived features were generally not considered to be the most important, with only one ranked in the 

top 10, two in the top 20 and three in the top 30. However, four more SAR-derived features were added in 

the next set of 10, bringing the total to seven in the top 40. As the highest classification accuracies arose 

when using more than 30 features (Section 5.4), optical-based classification accuracies are likely to benefit 

from the addition of SAR features, despite their low prevalence. The added SAR-based features were 

predominantly derived from the mean of the and standard deviation of backscatter bands and the mean of 

the alpha and various double bounce layers, and provided information about the physical structure of the 

land cover, not just the chemical structure that is provided by reflectance. These physical features enhance 

the classification and improve class separability, as will be discussed in detail in Section 5.3. 
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The importance of the NDVI, textural mean features, and Green and Red bands was reiterated in the 

feature selections performed on fused data sets from single images. Unlike the SAR-only single-date 

feature selection, the top-ranked features were primarily backscatter-derived. The polarimetric features 

only entered the rankings from the mid-20's onwards. 
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5.2 EXPERIMENT 2: SELECTING A CLASSIFICATION ALGORITHM 

 

A classification algorithm that could handle the high dimensionality of the overall data set and the often 

non-normal nature of the SAR data was required for the classifications tested in Experiments 3 and 4. To 

inform this choice and not base it solely on literature, a comparison was done to determine the best-

performing classification algorithm based on overall and class-specific accuracies.  

 

Six supervised classifiers were tested using two image dates to determine the classifier that performed best 

on the Réunion data set. Two dates (5 May and 8 August) were used to ensure a conclusive decision was 

made that was not biased by the possible variability from using a single image. All of the classifiers were 

trained with the same set of 208 features derived from the combined SAR and optical image data set and 

were run using their default settings. 

 

The standard available classification algorithms in eCognition 9.0.3 were used namely SVM, decision 

tree, RF, K-means nearest neighbour, and Bayes maximum likelihood (ML) classifiers. A CART 

classification was also tested, based on the decision tree produced in Salford Systems and translated into a 

rule set in eCognition 9.0.3.  

 

The aim for this experiment was not to produce the best possible classification, but rather to assess the 

relative performance between classifiers. 

 

This results section presents and discusses the overall performances, judged by accuracy, for each 

classifier. It then goes into the detail of the class-specific accuracies. A brief discussion focusing on the 

differences between the classifications produced from the two image dates is also provided. All confusion 

matrices can be found in APPENDIX C. 

 

5.2.1 Overall performance 

  

All six classifiers produced consistent overall accuracies (Figure 5.9) and Kappa values (Figure 5.10) for 

the two image dates for most of the classes. The RF classifier outperformed the other classifiers on both 

image dates and it was the only classifier to achieve an overall accuracy above 65% for both dates and a 

kappa value of over 0.6. These results show that the RF algorithm can deal with a large number of 

features. The RF classification for the 5 May date is presented in Figure 5.11.  
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Figure 5.9 Overall accuracy percentages achieved for both image dates by each of the classification 

algorithms. 

Figure 5.10 Kappa values achieved for both image dates by each of the classification algorithms 
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Figure 5.11 Classification produced using the RF classifier for the image date 2014-05-05 on the 

combined SAR-optical data set. 

 

 

 

In contrast, the ML classifier gave consistently poor accuracies and kappa values for both image dates 

(Figure 5.9 and Figure 5.10). The ML classifier is known to be negatively affected when trained with very 

large feature data sets that are much larger than the number of training samples, such as that used here. 

The classifier also assumes that a Gaussian probability exists for the data. As this is generally not the case 

with SAR data (McNairn et al. 2009) and this assumption may also have caused the poor performance. 

Figure 5.12 shows the ML classification for the 5 May date using combined SAR and optical features. The 

majority of the study area was clearly misclassified. Most of the region was classified as Cultivated 

Herbaceous Non-Graminoids, when in reality this class covers a relatively small area. 
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Figure 5.12 Classification produced using the ML classifier for the image date 2014-05-05 on the 

combined SAR-optical data set. 

 

 

 

The SVM classifier performed second best, producing overall accuracies above 60% for both dates 

(Figure 5.9). This result was not surprising as SVM is known to cope well with large feature sets and has 

been shown to outperform classifiers such as ML and Nearest Neighbour (Myburgh & Van Niekerk 2014). 

SVM is a good alternative to the RF classifier. 

 

5.2.2 Class-specific performance 

 

It is important to not only consider overall accuracies, but class-specific accuracies as well. A 

classification producing an acceptable overall accuracy may not necessarily classify all individual classes 

adequately.  

 

All six classifiers classified the Cultivated Trees class poorly, yielding exceptionally high (consistently 

more than 50%) error of omission and commission (Figure 5.13). This class was represented by the fewest 
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number of training objects (17) and included mango orchards and banana trees, so was likely to exhibit a 

similar physical appearance to some natural ravine vegetated areas and a similar canopy to natural trees. 

These similarities with other vegetation classes could have caused the confusion. The textural and 

geometric characteristics from these objects can also mimic Cultivated Herbaceous Non-Graminoids, 

creating confusion between all of these classes. Natural and cultivated trees have similar physical and 

chemical structures, promoting confusion between these two classes. All of the classifiers exhibited a 

higher producer’s accuracy and thus a lower error of omission for Cultivated Trees in the August image 

date than the May date. The August training data were collected nearer to the August image acquisition 

date than the May date, which may have driven this discrepancy.  

 

 

Figure 5.13 Error of omission (EO) and error of commission (EC), in percentage, for each classifier for the 

land cover class Cultivated Trees 

 

 

The ML classifier produced an exaggerated user’s accuracy and corresponding much lower producer’s 

accuracy for multiple classes, as can be seen in the confusion matrix presented in Table 5.5. With a 0% 

error of omission for Cultivated Trees and high errors of commission for other classes, the majority of the 

objects were misclassified into the Cultivated Trees class.  
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Table 5.5 Confusion matrix for the classification produced on the combined SAR-optical data set for the 

2014-08-09 image date using the ML classification algorithm. 

 

The error of omission and commission for each class were averaged across both image dates and all six 

classifiers and displayed in Figure 5.14. The Artificial Surfaces, Bare Soil, and Water classes were 

consistently accurately classified, scoring an average error of approximately only 30% or less for both the 

error of omission and commission. They showed little fluctuation as the classifier changed, except when 

the Maximum Likelihood classifier was used. These classes therefore appear to be more robust to the time 

of year and classifier used than the vegetation classes. 
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Figure 5.14 Averaged error of omission and commission (%) for each land cover class calculated using both 

image dates and all six classification algorithms 
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5.2.3 Choosing a classifier 

 

Taking into account the overall accuracy, consistency between image dates, and class-specific accuracies, 

the classification algorithms did not perform equally. The RF classification algorithm produced the highest 

overall accuracy and kappa value for both image dates and showed consistency between the two dates. 

The class-specific performance of all six classifiers highlighted potentially problematic classes, such as the 

Cultivated Trees class, which were considered when assessing the classifications produced in Experiments 

3 and 4.  

 

As the RF classifier was shown to handle large feature data sets, as is in the case with this multi-temporal, 

dual-sensor study, and to have acceptable accuracies in this test classification, it was used in the 

classification comparisons in Experiments 3 and 4, the results of which are presented next in Sections 5.3 

and 5.4.  

 

5.3 EXPERIMENT 3: SINGLE-DATE CLASSIFICATIONS  

 

The aim of Experiment 3 was to assess whether dual-sensor imagery yielded improved classification 

results over single-sensor imagery. The overall classification accuracy and class-specific accuracies were 

assessed. Four image dates spanning a six-month period were tested to allow more general conclusions 

and to identify any seasonality trends.  

 

An optical-SAR fused classification, SAR-only classification, and optical-only classification were 

performed on each image date (2014-02-22, 2014-05-05, 2014-05-29, and 2014-08-09) using the RF 

classification algorithm chosen in Experiment 2 (Section 5.2). No feature reduction was performed so that 

the classifications performed on the four different dates could be directly comparable as they were trained 

using the exact same set, and number, of features. The classifier was trained with all 208 features in the 

fused classification, 88 features in the optical classification, and 149 features in the SAR classification. 

The classifications were assessed with cognisance of the feature selection and CART decision trees 

produced in Experiment 1 (Section 5.1) in order to better understand the potential seasonal variations in 

the classification accuracies due to key features for class separability for the different dates. 

 

This results section will first compare the fused classifications with the single-sensor classifications, 

across all four dates in Section 5.3.1. The best classification, 29 May 2014, will then be examined in more 

depth in Section 5.3.2 in order to note class-specific changes based on the use of dual-sensor imagery. 

Finally, the temporal trends across the four dates will be presented and discussed in Section 5.3.3. All 

confusion matrices can be found in APPENDIX C. 
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Figure 5.16 Kappa values achieved by the RF classifier, for all four separate dates, based on the fused, 

SAR and optical data sets. 

5.3.1 General comparison of fused vs. single-sensor classifications 

 

On all four dates, classifications with higher overall accuracies (Figure 5.15) and kappa values (Figure 

5.16) were produced when using the fused data set than when using either SAR data or optical data alone. 

This result corroborates the hypothesis that fusing dual-sensor imagery will produce a higher quality 

classification.  

 

 

Figure 5.15 Overall accuracies achieved by the RF classifier, for all four separate dates, based on the fused, 

SAR and optical data sets. 
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The accuracies were generally lower than expected. However, the focus was on how the fused imagery 

performed relative to the single-sensor imagery. Although the low accuracies are not ideal for 

methodology replication, they do not prevent the clear benefits of using fused imagery over single-sensor 

imagery from being evident.  

 

The fused data sets produced more consistent results, as measured by both overall accuracy (Figure 5.15) 

and kappa (Figure 5.16) across the four image dates than either single-sensor data set. The optical-only 

data set showed a drop in accuracy and kappa for the two later image dates, especially the 29 May image. 

However, this drop did not affect the fused data set, which recorded the highest accuracy of any 

classification (69.8%) on the 29 May image. This result echoes what was found in Experiment 1 (Section 

5.1), where SAR-based features were ranked more highly in the later images. These two sets of results 

show that when a single sensor is not sufficient to accurately differentiate between land cover classes 

during a specific time of year, adding a complementary data source, in this case SAR imagery, can help to 

maintain classification quality and consistent results.  

 

In the drier winter months, vegetation shows a more generalised reflectance response, which makes it 

difficult to separate the different vegetation classes with optical imagery alone. Adding SAR data 

containing information about the physical characteristics of the ground targets can improve class 

separation and allow a superior classification on fused imagery to be produced. The improvements made 

in each class by using fused imagery is discussed in the following section. This follows with the 

recommendations by Kellndorfer and Pierce (1998) who suggest an image acquired in the drier months for 

single-date land cover classifications.  

  

Stellenbosch University  https://scholar.sun.ac.za



101 

 

5.3.2 29 May 2014 classification: Class-specific analysis 

 

Of the four fused classifications, the 29 May 2014 date produced the best classification, with an overall 

accuracy of 69.8%. This classification was used to investigate class-specific performance in detail. The 

fused, optical-only, and SAR-only classifications for 29 May 2014 are shown in Figure 5.17 and Figure 

5.18, respectively. 

 

 

Figure 5.17 Classification produced using the RF classifier on combined SAR-optical 2014-05-29 image 

data. 
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Figure 5.18 Classifications produced using the RF classification algorithm on the a) SAR-only and b) 

optical-only data for the 2014-05-29 image date. 

a) 

b) 
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The confusion between grasslands (Managed Grass) and sugarcane (Cultivated Herbaceous Graminoids) 

was noted, especially in the optical-only classification. This shows similarities with the findings of Adams 

et al. (2014) where mature sugarcane was confused with grasslands in a coastal region using the RF 

classifier. The confusion was however reduced in the fused classification, showing that the introduction of 

SAR features, and thus information based on physical properties, help to better separate these two 

particular vegetation classes. 

 

Figure 5.19 and Figure 5.20 show the error of omission and commission for each land cover class in the 

fused, optical-only, and SAR-only classifications, respectively. The dashed line represents the 40% error 

mark, which is considered here as a useful threshold for error percentages beyond which outliers can be 

identified. In the fused classification, two classes exhibited outlying, large errors of omission and 

commission. The Natural Herbaceous Shrubs and Bushes (mid green) and Cultivated Trees (orange) 

classes both had large error percentages for both omission and commission, showing that they were 

misclassified into other classes and that other classes were misclassified into them, respectively. These 

two classes were thus weakly separated. The Cultivated Trees class was also problematic in Experiment 2. 

The relatively small (17 objects) training sample and the mixed types of vegetation present in this class 

could have been the main reasons for these poor accuracies. Natural Herbaceous Shrubs and Bushes also 

contains a variety of natural vegetation types that are likely to display similar physical and chemical 

properties to other vegetation classes, which may have driven the omission and commission errors of 

nearly 60%.  

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
 E

rr
o

r 
o

f 
C

o
m

m
is

si
o

n

% Error of Omission

2014-05-29 Fused Classification

Figure 5.19 Error of omission and commission plotted for each land cover class, based on the 

combined SAR-optical 2014-05-29 classification. 
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Figure 5.20 Error of omission and commission plotted for each land cover class, based on a) the 

SAR-only and b) the optical-only 2014-05-29 classifications. 
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Figure 5.20 clearly shows that both single-sensor classifications performed much worse on a class-wise 

basis than the fused classification (Figure 5.19). Outlying classes are those found in the right hand top 

quadrant of the graph, with errors over 40%. Instead of only two outlying classes, the SAR-only 

classification had three outlying classes and the optical-only, four. Both single-sensor classifications 

separated the Managed Grass (light green) class poorly. The optical-only classification also failed to 

clearly delineate the Cultivated Herbaceous Graminoids (sugarcane in yellow) class. Both single-sensor 

classifications exhibited a higher error of commission for the Cultivated Herbaceous Non-Graminoids 

(coral) class than found in the fused classification. This class was expected to be difficult to classify as it 

comprises a mixture of vegetation types such as pineapple fields and strawberries; vegetation with largely 

varying physical and chemical structures. The Cultivated Herbaceous Non-Graminoids class was over-

commissioned when classified using a single data type, lowering the user’s accuracy of the final 

classification. The C-band SAR imagery was expected to discriminate the vegetation classes better than 

was found as this wavelength has been successfully used in past studies for crop detection (Baghdadi et al. 

2009; Shang et al. 2009). Although the SAR-only classification did produce lower errors of omission and 

commission for the Cultivated Trees and Cultivated Herbaceous Graminoids classes than the optical-only 

classification, the errors were still above 40% and thus higher than what is acceptable for successful class 

separation.  

 

The fused classification exhibited the lowest error of omission for seven of the nine land cover classes, 

and lowest error of commission for five of the nine classes, in comparison with the single-sensor 

classifications performed on the same date (APPENDIX C). The complementary nature of the SAR and 

optical imagery thus allowed the fused classification to better separate problematic classes better, 

especially easily confused vegetation classes, as they offered a combination of physical (SAR backscatter) 

and chemical-based (reflectance) information. 
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5.3.3 Temporal changes across the four dates  

 

This section assesses temporal patterns in the fused classifications produced across the four image dates. 

As the use of fused data for classifying the Réunion study area was validated by the overall and class-wise 

accuracies in Sections 5.3.1 and 5.3.2, any temporal pattern found can be considered useful. 

 

Figure 5.22 shows the percentage error of omission plotted against the percentage error of commission for 

each land cover class for the four fused classifications. Overall, the majority of the classes showed stable 

error percentages across the four image dates, with little variation. This result is supported by Figure 5.23, 

which shows the standard deviation of the user’s and producer’s accuracies for each land cover class 

across the four image dates. However, the Cultivated Trees class had a standard deviation of just over 10% 

for both the producer’s and user’s accuracy, showing that this class was the least stable across the four 

dates. As already mentioned, the Cultivated Trees class was the most problematic class with the highest 

errors of omission and commission. As it performed poorly for all image dates, the problem was more 

likely to be the result of incorrect training than seasonality. This class will thus not be discussed further 

when looking at temporal patterns. 

 

There were micro patterns present in the smaller variations in the errors of omission and commission for 

each class. The non-vegetation classes (Artificial Surfaces, Water, and Bare Soil) performed best classes, 

with the lowest errors and among the lowest standard deviations (Figure 5.22). These land covers are 

usually stable, so were not expected to show much variability in the six months under investigation.  

 

There was a great deal of class confusion between the various vegetation classes, specifically between the 

cultivated crops and natural vegetation, on all dates. There was a large variance in plant structure, height, 

and composition within each of these classes. Training for these classes was therefore difficult as all of 

these variances must be accounted for. The vegetation classes thus displayed generally higher errors of 

omission and commission. Figure 5.22 shows that the two earlier image dates (22 February and 5 May 

2014 in green and red) clearly delineated the Cultivated Herbaceous Non-Graminoids class better than the 

two later dates, with errors under 30%. The later dates, especially the 29 May 2014 (orange) data, better 

delineated the Natural Herbaceous Shrubs and Bushes and Managed Grass classes than any of the other 

three dates.  
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Figure 5.22 Error of omission and commission plotted for each land cover class, for all four classifications produced 

using the combined SAR-optical data on each date. 
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Figure 5.23 The standard deviation for user's and producer's accuracies for each land cover class, 

calculated using all four classifications produced on the combined SAR-optical data of the separate image 

dates 

 

Although the best overall accuracies were produced from the fused imagery for the two May image dates, 

the difference in accuracy between these and the other dates was minimal (less than 1.5%). None of the 

land cover classes were described significantly better on one date than the other dates. As the training data 

were collected over the same six months as the images were acquired, the training data may not have 

clearly accounted for temporal changes in the ground cover. A clear temporal trend may also be lacking 

because the four image dates only spanned six months. Images spanning a full calendar year should be 

assessed to better determine the optimum times of the year to map certain classes. This could not be 

achieved in this study as there was too much cloud cover in the SPOT-5 imagery acquired at the same 

times as the RADARSAT-2 imagery. As one focus of this study was a comparison of single-sensor and 

fused classifications, usable single-sensor imagery was a prerequisite. A future study could focus on 

mapping out optimum times for best delineating the various land cover classes only using fused imagery. 

Cloud-free optical data would be less of an issue as the combined imagery should overcome the data gaps 

in cloud regions.  
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5.4 EXPERIMENT 4: MULTI-TEMPORAL CLASSIFICATION 

 

Experiment 4 aimed to assess the benefits of using fused, multi-temporal data for land cover classification, 

compared with fused, single-date classifications. The RF classification algorithm was used based on the 

results from Experiment 2. As the multi-temporal dataset contained 638 features, the RF feature selection 

algorithm was run first. Based on the feature rankings, different numbers of features (in order of 

importance) were used to train the classifier.  

 

Section 5.4.1 presents and discusses the results based on the four multi-temporal classifications produced 

using 20, 40, 50, 60 and all of the features. A class-specific discussion follows in Section 5.4.2 based on 

the best classification produced (based on 50 features). Finally, Section 5.4.3 compares the best multi-

temporal classification with the best single-date classification produced in Experiment 3 (29 May 2014 

image). All confusion matrices can be found in APPENDIX C.  

 

5.4.1 Multi-temporal classifications produced using different numbers of training features 

 

The RF classifier was trained with the 20, 40, 50, 60 most important features as well as all of the features 

to determine the point at which the most accurate classification was produced before over-training 

negatively affected classification accuracy. The overall accuracies for each classification are shown in 

Figure 5.24. 

 

Figure 5.24 Overall accuracies (%) achieved for all iterations of the multi-temporal combined SAR-optical 

classification, based on different numbers of features. 

 

As expected, the classification that only used 20 features for classifier training resulted in the lowest 

overall accuracy of 65.5% (Figure 5.24). It also resulted in the highest error of commission for every class 

(Figure 5.25). The producer's accuracy fluctuated more with the number of features used for training, but 
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using 20 features still resulted in the highest error of omission for four of the nine classes, with another 

two classes showing an identical error of omission for all of the numbers of features tested (Figure 5.26). 

 

 

 

 
 

Figure 5.26 The errors of omission (%) of each land cover class for each iteration of the multi-temporal, 

combined SAR-optical classification, based on different numbers of training features 

 

The greatest difference between overall accuracies was observed between the classifications using 20 and 

40 features. Although double the number of features were used, the overall accuracy increases by nearly 

8% (Figure 5.24). With the next increase in features from 40 to 50, the accuracy increased by less than 

1%. The initial jump to 40 features for training therefore had a significant effect on the classifier’s 

performance. Interestingly, this jump from 20 to 40 features also included a large increase in the number 

of SAR based-features used. This was discussed in detail in the results from Experiment 1 in Section 0.  

0

10

20

30

40

50

60

70

80

90

100

20 Features

40 Features

50 Features

60 Features

All Features

0

10

20

30

40

50

60

70

80

90

100

20 Features

40 Features

50 Features

60 Features

All Features

Figure 5.25 The errors of commission (%) of each land cover class for each iteration of the multi-

temporal, combined SAR-optical classification, based on different numbers of training features. 
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The highest overall accuracy, 74.1%, was obtained when training the classifier with 50 or 60 features. The 

overall accuracy did not change when the number of features was increased from 50 to 60, but the user’s 

and producer’s accuracies for individual classes did vary. Increasing from 50 to 60 features for training 

resulted in a increase in the error of omission for Cultivated Herbaceous Graminoids and Cultivated 

Herbaceous Non-Graminoids. Simultaneously, the error of omission decreased for Natural Herbaceous 

Shrubs and Bushes and Water, although these decreases were both less than 5% and thus had a negligible 

effect on the classifier’s performance. Similarly, there was a increase in the error of commission for 

Cultivated Trees, Natural Herbaceous Shrubs and Bushes, and Water. Thus, although the error of omission 

improved for Natural Herbaceous Shrubs and Bushes and Water, the error of commission increased 

simultaneously.  

 

The results from the four iterations show that using no more than 50 features produced the best 

classification for this particular study area. Using more than 50 features improved some classes, but 

worsened others, while increasing the computation time. When using all of the features, overall accuracies 

declined. Within the context of this study, the use of these additional features was not deemed beneficial. 

This result echoes similar findings from other studies where beyond a certain point, adding additional 

features resulted in a higher error rate (Schistad Solberg & Jain 1997). 

 

5.4.2 Classification based on 50 features: class-specific performance 

 

The classification produced using the 50 top ranked features is shown in  

Figure 5.27. Cultivated Trees was problematic for classification throughout this investigation, and this 

final classification was no exception. The class had a continuous producer’s accuracy of below 30% and 

the highest user’s accuracy for the multi-temporal classifications was only 45.45%, as shown in Table 5.6. 

Assessing all classifications produced in Experiments 3 and 4, the producer's accuracies remain under 

30% except for one instance, the single-date classification, produced on the 2014-02-22 RADARSAT-2 

data only which produced a producer's accuracy of 41.48%. With other classes reaching a producer’s 

accuracy of 100% (Bare Soil) and a user’s accuracy of 87% (Artificial Surfaces) it can be concluded that 

the Cultivated Trees class was either poorly defined and trained, or is generally a difficult class to separate 

from other similar classes. As the Cultivated Trees class was also problematic in Experiments 2 and 3, 

better training data is likely to result in an improvement in classifying this challenging class.  
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Figure 5.27 Classification produced from the multi-temporal, combined SAR-optical data set, with the RF 

classifier trained using the 50 highest ranked features. 

 

Table 5.6 User’s and producer’s accuracies of the Cultivated Trees class for the four multi-temporal 

classifications performed using different numbers of training features. 

 

Similarly with the single-date classifications, separation between the vegetation classes also remained 

problematic as the chemical responses of the classes were probably quite similar. Physical structures 

would have been the most useful way to differentiate between these classes. However, few SAR-based 

features were included in the training of the classifier, preventing this differentiation factor from being 

fully exploited.  

 20 Features 40 Features 50 Features 60 Features All Features 

User’s Accuracy (%) 29.41 45.45 38.46 35.71 50 

Producer’s Accuracy (%) 29.41 29.41 29.41 29.41 17.6 
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5.4.3 Multi-temporal classification vs. the best single-date classification 

 

The best multi-temporal fused classification (trained with 50 features) was compared with the best single-

date fused classification (2014-05-29). The multi-temporal classification had better overall accuracy and 

kappa values. It also resulted in less confusion between the classes, as shown by the confusion matrices ( 

Table 5.7 and Table 5.8) for the two classifications. For example, the Artificial Surfaces class was 

misclassified into five classes (Water, Natural Herbaceous Shrubs and Bushes, Bare Soil, Managed Grass, 

and Cultivated Herbaceous Graminoids) in the single-date classification, but was only misclassified into 

three classes (Water, Managed Grass, and Natural Herbaceous Shrubs and Bushes) in the multi-temporal 

classification. The same trend was seen for Natural Trees, Managed Grass, and Cultivated Herbaceous 

Graminoids. 

 

Table 5.7 Confusion matrix for the multi-temporal, combined SAR-optical classification produced using 

50 training features. 
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Table 5.8 Confusion matrix for the 2014-05-29 single-date, combined SAR-optical classification. 

 

Figure 5.28 shows the percentage errors of omission and commission for each land cover class for the 

multi-temporal classification. The analogous plot for the single-date classification was shown in Figure 

5.19 in Section 5.3.2. The individual classes were improved in the multi-temporal classification. The 

Natural Herbaceous Shrubs and Bushes class (mid green) in particular showed a marked improvement in 

its error of commission with the introduction of multi-temporal data, however it remained outside the 40% 

mark for error of omission. Only the Cultivated Trees class (orange) remained problematic in terms of 

both error of omission and commission. The rest of the classes fell well within the bottom left quadrant, 

which is the acceptable error level.  

  

 Classification Image 

Artificial 

Surfaces 

Bare 

Soil 

Cultivated 

HG 

Cultivated 

HNG 

Cultivated 

Trees 

Managed 

Grass 

Natural 
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Natural 

Trees 

Water Grand 

Total 

Producer's 

Accuracy 

(%) 

R
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Artificial 

Surfaces 

39      1  1 41 95.12 

Bare Soil 1 26  2   1   30 86.67 

Cultivated 

HG 

  23 6 3 1 6   39 58.97 

Cultivated 

HNG 

1 1 2 49 1 1 9   64 76.56 

Cultivated 
Trees 

  3 5 1 1 6 1  17 5.88 

Managed 

Grass 

1  1 2  22 6   32 68.75 

Natural 

HSB 

2  3 10 2 4 26 10  57 45.61 

Natural 

Trees 

  1 3   3 19  26 73.08 

Water 2   1   2  40 45 88.89 

Grand 

Total 

46 27 33 78 7 29 60 30 41 351  

Users 

Accuracy 

(%) 

84.78 96.30 69.70 62.82 14.29 75.86 43.33 63.33 97.56   

Overall 

Accuracy 

(%) 

69.80  

Kappa 0.65 
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There was an improvement seen in the Managed Grass and Water classes from the single-date to the 

multi-date classifications. This mimics the results seen by Niu & Ban (2013) using only a RADARSAT-2 

time series of six images as well.  

 

All of the results from the four experiments undertaken in this study were presented and discussed in this 

chapter. In Chapter Six, the results will be summarised and integrated, so that conclusions can be drawn 

and recommendations can be made.  
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Figure 5.28 Error of omission and commission plotted for each land cover class based on the multi-

temporal, combined SAR-optical classification, with the RF classifier being trained using the 50 

highest ranked features. 
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 CHAPTER 6 EVALUATION 

 

Chapter 5 presented the results from the four experiments undertaken to determine the benefits and 

limitations of using a combined optical-SAR image data set for land cover classification, using an object-

based approach. This chapter summarises the key findings from the four experiments and presents an 

evaluation of the results in context of previous studies. The limitations of this work and opportunities for 

future studies to extend and improve this work are also discussed. Finally, a concluding section is 

presented.  

 

6.1 SUMMARY OF FINDINGS 

 

Experiment 1 addressed and achieved Objectives 1 and 2 by assessing feature selection using CART and 

RF as methods for informing feature reduction as well as assessing possible temporal trends in the 

importance rankings of both combined and single sensor data. Some features were clearly more useful at 

particular times of the year, and this was supported by the agreement between the two algorithms as the 

likelihood of coincidence was low enough to be disregarded. Texture, particularly texture derived from the 

optical bands, was found to be an important feature addition for class separability for both the fused and 

optical data sets. Less reliance on texture was seen in the radar-only data sets. The NDVI was important 

for all of the image dates, both in the fused and optical image data sets. These findings were mirrored in 

the multi-temporal feature selection rankings.  

 

When assessing the feature rankings across the four dates for the fused data sets, the importance of the 

SAR-derived features varied. SAR may therefore be a useful addition when optical-only imagery fails to 

discriminate between classes. When feature selection was performed on SAR-based data alone, the 

reliance on decomposition-derived and backscatter-derived features varied across the four image dates. 

Polarimetric information is thus a useful addition to feature selection and relying solely on backscatter is 

insufficient. The definite trends found in the feature selection tested in Experiment 1 informed the 

development of Experiment 4, in which the classification algorithm was trained using different numbers of 

features from the rankings produced in the first experiment.  

 

Objective 3 was achieved through Experiment 2 which compared the performance of six classification 

algorithms on two image dates to find the algorithm that performed best in the study site. In agreement 

with the literature and other studies (Adams et al. 2014; Breiman 2001; Novack et al. 2011; Rodriguez-

Galiano et al. 2012), the RF classification algorithm performed best for both image dates. Its ability to 

handle large volumes of training data and relative insensitivity to outliers meant that it produced superior 

results. The RF algorithm was thus used further in Experiments 3 and 4. The maximum likelihood 

classification, as expected, produced the worst accuracies, both overall and class-wise. Its assumption of a 
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normal distribution in the data (which is not always the case for SAR data) and sensitivity to high 

dimensionality of data resulted in very poor accuracies.  

 

Experiment 3 compared classifications produced from the fused and single-sensor data sets on four image 

dates to determine whether introducing data from additional sources increased accuracy. Temporal trends 

were also assessed but feature selection techniques were not tested, unlike in Experiment 4. The fused data 

sets consistently produced better accuracies and Kappa values across all four dates than either the SAR-

based or optical-based classifications. Classifications with single-date fused imagery also resulted in lower 

errors of omission and commission in nearly all of the land cover classes than classifications with single-

date single-sensor imagery. Clear outliers with high errors of omission and commission were found in 

optical-only and SAR-only classifications, but were reduced in fused classifications in Experiment 3.  

These results validated the benefit of dual-sensor data over single-date data, thereby achieving Objective 

4.  

 

Consistent overall accuracies and kappa values were obtained for the fused classifications over the four 

images dates, which spanned February to August. This result showed that the fused data had a lower 

sensitivity to vegetation growth phases and seasonal changes than the single-sensor data. Single-sensor 

classifications suffered lower accuracies in the two later dates. Strong temporal trends for the individual 

land cover classes were not noted. This addressed and achieved Objective 5. 

 

The findings from Experiment 4 achieved Objective 6 by supporting the use of a multi-temporal data set, 

as even a classification trained with only 40 key features (out of a total of 638) produced a higher overall 

accuracy and kappa value than any of the single-date classifications. Training the RF classifier with an 

increasing number of features showed that the more features the classifier was trained with, the better the 

accuracy of the resulting classification generally was. However, the accuracy gains for this study area 

plateaued at 50 training features. The overall accuracy did not significantly increase with increased 

training information over 50 features but instead decreased when using all of the 638 available features. 

 

The best performing single-date classification had an overall accuracy of 69.8% and kappa value of 0.65. 

In contrast, the best multi-temporal classification, trained using 50 features, had an overall accuracy of 

74.1% and kappa value of 0.70. Confusion between classes was also reduced in the multi-temporal 

classification, in comparison with the single-date classifications. 

 

6.2 EVALUATION OF RESEARCH 

This section evaluates the research in the context of other studies and critically assesses both the impact as 

well as the limitations of the research.  
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6.2.1 CONTEXTUALIZATION 

 

In accordance to the results by other authors (Amarsaikhan et al. 2010; Ban, Hu & Rangal 2007; Blaes, 

Vanhalle and Defourney 2005; Laurin et al. 2013; Lu & Weng 2005; McNairn 2009), there were 

improvements in the classification accuracy when introducing dual-sensor imagery in comparison to 

single sensor imagery. Furthermore, misclassifications and poorly separated classes from the single data 

sets were improved on (Hill et al. 2005). McNairn (2009) found that target overall accuracies of 85% 

could not be achieved using only SAR or optical imagery but could be achieved through the use of fused 

imagery. In contrast to this, overall accuracies in this study, even with multi-temporal classifications 

remained low with the best iteration obtaining 74.1%.  

 

The results from the fused multi-temporal classifications echoed similar findings from other studies where 

beyond a certain point, adding additional features resulted in a higher error rate (Schistad Solberg & Jain 

1997). This was seen with the lower overall accuracy of 71.9% when using all available features to train 

the classifier, compared to the use of just the 50 highest ranked features from the feature selection, which 

resulted in an overall accuracy of 74.1%. 

 

Pacifici et al. (2008) attributed the improvements seen in their fused classifications to the addition of C-

band SAR providing additional scattering information to optical data thereby improving the separation of 

vegetation and water from urban classes. This however was not seen in the results if the single-date fused 

classifications and was only achieved using multitemporal optical/SAR image data. 

 

The vegetation classes, except Cultivated Trees, exhibited increases in accuracies when using the fused 

imagery over the single-sensor imagery. This is in align with the study by Ban, Hu and Rangal (2007) who 

found that although a small increase in overall classification accuracy (1.6%) was experienced, larger 

increases were found with individual vegetation classes. Similarly, Brisco, Brown and Manore (1989) also 

found improvements in vegetation classes when using combined optical and SAR data. These increases in 

accuracies were however much larger (20-25%) than what was experienced in this study. This could be 

attributed to the very high resolution optical imagery that was combined with the radar imagery.  

 

It has been recorded that SAR alone often fails to accurately map urban areas (Corbane et al. 2008). This 

was seen in this study with the SAR only classification producing errors of omission and commission for 

the urban class of 34.1% and 22.9% respectively. However, in the fused optical/SAR classification, these 

errors were improved greatly to 4.9% and 15.2% respectively. 
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6.2.2 LIMITATIONS 

 

The overall accuracies achieved in this study were lower than what would generally be acceptable for a 

methodology can be transferred and replicated to other dates or study areas (Congalton & Green 2009). 

Future work can therefore focus on improving these accuracies to allow this methodology to be transferred 

to other study sites. The nature of the training data may have contributed to the lower accuracies, as they 

were collected at different times in 2014. Training data points should ideally be collected at the same time, 

then recollected on each image acquisition dates. This ideal collection scheme ensures that the training and 

validation data have higher accuracy and that little error is introduced by changes in land cover due to 

seasonality or harvesting dates and by changes in seasonally grown crops. Sampling periods should also 

ideally correspond to key changes in phenology for the major crop types.  

 

The topography of the study area posed some limitations. Large portions had to be masked out due to 

radar layover and cloud cover present in the optical images. There were thus fewer viable image dates to 

work with than originally envisaged. Areas containing training points also had to be removed due to 

layover and cloud cover, compromising the training data set. 

 

Strong temporal trends for the individual land cover classes in the fused classifications were not 

definitively noted. The results could have been limited by the multi-temporal images chosen for 

classification only spanning a 6-month period. Imagery spanning an entire calendar year, thereby 

including all stages of every crop calendar would be better suited to fully achieving this objective. Other 

studies have shown there to be ideal times of year to map different crop types (McNairn et al. 2009), thus 

the study was limited by the data used in this aspect.  

 

6.2.3 CONTRIBUTION AND IMPACT 

 

The synthesised results suggest some general conclusions about the potential and benefits of using multi-

temporal, fused optical and SAR image data for land cover classification using an object-based approach. 

Feature selection can be used to assess the importance of features for classifier training, thereby informing 

feature reduction. This can be used to reduce data volume, complexity, and computational processing time 

without compromising accuracy standards, as was seen in the multi-temporal classifications in Experiment 

4.  

 

The RF classifier handles the large data volumes associated with multi-temporal and dual-sensor data sets 

well, and is a suitable algorithm on which to base classifications. Fused imagery produces better 

classifications, based on accuracy, than either SAR or optical imagery alone. Using multi-temporal data 
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not only improves the overall accuracy of classifications but can also improve class misclassifications, as 

was shown in this case study.  

 

It was established that it is more beneficial to use fewer key features derived from multiple dates than 

many features derived from a single image date when performing land cover classifications. For this study 

area, the best classification resulted from training the RF classifier with 50 top ranked features derived 

from four image dates. Although the exact specifications and number of features will depend on the study 

site, the general premise is expected to hold true for many cases. However, the multiple image dates must 

be strategically chosen to coincide with definitive growth phases of vegetation to improve discrimination 

between easily confused vegetation classes.  

 

This study investigated multiple facets of the combined use of optical and SAR imagery for land cover 

classification, investigating both the fused and multi-temporal nature of the data and the potential benefits 

of both. In this regard, the results provide a novel look into the potential of these large, complex multi-

sensor datasets that are now becoming more readily available. The results aid in understanding the 

processing, potential fusion methods and benefits of such datasets for a land cover classification 

application and opens up new research questions upon which to base future work. 

 

6.3 RECOMMENDATIONS FOR FUTURE WORK 

 

The fused classifications showed less sensitivity to the senescence of vegetation, with consistent 

accuracies across the 6-month time period. This was not investigated further as it was beyond the scope of 

this study, however there remains a possibility of future research into links between vegetation indices and 

SAR features throughout the vegetation cycle in a tropical environment. 

 

The default settings were used for the classification algorithms for Experiments 2, 3, and 4. Research 

projects should at least consider, if not work towards, operationally realistic results. Research that remains 

theoretical runs the risk of quickly becoming obsolete and should be transferred to operational, working 

projects for its true benefits to be realised. For operational monitoring of land cover for large areas 

throughout the year, it is not realistic to continually define the optimal structure of each data set and 

parameters for classification algorithms. This would result in hours of manual editing and reprocessing. 

Instead, the goal should be an automated, or at least semi-automated, approach to produce useful products 

to continually aid in decision making. Leaving classifier settings on default and using the same 

segmentation parameters in every classification promoted the functionality and transferability of the 

methodology developed here. However, the use of the default settings may have contributed to the lower 

accuracies experienced in the classifications. The chosen classification algorithm could be improved by 

optimising the parameters and comparing the results with the final classification reported in this study.  
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The classifications could be further improved by optimising the segmentation. Recent studies have 

introduced the idea of supervised segmentation, which can be used to improve segmentation and thus 

classification accuracies.  

 

The use of high resolution imagery provides another interesting prospect for future work. The 8 m spatial 

resolution of this SAR data used in this study did not allow smaller fields or pockets of land cover to be 

delineated during segmentation. A higher spatial resolution could promote a better classification, as 

objects could be better represented and segmented.  

 

Finally, the results from this research are based on land cover mapping in a tropical region. However, the 

premise to use fused imagery for general land cover in other climatic regions still holds true. In areas 

where cloud cover is not as strong a limitation, the fused imagery could hold more potential as ground 

truth data would not be rendered obsolete due to a single bad acquisition of optical imagery, where cloud 

cover could remove large portions of data. Further research into using this type of dataset for land cover 

mapping, including detailed mapping of agricultural regions should be explored. 

 

6.4 CONCLUDING REMARKS 

 

The research presented in this thesis aimed to assess the benefits and limitations of using a combined 

multi-temporal SAR-optical image data set for land cover classification using an object-based approach. 

The aim was addressed through six main objectives, all which were achieved through the methods 

employed. Although data dimensionality is inevitably substantially increased when using a multi-

temporal, dual-sensor image data set, data reduction can be successfully achieved by first performing 

feature selection, using for example the RF or CART algorithms. The produced rankings of importance on 

features not only help the user to choose the features to train the classification algorithm with, but also 

provide invaluable information about the usefulness of different sensor-types, and their features, at 

different times of the year for the study site of interest. The results from this study indicated that SAR and 

optical data are complementary in nature. Combining the two data types reduces their limitations and 

exploits their classifying strengths to produce superior land cover classifications, especially during periods 

when single-sensor imagery is insufficient. The need for multi-temporal data sets for accurate land cover 

classification was validated by the multi-temporal, dual-sensor data set producing the highest quality land 

cover classification overall. The feature rankings for this data set revealed dependence on specific dates (2 

February and 9 August 2014). Acquisition dates therefore must be strategically chosen in accordance with 

local vegetation growth phases for optimum class separability. Acquisitions in both the wetter and drier 

seasons, such as was used in this study, are recommended.  

 

Stellenbosch University  https://scholar.sun.ac.za



122 

 

Although multi-temporal, dual-sensor data sets can be large and complex to work with, their obvious 

benefits in accuracy gains and better class separability make them an excellent choice for accurate land 

cover classifications. This thesis illustrated these benefits in a study region particularly prone to single-

sensor classification difficulties, with its tropical climate and mountainous terrain. As software and 

computational capacity are constantly improving and advanced imagery will soon be available from new 

sensors, this investigation of combined multi-temporal SAR-optical data should be extended to include 

new applications in addition to land cover classifications. 
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 CONTINUATION OF THIS RESEARCH 

 

Using the findings from this Master’s thesis as a basis, three journal articles are planned for submission by 

the end of 2015. The broad topic for each paper is as follows: 

1. Feature selection as a means to inform data reduction and depict temporal trends in feature 

importance on single-sensor data in comparison to combined optical and SAR data. 

2. Combined optical and SAR data for land cover classification using the Random Forest classifier 

and an object-based approach. 

3. Multi-temporal, object based land cover classification on combined optical and SAR data: A case 

study of Réunion Island.  
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 APPENDICES 

 

The following can be found in the appendices: 

 

Appendix A: Definitions of features derived from layers 

Appendix B: Naming conventions and the full ranking list of the features for the multi-temporal, dual-

sensor data set 

Appendix C: All confusion matrices, ordered by the analytical components.  
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9.1 APPENDIX A 

 

GLOSSARY OF FEATURE DESCRIPTIONS  

 

The below table lists the feature types derived for feature selection and classifier training. There are near 

verbatim definitions from the eCognition Developer v8.7 Reference Book in order to help understanding. 

 

GLCM 

(page 329-

326) 

Homogeneity If an image is locally homogenous, values will be high. 

Contrast This is the opposite of homogeneity and measures local variance. 

Dissimilarity Similar to contrast, except in increases linearly and not 

exponentially. It is high if the local region has high contrast. 

Entropy Entropy is high when elements of the GLCM are distributed 

equally. 

2nd Angular 

Moment 

This is another measure of local homogeneity. High values indicate 

high elements surrounded by smaller ones. 

Mean This is the average of the GLCM. The pixel value is not weighted 

by its frequency alone, but by the frequency of its occurrence in 

combination with a neighbouring pixel value. 

Standard Deviation Measure of dispersion around the mean and deals specifically with 

the combination of reference and neighbour pixels. 

Correlation Measures the linear dependency of gray levels of neighbouring 

pixels. 

GLDV 

(Sum of the 

diagonals of 

the GLCM) 

(page 327-

328) 

2nd Angular 

Moment 

This is another measure of local homogeneity. High values indicate 

high elements surrounded by smaller ones. 

Entropy This is the opposite to GLDV 2nd Angular Moment. Similar 

elements will provide high values. 

Mean Mathematically this is equivalent to GLCM Dissimilarity 

Contrast Mathematically this is equivalent to GLCM Contrast 

Layer  

(page 235 - 

238) 

Mean Mean layer intensity, calculated using the pixel values within the 

object 

Standard Deviation The standard deviation of layer intensity, calculated using the pixel 

values within the object 

Brightness Calculated using the mean of multiple layers 

Maximum 

Difference 

Calculated using the difference measure between multiple layers 
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9.2 APPENDIX B 

 

In order to interpret the feature rankings for the multi-temporal, dual sensor data set, the naming 

convention used is presented first. This was necessary due to the character limits implemented in the 

shapefile export. The names consist of firstly a letter, corresponding to the image date it was derived from, 

then a feature name, then a layer value. Use the following tables to understand these codes in the feature 

rankings. 

9.2.1 Naming convention  

LETTER CODE AT START OF FEATURE NAME CORRESPONDING IMAGE DATE 

(NO LETTER) 2014-02-22 

A 2014-05-05 

B 2014-05-29 

C 2014-08-09 

 

FULL FEATURE NAME: ABBREVIATED NAME:  

Area Area 

Asymmetry Asymmetry 

Border Index Border_Ind 

Border Length Border_Len 

Brightness Brightness 

Compactness Compact 

Density Density 

Elliptical Fit Ellip_Fit 

GLCM_Angular2_Moment_Layer GCM_A2_Numbercode 

GLCM_Contrast_Layer GCM_CN_Numbercode 

GLCM_Correlation_Layer GCM_CR_Numbercode 

GLCM_Dissimilarity_Layer GCM_DS_Numbercode 

GLCM_Entropy_Layer GCM_EN_Numbercode 

GLCM_Homogeneity GCM_HM_Numbercode 

GLCM_Mean GCM_MN_Numbercode 

GLCM_StandardDeviation GCM_SD_Numbercode 

GLDV_Angular2_Moment_Layer GDV_A2_Numbercode 

GLDV_Contrast_Layer GDV_CN_Numbercode 

GLDV_Entropy_Layer GDV_EN_Numbercode 

Stellenbosch University  https://scholar.sun.ac.za



140 

 

GLDV_Mean GDV_MN_Numbercode 

Length Length 

Length/Thickness Len/Thick 

Length/Width Len/Wid 

Maximum difference Max_diff 

Mean of layer Mean_Numbercode 

NDVI NDVI 

Rectangualr Fit Rect_Fit 

Roundness Roundness 

Shape Index Shape_Ind 

Standard Deviation of layer Std_Dev_Numbercode 

Thickness Thickness 

Width Width 

 

LAYER NUMBER CODE 

Alpha 1 

Anisotropy 2 

Entropy 3 

Freeman Durden Double Bounce 4 

Freeman Durden Odd Bounce 5 

Freeman Durden Volume  6 

Green 7 

HH (Filtered) 8 

HV (Filtered) 9 

Krogager Diplane 10 

Krogager Helix 11 

Krogager Sphere 12 

NIR 13 

Red 14 

SWIR 15 

Unfiltered HH 16 

Unfiltered HV 17 

Unfiltered VH 18 

Unfiltered VV 19 

VH (Filtered) 20 
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VV (Filtered) 21 

Van Zyl Double Bounce 22 

Van Zyl Odd Bounce 23 

Van Zyl Volume Scattering 24 

Yamaguchi Double Bounce 25 

Yamaguchi Helix 26 

Yamaguchi Odd 27 

Yamaguchi Volume 28 

all directions 29 

 

Example of a feature name decoded: 

CGCM_MN_07 

C: 2014-08-09 

GCM_MN: GLCM Mean textural feature 

07: Green band 

9.2.2 Full multi-temporal feature ranking  

 

(All features with a score above zero) 

 

Variable Score 

1. GCM_MN_07 100.0000 

2. CMAX_DIFF 75.2829 

3. GCM_MN_14 71.9902 

4. NDVI 67.9773 

5. BGCM_MN_07 66.4354 

6. CMEAN_14 64.6253 

7. GCM_MN_13 61.5125 

8. CNDVI 59.8774 

9. STDDEV_20 59.7231 

10. CGCM_MN_29 57.2278 

11. CGCM_MN_07 56.7237 

12. BGCM_MN_14 56.0418 

13. CBRIGHTNES 55.2015 

14. MEAN_14 52.7558 

15. ABRIGHTNES 52.1910 

16. MEAN_07 52.1245 

17. STD_DEV_21 51.6869 

18. CMEAN_07 50.9087 

19. BMEAN_14 49.3611 

20. AMEAN_07 49.1963 

21. BGCM_DS_14 49.1518 

22. CGCM_MN_15 48.5244 

23. BRIGHTNESS 47.3154 

24. GDV_A2_29 46.6736 

25. AGCM_MN_15 46.5902 
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26. CMEAN_01 46.2243 

27. CGDV_EN_14 45.6748 

28. CGCM_DS_07 45.2629 

29. AGCM_MN_07 44.4912 

30. BMEAN_13 44.1237 

31. BBRIGHTNES 43.8434 

32. GCM_DS_07 43.7563 

33. GCM_EN_13 43.6043 

34. AMEAN_14 42.8991 

35. CGDV_MN_14 42.7805 

36. MEAN_01 41.9848 

37. MEAN_15 41.3382 

38. MEAN_10 40.9435 

39. BGCM_CN_07 40.9174 

40. BGDV_A2_07 40.5054 

41. CGCM_MN_14 40.3350 

42. CMEAN_22 39.9479 

43. CGCM_MN_13 39.9245 

44. MEAN_13 39.7628 

45. AGCM_MN_29 39.3483 

46. BGCM_HM_14 39.1275 

47. CGCM_HM_29 38.3443 

48. CMEAN_21 38.1756 

49. BGCM_MN_29 38.0477 

50. CGCM_CN_14 37.3495 

51. MEAN_04 36.7698 

52. BNDVI 36.6255 

53. CMEAN_08 36.3027 

54. CMEAN_25 36.2891 

55. CGCM_A2_14 36.2467 

56. GCM_MN_29 36.0065 

57. CGCM_EN_14 35.7572 

58. AMEAN_15 35.6766 

59. MEAN_12 35.3932 

60. AMEAN_16 35.0854 

61. BSTDDEV_21 34.5492 

62. MEAN_05 34.4117 

63. MEAN_28 33.7705 

64. BMEAN_09 33.4871 

65. CGDV_CN_07 32.9513 

66. BMEAN_07 32.8672 

67. AMEAN_21 32.5002 

68. GCM_MN_15 32.4849 

69. CMEAN_05 32.3464 

70. CMEAN_15 32.2994 

71. ANDVI 32.2729 

72. BGCM_MN_15 32.2287 

73. MEAN_20 31.8315 

74. BMEAN_20 31.6936 

75. BGCM_SD_14 31.6105 

76. CGCM_SD_29 31.2274 

77. BMEAN_16 31.1200 

78. MEAN_06 30.7406 

79. CMEAN_20 30.4162 

80. GCM_HM_07 30.2790 

81. GCM_SD_07 30.2214 
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82. MEAN_25 30.0563 

83. GCM_EN_07 30.0331 

84. BMAX_DIFF 29.7747 

85. CSTDDEV_13 29.6509 

86. BGDV_CN_14 29.6404 

87. CSTDDEV_21 29.3390 

88. GCM_DS_29 29.1312 

89. BGCM_EN_13 28.9652 

90. MEAN_19 28.9417 

91. BMEAN_21 28.7094 

92. STD_DEV_20 28.5326 

93. MEAN_03 28.5212 

94. CGDV_A2_14 28.5212 

95. CMEAN_19 28.4979 

96. BMEAN_17 28.2540 

97. GDV_CN_15 28.2454 

98. GCM_DS_13 28.1477 

99. STD_DEV_25 27.9880 

100. CSTDDEV_04 27.8741 

101. BGDV_CN_07 27.8207 

102. AGDV_EN_07 27.7729 

103. BGCM_SD_07 27.6913 

104. GCM_CN_13 27.5779 

105. MAX_DIFF 27.4247 

106. BSTDDEV_14 27.2021 

107. GDV_CN_07 27.0134 

108. CMEAN_03 27.0057 

109. BMEAN_08 26.6837 

110. CGCM_HM_14 26.6521 

111. ASTDDEV_09 26.5979 

112. CGCM_MN_01 26.5582 

113. BGDV_MN_07 26.4803 

114. BMEAN_15 26.4511 

115. BGCM_DS_13 26.3755 

116. GDV_A2_07 26.3407 

117. GDV_MN_07 26.1685 

118. STD_DEV_22 26.1039 

119. BGCM_MN_13 26.0610 

120. BGCM_MN_01 26.0238 

121. CGDV_CN_14 25.9644 

122. AGCM_SD_07 25.8702 

123. GDV_A2_14 25.5144 

124. AGCM_MN_14 25.3424 

125. BGCM_A2_13 25.3280 

126. MEAN_23 25.2486 

127. ASTDDEV_20 25.1781 

128. CGCM_DS_29 25.0347 

129. AGCM_SD_14 24.9867 

130. GCM_A2_14 24.9668 

131. STD_DEV_07 24.7439 

132. BSTDDEV_09 24.7401 

133. CGCM_DS_14 24.7161 

134. MEAN_22 24.2003 

135. GCM_HM_14 24.1777 

136. CGDV_CN_15 24.1493 

137. BGDV_A2_14 24.0975 
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138. STD_DEV_10 23.8951 

139. MEAN_17 23.7779 

140. BGCM_SD_29 23.7622 

141. AMEAN_09 23.4990 

142. CSTDDEV_23 23.4931 

143. BMEAN_01 23.3953 

144. CMEAN_13 23.2335 

145. AGDV_MN_07 23.1688 

146. GDV_EN_13 23.0172 

147. GCM_MN_01 22.8435 

148. BMEAN_04 22.7196 

149. MEAN_08 22.6062 

150. GDV_EN_29 22.3928 

151. STD_DEV_14 22.3815 

152. AMEAN_23 22.2551 

153. CSTDDEV_08 22.1337 

154. BGDV_CN_29 22.1271 

155. BGCM_DS_07 21.9866 

156. GCM_A2_07 21.8983 

157. BGCM_A2_07 21.6077 

158. MEAN_11 21.4622 

159. GDV_A2_13 21.3110 

160. AGCM_SD_29 21.2416 

161. CSTDDEV_12 21.0260 

162. BGCM_EN_07 20.9708 

163. BGCM_A2_14 20.7681 

164. GCM_HM_13 20.7413 

165. ASTDDEV_14 20.7342 

166. BGCM_CN_29 20.7058 

167. CGDV_MN_13 20.5463 

168. MEAN_18 20.5153 

169. CSTDDEV_09 20.5007 

170. BMEAN_19 20.3899 

171. STD_DEV_27 20.2377 

172. STD_DEV_08 20.2057 

173. BGCM_CN_15 20.1624 

174. MEAN_09 20.1439 

175. BGDV_EN_14 20.1412 

176. STD_DEV_05 20.1113 

177. BGCM_CN_13 20.0010 

178. LENGTH_PXL 19.9581 

179. MEAN_26 19.9499 

180. CMEAN_06 19.9484 

181. CSTDDEV_20 19.9151 

182. BGDV_MN_14 19.8593 

183. CMEAN_12 19.7991 

184. CGCM_A2_13 19.7455 

185. AGCM_MN_13 19.7078 

186. BGCM_EN_14 19.6550 

187. CSTDDEV_28 19.5970 

188. BMEAN_03 19.5159 

189. STD_DEV_04 19.3918 

190. GCM_SD_29 19.3077 

191. AGCM_MN_01 19.2772 

192. GCM_EN_14 19.2738 

193. CGCM_HM_13 19.1904 
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194. BSTDDEV_05 19.1420 

195. BSTDDEV_06 19.1019 

196. STD_DEV_26 19.0578 

197. ASTDDEV_08 19.0168 

198. AMEAN_19 18.8659 

199. CGCM_EN_15 18.7683 

200. GCM_CN_29 18.5422 

201. CMEAN_24 18.4790 

202. BGDV_EN_13 18.4721 

203. CGCM_DS_13 18.4097 

204. CGCM_HM_07 18.2917 

205. AGCM_DS_07 18.2590 

206. BSTDDEV_07 18.1874 

207. CGDV_MN_07 18.1534 

208. CMEAN_09 18.0288 

209. CSTDDEV_10 18.0022 

210. GDV_EN_15 17.9180 

211. AMEAN_27 17.9129 

212. GCM_CN_15 17.7436 

213. STD_DEV_23 17.7192 

214. MEAN_16 17.5449 

215. CGDV_EN_07 17.4894 

216. AMEAN_05 17.3907 

217. CGCM_A2_07 17.3798 

218. GDV_MN_29 17.3572 

219. GDV_CN_14 17.3340 

220. BGCM_CN_14 17.2280 

221. AMEAN_26 17.1479 

222. BMEAN_05 17.0084 

223. ASTDDEV_25 17.0067 

224. VOLUME_PXL 16.8319 

225. AMEAN_12 16.7610 

226. WIDTH_PXL 16.7281 

227. CSTDDEV_11 16.7259 

228. AGDV_A2_14 16.6647 

229. CGDV_A2_29 16.6112 

230. GCM_EN_29 16.5284 

231. AMEAN_20 16.5064 

232. CGCM_CN_07 16.4081 

233. BGDV_MN_15 16.3762 

234. ASTDDEV_12 16.3594 

235. AMEAN_17 16.2726 

236. AMEAN_13 16.1284 

237. BSTDDEV_08 16.0424 

238. AGDV_EN_14 16.0384 

239. GCM_SD_14 15.9197 

240. MEAN_24 15.8909 

241. CMEAN_10 15.8512 

242. BGDV_A2_13 15.8016 

243. CGCM_EN_13 15.7827 

244. AMAX_DIFF 15.7818 

245. AGCM_CR_14 15.6965 

246. BMEAN_12 15.6845 

247. CGCM_SD_14 15.5871 

248. BGCM_CR_14 15.5646 

249. MEAN_27 15.4866 
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250. BMEAN_27 15.4476 

251. GCM_CN_07 15.2789 

252. CSTDDEV_05 15.2662 

253. AREA_PXL 15.1385 

254. STD_DEV_24 15.0036 

255. CGDV_MN_29 14.9197 

256. CGCM_CN_29 14.9054 

257. CMEAN_26 14.8784 

258. AMEAN_18 14.8714 

259. CMEAN_28 14.8404 

260. BGCM_SD_13 14.7950 

261. CGDV_A2_07 14.7210 

262. CGCM_EN_07 14.6855 

263. CSTDDEV_14 14.6508 

264. GCM_SD_13 14.6343 

265. AMEAN_08 14.4099 

266. ASTDDEV_21 14.3190 

267. GDV_CN_29 14.2245 

268. BSTDDEV_27 14.0603 

269. GCM_CN_14 14.0163 

270. CGCM_DS_15 13.9516 

271. GCM_DS_15 13.8335 

272. BSTDDEV_15 13.8062 

273. CGCM_CN_15 13.7082 

274. CMEAN_16 13.7065 

275. AMEAN_01 13.7064 

276. BGDV_MN_13 13.7008 

277. ASTDDEV_28 13.5890 

278. CGDV_CN_13 13.4878 

279. CMEAN_17 13.4455 

280. CMEAN_23 13.4393 

281. ASTDDEV_07 13.3589 

282. CSTDDEV_26 13.3185 

283. BGCM_EN_29 13.3092 

284. BSTDDEV_13 13.3074 

285. AGCM_EN_14 13.3030 

286. AGCM_CN_14 13.2180 

287. AGCM_CN_15 13.2081 

288. CGCM_HM_15 13.2016 

289. STD_DEV_13 13.1802 

290. AGCM_HM_14 13.0417 

291. CSTDDEV_22 13.0291 

292. CGDV_MN_15 13.0114 

293. GDV_MN_14 12.9566 

294. BSTDDEV_03 12.9301 

295. MEAN_02 12.8837 

296. GDV_A2_15 12.8799 

297. GDV_CN_13 12.7702 

298. CSTDDEV_25 12.7368 

299. GDV_EN_07 12.6713 

300. GCM_DS_14 12.6662 

301. BSTDDEV_23 12.6460 

302. BMEAN_25 12.6026 

303. CSTDDEV_06 12.5985 

304. AGCM_EN_07 12.3579 

305. ASTDDEV_26 12.2647 
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306. BMEAN_02 12.1044 

307. GDV_MN_15 11.9398 

308. BGDV_A2_29 11.9317 

309. AGCM_DS_29 11.8938 

310. CGDV_CN_29 11.8276 

311. CGCM_A2_29 11.7051 

312. AGCM_A2_14 11.5908 

313. CGCM_SD_13 11.4705 

314. CMEAN_27 11.4251 

315. STD_DEV_09 11.4151 

316. BGDV_CN_13 11.2755 

317. CMEAN_04 11.2428 

318. GCM_A2_29 11.1411 

319. CGCM_CR_15 11.0170 

320. GCM_HM_15 11.0155 

321. AGCM_CN_07 10.9922 

322. CGCM_CR_14 10.9689 

323. STD_DEV_28 10.9420 

324. AMEAN_03 10.9077 

325. ASTDDEV_27 10.8731 

326. BGDV_A2_15 10.8402 

327. CGCM_CN_13 10.7525 

328. CGDV_EN_15 10.7433 

329. AGDV_MN_15 10.6131 

330. ASTDDEV_10 10.5955 

331. AGCM_EN_15 10.5675 

332. AMEAN_06 10.4130 

333. AGCM_DS_14 10.3219 

334. AMEAN_10 10.2898 

335. BORDER_LEN 10.2105 

336. BMEAN_18 10.1771 

337. CSTDDEV_27 10.1639 

338. BGDV_MN_29 10.0889 

339. AGDV_A2_13 10.0693 

340. AMEAN_02 9.9151 

341. BGCM_HM_07 9.9103 

342. ASTDDEV_23 9.8653 

343. BGDV_EN_07 9.7356 

344. AMEAN_25 9.7250 

345. BSTDDEV_12 9.7142 

346. AGDV_CN_07 9.7100 

347. BGCM_DS_29 9.6932 

348. CGDV_EN_29 9.6751 

349. CSTDDEV_03 9.5624 

350. GCM_SD_15 9.5086 

351. STD_DEV_06 9.3607 

352. AMEAN_28 9.3243 

353. AGCM_A2_07 9.2983 

354. AGDV_MN_13 9.1387 

355. GCM_HM_29 9.1117 

356. AGDV_CN_14 9.0717 

357. CGCM_A2_15 9.0411 

358. AGDV_CN_29 9.0268 

359. AGCM_HM_13 9.0147 

360. ASTDDEV_05 9.0130 

361. AGCM_CN_29 8.9831 
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362. AGDV_EN_15 8.9686 

363. BSTDDEV_10 8.9643 

364. BSTDDEV_04 8.8847 

365. GDV_MN_13 8.6458 

366. BGCM_SD_15 8.6253 

367. AGDV_A2_07 8.6003 

368. MEAN_21 8.5768 

369. BMEAN_10 8.5053 

370. AMEAN_24 8.4895 

371. BGCM_CR_15 8.4546 

372. BGDV_CN_01 8.4420 

373. STD_DEV_12 8.3763 

374. CMEAN_11 8.3708 

375. BMEAN_26 8.2140 

376. CSTDDEV_24 8.1842 

377. CGCM_CR_29 8.1363 

378. BGCM_HM_13 8.1239 

379. BGCM_EN_15 7.9468 

380. GCM_A2_13 7.9391 

381. CSTDDEV_07 7.9166 

382. CGCM_SD_15 7.9148 

383. BGCM_A2_15 7.7778 

384. ASTDDEV_15 7.6762 

385. BGCM_A2_29 7.6546 

386. CSTDDEV_15 7.5056 

387. BGCM_A2_01 7.4902 

388. BGCM_DS_15 7.4731 

389. BGDV_EN_15 7.3936 

390. AGCM_DS_13 7.3662 

391. CMEAN_18 7.3153 

392. GDV_EN_14 7.2666 

393. BSTDDEV_25 7.2594 

394. AGCM_A2_29 7.2456 

395. AGCM_SD_15 7.1502 

396. GCM_CR_13 7.1484 

397. BSTDDEV_18 7.1075 

398. GCM_A2_15 7.1037 

399. BGCM_EN_01 7.0827 

400. ROUNDNESS 7.0215 

401. CGDV_EN_13 6.9575 

402. ASTDDEV_06 6.9253 

403. BSTDDEV_28 6.8804 

404. AGDV_MN_14 6.7691 

405. AGDV_CN_13 6.7687 

406. AGDV_EN_29 6.7098 

407. AGCM_CR_07 6.5900 

408. COMPACTNES 6.5562 

409. AGDV_A2_15 6.3706 

410. STD_DEV_11 6.3641 

411. AGCM_SD_13 6.3580 

412. CMEAN_02 6.2959 

413. AGDV_A2_29 6.2834 

414. GCM_CR_14 6.2755 

415. AMEAN_04 6.2734 

416. RECTANGULA 6.1519 

417. CGDV_MN_01 6.0712 
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418. GCM_EN_15 6.0688 

419. ASTDDEV_24 6.0545 

420. AMEAN_11 6.0190 

421. AMEAN_22 5.9643 

422. BMEAN_23 5.9599 

423. AGCM_HM_01 5.8711 

424. BGCM_CN_01 5.8711 

425. CGCM_EN_29 5.8428 

426. CGDV_A2_15 5.8291 

427. BGCM_HM_29 5.8288 

428. AGDV_CN_15 5.7535 

429. BSTDDEV_01 5.7432 

430. GCM_CR_01 5.7170 

431. AGCM_CN_13 5.7009 

432. BSTDDEV_02 5.6769 

433. BGDV_EN_29 5.6344 

434. CGCM_CR_07 5.5634 

435. BGDV_EN_01 5.5627 

436. ASTDDEV_22 5.5156 

437. BMEAN_24 5.4254 

438. CGDV_CN_01 5.4143 

439. AGCM_CN_01 5.3976 

440. BGDV_CN_15 5.3597 

441. CGCM_SD_07 5.3537 

442. CGCM_CN_01 5.3190 

443. STD_DEV_01 5.3112 

444. BORDER_IND 5.2320 

445. BGCM_CR_29 5.2313 

446. BSTDDEV_24 5.1989 

447. AGCM_A2_13 5.1294 

448. CGCM_EN_01 5.1129 

449. AGCM_HM_15 5.1091 

450. ASTDDEV_11 5.0836 

451. ASYMMETRY 5.0752 

452. CSTDDEV_19 5.0641 

453. BMEAN_22 4.9594 

454. STD_DEV_15 4.9289 

455. BMEAN_06 4.9119 

456. GCM_CR_29 4.8748 

457. CGCM_DS_01 4.8199 

458. AGDV_A2_01 4.7481 

459. BGCM_HM_15 4.7230 

460. BSTDDEV_11 4.7163 

461. BGCM_HM_01 4.6938 

462. STD_DEV_16 4.6495 

463. GCM_CR_07 4.6330 

464. ASTDDEV_04 4.6081 

465. CGDV_A2_13 4.5992 

466. GCM_DS_01 4.5816 

467. STD_DEV_03 4.5630 

468. ASTDDEV_13 4.5527 

469. BMEAN_28 4.5421 

470. CGCM_SD_01 4.3801 

471. STD_DEV_18 4.3643 

472. AGCM_SD_01 4.3537 

473. AGDV_MN_29 4.3442 
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474. BMEAN_11 4.3077 

475. BSTDDEV_22 4.2227 

476. AGCM_DS_15 4.2148 

477. ASTDDEV_17 4.1726 

478. SHAPE_INDE 4.1545 

479. GDV_A2_01 4.1505 

480. GCM_CN_01 4.1175 

481. LENGTHWIDT 4.0664 

482. CSTDDEV_02 4.0249 

483. STD_DEV_02 3.9519 

484. AGCM_CR_15 3.9481 

485. BGCM_SD_01 3.9298 

486. ELLIP_FIT 3.9236 

487. BGCM_CR_13 3.8940 

488. AGDV_MN_01 3.7919 

489. BGDV_MN_01 3.7872 

490. AGCM_HM_07 3.7828 

491. AGCM_HM_29 3.7713 

492. AGCM_EN_29 3.7521 

493. AGDV_EN_13 3.6859 

494. DENSITY 3.6729 

495. BGDV_A2_01 3.6201 

496. GCM_CR_15 3.5618 

497. BGCM_DS_01 3.5415 

498. ASTDDEV_03 3.4371 

499. AGCM_CR_29 3.4014 

500. AGCM_A2_01 3.3388 

501. CGCM_CR_13 3.3303 

502. GCM_A2_01 3.3067 

503. GCM_HM_01 3.3032 

504. AGDV_EN_01 3.2487 

505. MAIN_DIREC 3.2433 

506. CGCM_CR_01 3.1997 

507. AGCM_CR_13 3.1933 

508. BGCM_CR_07 3.1769 

509. ASTDDEV_02 3.1171 

510. AGCM_A2_15 3.1132 

511. GCM_EN_01 3.0854 

512. BSTDDEV_16 3.0444 

513. ASTDDEV_19 2.8731 

514. ASTDDEV_16 2.7466 

515. BGCM_CR_01 2.7311 

516. BSTDDEV_19 2.6957 

517. BSTDDEV_26 2.6783 

518. CSTDDEV_01 2.6258 

519. AGDV_CN_01 2.6030 

520. CGCM_HM_01 2.5608 

521. CGDV_A2_01 2.5486 

522. GDV_EN_01 2.4996 

523. CSTDDEV_18 2.4239 

524. STD_DEV_19 2.2500 

525. ASTDDEV_01 2.2473 

526. BSTDDEV_17 2.2196 

527. GDV_MN_01 2.1755 

528. CSTDDEV_16 2.1481 

529. GDV_CN_01 2.1398 
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530. CGCM_A2_01 2.0983 

531. STD_DEV_17 2.0230 

532. CGDV_EN_01 2.0009 

533. CSTDDEV_17 1.9962 

534. AGCM_DS_01 1.9619 

535. GCM_SD_01 1.9457 

536. AGCM_EN_13 1.9446 

537. AGCM_CR_01 1.5023 

538. AGCM_EN_01 1.4570 

539. ASTDDEV_18 1.2009 
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9.3 APPENDIX C 

 

9.3.1 Experiment 2: Confusion matrices 

 
 

 

 

2014-05-05 DECISION TREE CLASSIFICATION ON COMBINED SAR-OPTICAL DATA: ACCURACY ASSESSMENT 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy 

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 26 2 1 2  2 1  7 41 0.63 

Bare Soil 2 23  1   2  2 30 0.77 

Cultivated HG  1 23 8 3 1 2  1 39 0.59 

Cultivated HNG 1 8 8 32 2 4 7  2 64 0.5 

Cultivated Trees   6 3 2 2 4   17 0.12 

Managed Grass 2 2 7 4 1 10 6   32 0.31 

Natural HSB 2  7 12 7 8 14 7  57 0.25 

Natural Trees    1  1 6 18  26 0.69 

Water 3 1  7  3 2  29 45 0.64 

Grand Total 36 37 52 70 15 31 44 25 41 351  

Users Accuracy  0.72 0.62 0.44 0.46 0.13 0.32 0.32 0.72 0.71 351  

Overall Accuracy 0.50           

Kappa 0.43           

2014-05-05 SVM CLASSIFICATION ON COMBINED SAR-OPTICAL DATA: ACCURACY ASSESSMENT 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy  

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 32   1  3 2  3 41 0.78 

Bare Soil 1 22 1 2  3   1 30 0.73 

Cultivated HG  1 19 10 7  2   39 0.49 

Cultivated HNG  4 6 41 2  10  1 64 0.64 

Cultivated Trees   3 5 1 1 5 1 1 17 0.06 

Managed Grass 1  1 3 1 20 6   32 0.63 

Natural HSB  2 1 5 2 9 23 13 2 57 0.40 

Natural Trees     1  5 20  26 0.77 

Water 1 1  1 1    41 45 0.91 

Grand Total 35 30 31 68 15 36 53 34 49 351  

Users Accuracy  0.91 0.73 0.61 0.60 0.07 0.56 0.43 0.595 0.84 351  

Overall Accuracy 0.62           

Kappa 0.57           
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2014-05-05 RANDOM FOREST CLASSIFICATION ON COMBINED SAR-OPTICAL DATA: ACCURACY ASSESSMENT 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy  

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 38 1    1 1   41 0.93 

Bare Soil  26  1  1 2   30 0.87 

Cultivated HG   22 9 1  7   39 0.56 

Cultivated HNG 1 3 1 48 2  9   64 0.75 

Cultivated Trees   4 12   1   17 0 

Managed Grass 1  1 4  20 6   32 0.63 

Natural HSB 1  3 11 1 3 31 7  57 0.54 

Natural Trees    2  1 2 21  26 0.81 

Water 2   5     38 45 0.84 

Grand Total 43 30 31 92 4 26 59 28 38 351  

Users Accuracy  0.88 0.87 0.71 0.52 0 0.77 0.53 0.75 1 351  

Overall Accuracy 0.695           

Kappa 0.65           

2014-05-05 BAYES (MAXIMUM LIKELIHOOD) CLASSIFICATION ON COMBINED SAR-OPTICAL DATA: ACCURACY ASSESSMENT 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy  

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 21   20      41 0.51 

Bare Soil  7  23      30 0.23 

Cultivated HG   3 29   7   39 0.08 

Cultivated HNG    55   9   64 0.86 

Cultivated Trees    15    2   17 0 

Managed Grass   1 21    10   32 0 

Natural HSB    34   23   57 0.40 

Natural Trees    11   15    26 0 

Water    20   2  23 45 0.51 

Grand Total 21 7 4 228 0 0 68 0 23 351  

Users Accuracy  1 1 0.75 0.24 0 0 0.34 0 1 351  

Overall Accuracy 0.38           

Kappa 0.25           
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2014-05-05 KNN CLASSIFICATION ON COMBINED SAR-OPTICAL DATA: ACCURACY ASSESSMENT 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy  

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 25 1 5 4  2   4 41 0.61 

Bare Soil  25 1 1  1 2   30 0.83 

Cultivated HG  2 19 7 2 2 6 1  39 0.48 

Cultivated HNG 1 2 5 46 2 1 6  1 64 0.72 

Cultivated Trees   6 4 3 1 3   17 0.18 

Managed Grass 1 1 6 7 2 10 5   32 0.31 

Natural HSB 1  7 13 3 5 22 5 1 57 0.39 

Natural Trees   1 2   4 19  26 0.73 

Water 1  2 3   2 1 36 45 0.8 

Grand Total 29 31 52 87 12 22 50 26 42 351  

Users Accuracy  0.86 0.81 0.37 0.53 0.25 0.45 0.44 0.73 0.86 351  

Overall Accuracy 0.58           

Kappa 0.52           

2014-05-05 CART CLASSIFICATION ON COMBINED SAR-OPTICAL DATA: ACCURACY ASSESSMENT 

 
 

Classification Image  

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy  

 R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 28 3  5  2   3 41 0.68 

Bare Soil 1 24 1 2   1  1 30 0.8 

Cultivated HG  2 22 1 9 1 4   39 0.56 

Cultivated HNG 1 8 9 25 4 3 13  1 64 0.39 

Cultivated Trees   6 2 4 1 4   17 0.24 

Managed Grass 1 3 1   22 5   32 0.69 

Natural HSB 1  9 5 5 11 20 5 1 57 0.35 

Natural Trees   1  1 2 3 19  26 0.73 

Water 1 1  2 1 4 3  33 45 0.73 

Grand Total 33 41 49 42 24 46 53 24 39 351  

Users Accuracy  0.85 0.59 0.45 0.59 0.167 0.48 0.38 0.79 0.85 351  

Overall Accuracy 0.56           

Kappa 0.50           

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



155 

 
2014-08-09 DECISION TREE CLASSIFICATION ON COMBINED SAR-OPTICAL DATA: ACCURACY ASSESSMENT 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy  

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 31 1 3 1  1   4 41 0.76 

Bare Soil 3 21 5    1   30 0.7 

Cultivated HG  1 17 11 7 1   2 39 0.44 

Cultivated HNG  1 11 31 9 2 4 3 3 64 0.48 

Cultivated Trees   3 6 5  3   17 0.29 

Managed Grass 1  1 3 1 21 5   32 0.66 

Natural HSB   7 13 2 5 21 7 2 57 0.37 

Natural Trees    3   1 22  26 0.85 

Water 2  2 1 1 2 1  36 45 0.8 

Grand Total 37 24 49 69 25 32 36 32 47 351  

Users Accuracy 0.84 0.88 0.35 0.45 0.2 0.66 0.58 0.69 0.77 351  

Overall Accuracy 0.58           

Kappa 0.53           

 

 

 

 

 

2014-08-09 RF CLASSIFICATION ON COMBINED SAR-OPTICAL DATA: ACCURACY ASSESSMENT 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy 

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 37 1  1   1  1 41 0.90 

Bare Soil 1 25 1 1   1  1 30 0.83 

Cultivated HG  1 19 10 1 4 4   39 0.49 

Cultivated HNG 1 2 1 48 2 1 9   64 0.75 

Cultivated Trees   4 7 2  4   17 0.12 

Managed Grass 3  4   21 4   32 0.66 

Natural HSB 2  3 10 2 4 30 5 1 57 0.53 

Natural Trees    2   2 22  26 0.85 

Water 5   1 1  2  36 45 0.8 

Grand Total 49 29 32 80 8 30 57 27 39 351  

Users Accuracy  0.76 0.86 0.59 0.6 0.25 0.7 0.53 0.81 0.92 351  

Overall Accuracy 0.68           

Kappa 0.64           
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2014-08-09 CART CLASSIFICATION ON COMBINED SAR-OPTICAL DATA: ACCURACY ASSESSMENT 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy  

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 29 2  2  1 2  4 40 0.73 

Bare Soil  26 2 1  1    30 0.87 

Cultivated HG  1 15 5 17  1   39 0.38 

Cultivated HNG   5 38 16 1 4   64 0.59 

Cultivated Trees   1 3 7 1 5   17 0.41 

Managed Grass 1 1 1 1 2 25 1   32 0.78 

Natural HSB 1  2 10 9 13 14 8  57 0.25 

Natural Trees   1 3 1  2 19  26 0.73 

Water 2 4  10  2 2  25 45 0.56 

Grand Total 33 34 27 73 52 44 31 27 29 351  

Users Accuracy  0.88 0.76 0.56 0.52 0.13 0.57 0.45 0.70 0.86   

Overall Accuracy 0.57           

Kappa 0.51           

2014-08-09 KNN CLASSIFICATION ON COMBINED SAR-OPTICAL DATA: ACCURACY ASSESSMENT 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy  

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 28 4 2 4   1  2 41 0.68 

Bare Soil 2 22  1  1 3 1  30 0.73 

Cultivated HG   14 10 4 4 6  1 39 0.36 

Cultivated HNG 1 3 5 42 5  6 1 1 64 0.66 

Cultivated Trees   3 3 9  1 1  17 0.53 

Managed Grass 1  5 1 1 14 9  1 32 0.44 

Natural HSB  1 8 10 2 7 18 11  57 0.32 

Natural Trees   1  3  3 18 1 26 0.69 

Water   2 4   1  38 45 0.84 

Grand Total 32 30 40 75 24 26 48 32 44 351  

Users Accuracy 0.88 0.73 0.35 0.56 0.38 0.54 0.38 0.56 0.86 351  

Overall Accuracy 0.58           

Kappa 0.52           
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2014-08-09 BAYES CLASSIFICATION ON COMBINED SAR-OPTICAL DATA: ACCURACY ASSESSMENT 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy 

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 12   11   15  3 41 0.29 

Bare Soil  8  7   15   30 0.27 

Cultivated HG   5 24   10   39 0.13 

Cultivated HNG    55   9   64 0.86 

Cultivated Trees    10 1  6   17 0.06 

Managed Grass    14   18   32 0 

Natural HSB    18   39   57 0.68 

Natural Trees    7   19   26 0 

Water    21   3  21 45 0.4.7 

Grand Total 12 8 5 167 1 0 134 0 24 351  

Users Accuracy  1 1 1 0.33 1 0 0.29 0 0.88 351  

Overall Accuracy 0.40           

Kappa 0.28           

 

  

2014-08-09 SVM CLASSIFICATION ON COMBINED SAR-OPTICAL DATA: ACCURACY ASSESSMENT 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy  

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 31 1     7  2 41 0.76 

Bare Soil 1 26 2    1   30 0.87 

Cultivated HG  1 24 10 1 1 2   39 0.62 

Cultivated HNG 1 7  39 9 1 6  1 64 0.61 

Cultivated Trees   2 6 5  3 1  17 0.29 

Managed Grass 1  7 5  19    32 0.59 

Natural HSB 1 1 3 15 4 3 16 14  57 0.28 

Natural Trees    1    25  26 0.96 

Water 4 1  2  1 1  36 45 0.8 

Grand Total 39 37 38 78 19 25 36 40 39 351  

Users Accuracy  0.79 0.70 0.63 0.5 0.26 0.76 0.44 0.63 0.923 351  

Overall Accuracy 0.63           

Kappa 0.58           
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9.3.2 Experiment 3: Confusion matrices 
 

9.3.2.1 2014-02-22 
 
2014-02-22 RF Classification on combined SPOT-5 and RADARSAT-2 Imagery: Accuracy Assessment 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy 

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 36   1     4 41 0.88 

Bare Soil  24 1 2   2  1 30 0.8 

Cultivated HG   24 5 6  4   39 0.62 

Cultivated HNG  2 2 51 2  7   64 0.8 

Cultivated Trees   4 6 4  3   17 0.24 

Managed Grass 2  8  1 18 3   32 0.56 

Natural HSB 3  5 11 3 4 25 6  57 0.44 

Natural Trees    3   3 20  26 0.77 

Water 1   4 2    38 45 0.84 

Grand Total 42 26 44 83 18 22 47 26 43 351  

Users Accuracy  0.86 0.92 0.55 0.61 0.22 0.82 0.53 0.77 0.88 351  

Overall Accuracy 0.68           

Kappa 0.64           

 

2014-02-22 RF Classification on just RADARSAT-2 Imagery: Accuracy Assessment 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy 

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 34   2    1 4 41 0.83 

Bare Soil  21 4 3 1    1 30 0.7 

Cultivated HG  1 20 1 5 2 8  2 39 0.51 

Cultivated HNG  1 3 39 1 3 14 2 1 64 0.61 

Cultivated Trees   4 4 7  2   17 0.41 

Managed Grass 1  4   24 3   32 0.75 

Natural HSB 2  2 14 8 5 19 6 1 57 0.33 

Natural Trees    5  1 3 17  26 0.65 

Water 2   1   3  39 45 0.87 

Grand Total 39 23 37 69 22 35 52 26 48 351  

Users Accuracy  0.87 0.91 0.54 0.57 0.32 0.69 0.37 0.65 0.813 351  

Overall Accuracy 0.63           

Kappa 0.57           
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2014-02-22 RF Classification on just SP0T-5 Imagery: Accuracy Assessment 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy  

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 34 4  3      41 0.829268 

Bare Soil  24 2 1 1  1  1 30 0.8 

Cultivated HG  3 19 8 8  1   39 0.49 

Cultivated HNG 3 3 2 41  1 11 2 1 64 0.64 

Cultivated Trees   2 5 5 1 3  1 17 0.29 

Managed Grass 1 1 5   20 5   32 0.63 

Natural HSB   6 7 5 4 27 7 1 57 0.47 

Natural Trees    3 1  2 20  26 0.77 

Water 2   3   2 1 37 45 0.82 

Grand Total 40 35 36 71 20 26 52 30 41 351  

Users Accuracy  0.85 0.69 0.53 0.58 0.25 0.77 0.52 0.67 0.90 351  

Overall Accuracy 0.65           

Kappa 0.596           
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9.3.2.2 2014-05-05 

2014-05-05 RF Classification on combined SPOT-5 and RADARSAT-2 Imagery: Accuracy Assessment 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy  

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 38 1    1 1   41 0.93 

Bare Soil  26  1  1 2   30 0.87 

Cultivated HG   22 9 1  7   39 0.56 

Cultivated HNG 1 3 1 48 2  9   64 0.75 

Cultivated Trees   4 12   1   17 0 

Managed Grass 1  1 4  20 6   32 0.63 

Natural HSB 1  3 11 1 3 31 7  57 0.54 

Natural Trees    2  1 2 21  26 0.81 

Water 2   5     38 45 0.84 

Grand Total 43 30 31 92 4 26 59 28 38 351  

Users Accuracy  0.88 0.87 0.71 0.52 0 0.77 0.53 0.75 1 351  

Overall Accuracy 0.695           

Kappa 0.65           

 

2014-05-05 RF Classification on RADARSAT-2 Imagery: Accuracy Assessment 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy 

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 35      4  2 41 0.85 

Bare Soil  21 1 6   1  1 30 0.7 

Cultivated HG  1 24 7 2 2 3   39 0.62 

Cultivated HNG  1 5 41 7 1 9   64 0.64 

Cultivated Trees   2 9 4  2   17 0.24 

Managed Grass 1  4 3 1 17 6   32 0.53 

Natural HSB 1  4 12 2 5 26 7  57 0.46 

Natural Trees    5   5 16  26 0.62 

Water 3   1   2  39 45 0.87 

Grand Total 40 23 40 84 16 25 58 23 42 351  

User’s Accuracy  0.88 0.91 0.6 0.49 0.25 0.68 0.45 0.7 0.93 351  

Overall Accuracy 0.64           

Kappa 0.58           
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2014-05-05 RF Classification on SPOT-5 Imagery: Accuracy Assessment 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy  

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 27 6  4  2 1  1 41 0.66 

Bare Soil  27  2   1   30 0.9 

Cultivated HG   28 6 1  4   39 0.72 

Cultivated HNG 2 1 2 49 2  8   64 0.77 

Cultivated Trees   4 6 2 1 4   17 0.12 

Managed Grass 2  5 1  16 8   32 0.5 

Natural HSB 1  6 8 5 7 26 4  57 0.46 

Natural Trees   1 1   5 19  26 0.73 

Water 2 2  4     37 45 0.82 

Grand Total 34 36 46 81 10 26 57 23 38 351  

User’s Accuracy 0.79 0.75 0.61 0.60 0.2 0.62 0.46 0.83 0.97 351  

Overall Accuracy 0.66           

Kappa 0.61           
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9.3.2.3 2014-05-29 
 

2014-05-29 RF Classification on combined SPOT-5 and RADARSAT-2 Imagery: Accuracy Assessment 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy 

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 39      1  1 41 0.95 

Bare Soil 1 26  2   1   30 0.87 

Cultivated HG   23 6 3 1 6   39 0.59 

Cultivated HNG 1 1 2 49 1 1 9   64 0.77 

Cultivated Trees   3 5 1 1 6 1  17 0.06 

Managed Grass 1  1 2  22 6   32 0.69 

Natural HSB 2  3 10 2 4 26 10  57 0.46 

Natural Trees   1 3   3 19  26 0.73 

Water 2   1   2  40 45 0.89 

Grand Total 46 27 33 78 7 29 60 30 41 351  

Users Accuracy  0.85 0.96 0.7 0.63 0.14 0.76 0.43 0.63 0.98 351  

Overall Accuracy 0.7           

Kappa 0.65           

 

2014-05-29 RF Classification on RADARSAT-2 Imagery: Accuracy Assessment 

 Classification Image 

Artificial 

Surfaces 

Bare Soil Cultivated HG Cultivated 

HNG 

Cultivated 

Trees 

Managed Grass Natural HSB Natural 

Trees 

Water Grand 

Total 

Producer's 

Accuracy 

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 27  1    4  9 41 0.66 

Bare Soil  23 3 1 1  1  1 30 0.77 

Cultivated HG   20 8  4 7   39 0.51 

Cultivated HNG 1  3 43 1  16   64 0.67 

Cultivated Trees   2 6 5 2 2   17 0.29. 

Managed Grass 3  1 2 1 14 6  5 32 0.44 

Natural HSB 4   13 1 7 23 7 2 57 0.40 

Natural Trees    1  1 4 20  26 0.77 

Water    4  1 2 1 37 45 0.82 

Grand Total 35 23 30 78 9 29 65 28 54 351  

Users Accuracy 0.77 1 0.67 0.55 0.56 0.48 0.35 0.71 0.69 351  

Overall Accuracy 0.60           

Kappa 0.54           
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2014-05-29 RF Classification on SPOT-5 Imagery: Accuracy Assessment 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy 

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 33 2  3  1   2 41 0.80 

Bare Soil 1 24  2  2 1   30 0.8 

Cultivated HG  3 18 9 2 4 3   39 0.46 

Cultivated HNG 2  2 47 5 6   2 64 0.73 

Cultivated Trees   3 7 2  4 1  17 0.12 

Managed Grass 1 1 5 4  16 4  1 32 0.5 

Natural HSB 2  5 14 3 10 12 11  57 0.21 

Natural Trees    2 1  4 19  26 0.73 

Water 2   3   2  38 45 0.84 

Grand Total 41 30 33 91 13 39 30 31 43 351  

Users Accuracy  0.80 0.8 0.55 0.52 0.15 0.41 0.4 0.61 0.88 351  

Overall Accuracy 0.6           

Kappa 0.54           
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9.3.2.4 2014-08-09 
 

 

2014-08-09 RF Classification on combined SPOT-5 and RADARSAT-2 Imagery: Accuracy Assessment 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy  

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 37 1  1   1  1 41 0.90 

Bare Soil 1 25 1 1   1  1 30 0.83 

Cultivated HG  1 19 10 1 4 4   39 0.49 

Cultivated HNG 1 2 1 48 2 1 9   64 0.75 

Cultivated Trees   4 7 2  4   17 0.12 

Managed Grass 3  4   21 4   32 0.66 

Natural HSB 2  3 10 2 4 30 5 1 57 0.53 

Natural Trees    2   2 22  26 0.85 

Water 5   1 1  2  36 45 0.8 

Grand Total 49 29 32 80 8 30 57 27 39 351  

Users Accuracy  0.76 0.86 0.59 0.6 0.25 0.7 0.53 0.81 0.92 351  

Overall Accuracy 0.68           

Kappa 0.64           

 

 

2014-08-09 RF Classification on RADARSAT-2 Imagery: Accuracy Assessment 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy 

R
ef

er
en

ce
 I

m
ag

e Artificial Surfaces 34  1 1   2  3 41 0.83 

Bare Soil  26 2 2      30 0.87 

Cultivated HG  1 21 14 1 1 1   39 0.54 

Cultivated HNG   10 40 1 1 11 1  64 0.63 

Cultivated Trees 1  6 6 3 1    17 0.18 

Managed Grass 3  2 2 1 13 6 1 4 32 0.41 

Natural HSB 3  4 14 1 6 22 6 1 57 0.39 

Natural Trees   2 4  1 3 16  26 0.62 

Water  1  8  1 2  33 45 0.73 

Grand Total 41 28 48 91 7 24 47 24 41 351  

Users Accuracy  0.83 0.93 0.44 0.44 0.43 0.54 0.47 0.67 0.80 351  

Overall Accuracy 0.59           

Kappa 0.53           

Stellenbosch University  https://scholar.sun.ac.za
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2014-08-09 RF Classification on SPOT-5 Imagery: Accuracy Assessment 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy  
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m
ag

e Artificial Surfaces 31 5 1 1   2  1 41 0.76 

Bare Soil 1 26  2   1   30 0.87 

Cultivated HG 2  17 5 3 9 2  1 39 0.44 

Cultivated HNG 1 1 3 46 5  8   64 0.72 

Cultivated Trees   3 4 5 1 4   17 0.29 

Managed Grass 1  8   16 5  2 32 0.5 

Natural HSB 1  8 4 11 5 21 6 1 57 0.37 

Natural Trees    1 1  2 22  26 0.85 

Water 4   4 1  2  34 45 0.76 

Grand Total 41 32 40 67 26 31 47 28 39 351  

Users Accuracy  0.76 0.81 0.43 0.69 0.19 0.52 0.45 0.79 0.87 351  

Overall Accuracy 0.62           

Kappa 0.57           

Stellenbosch University  https://scholar.sun.ac.za
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9.3.3 Experiment 4: Confusion matrices 
 

 
Multi-temporal, combined SAR-optical classification based on 40 training features 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural 

 Trees 

Water Grand Total Producer's Accuracy  
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m
ag

e Artificial Surfaces 31 3  2     5 41 0.76 

Bare Soil  26  2  1   1 30 0.87 

Cultivated HG   25 8 1 2 3   39 0.64 

Cultivated HNG   1 56 2 1 4   64 0.88 

Cultivated Trees   1 6 5 2 2  1 17 0.29 

Managed Grass 2  4 1  23 2   32 0.72 

Natural HSB 2  2 8 2 6 32 5  57 0.56 

Natural Trees       4 22  26 0.85 

Water 2   4 1  1  37 45 0.82 

Grand Total 37 29 33 87 11 35 48 27 44 351  

Users Accuracy  0.84 0.9 0.76 0.64 0.45 0.66 0.67 0.81 0.84 351  

Overall Accuracy 0.73           

Kappa 0.69           

Multi-Temporal, combined SAR-optical classification based on 20 training features 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy  
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m
ag

e Artificial Surfaces 29 4  2     6 41 0.71 

Bare Soil 1 26  2   1   30 0.87 

Cultivated HG   23 5 4 4 3   39 0.59 

Cultivated HNG  1  50 3 1 9   64 0.78 

Cultivated Trees   1 6 5 1 2 1 1 17 0.29 

Managed Grass 3  8 2  16 3   32 0.5 

Natural HSB 1  2 15 4 7 21 6 1 57 0.37 

Natural Trees    2   2 22  26 0.85 

Water 2   4 1    38 45 0.84 

Grand Total 36 31 34 88 17 29 41 29 46 351  

Users Accuracy  0.81 0.84 0.68 0.57 0.29 0.55 0.51 0.76 0.83 351  

Overall Accuracy 0.66           

Kappa 0.60           

Stellenbosch University  https://scholar.sun.ac.za
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Multi-temporal, combined SAR-optical classification based on 60 training features 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy  
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e Artificial Surfaces 36   2     3 41 0.88 

Bare Soil  26  1   2  1 30 0.87 

Cultivated HG   26 9 1  3   39 0.67 

Cultivated HNG   1 53 1 1 8   64 0.83 

Cultivated Trees   2 6 5 1 3   17 0.29 

Managed Grass 2  2 1  25 2   32 0.78 

Natural HSB 2  1 7 5 6 32 4  57 0.56 

Natural Trees    1 1  3 21  26 0.81 

Water 2   6 1    36 45 0.8 

Grand Total 42 26 32 86 14 33 53 25 40 351  

Users Accuracy  0.86 1 0.81 0.62 0.36 0.76 0.6 0.84 0.9 351  

Overall Accuracy 0.74           

Kappa 0.70           

Multi-temporal, combined SAR-optical classification based on 50 training features 

 Classification Image 

Artificial Surfaces Bare Soil Cultivated HG Cultivated HNG Cultivated Trees Managed Grass Natural HSB Natural Trees Water Grand Total Producer's Accuracy  

R
ef
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e Artificial Surfaces 36   3     2 41 0.88 

Bare Soil  26  2   1  1 30 0.87 

Cultivated HG   28 7 2  2   39 0.72 

Cultivated HNG   2 54 2 1 5   64 0.84 

Cultivated Trees   1 4 5 2 5   17 0.29 

Managed Grass 2  4 1  25    32 0.78 

Natural HSB 2  2 8 3 6 31 5  57 0.54 

Natural Trees    2   3 21  26 0.81 

Water 2   7 1  1  34 45 0.76 

Grand Total 42 26 37 88 13 34 48 26 37 351  

Users Accuracy  0.86 1 0.76 0.61 0.38 0.74 0.65 0.81 0.912 351  

Overall Accuracy 0.74           

Kappa 0.70           

Stellenbosch University  https://scholar.sun.ac.za
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