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Abstract

The thesis presented gives the detailed practical implementation for a passive audio de-
tection system that makes use of time difference of arrival theory to locate the source of
audio signals emitted from Bryde’s whales. The system consists of three individual float-
ing sensors deployed in the water that communicate with the user-unit on the research
vessel. The sensors are comprised of Raspberry Pis and various other specific hardware.
The transfer of the sensor readings and the calculations done with said data allows for the
location of the audio signal to be calculated through a time difference of arrival algorithm.

The overall audio signal source localization system is made possible by integrating various
sub-systems. These being; detection, sensor tracking, communication, time synchroniza-
tion, and signal location calculation. The theoretical principles behind each of these
subsystems are discussed as well as their practical implementation, simulations and test-
ing.

In order to locate the source of an audio signal, one must first be able to identify whether
an input signal to the system is the desired signal. A dynamic time warping algorithm is
made use of in order to detect the desired audio signals. The validity of this algorithm on
Bryde’s whales has already been proven in the past, however further developments had
to be made when implementing this algorithm in real-time.

The locations of the sensors are determined by fitting each sensor with a GPS module.
The data that the GPS module feeds to the system is known as NMEA data, this is used
to track the sensors. The sensor positions as well as detection instances are communicated
to the user-unit for processing via LoRa. LoRa is a useful communication technology as
the data can be transmitted directly over long distances.

A time difference of arrival algorithm is run on the user-unit. This algorithm makes use
of the data received from the sensors to mathematically locate the source of the audio
signal. The location of the sensors and any potential locations for the signal source is
shown graphically via a Python interface on the screen attached to the user unit.

After testing it was found that the tracking and communication systems function ade-
quately. The DTW based detector proved to run sufficiently, though there were instances
of false-positive detections. Additionally, it was found that the TDOA system tested to
be accurate to within several hundred meters when at a scale of kilometers when tested
using a microcontroller in the laboratory.

Through testing the various sub-systems of the overall system appears as it would function
sufficiently, though the system was only laboratory tested and was never deployed in the
ocean due to time constraints.
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Opsomming

Die tesis wat aangebied word, gee ‘n indiepte praktiese implementering vir ’n passiewe
akoestiese deteksietelsel wat gebruik maak van verskil in aankomstyd-teorie om die posisie
van klankseine van Bryde se walvisse te lokaliseer. Die stelsel bestaan uit drie individuele
sensors wat in die water dryf, wat elk met die gebruikerseenheid op die navorsingsvaar-
tuig kommunikeer. Die sensors bestaan uit Raspberry Pis en verskeie doelgerigte kom-
ponente.Die oordrag van die sensorlesings en die berekeninge wat met die data gedoen
word, maak dit moontlik om die ligging van die klanksein te bepaal deur middel van ’n
verskil in aankomstydalgoritme.

Die algehele akoestiese lokaliseringstelsel word moontlik gemaak deur verskillende subs-
telsels te integreer, naamlik; opsporing, sensorvolging, kommunikasie, tydsinchronisasie,
en seinlokalisering. Die teoretiese beginsels onderliggend aan elke substelsel word be-
spreek, asook die praktiese implementering, simulasie en toetsing van elke substelsel.

Om die oorsprong van ’n klanksein te lokaliseer, moet eers bepaal word of die insetsein
na die stelsel die gewenste sein is. ’n Dinamiese tydsverskuiwingsalgoritme is gebruik as
detektor vir die verlangde klankseine. Die geldigheid van hierdie algoritme op Bryde se
walvisse is reeds in die verlede bewys, maar verdere aanpassings is gemaak om hierdie
algoritme intyds te implementeer.

Die ligging van die sensors word bepaal deur elke sensor met ‘n GPS toe te rus. Die
data wat die GPS-module na die stelsel voer, staan bekend as NMEA-data. Dit word ge-
bruik om die sensors op te spoor. Die sensorposisies sowel as deteksies word deur LORA
gekommunikeer na die gebruikerseenheid vir verwerking. LoRa is ’n nuttige kommunikasi-
etegnologie wat dit moontlik maak om data direk oor lang afstande oor te dra.

’n Verskil in aankomstydalgoritme word op die gebruikerseenheid gebruik. Hierdie algo-
ritme maak gebruik van die data wat van die sensors ontvang word om die oorsprong
van die klanksein wiskundig te lokaliseer. Die ligging van die sensors sowel as moontlike
liggings vir die seinbron word grafies vertoon op die skerm van die gebruikerseenheid deur
van ’n Python-koppelvlak gebruik te maak.

Na toetsing is bevind dat die opsporing- en kommunikasiestelsels voldoende funksioneer.
Die dinamiese tydsverskuiwings-gebaseerde detektor het voldoende gewerk, alhoewel daar
gevalle was waar vals-positiewe opsporings gemerk is. Daarbenewens is bevind deur lab-
oratoriumtoetse met behulp van ‘n mikroverwerker dat die verskil in aankomstydstelsel
akkuraat is tot binne ’n paar honderd meter, getoets op ’n skaal van kilometers.

Deur toetsing van die verskillende substelsels van die algehele stelsel, blyk dit dat die
stelsel voldoende funksioneer, alhoewel die stelsel slegs in die laboratorium getoets is en
nooit in die oseaan ontplooi is nie as gevolg van tydsbeperkings
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Nomenclature

CSS Chirp spread spectrum
DOAE Direction of arrival estimation
DTW Dynamic time warping
GNSS Global navigation Satellite System
GPS Global Positioning System
LBP Local binary pattern
LoRa Long range radio
LPWAN Low power wide area network
NMEA National Marine Electronics Association
NTP Network time protocol
PPS Pulse per second
RMS Root mean square
SPI Serial peripheral interface
TDOA Time difference of arrival
TOA Time of arrival
UART Universal asynchronous receiver-transmitter
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Chapter 1

Introduction

1.1 Background

It would appear to be general knowledge to the public that the most common way to
determine the location of whales is visually when they surface and inhale air. However,
this is not a reliable form of locating animals that would otherwise spend the majority of
their lives under the surface. This is especially true for Bryde’s whales which are known
to have erratic behaviour [1].

As such technological systems have been put in place in order to locate and study aquatic
animals. One such method of locating the source of signals, such as aquatic animal
vocalizations, is time difference of arrival.

Time difference of arrival based systems allow for localization of audio signals created
by animals through passive means. Though there should also be a detection aspect
implemented into these systems to confirm that the correct vocalizing animal, which is
the signal source, is being located.

Through the utilization of multiple sensors deployed in an environment with known loca-
tions, the differences in arrival times of the signal at each sensor can be calculated. As
such the location of the source of this signal can be determined through mathematical
means implemented in the system.

The determining of the difference in arrival times of the signal at each sensor requires
the sensors to have some method of detecting that the signal has arrived as well as the
sensors having some degree of time synchronization between themselves.

1.2 Problem statement

In this thesis, we set out to develop and analyze a system that would be capable of locating
the position of Bryde’s whales in real-time using a time difference of arrival algorithm.
In order to perform this task various sufficient tracking, communication, timing, and
detection subsystems are required to work individually and in tandem with one another
to produce meaningful results.

1
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CHAPTER 1. INTRODUCTION 2

1.3 Objectives of this thesis

A primary aim of the thesis presented is to be able to detect Bryde’s whale vocalizations
from the input audio signals. This is essential for the localization of the vocalizing whale.
The next primary aim of this thesis would be to use the detections and other information
to locate vocalizing Bryde’s whales and present the findings graphically in two-dimensions.

Three sensors free-floating in the ocean each have detection algorithms running on there
local hardware. The sensors have the ability to process the audio data through the use
of hydrophones. The sensors are to communicate with the user-unit using radio waves,
specifically long range (LoRa) technology. The information that is sent by each sensor is
the global positioning system (GPS) coordinates of the sensor as well as the timestamps
for instances of signal detection.

An important aspect of the system that may not be immediately apparent is that it, and
the researchers present, should interfere with the surrounding sea life as little as possible.
For this reason, a passive free-floating system is being implemented rather than something
resembling active sound navigation and ranging (SONAR), where the transmitted signals
may interfere with marine life.

As previously stated the system should be running in real-time. This posed possibly
one of the largest challenges faced when implementing the theory behind all the internal
systems practically as there are many calculations done to be done in small time frames.

For the development of the time difference of arrival (TDOA) system, certain assumptions
have been made from the start of development. These assumptions include the term
real-time referring to the calculation presentation of information within a few seconds
of receiving the required data. The term real-time is used here as a contrast to a post-
processing approach. Another such assumption is that there will be a degree of error
present in the calculations of the system within the extent of multiple meters. This error
is present as the hardware used is only accurate to within a given degree of error.

1.4 Overview of this thesis

Chapter 2 contains research on various systems and techniques implemented by researchers
in the past.

In Chapter 3 the theoretical principles chosen to be implemented in the different internal
subsystems are described.

Chapter 4 allows for the descriptions of the implementation of the previously discussed
theoretical principles as well as the hardware and software used.

The contents of Chapter 5 are the simulations and results of tests for the various internal
systems as well as the testing of various implementation methods to make the system the
most efficient and accurate.

Chapter 6 describes the conclusions and recommendations for the future development of
the system.
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Chapter 2

Literature survey

2.1 Introduction

There are many facets to the system that are required for it to function properly. The
main functions of the system that must be implemented in the various subsystems are the
ability to: detect whether a signal is a Bryde’s whale short pulse call, track the sensors’
GPS coordinates, transmit data from the sensors, and use transmitted sensor data to
locate the audio signal source point of origin.

This chapter serves the purpose of noting and comparing the different methods of im-
plementation in similar systems from the past, rather than discussing and illustrating in
great detail the concepts of which they are composed. The concepts discussed are to be
explained to an acceptable extent of understanding. However, more in-depth discussions
and illustrations of the methods chosen to be implemented for the various functions of
the system are reserved for Chapter 3.

2.2 Locating the audio signal source

2.2.1 Localization - Time difference of arrival (TDOA)

When performing TDOA the time of arrival values for a signal reaching a number of
sensors at known locations is converted to differences in distances. These differences in
distances when combined with the known sensor locations set up hyperbolic equations
which at the points of intersection can be used to locate the origin of the signal.

Muanke et al. [2] devised a TDOA system to be used to locate Manatees. The researchers
make use of the Hilbert transform in conjunction with cross-correlation. The implemen-
tation of the TDOA algorithm typically resembles Equation (2.1),

di,j = di − dj =
√

(xi − x)2 + (yi − y)2 −
√

(xj − x)2 + (yj − y)2 (2.1.a)

or alternatively,

di,j = di − dj =
√

(x− xi)2 + (y − yi)2 −
√

(x− xj)2 + (y − yj)2. (2.1.b)

3
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CHAPTER 2. LITERATURE SURVEY 4

This equation denotes the difference in distances as mentioned previously. The variables
di and dj denote the distance from the i -th and j -th sensor to the signal source respec-
tively. The number of sensors can range from 1 to N. It is assumed that the difference in
these distance values, denoted by di,j, is known by multiplying the difference in time mea-
surements by the speed at which the signal is known to propagate through the medium.

In addition to this, because the coordinates of the sensors, denoted by the i or j subscript,
in Equation (2.1) are also known, one can begin to calculate the possible x and y values
that represent the location of the signal source. These possible x and y values that satisfy
the equation produce a hyperbolic curve. Using multiple sensors at different locations
in tandem with one another generates multiple hyperbolic equations, at the point these
curves intersect is the calculated origin of the signal.

Muanke et al. [2] go on to bring up a point of extreme importance when implementing
the TDOA algorithm. If all the curves do not intersect at a signal point due to non-
idealities in the system this creates a problem when trying to locate the correct position.
They address this problem by designating the source location desired as the point of
minimum distance between the different hyperbolas. Finding this minimum distance is
made possible by implementing a least squares algorithm.

Figure 2.1 below is adapted from a paper by Rosić et al. [3] where the researchers illustrate
the problem caused by the timing inaccuracy and methods implemented to find the best
location for the signal source.

Figure 2.1: Margins of error in a TDOA system

[3]

The information that can be gathered from the image is that the dotted lines are the
accurate and ideally calculated hyperbolas and the solid lines are the hyperbolas calculated
with errors.

In Equation (2.2) the arrival times at each sensor are denoted by the variable t. In this
instance, the sensors are regarded as sensor i and sensor j. The variable c represents the
speed at which the signal moves through the given medium. When multiplied together
these values yield a value for the variable d which represents the difference in distance
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CHAPTER 2. LITERATURE SURVEY 5

between each sensor and the signal source. The variable n denotes an error that has been
presumed to occur in the system for an arbitrary reason. The equation is written as,

ri,j = c|ti − tj| = di,j + ni,j where i 6= j. (2.2)

The equations in question for each given set of sensors being examined can be rewritten
in matrix notation if it is desired, x = [x, y]T can be used to designate the signal source
location and xj = [xj, yj]

T can be used to designate the jth sensor location.

2.2.1.1 Non-linear least squares

As noted in the paper by Rosić et al. [3], non-linear least squares minimizes the objective
function denoted by the indicator JNLS(x̃). This is defined as the sum of squared residuals
between the estimated and the measured TDOA values. Its corresponding mathematical
equation as noted in Equation (2.3) with x̃ denoting the optimization variable is written
as,

JNLS(x̃) = min
N∑
i=1

R2
es,i(x̃). (2.3)

The value for Res,i(x̃) as seen in Equation (2.3) is determined by the equation,

Res,i(x̃) = r̃i,j − ri,j. (2.4)

The value of r̃i,j, as seen previously, is the measured distance and x̂ denotes the optimal
solution. This is expressed as,

x̂ = arg min JNLS(x̃). (2.5)

2.2.1.2 Weighted least squares

As noted in the paper by Rosić et al. [3], the non linear hyperbolic equations seen in
Equation (2.1) and Equation (2.2) can be transformed into linear equations by squaring
the combination of these equations to eliminate the square root signs. The combination
of the equations is shown as,

ri,j =
√

(x− xi)2 + (y − yi)2 −
√

(x− xj)2 + (y − yj)2 + ni,j where i 6= j, (2.6)

with the resultant squared and algebraically manipulated equation illustrated as the fol-
lowing,

(xi−xj)(x−xj)+(yi−yj)(y−yj)+ri,jRf = 0.5((xi−xj)2 +(yi−yj)2−r2
i,j)+mi,j (2.7)

where i 6= j.
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CHAPTER 2. LITERATURE SURVEY 6

The values of Rf and mi,j, as seen in Equation (2.7), are determined by Equation (2.8)
and Equation (2.9) as denoted as,

Rf = dj =
√

(x− xj)2 + (y − yj)2 (2.8)

and
mi,j = dini,j. (2.9)

Additionally it is worth noting that n2
i,j is neglected when performing the algebraic ma-

nipulation to form Equation (2.7) for this approach.

The system is now considered linear and can be converted to the matrix form written as,

Aθ = b + m. (2.10)

The A,θ,b and m values are denoted as the following:

A =


(xi − xj) (yi − yj) ri,j

(xi+1 − xj) (yi+1 − yj) ri+1,j

(xi+2 − xj) (yi+2 − yj) ri+2,j

: : :
(xN − xj) (yN − yj) rN,j

 (for i ∈ {1, 2, 3, ..., N} and i 6= j)

(2.11)

θ = [(x− xj) (y − yj) Rf ]
T (2.12)

b = 0.5


(xi − xj)2 (yi − yj)2 r2

i,j

(xi+1 − xj)2 (yi+1 − yj)2 r2
i+1,j

(xi+2 − xj)2 (yi+2 − yj)2 r2
i+2,j

: : :
(xN − xj)2 (yN − yj)2 r2

N,j

 (for i ∈ {1, 2, 3, ..., N} and i 6= j)

(2.13)

m = [mi,j mi+1,j mi+2,j ... mN,j]
T (for i ∈ {1, 2, 3, ..., N} and i 6= j)

(2.14)

According to Rosić et al. [3], these equations allow for the weighted least squares (WLS)
objective function to be produced which is illustrated as,

JWLS(θ) = (Aθ − b)TW(Aθ − b). (2.15)

The value for W as seen in the previous equation is noted to be the weighting matrix.
Its value is denoted by, W = (E{mmT})−1. The researchers then go on to establish that
the unconstrained optimization problem can thus be formulated as
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min JWLS(θ). (2.16)

Furthermore, Equation (2.17) shows the WSL algebraic closed-form solution denoted by
x̂WSL which minimizes the objective function. This is written as

x̂WLS(θ) = (ATWA)−1ATWb. (2.17)

2.2.2 Direction of arrival estimation (DOAE)

As can be assumed from the name ‘Direction of arrival estimation’, the process of DOAE
is not to locate the audio signal source but rather to simply locate the direction from which
the audio signal propagates. Kunin et al. [4] have described the processes of TDOA and
DOAE in an article based on acoustic sensor arrays. Figure 2.2 below is adapted from
the figure which they make use of to illustrate their points on the DOAE process.

Figure 2.2: A standard DOAE setup illustration

[4]

Tx has been designated as the transmitter which would be transmitting a signal through
a given medium. Rx1 and Rx2 are the sensors used to detect this audio signal. It is seen
in Figure 2.2 above that while DOAE serves a different purpose to TDOA localization,
the DOAE process still makes use of a time difference of arrival based principle. The
difference in times for the signal to reach the sensor is denoted by the letter T.

There needs to be an approximation made before the process can continue, according to
Kunin et al. [4] the estimation of for direction of the source can be obtained through the
use of the far-field model. This model assumes that the signal source is far away enough
that the propagating waves do not appear to be circular, as they are in Figure 2.2, instead,
they approximate a linear or planar form due to the assumed extremely large radius of the
circular propagation. They illustrate this in a similar figure to the one shown in Figure
2.3.
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CHAPTER 2. LITERATURE SURVEY 8

Figure 2.3: Far-field DOAE illustration

[4]

The difference in time value (T) can be multiplied by the speed at which the signal
propagates through the designated medium to result in a distance value (τ). This value
is then used in the equation,

τ = δcos(θ), (2.18)

along with an assumed known value for δ to result in a calculated value for θ. This angle
results in the direction of arrival estimation.

In the master’s thesis by Vitaliy Kunin [5], the researcher has noted a near field module
which does not make use of these previously mentioned assumptions and approximations.
Figure 2.4 shown below is adapted from the researcher’s illustration of the near field
module being elaborated on.

Figure 2.4: Near-field DOAE illustration

[5]

The sensors and the transmitter are designated by the same labels as seen in the previous
figures. The process of using this near field model is more complex than the far-field
model. The value of d is given to be half the distance between the sensors. L, E, and
D are designated as the distances from, the midpoint between the sensors, sensor 2, and
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CHAPTER 2. LITERATURE SURVEY 9

sensor 1 to the signal source respectively. The value for T is denoted by the time difference
of arrival that corresponds to what has been previously seen from the far-field model and
a is the angle corresponding to the direction of arrival.

The distance value of T is determined as τ was when calculated with the far-field model
previously. The process and equations that follow are performed according to the laws
of trigonometry in conjunction with inspection of the figure. They are the steps noted in
Vitaliy Kunin’s thesis [5].

Initially the distances are defined in terms of one another,

T = E −D (2.19)

and

L =
(E +D)

2
. (2.20)

Additionally, the sin and cos functions of the angle a yields values for lengths F and G.
It can be seen that,

sin(a) = F/L (2.21)

yields a value for F when written as

F = sin(a)L (2.22)

and

cos(a) = G/L (2.23)

yields a value for G when written as

G = cos(a)L. (2.24)

Then having established these values one can make use of Pythagoras’ Laws for right
angle triangles to yield values for,

D =
√

(Lcos(a)− d)2 + (Lsin(a))2 (2.25)

and
E =

√
(Lcos(a) + d)2 + (Lsin(a))2. (2.26)

As such by combining equations 2.26, 2.25 and 2.19 one can produce a value for T written
as,

T =
√

(Lcos(a) + d)2 + (Lsin(a))2 −
√

(Lcos(a)− d)2 + (Lsin(a))2. (2.27)

It is noted that in this system the locations of the sensors are known and the T is given
from a measured value. Equation (2.27) gives the relationship between T and the angle of
arrival (a). An important note made by Vitaliy Kunin [5] is that two-dimensional local-
ization can be performed with two receivers as seen in the DOAE illustrations when the
distances between the source and the receivers are known and with three receivers when
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CHAPTER 2. LITERATURE SURVEY 10

only the TDOA information is known. This has been shown in the TDOA localization
section.

The DOAE principles previously discussed are now taken further with the aid of another
master’s thesis by Carlos Fernández Scola and Maŕıa Dolores Bolaños Ortega [6]. In this
thesis, the same approach of a near field model is taken. However, in this illustration,
the equations using the points of interest make use of a Cartesian coordinate system. If
their approach were to be put in different terms such that Figure 2.4 can still be used as
a visual reference, it would be written as,

E =
√

(Rx2x − x)2 + (Rx2y − y)2 (2.28)

and

D =
√

(Rx1x − x)2 + (Rx1y − y)2. (2.29)

Additionally, it is noted that for calculation purposes the Tx x and y values are denoted
simply as “x” and “y” while the Rx values are denoted by their suffix first.

Using Equation (2.19) in conjunction with equations 2.28 and 2.29 and eliminating square
roots by squaring the values results in the value of T being determined as,

T 2 = E2 +D2 − 2ED. (2.30)

If a Cartesian coordinate axis system for Figure 2.4 is set up such that the midpoint
between the sensors is the origin point (0;0) of the axes, logically, Rx2x = −Rx1x and
Rx2y = Rx1y = 0. As such Equation (2.30) is now simplified, reordered and written in
Cartesian coordinates. It is now written as

y = ±
√
T 2

4
−Rx12

x + x2(
4Rx12

x

T 2
− 1). (2.31)

As previously mentioned the locations of the sensors are presumed to be known and the T
value was produced previously from a measured value. Thus Equation (2.31) can be used
to plot an equation of possible x and y values. Though there is a constraint, this being
that the value under the square root must be equal or greater than zero. This constraint
is denoted as,

x ≥

√
−T

2(T 2 − 4Rx12
x)

4(4Rx12
x − T 2)

. (2.32)

According to the aforementioned thesis [6], the slope of this resultant curve from Equation
(2.31) can be determined. From this, a value for the angle a is calculated by determining
the arc-tangent of this slope and as such a resultant indicator for the direction of arrival
has been estimated. This equation for finding the value of a is written as

a = tan−1(
dy(x)

dx
). (2.33)
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2.2.3 TDOA and DOAE comparison

The most prevalent advantage of TDOA over DOAE is the ability of the process to actually
locate the point of origin for the audio signal rather than giving a bearing on which it
can be found.

Though a clear advantage of DOAE is that the process is capable of functioning using just
two sensors, as seen performed by Scola et al. [6]. It has been seen in multiple resources
that while performing TDOA is possible with just three sensors, there are ambiguities
present. These ambiguities can be eliminated by adding a fourth sensor. As such, this
would double the amount of hardware that is required for TDOA compared to DOAE
resulting in higher costs.

However, it is theorized that by using a graphically represented TDOA algorithm as well
as utilizing prior information from the sensors, one can construct a TDOA localization
algorithm with acceptable accuracy using three sensors. In addition, for the purposes of
this thesis, the DOAE has an inherent problem, being that the sensors are free-floating
in the ocean meaning that the axis upon which the calculations are based would be ever-
changing. This would result in the angle of arrival being placed on a varying axis, which
when out at sea on a research vessel is difficult to observe given that the vessel requires
to be constantly sailed.

As such TDOA would be more effective for the purposes of this thesis, given that the
results that it yields allow for locating of Bryde’s whales with proximity to the research
vessel.

2.3 Audio signal detection

2.3.1 A brief overview of whale vocalization signal processing

When analyzing the signals emitted during whale vocalizations in the past, researchers
have used many different techniques for different species of whales. This section serves
as a brief overview of which methods have been used in the past in order to process
whale vocalizations. Two specific methods considered for the purposes of this thesis are
discussed in the subsequent subsections.

In a paper by Ogundile et al. [7], two algorithms are used in order to detect Bryde’s
whale vocalizations. These algorithms are dynamic time warping and linear predictive
coding. Brown et al. [8] also make use of a DTW algorithm in order to classify killer whale
vocalizations. The DTW algorithm will be elaborated on in the following subsection.

Research into the characteristics of vocalizations from sperm whales has been done by
Lohrasbipeydeh et al. [9]. In their research they discuss the characteristics of the “click”
audio signals made by these whales. The motivation of their research is to design a “click
energy based” detector.

In a paper by Esfahanian et al. [10], the authors compare two detection methods for
the north Atlantic right whale. This whale species makes what the researchers refer to
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as “upcalls”. The researchers extract time-frequency features from spectrograms, this is
compared to the other method which involves a local binary pattern (LBP) operator. The
researchers concluded that using LBP features was a more accurate method of detection.

Additionally another paper has been published pertaining to north Atlantic right whale
acoustic signal processing, This being authored by Dugan et al. [11]. In this paper the
researchers compare different machine learning recognition algorithms. They present two
new approaches, one based on artificial neural networks and the other on classification and
regression tree classifiers. These presented algorithms are compared with with previous
research done by Urazghildiiev et al. [12] which they have referenced in their paper. This
research discusses the use a of multi-stage feature vector testing algorithm.

A paper authored by David Mellinger and Christopher Clark [13] describes the use of
spectrogram correlation to recognize bowhead whale sounds. This is compared to three
other methods, these methods being matched filters, neural networks, and hidden Markov
models. The researchers found their method to have a high success rate and would have
the potential to be particularly useful for detecting a vocalization when few instances
of said vocalization are known. They note “few instances” to mean between 5 and 200
instances. In their paper David Mellinger and Christopher Clark [13] cited a particular
source of interest being Stafford et al. [14] for their work done on detecting blue whale
vocalizations. Stafford et al. [14] used the aforementioned matched filters to detect
vocalizations.

In the subsequent subsections two algorithms are discussed and compared for the purposes
of this thesis. It has been shown that there are multiple methods that can be used
though for the purposes of this thesis DTW and spectrogram correlation are chosen to be
investigated further. DTW has already proven to be effective on the calls being analyzed,
as shown by Ogundile et al. [7] and spectrogram correlation may prove to be useful for
the relatively few Bryde’s whale short pulse call signals available at this time.

2.3.2 Dynamic time warping

This technique is excellent for determining the similarity between signals by comparing
the shape of the signal curves which may vary in length. DTW was implemented in the
early days of speech recognition development. Noticeably it has been used by Brown et
al. [8] and more recently by Ogundile et al. [7] as mentioned in the previous section.

There are different methods of implementing the DTW algorithm however it is stated
here that the four that will be discussed all start with the same step of determining the
two-dimensional difference matrix, designated as D. The difference matrix is populated by
aligning one of the chosen sequences, referred to as A, being compared along the vertical
of the matrix and the other sequence, referred to as B, along the horizontal of the matrix
and populating the values of the matrix with

D[i, j] = |A[i]−B[j]|. (2.34)

From the point of having established a difference matrix, a cost matrix designated as
M can be calculated. The calculation of this matrix varies depending on the method
being implemented. However its function remains the same, it contains a continuously
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running tally of differences between the sequences which accumulate towards the end of
the two-dimensional cost matrix.

Once the cost matrix has been calculated using one of the above methods, the minimum
path through the matrix from the final value to the initial value can be traced by declaring
the final value as the current value then designating the immediate minimum previous
value as the new current value and iterating through this process until the initial value is
the current value. The path between these values made up of the selected values is the
“minimum path” [8] [15].

The final value in the cost matrix, normalized by dividing by the length of the query, is
considered to be the final “dissimilarity”. The shorter sequence is dubbed the query by
Brown et al. [8] and has been designated as A in Equation (2.34).

The names used for referring to the different methods of implementing the DTW algo-
rithm appeared in the paper published by Brown et al. [8] mentioned previously. Upon
inspection, it would appear that they have named these methods after the researchers
who they accredit each method to and as such the same names have been used in this
document. In addition to this note, the papers referenced by Brown et al. [8] in their
article are referenced in each method subsection.

2.3.2.1 Ellis method

This method is considered to be the simplest of methods that are discussed. It involves
populating the cost matrix by summing the difference matrix value in the given position
with the minimum value of the three previously calculated cost matrix values, the pre-
vious horizontal value, the previous vertical value, and the previous diagonal value. The
equation for this process as noted by Brown et al. [8] and Ellis [16] is shown as

M [i, j] = min

M [i− 1, j − 1]
M [i− 1, j]
M [i, j − 1]

 +D[i, j] (2.35)

and a variation on this equation used by Ogundile et al. [7] is given as

D[i, j] = min

D[i− 1, j − 1]
D[i− 1, j]
D[i, j − 1]

 + |S1i − S2j|. (2.36)

The difference in these equations is that Ogundile et al. have factored in the calculation
of the difference matrix into the calculations for the cost matrix at any given point and
additionally have labeled the cost matrix previously known as M, as D. It is presumed that
this is because there has been no difference matrix referenced and thus the designation D
is still available.
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2.3.2.2 Sakoe-Chiba method

Hiroaki Sakoe and Seibi Chiba published a paper in 1978 which detailed dynamic pro-
gramming algorithm optimization for spoken word recognition [17]. This method deviates
from the more simple Ellis method by summing multiple previous values of the difference
matrix that range further from the matrix position in question. These values are then
weighted differently and included in the minimum function [8]. This is written mathe-
matically as

M [i, j] = min

 M [i− 1, j − 1] + 2D[i, j]
M [i− 2, j − 1] + 2D[i− 1, j] +D[i, j]
M [i− 1, j − 2] + 2D[i, j − 1] +D[i, j]

 . (2.37)

2.3.2.3 Itakura method

This method used by Fumitada Itakura in 1975 in a paper that is based on the mini-
mum prediction residual principle applied to speech recognition [18] was later noted and
described by Brown et al. [8]. The variation from the Ellis method, apart from the
numerical differences in the equation as seen below, is that there is a constraint put in
place that must be observed. This constraint states that two elements cannot be selected
sequentially from the same row in the matrix.

Brown et al. [8] present the example that if M[i, j - 1] were to be the minimum value
and thus chosen then according to the constraint this would not be an option for the next
value of the cost matrix in that given row. This equation is written as

M [i, j] = min

M [i− 2, j − 1]
M [i− 1, j − 1]
M [i, j − 1]

 +D[i, j]. (2.38)

2.3.2.4 Chai-Vercoe method

In 2003 Wei Chai and Barry Vercoe implemented this method when performing structural
analysis of musical signals [19]. This was then later interpreted by Brown et al. [8] to result
in Equation (2.39) shown below. In their paper Brown et al. [8] state that this method
proved to be “extremely successful” when classifying killer whale calls in Marineland.
Equation (2.39) is written as

M [i, j] = min

 M [i− 1, j] + a
M [i, j − 1] + b

M [i− 1, j − 1] +D[i, j]

 . (2.39)

They note the variable a to be the cost of an insertion and the variable b to be a cost
of deletion. The value of b is chosen to be zero, as they state that a deletion results in a
difference of length which should not be penalized. The value of a remains an adjustable
parameter [8].
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2.3.3 Spectrogram correlation

The method outlined in the paper by David Mellinger and Christopher Clark [13] involves
converting the recorded signal into a spectrogram after which the spectrogram is cross-
correlated with what they refer to as the ”kernel”. The kernel represents the signal of
interest. The result of this cross-correlation process is a series of recognition values in the
time domain. This series represents the ”closeness” of the match between the recorded
signal and the kernel at each time increment of the spectrogram. If a value in this resultant
time series is larger than others it represents a closer match to the desired signal.

A good visual representation of this process described has been shown in a separate paper
published by David Mellinger [20] in 2004. Figure 2.5 below is an adapted and simplified
version of the one used in his paper.

Figure 2.5: Spectrogram cross-correlation

[20]

Figure 2.5 shows the recorded signal, that has been normalized previously to the re-
searcher’s standard. The desired signal represented by the kernel can be seen to be a
linear increase in signal frequency over time. The resultant series shows multiple spikes
and as such would imply multiple successful detections given that these spikes are over
the predetermined detection threshold.

To construct a kernel, Mellinger et al. [13] implement a process of measuring the time and
frequency characteristics for each sample vocalization’s sections. They describe setting
the start time of the vocalization to zero after which, the times and frequencies of each the
vocalizations section’s endpoints are measured. These measurements are then averaged
between all the samples to obtain what would be the characteristics for an ”average call”.
This is then used to create the kernel.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. LITERATURE SURVEY 16

2.3.4 Dynamic time warping and spectrogram correlation
comparison

For the proposed system in question, either detection approach would seem to be viable.
However, upon investigation, it was found that while the time domain of the short pulse
call has a distinct waveform, the spectrogram of the desired short pulse call does not have
very distinct features. The statement that the spectrogram seen below does not show
distinct features is affirmed when comparing the short pulse call spectrogram in Figure
2.6 with the spectrogram published by David Mellinger, shown in Figure 2.5.

Figure 2.6: Time domain and spectrogram of a short pulse call signal

This creates a situation where utilizing the DTW method seems more applicable to this
signal. In addition to this, as previously stated, the use of DTW algorithms to detect
Bryde’s whale short pulse calls has already been implemented and showed to be effective
by Ogundile et al. As such the DTW approach has been chosen to be implemented as
opposed to using spectrogram correlation.

2.4 Finding differences in arrival times

2.4.1 Cross-correlation

Muanke et al. [2] discuss a method of detecting signals and determining differences in
arrival times. A Hilbert envelope technique is implemented by the researchers in tandem
with a cross-correlation approach. The cross-correlation of the audio signals with one
another yielded oscillating resultant functions. As such a Hilbert envelope is applied to
the resultant functions. The Hilbert envelope of the function is defined as the magnitude
of what Muanke et al. refer to as the “analytic signal of the cross-correlation function”
[2]. The analytic signal is given the designation of S(t) and is defined by the equation,

S(t) = s(t) + jš(t). (2.40)

Where s(t) is the cross-correlation function in question and š(t) is the Hilbert transform
of said equation. The equation for performing a Hilbert transform is given as

š(t) = H{s(t)} =
1

π

∫ +∞

−∞

s(ρ)

ρ− t
dρ = h(t) ? s(t) (2.41)

where the Hilbert kernel is denoted by h(t) = −1
πt

.
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The Hilbert envelope function is given the designation E(t) and as previously stated, is
equal to the magnitude of the analytic signal. This is written as

E(t) =
√

(s(t))2 + (š(t))2. (2.42)

The result is shown visually by Muanke et al. [2]. An adaptation of the result can be
seen in Figure 2.7. This figure shows a fabricated signal that would represent the cross-
correlation between the signal from sensor 1 and the signals from the other three sensors
along with the resultant Hilbert envelopes. The researchers note that the correct time
delay can be found from the peak of the envelope, as circled in the figure, regardless of if
the peak of the envelope corresponds to the peak of the cross-correlation function.

Figure 2.7: Hilbert envelope for the cross-correlation of sensor pairs (2;1), (3;1) and (4;1)

[2]

Though it has already been stated that the cross-correlation signal used in Figure 2.7 is
fabricated, for the sake of rigor it is noted that the figure presented by the researchers
extends into the negative time-domain however the purpose of Figure 2.7 is to illustrate
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the process implemented rather than to portray meaningful data and as such, there is no
detriment to only representing data in the positive time domain.

2.4.2 GPS Time synchronisation

This process of determining the differences in arrival times involves synchronising all the
sensors’ clocks to a common time such that the timestamps are also synchronized. This
process is not incredibly difficult when working in the timing ranges greater than sub-
seconds. However timing the clocks to sub-second times is incredibly important for this
system, as it is known that a 1 second time discrepancy of sound in water causes an
approximate time discrepancy of 1.5 km.

As such the sensors need to be synchronized to within milliseconds for acceptably accurate
results. In a paper published by Li et al. [21], the authors give a general overview of the
challenges that arise in using narrow-band signals for localization. One such challenge was
identified to be the synchronization. They note that using the internet domain (Network
Time Protocol) can provide accuracy only in the millisecond range. These researchers
utilize GPS signals for synchronization. They claim that this has ”high potential to
satisfy the needs of TDOA”.

The researchers attach their units with GPS receivers that give off a satellite’s pulse per
second signal. The pulse per second signal typically has a rising edge aligned with the
GPS second and can be used to synchronize the unit clocks. The pulse per second signal
is used as an ”external reference clock” and proves long term stability. In the findings by
Li et al. [21] it is stated that if the external GPS-based clock is implemented there is no
long-term clock drift between devices.

2.4.3 Cross-correlation and GPS time synchronisation
comparison

Though both methods of finding differences in arrival times have their advantages, there
appears to be an inherent problem with implementing cross-correlations between the
signals in the system. This being that the sensors are not designed to have the ability
to continuously transmit the signal information to a common machine where the cross-
correlation of the signals can be performed.

One may argue situations in which signal information at each sensor can be transmitted
continuously. As such the user unit on the research vessel would collect live signal data
and perform the calculations locally. However, the problem with this argument is that
the signals from each sensor would presumably interfere with one another if transmitted
simultaneously. To prevent this interference it would make more sense to collect data and
stagger the transition times of each sensor.

This dilemma can be overcome by allowing the sensors to independently detect signals
locally and transmit accurate timestamps. Through the use of GPS time synchronization,
the independent clocks can be synchronized to within milliseconds. The difference in these
timestamps would intuitively, with an ideal detection system, represent the differences in
arrival times. The detection system is of course not ideal, though there are many non-
idealities that need to be overcome already present in the system according to its nature.
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2.5 Conclusion

In conclusion, it was determined that moving forward with the development of the system
that TDOA would be implemented over DOAE. Additionally, DTW and GPS time syn-
chronization would both be implemented over their counterparts. The principles behind
these chosen topics are discussed in depth in the following chapter.

When operating at sea the advantages of TDOA over DOAE become apparent. A DOAE
system would allow for a reference line at which the whale would be located. However this
line is orientated at the constantly moving sensors and when operating on a constantly
moving sea vessel the ambiguity of simply having a direction, that is not referenced to the
research vessel location, cannot compare to having a point of reference for the location of
the whale.

DTW has been shown to be effective in the detection of Bryde’s whale short pulse calls,
as discussed previously. In addition to this, a GPS time synchronized system would prove
to be effective in that the sensors already make use of GPS devices for tracking purposes.
The time synchronization method also allows for the sensors to do local processing thus
there would be no need for the live streaming for sensor data to be processed at the
user-unit. The user-unit would only require the transmission of data at designated time
periods.
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Chapter 3

System overview and theoretical
background

3.1 Introduction

This chapter serves the purpose of discussing in depth the principles of the methods
that have been chosen to be implemented, as well as disusing the design of the system
conceptually.

As stated in the previous chapter TDOA is implemented as the localization system. DTW
is implemented in the audio signal detector. GPS time synchronization is used to syn-
chronize the system clocks of the units and as such the units will yield synchronized
timestamps for instances of detection.

In addition to these methods described in the previous chapter, GPS modules are used for
the tracking of the units and LoRa is implemented as a communication system between
the sensors and the user-unit.

3.2 System design overview

The system for calculating the Bryde’s whale position as a whole will comprise of many
subsystems. Some of these systems work in unison while others are separate, however
they all yield sets of information or perform functions which are required in order for the
overall system to function.

The overall system design resembles the diagrams seen in Figure 3.1 and Figure 3.2. These
diagrams show the many subsystems implemented and how these subsystems interact with
one another. The overall system has been separated into two diagrams, this is because
the system consists of multiple sensors as seen in Figure 3.1 and a single user unit as seen
in Figure 3.2. They have separate functions and thus warrant separate diagrams. It is
noted that there are three sensors implemented into the system design in order for the
time difference of arrival equation variables to be satisfied however Figure 3.1 only shows
one of these sensors as they are designed to be identical.

20
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Figure 3.1: Diagram of the sensor system

Figure 3.2: Diagram of the user-unit system

3.3 The time difference of arrival localization

process

The majority of the information covered in this section and the subsequent subsections
comes from a handout given to the students of New Mexico Tech for a module in 2008
[22]. This document proved to be extremely valuable for the process of understanding
TDOA as it covers many of the theoretical aspects as well as MATLAB exercises for
understanding the implementation of the mathematical concepts.

3.3.1 Equations of motion

A system that measures the time of arrival of a signal at different positions in space can
be used to accurately calculate the signal’s location, or the location of origin of the signal,
in two or three-dimensional space. A system such as this makes use of time of arrival
location principles, known as a TOA system or alternatively a TDOA system depending
on what approach has been taken.

The core principle utilized in TOA systems and by extension, TDOA systems, is fairly
simple in essence. It can be seen in Equation (3.1). This is known to be a simple equation
of motion that most first see in secondary schooling,

d = v.t. (3.1)
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However one must consider the equation at multiple instances. Thus it would be more
accurate to express Equation (3.1) as Equation (3.2) as seen below. Where t1 and d1 are
the time and position at one instance and t2 and d2 are the time and position at another
instance, respectively. Equation (3.2) is written as,

(d1 − d2) = v.(t1 − t2). (3.2)

If one were to calculate the distance between the positions at which the target was ob-
served at instance 1 and 2, one would find that the distance can be calculated by finding
the Cartesian points in space of said target at both instances and then applying the
Pythagorean theorem. This further manipulates the equation to form√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 = v.(t1 − t2) (3.3)

for three-dimensional space and√
(x1 − x2)2 + (y1 − y2)2 = v.(t1 − t2) (3.4)

for two-dimensional space.

It is by using Equation (3.2) that has further been expressed Equation (3.3) and Equation
(3.4) that allows one to approach the process of constructing a TDOA system.

It is noted for the purposes of this thesis that the target examined emits an audio signal.
The velocity of sound is known for different mediums. In addition to this known infor-
mation, the x and y coordinates of the sensor, which is declared as the second instance of
observation for the sound wave are also known. This in turn means that when applying
Equation (3.4) that there are three unknowns. These being the x and y coordinates of
the origin of the audio signal as well as the time taken for the signal to reach the second
instance of observation.

In order to solve these three unknowns, three different equations are needed, and there-
fore in order to determine the origin of the audio signal three measuring stations/sensors
are needed. One can make use of graphical representations in order to show the possible
positions for the origin of the audio signal given the known and unknown values present.
According to the setting up of mathematical formulas which coincide with already estab-
lished equations that are explored in the following section, knowing the differences in the
arrival times or more specifically the difference in distances between an unknown point
and two measuring points of known location constrain the unknown point to lie on a
hyperbolic curve constructed using the known values. It is because of this that in order
to develop the TDOA (time difference of arrival) system one must first have a working
understanding of hyperbola theory.
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3.3.2 Hyperbola theory

Figure 3.3: Layout and points of importance for a hyperbola

[22]

Hyperbolas have the property that the difference between the distances from each focus
point to any point upon the hyperbola is constant. This property can be written as a
mathematical function,

|d1 − d2| = 2a (3.5)

and can be related back to the points seen in Figure 3.3 above.

One implements the use of an absolute value because the difference in the distances may
be negative and the absolute value would rectify this. It can be seen in Figure 3.3 that
for two focus points there are also two hyperbolas that satisfy the hyperbolic equation.
This second valid hyperbola appears according to the hyperbolic equation, as the squared
y variable results in a positive and negative set of y solutions. The hyperbolic equation
is written as

y2/a2 − x2/b2 = 1. (3.6)

The focus points of the hyperbola can be seen in Figure 3.3 to be at the points [0;d] and
[0;-d]. Having established this, it should also be noted the sum of the inverses of the x
and y coefficients squared is equal to half the distance between the focus points squared,
which is represented by d squared. Thus if one knows the location of the focus points,
one would be able to work towards the a and b values. This becomes an important step
when applying hyperbola theory to TDOA systems. This is written mathematically as,

a2 + b2 = d2. (3.7)
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3.3.3 Implementing hyperbola theory into a TDOA system

When implementing the hyperbola equations into the TDOA algorithm it is assumed
that the time at which the signal reaches the sensor and the sensor’s position are both
known. When practically implementing the hyperbola theory, the hyperbola focus points
represent the sensors’ positions. The different time values such as t1 and t2 represent the
time at which sensor 1 and sensor 2 record detecting the signal.

In this implementation of the t1 and t2 values, the individual time values themselves are of
less importance for constructing the hyperbolas than the difference between them. This
invariably means that the time at which the signal is transmitted versus when it arrives at
each station/sensor is of less importance than the difference in time of detection between
t1 and t2 for the process of constructing the hyperbolas. Using Equation (3.2), which
makes use of the previously discussed difference in times of arrival of t1 and t2, one is able
to determine the difference between d1 and d2 by multiplying the t1 and t2 values by the
velocity of the signal. In this case, the velocity of the signal would be the speed of sound
in water which is approximately 1498 m/s.

The fact that d1 and d2 are known then means that Equation (3.5) allows for the solving
of the a variable. In addition to this, the d variable needs not to be solved as previously
stated the position of the stations is known and thus the distance between them is also
known. Therefore Equation (3.7) would then be able to yield a value for b and thus the
required hyperbolic equation is able to be plotted as all the required variables are known.

Figure 3.4 shows hyperbolas that have been plotted using this information and the process
described above as well as fictitious required values. The source of the signal in Figure
3.4 is known to potentially lie at any point on these hyperbolas that have been created.

Figure 3.4: Potential positions of signal origin laying on 2 hyperbolas

[22]

While having already vastly narrowed down the number of potential positions for the
origin of the signal, this process is expanded upon by involving another sensor. This
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creates new focus point combinations. The combinations are S1S2, S2S3, and S1S3,
where the number following the S denotes the sensor’s number.

It is the points where these hyperbolas intersect that result in the calculated position of
the signal source. These previously mentioned combinations result in 6 total hyperbolas,
as per Figure 3.3 each set of focus points result in 2 hyperbolas. These additional hyper-
bolas may also intersect, creating another calculated position of the signal, at this point
additional information can be implemented to eliminate or limit ambiguity. By using the
detection times themselves one can determine the proximity of the signal source to each
sensor. Meaning that if sensor A has an earlier timestamp than sensor B, the source of
the signal must in turn be closer to sensor A. This information can be used to eliminate
position ambiguity and select the correct hyperbola from each set.

An example of the previously explained situations can be seen in the figures that follow.
In Figure 3.5 the location of the signal source is at the coordinate (8,8) and in Figure
3.6 the location of the signal source is at the coordinate (-5,-5). Red lines denote the
hyperbolas that are produced using positive y values and blue lines denote hyperbolas
that are produced using negative y values, as according to the hyperbola equation y is
squared it is known that y2 = (y)2 or (−y)2.

It can be seen in both figures that there are originally 2 possible positions calculated.
Though when implementing the difference in timestamps to determine the proximity of
the sound source to the sensors and eliminate hyperbolas it can be seen that the ambiguity
has been eliminated in both instances.

Figure 3.5: Basic TDOA localization vs TDOA localization with eliminated ambiguity for a signal
source located at (8;8)
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Figure 3.6: Basic TDOA localization vs TDOA localization with eliminated ambiguity for a signal
source located at (-5;-5)

3.3.4 TDOA error analysis

In section 3.3.3 the calculations for the location of origin for the signal are in an ideal
system. However, when implementing TDOA practically, small errors in various variables
interfere with the precision of the location calculations. GPS devices are only guaranteed
to give accurate positions within multiple meters. It is a culmination of possible errors
be it; inaccurate GPS coordinates, variance in system processing times, or variance in
data collection speeds that lead to a culminated error in arrival time or more specifically,
detection time. This error in arrival time possibly present in each of the sensors mathe-
matically leads to an error in location calculation. In this section, the effects of arrival
time errors are analyzed by intentionally introducing normally distributed errors to the
arrival time variables.

The probability distribution for these normally distributed time errors is portrayed as

f(x) =
h√
π
e−h

2(x−m)2 . (3.8)

This equation can be expanded upon by introducing

x̄ =

∫ ∞
−∞

xf(x)dx (3.9)

as the mean of a normal distribution function, with

σ2 =

∫ ∞
−∞

(x− x̄)2f(x)dx (3.10)

and

σ =
1√
2h

(3.11)

as the variance of the function. By implementing these equations, Equation (3.8) is now
presented as

f(x) =
1√
2πσ

e−(x−x̄)2/2σ2

. (3.12)
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The graph for the Gaussian probability distribution that has been described mathemati-
cally in Equation (3.12) is shown as Figure 3.7. For this figure a mean of 5 and a variance
of 1 is chosen.

Figure 3.7: Gaussian probability distribution

[22]

It is by applying these normally distributed errors into the calculations that one can
start to observe the warping of the previously ideal hyperbolas. Figure 3.8 shows the
same scenario as Figure 3.5. However there have been various errors introduced through
multiple iterations. These errors are presented by multiple different variances introduced
to the normal distribution equation. The variances range from 0.01 to 0.2 in steps of 0.02.

Figure 3.8: TDOA localization for a signal source located at (8;8) with introduced errors

[22]

It can be seen from Figure 3.8 that the system has lost a great deal of accuracy however
the overall general position managed to stay true. After this analysis has been performed
one may be more inclined to find desired locations graphically rather than mathematically
as a person can still see where the curves intersect to some accuracy however the lines
may not actually intersect at the same location because of the margin of error.
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Error analysis is performed further in Chapter 5 with genuine data when testing the
system. Though the values and results in this section are still fictitious, they serve the
purpose of introducing the concept of timing errors introduced to the system and how
they may be approached.

3.4 The Dynamic time warping detection algorithm

The dynamic time warping algorithm has been referenced in many research papers since
its inception, ranging from audio analysis to medical research. As mentioned in Chapter
2, it has noticeably been implemented by Ogundile et al. in a paper published in 2020 [7].
These researchers made use of the algorithm to detect Bryde’s whale short pulse calls.

The DTW algorithm is implemented to find the best alignment of two independent se-
quences and thus is used in determining the similarity between the sequences. When
DTW distance is compared to something such as Euclidean distance the usefulness of the
algorithm becomes apparent [23][15].

In Chapter 2 it was noted that there are multiple methods for implementing the DTW
and calculating the cost matrix. It is noted here that the Ellis method is followed for this
thesis. In addition to this, it is noted that the DTW equation discussed further follows the
format as it was written in the Ogundile et al. paper [7]. This is seen as Equation (2.36)
and Equation (3.13) as opposed to Equation (2.35). Another choice made for this thesis
is that the final “dissimilarity” is not the final value in the cost matrix normalized, it is
just the final value without the normalization [8]. When developing the algorithm which
is discussed in Chapter 4 it is noted that the DTW is performed on 1000 sample frames
and thus all DTW matrix lengths are the same resulting in no need for normalization.
As such it has been omitted from the theory that follows.

3.4.1 The Dynamic time warping process

When comparing the two time sequences using DTW the first step of the process is to
receive all the points of information that will be used as input data for the algorithm.
The number of observations in two time sequences need not be the same and the number
of points is only limited by computational power. The two time sequences, dubbed time
sequence 1 and time sequence 2, are used to populate a 2-dimensional matrix, this matrix
being of size (x,y) where x is the number of observations in time sequence 1 and y is the
number of observations in time sequence 2.

The value at each point in the 2-dimensional matrix is given by

D[i, j] = min

D[i− 1, j − 1]
D[i− 1, j]
D[i, j − 1].

 + |S1i − S2j|. (3.13)

Where D represents the value at a specified position in the matrix. S1 and S2 represent
the sequence 1 and sequence 2 observation values at specified points, respectively [15][23].

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. SYSTEM OVERVIEW AND THEORETICAL BACKGROUND 29

3.4.2 Dynamic time warping illustration

3.4.2.1 Simple Illustration of performing the DTW algorithm on same
signal shifted in the time domain

For the sake of simplicity, a non-complex triangular waveform with an amplitude of three
units has been selected for this example. The example sequence can be seen below in
Figure 3.9, it represents the sampled values of the triangular waveform.

Figure 3.9: Example sequence

Figure 3.10: Example sequence, delayed by 2 samples

This sequence seen in Figure 3.9 can be delayed by 2 sample points, as seen in Figure
3.10, and then can be analyzed to determine the similarity between the two signals using
DTW. If one were to examine these two sequences, using common sense one may be able
to determine that they are the same triangular waveform that has been shifted. However
if one applied the use of standard Euclidean distances to determine the similarity of the
signals, the result would be that they are not similar at all, let alone the same signal that
has been delayed in one instance. This can be seen in Figure 3.11.

Figure 3.11: Euclidean matched sequences
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One can find the differences between the sequences’ values over all the points that have
been matched and sum these differences to determine the similarity of the sequences. If
one were to do this using Euclidean distances they would conclude that the sequences
have a total difference of 10 units. This implies that the sequences being compared are
not considered to be similar at all, however, one can see visually that this is not true. If
the same process of subtracting the matched values from one another and then adding the
differences is applied to the DTW matching of the sequences, it can be seen that because
the total difference is 0 that the sequences are not only similar but represent the same
signal that has been shifted in the time domain.

Figure 3.12: DTW matched sequences

To determine which observations of each sequence are matched in the DTW algorithm, one
needs to make use of a 2-dimensional matrix. This matrix is populated by implementing
Equation (3.13), as seen previously in section 3.4.1. The matrix generated by this process
for these example sequences can be seen in Figure 3.13 below.

Figure 3.13: 2 dimensional DTW matrix populated using equation 1

From this matrix, the matched observations can then be determined by finding a path
from D(10,10) to D(0,0). This path is determined by starting at the final instance in
the matrix then proceeding to find the minimum of the values for the instances directly
previous to the current instance and then setting this minimum value as the new current
instance. This process is repeated until the initial instance is reached. A path for this
matrix shown in Figure 3.13 can be seen in Figure 3.14 [15].
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Figure 3.14: Path through the 2 dimensional DTW matrix

The selected path is now known and can be used to visually match observations in the
sequences as seen in Figure 3.12. However it should be known that this visual matching as
seen in Figure 3.12 is only used as a visual representation of the data stored in the matrix
and while the matrix remains incredibly important, for this thesis the visual representation
is shown only to illustrate the DTW process. While also true that the matrix as a whole
is important for many applications of the DTW algorithm, for the purposes of this thesis
only the final value, which for this example is D(10,10), is taken into account when
determining if signals are similar. This final value shows the overall similarity as seen
illustrated previously.

3.4.2.2 More complex Illustration comparing the DTW algorithm output of
multiple sequences to determine comparative similarity

In the previous illustration, it was seen that if a signal is shifted in the time domain and
does not lose any of its information then the DTW of that signal and its time-shifted
version would show a difference of 0, meaning that they are identical signals. However,
this alone is not of much use for identifying signals by analyzing them with the DTW
algorithm. To do this, the system needs to be calibrated with template signals.

The logic that follows is that if two signals can be seen to be different but are still known
to be from the same source, then if a signal from an unknown source is more similar to
those signals from the known source than they are to each other, the unknown signal
must too be from the same source. This principle can be illustrated below using signals
of varying amplitude.

Figure 3.15: Sequences representing sampled signals of varying amplitudes
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It can be seen above that the sequences that represent the sampled signals 1,2 and 3 all
have the same waveform with the only difference being a variation in amplitude between
the sampled signals. The sequences are all aligned with one another as it has already
been shown previously that signals that have been shifted in time are still identical to
their previous version, under the condition that no information has been lost.

To reemphasize what has previously been stated, if signal 1 and signal 3 are both known
to be from the same source then using the DTW algorithm to determine the similarity
between sequences it can be logically assumed that signal 2 is from the same source if it
is more similar to one or more known source signals than the other known source signal
is.

Figure 3.16: DTW matrix of signal 1 and signal 3 amplitudes

If one were to perform the DTW algorithm on signal 1 and signal 3 to determine their
similarity, one can see from Figure 3.16 representing the 2 dimensional DTW matrix above
that they have a total DTW difference of 19. This value can now be compared to the
DTW matrices of signal 1 and signal 2, and signal 2 and signal 3, to see if the similarity
of these signals is less or greater than 19.

Figure 3.17: DTW matrix of signal 3 and signal 2 amplitudes
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Figure 3.18: DTW matrix of signal 1 and signal 2 amplitudes

It can be seen from the matrices above that the similarity of signals 1 and 2, and signals
2 and 3 is 10 in both cases. This would imply that signal 1 is more similar to signal 2
than it is to signal 3 and signal 3 is also more similar to signal 2 than it is to signal 1.
From this information, it can be assumed the signal 2 is also from the same source as
the other signals. This approach to identifying signals based on calibration with known
signals forms the basis for the detection algorithm constructed and implemented in this
thesis. More on the implementation of this detector can be found in Chapter 4.

3.5 LoRa technology

LoRa (Long Range) is known as a low-power wide-area network (LPWAN) technology.
This technology allows for wide-area connectivity up to tens of kilometers for low data
rates and low power consumption. LoRa usually uses a band of 125 kHz or more to
broadcast a signal. This wideband is beneficial as it allows for more resistance to channel
noise, Doppler effects, and fading [24].

LoRa technology is based on chirp spread spectrum modulation (CSS). This is a spread
spectrum form of modulation that uses frequency modulated chirp pulses to encode the
information being transmitted. The spread spectrum modulation technique involves vary-
ing a carrier signal in the frequency domain. A chirp signal is a signal that has a frequency
increase, known as an up-chirp, or a frequency decrease, known as a down-chirp [25]. In
Figure 3.19 one can see a visual representation of an up-chirp signal.
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Figure 3.19: Up-chirp signal in the frequency domain

[25]

It is seen that the frequency of the signal increases from the lowest point to the highest
point and then returns to the lowest point repeatedly. This is reversed for down-chirp
signals. The chirp signals are used as the carrier signals for the message being transmitted.
This creates a transmitted signal that is resistant to multipath fading and Doppler shifts
[24].

3.5.1 The code rate of LoRa messages

LoRa technology makes use of forward error correction for increased reliability in the
receiver, the amount of forward error correction is determined by the code rate employed.
The code rate can vary between 0 and 4. Where a code rate of 0 means that forward error
correction has not been utilized. It is logically determined that if an encoder generates n
output bits and a value of k bits are known to represent useful information then (n-k) bits
are determined as ”redundant bits”. However these ”redundant bits” allow for the receiver
to find and correct errors in the sent message [24]. While beneficial in this aspect these
bits also make the message data rates less effective. Thus as the code rate and therefore
reliability increases the effectiveness/rapidity of the message data rate decreases.

3.5.2 The spreading factor of LoRa messages

The spreading factor (SF) used in LoRa messages can range between values of 4 and 7.
Data rate and spreading factors are considered to be inversely proportional. The reason
for using a higher spreading factor, thus lowering the data rate, is that higher spreading
factors allow for an increase in the range for transmission [24].

When sending a symbol, the spreading factor represents the number of bits in the symbol
that are encoded. A simple example is to say that the number 95 can be written in binary
as ’1011111’. This data is the called symbol. The spreading factor is the number of bits
required to write the binary of the symbol. Thus in this example, the spreading factor
would be 7. It is known for binary logic that an unknown symbol represented by SF bits
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could represent one of 2SF possible values. Thus the symbol in this example could have
128 possible values, ranging from 0 to 127 if it is comprised of 7 bits [25].

To transmit the symbol its value is encoded onto an up-chirp signal. The up-chirp signal
is divided into 2SF ’chips’. It is now established for this simplified explanation that the
symbol has a value of 95, there are 7 bits and 128 chips. The way that these chips are
ordered represents the symbol value [25]. The chip orientation for the symbol value, as
well as other possible symbol values, can be seen in Figure 3.20. It is important to note
that while the reality is far more complex, this simplified example is put in place to
illustrate the spreading factor concept.

Figure 3.20: Example chip orientation representing a value

[25]

3.5.3 The packet structure of a LoRa message

The packet structure can be seen in Figure 3.21 below. It can be seen from Figure 3.21
that there are 4 main fields that the packet is separated into. These are; the preamble
field, the header field, the payload field, and the cyclic redundancy check field which is
optional [24].

Figure 3.21: LoRa packet structure

[24]

According to Noreen et al. [24] the preamble field is used to synchronize the receiver with
the incoming data flow. The header field’s purpose is determined by one of two available
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operation modes. In the first mode, the number of bytes in the header field shows the
forward error correction code rate, the payload length, and also whether there is a cyclic
redundancy check present. In the second mode, it is specified that both code rate and
payload are fixed. This mode excludes the header field and thus is transmitted faster.

Additionally, Noreen et al. [24] state that the payload field can be up to 255 bytes in
length and is broken up into 3 further fields. The media access control (MAC) header
field defines the frame’s type, protocol version, and direction. The MAC payload field
contains the data being sent. The message integrity code (MIC) field contains the digital
signature of the payload. The cyclic redundancy check (CRC) field, which is noted to be
optional, is used to protect the payload from errors. The header field also contains its
own cyclic redundancy check (CRC) section, this allows the receiver to discard a packet
with an invalid header field.

3.6 GPS functional principles

GPS (Global Positioning System) technology falls under the category of what is known as
GNSS (Global Navigation Satellite System) technology. It was developed by the Depart-
ment of Defense in the United States of America and is now readily available for civilian
use. GPS technology is designed and implemented such that at any point in the world,
at any given moment a GPS module has a direct line of sight with a minimum of four
GPS satellites in orbit around the Earth [26]. The combination of the data from these
multiple satellites is what allows one to locate their position. Many principles govern the
functionality of GPS technology, these are to be separately discussed in the subsections
that follow.

3.6.1 Trilateration

To calculate unknown positions of objects one uses the distance between objects. For the
sake of simplicity, the concepts of trilateration can be explained in two dimensions and
then expanded further into 3 dimensions. When measuring range, or distance from an
object to another potential object in two-dimensional space one would work with circular
distances, while one of the objects resides in the center of the circle [26]. An example
to illustrate the meaning of this statement is if object A and object B are two units of
distance apart, and the location of object A is known but the location of object B is
unknown. It can be seen in Figure 3.22 that object B can potentially be at any point on
the circle with object A at the center and a radius of two units. Note: for GPS “objects”
of known location would be GPS satellites and object B would be a GPS receiver.
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Figure 3.22: The potential position of object B in relation to object A

If this is then expanded upon, while remaining in the two-dimensional plane if one were
to know the location of a third object (object C) as well as its distance from object
B which is three units of distance for this example, one could produce another circle
which object B would lay on. Thus as illustrated Figure 3.23, object B now has potential
positions at the instances where the circles intersect one another and thus the possible
locations of the object have decreased in number. This process can then be iterated upon
with known positions of objects and distances between objects until only one potential
position remains and thus the position of the object is found.

Figure 3.23: The potential position of object B in relation to object A and C

This process of locating an unknown position of an object can then be elevated to three-
dimensional space. This is accomplished by making use of spheres rather than circles and
the points that once represented possible locations of the object are now three-dimensional
regions. These regions, like the two-dimensional scenario, become more accurate with
more known object locations and distances.

Figure 3.24: Example of GPS position calculation in 3-dimensional space

[26]
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Figure 3.24 is a simplified version of a figure from a paper published by Saffet Vatansever
and Ismail Butun [26]. It shows the explanation for locating an object that is being made
for three-dimensional spaces. It is shown in Figure 3.24 that with the use of three objects
of known location, which are the GPS satellites, as denoted by the black points, one can
determine two possible locations for the object of unknown location which is the GPS
receiver, denoted by the yellow points. In this instance, it is noted that the closest of
these possible points to the earth’s surface is determined to be the position of the object,
though utilizing a fourth satellite at the least is required for determining a more accurate
location of the object.

3.6.2 Implementing cross-correlation to identify GPS satellites

The process of implementing cross-correlation to identify GPS satellites is discussed by
Vatansever et al. [26]. It is important to discuss that satellites used for GPS each create
a unique pseudo-random code which is 1023 bits in length. An identical code is created
by GPS receiver units for each GPS satellite. The generated codes are pseudo-random to
ensure that the cross-correlation between two different codes is extremely low.

As previously stated, a GPS receiver unit has the codes of all GPS satellites. Thus by
implementing cross-correlation between the known codes and the codes being received the
receiver can determine which satellites it is currently receiving information from, as the
matching codes will yield a peak cross-correlation coefficient.

3.6.3 Calculating the position of the receiver

As explained in section 3.6.1 the location of the receiver is determined by using many
variables from multiple satellites. It was seen from the process undertaken that to locate
the object of unknown position one would need to know the satellites’ positions as well
as their distances from the receiver.

These two variables for each satellite, being the distance to the receiver and satellite
position, are determined by information transmitted from the satellite to the receiver.
The satellite transmits ranging code and navigation data. The ranging code allows for
the satellite to be identified by the receiver. Additionally, it allows the receiver to measure
the difference in the send-time and arrival-time of the signal [26]. This allows the receiver
to calculate its range from the satellite. This range can be determined by applying the
equation,

distance = (velocity)(time)

d = (299, 79106m/s)(t1 − t2). (3.14)

Where the distance is determined by multiplying the speed of light by the difference in
time of when the message was sent and when it was received.

It is noted that this is an extremely simplified explanation for position calculation via
GPS. Many advanced processes are implemented to accurately calculate the positions of
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GPS receivers. Though for this thesis and the sake of brevity, in-depth explanations into
these processes have been omitted, as their concepts are not necessary for the development
of the system.

3.7 Conclusion

The principles of the methods implemented in the system have been discussed. As de-
scribed in this Chapter, LoRa and GPS technology have been implemented to track and
communicate from the senors. This technology requires specific hardware which must be
integrated with the physical system. This hardware, as well as the software required to
make use of it, is discussed in Chapter 4.

Additionally, as described in this chapter TDOA is implemented to locate the signal
source and DTW is implemented in the detector. The DTW algorithm implemented
in the signal detector relies on a variation of the principles explained previously, this
variation is elaborated on in Chapter 4 when discussing the functionality of the detector
algorithm.

As seen when discussing the TDOA algorithm, graphical representations of the TDOA
data give much context and meaning to the results of the TDOA data. As such a screen
is implemented in the user-unit of the system, to present the data in a meaningful way
that can be understood easily.
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Chapter 4

Practical implementation of
theoretical principles

4.1 Introduction

Having discussed the theoretical background of the methods that are implemented in the
system, the processes of implementing these theoretical principles are now discussed in
this chapter.

There is a substantial difference between understanding theoretical principles and imple-
menting the principles into methods such that it function adequately. There are many
physical limitations presented with regards to processing speeds as well as data manage-
ment that are dealt with.

This chapter discusses the hardware and software implemented into the system and how
they interact with one another. Additionally, there are discussions of how the code has
been written as to create the most efficient and accurate outcomes while still dealing with
non-idealities and limitations, specifically with regards to the detection algorithm.

Discussed in this chapter is the implementation of the TDOA localization algorithm and
how it differs from the theoretical implementation shown in Chapter 3. Described is
the process of how the data is presented to and displayed by the program. In addition
to this the processes of implementing LoRa communication, GPS tracking, and time
synchronization are described in their relevant subsection.

4.2 System hardware

4.2.1 Raspberry Pi

In this thesis, various models of Raspberry Pi units have been used. This is not for
any particular purpose or function but rather because of the availability of models. For
this section which discusses the Raspberry Pi and for the sake of brevity specifically the
Raspberry Pi model 3 B is referred to, while the actual models implemented do vary from
this model.

The Raspberry Pi is a commonly known single-board computer that functions similarly
to a desktop computer. Its small size and various features make it ideal for projects that

40
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require internet connections, the simple combination of various hardware components, or
running complex calculations.

According to the Raspberry Pi’s documentation [27], the Raspberry Pi contains a Quad-
Core Processor that runs at a speed of 1.2GHz, 1 GB of RAM, an onboard WiFi chip,
four USB ports, a Micro SD port which usually contains an SD card with the operating
system loaded, a full-sized HDMI port, a Micro USB power connector, a DSI display port,
40 GPIO pins and much more hardware that has not been used for the implementation
and developing of this thesis project.

The GPIO pins of the Raspberry Pi are of great importance for the implementation of
this project. Through these pins, the rest of the hardware can communicate with the
Raspberry Pi, except the Zoom U22 which communicates through the USB port. The
Raspberry Pi allows for communication via SPI and UART technologies which are used
for the LoRa and GPS units respectively. A diagram detailing the layout of the GPIO
pins can be seen in Figure 4.1.

Figure 4.1: Raspberry Pi GPIO pin layout

4.2.2 Zoom U22

According to the Zoomcorp website [28], the Zoom U22 is stated to be is a high-quality
mobile audio interface that is capable of recording at resolutions up to 24-bits at a sam-
pling rate of 96 kHz. The device is powered through the Raspberry Pi USB port and
functions as an analog to digital converter for the system. The device allows for 48V of
phantom power which is utilized by the hydrophone.

It is apparent from the documentation that the Zoom U22 has been designed to function
mainly as an audio interface which allows musicians to record music played to their
computers. However, the device also happens to function as an adequate ADC for the
system that functions at a suitable sampling rate as well as supplying the hydrophone
with phantom power.

A drawback to using the Zoom U22 as an audio interface is the size of the device. The
device is the largest single component used in the system. Its size had to be accounted for
when choosing dimensions for the sensor outer casing. However, because of the device’s
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clear benefits such as sampling rate, USB capabilities, bit resolution, and the ability to
supply phantom power, the size of the device can be justified.

4.2.3 Aquarian audio H2a hydrophone

The H2a hydrophone user’s guide [29] states that it has been designed to be a cheaper
and more user-friendly alternative to military and lab-grade hydrophones. It has been
stated by the manufacturer that the hydrophone is capable of picking up audio signals
which range between frequencies of below 20Hz and over 100kHz. Further specifications
are listed in Figure 4.2.

Sensitivity -180dB re: 1V/µPa
Useful range 10 Hz to 100kHz

Polar Response Omnidirectional
Operating depth <80 meters

Output impedance 2 kΩ
Power 0.3 mA

Figure 4.2: H2a hydrophone specifications

[29]

The output impedance listed above is the typical output impedance. The output impedance
is stated to be set in part by the bias current supplied by the Zoom U22 [29]. In addition
to this output impedance, there is a cable impedance present which varies depending on
the length of the cable. These impedances limit the high-frequency performance of the
hydrophone.

4.2.4 SX1278 LoRa-02 unit

The LoRa hardware that is implemented for the communication system is a model SX1278
LoRa-02 unit. The pin descriptions of the PCB board connected to the SX1278 component
is shown in Table 4.1. The component is noted to operate at a supply voltage of 3.3V,
with an operating frequency of 433 MHz, and communicates with the Raspberry Pi via
SPI. It is claimed that the module can operate up to a distance of 10 km [30].
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pin number pin name pin description
1 ground ground voltage
2 ground ground voltage
3 3.3V Supply voltage
4 Reset Resets the unit
5 DIO 0 Digital in/out 0
6 DIO 1 Digital in/out 1
7 DIO 2 Digital in/out 2
8 DIO 3 Digital in/out 3
9 ground ground voltage
10 DIO 4 Digital in/out 4
11 DIO 5 Digital in/out 5
12 SCK Clock Input (SPI)
13 MISO Data Out (SPI)
14 MOSI Data In (SPI)
15 NSS Chip Select (SPI)
16 ground ground voltage

Table 4.1: Pin descriptions for the PCB of the SX1278 LoRa module

[30]

The supplier of the package does not make a detailed schematic of the PCB and additional
components implemented available. However, they do supply a diagram for the LoRa PCB
pin layout. An adaptation of the PCB unit pin layout, showing the physical positions of
the pins described in Table 4.1 is shown in Figure 4.3.

Figure 4.3: LoRa PCB pin layout

[30]

4.2.5 ATGM336H GPS unit

The ATGM336H unit is noted to actually be a BDS (Beidou satellite navigation system)
unit as opposed to a GPS unit. It is referred to as a GPS unit throughout this thesis.
While technically incorrect, referring to the unit as a GPS unit rather than a BDS unit is
more commonly understood as GPS has become a common term seen in modern everyday
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life. It has been determined that technologies are incredibly similar for this thesis and as
such referring to the module as a GPS module should have little to no detriment.

The device is noted to be low power and for continuous operation requires less than 25mA
of current at 3.3V. The manufacturer states that the device is accurate to within 2.5m
[31]. This inaccuracy of course leads to errors in the TDOA algorithm which has already
previously been addressed.

The unit communicates with the Raspberry Pi through the UART pins (TX and RX).
A diagram illustrating the pin layout of the PCB that the unit itself is connected to is
given in Figure 4.4. Similarly to the LoRa unit, the ATGM336H has been placed on a
PCB and the schematic of this PCB is not known. The PCB gives connection ports of
the RX, TX, supply voltage, ground, and pulse per second (PPS).

Figure 4.4: ATGM336H PCB pin layout

[31]

4.2.6 Hardware configuration

The GPIO pin configuration for both the sensors and the receiver Raspberry Pi units are
the same. They both allow for connections to the GPS and LoRa units. The diagram for
the connections between the Raspberry Pi and these units is shown in Figure 4.5.
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Figure 4.5: GPIO configuration connections

PCBs were designed and manufactured for the connections shown in Figure 4.5. These
PCBs allow for the GPS, LoRa, and Raspberry Pi components to be mounted to one
another in a modular fashion. As such, they can be replaced if need be. The board layout
of the designed PCB is shown in Figure 4.6

Figure 4.6: Designed mountable PCB layout

In addition to the hardware illustrated in the previous figures, each sensor consists of the
Zoom U22 and hydrophone connected through a USB port, and the user-unit consists of
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a small touch screen connected to the DSI display connector. These connections are not
illustrated as they are very straightforward.

The PPS pin of the GPS unit is connected to the GPIO4 pin of the Raspberry Pi. This
is not required for tracking the unit as the collection of GPS data is performed through
the UART. Rather it serves the purpose of supplying the Raspberry Pi with a constant
precise input that can be used to increase system clock accuracy.

4.3 System Software

4.3.1 Linux

Linux is an open source operating system. The Linux kernel is the core of the operating
system. This kernel handles the communication between the user and the hardware of the
machine. Based on the fact that Linux is open source it can be modified and customized
for different platforms, in a process called porting [32]. There are several distributions
of Linux ported to the Raspberry Pi chipset. One of the distributions is called Raspbian
followed by an indicator of the Raspbian version.

Raspbian is an operating system that is based on Debian which is a Linux distribution.
It has been optimized by the developers for the Raspberry Pi hardware. It comes with
pre-compiled software and over thirty-five thousand packages [32]. The development of
the Raspbian operating system is ongoing, striving for the improvement of stability and
performance. Raspbian is a good starting point for inexperienced people as it comes with
a graphical user interface similar to mainstream operating systems.

4.3.2 Python

Python is a programming language that was created in the 1980s. It is widely used
across the world in many different fields. The language is a powerful straightforward
and generally user-friendly programming language with many libraries that allow for
easily implemented complex functions. Python has the capability to run across multiple
platforms such as Linux and Windows making the development of code across separate
machines easier [32].

Python allows the user to access information from the GPIO pins and USB ports of
the Raspberry Pi with relative ease which makes it ideal for this system’s development.
Also, the libraries for LoRa communication, accessing serial data, DTW development,
and threading were of great importance to the development of the system.

However, the Python programming language does not execute functions at the speed
at which another language such as C can. This fact led to the development of a C-
based DTW detector which is accessed by Python code to execute at satisfactory speeds.
Though the Python DTW library proved to be far too slow in execution times, it still
proved of importance to verify the accuracy of the designed C code.
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4.4 Implementation of the time difference of arrival

principles

As previously seen in Chapter 3, which noted in-depth how the time difference of arrival
principles function mathematically, a basic TDOA system was previously designed to
create the figures that were used to illustrate determining the source of a signal as well
as the error analysis. This system was created in MATLAB and has already served its
purpose of being a tool to illustrate the principles being explained and outcomes described.
It was created to be a system that functioned based on differences in distance rather than
differences in time, as this made the implementation easier. This choice also allowed for
better testing circumstances as one could input the desired signal source location and test
to see if the correct response was presented by the algorithm.

This functional code developed in MATLAB for the testing and illustration of TDOA
principles can be adjusted to function in Python such that it can continuously monitor
for input timestamps as well as continuously changing GPS coordinates and perform
TDOA calculations based on these constantly changing values.

4.4.1 Presenting the TDOA algorithm with input data

To function correctly the TDOA algorithm requires a constantly updating input of GPS
coordinates for each sensor, as well as the timestamp representing the time at which each
sensor detected the target signal. The GPS coordinates of each sensor, as well as the
timestamps of each sensor, are stored in separate text files. In addition to these six text
files, there is an additional text file which contains the GPS coordinates of the user unit
on the research vessel. This is stated to be ‘additional’ because it serves no purpose in
performing the TDOA algorithm, rather it is used to locate the sensors when they are to
be collected.

The format of the stored data in these text files must be kept constant for the correct data
to be fetched and used in calculations. The format of storing data in the GPS documents
is [unit/sensor number; sensor latitude; sensor longitude]. The sensor number is used
when receiving the sensors’ data from LoRa to sort the coordinates into the correct files
and the latitude and longitude are used as the y and x coordinates of the sensor in the
TDOA calculations. This information stored in these files is not overwritten or deleted
until done manually by the user such that the sensors’ path can be examined if need be.
The software is designed to search the files for the most recent GPS coordinates and then
accordingly updates the system.

The format of the timestamp files is slightly different in that the format simply holds an
identifier as well as the minutes and decimal seconds. The format is as such, [1/0 identifier;
timestamp minutes; timestamp seconds]. The identifier’s importance is that it allows for
the software to determine what timestamps have already been used in calculations denoted
by a 0 or what timestamps are new and have not yet been collected by the software
denoted by a 1. When calculating the difference in distances, the minutes are converted
into seconds such that one is working with only decimal seconds. This difference in times,
in seconds, is then multiplied by the speed of sound in water to result in a difference in
distances. Like the GPS files, the timestamp files hold data that needs to be manually
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deleted. Having a log of detecting times for each sensor in chronological order may prove
useful when examining and testing the efficiency of the system and as such the data will
not be overwritten, this also though in turn sets up the need for the 1/0 identifier.

It is noted here that a shortfall of this implementation is that separate instances of a
Bryde’s whale creating a short pulse call cannot be distinguished from one another. As
such a timestamp from instance A may be given to the TDOA algorithm with another
timestamp from instance B, resulting in an incorrect localization result. Implementation
to resolve this issue would be a key part of future development.

4.4.2 Functional versus theoretical TDOA implementation

In this instance, the term ‘theoretical TDOA implementation’ refers to the basic imple-
mentation of the TDOA algorithm previously referenced that was used to create figures,
perform analyses, and test for different source locations. Functional TDOA implementa-
tion refers to the more advanced implementation of TDOA that reads in actual sensor
data and is designed to be the final functional version of the TDOA algorithm used.

It has already been previously stated, though it is reiterated here, that a difference in these
implementations is that the functional algorithm works with timestamps and converting
these differences in timing to differences in distance, while the theoretical algorithm works
with known chosen distances between points. This approach for the theoretical imple-
mentation was chosen to easily change the coordinates for the origin of the fictitious signal
for the testing of the algorithm without having to convert to fictitious timing values.

When converting timing to distances there is an inherent problem in that degrees of
longitude and latitude are not equal in distance. While the theoretical algorithm works
in normal decimals of equal magnitude on the X and Y axes, one cannot simply take this
approach in a practical implementation without first converting the X (longitude) and Y
(latitude) axes to the same equal units of distance. To solve this issue, the X and Y axes
are converted from degrees into meters before the calculations begin, and then after the
calculations are finished the coordinates are converted back to degrees before the data is
displayed.

It is known that all over the world a degree of latitude distance is equal to approximately
111 km with a few decimals of variance. However, because the longitude lines converge
at the poles, depending on the latitude of one’s location on earth the distance of a degree
of longitude varies by a substantial amount. There are methods of calculating the dis-
tances of degrees in meters at various points on earth. The latitude degree value of False
Bay is approximately 34oS. This latitude results in a degree of latitude being equal to
approximately 110.9km and a degree of longitude being equal to approximately 92.4km
[33].

The Python functional TDOA interface has been designed to be self-adjusting in scale
such that the research vessel and all sensors remain on the interface at a given time. A
hyperbola from each pair of hyperbolas that have been previously discussed has been
chosen using sensor proximity to estimate the correct hyperbola in each set as per the
timestamp values. The end result is shown in Figure 4.7 with the sensors denoted by
green markers and the research vessel denoted by the blue marker.
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The correct location for the origin of the signal in Figure 4.7 was chosen to be 33.6oS; 18.9oW .
It is noted here that the optimization algorithms discussed in Chapter 2 are incredibly
useful. However, because the location is being shown to users graphically and is not found
through mathematically calculating the best single point, the optimization algorithms are
omitted from the practical implementation of the TDOA algorithm.

Figure 4.7: Python TDOA interface

4.5 Implementation of the DTW algorithm to

detect signals

The operation of the DTW algorithm as well as key examples for this thesis have already
been covered in Chapter 3. This established knowledge is required to understand the
implementation of the DTW algorithm into a detector for short pulse Bryde’s whale calls
which will be discussed in this section. As is the case with all other software developed
for the system, the detector algorithm was developed as Python code.

Figure 4.8: Flowchart of the detecting system

It can be seen in Figure 4.8 above that there is an instance of multitasking in this detector.
The system must be able to read in audio data while it determines if the previous set of
data is a short pulse Bryde’s whale call. This process of implementing these two tasks
simultaneously is elaborated on in section 4.5.3. It should also be noted that the “is the
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audio data ready?” block comes with an implication that the detecting process should be
faster than the time that it takes the system to read in 1000 samples of audio data. A
window of 1000 samples was chosen because a window of this size allows for the important
features of the signal to be contained with some, but not excessive, additional spacing.

The Zoom U22 integrated into the system samples audio signals at 96 kHz. This means
that because Hz is the unit representing samples per second, the time taken to sample
1000 points of data can be seen as,

96000 =
1000

Time
.

This is rearranged as

Time =
1000

96000
(4.1)

and as such
Time = 10.4ms.

Therefore the process of detecting whether the read-in signal is a short pulse Bryde’s
whale call, as seen after the affirmative response of the “is the audio data ready?” block
condition, should run faster than 10.4 ms such that this aspect of the system is ready to
receive the next set of audio data when it is ready and minimal data will be lost. More
information on the process of how the detector was implemented to run under 10.4 ms
can be found in section 4.5.4.

4.5.1 Calibration of the detector

4.5.1.1 Calibration signal background

It was seen in Chapter 3 that one can make assumptions on the source of a signal if it falls
within the bounds of similarity of signals that are known to come from a certain source.
Therefore if the detector is calibrated with signals that are known to be Bryde’s whale
short pulse calls then a signal of unknown origin can be determined to be from a Bryde’s
whale or not depending on how similar it is to other known Bryde’s whale signals which
are now referred to as “template signals”.

The template signals used for this thesis were acquired in False Bay by Professor D.J.J.
Versfeld on his research vessel using buoys with hydrophones and audio recorders attached.
A map of False Bay is shown in Figure 4.9. The audio recordings are believed by Professor
Versfeld to contain Bryde’s whale short pulse calls as he claims that in each instance that
the audio signal has appeared in the recordings, he had visually confirmed Bryde’s whales
in the area. In addition to this, the template signals have been taken from multiple
recording sessions.
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Figure 4.9: Google map of the False Bay ocean area

A Bryde’s whale short pulse call can be seen in Figure 4.10 below. It was seen in the
audio recordings during development that though they change in amplitude as well as
having various degrees of variation and interference that the short pulse call waveform
constantly shows as some variation of the signal seen in Figure 4.10. Variations can be
seen superimposed on one another in Figure 4 of the paper published by Ogundile et al.
[7], additionally separate calls are shown to vary in amplitude in the testing set illustrated
by Figure 5.1.

Figure 4.10: Short pulse Bryde’s whale test signal

4.5.1.2 Process of calibrating the detector

Before discussing how the calibration of the detector is implemented, it should be stated
that when the detector is establishing the ’threshold similarity’ that a signal can have and
still be classified as Bryde’s whale call, it would logically follow that the more template
signals the detector can compare the signal to, the more accuracy the detector will have,
assuming that the features of the different signals vary from one another. However, the
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fact that the system needs to run in what would appear to be real-time to a user is heavily
influenced by the number of template signals, as the signal would have to be compared
to each one of these template signals within the allotted amount of time.

Thus choosing the amount of test signal inputs to give to the detector is a process of
balancing accuracy versus operation time. It was found that giving the detector algorithm
15 template signal inputs gives appropriate accuracy as well as keeping the operation
time within the real-time limit. It is shown by Ogundile et al. [7] that when calibrating
the DTW detector for this short pulse call, that there is not a considerable difference in
detection accuracy when supplying the algorithm with between 12 and 18 template signals.
As such 15 template signals were used because the Raspberry Pi has low complexity and
as such an amount less than 18 was chosen but additionally an amount more than 12
signals chosen given for good measure.

Below in Table 4.2 are the steps taken to calibrate the detector, as these steps are listed
briefly, the explanations of the steps taken are to follow below Table 4.2. In Table 4.2, N
denotes the amount of chosen template signals, 15 in this case.

Step Description

1
Load N known signals into N arrays (array1, array2, array3, ...,
arrayN)

2 Cut array sizes down to 1000 values
3 Shift array values over 250 places
4 Load first 250 values with zeros
5 Lower signal resolution to lower array size
6 Normalize the signals

7
Perform the DTW of each array against the (N-1) others, including
itself.

8
In each case determine the similarity by selecting the final amount
in the DTW matrix as seen in Chapter 3

9

Store this value in a new 2D array where the row is the number of
the array being compared to the others and the column is the array
number that it is being compared to. (example: the DTW value of
array2 and array3 goes in row 2 column 3 )

10
Having completed the NxN array with a diagonal line of zeros across
it, find the maximum value in each column and record it in a new
array

11
This new array of size N is the bounds of similarity that a signal
must fall between to be classified as a Bryde’s whale signal

Table 4.2: Step-by-step process of calibrating the detector

In step 2 the audio signals loaded in are cut to 1000 samples each, this amount of samples
was chosen because it allowed the signal to retain an adequate amount of its information
without importing a signal which would not be so large that the important features would
be nullified by the down-sampling process. The key signal being looked for is a sudden
spike from zero that then reverberates back to zero as can be seen in Figure 4.10. Making
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use of 1000 samples also allows the detection algorithm to have more time to function, if
the time window is smaller the detection algorithm will have less time to execute.

Step 3 and 4 work in tandem with one another. The purpose of these steps is to shift the
values of signal up in the array index, loading previous index values with zeros. This can
be seen in Figure 4.11. The purpose of shifting the signal and placing zeros preceding it is
to assure that the signals detected are pulses from zero or background noise. This process
was implemented when it was found in testing that the detection algorithm kept detecting
signals that were not short pulse calls. It is believed that this was occurring because of the
position of the signal at the beginning of the 1000 sample window being analyzed. When
the previous information on the signal was no longer visible in the sample window, the
signal resembled a short pulse call waveform. However, upon investigation, it was found
that the detections were false positives. In other words depending on where the signal is
positioned in the window the lost preceding information may indicate that it is not the
desired signal and as such using this shifting method ensures that the beginning of the
signal is being searched for. It is noted here that results for the testing of shifted versus
non-shifted signals used to calibrate the detector is shown in Section 5.2.2.1. Additionally
it is stated for the sake of rigor that in the paper by Ogundile et al. [7], the authors show
the effectiveness of a DTW based detector used on Bryde’s whale short pulse calls through
confusion analysis as shown in their Tables 2 to 7.

Figure 4.11: Original and shifted test signals

The resolution of the signal is lowered to increase the speed of the detection algorithm.
This is discussed in greater detail in section 4.5.4.

Steps 8 to 11 are the core of calibrating the detector, whereas previous to these steps the
data could be seen as just being prepared for steps 8 to 11. The DTW total difference of
two signals is performed in all possible signal pair orientations to populate a 15x15 array.
This array has a diagonal zero across its center because the total difference in distance
(similarity) of a signal and itself is zero. In addition to this, the values are also mirrored
across this diagonal according to how that array has been constructed. Figure 4.12 shows
the format of how the array looks with variables substituted in for the values.

DTW of signal x and signal y is represented by D(x,y) in Figure 4.12 below.
D(x,y) = D(y,x)
D(y,y) = D(x,x) = 0
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Figure 4.12: Array that stores the DTW of the template signals

Once the array as seen in Figure 4.12 has been populated, the maximum value is stored
from each column. This is done to find the maximum difference that signals can have and
still be known to be a Bryde’s whale short pulse call. This final array is used to compare
with the DTW of the read-in signals and the template signals to determine whether a
signal is a short pulse call or not. A more in-depth illustration of this comparison process
can be found in the section that follows.

4.5.2 Reading in audio information and detecting signals

To read in the audio signals, as it has been described previously, the Zoom U-22 which
serves as the ADC is connected to the USB port of the Raspberry Pi. The data is read
using a module named PyAudio. PyAudio is a Python interface to PortAudio. PortAudio
is a C library that is famous for dealing with audio. The data is read in from the audio
stream 1000 samples at a time. Once the 1000 samples have been stored, that data is
moved to the detection algorithm and the system will immediately start to read in audio
data again. As such the collection of audio data is continuous and as one frame ends
another should begin. This method of running two processes at once is elaborated on in
section 4.5.3 and is used to minimize information loss.

When determining if a signal is a Bryde’s whale short pulse call or not, the process is
similar to the calibrating of the detector. The signal once received is lowered in resolution,
this is done to increase the speed of the DTW algorithm and it is explained in more detail
in section 4.5.4. The signal is then normalized and the DTW algorithm can then start.
The read-in signal, referred to in Figure 4.13 as S, is compared to all the 15 various
template signals using the DTW algorithm. The similarities of the read-in signal and all
the template signals are then stored in a 1-dimensional array comprising of 15 values,
which would be the same shape and size as the maximum difference matrix as described
in the last stanza of section 4.5.1.2.
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Figure 4.13: Visual illustration of the process of detection

It can be seen from the code at the bottom of Figure 4.13 that the DTW of the signal
and each template signal is compared and then if the signal is more similar to each of the
template signals, which are known to be short pulse calls, than another known template
signal, it too would logically be identified as a Bryde’s whale short pulse call. There is
however an account for variation in the signals thus the signal need only be a 80% match
to all the template signals as it was found in testing that perfect matches are not always
given for the known signals that were being tested.

4.5.3 Threading implemented in the detector

It has been stated previously that for the loss of information in the audio readings to be
at a minimum, threading has been implemented. It has been implemented such that the
detection signals and the reading of the audio data can happen ’simultaneously’.

If functions are run in different threads it means that they have different flows of execution.
It appears to the user that the two functions will be running simultaneously. However the
different threads do not run simultaneously, they only appear to [34]. This would possibly
result in the loss of some information of the read-in signal though through testing it was
found that it was not noticeable.

It is believed that PyAudio already has a form of threading built into the code as through
testing it was found that opening an audio stream allows for the user to read, display and
manipulate data in real-time. Though this is just theorized and has not been investigated
first hand. It is felt that this is not reliable enough for the detection of signals at such
short time intervals and as such further steps were taken when implementing threading
in the system.

The function for reading in audio data from the USB port and the function for executing
the detection algorithm are both run in separate threads. This means that technically the
functions may not be run simultaneously as stated above. However, the most important
part of this implementation of the threading technique is that the functions do not run
sequentially.
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Figure 4.14: Signal read in with ideally timed threading implemented

For the sake of explanation, assume that the 4 segments in Figure 4.14 separated by red
lines are all the same length of time (1 time unit). It takes 1 time unit for the data to
be read into the array and thus it reads in 1 segment at a time to be loaded into the
detection algorithm. For the sake of explanation, it is assumed that the time taken to
pass data to the detection function is zero. The detection algorithm is also designed to
be faster than 1 time unit such that it can receive that data when the data is ready to be
passed. Assume it takes half a time unit to complete the detection process.

It is seen in Figure 4.14 that because the processes are running concurrently and reading
in the audio data takes half a time period longer to complete than the detection algorithm,
with other listed ideal assumptions, there has been no loss in data between the segments
of the signal.

Now consider Figure 4.15 below where the code is run without the concept of threading.
It can be seen because the data is read in 1 segment at a time and the detection takes
half a time period to determine the outcome of the detection algorithm that there is a
substantial loss in information between the segments. It can be seen that because the
detection algorithm takes half a time unit that over the four segments a whole unit of
time segment of the signal has been cumulatively lost.

Figure 4.15: Signal read in with functions running linearly

To control the order of execution of the two functions in separate threads a flag has been
implemented and acts as the indicator of when a specific function should execute or wait.
The flowchart in Figure 4.16 gives a visual indication as to how the flag is implemented
and coordinates the function.
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Figure 4.16: Simplified flowchart of coordinating 2 threads using a flag

Through various testing with sinusoidal signals, that are omitted from this thesis, it was
found that there is an occasional delay between the loading of 1000 samples and the
detection process. This may be caused by a fail-safe flag set in place that does not allow
the passing of data if the detector happens to still be running. As such an additional step
has been taken to minimize the loss of useful information, rather than reading in 1000
samples at a time and passing between the reading and detection processes 10 000 samples
are read in at a time. These 10 000 samples are then split into 10 separate frames that
are sequentially examined. As such the loss between audio frames read in is minimized
when compared to the size of the signal being read in.

4.5.4 Increasing performance

A large obstacle to overcome when developing the detection algorithm is execution time.
As previously stated, for as little information to be lost as possible when reading in
audio data, the detector is required to run faster than the input of 1000 samples. As
per Equation (4.1), this means that the entirety of the detection process must complete
execution in less than 10.4 milliseconds.

When first developing the detection algorithm a DTW library was imported into Python
to perform the necessary DTW computations. However, it was found after trying to
calibrate the algorithm with 15 template signals, each of which consists of 1000 samples,
that the Python library simply is not fast enough.

There are multiple factors to consider when discussing both the speed and accuracy of
the detector created. These main factors are discussed in the following subsections and
more information on speed and accuracy testing and results can be found in Chapter 5.

4.5.4.1 Implementing ctypes to the Python code

It is understood that interpreted languages, like Python, do not match the performances
of compiled languages such as C. Though it is slower in execution, Python allows for the
use of many existing libraries to manage functions such as LoRa communication and the
reading of audio data for the USB port. As such a way to combine the speed of C with
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the tools available to Python was desired. To achieve this ctypes were implemented into
the Python code.

A C file for performing the DTW detector algorithm was created in its entirety. This
was then tested by comparing its results with a Python DTW library available online. It
proved to be reliable, calculating the same values as the Python library in a fraction of
the time. These testing results are shown in Chapter 5.

The C DTW file is complied into a shared object file (.so) that can be accessed by Python
code. The Python code accesses this file by making use of the .CDLL(”.so file”) function
of the ctypes library that is imported [35].

In an article [35], the author performed speed tests for various forms of the same code.
This code was written to perform the task of simply swapping values in an array of length
N. Three versions of code were compared to one another, ctypes, normal Python code,
and cython. He notes that cython improves performance compared to normal Python
code by 35-40%. However, ctypes is 33 times faster than normal Python. Figure 4.17 is
adapted from the author’s findings.

Figure 4.17: Speed comparisons for different implementations of code

[35]

4.5.4.2 Decreasing the audio signal resolution

Decreasing the resolution of the signals is done to increase performance. It can be seen in
the testing section that decreasing the resolution exponentially speeds up execution time.
This is because of the 2-dimensional DTW arrays created when performing the DTW of
2 signals. The 2 dimensional arrays have dimensions based on the length of the signal
arrays, thus the number of values in one of these arrays for the 1000 sample signals given
to the detector is 1 000 000 values.

However if one were to half the signal sizes by only recording every second sample of
the template and read-in signals then because each signal array is 500 samples in length
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the DTW matrix only has 250 000 values that must be computed as opposed to 1 000
000. The function used to lower the signal resolution is shown below in Figure 4.18. The
function reads in the signal array, designated as the variable x, and the length of the
signal array. It then loops through the original array and only loads the values that are
located at the downscale factor’s multiples into the new array that is then returned. Thus
if the factor chosen is 2, as seen below, the returned signal array will be half the size of
the original.

Figure 4.18: Function implemented for lowering signal array size

Figure 4.19: Signal received from the cutting function at various downscale factors

It is noted that another method of decreasing execution time would be to use fewer
template signals as there would be less DTW algorithms to perform and less maximum
values to be compared to when detecting the signals. Both of these methods logically
lower execution time however they too would lower the accuracy of the detector. After
testing the algorithm it was chosen to rather lower the signal resolutions than the number
of template signals used.

4.5.5 Normalizing signals

It was found when developing the detection system that the variation in signal amplitude
was causing the detector to be not adequately accurate. It was determined that there
needed to be a method implemented to standardize the signal amplitudes to improve
detection accuracy. The method implemented is commonly known as normalization, and
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when normalizing audio signals there are 2 common approaches. These approaches are
known as peak normalization and loudness normalization [36].

Both forms of normalization are discussed in this subsection, as well as illustrations for
the effect that they have on signals commonly seen in the system. Through testing
the system it was decided that loudness normalization would be implemented over peak
normalization, as the process proved to be more fitting to the updating frame design of
the detection system.

The reasons for normalizing signals may vary depending on the tasks at hand. For this
system, normalization was implemented in response to the DTW detector. It was es-
timated that the detector was detecting noise as signals based on the variation in the
template and read-in signal amplitudes. By normalizing the amplitudes of signals it is
considered that the detector would become more reliant on waveform shape to determine
detections.

4.5.5.1 Peak normalization

The process of implementing peak normalization is to find the highest sample value in the
audio samples and then apply a gain such that the peak values are at a standard level.
Figure 4.20 shows 2 signals that will be used to elaborate on the points made.

Figure 4.20: A Bryde’s whale short pulse call signal (blue) and noise signal (orange)

If it is chosen the standard maximum value should be 1 for the signal seen in Figure 4.20
then the gain with which the samples are multiplied can be calculated as

(Peak value) · gain = normalized peak = 1 [36]

thus,

gain =
1

(Peak value)
. (4.2)

Having multiplied the sampled Bryde’s whale short pulse call signal values through by the
gain the normalized signal now resembles Figure 4.21. Ideally, the desired signals would
clearly stand out from the noise however this is not the case. The system is designed to
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normalize all signals regardless of the waveform and as such the noise that has previously
been shown to be minimal when compared to the signal, is now shown in Figure 4.21 to
be significant.

Figure 4.21: Peak normalized Bryde’s whale short pulse call signal (blue) and noise signal (orange)

If peak normalization were to be applied for the peak value of each frame separately then
a signal with a peak of x in frame A would have the same normalized value as a signal
with a peak of y in frame B, where x is significantly smaller than y. Thus normalizing a
signal in a given frame using the peak in that frame would yield false results. A similar
result to this elaboration is shown in Figure 4.21 with the signal and noise.

This form of normalization was examined and implemented when developing the system
however it was soon found that peak normalization in its purest form would not meet the
requirements for the system. As previously discussed the system reads in frames of 1000
samples in size to be worked on. If the gains are calculated for each frame separately, this
sets up a dilemma.

However, the peak normalization algorithm can be adapted to fit the implementation of
the detector. By finding the largest peak experienced thus far, retaining this value, and
normalizing it with respect to it, then replacing it when a new greater peak is found one
can draw more standardized results. There are still problems with this approach though.
If one were to experience low volume noise for a significant time at the start of the process,
the loudest peak would still be low and thus the gain implemented would make this noise
appear to be signals of value until an adequate peak is found.

4.5.5.2 Loudness normalization

This form of normalization is based on the overall loudness of the audio signals as opposed
to just the peaks. To normalize in terms of loudness one would normalize to the RMS
value of the signal [36][37] by applying

signalnormalized =
signal

RMS
(4.3)
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where

RMS =

√∑N
i=1 |signal2i |

N
. (4.4)

When Equation (4.3) is translated into the digital domain to be implemented with the
samples of the signals it is written as

sn[k] =
s[k]√
s[k]·s[k]
N

. (4.5)

Figure 4.22 illustrates the loudness normalization of the separate signals seen in Figure
4.20 similarly to Figure 4.21 previously. Figure 4.22 shows that while the noise has still
become more substantial, the amplitude is lesser than the peak normalization method.

Figure 4.22: Loudness normalized Bryde’s whale short pulse call signal (blue) and noise signal (orange)

This form of normalization has been implemented into the detection system as it can be
calculated for each frame without the dilemmas that peak normalization incurs. As just
stated there is no need for a ‘cross-frame’ normalization, the likes of which were mentioned
for peak normalization. The reason for this is because the windows are normalized to
their own average once read into the detector and when calibrating the detector the same
process was undergone for the frames containing the template signals.

4.6 Implementation of GPS technology to track and

monitor sensor positions

As previously discussed, the GPS unit is connected to the Raspberry Pi via the UART
pins. To access the information in Python, the serial library is implemented which gives
one access to the data being sent to the UART pins of the Raspberry Pi. It is important
before continuing to reiterate and clarify the difference between GPS and Beidou. As
previously stated GPS is a type of GNSS. GPS technology was created by the United
States of America. Beidou serves the same purpose as GPS however it was created by
China.
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Though the term GPS is used to describe the tracking of the sensors moving forward it
is noted here that the satellites being used at any point to track the sensors’ positions
may be Beidou satellites rather than GPS satellites. This statement is present to note
the difference in technology, or lack thereof, being implemented. Though the term GPS
is used throughout this document, rather than Beidou or the more general GNSS term,
this definition has no real impact on the implementation of the tracking system.

4.6.1 NMEA Data structure

The data that is transmitted to the serial port is known as NMEA data. This stands for
National Marine Electronics Association and it is a standard data format supported by all
GPS manufacturers. The NMEA data structure is quite straightforward to interpret once
one has an understanding of the structure. The table that follows contains information
for understanding the NMEA messages.

Indicator Description
$GNGGA Time, position, and fix related data of the receiver.
$GNGLL Position, time and fix status.

$GNGSA
$GPGSA
$BDGSA

Used to represent the IDs of satellites which are used
for position fix. When both GPS and Beidou satellites
are used in position solution, a $GNGSA sentence is
used for GPS satellites and another $GNGSA sentence
is used for Beidou satellites. When only GPS satellites
are used for position fix, a single $GPGSA sentence is
output. When only Beidou satellites are used, a single
$BDGSA sentence is output.

$GPGSV
$BDGSV

Satellite information about elevation, azimuth and
CNR, $GPGSV is used for GPS satellites, while
$BDGSV is used for Beidou satellites.

$GNRMC Time, date, position, course and speed data.
$GNVTG Course and speed relative to the ground.
$GNZDA UTC, day, month and year and time zone.

Table 4.3: NMEA Indicators and their meanings

[38]

When the table above is applied to the example data in Figure 4.23 the process of un-
derstanding the NMEA data becomes more straightforward. This data in Figure 4.23
below is taken directly from the system while in development. The information of inter-
est for the system’s purpose is the information that follows the ‘$GNGGA’ indicator as
this contains the time as well as the position of the sensor. Additionally, it is shown in
the table that the message layout is ‘Time, position, and fix related data of the receiver’.
Therefore when analyzing Figure 4.23 below it is seen that the time is “13:11:15” and
the location coordinates are “ 3355.73527S; 01851.97138E” in the degrees, minutes, and
decimal minutes format.
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Figure 4.23: Real NMEA data from the serial port

4.6.2 NMEA Message processing

As previously stated the information that follows the ‘$GNGGA’ indicator is of impor-
tance to the system for tracking purposes. However, the rest of the messages can be
disregarded as they are deemed unnecessary for the development of the tracking system
and though the information is not inherently useless it is not required for the tracking
system implementation.

To implement the process of disregarding non ‘$GNGGA’ messages from the serial port,
Python code was developed. This code disregards the messages received from the serial
port that do not contain the ‘$GNGGA’ indicator. After the message received from the
serial port is confirmed to be correct, the message is passed to a separate function that
then processes the message further. After the message has been passed on from the
function that confirms the correct indicator, the process of analyzing the message and
allocating the appropriate information to the correct variables begins. The process of
sorting through the $GNGGA message is described and shown in Table 4.4 below.

Step Description
1 Store data after $GNGGA indicator

2
Split the stored data at the commas and load this split data into
an array

3 Allocate the data in the corresponding array positions to variables
4 Convert the coordinates from strings to floats
5 Convert the float values to degree decimal format

Table 4.4: Process of breaking up the ‘$GNGGA’ message

4.6.3 Presenting the GPS coordinates in OpenCPN

In order to present the data in a user-friendly method available while at sea, the GPS
coordinates of each sensor as well as that of the research boat are displayed graphically as
AIS units on OpenCPN as well as on the Python TDOA interface. The OpenCPN method
can be used as a back up to view and track the coordinates of the sensors graphically
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in the circumstance that the Python time difference of arrival interface malfunctions or
lacks a feature provided by the OpenCPN application. The Python files for interfacing
with OpenCPN are adapted from the code posted by a GitHub user [39]. In order for the
plotting of AIS points in OpenCPN to function, the coordinates of each sensor are written
to separate text files, these text files are then called on by separate code that ports the
most recent coordinates in the text files to the OpenCPN program.

In order to port the coordinates into the OpenCPN application they first need to be
translated into a format that OpenCPN can read in. The process of doing so and then
porting to the application is performed by Python code. This code is designed to fetch
the coordinates of each sensor from the appropriate text files that have been used to store
the coordinates received from LoRa communication.

There are 3 sensors in the water as well as the boat. Thus there are 4 GPS coordinates of
hardware to display in total. The information required for plotting each sensor position in
OpenCPN is the type of vessel, the Maritime Mobile Service Identity (MMSI), the status
of the vessel, the speed, the longitude, the latitude, the course, the heading, and finally a
timestamp.

As discussed previously, the information transmitted for each sensor position is the sensor
number and the longitude/latitude of the sensor. Thus the rest of the information used
to plot the coordinates in OpenCPN is not transmitted from the sensor itself but is rather
set to arbitrary default values as they are not of importance at this time. This can be
seen in the code extract seen below in Figure 4.24.

Figure 4.24: Setting the appropriate values for an AIS target

[39]

Before the data is sent to OpenCPN application the data needs to be converted into
an NMEA format and thus all the data that was disregarded from the original NMEA
messages can just be substituted with chosen fixed data because as previously stated
for these purposes it is not required. In addition to this, sending the unnecessary data
anyway would require longer transmission times from the LoRA units, as there would be
much larger information to encode, send and decode.

The data for the NMEA message is gathered, constructed, and then converted into basic
binary strings. A basic illustration of one of these conversions would be if the status =
5 then the converted status = [‘0’, ’1’, ’0’, ’1’]. The function designed for converting
the values to binary values is designed to convert integer values and thus all float values,
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such as the longitude and latitude are converted to an integer format before converting
to binary form [39].

The large binary message, consisting of all the data required, is broken up into 6-bit seg-
ments. These segments are converted to integers which then have a correlating character
for AIS encoding. The messages as a whole are then converted into an AIS string consist-
ing of all the characters that have been encoded which can then be ported into OpenCPN
[39]. The results of this conversion can be seen in the Figure 4.25.

Figure 4.25: AIS data and encoded AIS data for OpenCPN

When the message for each sensor resembles the one as seen above, the message is ported
into the OpenCPN application using the socket library in Python. The end result of the
visualization process can be seen in Figure 4.26.

Figure 4.26: AIS targets plotted at the 3 sensor coordinates

4.7 Implementation of LoRa technology to transmit

and receive sensor data

The LoRa technology has been implemented in Python code to transmit information from
the sensors and receive said information at the user unit on the research vessel. Therefore
intuitively two different versions of LoRa of code had to be developed to execute this send
and receive functionality in devices that function independently from one another.

LoRa technology was intended for a ’node’ to communicate with a ’gateway’. Nodes are
designed to transmit, via LoRa, directly to in-range gateways. Gateways are designed to
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relay messages between nodes and a central network server by making use of an internet
connection [40]. It is because of this terminology that the LoRa communication system
implemented for this thesis is believed not to be deemed a standard LoRa communication
setup, as there is no gateway present. Though it is also possible for LoRa nodes to
communicate with each other. One such instance of this is when information needs to be
transmitted over long distances [41].

The LoRa configuration implemented in this system is described as peer to peer LoRa
communication. In such a configuration the transmitter of data is referred to as a ’server’
and the receiver of such information is referred to as a ’client’ [41]. As such in this system,
there would be what resembles a star topology present, as the sensors are all servers and
the user unit would be the client. As to prevent confusion in the client receiving data
from multiple servers, the transmission instances in the servers are staggered as to not
allow the signals to interfere with one another.

4.7.1 LoRa unit setup

The SX127x Python library has been installed from a GitHub repository [42]. The LoRa
package of this library has been implemented to set up LoRa communication. Addition-
ally, the board configuration (board config) package has been implemented to set the
board and LoRa parameters.

This process involves allocating the correct pins on the LoRa module to the GPIO pins
that they are physically connected to and allowing for the communication of information
sent over SPI. Also, the module is set to use a low band frequency of between 137-175 Hz
and 410-525 Hz [42].

The appropriate GPIO pins need to be designated as input pins or output pins according
to their functionality. The only pin that requires to be allocated as an output pin in this
setup is the connection to the reset of the LoRa module. One can also allocate the LED
pin as an output to give visual indications of the system’s functionality though it is not
actually necessary for the functioning of the LoRa unit.

The SPI is set up using the spidev Python library and configured to function at a maxi-
mum speed of 5MHz. While it is known that the SPI can function at speeds which double
the chosen amount, a lesser value has been implemented in order to err on the side of
caution, as stated in the pySX127x documentation [42].

The LoRa.py file contains functions that pertain to the use of the LoRa unit for the
purpose of transmitting and receiving data. This file contains important functions that
allow the user to; set the mode of the device, receive various values and statuses of the
LoRa module, and of course send and receive messages. It is through the LoRa.py file
that one can control the unit that has been set up through the board config.py file.

4.7.2 LoRa implementation in the user unit receiver

In order to function, a LoRa class is written in the receiver unit. This class requires 3
primary functions; the init function, the start function, and the on rx done function.
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The init function is implemented to initialize the LoRa module with a 433MHz carrier
frequency and a 125kHz bandwidth. The init function then puts the module into a “sleep
mode”. This is done to conserve power usage [41].

The start function’s purpose is to configure the LoRa module as a continuous receiver
(RXCONT) of LoRa signals. In addition to setting the module as a receiver the start
function also continually obtains information required for operation such as the Receiving
signal strength Indicator and the status of the module [41].

The on rx done function is triggered once a message has been received. The function
stores the received information in a variable which is then decoded from ASCII code to
normal characters and joined together to form the whole message. Once the message is in
the correct format it can be scanned for the appropriate unit/sensor number and then be
saved in the appropriate file that stores said sensor’s data to be accessed by the code that
displays the information, as previously discussed in section 4.4.1. The module is then put
back into sleep mode until another message is received.

4.7.3 LoRa implementation in the sensor transmitter

The transmitter makes use of similar functions as the receiver unit described in the pre-
vious subsection. The class implemented makes use of its own init and start functions as
well as an on tx done function. The fact that the Python libraries available make the use
of the LoRa units easier, the functions that have been required for operating the units
are very similar in execution and function. Thus the descriptions of these functions that
follow are very similar to those previously.

The init function that is implemented in the transmitter similarly to the receiver initializes
the LoRa module with a 433MHz carrier frequency and a 125kHz bandwidth and then puts
the module into a “sleep mode”. The only noticeable difference that has been implemented
between the transmitter and receiver init functions is that the DIO mapping for the LoRa
unit has been changed.

The start function configures the LoRa module as a transmitter of LoRa signals. The
message that is to be transmitted is converted into ASCII characters to be transmitted
and decoded by the receiver in this function.

The on tx done function is triggered once a message has been sent. This function then
puts the transmitter back into a standby mode and flushes the system.

4.8 Unit time synchronization

The sensor units are known to transmit timestamps at the instance of detection, these
timestamps are then transmitted and used in the TDOA algorithm. However to execute
this process accurately the timing on the sensors must be synchronized such that the
timestamps are all relative to one another. The synchronization is performed by setting
the clock on each sensor unit to the GPS time read into each system independently.
Additionally, the timing on the sensors is made more accurate through the use of the
pulse per second signal available on the GPS units.
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4.8.1 The process of synchronizing the unit clocks

The process of synchronizing the unit clocks implemented is adapted from the process
detailed in a web-page posted by Steve Friedl [43].

The PPS data is obtained and utilized by implementing the pps-tools package. The
Linux operating system has kernel support for PPS input. Linux associates an extremely
accurate timestamp with the rising edge of the PPS signal and makes these timestamps
available [43].

Information is added to the /boot/config.txt file which enables the PPS support and
indicates which GPIO pin the signal will travel through. It has been shown by the
diagram illustrated in Figure 4.5 that the PPS pin of the GPS module has been connected
to GPIO4 of the Raspberry Pi. The PPS information was printed to the terminal and is
shown in Figure 4.27.

Figure 4.27: PPS information

The valid information for the GPS time as well as the PPS timing is fed into the network
time protocol (NTP) which has been configured to receive this information and make
an accurate time available to the units independently from one another. The NTP has
the capabilities to corroborate the GPS time information with information fetched from
internet servers however this feature of the NTP has been excluded as the sensor units have
no valid internet connection, they rely solely on GPS for receiving timing information.

It is described by Steve Friedl [43] that the NTP receives the GPS time information,
which has previously been loaded into a package called GPSD specifically for GPS data,
via shared memory. In order to give the NTP access to this shared memory, aspects
of the /etc/ntp.conf file needs to be modified. By placing fake ”servers” for the NTP
to access in this file one can provide the NTP with the information in shared memory.
These ”servers” have IP addresses in the 127.127.t.u range, where the value of t is the
clock driver type and the value of u is the unit number within the said type. The IP
address 127.127.28.u is the Shared Memory driver supported by GPSD that is required
for this process.

Figure 4.28: NTP information
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The resultant NTP is shown in Figure 4.28. To elaborate on the information portrayed
in this figure, the PPS and GPS information has been labeled and any external internet
servers have been omitted. The meanings of the field indicators, shown in Figure 4.28,
are elaborated on in Table 4.5. In addition to this table, there is a supplemental table,
Table 4.6, which lists the peer status words present for each peer of the NTP and their
meanings.

Indicator Description
remote The name of the time source
refid The identifying tag

st
The quality of the server (lower numbers are better than
higher numbers).

t
The type of clock, u represents unicast over the network,
l represents local and b represents broadcast

when
The time (seconds/minutes/hours) since the last time
packet was received

poll The poll interval in seconds
reach The bitwise notation of reachability of this peer

delay
The ”round-trip” delay, in milliseconds, to reach this
peer

offset
The difference, in milliseconds, between this peer and
the local clock

jitter
The average deviation in time from the peer, in millisec-
onds

Table 4.5: NTP field indicators and their meanings

[43]

Word Description
nothing Discarded as not valid
x Discarded by the intersection algorithm
- Discarded by the cluster algorithm
+ Included by the combine algorithm
# Backup time source
* Indicates a System peer

o
Indicates a peer whose driver support is directly com-
piled into NTPD

Table 4.6: NTP status words and their meanings

[43]

4.8.2 Serial port conflict

Once the NTP is implemented it continuously pulls the GPS data from the GPSD package
which in turn pulls the information from the serial port connected to the GPS module.
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This creates a dilemma between the time synchronization process and the tracking sub-
system of the sensors. The dilemma is rooted in the fact that both the GPSD package
and the Python code that has been written to obtain the GPS coordinates of the sensors
are trying to access information from the serial port. As such when the Python code is
run an error is returned stating that the serial port is currently busy.

The solution to this problem that was implemented is for the Python code that manages
the tracking of the sensors to pull the GPS information for the GPSD package that is
running rather than from the serial port itself. As such the GPSD package has access
to the serial port and the NTP and tracking code both share access to the GPSD, the
conflict was resolved.

4.9 Conclusion

It has been shown throughout this chapter how the theoretical principles discussed in
Chapter 3 have been physically implemented with the use of the combination of hardware
and software.

It has been shown that the implementation of these principles has not been incredibly
straightforward. Multiple steps had to be taken to ensure that the various aspects of the
system functioned properly, such as the various steps taken to ensure detector speed and
accuracy. Testing results of the various forms of detector implementation are shown in
Chapter 5.

The system has shown to be functional throughout the process of practical implementa-
tion, though it needs to be tested to show how effective it is as a Bryde’s whale localization
system. The testing of the various aspects of the system and the results that are produced
are shown in Chapter 5.
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Chapter 5

Simulations, testing and results

5.1 Introduction

The implementation of the various aspects of the system have been described in the
previous chapter and what follows is the testing of these aspects of the system.

The primary tests on the detector are done to measure its accuracy and speed and as
such determine the best method of implementation for the detector.

The TDOA localization system is tested to determine its accuracy. This is done by
quantifying its margin of error for the calculated location of signal sources versus the
known location of signal sources.

Additionally, the time synchronization between units and the unit tracking and commu-
nication systems are also tested through various means.

5.2 Detector tests implemented during development

5.2.1 Testing detector speed

In order to test the speed as well as accuracy for the detection algorithm, the system has
been given the signal seen in Figure 5.1 to work through 1000 samples at a time, as it
would if it were simply reading in the data from the audio source. These calls present in
the signal is believed to come from the same whale. It is understood that testing using
the same whale as the testing data source is limiting, though it can be seen that there is
variance in the calls present in the signal. This signal was used because it shows clear calls
sequentially after each other in a relatively small time frame. Additionally it is noted that
the Bryde’s whale call data obtained first hand by the researchers is limited and currently
the research team has no way of discriminating between whales when capturing data.

72
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Figure 5.1: Testing signal

It can be seen in Figure 5.1 above that there are 3 main areas of interest, where the short
pulse calls first start, these instances are at 3000, 19000, and 37000 samples into the audio
signal as a whole. The specific 1000 sample windows where these signals are located are
shown in Figure 5.2 below.

Figure 5.2: Each desired target window

For the majority of the tests done these signals are detected as well as other non-desired
signals. One of the aims of this testing is to set up the detector to detect these 3 instances
with as few ’false positives’ as possible. However, before examining accuracy, the speed of
the detector needs to be prioritized. As it has been explained previously that the whole
detection process must run in under 10.4 milliseconds per 1000 sample window.

Two main facets make up the total detection algorithm, these being the preparation of
the data and the detection process using said data. An aspect of Figure 4.8 is highlighted
in Figure 5.3 which categorizes the parts of the detection algorithm that are for preparing
the data and that are for detecting the desired signals in the data. These processes are
speed tested separately because the preparation process requires substantially less time
to execute compared to the detection process, though there are still changes in execution
time that should be noted.
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Figure 5.3: Signal preparation processes (blue) and signal detection processes (red)

The preparation of the signals is known to consist of normalizing the signal and lowering
its resolution. Both of the processes have been discussed previously. Both processes
require sorting through the signal array and thus, logically, the smaller the array is the
less time it would take to execute these functions. This is why as the downscale factor
gets larger the execution time gets smaller. The times can be seen to flatten out near
zero and there is no noticeable change in time for downscale factors between 40 and 100,
this is suspected to be because the hardware speed of the device itself is now the main
contributor to the execution time rather than the number of executions.

Figure 5.4: Preparation times for signals over different downscale factors

When analyzing the times of the detection aspect of the algorithm after the data has been
prepared 2 speed tests have been run, one for the ctypes implementation of the DTW
algorithm and one for the DTW Python library. The graphs in Figures 5.5 and 5.6 have
been kept separate as they have a substantial difference in scale.

It can easily be seen that the ctypes implementation of the detector algorithm is remark-
ably faster than the pure Python implementation. It is noted here that the lowest time
that the pure Python reads here is 0.0895 seconds at a downscale factor of 100. This
means that with only 10 points of information, the pure Python implementation cannot
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come close to the speed of the ctypes implementation, which crossed the 0.0895-second
mark when having a downscale factor between 1 and 10.

Figure 5.5: Detection times for signals over different downscale factors using ctypes

Figure 5.6: Detection times for signals over different downscale factors using only Python

Figure 5.7 shows the total time for the whole detection process to run when using ctypes.
It can be seen from the graph that for the algorithm to execute within the allotted time
the downscale factor would have to be approximately 20 or higher.
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Figure 5.7: Execution time for the whole detection algorithm

5.2.2 Testing detector accuracy

5.2.2.1 Accuracy tests for shifted/non-shifted signals of different resolutions

It had been mentioned previously that the template signals if shifted in time were pre-
sumed to give more accurate results. This has been tested and the results follow. In
figures 5.8 and 5.9 the graphs show the total amount of signals detected in the test signal,
shown in Figure 5.1. As previously stated there should ideally only be 3 detections. All
cases where a detection is found that is in addition to these 3 instances is deemed a ’false
positive’.

In figures 5.8 and 5.9 the darker shade of blue represents the number of the desired signals
detected, which ideally should be 3. The lighter shade of blue shows the number of ’false
positives’ detected in the test signal. Therefore the combination of dark and light blue
represent the total number of detections.

It is noted before showing the results that in these accuracy tests loudness normalization
was implemented in the detector.
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Figure 5.8: Number of detected signals using non shifted template signals

The graph in Figure 5.8 shows that when the template signals are not shifted there are
many incorrect instances of detection. One can see that only at the factor of 40 does the
detector manage to only detect the 3 instances and no others. When this is compared
to Figure 5.9 one can see that with the data shifted the accurate detection rate is much
higher, as the detector proved to be accurate for factors between 10 and 40. This is
excluding factor 30, in which for an unknown anomaly the detector only detected one
instance.

Figure 5.9: Number of detected signals using shifted template signals

As the shifted template signals have proved to be more accurate at detecting the desired
Bryde’s whale short pulse calls, the shifted versions of the template signals have been
implemented and are present in the subsequent tests and simulations.
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5.2.2.2 Accuracy tests for different types of normalization

The results for the loudness normalization are not shown in the following figures because
it has already been shown as Figure 5.9 on the account that the shifted template signals
were implemented moving forward and loudness normalization was implemented in the
previous tests.

The results for the implementation of peak normalization, at different downscale factors,
when reading through the same testing signal is shown in Figure 5.10. When this is
compared to Figure 5.9 it can clearly be seen that loudness normalization results in a far
more accurate detection algorithm.

Figure 5.10: Number of detected signals for the detector implementing peak normalization

For the sake of rigor, though it has been shown that loudness normalization results in a
more accurate detector than peak normalization, the results for a detector with no normal-
ization implemented are shown in Figure 5.11. It can be seen that without normalization
present, the detector is incredibly less accurate. In fact, it should be stated that for most
of the downscale factors, the detector produced 45 instances of detection. This is the
number of frames in the whole audio signal and as such the detector determined that all
frames in the large signal were Bryde’s whale short pulse calls. It goes without saying
that this is incredibly inaccurate and the importance of the signal normalization process
is apparent.
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Figure 5.11: Number of detected signals for the detector implementing no normalization

5.3 Time synchronization testing performed during

development

As discussed in Chapter 4 the Raspberry Pi system clocks of each sensor are synchronized
making use of NTP and the PPS signal provided by the GPS units. The extent to which
the units are synchronized has been tested and the results are presented in this section.

The process of testing the Raspberry Pi clock synchronization between units that was
devised involves presenting a voltage to a designated GPIO pin on two units from an Ar-
duino microcontroller and displaying the timestamp, accurate to microseconds, at which
the voltage was detected at the pin. The difference in these timestamps is then calculated.

Performing this test involved stepping down the 5V logic of the Arduino to the 3.3V
logic of the Raspberry Pi. This was performed by implementing a basic potential division
circuit comprised of resistors.

The microcontroller was programmed to output a 1ms long pulse every two seconds. The
Python code implemented on the Raspberry Pis was designed to wait for voltage input,
display the time at which the input was first detected, then wait for the voltage to go low
and high again before displaying the next timestamp.

In this test, five timestamps were recorded for each ten minute interval over the span of
an hour from the point at which the NTPs were reset. The five timestamps allowed for
average differences in timing to be calculated. This test was performed three separate
times for the sake of rigorous testing. The timing results are shown in Figure 5.12.
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Figure 5.12: The time difference between synchronized sensors’ clocks

It can be seen from the data collected and presented that approximately past the 10
minute mark the timing difference begins to increase in test 1 and test 2. However, test 3
contradicts this trend as the timing difference remains more constant in this test. As such
this was investigated, it was found that the NTP had marked the PPS and GPS inputs as
”false tickers” and were disregarded after approximately 10 minutes. The effects of this
occurrence are shown to vary from the data presented in Figure 5.12.

The general trend was found to be that the clocks begin to desynchronize by a margin
and with more time spent not synchronized this margin grows. The question that follows
this finding would be, to what degree is this margin of error acceptable? It was known
when first designing the system that there would be timing errors present from various
sources.

In order to determine whether this problem warranted the time it would take to fix it, a
TDOA error test was performed making use of the test 1 data as the timing errors present
in the system. The resultant TDOA output is shown in Figure 5.13 that follows.
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Figure 5.13: TDOA presented in meters with the Test 1 timing errors present

In Figure 5.13 the black lines show the ideal case with no timing errors and the red
lines represent the outcome with each timing error incorporated into the system. The
scale of this test is set in meters and it can be seen that at a maximum, the timing
error introduced a distance error of a few meters. As such when working with a scale
in the range of kilometers or coordinate degrees with GPS components that are too only
accurate to within a few meters, this timing error could be deemed as acceptable and
does not necessarily warrant correcting.

5.4 Testing the TDOA system through a physical

simulation

In order to test the accuracy of the TDOA localization system, the system was tested with
the use of delayed pulses from an Arduino that had been calculated to yield a previously
decided location.

The detection algorithm was set to recognize pulses of 1 ms in width from the Arduino.
The Zoom devices from each sensor were attached to pins of the Arduino via modified
audio jacks. Once it was determined that the detector algorithm on each sensor could
detect the pulses through the Zoom devices, the test was developed further.

The clocks of the Raspberry Pis are synchronized as discussed and tested previously.
Additionally, the sensors are given fictitious GPS coordinates that correlate with the
chosen time delay values. These time delays between signals are implemented by setting
a designated Arduino pin to high voltage for the duration of 1ms, bringing the voltage
low again, and then delaying the Arduino by a chosen calculated time value before the
process of setting pin voltage to high for each sensor repeats itself.
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The results are shown in Figures 5.14 to 5.17 that follow. A chosen point designated by
a red square is chosen as the location of interest, the delays correlate to this point, and
the sensor locations. The circles represent the calculated location for the signal source by
the system. Different circle colours represent sets of data produced from different times
that the test has been run, as it has been run three times for each point. The sensors are
denoted by black triangles. Additionally, one of the sensors has been shifted an arbitrary
distance to account for the asymmetry caused by having free-floating sensors.

The recording of the data is done manually and detections that would be deemed as false
positives at each sensor are omitted. However it can still be seen that non-ideal results
have not been omitted, these results create outliers that can be observed in the figures.
The figures show the data at a scale of which it would be viewed practically, as to fit the
sensors in the frame, on the left, and an enhanced scale at which the point clustering can
be seen more clearly on the right.

Figure 5.14: TDOA testing results for position 1

Figure 5.15: TDOA testing results for position 2
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Figure 5.16: TDOA testing results for position 3

Each test produces approximately 20 points of data. As previously stated, these points
are recorded manually. This is done to avoid the cluttering of images with multiple
hyperbolas. Each point of data is chosen as an approximate point inside the area created
by the overlapping hyperbolas with present errors. An example of this is shown in Figure
5.17. The intersection of the lines has been magnified to the extent that it can be seen that
they do not intersect at a single point. It is noted that the extent to which an appropriate
point is chosen is in terms of meters and does not extend to sub-meter accuracy.

Figure 5.17: Replacing intersecting hyperbolas with an approximate point

Tables 5.1 to 5.3 show the tabulated results for the various TDOA tests. It can be noted
that various aspects of the results have been calculated to populate the table. The table is
broken up into the test results for each testing position. This entails each test individually
as well as grouping all the data together for an overall result for each position. The mean
and standard deviations are calculated and used to determine the outlier points. An
outlier is defined here as a point that has a distance from the target location greater than
three times the standard deviation added to the mean distance [44].
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Test indi-
cator

Mean distance
from the target
location (m)

Standard Deviation
distance from the
target location (m)

Distance between
mean and target
location (m)

Number
of outliers

Position 1
Test 1 148 284 3 1
Test 2 58 95 16 1
Test 3 233 350 92 1
Overall 146 276 28 2
Position 2
Test 1 127 300 115 1
Test 2 87 163 35 1
Test 3 114 179 87 1
Overall 110 223 35 3
Position 3
Test 1 74 51 5 0
Test 2 176 185 133 0
Test 3 262 62 259 0
Overall 169 140 130 2

Table 5.1: Tabulated results from TDOA testing

The tabulation of the results has been repeated with the outliers omitted. This is done
to examine the significance of the effects of these points on the tabulated results. For
the calculations the outlier locations are replaced with the previously calculated average
point for each test. This is done such that the calculation code written for these tests
does not have to be extensively modified.

Test indicator
Mean distance
from the target
location (m)

Standard Deviation
distance from the
target location (m)

Distance between
mean and target
location (m)

Position 1
Test 1 82 92 69
Test 2 38 56 13
Test 3 161 189 47
Overall 101 141 30
Position 2
Test 1 74 178 63
Test 2 51 47 24
Test 3 75 50 48
Overall 67 108 14
Position 3
Test 1 74 51 5
Test 2 176 185 133
Test 3 262 62 259
Overall 152 109 113

Table 5.2: Tabulated results from TDOA testing given the omission of previously determined outliers
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It can be determined by observing the results in the previous tables that the few anomalies
that created the outliers present in the results greatly affect the results of the system. The
overall average distances from the target position to each resultant point for position 1 and
position 2 have decreased by approximately 40 meters. Additionally for these positions
the standard deviations have decreased by more than 100 meters.

When analyzing the data to determine the cause of the outliers it was found that in each
case a single sensor was notably delayed in its detection result. There are many possible
causes for this, the system may have stalled in that sensor resulting in a delayed timestamp
or the detection may also be a false positive within an ambiguous time difference to a
missed detection.

The root mean square error values for all tests are shown in table 5.3 that follows. The
RMSE values have been calculated in both scenarios that include and exclude outliers.
The RMSE value has been calculated by implementing the equation,

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(5.1)

where (ŷi − yi)
2 denotes the difference in distance between the observed and desired

positions and n denotes the number of values included in the calculation [45].

Test indicator
Root mean square
error with outliers
included (m)

Root mean square
error with outliers
excluded (m)

Position 1
Test 1 320 124
Test 2 79 48
Test 3 243 144
Overall 312 173
Position 2
Test 1 327 192
Test 2 130 49
Test 3 121 51
Overall 251 129
Position 3
Test 1 90 90
Test 2 180 180
Test 3 153 153
Overall 219 189

Table 5.3: Root mean square error of the localization results
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5.5 Sensor tracking and communication systems

test

In order to perform testing on the tracking and communication of the units before deploy-
ing the sensors, a land test was devised. This test involves setting up one of the sensors
in the development laboratory and taking the user-unit in its entirety outside where it
can be moved around and that movement can be tracked and seen on screen.

The unit plots its location represented by red circles. The sensor has a constant position
represented by a blue circle, its location is transmitted constantly. Additionally, the
beginning of the sensors’ route traveled is denoted by a square and the end by a triangle.
The sensor location allows for a stationary point of reference in this test. The location of
the user-unit is determined every 30 seconds.

When plotting the location data for this test, the previous locations of the unit continue
to be displayed and subsequent locations are joined to one another with lines to show
the route taken by the unit. The plot of the testing route is shown in Figure 5.18. In
this figure, the green line represents the route as marked by a commercial Garmin GPS
device.

Figure 5.18: Tracking and communication system test result

Figure 5.18 shows the functionality of the tracking system as well as the communication
system. The scale of the plot is represented in coordinate degrees. It is noted that the
position of the sensor is constantly updating, though there is only one point shown. The
location is overwritten each time that the position is updated. This is done because the
sensor is stationary and the result would otherwise simply be a tight cluster of overlapping
points. This is deemed as unnecessary for this test.
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5.6 Conclusion

The testing in this section has shown that the DTW detector algorithm functions within
the allotted time frame at an acceptable accuracy. Additionally, it was shown that shifted
template signals, when combined with loudness normalized signals, result in the most
accurate detector for the given test signal.

The TDOA system test shows the functionality of the detector, TDOA system, and time
synchronization between sensors as all these systems needed to function in tandem to
produce meaningful data for that test. The results show that the system is accurate to
within less than 200 meters in all cases when outliers are omitted except for test 3 at
position 3. When examining the results for this test it is seen that the mean distance
from the target is large though the standard deviation is much smaller. This indicates
data that is clustered closely together though it has been shifted in this situation due to
an unknown factor which may be the fault of the microcontroller used to test the system.

Additionally, the functionality of the GPS tracking and communication system has been
shown. The results of the designed GPS tracking system do differ from the Garmin device
used. It was already known that the GPS sensors would only be accurate within a few
meters and this inaccuracy should not have a considerable effect on the overall system,
as it has been previously seen to be accurate to within less than 200 meters.
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Chapter 6

Conclusion

6.1 Conclusions

The main purpose of this thesis is known to be the documentation of the development of
a system capable of localizing vocalizing Bryde’s whales through time difference of arrival
principles. Though, as noted in the introduction for this thesis the objectives set out to be
achieved related more to the functionality of the various subsystems and their integration
to achieve the overall goal.

The detector, which makes use of DTW principles, has been shown to be accurate. Specif-
ically, it has been shown to be the most accurate when the training signals have been
shifted with zeros placed in the front of the signals, and when loudness normalization
has been implemented in preparing the signals before they are transferred to the DTW
algorithm. Additionally, the detector has shown to be at its highest level of accuracy, for
the given testing signal as seen in Chapter 5, when the signal is down-scaled in resolution
to a factor between 10 and 40. This factor would result in the signal frame being 100 to
25 samples in length.

The TDOA system has shown to be functional through controlled in-laboratory tests.
This testing not only shows that the TDOA localization system is functional but also the
detection system and unit clock synchronization, as these aspects of the system need to
work in unison to create meaningful data for this test. In-laboratory testing proved to
be beneficial as the desired locations were known and thus the results could be tabulated
and compared to the ideal locations.

It was seen that there were anomalies/outliers present in the system, though these were
not present in all tests. Additionally, the system proved to be accurate to within a few
hundred meters of the desired location. This error in distance would not have come
from the clock synchronization aspect of the system, as they were synchronized to with-
in milliseconds and as such this would only account for a few meters worth of distance
error. The fault is likely with the Python detector and the frames in the detector, this is
elaborated on further in section 6.2.

An important objective for the system developed is that it should be able to function
in real-time. This meaning that post-processing should not be necessary. Though the
real-time functionality is somewhat unstable due to the combination of false-positive and
missed detections, the system still manages to identify the desired signals and produce
appropriate timestamps in real-time.

88
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Aside from the errors in the detection of signals, another facet that limits the real-time
capabilities of the system is the LoRa communication. Transmissions from the sensors
need to be staggered as to not interfere with one another. As a result of this, the detection
times are only communicated to the user-unit, that performs and displays the TDOA
localization algorithm, at chosen time intervals. Though this logically does not affect the
detection times, it does create a delay of several seconds to a minute for the presentation
of the TDOA results.

The communication and tracking systems both function reliably. It was found during
development that the LoRa communication system was hindered by something in the
vicinity of the Stellenbosch engineering faculty but when tested outside, the communica-
tion system functioned more reliably. It was shown in Chapter 5, in the GPS tracking
test that the GPS tracking system, when compared to a commercial GPS device, has a
degree of error. This was known beforehand and was stated by the supplier of the hard-
ware. Though the GPS system still proved to coincide with the commercial GPS tracker
to within a margin of meters.

It is noted here that the non-apparent goal of interfering with sea life has been achieved.
The system functions passively and as such, no sound signals are introduced to the ocean
environment apart from the sounds made by the research vessel. Additionally, the free-
floating design of the sensors means that ocean life is physically interfered with as little
as possible.

6.2 Recommendations for Future Work

Though Python proved to be incredibly valuable for the building of the system, the
transition to C may prove to be more beneficial in terms of speed. This speed improvement
may result in more accurate timestamps and therefore more accurate TDOA position data.

Additionally, the system could be moved from Raspberry Pis to microprocessors with
embedded code. This hardware could also be combined with an ADC embedded into the
hardware of the system.

The cause of the presence of false-positive detections in the system is not known. How-
ever, future development of the system should include a process of eliminating these
detections. Furthermore development done to distinguish between vocalization instances
would increase the reliability of the system, though due to time constraints this had to
be overlooked presently.

Further testing should be performed, in particular, sea trials would be incredibly benefi-
cial. The use of in-laboratory testing was prioritized in this thesis for the sake of time as
well as meaningful results that can be quantified. The system can be tested in water by
emitting the required sound signals underwater at a known location and then using that
location as a reference for the tabulation of data. However, this approach was avoided for
the sake of this thesis because of the previously mentioned time constraints. In addition
to this reasoning, the test described resides in an ambiguous ethical area, as the effects
of the introduction of these sound signals into the marine animals’ habitat are unknown.
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