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Abstract 
 

 

 

The number of coordination complexes utilizing bis-pyridyl diamide ligands has increased 

significantly over the past decade. This is attributed to the relatively easy synthetic procedure 

of the ligands and interesting structural features such as helicity, water clusters and porosity 

that the coordination complexes possess. In the first part of this study, the following eight 

structurally related bis-pyridyl diamide ligands: 

• N,N'-bis(pyridin-4-ylmethyl)isophthalamide (ISO); 

• N,N'-bis(pyridyl-4-ylmethyl)terephthalamide (TER); 

• N,N'-bis(pyridin-4-ylmethyl)hexanediamide (ADI); 

• N,N'-bis(pyridin-4-ylmethyl)butanediamide (SUC); 

• N,N'-bis(pyridin-4-ylmethyl)biphenyl-4,4'-dicarbonyl dicarboxamide (DIP); 

• N,N'-dipyridin-2-ylpentanediamide (GLUT); 

• (2E)-N,N'-bis(2-pyridin-4-ylmethyl)but-2-enediamide (FUM); 

• 4-(pyridin-4-ylmethyl)aminocarbonyl benzoic acid (TER-A). 

were synthesized and characterized by NMR, FTIR, MS and SCD. In the second part, the 

synthesized ligands were reacted with a variety of transition metal salts to yield fifteen novel 

coordination polymers and one discrete complex. SCD analysis showed that of the sixteen 

complexes thirteen formed 1-D chains, two formed 2-D networks, and one formed a discrete 

unit. Hydrogen bonding interactions between water molecules, the counterions and the amide 

groups resulted in connection of the lower dimension entities into higher dimension networks. 

The synthesized ligands were co-crystallized with trimesic acid and a novel co-crystal 

consisting of ADI and trimesic acid was obtained. SCD analysis showed that the co-crystal 

featured the amide homosynthon as well as the pyridine/carboxylic acid heterosynthon. 
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Opsomming 
 

 

 

Die aantal koördinasie komplekse met dipiridieldiamied ligande het noemenswaardig 

vermeerder oor die afgelope dekade. Hierdie groei kan toegeskryf word aan die eenvoudige 

sintetiese prosedure en interessante strukturele eienskappe van dié koördinasie komplekse, wat 

o.a. helikse, waterbondels en poreuse materiale vorm. In die eerste deel van hierdie studie is 

die agt onderstaande struktureel verwante dipiridieldiamied ligande se sintese en 

karakterisering deur kernmagnetieseresonansie, Fourier transform infrarooi, 

massaspektrometrie en enkel kristal X-straal diffraksie (SCD) beskryf: 

• N,N'-bis(piridien-4-ielmetiel)isoftalamied (ISO); 

• N,N'-bis(piridien-4-ielmetiel)tereftalamied (TER); 

• N,N'-bis(piridien-4-ielmetiel)heksaandiamied (ADI); 

• N,N'-bis(piridien-4-ielmetiel)butaandiamied (SUC); 

• N,N'-bis(piridien-4-ielmetiel)bifeniel-4,4'-dikarbonieldikarboksamied (DIP); 

• N,N'-dipiridien-2-ielpentaandiamied (GLUT); 

• (2E)-N,N'-bis(2-piridien-4-ielmetiel)but-2-eendiamied (FUM); 

• 4-(piridien-4-ielmetiel)aminokarboniel bensoësuur (TER-A). 

In die tweede gedeelte is bg. ligande met 'n reeks oorgangsmetaalsoute gereageer om vyftien 

nuwe koördinasiepolimere, asook een diskrete kompleks, te lewer. SCD analise toon dat van 

hierdie sestien komplekse vorm dertien 1-D kettings, twee vorm 2-D netwerke en slegs een 

vorm 'n diskrete eenheid. Waterstofbindings tussen die water molekules, die teen-ione en die 

amied groepe het laer dimensie (1-D) eenhede verbind om hoër dimensionele netwerke (2-D) 

te vorm. Mede-kristallisasie van die gesintetiseerde ligande met trimesielsuur het 'n nuwe 

mede-kristal tussen ADI en triemesielsuur opgelewer. Enkelkristal diffraksie toon dat die 

mede-kristal beide die amied homosinton en die piridien/karboksielsuur heterosinton bevat. 
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Chapter 1 

Crystal Engineering 

 

1.0 Introduction  

Crystal engineering is a young and emerging field of science encompassing chemistry and 

materials science.1 Put in very simple terms crystal engineering can be defined as “making 

crystals by design”.2 The process of crystal synthesis is analogous to retrosynthetic analysis 

in molecular synthesis.3 In crystal engineering, the crystal is the retrosynthetic target,3 

whose fundamental building block is called a tecton
4-6 and the retrosynthetic analysis gives 

rise to smaller units called supramolecular synthons.3,7
 Supramolecular synthons can be 

thought of as playing the same role as that of synthons in molecular chemistry.3 Therefore 

the process of crystal synthesis involves the self assembly of tectons via intermolecular 

interactions (Figure 1.1).  

 

 

Figure 1.1. Comparison between molecular synthesis and supramolecular synthesis5. 
 

The term crystal engineering was first introduced by Pepinsky8 in 1955 in relation to 

the exploitation of complex ions in structure determination of optically active ions. Twenty 

years later, Schmidt implemented the term in connection with photodimerisation of 

cinnamic acid.9 In recent times, the term has broadened and is now being used for the 

supramolecular synthesis of inclusion compounds, co-crystals and coordination polymers.10 

A formal definition of crystal engineering was given by Desiraju who defined the term as 

“…the understanding of intermolecular interactions in the context of crystal packing and in 

the utilization of such understanding in the design of new solids with desired physical and 

chemical properties”.11 The first part in this chapter discusses tectons, supramolecular 
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synthons, intermolecular interactions and self assembly, their relationships to one another 

and their role in crystal engineering. The second part discusses coordination polymers, a 

class of crystal engineered materials. 

 

1.1 Tectons and supramolecular synthons 

Tectons 

Tectons are the fundamental building blocks in crystal engineering which bear within their 

structures intermolecular recognition sites that enable them to recognize one another and to 

self assemble at the molecular level.5,6,12 The recognition pattern between complementary 

tectons is known as the assembling node5 or supramolecular synthon if it is reliable and 

predictable.3 The recognition pattern may contain any one of the following intermolecular 

interactions: hydrogen bonding, van der Waals, electrostatic, π-π and coordination 

bonding.12 

 

Supramolecular synthons 

The main obstacle in crystal engineering is the lack of synthetic control over the final 

crystalline solid.13 In molecular synthesis, reactions have been discovered and refined, thus 

allowing synthesis of target molecules.14,15 In this regard, crystal engineering is far from 

reaching a level where target crystals can be synthesized at will.14 Because of the lack of 

synthetic control, it is difficult to predict how the building blocks will assemble in the solid 

state. The problem of crystal structure prediction may also be attributed to the weak 

intermolecular interactions holding molecules together in the solid state, as these are 

numerous and non-directional. As a result numerous free energy minima are possible within 

the global minima.5,16 Indeed, this phenomenon explains the occurrence of polymorphism 

and pseudopolymorphism in solid state structures.17 Crystal engineers are generally 

concerned with finding a synthetic strategy that will provide synthetic control over 

crystalline solids, thus enabling them to tailor crystals with desired functions.13,14 

A variety of synthetic strategies for crystal engineering including computational and 

experimental approaches, have been proposed. One of the most recognized strategies is the 

concept of supramolecular synthons, which was introduced by Desiraju in 1995.3 This 

concept is based on analyzing existing crystal structures for certain repetitive units between 

the same functional groups and intermolecular interactions.18 The repetitive units have been 

termed supramolecular synthons and are formally defined as “structural units within 

supermolecules which can be formed and/or assembled by known or conceivable synthetic 

operations involving intermolecular interactions”.3 A supramolecular synthon is not to be 
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confused with an intermolecular interaction. The latter is a fundamental part of the 

supramolecular synthon and is thus the “functional group”. It is the geometrical and 

chemical features of its components that distinguish a supramolecular synthon from an 

intermolecular interaction.3 Crystal engineering relies on the robustness of the 

supramolecular synthons to predictably assemble building blocks in the solid state, much 

like covalent bond formation in molecular synthesis.  

Although supramolecular synthons involving all intermolecular interactions are 

known, the most commonly occurring involve hydrogen bonds. The supramolecular 

synthons are subdivided into (i) homosynthons, which are a result of interactions between 

identical complementary functional groups, e.g. amide dimers and carboxylic acid dimers,10 

and (ii) heterosynthons, which are a result of interactions between complementary but 

different functional groups e.g. hydroxyl and aromatic nitrogen.10 Some of the common 

supramolecular synthons are shown in Scheme 1.1 
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Scheme 1.1. Some common supramolecular synthons.3,10 

 

 

 



 4

 

1.2 Intermolecular interactions 

One of the main goals of crystal engineering is to understand intermolecular interactions 

and to apply this knowledge in the synthesis of new materials with desired properties.1 

Intermolecular interactions can be classified as (i) directional or (ii) non-directional forces.3 

Also referred to as long range interactions, “directional interactions form between 

heteroatoms N, S, O, Cl, Br, I, (rarely B, F, P, Se) or between any one of the heteroatoms 

and either C or H.”3 On the other hand, non-directional forces, also known as medium range 

forces involve the van der Waals interactions and these are among the weakest interactions 

with their strength ranging between 0.5 and 2 kcal/mol.5  

 

1.2.1 Directional forces 

The hydrogen bond 

The hydrogen bond is by far the most frequently occurring interaction dominating organic 

crystals and the structures of biological systems such as the nucleic acids, proteins and 

polysaccharides.19 The hydrogen bond interaction was first identified in the 1920s by 

Latimer and Rodebush who suggested that “a free pair of electrons on one water molecule 

might be able to exert sufficient force on a hydrogen held by a pair of electrons on another 

water molecule to bind the two water molecules together.”20 This was followed by the study 

of Pimentel and McClellan in 1960 in which they examined 2000 cases where hydrogen 

bonding existed.21 Based on this study the authors first defined hydrogen bonding by stating 

that “a hydrogen bond exists if (1) there is evidence of a bond and (2) there is evidence that 

this bond sterically involves a hydrogen atom already bonded to another atom”.21 

According to Steiner, this definition cannot be accepted fully as it does not specify the 

chemical nature of the atoms and the interaction geometry.22 A modified definition of the 

hydrogen bond was later presented by Steiner in 2002 and it states that: “an XHA 

interaction is called a hydrogen bond if (1) it constitutes a local bond, and (2) XH acts as 

proton donor to A”.22 

The XHA (X = donor and A = acceptor) bond is defined by the geometric 

parameters d, D, r, θ and φ as shown in Figure 2.22 Hydrogen bonding interactions can be 

divided into three categories based on their strength: (i) very strong (ii) strong and (iii) weak 

hydrogen bonds.23 Detailed characteristics of the three categories of hydrogen bonds are given 

in Table 1.1. Normally, one donor would interact with one acceptor (Figure 1.2a), but in some 

cases, because of the long range nature of the hydrogen bond, the donor may interact with two 
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or three acceptors at the same time (Figure 1.2b, c). In such instances, the hydrogen bond is 

termed bifurcated and trifurcated, respectively 23. 

 

Figure 1.2. (a) The definition of the geometric parameters for a hydrogen bond, (b) bifurcated 
and (c) trifurcated hydrogen bond.23 
 

Table 1.1. Characteristics of very strong, strong and weak hydrogen bonds.23 
 Very Strong Strong Weak 

Interaction type Strongly covalent Mostly 
electrostatic 

Electrostatic/dispers
ive 

Bond energy (-kcal/mol) 15-40 4-15 <4 

Examples [FHF]- 

[NHN]+ 

POHOP 

OHOC 

NHOC 

OHOH  

CHO 

OHπ 

OsHO 

Bond lengths XH ≈ HA XH < HA XH << HA 

Lengthening of XH [Å]  0.08–0.25 0.02–0.08 <0.02 

D(XA) [Å] 2.2–2.5 2.5–3.2  >3.2 

d(HA) range [Å] 1.2–1.5 1.5–2.2 >2.2  

Bonds shorter than the van 
der Waals radii 

100% Almost 100% 30– 80% 

θ(XHA) range (º) 170–180 >130 >90  

Effect on crystal packing Strong Distinctive Variable 

Utility in crystal engineering Unknown Useful Partly useful 

Interaction type Strongly covalent Mostly 
electrostatic 

Electrostatic/dispers
ive 

Electrostatics Significant Dominant Moderate 

Directionality Strongly Moderate Weak 

 

The coordination bond  

The coordination bond is the strongest (30-70 kcal/mol) of all intermolecular interactions 

and offers greater directionality and stability than the other intermolecular interactions.5 A 

coordination bond forms between a labile metal ion with a vacant site and a ligand that is 

capable of donating a lone pair of electrons.5 The coordination bond has been successfully 

applied in crystal engineering in designing materials known as coordination polymers.24 

These are discussed in much more detail later in the chapter. 
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1.2.2 Non-directional forces 

Non-directional forces are the weakest intermolecular interactions. These forces are 

generally due to CC, CH and HH interactions.3 Non-directional forces influence the 

packing, shape and size of a molecular crystal structure and this influence is dependent 

upon the C:H stoichiometric ratio.3 In the case of high C:H ratios, aromatic compounds 

usually interact via three types of interactions, i.e. the stacked, offset and the edge-to-face 

(T-shaped herringbone).3,10 The stacked and offset motifs result from stacking of the rings 

as a way of increasing the CC interactions.3 CH type interactions are encountered when 

the aromatic rings are arranged in an edge-to-face motif or the T-shaped herringbone motif 

with a van der Waals separation of 3.3-3.8 Å.3,10 The three types of interactions are shown 

in Figure 1.3.  

 

 

Figure 1.3. Three types of interactions possible between phenyl rings.10 
 

1.3 Self assembly 

Whitesides defined self assembly as a process in which components, either separate or 

linked, spontaneously form ordered aggregates.25A much simpler definition is given by 

Palesko who referred to the process as the “science of things that put themselves 

together”.26 The process of self assembly is scientifically interesting because it is 

responsible for the assembly of nature’s complex structures i.e. the lipid membranes, folded 

proteins and protein aggregates.25 In crystal engineering, molecular networks are generated  

via the self assembly process, involving millions of tectons.5 For the process of self 

assembly to be successful a system must possess the following characteristics: 

• The system must contain like or unlike components that are able to interact with 

one another to form an ordered and thermodynamically stable final state.25 These 

components must be complementary to one another; 

• The interactions between the molecules must be weak and reversible, this would 

allow the system to self repair if mistakes are generated.5  
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The process of self assembly can result in discrete, 1-D, 2-D or 3-D networks. The 

relationship between tectons, supramolecular synthons and self assembly is illustrated in 

Figure 1.4. 

 

Tecton bearing three functional groups  
(amide, pyridine and carboxylic acid)

1-D chains formed as a result of 
individual molecules linked via the 
pyridyl/carboxylic acid heterosynthon

2-D network formed as a result of 
interaction between the 1-D chains
via the amide homosynthon

Tecton bearing three functional groups  
(amide, pyridine and carboxylic acid)

1-D chains formed as a result of 
individual molecules linked via the 
pyridyl/carboxylic acid heterosynthon

2-D network formed as a result of 
interaction between the 1-D chains
via the amide homosynthon

1-D chains formed as a result of 
individual molecules linked via the 
pyridyl/carboxylic acid heterosynthon

2-D network formed as a result of 
interaction between the 1-D chains
via the amide homosynthon

 

Figure 1.4. Generation of a 2-D network via self assembly of  

4-(pyridin-4-ylmethyl)aminocarbonyl benzoic acid. The individual molecules interact via the 

pyridine/carboxylic acid heterosynthon as well as the amide homosynthon.#### 

 

Discrete assembly: According to Lauher, discrete assemblies are supramolecular 

complexes that lack translational symmetry. Discrete units are finite and are defined by the 

point group symmetry; they may be symmetrical, i.e. they may possess the Ci point group 

symmetry, or may be asymmetric, in which case they possess no symmetry elements.27 1-D 

or α-networks: 1-D or α-networks possess translational symmetry in one direction and these 

are defined by the rod group symmetry. 1-D networks may be composed of a single tecton, 

or a combination of different tectons that can generate two diverging recognition sites. The 

                                                      
#4-(pyridin-4-ylmethyl)aminocarbonyl benzoic acid was synthesized during the course of this study. The synthetic 

method and crystal structure are described in detail in Chapters 2 and 3, respectively. 
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presence of the diverging sites prevents the formation of discrete units. A 1-D network may 

also consist of discrete units that are related by translational symmetry.27
 2-D or 

 β-networks: 2-D networks possess three degrees of translational symmetry, and they are 

defined by their layer group symmetry. 2-D networks may consist of discrete units or  

α-networks as substructures. They should each possess at least three diverging recognition 

sites.27 3-D or γ-networks: 3-D networks possess three degrees of translational symmetry 

and may contain 1-D networks or 2-D networks as substructures. 3-D networks are defined 

by their space group symmetry.27 

 

1.4 Coordination polymers 

Coordination polymers are synthesized by reacting a carefully designed tecton (hereafter 

referred to as a ligand) with a labile metal ion.24 The most commonly used labile metal ions 

include Cu+, Cu2+, Cd2+, Zn2+, Co2+ and Ni2+.24 Crystal engineering of coordination 

polymers utilizes diverging polydentate ligands with two or more donor atoms.2,28 The 

ligands are termed ditopic, tritopic and tetratopic, depending on the number of donor 

atoms.28 The nitrogen and oxygen donor ligands are the most widely used ligands in the 

construction of coordination polymers. The polydentate ligands act as a bridge between 

metal centres and allow the network to propagate in 1-D, 2-D and 3-D.24 This is illustrated 

in Figure 1.5. The overall structure of the coordination polymer is dependent upon a number 

of factors such as the metal to ligand ratio,29 the solvent system,30 the coordination 

geometry of the metal,24,31 the nature of the ligand,32 and the nature of the counterion.33 In 

addition, weak interactions also play a key role as these are numerous, weak and non 

directing.28 Other less obvious factors such as the crystallization methods, the temperature 

of the system and the concentration of reactants also have an influence on the final crystal 

structure.28 

One of the main motives behind the synthesis of coordination polymers is to make 

zeolite-type materials that contain channels or voids that can absorb and release small 

molecules.2,34 Such coordination polymers are popularly known as metal organic 

frameworks (MOFs).34 MOFs have found wide applications in new chemical separations 

and gas storage.2 Two main challenges are encountered in MOF synthesis. 
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Figure 1.5. Three types of networks that can be constructed using polydentate ligands and 
metal ions.24 
 

First, in some cases the self assembly process of metal organic frameworks can 

leave voids or channels that are occupied by solvent molecules while, in other cases, one 

polymer network may interpenetrate the other thereby filling up potential cavities.35 

Secondly, even if interpenetration does not occur, the framework might not survive the 

process of guest removal.2 Therefore, MOF synthesis focuses on understanding the factors 

that control interpenetration as well as designing robust frameworks that can withstand the 

process of guest removal.2 

 Yaghi and co-workers have been most effective in designing a synthetic strategy that 

yields robust frameworks.34 This synthetic strategy is known as reticular synthesis and 

utilizes metal carboxylate instead of the single metal ions.34 The carboxylate locks the metal 

into a specific geometry and the carboxylate carbon forms the point of extension, which 

offers directionality. These points of extension are referred to as secondary building units 

(SBUs) and they impart rigidity to the framework. By using this strategy, Yaghi and other 

groups have managed to synthesize frameworks that are robust and exceptionally stable 

upon guest removal.34,36 
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1.4.1 Coordination complexes of ligands containing the bis-pyridyl and amide 

functionalities 

Bipyridine is one of the most widely used ligands in the construction of coordination 

polymers37-39 (Scheme 1.2). Coordination compounds that feature this ligand have been 

shown to possess properties such as porosity, magnetism and conductivity.28 Derivatives of 

the bipyridine ligands, consisting of various kinds of spacer units between the pyridine rings 

have also been utilized in the design of 1-D, 2-D and 3-D networks.28 One class of 

compounds that has been studied in the past years contains the oxalamide or the urea group 

as the spacer unit 40,41 (Scheme 1.2). Studies of this class of compounds have mainly 

focused on co-crystallization with other compounds containing the carboxylic acid moiety. 

An important finding of these studies was that ureas and oxalamides are capable of 

assembling into α-networks via self-complementary hydrogen bonds41 and that these 

interactions are persistent even when the ligands are co-crystallized with compounds 

containing carboxylic acid.40 Coordination complexes that feature these ligands have only 

been reported recently.33,42-44 

 

N N

 

(a) 

N

NH NH

O

N N

NH

O

NH

O

N

 

  (b)     (c) 

Scheme 1.2. (a) The bipyridine ligand and bis-pyridyl based ligands containing (b) the urea or 
(c) oxalamide functionalities. 
 

A similar class of compounds that has received considerable attention over the past 

decade is that of compounds containing the bipyridine unit and the amide functionality 

(Scheme1.3). The first ligand of this type appeared in the literature in 1998,45 and since then 

the number of reports featuring these ligands have increased dramatically. A review of the 

literature indicates that coordination complexes consisting of these ligands possess 

structural features such as helicity,46,47 water clusters45,48,49 and porosity50 and some of these 

properties are discussed in the next section. 
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Scheme 1.3. The general structure of bis-pyridyl diamide ligands and the various spacers 
 

1.4.2 Properties of coordination complexes of bis-pyridyl diamide ligands 

Water clusters 

One of the interesting properties of bis-pyridyl based ligands is their high affinity for 

water.45 The coordination complexes of these types of ligands have been shown to 

encapsulate water clusters of the type (H2O)n
45,48,49 Much research effort has centred on the 

study of pure water clusters as this may be key to understanding the anomalous behaviour 

of water.49,51 It is also known that water clusters play an important role in stabilizing the 

structure of proteins such as carbonic anhydrase C52 and actidin.53 

N,N′-bis(pyridine-4-ylmethyl)isophthalamide (ISO) was the first ligand consisting 

of a bis-pyridyl moiety and an amide functionality to be presented in the literature (Scheme 

1.4).45 Reaction of ISO with either Cu(NO3)2
45 1 or Co(NO3)2

48 2 in water resulted in a 0-D 

dinuclear cage-like complex [M2(ISO)4(H2O)4](NO3)416H2O. Complex 1 crystallizes in the 

tetragonal space group I41/a while complex 2 crystallizes in the monoclinic space group 

C2/c. In both structures the metal centres are linked by means of four bridging ligands to 

form a 0-D cage-like complex. The M2+ cation, which adopts an octahedral geometry, is 

coordinated to four ligands via the pyridyl nitrogen atom and two water molecules. The 

cages stack in linear arrays with the MM axes parallel to [001]. Adjacent arrays are 

staggered, leaving cavities that contain a discrete hydrogen bonded water cluster H2O10 

(Figure 1.6a) which is very similar to the smallest subunit of ice Ic (Figure 1.6b). The OO 

distances (average length, 2.80(5) Å) of the water cluster are comparable with the OO 

distances (2.75 Å) of ice. 

 

Spacer types 

General structure 
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Scheme 1.4. (a) ISO, the first ligand containing an amide functionality and bis-pyridine 
moiety to be presented in the literature, (b) Tritopic ligand BEN  
 

 

                              (a) 

 

                                  (b) 

Figure 1.6. (a) The (H2O)10 water cluster in 1 and (b) comparison between the water cluster 
(red) and ice Ic (blue). The three unique water molecules are labelled a, b and c.45,48  
 

The water cluster is believed to stabilize the molecular cages by efficiently 

occupying the cavity as well as connecting successive cages. The structure is further 

stabilized by eight types of hydrogen bonds between the water cluster and the nitrate anions 

of adjacent cages. The water cluster in the two complexes differ in the distance between 

O(1W) and O(4W). The distance between O(1W) and O(4W) in complex 1 is 5.779(7) Å 

while the corresponding distance in complex 2 is 6.287(4) Å. The difference in the distances 

was attributed to the longer CuO bond (average CuO bond 2.33 Å and average CoO 

2.10 Å) in complex 1. Despite the difference in distances between O(1W) and O(4W), the 

water clusters are similar. This demonstrates that a change in the geometry of the metal 

centre does not significantly change the overall conformation of the water cluster. The water 

cluster is quite flexible and robust. 
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Another interesting water cluster was reported by Wang et al.49 In their study they crystallized 

the ligand N,N′,N′′-tris(pyridin-4-ylmethyl)-1,3,5-benzenetricarboxamide (BEN) (Scheme 1.4), 

which has a tripyridyl moiety, with Cu(BF4)26H2O in CH3NO2 and CH3OH. This resulted in a 

novel M6(BEN)8 0-D cage (Figure 1.7a) which crystallizes in the tetragonal space group I432. 

The cage encapsulates two novel (H2O)56(OH)6 and (H2O)20 water clusters in its cavity 

(Figures 1.7b and 1.8). The two water clusters were further classified as inner and outer water 

clusters. The (H2O)56(OH)6 entity forms the outer cluster with a large cavity in which the inner 

(H2O)20 cluster is encapsulated as a guest. The water clusters are stabilized by hydrogen 

bonding between the coordinated hydroxyl anions and the water molecules. 

 

   

 (a) (b) 

Figure 1.7. (a) The M6(BEN)8 cage and (b) the M6(BEN)8 cage as well as the outer and inner 
water clusters.49  

 

Figure 1.8. Schematic diagram the M6(BEN)8 cage. The pale yellow octahedron represents the 
M6(BEN)8 cage. The inner and outer clusters are shown in blue and red, respectively.49 
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Scheme 1.5. Isomeric ligands (a) SUC-1 and (b) SUC-2. 
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Helicity 

Coordination compounds that possess helicity are interesting because they mimic nature’s self 

assembly processes, i.e. the DNA double helix, RNA and the peptide chain α-helix.47 Isomeric 

ligands N,N'-bis(pyridin-4-ylmethyl)butanediamide (SUC-1) and  

N,N'-bis(pyridin-3-ylmethyl)butanediamide (SUC-2) (Scheme 1.5) have been shown to yield 

helical complexes.46,47 Reaction of SUC-1 with Cd(NO3)2 and succinic acid in a mixture of 

DMF and water yielded the novel coordination polymer {[Cd(succinate)(SUC-1)]H2O}n 

comprising both single and triple helices.46 The triple helix is formed by three interwoven 

SUC-1 molecules while the single helix is formed by the succinic acid molecule (Figure 1.9). 

 

 

Figure 1.9. Schematic diagram showing single (black) and triple (red, blue and green) helices 
in {[Cd(succinate)(SUC-1)]H2O}n.The triple helix is formed by three interwoven SUC-1 
molecules while the single helix is formed by the succinic acid molecule. The metal centres are 
shown as black circles.46  
 
 Reaction of SUC-2 with CuClO4 in ethanol yielded a novel double helical 

coordination network with shared copper atoms.47 The helical chains are composed of 

Cu(SUC-2)2(H2O)2. The Cu centres are linked by bridging SUC-2 molecule to form 1-D 

strands which are entwined forming a double helix, where the two strands cannot be pulled 

apart independently (Figure 1.10). 

 

 

Figure 1.10. The double helix as well as the space filling model of {[Cu(SUC-2)2(H2O)2]}n. 
The strands of the double helix are coloured in green and red to distinguish them from each 
other.47  
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Isomeric ligands 

The substitution position of the pyridine ring can be varied from 2 to 3 and 4. It is therefore 

interesting to study the coordination abilities of ligands with different donor atom positions. 

One such study was carried out by Hsu et al.
54 who designed and prepared three ligands, 

N,N'-dipyridin-2-ylhexanediamide (L1), N,N'-dipyridin-3-ylhexanediamide (L2) and  

N,N'-dipyridin-4-ylhexanediamide (L3). Reactions of these ligands with Cd(ClO4)26H2O in 

ethanol yielded 1-D (complex 3), 2-D (complex 4) and 3-D (complex 5) coordination 

polymers.  

Complex 3 crystallizes in the monoclinic space group P21/n. The cadmium centre 

adopts a distorted octahedral geometry and is coordinated to two pyridyl nitrogen atoms, 

two carbonyl oxygen atoms of two unique ligands and two oxygen atoms of the two 

perchlorate anions. The ligand, which coordinates in a tetradentate fashion, links metal 

centres to form 1-D zigzag chains which interact via extensive hydrogen bonding between 

the coordinated perchlorate anions and the amide NH group (NHO = 2.203 Å) to form 

a 3-D network.  

Complex 4 crystallizes in the triclinic space group P. The metal centres are 

linked by a single bridging L2 ligand to form a 2-D pleated network. These 2-D nets 

interact via hydrogen bonding between the amide NH and the perchlorate anion 

(NHO = 2.044 Å).  

 Complex 5 crystallizes in the orthorhombic space group Pcca. The structure 

consists of 2 independent L3 ligands which link the metal centres to form a 3-D 

interpenetrated network. In contrast to complex 4, the ligands adopt two distinct 

conformations; anti-anti-anti (AAA) and anti-gauche-anti (AGA). The conformations are 

given by the sp3 CCCC torsion angles, G is defined as 180 ≥ θ≥ 90 and A is defined 

as 0 ≤ θ ≤ 90. A detailed comparison of the three complexes is given in Table 1.2. To 

summarize, Cd complexes of the three isomeric ligands L1, L2 and L3 were synthesized 

and the complexes form 1-D zigzag, 2-D pleated and 3-D interpenetrated coordination 

complexes, respectively. L1 behaves as a tetradentate ligand in complex 3 while L2 and L3 

are bidentate. L3 can adopt two conformations AAA and AGA. These results clearly show 

that the position of the donor atom on the pyridine ring can greatly influence the nature of 

the coordination complex that forms. 
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Table 1.2. Comparison of the three complexes 3-5 
 

 

Ligand 
N NH

O

O

NH N

L1 

N
NH

O

O

NH
N

L2 

N

NH

O

O

NH

N

L3 
Complex 3 4 5 

Space group P21/n P Pcca 

Metal centre 
coordination 
environment 
 

(i) Metal centre adopts 
distorted octahedral 
geometry 
(ii) Coordinated to two 
nitrogen and two oxygen 
atoms of two L1 ligands 
(iii) Coordinated to two 
oxygen atoms of two 
perchlorate anions. 

(i) Metal centre adopts  
octahedral geometry 
(ii) Coordinated to four 
pyridyl nitrogen atoms of 
four L2 ligands 
(iii) Coordinated to two 
oxygen atoms of two 
methanol molecules 

(i) Metal centre adopts 
octahedral geometry 
(ii) Coordinated to four 
pyridyl nitrogen atoms 
of four L3 ligands 
(iii) Coordinated to two 
oxygen atoms of two 
methanol molecules 

Conformation AAA GAG AAA, AGA 
Dimensionality 1-D zigzag chain 2-D pleated network 3-D interpenetrated 

network 
Coordination mode  
of ligand 

Tetradentate Bidentate Bidentate 

 

1.5 Aims and objectives 

The aims of this study were: 

• To synthesize N-donor ditopic ligands containing the amide functionality as well the 

bis-pyridyl moiety;  

• To crystallize the ligands with different metal salts varying the following 

parameters: the metal to ligand ratio, the solvent system and the nature of the 

counterion; 

• To study the self assembly process of the crystalline products. 

 

These ligands are particularly interesting to study for several reasons: 

• The ligands are relatively easy to synthesize and a wide range of spacer types can be 

utilized; 

• The donor atom position on the pyridine ring can be varied from 2 to 3 and 4, thus 

coordination abilities of isomeric ligands can be studied; 

• The ligands contain the amide functionality, which can act as both a hydrogen bond 

donor and acceptor via self-complementary amide hydrogen bonds  

(amide homosynthon). It would be interesting to determine whether the interaction 

persists in the presence of other competing species such as solvent molecules and 

metal counter ions; 

• The rigid pyridine rings and the phenyl rings (in some ligands) can participate in  
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π - π stacking which could add complexity to the structure; 

• Ligands of this type have been shown to yield complexes with interesting structural 

features (Section 1.16). 

 

To this end, we synthesized eight structurally related ditopic ligands namely,  

• N,N'-bis(pyridin-4-ylmethyl)isophthalamide (ISO); 

• N,N'-bis(pyridyl-4-ylmethyl)terephthalamide (TER); 

• N,N'-bis(pyridin-4-ylmethyl)hexanediamide (ADI); 

• N,N'-bis(pyridin-4-ylmethyl)butanediamide (SUC); 

• N,N'-bis(pyridin-4-ylmethyl)biphenyl-4,4'-dicarbonyl dicarboxamide (DIP); 

• N,N'-dipyridin-2-ylpentanediamide (GLUT); 

• (2E)-N,N'-bis(2-pyridin-4-ylmethyl)but-2-enediamide (FUM); 

• 4-(pyridin-4-ylmethyl)aminocarbonyl benzoic acid (TER-A). 

 

Of these, ADI, DIP, GLUT and TER-A are novel whilst the other four have been 

reported in the literature either in their pure form or in metal organic complexes. All of 

these ligands, except TER-A and GLUT possess the 4-(aminomethyl)pyridine moiety. 

GLUT has the 2-aminopyridine moiety while TER-A has a 4-(aminomethyl)pyridine 

moiety and a carboxylic acid moiety. The general structures of the ligands are shown in 

Scheme 1.6.  
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Scheme 1.6. Eight structurally related ditopic ligands synthesized for this study. 
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Chapter 2 

Experimental 

 

This chapter describes the synthesis and characterization of the ligands as well as their 

crystallizations with a variety of different metal salts. The instrumentation and computer 

programmes used for the study are also described. 

 

2.1 Synthesis and characterization of ligands 

2.1.1 Preparation of N,N'-bis(pyridin-4-ylmethyl)isophthalamide (ISO)
1,2

  

 

N

NH2

Cl

O O

Cl

Et3N, CH2Cl2

N2

N

NH

O O

NH

N

2 1+

 

Scheme 2.1. Synthesis of N,N'-bis(pyridin-4-ylmethyl)isophthalamide. 
 

Triethylamine (2.97 g, 29.4 mmol) and 4-(aminomethyl)pyridine (3.21 g, 29.4 mmol) were 

mixed together in a quick-fit three-necked round bottomed flask. A solution of isophthaloyl 

chloride (3.0 g, 14.7 mmol) in dichloromethane 30 mL was added over 30 minutes at 0º C 

under nitrogen. The reaction was stirred for 8 hours and the resulting orange precipitate was 

filtered off and dried in a desiccator for 24 hours. The crude product was mixed with 40 mL 

water, followed by filtration, to yield a white powder.  

Yield 85%. 1H–NMR (DMSO–d6, 400MHz): δ 4.49 (2H, d, J = 6.2, PyCH2), δ 7.30 

(2H, d, J =5.9, PyH), δ 7.60 (1H, t, J = 8.8, 7.9, ArH), δ 8.06 (1H, dd, J = 1.47, 2.05, 

ArH), δ 8.45 (1H, s, ArH), δ 8.49 (2H, d, J = 5.0, PyH), δ 9.26 (1H, t, J = 5.6, 6.8, 

NH). FTIR-ATR: νmax: 3491 cm-1 (NH stretch) 3068 cm-1 (CH stretch) 1605 cm-1 

1478 cm-1 (CC stretch), 716 cm-1, 696 cm-1 (CH out-of-plane (oop) bend), 1564 cm-1 

(NH bend), 1478 cm-1 (CH2 bend). MS (ESI+): m/z 347 (55% ([M+H]+)), 174 (100%), 102 

(98%). 

 

 

 

 



 22

 

2.1.2 Preparation of N,N'-bis(pyridin-4-ylmethyl)terephthalamide (TER)
1
  

N

NH2 ClO

Cl O

Et3N, CH2Cl2

N2

N

NH

O

O

NH

N

2 1+

 

Scheme 2.2. Synthesis of N,N'-bis(pyridin-4-ylmethyl)terephthalamide. 
  

The same procedure as above was used for the synthesis of TER, except that terephthaloyl 

chloride was used instead of isophthaloyl chloride. The product was obtained as a white 

powder.  

Yield 75%. 1H–NMR (DMSO–d6, 400MHz): δ 4.51 (2H, d, J = 5.9, PyCH2), 

δ 7.31 (2H, d, J = 5.9, PyH), δ 8.0 (1H, s, ArH), δ 8.50 (2H, d, J = 6.2, PyH), 

δ 9.30 (1H, t, J = 5.9, 6.2, NH). FTIR-ATR: νmax 3455 cm-1 (NH stretch) 3010 cm-1, 

(CH stretch), 1638 cm-1 (CO stretch), 1607 cm-1, 1455 cm-1 (CC stretch), 1552 cm-1, 

1562 cm-1 (NH bend), 1455 cm-1 (CH2 bend). MS (ESI+): m/z 347 (98% ([M+H]+)), 174 

(100%), 102 (73%). 

 

2.1.3 Preparation of (2E)-N,N'-bis(2-pyridin-4-ylethyl)but-2-enediamide (FUM)
1  

 

N

NH2

Cl

ClO

O
1

N

NH

O

NH

O

N

Et3N, CH2Cl2

N2

2 +

 

Scheme 2.3. Synthesis of (2E)-N,N'-bis(2-pyridin-4-ylethyl)but-2-enediamide. 
 

4-(Aminomethyl)pyridine (2.83 g, 26 mmol) and triethylamine (3.62 g, 26 mmol) were cooled 

to 0º C under nitrogen. A solution of fumaroyl chloride (2 g, 13 mmol) in THF (30 mL) was 

added slowly over a 30 minute period. The reaction mixture was allowed to warm to room 

temperature and refluxed for two days. The precipitate was filtered off, washed with THF and 

dried in a desiccator for 24 hours. The crude product was washed with saturated NaOH and 

recrystallized from ethanol.  
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Yield 60%. 1H–NMR (DMSO–d6, 400MHz): δ 4.40 (2H, d, J = 6.7, Py–CH2), δ 4.4 

(1H, s, C–H), δ 7.3 (2H, d, J = 5.3, PyH), δ 8.50 (2H, d, J = 7.8, PyH),  

δ 9.0 (1H, s, NH ). FTIR-ATR: νmax: 3426 cm-1 (NH stretch), 3076 cm-1, 3184 cm-1, 3266 

cm-1 CH aromatic and alkene), 1629 cm-1 (CO stretch), 1606 cm-1 (CC stretch alkene), 

1563 cm-1, 1447 cm-1 (CC aromatic), 1497 cm-1 (CH2 bend). MS (ESI+): m/z 297  

(97%, ([M+H]+)), 149 (100%), 102 (28%). 

 

2.1.4 Preparation of N,N'-bis(pyridin-4-ylmethyl)succinamide SUC 

The ligand SUC used in this study was provided by Professor L. J. Barbour. 

 

2.1.5 Preparation of N,N'-bis(pyridin-4-ylmethyl)hexanediamide (ADI)
3
  

 

N
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+ Cl

Cl
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Scheme 2.4. Synthesis of N,N'-bis(pyridin-4-ylmethyl)hexanediamide. 
 

4-(aminomethyl)pyridine (1 g, 9.25 mmol) and anhydrous potassium carbonate (11.067 g,  

80 mmol) were dissolved in dry THF (7 mL). Adipoyl chloride (1.35 mL, 4.625 mmol) in THF 

(7 mL) was added to the solution and stirred under nitrogen atmosphere at 0º C overnight. The 

solvent was evaporated and residue was washed with water and methylene chloride. The 

product was purified by recrystallization from ethanol to yield colourless crystals. 

Yield 70%. 1H–NMR (DMSO–d6, 400MHz): δ 1.58 (2H, m, OCCH2CH2), 

δ2.20 (2H, m, OCH2CH2), δ 4.29 (2H, d, J = 7.6, PyCH2), δ 7.23 (2H, d, J = 5.9, PyH), 

δ 8.42 (1H, t, J = 5.3, 8.5, NH), δ 8.48 (1H, d, J = 6.2, PyH). FTIR-ATR: νmax: 3277 cm-1 

(NH stretch), 3105 cm-1 (CCH stretch), 1636 cm-1 (CO stretch), 1606 cm-1,  

1454 cm-1 (CC stretch), 1556 cm-1 (NH bend), 1454 cm-1 (CH2 bend). MS (ESI+): m/z 

(95% ([M+H]+)), 164 (100%), 102 (83%). 
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2.1.6 Preparation of N,N'-bis(pyridin-4-ylmethyl)biphenyl-4,4'-dicarbonyl 

dicarboxamide (DIP)
1  
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NHO

N

1

 

Scheme 2.5. Synthesis of N,N'-bis(pyridin-4-ylmethyl)biphenyl-4,4'-dicarbonyl dicarbox-
amide. 
 

10 g of (1,1-biphenyl-)4,4'-dicarboxylic acid was converted to (1,1-biphenyl-)4,4'-dicarbonyl 

chloride by reaction with excess thionyl chloride. A solution of (1,1-biphenyl-)4,4'-dicarbonyl 

chloride, (4.01 g, 14.7 mmol) in 50 mL dichloromethane was added slowly, over a 30 minute 

period, to a mixture of 4-(aminomethyl)pyridine (29.4 mmol, 3.21 g) and triethylamine  

(29.4 mmol, 2.97 g). The mixture was allowed to stir overnight under a nitrogen atmosphere at 

0º C. The resulting orange precipitate was filtered off and dried in a desiccator for 24 hours. 

The crude product was mixed with saturated NaOH and mixed with 40 mL water followed by 

filtration and recrystallization from ethanol. 

Yield 79%. 1H–NMR (DMSO–d6, 400MHz): δ 4.53 (2H, d, J = 5.9 PyCH2), 

δ 7.32 (2H, d, J = 8.51 PyH), δ 7.87 (2H, d, J = 6.2, ArH), δ 8.03 (2H, d, J = 4.1, ArH), 

δ 8.51 (2H, d, J = 5.6 PyH), δ 9.22 (1H, t, J = 6.4, 6.2, NH). FTIR-ATR: νmax 3234 cm-1 

(NH stretch), 3070 cm-1 (CH stretch), 1606 cm-1 (C=O stretch), 1550 cm-1 

(NH bend), 1491 cm-1 (CC stretch), 1412 cm-1 (CH2 bend). MS (ESI+): m/z 423  

(85%, ([M+H]+)), 212 (100%), 106 (10%). 

 

2.1.8 Preparation of N,N'-dipyridin-2-ylpentanediamide (GLUT)
3
  

 

N

NH2

2 +
O O

Cl Cl K2CO3, THF

N2

1
N

NH

O

NH

O N

 

Scheme 2.6. Synthesis of N,N'-dipyridin-2-ylpentanediamide. 
 

2-Aminopyridine (5.97 g, 63.5 mmol) and potassium carbonate (11.067 g, 80 mmol) were 

dissolved in THF (41 mL) and glutaryl chloride (3.972 g, 24 mmol) was then added. The 

mixture was stirred at 0º C, under nitrogen for 12 hours. The solvent was evaporated and the 
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residue was suspended in water after which it was extracted with methylene chloride and 

recrystallized from ethanol to yield colourless block shaped crystals.  

Yield 60%. 1H–NMR (DMSO–d6, 400MHz): δ 1.87 (2H, m, OCCH2CH2), 

δ 2.42 (2H, t, J = 7.6, OCCH2CH2), δ 7.05 (1H, t, J = 6.2, PyH), δ 7.73  

(1H, t, J = 8.2, PyH), δ 8.07 (1H, d, J = 8.2, PyH), δ 8.27 (1H, t, J = 4.3, PyH),  

δ 10.41 (s, 1H, NH). FTIR-ATR: νmax 3180 cm-1 (NH stretch), 3117 cm-1  

(CCH stretch), 2961 cm-1 (CH stretch), 1692 cm-1 (CO stretch), 1577 cm-1  

(N–H bend), 1467 cm-1 (aromatic CC stretch) 1456 cm-1 (CH2 bend). MS (ESI+) m/z 285 

(98% ([M+H]+)), 143 (100%). 

 

2.1.9 Preparation of 4-(pyridin-4-ylmethyl)aminocarbonyl benzoic acid (TER-A)
1
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Scheme 2.7. Synthesis of 4-(pyridin-4-ylmethyl)aminocarbonyl benzoic acid. 

 

Ligand TER-A was synthesized serendipitously from a reaction that was intended to make 

TER. It is believed that TER-A is a product of the incomplete reaction between terephthaloyl 

chloride and 4-(aminomethy)pyridine.  

 

2.2 Crystallizations of the ligands with metal salts 

The fully characterised ligands were crystallized with various metal salts. These ligands were 

found to dissolve in alcohols, water, dimethylformamide (DMF) and dimethylsulphoxide 

(DMSO). Crystallizations were first carried out using the solvent evaporation method. The 

layering and solvothermal methods were only employed for crystallizations of ligands DIP and 

TER-A, which did not yield any crystals with the solvent evaporation method.  

 

2.2.1 Solvent evaporation method 

Crystallizations were set up in ethanol, methanol and DMF using metal to ligand ratios of 1:1, 

1:2, 2:1 and 4:1. For a typical crystallization experiment, the ligand and the metal salt were 

dissolved separately in a minimum amount of solvent, mixed together in a 10 mL vial, 

followed by slow evaporation of the solvent. Crystallizations in ethanol/methanol alone 

yielded precipitates after a few minutes whereas a mixture of ethanol and water or methanol 
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and water did not yield precipitates. In some cases, a precipitate formed after a few days, in 

such cases the precipitate was redissolved and solvent was then allowed to evaporate. The 

reaction conditions of all crystallizations set up, as well as the nature of the product obtained in 

each case is given in Tables 2.2-2.10. Table 2.1 below explains the symbols used in these 

tables. 

 

Table 2.1. Explanation of symbols used in Tables 2.2-2.10 to describe types of products 
obtained 
Symbol Description 

1-17 Single crystals were obtained 
a Polycrystalline material was obtained 
b Single crystals with unit cell corresponding to that of the free ligand 
c Single crystals with unit cell corresponding to that of the metal salt 
d 
e 

Single crystals too small or not suitable for SCD analysis experiment 
An oily substance was obtained 

 

2.2.2 Solvothermal method 

This method was only carried out with either DIP or TER with nitrates of zinc, copper, nickel 

and cobalt in a metal to ligand ratio of 1:1. The ligand and the metal salt were dissolved in 

DMF. The solution was stirred for 10 minutes at room temperature and placed in a 

hydrothermal pressure vessel. The mixture was heated at 110º C for three days.  

 

2.2.3 Layering method 

A solution of the metal salt in ethanol (1 mL) was carefully layered upon a solution of the 

ligand in DMSO (1 mL). A buffer consisting of a DMSO/ethanol mixture was placed between 

the two layers.  
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Crystallizations of FUM with a variety of metal salts 

   N

NH

O

NH

O

N

 
 
Table 2.2. Crystallizations of FUM with a variety of metal salts 
Metal salt MeOH, M:L ratio EtOH, M:L ratio DMF, M:L ratio 

Cd(NO3)24H2O 1:1   1:2   2:1  4:1 
a      a       a      a 

1:1   1:2   2:1  4:1 
a      a       a       a 

1:1   1:2   2:1  4:1 
a        a     a       a 

Zn(NO3)24H2O 1:1   1:2   2:1  4:1 
a       a       a      a 

1:1   1:2   2:1  4:1 
a     a      a        a  

1:1   1:2   2:1  4:1 
a       a      a       a 

Cu(NO3)24H2O 1:1   1:2   2:1  4:1 
a      a      a      a 

1:1   1:2   2:1  4:1 
a       a      a     2 

1:1   1:2   2:1  4:1 
a       a      a       a 

CuCl24H2O 1:1   1:2   2:1  4:1 
a       a      a      a 

1:1   1:2   2:1  4:1 
a     a       a       a  

1:1   1:2   2:1  4:1 
a        a     a       a  

CuSO45H2O 1:1   1:2   2:1  4:1 
a      a     a        a 

1:1   1:2   2:1  4:1 
a       a       a      1 

1:1   1:2   2:1  4:1 
a       a      a      a 

CoCl2H2O 1:1   1:2   2:1  4:1 
a        a       a    4 

1:1   1:2   2:1  4:1 
a        a      a      a 

1:1   1:2   2:1  4:1 
a         a     d       4 

Cu(BF4)2xH2O 1:1   1:2   2:1  4:1 
a       a       a      a 

1:1   1:2   2:1  4:1 
a       a       a      a 

1:1   1:2   2:1  4:1 
a       a       a      a 

Mn(NO3)2H2O  1:1   1:2   2:1  4:1 
a     a       a        b 

1:1   1:2   2:1  4:1 
b       b       b      b 

1:1   1:2   2:1  4:1 
a      a        a        a  

MnCl24H2O 1:1   1:2   2:1  4:1 
a        a       a     a 

1:1   1:2   2:1  4:1 
a       a       a      a 

1:1   1:2   2:1  4:1 
a       a      a        a 

MnBr24H2O 1:1   1:2   2:1  4:1 
a         a         a     a 

1:1   1:2   2:1  4:1 
a        a         a      a 

1:1   1:2   2:1  4:1 
a      a     a     a      

Ni(NO3)26H2O 1:1   1:2   2:1  4:1 
a      a        a        a 

1:1   1:2   2:1  4:1 
a       a       a      a  

1:1   1:2   2:1  4:1 
a       a       a       a 

NiBr26H2O 1:1   1:2   2:1  4:1 
a      a        a      a 

1:1   1:2   2:1  4:1 
a        a      a      a 

1:1   1:2   2:1  4:1 
a       a      a      a 

NiCl26H2O 1:1   1:2   2:1  4:1 
a      a        a     a 

1:1   1:2   2:1  4:1 
a       a       a     3 

1:1   1:2   2:1  4:1 
a       a       a        c 

 



 28

Crystallizations of SUC with a variety of metal salts 

N

NH

O

NH
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N

 

 
Table 2.3. Crystallizations of SUC with a variety of metal salts 
Metal salt EtOH, M:L ratio DMF, M:L ratio 

Cd(NO3)24H2O 1:1   1:2   2:1  4:1 
a      a        a      a 

1:1   1:2   2:1  4:1 
a      a        a      a 

Zn(NO3)24H2O 1:1   1:2   2:1  4:1 
a      a        a      a 

1:1   1:2   2:1  4:1 
a      a        a      a 

Cu(NO3)24H2O 1:1   1:2   2:1  4:1 
a      a        a      a 

1:1   1:2   2:1  4:1 
a      a        a      a 

CuCl24H2O 1:1   1:2   2:1  4:1 
a      a        a      a 

1:1   1:2   2:1  4:1 
a      a        a      a 

CuSO45H2O 1:1   1:2   2:1  4:1 
a      a        a      a 

1:1   1:2   2:1  4:1 
a      a        a      a 

NiBr26H2O 1:1   1:2   2:1  4:1 
a      a        a      a 

1:1   1:2   2:1  4:1 
a      a        a      a 

Co(NO3)24H2O 1:1   1:2   2:1  4:1 
a      a        a      a 

1:1   1:2   2:1  4:1 
a      a        a      a 

NiCl26H2O 1:1   1:2   2:1  4:1 
a      a        a      a 

1:1   1:2   2:1  4:1 
a      a        a      a 

Ni(NO3)26H2O 1:1   1:2   2:1  4:1 
a      a        a      a 

1:1   1:2   2:1  4:1 
a      a        a      a 

CoCl2H2O 1:1   1:2   2:1  4:1 
a      a        a       5 

1:1   1:2   2:1  4:1 
a      a        a      a 
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Crystallizations of ADI with a variety of metal salts 
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Table 2.4. Crystallizations of ADI with a variety of metal salts 
Metal salt MeOH, M:L ratio EtOH, M:L ratio DMF, M:L ratio 

Cd(NO3)24H2O 1:1   1:2   2:1  4:1 
6    a       a      a 

1:1   1:2   2:1  4:1 
6        9       a      a 

1:1   1:2   2:1  4:1 
a         a       a      a 

Zn(NO3)24H2O 1:1   1:2   2:1  4:1 
a       a       a      a 

1:1   1:2   2:1  4:1 
a       7      8       a 

1:1   1:2   2:1  4:1 
a        7     a     a 

Cu(NO3)24H2O 1:1   1:2   2:1  4:1 
a        a      a      a 

1:1   1:2   2:1  4:1 
10    10    10   a 

1:1   1:2   2:1  4:1 
d       d      10   c 

CuCl24H2O 1:1   1:2   2:1  4:1 
a      a      a        a 

1:1   1:2   2:1  4:1 
a       a      a       a 

1:1   1:2   2:1  4:1 
?      a        a       a 

CuSO45H2O 1:1   1:2   2:1  4:1 
a       a       a         a 

1:1   1:2   2:1  4:1 
a       a     a        a 

1:1   1:2   2:1  4:1 
c       c       c       c  

CoCl2H2O 1:1   1:2   2:1  4:1 
a      a       a        a 

1:1   1:2   2:1  4:1 
a      a       a       11 

1:1   1:2   2:1  4:1 
c         c      c       c 

Cu(BF4)2xH2O 1:1   1:2   2:1  4:1 
a       a       a      a 

1:1   1:2   2:1  4:1 
a      a        a       a 

1:1   1:2   2:1  4:1 
a       a       a      a 

Mn(NO3)2H2O 1:1   1:2   2:1  4:1 
a      a       a        a 

1:1   1:2   2:1  4:1 
a       a        a       a 

1:1   1:2   2:1  4:1 
a       a       a      a  

MnCl24H2O 1:1   1:2   2:1  4:1 
a       a       a      a 

1:1   1:2   2:1  4:1 
a      a       a        a 

1:1   1:2   2:1  4:1 
a       a      a       a   

MnBr24H2O 1:1   1:2   2:1  4:1 
a     d       a       d 

1:1   1:2   2:1  4:1 
d      d       d     12 

1:1   1:2   2:1  4:1 
c      c       c       c 

Ni(NO3)26H2O 1:1   1:2   2:1  4:1 
a       a     a       a 

1:1   1:2   2:1  4:1 
a      a       a       a 

1:1   1:2   2:1  4:1 
a       a     a        a 

NiBr26H2O 1:1   1:2   2:1  4:1 
a      a      a        a 

1:1   1:2   2:1  4:1 
a      a      a        a 

1:1   1:2   2:1  4:1 
a       c       c      c   

NiCl26H2O 1:1   1:2   2:1  4:1 
a      a      a        a 

1:1   1:2   2:1  4:1 
a      a       a       a  

1:1   1:2   2:1  4:1 
a     a       a        a 
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Crystallizations of GLUT with a variety of metal salts 
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Table 2.5. Crystallizations of GLUT with a variety of metal salts 
Metal salt MeOH, M:L ratio EtOH, M:L ratio DMF, M:L ratio 

Cd(NO3)24H2O 1:1   1:2   2:1  4:1 
b       b      b      14 

1:1   1:2   2:1  4:1 
b      b       b      14 

1:1   1:2   2:1  4:1 
a        a      a       a 

Zn(NO3)24H2O 1:1   1:2   2:1  4:1 
b       b      b     15 

1:1   1:2   2:1  4:1 
b       b      b      15 

1:1   1:2   2:1  4:1 
a        a      a       a 

Cu(NO3)24H2O 1:1   1:2   2:1  4:1 
a       a      a       a 

1:1   1:2   2:1  4:1 
a        a     a      a 

1:1   1:2   2:1  4:1 
a      a       a       a 

CuCl24H2O 1:1   1:2   2:1  4:1 
a       a       a       a 

1:1   1:2   2:1  4:1 
a       a       a      a 

1:1   1:2   2:1  4:1 
a       a       a      a 

CuSO45H2O 1:1   1:2   2:1  4:1 
a     a        a      a 

1:1   1:2   2:1  4:1 
a      a        a      a 

1:1   1:2   2:1  4:1 
a       a      a        a 

Co(NO3)24H2O 1:1   1:2   2:1  4:1 
b      a      a        a 

1:1   1:2   2:1  4:1 
a        a       a       a 

1:1   1:2   2:1  4:1 
a       a       a        a 

NiCl26H2O 1:1   1:2   2:1  4:1 
a       a       a       a 

1:1   1:2   2:1  4:1 
a       a       a      a 

1:1   1:2   2:1  4:1 
a      a      a       a 

Ni(NO3)26H2O 1:1   1:2   2:1  4:1 
a        a      a       a 

1:1   1:2   2:1  4:1 
a       a       a       a 

1:1   1:2   2:1  4:1 
a       a      a     a 

CoCl2H2O 1:1   1:2   2:1  4:1 
a      a      a      a 

1:1   1:2   2:1  4:1 
a       a       a       a 

1:1   1:2   2:1  4:1 
a       a       a       a 
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Crystallizations of ISO with a variety of metal salts 
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Table 2.6. Crystallizations of ISO with a variety of metal salts 
Metal salt MeOH, M:L ratio EtOH, M:L ratio DMF, M:L ratio 

Cd(NO3)24H2O 1:1   1:2   2:1  4:1 
d     d         d      d 

1:1   1:2   2:1  4:1 
a         d      a      d 

1:1   1:2   2:1  4:1 
a        a       a     a 

Zn(NO3)24H2O 1:1   1:2   2:1  4:1 
16      16     d     a 

1:1   1:2   2:1  4:1 
16      16      a     a 

1:1   1:2   2:1  4:1 
a      a       a       a 

CuCl24H2O 1:1   1:2   2:1  4:1 
a       a       a       a 

1:1   1:2   2:1  4:1 
a        a      a      a 

1:1   1:2   2:1  4:1 
e         e       e      e 

CuSO45H2O 1:1   1:2   2:1  4:1 
a       c       c      c 

1:1   1:2   2:1  4:1 
a       a       a      a  

1:1   1:2   2:1  4:1 
c      c       c      c 

Co(Cl)24H2O 1:1   1:2   2:1  4:1 
a       a        a       a 

1:1   1:2   2:1  4:1 
a        a      a      a 

1:1   1:2   2:1  4:1 
a        a       a      a 

Ni(NO3)26H2O 1:1   1:2   2:1  4:1 
a        a       a      a 

1:1   1:2   2:1  4:1 
a       a      a     a 

1:1   1:2   2:1  4:1 
a       a       a       a 

NiCl26H2O 1:1   1:2   2:1  4:1 
a        a       a       a 

1:1   1:2   2:1  4:1 
a       a      a       a 

1:1   1:2   2:1  4:1 
a       a       a       a 

MnBr24H2O 1:1   1:2   2:1  4:1 
a       a      a       a 

1:1   1:2   2:1  4:1 
a      a       a       a 

1:1   1:2   2:1  4:1 
a       a       a      a 

MnCl24H2O 1:1   1:2   2:1  4:1 
a      a       a        a 

1:1   1:2   2:1  4:1 
a      a        a        a 

1:1   1:2   2:1  4:1 
a      a       a       a 

Mn(NO3)2H2O 1:1   1:2   2:1  4:1 
a       a       a       a 

1:1   1:2   2:1  4:1 
a       a       a       a 

1:1   1:2   2:1  4:1 
a       a       a       a 

Cu(BF4)2xH2O 1:1   1:2   2:1  4:1 
a       a       a       a 

1:1   1:2   2:1  4:1 
a        a        a      a  

1:1   1:2   2:1  4:1 
a        a       a     a 
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Crystallizations of TER with a variety of metal salts 
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Table 2.7. Crystallizations of TER with a variety of metal salts 
Metal salt EtOH, M:L ratio DMF, M:L ratio 

Cd(NO3)24H2O 1:1   1:2   2:1  4:1 
d       d        d      d 

1:1   1:2   2:1  4:1 
b       b       b       b 

Zn(NO3)24H2O 1:1   1:2   2:1  4:1 
a        a       a       a 

1:1   1:2   2:1  4:1 
b       b      b       a 

CuCl24H2O 1:1   1:2   2:1  4:1 
a       a       a        a 

1:1   1:2   2:1  4:1 
a       a       a       a 

CuSO45H2O 1:1   1:2   2:1  4:1 
a      a        a       a 

1:1   1:2   2:1  4:1 
a       a       a        a 

Co(Cl)24H2O 1:1   1:2   2:1  4:1 
a        a       a       a 

1:1   1:2   2:1  4:1 
a       a       a       a 

Ni(NO3)26H2O 1:1   1:2   2:1  4:1 
a        a        a      a 

1:1   1:2   2:1  4:1 
b        b        b      b 

NiCl26H2O 1:1   1:2   2:1  4:1 
a       a        a      a 

1:1   1:2   2:1  4:1 
a       a      a        a 

MnBr24H2O 1:1   1:2   2:1  4:1 
a       a      a       a 

1:1   1:2   2:1  4:1 
a       a       a       a 

MnCl24H2O 1:1   1:2   2:1  4:1 
a       a       a       a 

1:1   1:2   2:1  4:1 
a       a      a      a 

Mn(NO3)26H2O 1:1   1:2   2:1  4:1 
a        a       a     a 

1:1   1:2   2:1  4:1 
b       b       b        b 

Cu(NO3)24H2O 1:1   1:2   2:1  4:1 
a       a    a        a 

1:1   1:2   2:1  4:1 
a       a        a      a  
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Crystallizations of TER-A with a variety of metal salts 
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Table 2.8. Crystallizations of TER-A with a variety of metal salts 
Metal salt EtOH, M:L ratio DMF, M:L ratio 

Cu(NO3)24H2O 1:1   1:2   2:1  4:1 
a        a       a     a 

1:1   1:2   2:1  4:1 
d      a      a       a 

Mn(NO3)2H2O 1:1   1:2   2:1  4:1 
a       a       a      b 

1:1   1:2   2:1  4:1 
a       c       a      b 

Ni(NO3)26H2O 1:1   1:2   2:1  4:1 
a      a       a      a 

1:1   1:2   2:1  4:1 
a      a       a       a 

Cd(NO3)24H2O 1:1   1:2   2:1  4:1 
a        a       a      a 

1:1   1:2   2:1  4:1 
a       a       a       a 

Zn(NO3)24H2O 1:1   1:2   2:1  4:1 
a      a      a        a 

1:1   1:2   2:1  4:1 
a     a       a      17 
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Crystallizations of DIP with a variety of  metal salts 
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Table 2.9. Crystallizations of DIP with a variety of metal salts 
Metal salt EtOH, M:L ratio DMF, M:L ratio 

Cd(NO3)24H2O 1:1   1:2   2:1  4:1 
a      a       a       a 

1:1   1:2   2:1  4:1 
a      a       a       a 

Zn(NO3)24H2O 1:1   1:2   2:1  4:1 
a      a       c       a 

1:1   1:2   2:1  4:1 
a      a       a       b 

CuCl24H2O 1:1   1:2   2:1  4:1 
a      a       a       a 

1:1   1:2   2:1  4:1 
a      a       a       a 

CuSO45H2O 1:1   1:2   2:1  4:1 
a      a       a       a 

1:1   1:2   2:1  4:1 
a      a       a       a 

Co(Cl)24H2O 1:1   1:2   2:1  4:1 
a      a       a       a 

1:1   1:2   2:1  4:1 
a      a       a       a 

Ni(NO3)26H2O 1:1   1:2   2:1  4:1 
a      a       a       a 

1:1   1:2   2:1  4:1 
a      a       a       a 

NiCl26H2O 1:1   1:2   2:1  4:1 
a      a       a       a 

1:1   1:2   2:1  4:1 
a      a       a       a 

MnBr24H2O 1:1   1:2   2:1  4:1 
a      a       c       a 

1:1   1:2   2:1  4:1 
a      a       c       a 

MnCl24H2O 1:1   1:2   2:1  4:1 
a      a       a       a 

1:1   1:2   2:1  4:1 
a      a       a       a 

Mn(NO3)2H2O 1:1   1:2   2:1  4:1 
a      a       a       a 

1:1   1:2   2:1  4:1 
a      a       a       a 

Cu(NO3)24H2O 1:1   1:2   2:1  4:1 
a      d       d       d 

1:1   1:2   2:1  4:1 
a      a       a       a 
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Co-crystallizations of trimesic acid (T) with the synthesized ligands (L) 

Trimesic acid and the ligand in the specified ratio were ground together using a mortar and 

pestle. The resulting paste was dissolved in either DMF or H2O. The solvent was then allowed 

to evaporate.  

 

Table 2.10. Co-crystallizations of trimesic acid (T) with the synthesized ligands (L) 
Ligand DMF, T:L ratio H2O, T:L ratio 

TER 1:1       1:3      1:1.5 
e           e           e 

1:1       1:3      1:1.5 
a           a           a 

ISO 1:1       1:3      1:1.5 
a           a           a 

1:1       1:3      1:1.5 
a           a           a 

ADI 1:1       1:3      1:1.5 
a           a           a 

1:1       1:3      1:1.5 
13        13         a 

DIP 1:1       1:3      1:1.5 
a           a           a 

1:1       1:3      1:1.5 
a           a           a 

SUC 1:1       1:3      1:1.5 
e           e           e 

1:1       1:3      1:1.5 
a           a           a 

FUM 1:1       1:3      1:1.5 
a           a           a 

1:1       1:3      1:1.5 
a           a           a 

GLUT 1:1       1:3      1:1.5 
a           a           a 

1:1       1:3      1:1.5 
a           a           a 

TER A 1:1       1:3      1:1.5 
e           e           e 

1:1       1:3      1:1.5 
a           a           a 

 

2.3 Instrumentation and computer packages 

2.3.1 Single crystal diffraction analysis (SCD) 

Crystal quality was assessed by its ability to rotate plane polarized light, its transparency and 

its morphology. Crystals which were too large were cut to the desired size. Suitable crystals 

were mounted on a glass fibre using paratone oil. All intensity data were collected at 100 K on 

a Bruker SMART APEX CCD diffractometer4 with Mo fine focus sealed tube, a 0.5 mm 

Monocap collimator, and an Oxford Cryostream cooling system (700 Series Cryostream Plus). 

The data were collected using omega scans, and recorded using a CCD (charge coupled 

device) area detector with a detector to crystal distance of 60 mm. Data reduction and 

absorption corrections were carried out using the SAINT5 and SADABS6 programmes, 

respectively. The unit cell dimensions were refined on all data and space groups were assigned 

based on systematic absences and intensity statistics. The structures were solved by direct 

methods using SHELXS-977 and refined by SHELXL-97 and the X-seed8 graphical user 

interface. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed 

on calculated positions where feasible or located in difference electron density maps. Images 

of all crystal structures were generated using the programme POV-Ray.9 Atomic labels and 

unit cell axis were inserted using POV-Label.  
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2.3.2 Powder X-ray Diffraction (PXRD) 

Diffraction patterns were recorded on a PANalytical XPERT-PRO diffractometer system. 

Simulated powder patterns of crystal structures were calculated using the programme  

LAZY-Pulverix10 and compared with the experimental patterns to confirm that crystals 

selected were a representative of the bulk sample. 

 

2.3.3 Nuclear Magnetic Resonance (NMR) 

All samples were dissolved in deuterated dimethylsulphoxide (DMSO-d6) and analysed using 

either a Varian Unity INOVA (400MHz) spectrometer or a Varian VNMRS (300MHz) 

spectrometer. 

 

2.3.4 FTIR-ATR 

All samples were analysed as neat solids on the Golden Gate ATR of a Nexus Thermonicolet 

670 FTIR.  

 

2.3.5 Liquid Chromatography Electrospray Ionisation Mass Spectrometry  

(LC ESI-MS) 

All samples were analysed using a Waters API Quattro Micro spectrometer with the following 

settings: 3.5 kV capillary voltage, 15 V cone voltage, 100° C source temperature, 400° C 

desolvation temperature, desolvation gas flow rate 400 L/h and cone gas flow rate 50 L/h. 

 

2.3.6 The Cambridge Structural Database (CSD) 

The CSD11 was used as a search tool for published data related to this work. The CSD records 

single crystal structures and powder diffraction results of compounds that have been 

determined by X-Ray diffraction and neutron diffraction studies and deposited as published or 

unpublished results. 
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Chapter 3 

Crystal Structure Descriptions of the Pure Ligands 

 

3.1 Introduction 

This chapter describes crystal structures of the following ligands: TER, ADI, DIP, GLUT and 

TER-A. A crystal structure of FUM has been reported1 and a crystal structure of ISO could 

not be obtained because all crystallization experiments yielded either a powder or crystals that 

were not suitable for single crystal diffraction (SCD) analysis. The crystallographic data and 

details of the structure solution and refinement procedures for the crystal structures are given 

in Table 3.6 (page 49) at the end of the chapter. 

 

3.2 Crystal structure descriptions of the pure ligands 

3.2.1 Crystal structure of TER as a tetrahydrate 

Crystals suitable for SCD analysis were grown by slow evaporation of a solution of TER in a 

mixture of DMF and water. Two crystals, TER-1 and TER-2 were isolated. SCD analysis 

revealed that TER-1 is a tetrahydrate form of TER while TER-2 is a dihydrate form. The 

dihydrate form will be discussed in the next section. The tetrahydrate form crystallizes in the 

monoclinic space group P21/c. The asymmetric unit (Figure 3.1) consists of two water 

molecules and one TER molecule, with the latter located on an inversion centre. 

 

Figure 3.1. The molecular structure of TER-1 showing the crystallographic labelling scheme 
for the asymmetric unit and 50% probability ellipsoids for non hydrogen atoms. Red dashed 
lines indicate hydrogen bonding. The three planes are labelled a, b and c. 



 39

 

The ligand adopts an S conformation with three planes labelled a, b and c as shown in 

Figure 3.1. Planes a and c represent the two 4-(aminomethyl)pyridine moieties while plane b 

represents the spacer group. The dihedral angle between the spacer group plane and the 4-

(aminomethyl)pyridine plane is 79.88º (15). The amide groups are trans to each other, (torsion 

angles, 175.6º (2) and they are approximately co-planar with the phenylene ring.  

Individual ligand molecules are aligned in a crisscross pattern in the bc plane, and they 

interact via the water molecules (Figure 3.2). One of the water molecules donates a hydrogen 

bond to the amide carbonyl group of a ligand (O15H15BO10iii) as well as to the second 

water molecule (O15H15AO14iv). The second water molecule, in turn, donates a 

hydrogen bond to a pyridyl nitrogen atom of a second ligand (O14H14BN1ii) as well as to 

the other water molecule (O14H14AO15) (Figure 3.3). Finally, the second water 

molecule accepts a hydrogen bond from an amide NH group of third ligand molecule 

(N8H8O14i). A 3-D network is formed by virtue of these hydrogen bonds. All hydrogen 

bonding details are given in Table 3.1. 

 

Table 3.1. Hydrogen-bond geometry (Å, º) for TER-1 
XHA XH HA XA         XHA) 

N8H8O14i
 0.88           2.02          2.850(2)    155.7         

O14H14BN1ii
 0.97          1.83          2.766(2)    162.0         

O14H14AO15 0.89          1.84          2.728(2)    172.7         
O15H15BO10iii 1.01          1.79          2.793(2)    179.6         
O15H15AO14iv

 0.85(2)          1.84          2.798(2)    178.2(2)         

Symmetry codes: (i) x, -y+3/2, z-1/2, (ii) -x, -y+2, -z+1, (iii) x-1, y, z, (iv) x-1, y, z 

 

 

Figure 3.2. The packing diagram of TER-1 as viewed down the a axis. The region within the 
inserted rectangle is shown magnified in Figure 3.3. 
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Figure 3.3. An expanded view of the hydrogen bonding interactions between individual TER 
and water molecules in TER-1. 
 

3.2.2 Crystal structure of TER as a dihydrate 

 

Figure 3.4. The molecular structure of TER-2 showing the crystallographic labelling scheme 
and 50% probability ellipsoids for non-hydrogen atoms. Only the asymmetric unit is labelled. 
 

The dihydrate form crystallizes in the orthorhombic space group Pbca. The asymmetric 

unit (Figure 3.4) consists of half a TER molecule, situated on an inversion centre and a water 

molecule. Unlike in the tetrahydrate structure, the amide groups are not co-planar with the 

phenylene ring, but are tilted at 32.95º (2) with respect to the phenylene ring plane. The 

4-(aminomethyl)pyridine plane is almost perpendicular to the amide group plane (dihedral 

angle = 89.98º (3)). 

Individual TER molecules interact by means of three hydrogen bonds via the water 

molecule. The water molecule is hydrogen bonded to the ligand via both the amide carbonyl 

group (O14H14AO10ii) and the pyridyl nitrogen atom (O14H14BN1). In the third 

hydrogen bond, the water molecule acts as an acceptor of a hydrogen bond from the ligand via 

the amide NH group (N8H8O14i). In contrast to the tetrahydrate form of TER, hydrogen 

bonding between water molecules and TER results in a 2-D network (Figure 3.5). The 2-D 
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networks in the dihydrate form stack on top of one another as shown in Figure 3.6, with no 

significant π-π interactions observed. Details of hydrogen bonding are given in Table 3.2. 

 

 

Figure 3.5. The packing diagram of TER-2. Individual TER molecules interact via the water 
molecule. 
 

Table 3.2. Hydrogen-bond geometry (Å, º) for TER-2 
XHA XH HA XA         (XHA) 

N8H8O14i 0.88          2.02          2.838(3)      155.0         
O14H14BN1 0.93          1.93          2.846(3) 170.0         
O14H14AO10ii 0.91          1.90          2.807(3)      174.6    

Symmetry codes: (i) -x-1/2, -y, z-1/2, (ii) -x, -y, -z+2 

 

 

Figure 3.6. The 2-D networks formed as a result of the hydrogen bonding interactions between 
the water and TER molecules. The individual 2-D sheets are coloured in light brown and CPK 
colours to distinguish them from each other. 
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3.2.3 Crystal structure of ADI 

 

Figure 3.7. The molecular structure of ADI showing crystallographic labelling scheme and 
30% probability ellipsoids for non-hydrogen atoms. Asymmetric unit atoms are labelled. Red 
dashed lines indicate hydrogen bonding. 
 

Crystals suitable for SCD analysis were obtained from slow evaporation of an ethanolic 

solution of ADI. ADI crystallizes in the monoclinic space group P21/c. The asymmetric unit 

(Figure 3.7) consists of half an ADI molecule, situated on an inversion centre, and a water 

molecule.  

The molecules are aligned to form two distinct columns with all molecules in one 

column sloping in one direction and molecules in the adjacent column sloping the other way to 

form a herringbone pattern. ADI molecules in the same column interact via  

self-complementary amide hydrogen bonds (N8H8O10i).2 The water molecule connects 

ADI molecules in adjacent columns by acting as a hydrogen bond donor in a hydrogen bond to 

the pyridyl nitrogen atom of a ligand in one column (O13H13AN1) as well as in a 

hydrogen bond to the second water molecule (O13H13BO13ii), which in turn acts as a 

hydrogen bond donor to a pyridyl nitrogen atom of a ligand in the adjacent column 

(O13H13AN1) (Figure 3.8). Details of all hydrogen bonding interactions are given in 

Table 3.3. 

 

Table 3.3. Hydrogen-bond geometry (Å, º) for ADI 
XHA XH HA XA         (XHA) 

N8H8O10i 0.88 1.94 2.814(2) 175         
O13H13BO13ii 0.96 1.81 2.774(2) 173 
O13H13AN1 0.96 1.88 2.846(3) 173 

Symmetry codes: (i) x, y, z-1, (ii) x, -y+3/2, z-1/2 
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Figure 3.8. ADI molecules pack in the herringbone motif; molecules in the same column 
interact via self-complementary amide hydrogen bonds and molecules in adjacent columns are 
linked by hydrogen bonding via water molecules. Hydrogen atoms not involved in hydrogen 
bonding have been omitted for clarity. 
  

3.2.4 Crystal structure of DIP 

 

Figure 3.9. The molecular structure of DIP showing ellipsoids at 50% probability level and 
the crystallographic labelling scheme for the asymmetric unit. Red dashed lines indicate 
hydrogen bonding. 
 

Crystals suitable for SCD analysis were obtained by slow evaporation of a solution of DIP in 

DMF. DIP crystallizes in the triclinic space group P. The asymmetric unit, which is shown in 

Figure 3.9, consists of half a DIP molecule which is situated on an inversion centre as well as 
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two water molecules. The ligand adopts an elongated S conformation with the two amide 

groups trans to each other with respect to the biphenyl moiety. The amide group is tilted 12.68º 

(16) and 81.89º (18) relative to the planes of the biphenyl and the 4-(aminomethyl)pyridine 

groups, respectively. 

Ligand molecules interact via the water molecules. The ligand is hydrogen bonded via 

the amide group (N8H8O17) to a water molecule, which is in turn hydrogen bonded via 

the amide carbonyl group (O17H17BO10ii) to a second ligand molecule as well as to the 

second water molecule (O17H17AO18). The second water molecule is in turn hydrogen 

bonded to a second ligand molecule via amide carbonyl group (O18H18BO10ii) and to a 

third ligand molecule via the pyridyl nitrogen atom (O18H18AN1i). By virtue of these 

hydrogen bonding interactions, the pyridine moieties are stacked on top of one another to form 

a motif that resembles a staircase. The packing diagram and the hydrogen bonding can be seen 

in Figures 3.10 and 3.11 respectively. Hydrogen bonding details are given in Table 3.4. 

 

0

b

c
0

b

c

 

Figure 3.10. The packing diagram of DIP as viewed along the a axis. The region within the 
inserted rectangle is shown magnified in Figure 3.11. 
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Figure 3.11. The expanded view of the hydrogen bonding interaction between DIP and water 
molecules. 

 

Table 3.4. Hydrogen-bond geometry (Å, º) for DIP 
XHA XH HA XA (XHA) 

N8H8O17 0.88 1.99 2.822(2) 156.2 
O18H18AN1i 0.98 1.829 2.776(2) 155.5 
O17H17AO18 0.85 1.91 2.757(2) 170.7 
O18H18BO10ii 0.97 1.88 2.843(2) 172.6 
O17H17BO10iii 0.91 1.91 2.810(2) 171.8 

Symmetry codes: (i) -x+1, -y, -z+1, (ii) x+1, y-1, z, (iii) x, y-1, z 

 

3.2.5 Crystal structure of GLUT 

 

Figure 3.12. The asymmetric unit of GLUT showing the crystallographic labelling scheme 
and displacement ellipsoids at 50% probability level. 
 

Crystals suitable for SCD analysis were grown by slow evaporation of an ethanolic solution of 

GLUT. The ligand crystallizes in the monoclinic space group P21/c with an entire GLUT 

molecule in the asymmetric unit (Figure 3.12). The two pyridyl nitrogen atoms face the same 

side as the two oxygen atoms of the amide group. A trend that has been observed so far is that 

water molecules and/self-complementary amide hydrogen bonds connect individual ligand 

molecules. However, in the crystal structure of GLUT, neither self-complementary amide 

hydrogen bonds nor water molecules occur. Individual ligand molecules interact via amide NH 

and aromatic CH groups to form crisscross 1-D chains running along [001] (Figure 3.13a). 
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ba ba
 

Figure 3.13. (a) Crisscross 1-D chains formed as a result of hydrogen bond interaction 
between amide NH and aromatic CH groups of neighbouring GLUT molecules, (b) packing 
diagram showing chains in the two layers coloured in light brown and CPK colours. 
 

The 1-D chains pack to form layers; chains in the same layer do not interact by any 

type of hydrogen bond. However, they do interact with chains in the next layer via π-π 

interactions as evidenced by a centroid-to-centroid distance of 3.691 Å (Figure 3.13b).  

 

3.2.6 Crystal structure of TER-A 

Crystals suitable for SCD analysis were obtained by slow evaporation of a DMF solution of 

TER-A. The asymmetric unit of TER-A (Figure 3.14) consists of one entire TER-A molecule. 

The ligand comprises two distinct planes: one formed by the 4-(aminomethyl)pyridine moiety 

and the other formed by the benzoic acid moiety. The dihedral angle between the two planes is 

79.76º. The carboxylic acid and pyridyl groups are well-known for combining to generate  

α-networks,3 while amide bonds are well-known for forming self-complementary amide 

hydrogen bonds.2 In the crystal structure of TER-A both interactions are observed. Individual 

ligand molecules interact via the pyridine-carboxylic acid interaction to form an α-network 

(O19H19N1ii). Ligand molecules in the parallel 1-D chains interact via  

self-complementary amide hydrogen bonds (N8H8O10i) to form a β-network. The β-

sheets stack directly on top of one another (Figure 3.15). Hydrogen bonding details are given 

in Table 3.5. 
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Figure 3.14. The asymmetric unit of TER-A showing the crystallographic labelling scheme 
and 50% probability ellipsoids for non-hydrogen atoms. 
 

Table 3.5. Hydrogen-bond geometry (Å, º) for TER-A 
XHA XH HA XA (XHA) 

N8H8O10i 0.88          2.12 2.875(2)      144.1         
O19H19N1ii 1.04          1.54          2.573(1)    177.3         

Symmetry codes: (i) -x+3/2, y, z+1/2, (ii) x+1/2, -y, z 

 

 

Figure 3.15. The packing diagram of TER-A. Individual TER-A molecules interact via 

complementary amide to amide hydrogen bonds as well as PY-NH-O hydrogen bonds. 

 

3.3 Conclusion 

The crystal structures of TER, ADI, DIP, GLUT and TER-A are described here. Even though 

crystallizations were carried out in either ethanol/DMF, none of the crystal structures included 

any of these solvent molecules. All the crystal structures, except GLUT and TER-A, included 

water molecules which play the role of linking ligand molecules via hydrogen bonding. In the 

crystal structure of GLUT, the ligand molecules interact via hydrogen bonding between the 

amide NH and the aromatic CH groups as well as π-π interactions between the pyridyl rings to 
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form an assembly with no space for water molecules. Of the six structures, only the crystal 

structures of ADI and TER-A featured the self-complementary amide hydrogen bonds. It is 

not clear why these interactions are absent in the rest of the crystal structures. Perhaps the 

interactions between the amide groups and water molecules are more favourable that the 

interactions between amide groups. 
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Table 3.6. Crystallographic data of the synthesized ligands 
 TER-1 TER-2 ADI DIP GLUT TER-A 

Empirical formula C20H26N4O6 C20H22N4O4 C18H26N4O4 C26H30N4O6 C15H16N4O2 C28H24N4O6 
Formula weight 418.45 382.42 362.43 494.54 284.32 512.51 
Temperature (K) 173(2) 173(2) 173(2) 173(2) 173(2) 173(2) 
Wavelength (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 
Crystal system monoclinic orthorhombic monoclinic triclinic monoclinic orthorhombic 
Space group P21/c Pbca P21/c P P21/c Pca21 
a/Å 4.7486(7) 12.843(2) 7.6077(2) 6.496(2) 8.188(1) 26.365(5) 
b/ Å 16.728(2) 9.608(1) 27.665(6) 6.928(2) 15.767(3) 4.524(9) 
c/ Å 13.396(2) 14.965(2) 4.849(1) 13.656(4) 10.9328(2) 9.786(2) 
α/ º    84.061(4)   
β/ º 100.073(2)  105.76(3) 88.035(4) 102.078(2)  
γ/ º    79.946(4)   
Volume (Å3) 1047.7(3) 1847(4) 982.4(3) 602.1(3) 1380.2(4) 1167.3(2) 
Z 2 4 2 1 4 2 
Calculated density (g cm-3) 1.326 1.376 1.225 1.364 1.368 1.458 
Absorption coefficient (mm-1) 0.099 0.098 0.088 0.098 0.094 0.105 
F000 444 808 388 262 600 536 
Crystal size (mm3) 0.37 × 0.26 × 0.11 0.29 × 0.16 × 0.05 0.30 × 0.22 × 0.19 0.20 × 0.16 × 0.12 0.38 × 0.33 × 0.23 0.24 × 0.18  0.16 
θ range for data collection (º) 1.97 to 28.14 2.72 to 27.99 2.78 to 27.10 1.50 to 28.18 2.30 to 27.94 1.54 to 25.60 
Miller index ranges -5 ≤ h ≤ 6, -21 ≤ k ≤ 

21, -17 ≤ l ≤ 17 
-16 ≤ h ≤ 16,  
-12 ≤ k ≤ 12, -19 ≤ l ≤18 

-9 ≤ h ≤ 6,  
-34 ≤ k ≤ 35, -5 ≤ l ≤ 6 

-8 ≤ h ≤ 8, -9 ≤ k ≤ 9,  
-18 ≤ l ≤ 17 

-9 ≤ h ≤ 10, -20 ≤ k ≤ 18,  
-14 ≤ l ≤ 13 

31 ≤ h ≤ 32, -5 ≤ k ≤4, 
 -11 ≤ l ≤ 6 

Reflections collected 11628 19267 5441 6780 8226 5909 
Independent reflections 2439 [Rint = 0.0364] 2148 [Rint = 0.0778] 2123 [Rint = 0.0293] 2628 [Rint = 0.0256] 3010 [Rint = 0.0280] 1615 [Rint = 0.0280] 
Completeness to θmax (%) 94.8 96.6 98.1 88.7 90.7 99.8 
Max. and min. transmission 0.9892 and 0.9642 0.9951 and 0.9722 0.9835 and 0.9741 0.9883 and 0.9806 0.9786 and 0.9650 0.9835 and 0.9753 
Refinement method Full-matrix least-

squares on F2 
Full-matrix least-
squares on F2 

Full-matrix least-
squares on F2 

Full-matrix least-
squares on F2 

Full-matrix least-squares 
on F2 

Full-matrix least-
squares on F2 

Data / restraints / parameters 2439 / 0 / 143 2148 / 0 / 129 2123 / 2 / 126 2628 / 0 / 170 3010 / 0 / 190 1615 / 1 / 173 
Goodness-of-fit on F2 1.037 1.016 1.033 1.047 1.002 1.059 
Final R indices [I > 2σ(I)] R1 = 0.0385,  

wR2 = 0.0863 
R1 = 0.0452,  
wR2 = 0.0974 

R1 = 0.0613, 
 wR2 = 0.1383 

R1 = 0.0436,  
wR2 = 0.1077 

R1 = 0.0763,  
wR2 = 0.2221 

R1 = 0.0273, 
 wR2 = 0.0676 

R indices (all data) R1 = 0.0549,  
wR2 = 0.0959 

R1 = 0.0806,  
wR2 = 0.1143 

R1 = 0.0994,  
wR2 = 0.1570 

R1 = 0.0606,  
wR2 = 0.1185 

R1 = 0.0927,  
wR2 = 0.2384 

R1 = 0.0302,  
wR2 = 0.0700 

Largest diff.peak and hole (e Å-3) 0.331 and -0.230 0.216 and -0.221 0.149 and -0.172 0.375 and -0.258 
 

0.825 and -0.852 0.153 and -0.173 
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