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SUMMARY

A multi-purpose beam/column apparatus is developed to ensure successful testing of

structural elements and to optimise the main test floor of the Structures Laboratory of the

University of Stellenbosch. An overview of the testing of structural elements is given as

background to beam and column testing, with specific reference to the test sample, the test

arrangement and the test data. The test arrangement, with reference to the test setup

boundary conditions (static and kinematic), and the loading are discussed. A summary of

the collection and the processing of the test data is given and frequently used and standard

test setup is described.

The requirements and the various components of the testing apparatus are discussed and a

three-dimensional CAD model of the apparatus is developed to illustrate the versatility of

the apparatus.

A rational planning process is developed to optimise the testing and pre-test planning

process with specific reference to the use of the apparatus. This rational planning process is

defined as the process of preparing, testing and evaluating structural tests and together with

the literature review will ensure meaningful test results.

The use of the apparatus, built by the Department of Civil Engineering, University of

Stellenbosch and the use of the rational planning process are illustrated by testing the

deflection of a welded truss, from which conclusions are drawn.
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OPSOMMING

'n Veelsydige balklkolom apparaat is ontwikkel om die gebruik van die hoof-toetsvloer van

die Struktuur Laboratorium van die Universiteit van Stellenbosch te optimiseer en

suksesvolle struktuurtoetse te verseker. As agtergrond tot die ontwikkeling van die MTA

word 'n oorsig gegee oor balk-en-kolom toetse, met spesifieke verwysings tot die toets-

stuk, die toets-opstelling en die toets-data. Die toets-opstelling word bespreek met

spesifieke verwysing na die grenstoestande (staties en kinematies) en die aangewende

belasting. Die versameling en die verwerking van toetsdata en die algemeen gebruikte en

standaard toets-opstellings word bespreek.

Die vereistes van die verskillende komponente van die apparaat word bespreek en 'n drie-

dimensionele CAD model van die apparaat word gebruik om die veelsydigheid van die

apparaat te beklemtoon. 'n Rasionele beplanningsproses, wat spesifiek verwys na die

gebruik van die apparaat, word ontwikkel. Hierdie beplanningsproses wat die beplanning,

uitvoer en evaluasie van strukturele toetse insluit, saam met die literatuur agtergrond,

verseker sinvolle toetsresultate.

'n Gesweisde vakwerk word getoets om die gebruik van die apparaat, gebou deur die

Departement van Siviele Ingenieurswese, Universiteit van Stellenbosch en die gebruik van

die rasionele beplanningsproses te illustreer. Gevolgtrekkings word gemaak na aanleiding

van hierdie toetse.
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1 INTRODUCTION

1.1 Background and Description of the Thesis

Experimental mechanics form an important part of structural engineering, as design

formulas are verified and even derived from test results. Experiments also assist students in

understanding structural behaviour and design and therefore form an important part of

undergraduate study.

Poor test results have no educational nor research value and can be considered a waste of

time. The thesis describes the development and design of a beam testing apparatus in order

to ensure meaningful test results.

Various literature references to testing structural elements are discussed in order to provide

a background to testing beams. This will provide the user with a deeper insight into

experimental mechanics, as loading arrangements and loading requirements, static and

kinematic boundary conditions and the measurement of test data are discussed.

With reference to the literature study the requirements for a testing apparatus are described.

These requirements include flexibility, size, static and kinematic boundary conditions and

loading requirements.

The developed testing apparatus, and its various components, are described with reference

to the literature study and the requirements. The Flexibility of the Multi-purpose

Beam/Column Testing Apparatus (MTA) is demonstrated by means of illustrations.

A rational planning procedure for using the testing apparatus is developed and described to

ensure successful testing. This procedure will assist in various stages of the pre-testing

decision making process.

In the evaluation of the testing apparatus, it was used as test setup for a diverse range of

graduate and postgraduate studies. These tests included testing a truss, a crane wheel on a

1.1
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crane track, an overhead crane beam and a portal frame. From the performance of the MTA

in these tests in reference to the requirements, conclusions were drawn.

1.2 The Objectives ofthe Thesis

The main test floor of the Structure Laboratory has a loading capacity of 400kN for vertical

and 200kN for horizontal loads per fixing point (for a maximum of four points). Fixing

points are spaced at 920 mm cross-centres in both directions, the total size of the test floor

being 25 x 12 fixing points, or 225 m2
, as can be seen in Figure 1.1.

ure 1.1 Plan on Test Floor

II

CJ
ru

CJ

CJ
ru
(J\

@J

Fixing any structure to the test floor can only be done at these discrete fixing points. This

limits the length of test beams and loading position to a multiple of920 mm.

A flexible Multi-purpose Beam Testing Apparatus (MTA) had to be developed, designed

and build in order to optimise the main test floor and existing loading equipment of the

Structures Laboratory and to ensure successful testing.

1.2
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The testing apparatus must make provisions for various beam sizes (length, depth and

height), loading arrangements, static and kinematic boundary conditions without making

major alterations to the setup.

The aim in using this multi-purpose beam testing apparatus is to reduce the cost of setting

up, the materials used and the time spent, resulting in lower expenses in testing beams and

making it more viable for product development and research testing.

The objective of the apparatus is to perform tests on various structural elements (although it

is mainly aimed at testing beams), in order to assist with educating graduate students and

furthering research by providing a testing apparatus that will comply with all testing

requirements. The apparatus also needs to accommodate commercial testing and product

development.

To ensure a useful or successful experiment, the test sample should be correctly prepared

and the static and kinematic boundary conditions and data collection points correctly set up.

The test also needs to be performed by a competent person, understanding structural and

experimental mechanics, to ensure correct visual observations are made. For this reason an

overview on testing and a testing procedure needed to be given.

The final objective of this thesis is to use the Multi-purpose Beam Testing Apparatus to

perform various beam tests in order to evaluate the developed testing apparatus.

1.3
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2 LITERATURE STUDY

2.1 Introduction

Testing a beam or a column, similar to testing other structural components, will require a test

sample, a test arrangement and a method of test data acquisition. The test sample having

unique properties, such as geometric and material properties, is set up in a test arrangement.

Each test arrangement consists of two separate, but dependant, parts namely the boundary

conditions and a loading arrangement. The third part of testing would be the collecting and

the processing of the test data. The class diagram for a beam/column test is illustrated in

Figure 2-1.

Test Sample

Beam / Column

Geometry

Material Properties

Beam/Column Test

I

I Test Arrangement I•
Test Setup

(Boundary Conditions)

Supports

Lateral Supports

Position

Restraint

Loading

Transverse Loads

Coupled Moment

Torsion Moment

Displacement

Position (incl. the

Direction)

Time

Magnitude

Normal!

Destabilising

Test Data

Force

Displacement:

Translation/Rotation

Strain

Visual

Position

Time

Magnitude

Figure 2-1 Class Diagram for Beam/Column Tests

2.1
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This section will provide a brief overview of beam/column testing, with specific reference to

Figure 2-1, under the following headings:

• Test Sample

• Test Arrangements

• Test Data Acquisition and Data Processing

• Frequently Used and Standard Test Setups

2.2 Test Sample

The structural member, such as a beam and/or column undergoing testing, is referred to as

the test sample. The Test Sample forms the starting point of structural testing. The selected

Test Sample needs to be statistically representative if a single sample is tested from a group.

This section will focus on the definition of beams and columns, and at the inherent

(geometric and material) properties of a test sample.

2.2.1 General Beam/Column Definitions

A beam and a column will be defined in the way they will act structurally, due to forces

acting on them, rather than the dictionary definition of a beam being a "long sturdy piece of

squared timber or metal spanning an opening or room, usually to support the structure above"

and a column as "an upright cylindrical pillar supporting an entrance or arch."

A beam can simply be defined as a structural element resisting the forces acting on it in

bending. This will result in a shear force and a bending moment acting along the length of the

member. A beam can be in uni- or bi-axial bending, or in other words, bending about one or

both cross sectional axes. A good example of a beam would be a crane girder spanning

between crane columns. A gable column is also an example of a beam; in this case resisting

wind loading, bending between the roof and the footing.

2.2
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A column, on the other hand, can be defined as a member resisting axial (tension or

compression) forces. Reinforced concrete columns in a braced concrete framed structure and

bridge piers are good examples of columns.

A beam-column will act simultaneously as a beam and a column. This implies that the

structural element will be in axial compression (or tension) and bending (uni-or bi-axial

bending) simultaneously. Typical examples of such an element would be the columns of a

portal frame.

Torsion can be applied on both columns and beams. This will however not affect the element

being a column or a beam as the torsion moment will be about the centroid of the element.

Structural elements, such as trusses can be formed out of columns and beams. In the case of

the truss it will consist of a series of compression and tension members. Other examples of

such structural element include the vierendeel frame and the portal frame.

Trusses will behave in a similar manner to a beam resisting bending. For this reason testing

trusses can be considered the same as testing beams.

2.2.2 Geometry

Each test sample will have geometric properties. This includes the overall geometry, size

(length and mass) of the sample and cross sectional properties. The cross sectional geometry

will enable one to calculate the area, the moment of inertia about the xx and yy axis, and

torsional properties of the cross section. The cross sectional properties for an !PE 200 are

given as an example in Figure 2-2.

2.3
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y Section Description: IPE 200

m = 22.4 kg/m

h = 200 mm
b = 100 mm

lw = 5.6 mm
ti = 8.5 mm
About x-x

1= 19.4 x106 mm"

Ze = 194 x103 mm"

Zpl = 221 x103 mm"

r = 83.6 mm

r1= 12 mm
hw= 159mm

A = 2 850 mm2

J = 70.2 x103 mm"
Cw = 13.1 x103 mm"

Abouty-y

1= 1.42 x106 mm"

Ze = 28.5 x103 mm"

Zpl = 44.6 x103 mm"

r= 22.4 mm

x- -X

~i\'---]

Y

Figure 2-2 Cross Sectional Properties: IPE 200 [1]

2.2.3 Material Properties

Test samples of different materials will behave differently under the same test due to the

difference in material properties. For this reason it is important to have representative

material samples (coupons form the test specimen) tested of each test sample so that the

material properties can be determined. A weighted average method can be used to compute

the average material strength in the case of I-beams as coupons taken from the flanges and

webs will yield different results [21].

Material behaviour will include elastic, elastic plastic, plastic, strain hardening, strain aging,

yield and fracture. These properties can vary for compression and tension forces and with

temperature. A typical stress/strain graph for steel is illustrated in Figure 2-3.

Material properties together with geometric properties will enable one to use test results to

verify analytical assumptions and derive design equations for the specific member.

2.4
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Figure 2-3 Typical Stress Strain Graph for Steel [1]

2.3 Test Arrangement

The test arrangement refers to the way the test sample is "set up" for testing. The setup of the

specimen can be separated in two separate, but co-dependant items, namely the position and

type of supports (static and kinematic boundary conditions) and the loading type and

arrangement thereof

This section will take a closer look at the static and kinematic boundary conditions for testing

beams and columns and at the various loading types and loading arrangements.

2.3.1 Static and Kinematic Boundary Conditions

Static and kinematic boundary conditions are either required for equilibrium or stability

conditions (or both) when testing a column or beam and will determine the behaviour of the

column or beam under a specific loading condition. By changing the boundary conditions the

structural response of the element will change, as the boundary condition will influence the

effective length of the test sample.

2.5
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A good example of altered structural behaviour due to changing static and kinematic

boundary conditions would be to provide (stability) lateral support to a beam failing due to

lateral torsional buckling. By doing this, the moment of resistance of the beam will be

increased and could even result in a different failure mode.

The kinematic and static boundary conditions at the end of the span of a beam or at the ends

of a column provide some to no support (rotation or translation) about the main axis of the

beam or columns and are generally referred to as end supports, span supports or just as

supports. Secondary supports are referred to as lateral support as it will provide support about

the secondary axis of the beam or column. The symbols for each type of restraint are given in

Figure 2-4.

'tr Rotation Translation X Translation Y
fixed fixed fixed

I- ~ ~ ~

~t- ~ ~ X
I- ~ X X.- X ~ ~

~ X ~ X
0-- X X X

Figure 2-4 Symbols for Restraint Provided at Supports [1,2]

Generally a beam or column end is described as fixed if full restraint is provided against

rotation and translation. A pinned support is where restraint is only provided against

translation. An end with no restraint is known as a free end.

Boundary restraints need to provide both stiffness and force [24], as will be illustrated later,

and provide for overall equilibrium and stability to the test sample.
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An elastic support or boundary condition can be defined as a boundary condition with

insufficient stiffness. In such a case the "desired imperfection" of the boundary condition will

result in a deflection or rotation at the support that will influence the test results.

Practically, providing a perfect fixed or free restraint is not possible. However the forces and

deflections involved in beam tests are of substantial higher order compared to the forces and

deflections caused due to the imperfection of commonly used supports (i.e. the stiffness of

the support is much greater than the stiffness of the test piece). For this reason the

imperfections of the supports are ignored.

A further attribute of the test set-up would be the position of the boundary conditions. The

position of these restraints will define the span (length) of a beam, thus the span (length) of a

beam is taken as the distance between the centres of the supports. The span length can be

compared to he effective length of a beam that takes the type of restraint into account. This

will be discussed in more detail in the following sections.

2.3.1.1 End/Span Support

The supports will have to provide primary restraint against the main forces acting on the

beam in order to prevent a mechanism or unstable structure during testing. The translation in

the case of a pinned, and rotation in the case of a fixed support should be nominal during a

test in order to prevent the imperfection of the support influencing the outcome of the test.

This is usually the case. However with a fixed end support, as would be the case of testing

cantilevers, the rotation of the support should be measured in order to rectify the measured

deflections.

The position, number of, and restraints at the supports will determine the test setup. This is

illustrated in Figure 2-5 and Figure 2-6. As an example, a beam with two supports will only

have a single span. Ifthis beam has no rotation restraints at the supports, the beam would be

simply supported. Similarly a beam with two supports ofwhich one is set up as free, can only

be a cantilever [1].
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Overhung ends will only affect the test set-up if loading is applied at the overhang end. If

loading is applied only within the span and not at the overhung end, the beam will behave as

if the overhung was a normal pinned support.

I TestSet-up I
I

~ +Single Span Continuous Beams

Characteristics: Characteristics:

• 2 Supports • More than 2 Supports
Attributes: Attributes:
• Support Positions OR Span • Support Positions OR Span

length lengths

• Restrictions at Supports • Restrictions at Supports
Beam Set-up: Beam Set-up:
• Fixed Ended Beams • Equal Span Continuous
• Propped Cantilever • Variable Span Continuous
• Simply Supported Beam • Simply Supported Beam
• Cantilever • Continuous with Fixed OR

• Single Span with One

Overhung End

• Single Span with Two

Overhung Ends

Figure 2-5 Class Diagram for Beam Test Set-up
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~ Cantilever

~ ~ Fixed Ended Beam
~ :!ik, Propped Cantilever

• :!ik, Simply Supported Beam

~ Propped Cantilever with Overhung End-• - Simply Supported Beam with 1 Overhung End- - Simply Supported Beam with 2 Overhung Ends

~ - A Continuous Beam: 2 Spans

~ - - A Continuous Beam: 3 Spans

Figure 2-6 Typical Beam Test Set-ups [1]

The position of the supports will determine the span (length) ofa beam. The span (length) of

a beam is measured as the distance between the centres of the supports. The span length does

not take any rotational restraint the support might provide into account. The effective length

would take restraints at the support into account.

2.3.1.2 Lateral Support

Lateral supports, as for end/span supports, are either required to provide equilibrium or

stability restraint about the secondary axis of the beam. The restraint can either restrict the

rotation and or translation of the test sample at the bracing point and will prevent out of plane

movement [3,4]. Although lateral supports are usually required at the supports and loading

positions, the positions of the lateral supports are independent of the end supports and

loading positions. Providing lateral support or support about the one axis of a beam should

not effect the loading about the other axis.
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For uni-axial bending the lateral supports are only required to provide stability to the

compression face of the beam. This will prevent the lateral translation and rotation (i.e.

lateral torsional buckling) of the beam and can be referred to as stability lateral supports.

Bi-axial bending of the beam and torsion will however require the lateral supports to resist

substantially larger forces compared to un i-axial bending to ensure the equilibrium of the test

sample. Equilibrium equations should be used to calculate the forces the lateral supports are

required to resist. The stiffuess the lateral support needs to provide, as for supports (in order

to provide sufficient restraint), can then be calculated. In such a case the lateral supports can

be referred to as equilibrium lateral supports.

Stability lateral supports need to provide both force and stiffuess and are used for beams

columns and frames. It reduces the effective length of columns and unsupported length of

beams and provides overall stability to frames. Lateral support can either be at discrete points

along the test sample or continuous [24].

As an example, if bracing is provided to a column as indicated in Figure 2-7, the force

required to brace the column (Q) would be zero if the deflection (~) is zero. This would only

apply in ideal circumstances as indicated in (b). For less than ideal circumstances as

indicated in (c);

Qv= k é.

And from equilibrium equations the required bracing stiffuess, k = PIL,

where P is the compression load in the column, and ~ is defined in Figure 2-7.

Ifk ~L > P ~, no side sway will occur, and ifk ~L < P ~, side sway will occur. The critical

case happens when ko~L = P ~, where ko is the minimum stiffuess required to brace the

system and is referred to as the critical stiffuess.

From the above example, assuming zero initial deflection i.e. ignoring initial crookedness

ko = PerIL. If kIko > 1, the system can be considered as braced if Per can be reached. If

k/ko < 1 the system is partially braced as PIPer < 1 as can be seen from Figure 2-8.
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Per Per

Q=kto

f Per

-,---- A r-a = k to.
II with k = PIL

-~

Per PerPer

f!:>\ fh\ ff'\

k = spring stiffuess [N/mm]

Per = Maximum Compression Load [N]

(for slender columns; Pcr = Ce= Euler buckling strength = 1[2EIIL2 )

d = deflection [mm]

Figure 2-7 A braced column (a), ideally no side sway (b), and less than ideal with side

sway (c) [24].

0.8

...u
Q. 0.6-Q.

0.4

0.2

0

Load Capacity vesus Bracing Stiffness

1.2

Capacly

/
/
/
/V~Brw;ed Brac~...

o 0.5 2 3.51.5 2.5 3 4 4.5

klko

Figure 2-8 Load Capacity versus bracing stiffness
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Providing bracing of stiffness greater than the critical stiffness (k/ko > 1) has no value in

increasing the load capacity of the above column. For a general braced column the bracing

stiffness is plotted in Figure 2-9.

5~-----------------------------------------------------,
Bracing Stiffness for a General Column

4.5+-----------------------------------------------------_,

4+-------------------------------------~

.>:3.5+-----~--~-------l

3~-/-----r----_________,
na.j 2.5 +---------/---+--------------------------___,

2+----------,/~--------l
1.5 /

0.5+---------------------------------------;

p

On

...J

O(n-l)

...J
c

1"
--,-

Ol

...J

p

2 5
O+-------~------~----~~----~------_,------~------~

73 4

n

In general ko = ~PIL, with ~ = koLlPcr

6 8

Figure 2-9 Required Bracing Stiffness for a General Column

In a real structure or test setup columns (and beams) have initial crookedness or deflection

(80), and that stabilizing forces in the bracing system only occurs when the forces in the

column cause the bracing to deform. Typical tolerances for compression members are 1/500

to 1/1000 of the span of the length of the member for plumbness. For the example in Figure

2-7 the critical bracing force is increased; Q = ko(1+ 80/8)8 ..
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Using the above relationship the ratio of bracing stiffness to critical bracing stiffness (k/ko)

and bracing force to critical bracing force (Q/~oko) can be plotted to the deflection to initial

deflection relationship (M~o) as indicated in Figure 2-10.

As the stiffness of the brace (k) increase the deflection (~) decreases. If the stiffness

decreases, the required bracing force (Q) increases, therefore bracing needs to be designed

for both stiffness and force. If the bracing stiffness is equal to the critical bracing stiffuess

(k/ko = 1), the deflection tends to infinity (~ -+ 00). Ideally to brace a structure the ratio of

bracing stiffness to critical bracing stiffness needs to be greater than two (k/kn > 2).

Bracing Stiffness Ratio and Force Ratio versus Deflection over
Initial Deflection

6

/
L= (1 + {;JM)

/
V

V klko = (1 + l!:.0/l!:.)

5

4

2

o
o 2 3 5 6 8 94 7 10 11

Ao/A

Figure 2-10 Bracing Stiffness Ratio and Force Ratio versus Deflection over Initial

Deflection
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To design a brace using the stiffuess approach, the deflection of the brace is assumed to be

equal to the initial deflection, and the initial deflection assumed to be less than L/500, the

required bracing force becomes then becomes:

Q = 0.004~Pcr,

where Pcr is the compression force in a column or the flange of a beam in bending. Using Q,

a bracing member can be designed, and the axial displacement calculated. The required

bracing force can then be recalculated till the assumed deflection of the bracing is equal to

the calcu lated deflection [24].

In the case ofa steel beam or column, SABS 162: 1-1993 [2] will require the lateral support

to provide a force of 1% of the force in the compression flange of the beam or column in

bending or compression.

Eurocode 3 [25] requires an equivalent stabilizing bracing force of q per unit length of the

member as indicated in Figure 2-11. Where a bracing system is required to brace a beam, the

force in the beam, N, are taken as:

where

and

N=M/h,

M is the maximum moment in the beam

h is the overall depth ofthe beam.

In Table 2.1 the factored required bracing force for an IPE 200 column of various slenderness

ratios and number of bracing points is given as required by SABS 162: 1-1993 [2], Eurocode

3 [25] and the stiffuess approach [24]. For a single brace and for the allowable in-plane

deflection of less than span/2500 (~ :oS L/2500) SABS 162 and Eurocode 3 give the same

values. The Eurocode however allows for the reduction of the bracing force ifthe number of

bracing points is increased. Both codes values are conservative for ~IL < 2500 for all beam

lengths.
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N eo N--~ t - tT ,- -t -~- eo= Imperfection

q = Equivalent stabilizing bracing
force per unit lentgh

Bracing system

L

The force N is assumed uniform within the span L of the bracing system. For non-uniform

force this is slightly conservative.

eo= krL/500

where eois the imperfection

L is the span of the bracing system

and [0.2 + I/nr]0.5 but k, ::; 1.0

in which nr is the number of members to be restrained

For a single restrained member:

for s, ::;L/2500
for Oq > L/2500

q =N/50L

q = N/60L [1+a]

where IS the in-plane deflection of the bracing system

due to q plus external loads

and 500 s, IL but a > 0.2a

For multiple restrained member:

for Oq ::; L/2500

for Oq > L/2500

q = IN/60L [k, + 0.2]

q = IN/60L [k, + a]

Figure 2-11 Equivalent stabilizing bracing force as required by Eurocode 3 [25].
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Slenderness
50 100 200

(KLIr)

Cr(kN) 642.5 361.5 118.8

Bracing Force (kN)

LVL 1/2500 1/500 1/2500 1/500 1/2500 1/500

SABS 162: 1-

1993 (fur all 6.42 3.61 1.18

values ofn)

Eurocode 3

n=2 6.42 10.71 3.61 6.02 1.18 1.98

n=3 4.28 7.14 2.41 4.02 0.79 1.32

n=4 3.21 5.35 1.81 3.01 0.59 0.99

Q = 2(LVL)PPcr

0=2 1.03 5.14 0.58 2.89 0.19 0.95

n=3 1.54 7.71 0.87 4.34 0.29 1.43

n=4 1.61 8.07 0.91 4.54 0.30 1.49

Column Length = nL (as indicated in Figure 2-9)

Cr= factored capacity of column

~ = in plane deflection

Assumed ~o = ~

Table 2.1 Required Bracing forces for an IPE 200 Column for Various Slenderness

Ratios

For more than one brace, the bracing force becomes less conservative as the .ML value

increases. The bracing force as given in SABS 162 correspond to the initial value of the

stiffness approach for n > 4 if Ao = A = L/800 is assumed.

In practice SABS 162 tends to be conservative compared to the stiffness approach [24]. It

however does not allow for a variance in initial imperfections and gives no indication of the

expected in plane deflection of the bracing system.
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Eurocode allows for initial imperfections and the number of restraints to be taken into

account in the calculation of the bracing force. If the span of the beam is increased

corresponding to the number of restraints, such as the example in Table 2.1, it tends to be

unconservative for ML > 1/1000.

In experiments all three of the above approaches can be used to calculate the bracing force.

The stiffuess approach is however highly recommended, as it will give an indication of

deflection of the bracing system and allows for a variation of initial imperfections.

It is recommended to monitor the lateral deflection of the bracing system during experiments

to ensure that the deflection is within limits if stiffness calculations are not performed.

In the design of columns and beams an effective length factor, K, is usually used to make

provisions for kinematic and static boundary conditions of the element in question.

The effective length (KL) of a column or beam will reflect the "true length" of the element

and reflects the impact of the boundary condition on the test result. In the case of the column

this length would correspond to the length between inflection points. The theoretical

effective length factors for a column are given in Figure 2-12. (Note that the Euler equation

as given above only applies for the failure of columns in the elastic buckling zone. Other

failure modes include local buckling, torsional buckling, inelastic buckling and the reaching

of the yield stress, for steel columns.)

The same principal of effective length applies to beams. For double symmetric beams,

assuming small deflection theory, no axial force, no cross-sectional distortion, Hookes Law,

prismatic straight members, no twist or displacement at the supports, in-plane loading and a

constant moment across the beam the differential equations for torsion and flexure can be

used to determine the elastic buckling moment for a beam as:

Mcr=
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(a) (b) (c) (d) (e) (f)

~ ) I
-

;: -, ;: -, ~ (

~
\ \ I / I
\ \ I / I

Buckled shape of \ \ \ I / I
column is shown I \ ! I I
by dashed line ! I I / I

I I !
I I I I

I
- ~,

Theoretical K
0.5 0.7 1.0 1.0 2.0 2.0

values

K = effective length factor

Ce = Euler buckling strength = 1[2EI/(KL)2 [N]

Figure 2-12 Effective lengths of compressive members [1,2,26]

In the case of lateral torsional buckling not only the boundary conditions influence the elastic

torsional buckling load but also the loading on the beam. As for above case the differential

equations for torsion and flexure can be used to determine the elastic buckling moment in

varied cases. These equations are usually solved using numerical methods as we can only

solve for the simplest cases. The effective length concept is imported in determining the

design elastic buckling moment. It is either done by two effective length factors (Ky: lateral

effective length factor, Kz: torsional effective length factor) or by means of a single effective

length factor (K) [26]. Additional factors allowing for the type of loading are also added to

the buckling equation. Exact effective length values can be found in [26].

For non-linear elastic behaviour (for materials such as fibre reinforced plastics) the flexural-

torsional and lateral-distorsional buckling responses can be derived [27].

For research purposes the buckling equations and effective length values as given in SABS

162: 1-1993 [2] are conservative, but will however give an good indication on the influence

of boundary and loading to the lateral torsional buckling strength of the beam.
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Buckling equations given in SABS 162: 1-1993 [2]:

Mcr=

As an example SABS 162 requires the effective length of a beam to be increased by 20% if

the end are not restrained against torsion. (Note that the lateral torsional buckling of beams

was only described to illustrate the influence of boundary conditions on the effective length

of a beam. Other failure modes would include a plastic hinge, flange local buckling, web

local buckling, web plastification and web buckling, for steel beams.)

The ideal bracing system, taking all the above into consideration, will vary depending on the

test sample, the test setup and the loading. The four methods most commonly used to provide

lateral restraint in experiments includes the Watt mechanism, guide tracks, rods and cables.

These methods will be discussed in more detail and specific reference will be made of the

advantages and disadvantages of each method.

2.19

Stellenbosch University http://scholar.sun.ac.za



Watt Mechanism [5]

This lateral bracing system is designed on the principals of the "Watt's straight-line

mechanism" and illustrated in Figure 2-13. The Watt's mechanism consists of two levers.

Each one of these levers is supported at one end and connected to a coupler at the other. All

connections are pinned, and the two levers can have different lengths. In the undeflected

shape the two levers will be parallel.

In the Watt's geometry, there is a point E on the centre line of the coupler that traces an

approximate straight line within certain limits as the mechanism is deflected. When the two

levers are equal, E is at the centre of the coupler. This locus of E is very close to a straight

line up to a point O. The locus of E and the point 0 can be determined graphically or

analytically. The distance EO is defined as the stroke of the mechanism, with the total

straight-line motion (ON) being twice the stroke, since the linkage can work both ways.

locus of E

Lever

Lever

Deflected shape

Figure 2-13 Watt's straight-line Mechanism
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The two dimensional properties of the Watt mechanism can be extended into three

dimensions by introducing a ball-and-socket joint in place of the pinned joints. This will

allow point E, also referred to as the braced point, to form a vertical locus similar to that

formed in two dimensions, preventing out of plane (lateral) motion of the point. The use of

the Watt mechanism to provide lateral support is shown in Figure 2-14.

The biggest advantage of the Watt mechanism is that this bracing system requires no manual

adjustments during testing in order to prevent restraining forces. This system also allows for

large deflections of the test specimen. The Watt mechanism is fixed to the structure at a point

E, as indicated in Figure 2-13, and will provide lateral restraint to that point.

The disadvantages of the system are that it cannot be used to apply lateral loading and that

the weight of the mechanism will apply an extra dead load on the test specimen. This load is

small compared to applied load on the test specimen and can usually be ignored.

Figure 2-14 Tbe Watt Mecbanism Used to Provide Lateral Support
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Guide Tracks

This lateral restraining mechanism consists of guides, or movement tracks directing the

allowable deflection or movement and preventing the out of plane deflection and movement

of the test specimen.

The test piece is either fitted closely between two guiding elements, as indicated in Figure

2-15, or can be fixed to one of these guides so that only a single guide will be required. The

guide tracks are fixed to pinned supports, ensuring that no dead load would be placed on the

test specimen.

The tracks prevent the out of plane movement of the entire section at the bracing point,

making it ideal for testing beams where bracing is required against lateral torsional buckling.

The use of guide tracks to prevent lateral torsional buckling is shown in Figure 2-16.

t Direction of unrestricted
movement

Figure 2-15 Using Two Guide Tracks to Provide Lateral Support
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-

Figure 2-16 Guide Tracks Used as Lateral Support

Guide elements can also be used to apply lateral loading and will allow for large deflections

of the test sample without the need for manual adjustments during testing.

The biggest disadvantage of guide tracks is that this lateral bracing system will require to be

adjusted for different specimens. After each test guide tracks needs to be aligned to ensure

that the desired deflection plane is still correct.

Restricting forces are limited to the friction of the guide tracks. For most materials used in

producing guide tracks, the friction coefficient is so small that the restricting force can be

ignored. Typical (static and kinetic) frictional coefficients are given in Figure 2-17.
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p

f

o ~------------------------------.-
I. Static region .1. Kinetic region p

For static region:

fs= JlsN(N)

For kinetic region:

Material

Steel on Steel

Aluminium on steel

Copper on steel

Wood on wood

Metal on metal (lubricated)

Teflon on Teflon

Jls

0.74

0.61

0.53

0.25-0.5

0.15

0.04

0.57

0.47

0.36

0.2
0.06

0.04

Figure 2-17 Static and kinetic friction coefficients for various materials [28].
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Rods (/Strut)

This lateral supporting mechanism, as illustrated in Figure 2-18, consists of a compression

(and tension) member (namely the strut or rod) pinned at a point A and connected to the test

piece at a point B. This allows point B to form a circular locus. Provided the deflections (V)

are small and the rod length long enough, the distance the locus varies form a straight-line

(h), will also be small as can be seen in Figure 2-19. The locus of B was determined from

simple geometry using:

h = L(.J(i! + (V / 2)2) - L) / .j(L2 + (V / 2)2),

and

h is the horizontal deviation,

V is the total vertical deflection

L is the length of the rod

where

Alternatively the locus of B can be determined graphically. The approximate straight-line

distance (BC) is defined as the stroke of the mechanism, with the total straight-line motion

(DC) as twice the stroke, since the rod mechanism works both ways. The length of the strut

and the stiffuess thereof should ensure that the deviation (h) from a straight line for a test do

not exceed the ML = 1/500 ratio as discussed previously (where L is the span of the beam).

For large deflections manual adjustments will be required in order to prevent restraining

forces. Without these adjustments the locus motion of point B will not only cause restraining

forces on the test piece, but also lateral forces, causing bending about the secondary axis of

the test piece. These adjustments can be made by either adjusting the length of the rod, or by

adjusting the position of point A.

The biggest advantage of this system is the simple way in which it is set up and that it can be

used to apply lateral forces on the test sample. The main disadvantage of this system is that it

will require manual adjustments for large deflections as discussed above.
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Figure 2-18 Using a Rod as Lateral Supporting Mechanism

Vertical vs Horizontal Movement
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Figure 2-19 The Vertical Displacement versus the Horizontal Deviation to a Straight-

Line Motion for Rods of various Lengths

2.26

Stellenbosch University http://scholar.sun.ac.za



Cables

Cables as lateral supporting mechanism are set up very similar to rods, as can be seen in

Figure 2-20. A tension member (referred to as a cable) is pinned at a point A and connected

to the test piece at a point B. A second cable is also connected to the test piece at point Band

pinned at a point C, mirrored around the centre line ofthe test piece.

C ~;'1 A

Cable
Restraint

Cable
Restraint

t Direction of movement

Figure 2-20 Using Cables as Lateral Support

The cable mechanism can be controlled in order to behave in the same way as a rod by

ensuring that only the one cable is in tension, and the other cable acts only as a "safe guard"

against force reversal. In this case Figure 2-19 would give an indication of the straight-line

motion of the mechanism.

Using both cables, as illustrated in Figure 2-20, the locus of motion would be a straight line

(OB) provided point A and C are mirrored about the centreline of the beam, and the stiffuess

of the two cables are the same. The cables will however produce restraining forces due to the

lengthening of the cables as indicated in Figure 2-20. These restraining forces can be

eliminated or minimised by manual adjustments during testing. These adjustments entail
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adjusting the cable length or simply keeping the cable horizontal by adjusting the position of

point A and C.

Normally, due to the low stiffuess of the cables, and small deflections (V), the restraining

forces will be small (as can be seen in Figure 2-21) compared to the applied forces and are

therefore usually ignored (In Figure 2-21 the restraining forces for a 6 mm diameter steel

cable of various cable lengths are plotted on the secondary axis.).

The biggest advantage of this system is the simple way in which it is set up and that it can be

used to apply lateral forces on the test sample. The main disadvantage of this system is that it

will require manual adjustments for large deflections as discussed above.

Restraint vs Displacement

0.0035

0.003

0.0025

Z- 0.002Ws
Cl)
U 0.0015...
0
LI..

0.001

0.0005

20 40 60 80 100 120 140 160

Displacement (mm)

Figure 2-21 Restraint versus Displacement for Cables of various Lengths
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2.3.2 Loading

Loading together with static and kinematic boundary conditions, will determine the

behaviour of the column or beam being tested. This section will look at the various loading

types and at the attributes of loading.

2.3.2.1 Loading Types

The basic loading types, as illustrated in Figure 2-22, include point loads, distributed loads,

axial loads, coupled moments, torsional moments and displacement loading. These loads, in

various combinations, will make it possible to obtain any desired force diagram required for

testing.

Loads should not cause secondary loading or restraint on the beam; for example a point load

should not cause a torsional moment. Loads can however be linked so that the increase in e.g.

a point load will cause a proportional increase in a torsional moment.

Point Load

w
Jlllillllill"lIlllllllilii1

Distributed Load

Axial LoadC• r

• CM :Ik,
T

• •
&

jd
~I

Coupled Moment

Torsional Moment

Displacement

Figure 2-22 Loading on a Simply Supported Beam [1]
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In the rest of this section we will take a closer look at the various basic loading types and

basic loading techniques in applying these loads.

Point Load

Point loads are mostly used in the testing of beams and column due to the simple and easy

way in which a point load can be set up and controlled. Equipment commonly used to create

point loads, which will be discussed briefly, includes weights, hydraulic actuators and servo-

hydraulic actuators.

Due to practical reasons weights are seldom used to apply large loads. Weights are however

ideal for testing smaller models, display structures and test samples under a constant long

term load, as weights provide discrete loading increments, are inexpensive and require

neither maintenance nor calibration [5,6]. Using weights will also not cause restraint against

sway as can be seen in Figure 2-23 and will provide for true gravity loading.

Hydraulic actuators are mostly used due to the simple way in which large loads can be

applied to a test sample, as they are available in various capacities. A hydraulic actuator

usually consists of a piston in a casing filled with hydraulic fluid. As hydraulic fluid is

pumped into the casing, the piston will extend and exert a force equivalent to the pressure of

the hydraulic fluid. The capacity of hydraulic actuator refers to the stroke (maximum

extension of the piston) and force of the equipment.

A common problem with hydraulic actuators, however, is restraining forces caused when

structures permitted to sway are tested (as can be seen in Figure 2-23). To overcome this

problem of restraining forces a gravity load simulator can be used. The simulator

approximates true gravity load when it is used with a tension hydraulic actuator, as the line of

action of an applied load will remain vertical even when the loaded structure sways

sideways, as can be seen in Figure 2-24 [5].
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Figure 2-23 Testing Structures Permitted to Sway using (a) True Gravity Load and (b)

a Hydraulic Actuators [5]

The gravity load simulator is a mechanism based on "Robert's straight-line motion". The

mechanism is symmetrical and composed of three members: two inclined straight arms

connected by a rigid, triangular member as illustrated in Figure 2-24. Pins are located at both

ends of the inclined arms and permit plane motions with one degree of freedom. The motion

of the mechanism can be determined for any given geometry (base width, top width and arm

length) using graphical or analytical methods. The hydraulic actuator is connected to the

gravity-load simulator at a certain point (load height) along the perpendicular bisector of the

top width.

Equilibrium of the mechanism requires that the line of action of the load passes through the

instantaneous centre, that is, the point of intersection of the two arms. The position of the

instantaneous centre changes as the mechanism is deflected, as shown in Figure 2-24 [5].
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Figure 2-24 A Gravity Load Simulator showing (a) the Geometry and the(b) Deflected

Shape

In order for the load to be vertical, the loading device should be attached at the point (load

height) along the perpendicular bisector of the top width that is directly below the

instantaneous centre. For certain choices of linkage geometry, the load height remains almost

constant over a range of mechanical motion, although the instantaneous centre does change.

This locus of the loading point approximates a straight line, resulting in the simulation of a

gravity load. In general, the longer the arm length compared to the base width, the smaller

the deviation of the calculated load height.

The difference between servo hydraulic actuators and hydraulic actuators is that the loading

applied with the servo hydraulic actuator can be displacement and load controlled, also

allowing for tension or a compression load. This makes actuators ideal for cyclic and impact

loading. Displacement control loading and discrete loading increments can also be achieved

using actuators.
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Servo hydraulic actuators are however much bigger and more expensive than hydraulic

actuators, limiting the use thereof

Distributed Load

Although distributed loading is most common in practice design, it is very difficult to

reproduce in a laboratory, especially for testing beams. In general however, pending on the

span length, four or more point loads can be considered to be a distributed load, as illustrated

in Figure 2-25 [7,8].

Weights can be used to create an evenly distributed load, but as mentioned above, weights

become impractical when large loads are required. Loading increments would also be

discrete.

To create a true distributed load, a hydraulic mat or cushion can be used. The mat or cushion

is placed on the beam and a stiff element placed above the cushion. When point loads are

applied to the stiff element, the mat will transfer a uniform pressure to the test specimen as

illustrated in Figure 2-25. This is however a time-consuming test setup and generally

impractical to achieve with narrow beams.
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Figure 2-25 Creating a Distributed Load on a Simply Supported Beam Using (a) a

Cushion and (b) Four Point Loads

Axial Load

Hydraulic actuators or servo hydraulic actuators are ideal to create an axial compression or

tension load in a test sample. The point load needs to be applied through the centroid of the

section as to prevent secondary forces.

Axial loads are mostly used to test pure compression and tension members and are seldom

used in combination with other loads.
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Coupled Moment

To create a coupled moment on a test sample, two equal loads (P) are applied to the test piece

by means of two cantilevers (with length = h/2) fixed directly to the beam. These loads are

applied in opposite directions, and are illustrated in Figure 2-26. Due to the difficulties

involved with the above setup, coupled moments are seldom used in testing beams and

columns.

Two point loads (P spaced b apart), applied directly to the test sample in opposite directions,

can be used to approximate a coupled moment, as illustrated in Figure 2-26. As b

approximates zero the shear force and bending moment diagram will approximate that of a

true coupled moment. The shear force in the region between the two point loads will,

however, always exceed the shear force at the supports and stiffening the test sample in this

region is recommended to prevent shear failure. Alternatively, a stiff frame coupling the

point loads together can be used to apply these point loads.

The approximate setup can also be used to test for shear forces as a zone with high shear

forces and a moment inflection point is created.

rP
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Figure 2-26 Creating a Coupled Moment by Using (a) Two Axial Loads and (b) Two

Point Loads
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Torsional Moment

A torsion moment can easily be applied to the test sample by using two equal point loads.

The point loads are applied in opposite directions at an equal distance from the shear centre

(S) of the beam to prevent secondary load effects, and are illustrated in Figure 2-27 [9, 10,

11, 12].

When testing for a combination of torsion and bending moment a single point load instead of

the two point loads can be used. The point load will cause a torsional moment due to the

eccentricity of the load. The value of the torsion and bending moment would be linked in

relationship to the span length and the eccentricity of the point load.

PhP Torsion

P

Figure 2-27 Creating a Torsion Moment using two Eq ual Point Loads
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Displacement

Loading, regardless the type, will cause the test sample to displace. The displacement of a

specific point of the test sample will depend on the loading type and can either be translation,

rotation or both [13].

To apply a displacement load, any of the basic loading types can be used to create the desired

displacement, but instead of using load control, displacement control of the loading is

required. Hydraulic actuators are ideal to apply displacement loading, as the displacement of

the actuator can be fully controlled.
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2.3.2.2 Attributes of Loading

All basic loading types will display attributes of position, direction, time, magnitude, and will

either be normal, stabilizing or destabilizing.

The attribute of position refers to the position of the applied point load on the test sample. If

the position of the applied load is changed, the position of critical internal forces will also

change. This will result in an altered behaviour and failure pattern for the specific test

sample.

The magnitude or size of an applied load is directly linked to time. Pending the magnitude or

size of the applied load at a specific time, the load could either be classified to be a linear or

discrete static load, a cyclic load, impact, long term or random. This is illustrated in Figure

2-28.

The time is usually measured in seconds (s), although in the case of long-term loading days

or months becomes more appropriate. The magnitude of the load is measured in kilonewton

(kN), or in the case of displacement loading in millimetres (mm).

Loading would also be classified to be normal, stabilizing, or destabilizing. A stabilizing load

would tend to prevent lateral torsional buckling, whereas a destabilizing load will increase

the effects of lateral torsional buckling. A normal load will neither cause nor prevent lateral

torsional buckling as the load will always work through the shear centre of the test sample, as

can be seen in Figure 2-29.
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Figure 2-29 Normal, Stabilizing and Destabilizing Loads [17]
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2.4 Test Data

Measurement of test data is required in order to evaluate and to draw conclusions on the

behaviour of the test sample during the test. The measured data would include the

measurement of the load (forces), the displacement (rotation and translation), the strain and

visual observations at discrete positions on the test sample, at a distinct point in time.

Attributes of test data will include the magnitude or measured value, the position of

measurement and the time of measurement.

Measurement equipment, pending on the type and age thereof, will either require the taking

of manual readings or supply an analogue or digital output. Regardless of the output type, the

user can convert it to digital format for later processing.

This section will take a closer look at the attributes of the measured data, as well as the

measurement of test data with specific reference to the measurement equipment and the

processing thereof

2.4.1 Attributes of Test Data and Test Data Measurement

The test data and the measurement thereof, regardless of the type, will exhibit the attributes

of magnitude (or the size of the measured data), the position (where the data was measured)

and time (when the data was measured).

It is important for the measured values of force, displacement, strain, and visual observations

to correspond to the same time value (or interval), so that the relationship between the effects

can be evaluated, for example by means of a displacement/force graph.

Optimum positions and intervals for the measurement of test data will be dependent on the

test setup and the attributes of the test specimen. In the following section the measurement
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position of the test data will be discussed for standard tests. The time between measurement

and load increments should allow for the time effects that the test specimen might display.

Regardless of the type of measurement equipment, the equipment will have to be calibrated

to ensure accurate readings. The equipment will also have an optimum range of measurement

for which the measured data will have a minimum error. Testing outside this "optimum"

value will result in errors in the test data.

2.4.2 Force Measurement

The measurement of the load or applied forces on the test specimen is required to determine

the force diagram of the forces acting on the test specimen. From this, together with the

measured displacement, the behaviour of the test specimen can be determined and evaluated

by means of a displacement versus load graph.

Equipment used to measure force usually relates a primary effect of loading, such as

deflection, pressure or strain to a load value by means of a relationship between the primary

effect and the load. This relationship is usually linear in the "optimum" range of the

equipment. Overloading the equipment will cause irreparable damage to the accuracy

thereof.

Measure equipment includes load rings, pressure gauges and load cells. The load ring would

be calibrated to relate the deflection of the ring to a force. Similarly pressure gauges are

calibrated to relate the pressure of a hydraulic fluid to a force. Load cells, the most

commonly used method of load measurement, consist of a set of calibrated strain gauges in a

casing. The differential voltage over the strain gauges is related to a differential strain from

which the load can be calculated.
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2.4.3 Displacement Measurement

The displacement is measured together with the force in order to define the behaviour of the

test specimen. As mentioned above, this relationship is usually determined by means of a

displacement versus load graph.

The most frequently used equipment to measurement displacement would include dial

gauges and linear voltage displacement transducers CLVDT).

A dial gauge consists of a pin connected to a dial. As the pin is pressed in or pulled out, the

corresponding displacement of the pin is mechanically displayed on the dial. Although dial

gauges require the taking of manual readings, it is still used especially with display

experiments, as it is easy to install, inexpensive and requires no calibration.

The LVDT consists of a pin similar to that of dial gauges in a casing. As the pin is pressed in

or pulled out, a voltage difference is measured over the LVDT. In the "optimum" range of

the equipment this difference in voltage can be measured electronically and the relative

displacement can be calculated from the linear relationship between the voltage difference

and the displacement. Working outside of this "optimum" range will cause inaccurate

displacement readings.

To measure rotation, the linear displacement of a lever arm of known length is measured.

The rotation about the centre of the lever arm can then be calculated from basic geometric

principles.

2.4.4 Strain Measurement

Strain is an indication of deformation and can be defmed as the change in length of an

element divided by the original length (units being mm/mm). If the material properties of the

test specimen are known, the stress can be obtained from the stress/strain relationship. With
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the stress known and the sectional area known (a geometric property) the force in the element

can be calculated.

Equipment used to measure strain includes strain gauges, and strain meters. A strain gauge

can be defined as an electronic resistor that is glued to the test piece that will allow it to

deform corresponding to the deformation of the test piece. The deformation (lengthening and

shortening) of the strain gauge will result in a change in resistance, resulting in a change in

the voltage. This voltage/resistance change can be measured and the corresponding strain can

be calculated from basic electronic principals.

As strain gauges are glued to the test piece with an epoxy in order to ensure the same

deformation as the test piece, it can only be used for testing a specific test specimen. Strain

gauges are available in various sizes (even to measure strain over a 5mm length) making it

ideal for testing local strain. It is also made to suit various material types; such as steel,

concrete and aluminium, by having the temperature coefficient of the gauge match that of the

material. This allows one to ignore temperature variations that might occur during testing.

Strain meters are divided in two types, namely those using strain gauges and those using

linear displacement measurement equipment such as LVDT's and dial gauges. The first type

consists of a strain gauge in a casing. The casing is glued to the test specimen allowing for

the measurement of strain and can be removed after testing.

The second type consists of a LVDT or a dial gauge that is used to measure the deflection

over a known length. From this deflection the strain can be calculated.

Strain meters are not material specific and will only measure the strain over a bigger base

length. One big advantage of strain meters over than of strain gauges is that they can be used

on more than one test specimen.
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2.4.5 Visual Observations

Visual observations form an important part of the test data, although the method of failure

and a photo ofthe test sample before and after failure, and in the case of concrete beams, the

forming and sizes of cracks, are usually the only recorded observations.

Although seldom recorded, visual observations verify the authenticity of the recorded test

data, such as the deflections. Any deviations of the behaviour of the test sample or test setup

needs to be observed and recorded. The observer might require a test to be stopped, ignored

or rerun due to a variation or error in the test setup or test sample following the visual

observations during testing.

Photos form an important part of visual observations provided the test number and the time

of the photo is recorded. Photographic, digital and video recording cameras, together with

other written notes, can be used by the observer in order to record all visual observations.

2.4.6 Processing of Test Data

Before conclusions can be drawn, the collected test data must be processed. This will require

the calibrating, and plotting of collected test data so that the relationship between force,

displacement and strain can be determined. From these relationships the behaviour of the test

specimen can be evaluated.

Computers and spreadsheet programmes are mainly used in this process of calibrating and

plotting, such as displacement versus load graphs, from which conclusions can be drawn.

This will be illustrated in chapter 6 by means of a practical example.
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2.5 Frequently Used and Standard Test Setups

Standard tests are specified and frequently used to ensure comparable test results. This allows

for the exchange of test data between testing facilities and the enhancing of research

capabilities. Frequently used and standard tests will ensure a desirable force diagram over the

test sample, allowing for cost effective, practical testing.

This section will take a closer look at frequently used and standard test setups with specific

reference to the uses, advantages, limitations, data collecting and variations of each setup.

These setups include a simply supported beam with a point load at mid span, a simply

supported beam with point loads at third span and a cantilever beam with a point load at the

free end.

The standard test setups only give the position of the (lateral and end) equilibrium supports.

With these setups the lateral stability supporting positions and type of restraint can be varied

along the length of the test sample to create the desired setup. As previously discussed the

(supports and lateral) supports will affect the effective length of the beam, influencing the

test results. In most tests however the test element are pinned against lateral and torsional

movement at the supports.

The application of a loading to either the tension or compression face of the beam could also

influence the test result as this will either be stabilizing or destabilizing and need to be

considered in the test setup.
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2.5.1 Simply Supported Beam with a Point Load at Mid Span

Testing a simply supported beam with a point load at mid span enables one to test for a

combination of shear and bending forces. It can also be used to test the local behaviour of a

test sample, such as web crippling and yielding, under a point load. The test setup and the

force diagram for a simply supported beam with a point load at mid span are illustrated in

Figure 2-30.

The test sample is set up as a simply supported beam and a point load (either deflection or

load controlled) is applied at mid span. The value of the applied point load and the deflection

at mid span needs to be measured so that the deflection/force diagram can be plotted. In

addition to measuring the applied force and deflection, strain gauges can also be used at mid

span to measure the stress in the beam.

U2 U2

P/2 P/2

~ Shear Force Diagram~
-P/2 -P/2

Bending Moment Diagram

Figure 2-30 Simply Supported Beam with a Point Load at Mid Span

The test setup is reasonably simple to achieve as only one point load is applied (and

measured) and the deflection of only a singular point measured, reducing the amount of

resources required for testing.

2.46

Stellenbosch University http://scholar.sun.ac.za



A typical variation to the test setup will enable the user to test for shear (with a relative small

moment) by having the point load moved closer to the support. The deflection of the beam

can then be measured at the loading point or at mid span.

2.5.2 Simply Supported Beam with Point Loads at Third Points

A simply supported beam with point loads at third points will enable one to test for constant

moment (without shear forces) over the central third of the test sample. The test setup and the

force diagram are illustrated in Figure 2-31.

The test sample is set up as a simply supported beam and point loads (either deflection or

load controlled) are applied at third points. The value of the applied point loads and the

deflection at mid span need to be measured so that the defection/force diagram can be

plotted.
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Shear Force Diagram
o

Bending Moment Diagram

Figure 2-31 Simply Supported Beam with Points Load at Third Points
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The force diagram makes this test setup ideal for testing a beam under pure bending stress

and in addition to measuring the applied force and deflection, strain gauges can also be used

at mid span to measure the stress in the beam.

The test setup is reasonably simple to achieve, but will require the measurement and control

of two point loads in addition to the deflection. Controlling these point loads to ensure the

same load at all times will require special loading equipment or manual adjustments during

testing.

Although the tests might be varied, the principle of the test remains the same, and a constant

bending stress, without shear stresses, is achieved over a section of the test sample. Typical

test variations include testing at quarter points and measuring the deflection at the loading

positions.

2.5.3 Cantilever Beam with a Point Load at the Free End

Cantilever beams with a point load at the free end will allow for the testing of rigged and

semi-rigged connections. The connection at the fixed end will be submitted to a combination

of shear and bending, making it ideal for testing moment-rotation relationship of connections.

This shear/moment relationship is dependant on the length of the beam, which in this case is

defined as the distance from the fixed end to the position of the load.The test setup and the

force diagram for a cantilever beam with a point load at the free end are illustrated in Figure

2-32.

The test sample is set up as a cantilever beam and a point load (either deflection or load

controlled) is applied at the free end. (Note that if the free end of the beam is not restrained

against lateral or tosional movement, SABS 162:1-1993 [2] gives the effective length of the

beam as I.4L for loading to the tension flange. If the load is applied to the top flange the

difference in effective length can be as much as three times that for bottom flange loading

under the same restraints at the fixed end.)
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The value of the applied point load and the deflection at various positions along the span of

the beam are measured. For moment/rotation relationships measurement of deflection should

be close to the fixed end as it assumed the beam flexure will be smallest closest to the

support. As more than one deflection is measured along the length of the beam, the beam

flexure can be calculated and any moment/rotation readings corrected. The rotation of the

support (or connection plate) also needs to be measured. A diagonal measurement will also

be required if the support is allowed to deform or rotate in the experiment [21]. Strain gauges

can also be used at the fixed end to determine the stresses at the connection point.

L

P P- Shear Force Diagram

Bending Moment Diagram
PL

Figure 2-32 Cantilever Beam with a Point Load at the Free End
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3 REQUIREMENTS AND THE DESIGN PHILOSOPHY OF THE MUL TI-

PURPOSE BEAM/COLUMN TESTING APPARATUS

3.1 Introduction

This section stipulates the requirements the MTA must adhere to in order to fulfil its function

as a true multi-purpose testing apparatus. The requirements will be discussed under the

following headings:

• General Requirement

• Test Setup Requirements

• Loading Requirements

• Static and Kinematic Boundary Requirements

• Design Philosophy

3.2 General Requirements

Under general requirements practical, visual and the use of existing testing frames and

loading and measurement equipment will be discussed.

3.2.1 Practical Requirements

Although the testing apparatus will have a dedicated area on the main test floor it needs to be

removable from the test floor. Once removed it needs to take up the minimum storage space.

The test setup needs to be changed in the minimum time with the minimum effort. The

required change not only include changing specimens, but also changes to test various beam

and column specimens of different sizes under different loading and static and kinematic

boundary arrangements.

The testing apparatus needs to be low in maintenance in order to keep the long-term costs

down to a minimum. Low maintenance includes aspects such as the cleaning, painting and
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upgrading of the testing apparatus. Making changes to the test setup or upgrading the testing

apparatus will have to require bolting and not welding, as welding will require local rust

protection afterwards.

As safety in any workplace or laboratory is essential, the apparatus needs to comply with all

regulations of the Law on Career Safety (Law 85 of 1993). The apparatus should be designed

to ensure the safety of the researcher and other test onlookers. Tripping hazards should also

be avoided.

3.2.2 Visual Requirements

Visually it is required from the test setup to be aesthetically pleasing, as the beam/column

test specimen will be on display for visitors.

For report requirements on any test specimen the test specimen and the test layout are usually

photographed. Not only does a well-arranged test setup promote a professional impression,

but also a clean, well-kept testing environment.

The ease of cleaning the testing apparatus is a requirement in order to maintain a visually

well kept testing environment. Brackets and welded angles promoting dust collection on the

test apparatus should also be kept to a minimum.

Welding on the testing apparatus will damage the paint and leave the structure to rust locally

if the welding is not rust protected. In order to prevent this, test alterations should be made

without welding onto the testing apparatus.
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3.2.3 Use of Existing Equipment

The Structure Laboratory, University of Stellenbosch, is equipped with a limit number of

loading frames that are bolted at the discrete fixing points. The use of the multi-purpose

beam/column testing apparatus should not prevent the use of these frames and should

therefore not make use ofthe whole test floor.

The multi-purpose beam/column testing apparatus will also have to make provision for two

gravity load simulators (each with a capacity of 200 kN vertical loading) and three servo-

hydraulic actuators (2x 62.5 kN and 1x600 kN).

Existing measurement equipment, including load cells and LVDTs, can easily be used with

any testing apparatus as they are relatively small and can easily be setup within the limits of a

testing apparatus.

The actuators and gravity simulators will most likely have to form the basis from which the

multi-purpose beam/column testing apparatus has to be designed, as replacing these will be

too costly. The apparatus has to be designed so that the use of other (future) loading

equipment can easily be accommodated.

3.3 Test Setup Reguirements

Requirements regarding the test setup will include beam setup requirements, minimum and

maximum size requirements and maximum loading requirements.

3.3.1 Beam Setup Requirements

The beam testing apparatus should make provision to test cantilever beams, simply supported

beams, propped cantilevers, beams with overhung ends, fixed end beams and continuous

beams as defined in the previous section.
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Due to financial restraints, and current only two supports would be built. The support should

however be designed that a third or fourth support can be added should the need arise in

future.

An axis system should be defined on the testing apparatus so that the beam setup and loading

can be referenced.

3.3.2 Minimum and Maximum Beam Size Limitations

The testing apparatus will have to cater for beams of various sizes. Due to practicality and

other restrictions, such as the size of the test floor, the test specimen size will have to be

restricted to the sizes given in Table 3-1.

Single Span Multi-span Height Width
Size

(m) (m) (m) (m)

Minimum 2 2x2 - -
Maximum 10 2x5 1.5 2.7

Table 3-1: Maximum and Minimum Sizes for Test Specimen.

3.3.3 Maximum Loading Capacity

The maximum load that can be applied to a test specimen will be limited due to the available

loading equipment and the capacity of the floor. These requirements are given in Table 3-2.
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Test Floor Capacity Maximum Load (kN)

Vertical 400 kN at 920 cic for 4 points

Horizontal 200 kN at 920 cic for 4 points

Loading Equipment Capacity Maximum Load (kN)

Vertical:

500 kN Servo Hydraulic Actuator
600 kN (Static)

500 kN (Dynamic)

Gravity Load Simulator 200kN

Horizontal: (Lateral and Axial)

500 kN Hydraulic Actuator (2 off) 500kN

200 kN Hydraulic Actuator (2 off) 200kN

Table 3-2: Maximum Loading Capacity

3.4 Loading Reguirements

The test setup must cater for various loading requirements. The loading will be discussed

under two separate headings:

• Loading Type

• Forces on the Test Specimen.

3.4.1 Loading Type

As discussed in the previous chapter, the type ofloading refers to loads and position of these

loads on the test specimen. The testing apparatus must make provision for both displacement

and force controlled loading. The loading, being a function of time, will either be static,

dynamic or a combination of static and dynamic loads.
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The apparatus will have to make provision for a combination of point loads (and distributed

loads), applied in a normal (stabilising) or a destabilising arrangement. These loads are to be

applied in a vertical, horizontal, axial direction or a combination of these.

3.4.2 Forces on the Test Specimen

The position and the type of loads will result in forces on the test specimen. When testing a

simply supported beam a single point load would cause a combination of bending and shear

forces in the beam. When a pure moment is required two point loads can be used to ensure a

combination as discussed in the previous section. When only shear is required the point load

needs to be close to the support to ensure the shear force is dominant.

Although current research require the testing of beams under pure torsion, shear, bending or a

combination of shear and bending the loading requirements of future research should not be

overlooked.

The testing apparatus should therefore make provision so that the test specimen and loading

arrangement can be changed to result in the desired forces on the test specimen. These forces

(a total of 128 combinations) include the following:

• Pure Bending (vertical and lateral)

• Pure Shear (vertical and lateral)

• Pure Torsion

• Pure Axial Force

• Combination: Bending (vertical and horizontal) and Shear (vertical and lateral)

• Combination: Bending (vertical and lateral) and Torsion

• Combination: Bending (vertical and lateral) and Axial

• Combination: Shear (vertical and lateral) and Torsion

• Combination: Shear (vertical and lateral) and Axial

• Combination: Torsion and Axial

• Combination: Bending (vertical and lateral), Shear (vertical and lateral) and Torsion

• Combination: Bending (vertical and lateral), Shear (vertical and lateral) and Axial
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• Combination: Bending (vertical and lateral), Torsion and Axial

• Combination: Shear (vertical and lateral), Torsion and Axial

• Combination: Bending (vertical and lateral), Shear (vertical and lateral), Torsion and

Axial

3.5 Static and Kinematic Boundary Requirements

By changing the boundary conditions, the beam setup will change and this will result in a

different failure load or even mode for the same test specimen as the effective length of the

specimen will changes as discussed in the previous chapter. It is therefore important for these

boundary conditions to be as flexible as possible. These requirements are discussed for the

end supports and for the lateral supports.

3.5.1 End Supports

The end supports need to be variable so that various beam sizes can be tested. The minimum

and maximum beam sizes were discussed in section 3.32.

Due to the variability of the length of the test specimen, the distance between the supports is

to be variable. It is also required that the supports be adjustable in height and width in order

to test beams of various heights and widths, using various loading arrangements.

The end supports should make provision for various boundary conditions as discussed in the

previous chapter. This will include having the beam end pinned or fixed. Provision for axial

and lateral restraints and loading is also required. This would require that the supports to be

designed to be "fitted" with the required boundary condition and not to have a set

(unchangeable) boundary condition.

The end supports will have to resist the reaction forces due to the loading on a test specimen.

The maximum possible load applied to a test specimen is given in Table 3-2. Deflections of

the supports under such loading will have to be small compared to the deflections of the test
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specimen so that the effect thereof can be ignored. Loading also needs to be applied at the

end supports.

3.5.2 Lateral Supports

When testing an element such as a beam, lateral support (either stability or equilibrium) will

be required. The lateral supports will have to provide support at various positions and at

various heights along the beam length. Lateral supports will also be required at the end

supports.

The lateral supports must also make provision for the measurement and the application of

lateral forces. The lateral support should not cause restraints where restraints are not required.

One should therefore be able to vary the lateral supporting mechanism used to suite the

requirements of the specific test (different types of systems was described in the previous

chapter).

3.6 Design Philosophy behind the development of the MTA

With the development of the MTA various test setups and systems were evaluated with

reference to the requirements as discussed above and in chapter 2 (The list of research

articles, discussing a verity of structural tests, used for this purpose appears at the back of the

references under the heading: List of Background Articles)

Most systems make either provision for testing beams (using lateral loads) or columns (using

axial loads) and are restricted in specimen size, and loading capacity (either position,

direction or size of the load). The static and kinematic boundary conditions can seldom be

varied and make no provision for the use of different lateral supporting mechanisms. To vary

the lateral supporting mechanism from the "standard" test of the machine requires either a

new testing apparatus or major alterations to the testing apparatus.
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In the development ofthe MTA flexibility played a big part to ensure the use of various static

and kinematic boundary conditions, loading arrangements and specimen sizes. Varies

concept of testing systems were evaluated, refined, re-evaluated, till a true multi purpose

testing apparatus was developed. In the following chapter this system will be discussed,

looking in detail at each component.
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4 DESCRIPTION OF THE MULTI-PURPOSE BEAM TESTING APPARATUS

4.1 Introduction

The Multi-purpose Beam/Column Testing Apparatus (MTA) was developed to comply with

the requirements as set out in the previous chapter. An illustration of the apparatus can be

seen in Figure 4-1.

The various components of the MTA was designed in accordance with SABS 162: 1- 1993

The Structural use of Steel Part 1: Limit-States Design of Hot-Rolled Steelwork [2] and

Structural Steelwork Connections (Limit States Design) [29]. The Southern African

Structural Steelwork Detailing Manual [30] was used to assist in connection details. The

detail design can be found in appendix C and a summary of a capacity can be found in

appendix D. The detail and workshop drawings of each component of the MTA can be found

in Appendix A.

As undergraduate students would also use the MTA, the above approach was chosen to allow

the students to verify special test requirements. It would however be recommended to

measure all static and kinematic imperfections (deflections/rotations) of the apparatus if

required and not just to rely on the calculated values.

With this apparatus any size of beam (complying to the requirements, with prescribed

boundary conditions, can be tested under various loads and loading conditions. It is designed

for testing beams under Uni- or bi-axial bending, shear, torsion, axial loading or any

combination of the above-mentioned forces.

The system consists of 4 main components, namely:

• The tracks, forming the basis of the set-up

• The loading bridges, for applying the vertical loads

• The end supports, supplying a vertical reaction at the beam-ends
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• The lateral supporting frame providing lateral support along the test specimen, making

lateral loading possible.

In this chapter a co-ordinate system for the MTA is defined and the various components of

the test setup are described. The versatility of the MTA will be demonstrated by means of

illustrations indicating various test setups and loading arrangements.

4.2 Co-ordinate System for Testing Beams

The co-ordinate system of the MTA is defined as indicated in Figure 4-1. The (0; 0; 0) co-

ordinate is situated in the centre between the tracks at the top of concrete (TOe) level of the

test floor. This implies that the Y-axis would be vertically perpendicular to the tracks, with

the positive direction defmed in the upward direction. The direction of the X-axis would be

horizontally perpendicular to the tracks (parallel to the test floor) and the Z-axis is parallel to

the direction of the tracks (and the test floor). Due to the double symmetry of the MTA about

the X- and Y- axis, the positive directions of the X- and Z-axis are defined to the preference

of the user as long as the right hand rule is applied.

With the beam setup as in Figure 4-1, the direction of the X and Y-axis of the MTA

corresponds with the direction of the x and y-axis of the beam. The Z-axis will be in the

direction of the beam length.

By using a co-ordinate system, the setup for a specific test can be recorded in simple co-

ordinates. Alternatively the X'- Y'- Z'-axis can be used. The X'- Y'- Z'-axis are defined in

the same direction as the X- Y- Z-directions respectively, but the (0; 0; 0) co-ordinate would

be under one ofthe supports, as can be seen in Figure 4-1.

To create a bending moment about the x-axis of the beam, a force in the Y-direction is

required. If the transverse (X- or Y- direction) loading is not applied through the shear centre

of the section ofthe beam, it will result in torsion in the beam.
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1. Track

(2 number of)

2. Gravity Load Simulator

(2 number of)

3. Actuator Bridge

(2 number of 62.5 kN,

1 number of 600 kN)

4. End Support

(2 number of)

5. Lateral Support Frame

(5 number of)

6. Beam

igure 4-1 General Layout of the MTA
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4.3 The Tracks

The MTA consists of two tracks, spaced 2760 mm apart, as illustrated in Figure 4-1. The

tracks are bolted to the main test floor along its length (at 920 mm centre to centre) using

dywidag bars. The tracks are made up of 4 angles welded to a base plate in order to create a

composite section with a double set of grooves, as illustrated in Figure 4-2.

[] 24 x 100x1O FLAT
x 138 MM

65 65

[

[]I 48 x 100x10 FLAT
x 44 MM

v.r--+----ITJ 4 x 100x6Sx10
ANGLES x 10

f-rr,...-rl'-h-r7""T77"""7"O&-,-,7"""7""T7""""rl7+77"""7"O,..,...------,-"T"7""7~""""'""7""T"T"7""7~7"""7"O""7""7"éf'7+~ 500,.,,.,
t:LLLLLLLL'LL.,.(LLtLLLLLLLL'LL.,.(LLLLL----+LLL'LL.,.(LLLLLLLL~(LLLLLLLL'LL.,.~---rn 1 x 550x 20 FIL AT

I

x 10 500"'M

28 <P HOLES AT
920 CENTRES

~~~

Figure 4-2 Typical Cross section through a Track

The tracks form the basis of the MTA with the loading bridges, the support bridges and the

lateral supporting frames bolted to the tracks in order to span from one track to the other, as

can be seen in Figure 4-1. This makes it possible to move the loading bridges, the end

supports and the lateral supporting frames along the tracks (over the fixing points of the test

floor), to where required.

The tracks are designed to transfer the vertical and horizontal forces applied to the test

specimen into the test floor. Due to the nature of the composite section, applying torsion to

the tracks is not recommended (Maximum torsional resistance = 12.2 kNm). To prevent
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torsion, a hinge mechanism is designed as indicated in Figure 4-6. The hinge is described in

more detail in section 4.4.2

The length of the main track is limited to 10.5 m so that the track can fit across the width of

the test floor. This will enable the testing of beams oflengths of up to 10.25 m. For testing

longer beams, the tracks can be rotated 90° so that it runs along the length of the test floor

and tracks used for the end supports. This will be illustrated in section 4.72.

[For the design of the tracks refer to Appendix C.2.1 and for detail drawings to drawings

OI-3D-OI, 01-0111 and 01-01/2 in Appendix A]

4.4 The Loading Bridges

Vertical loading (loading in the Y-direction) is applied onto the test specimen via the loading

bridges. As mentioned in the previous section, the loading bridges span between and are

moved along tracks to the desired location.

Two types of loading bridges are available for use, namely the gravity load simulator, and the

actuator loading bridge.

4.4.1 The Gravity Load Simulator

Gravity load simulators, as discussed in chapter 2, will enable an applied load to remain

vertical even when the structure sways sideways. Two gravity load simulators, as illustrated

in Figure 4-1 and Figure 4-3, were part of the existing laboratory testing equipment that had

to be reused.

To achieve this, two connectors were designed to connect the simulator to the tracks. This

enables the application of a true gravity load centrally between the tracks. The connectors,

however, do not make provision for the connection of the lateral supporting frames, as no

lateral support would be required when a structure is permitted to sway.
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GRAVlTY LOAD
SIMULATOR

SZ1281415 LvL

TRACK ~~=4~n-~~~~vL
w-~ __~w_~~~~vL

2760

Figure 4-3 The Gravity Load Simulator Bolted to the Tracks

As can be seen from the theoretical behaviour of the gravity load simulator (illustrated in

Figure 4-4) the loading height varies less that 1 mm over a side sway of250 mm, and can be

ignored for practical purposes. Restraining forces caused due to the slope of the load will also

be insignificant as the slope of the load is approximately vertical.

[For the design of the gravity load simulator refer to Appendix C.2.2.1 and for details

drawings to drawings 03-3D-04, 01-01/1 and 03-03/2 in Appendix A]
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4.4.2 The Hydraulic Actuator Bridges

The hydraulic actuator bridges make provision for the use of the existing servo hydraulic

actuators in the application of a vertical load, as can be seen in Figure 4-1.

Two types of bridges were designed for the servo hydraulic actuators. One bridge was

designed to carry the 500 kN servo hydraulic actuator and the other designed for the 50 kN

servo-hydraulic actuator. Other loading equipment, such as the 200kN hydraulic actuator, can

also be used with the bridges by simply bolting a loading frame to the bridge, as will be

illustrated later.

The composite section of the bridges is formed out of plates welded together in order to form

two grooves similar to that of the tracks. The servo hydraulic actuator, or other loading

equipment, is then bolted to the bridge and can be moved along the grooves of the bridge to

any position. This allows for the application of a load between the tracks. The cross section

of the 500 kN load bridge is illustrated in Figure 4-5.

268 59

[7777;77]"---- ~ 4 x 59x20 FLAT
x 3 000",,,,

A----- Dl 2 x 100x12 FLAT
x 3 000",,,,

'---,------+7t---- [IJ 1 x 268x20 FL A T
x 2 360M'"

J----t----t'7'!---- Gl 2 x 100x12 FLAT
x 3 000",,,,

1-- [ITJ 4 x 138xlO FLAT
x 136",,,,

~ 4 x 138xlO FLAT
x 134",,,,

~ 4 x 138xl0 FLAT
x 67M'"

/1--------1----- ru 2 x 130xlO FLAT
x 960",1'\

-'----=_ ~:2Z~L22Z::z2~~:2Z~L22Z::z2ZZ;~:2Z~z::;0L2z:jf___--- [] 1 x 450xl6 F LA T
x 960"""ru 2 x 450x16 FLAT
x 587",,,,

Figure 4-5 Typical Cross section through the 500 kN Actuator Bridge
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The cross centres of the grooves of the loading bridges match the grooves of the tracks,

providing greater flexibility in the use of the loading equipment.

The bridges are connected to the tracks via a hinge, which was designed to eliminate torsion

on the tracks. The hinges enable the bridge to be shifted along the tracks so that a point load

can be applied at any position between or along the tracks, using the servo hydraulic actuator.

The hinge consists of a base plate with 4 vertical flanges. Pins and bushes are used to create a

true simply supported end for the loading bridge. This allows the ends of the load bridge to

rotate resulting in pure vertical load transferred to the tracks. The load bridge, hinge and

track connection is illustrated in Figure 4-6.

LOAD BRIDGE

120.000 L vL v

TRACK

BEARING PIN AND BUSH

305.000 L vL v

1----- HINGE

0.000 LvL v

Figure 4-6 Tbe Hinge connecting tbe Load Bridge to tbe Track

Although the load bridges were not designed as end supports, it is possible to provide support

to the test specimen. This can be achieved by bolting any supporting structure to the load

bridge by means of the grooves and will be illustrated later.

[For the design of the tracks refer to Appendix C.2.2.2 and C.2.2.3 and for detail drawings to

drawings 03-30-01, 03-30-02, 03-0111, 03-0112, 03-01/3, 03-02/1,03-02/2 and 03-02/3 in

Appendix A]
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4.5 The End Supports

The end support consists of two parts namely the horizontal bridges and the vertical support

frame sections as illustrated in Figure 4-1 and Figure 4-7.

BOUNDARYCONDITION---------~

[]] 1 x !PE 100
)< 945.8nn

VERTICAL SUPPORTS

lID 2 x 100x132.5
x 10 FLAT

@] 2 x IPE 100
:x 665.81'11"1

[5] I x IPE 100
x I 016.6rH"I

~ I x 254.254 H
x I 185.8f'\r'I

SUPPORT BRIDGES
Q] 254x254:x73H x 3 2221"11'1

TRACK BEYOND L1 <1

" <1

ITEST FLOOR ~ '22Q

'\72300. LvL
ID I x 254x254 H

x 1 985.81"11'1

'\71500. LvL

'\72542 LvL
'\7 120.0 LvL
'\7 0.0 LvL

Figure 4-7 The End Supports consisting ofa Horizontal Bridge and a Vertical Frame

The support bridges are made up of notched 254x254x73 H sections. The vertical support

frames are bolted to the support bridges. To save costs, the support bridges have holes at 127

mm centres instead of having grooves for the vertical support frame. This means that the

vertical end support can only be bolted on at discrete positions. This will prove to be more

than adequate due to the close spacing of these holes and the overall width of the support ..

The support bridges are bolted to the tracks and are guided along them similar to the load

bridges, making it possible to test beams of various lengths. When the load is applied to the

supports in the negative Y' direction (towards the test floor), the load bridges will bear

directly on the test floor to ensuring maximum load capacity as can seen in Figure 4-8. In the
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case of an applied load in the positive Y' direction, the tracks will provide restraint against

uplift. The support bridges are also sufficiently stiff so that the deflection of the bridges can

be ignored.

-500 ..........-------------------------'- -6.0
Position x (mm)

Figure 4-8 Capacity Envelope for Support Bridge

The vertical support frame consists of 2 vertical 254x254x73 H section members braced

together with !PE 100 1-beams. The vertical elements, being of different lengths, provide for

testing at two levels, namely the 1.5 m and the 2.3 m level. The ability to test at two levels

provide for further flexibility as a combination of transfer beams and other loading

equipment can be used.

The cross bracing is required for when axial forces are applied to the beam. In the case of no

horizontal forces, and small vertical loads, the cross bracing can be omitted. More than one

vertical frame can be bolted to the support bridges making it possible to test beams of various
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widths, or to ensure for a stiffer support. The frames can also be bolted back to front to

provide for the testing of cantilevers. This will be illustrated in section 4.7.

The required boundary conditions are bolted to the vertical frame at either the 1.5 m level or

the 2.3 m level, as illustrated in Figure 4-7. This allows the boundary conditions to be

changed to match the requirements of each test.

The end supports were designed to provide a vertical reaction of 600 kN and a horizontal

reaction of 50 kN acting as an axial load on the beam without any adjustments to the support.

The loading and deflection capacity diagram of the unadjusted support for unfactored loads

are given in Figure 4-9, Figure 4-10 and Figure 4-11 for testing at the 1.5 m level and in

Figure 4-15, Figure 4-16 and Figure 4-17 for testing at the 2.3 mlevel.

By making minor adjustments to the support, the lateral load can be increased to 200 kN.

These adjustments entail the removal of the diagonal brace and propping at the 2.3 m level in

the case of testing at the 1.5 m level. For testing at the 2.3 m level the 1.5 m level needs to be

extended and propped. The propping can easily be achieved by connecting the two end

supports. This can be done using a tension member when testing the beam for compression or

a compression member when tension forces are applied to the beam. The loading and

deflection capacity diagram for the adjusted support is given in Figure 4-12, Figure 4-13 and

Figure 4-14 for testing at the 1.5 m level and in Figure 4-18, Figure 4-19 and Figure 4-20 for

testing in the 2.3 mlevel.

The user needs to verify that the applied loads falls within the capacity of the support. As an

example, testing at the 1.5 m level and a maximum (negative) vertical load of 2030 kN can

be applied together with an (-) 80 kN horizontal load.
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1.5 m Lvi Testing Capacity Envelope
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Figure 4-9 1.5 m LvI Support Capacity: Load Capacity Envelope
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Figure 4-101.5 m LvI Support: Horizontal Deflection Capacity Envelope
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1.5m Lvi Testing Capacity Envelope
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Figure 4-111.5 m Lvi Support: Vertical Deflection Capacity Envelope

1.5 m Lvi Testing Capacity Envelope
..,"""

V
Upper Lin it

~~
J 'V'

" ", ~, ..., '"I
Hi

"'''''''
..., 't

-.,r--- :

/Vertical(+) i'f\ I
~' ,

zon:+) 41'11V\r
.\,... ft

'1 /"~~ -500 -300 -100 100 300

''''''''''

"''''''' .:
"'-_OU'

_.
'V'_~....

" " " ...
Lower Limit.-

z;
~
t! -7
II>

Horizontal (kN)

Figure 4-12 1.5 m Lvi Adjusted Support: Load Capacity Envelope
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Figure 4-131.5 m LvI Adjusted Support: Horizontal Deflection Capacity Envelope
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Figure 4-141.5 m LvI Adjusted Support: Vertical Deflection Capacity Envelope
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2.3 m Lvi Testing Capacity Envelope
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Figure 4-15 2.3 m Lvi Support Capacity: Load Capacity Envelope
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Figure 4-16. 2.3 m Lvi Support: Horizontal Deflection Capacity Envelope
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2.3 m Lvi Testing Capacity Envlope
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Figure 4-17. 2.3 m Lvi Support: Vertical Deflection Capacity Envelope
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Figure 4-18 2.3 m Lvi Adjusted Support: Load Capacity Envelope
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2.3 m Lvi Testing Capacity Envelope
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Figure 4-19 2.3 m Lvi Adjusted Support: Horizontal Deflection Capacity Envelope
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Figure 4-20 2.3 m Lvi Adjusted Support: Vertical Deflection Capacity Envelope
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Two end supports can be fixed side to side to minimize the deflection ofthe supports as the

loads are shared. When testing for horizontal loads it is required that the supports be not only

fixed to the tracks but also to the test floor so that slip of the supports can be prevented. This

can be done by means of a tension cable and will be illustrated later.

When testing a cantilever beam, the two supports are bolted back to front and the 2.3 m

levels connected by a member of at least equal stiffness to the cantilever beam (and will be

illustrated later). The loading capacity for testing cantilevers and the deflection thereof is

illustrated in Figure 4-21 and Figure 4-22.

Similar to the vertical and horizontal capacity charts, the moment capacity diagrams gives the

maximum unfactored loads and the rotation and displacement capacity of the support. As an

example, a moment of 260 kNm together with a shear force of (-) 1100 kN can be applied

using a point load. The maximum rotation of the point of loading would then be 0.00325

radians.

Cantilever Testing Capacity Envelope

-2500 ,-------------..---------.,....-----------;

Vertical (+)

L".,

50 150 200100 250 300 350

Moment (kNm)

Figure 4-21 Support Capacity for Cantilever Testing: Displacement of Support
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Figure 4-22 Support Capacity for Cantilever Testing: Rotation of Support

The load capacity of the supports exceeds the capacity of the test floor in most cases and is

therefore not criticaL It is important to verify that the deflection of the support is within

testing limits. In most cases the deflection of the support is small compared to the overall

length or deflection of the test piece and can be ignored.

[For the design of the supports and the origin of all the figures in this section refer to

Appendix C.2.4. For the detail drawings refer to drawings 04-3D-Ol, 04-0111, 04-01/2, 04-

02/1 and 04-02/2 in Appendix A]
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4.6 Lateral Supports

Lateral support and lateral loading are achieved by means of a portal frame and a lateral

supporting or loading mechanism. The supporting frames are designed so that various lateral

supporting mechanisms such as the Watt-mechanism, cable systems, rod systems or guide

tracks (as discussed in chapter 2) can be used to provide lateral support as required.

The supporting frame is illustrated in Figure 4-1 and Figure 4-23 and is made up ofIPE 200

sections. The frame is connected to the tracks, loading bridge or the support bridge by means

of a connector and to the guide track at first floor level. Three different connectors were

designed for connecting the frame to the tracks, loading bridge or the support bridges to

ensure that the frame heights remain constant.

ffi] 3 x 200)(100
)<12 FLAT

(g] I )< IPE 200
)(2 560 1'11'1

(5J 2 )< 200,.100
xa fLAT FIRST FLOOR

SLAB

[] 2 )< IP[ 200
)C 3760 1"11"'1

I1JSX~"'"
x8 "AT CONNE CTOR

TRACK

SECTION AA

Figure 4-23 The Lateral Supporting Frame
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The lateral support frame was designed to resist a horizontal load of 25 kN on each vertical

column leg of the frame. The load capacity for the unadjusted lateral support frame is given

in Figure 4-24 and the deflection envelope is given Figure 4-25. As an example a maximum

factored lateral load of 62.5 kN can be applied at a height of 3.3 m. For the deflection of the

frame under various loads at various heights refer to Figure 4-26.

Using a tie brace to an anchor point on the floor or rod at 45° the lateral force will be

transferred directly to the test floor, resulting in an increase of the load capacity of the lateral

support frame. The load capacity for the lateral support frame using a tie brace or rod is given

in Figure 4-27.
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Figure 4-24 Loading Capacity ofthe Lateral Support Frame
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Capacity Envelope for Lateral Support Frame
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Figure 4-25. Lateral Support Frame: Deflection Capacity Envelope
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Figure 4-26. Deflection of the Lateral Support Frame
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Figure 4-27 Capacity of the Lateral Support Frame using a Tie Brace

When using a lateral support mechanism such as a rod, one of the vertical columns of the

frame can be removed as only a single fixing point is required for the mechanism. This will

be illustrated in the following section.

The use of the lateral support frame, using various connectors and lateral supporting

mechanisms, will be illustrated in the following section.

[For the design of the lateral supports frames and the origin of all the figures in this section

refer to Appendix C.2.5. For the detail drawings to refer to drawings 05-30-01, 05-01/1 and

05-02/2 in Appendix A]

4.23

Stellenbosch University http://scholar.sun.ac.za



4.7 Test Arrangements using the MTA

In this section the versatility of the MTA will be demonstrated by means ofa number of test

examples. The testing of different test samples, including beams, trusses and slabs, of various

sizes, under different boundary conditions and testing at different heights will be illustrated

in these test examples.

The use of the different load bridges to apply a vertical load and the application of axial

(tension and compression) and lateral loads will also be illustrated. The versatility of the

lateral support frames in providing lateral support will be illustrated with the use of the

different types of lateral supporting mechanism to provide lateral support or to apply lateral

loads.

[These graphical test examples were created by means of cross-referenced three-dimensional

object drawings. For more details on these drawings and the use of the 3D OBJECT drawings

to create visual displays in two and three dimensions refer to Appendix A.]

4.7.1 Test Setup: Example 1 - Testing a Simply Supported Beam

In example 1, as illustrated in Figure 4-28, a simply supported beam is tested at the 1,5m

level. Vertical loads (loading in the Y direction) are applied at third points using the gravity

load simulators, to ensure a constant bending moment over the central third of the beam

(refer to section 2.5.2 for more information on this setup).

As the gravity load simulators are mainly used to test structures permitted to sway, no lateral

support would be required at the loading points. Lateral support is however provided at mid

span and at the support using a Watt-mechanism.
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OJ

1. Tracks 7. Lateral Support Frame / Track Connector

2. Gravity Simulator Track Connector 8. Lateral Support Frame

3. Gravity Simulator 9. Lateral Support Brace

4. Horizontal Support Bridge 10. Watt-mechanism

5. Vertical Support 11. Beam

6. Lateral Support Frame / Support Connector

Figure 4-28 Test Setup: Example 1 - Testing a Simply Supported Beam
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1. Tracks 8. Lateral Support Frame / Support Connector

2. Secondary Tracks 9. Lateral Support Frame / Load Bridge Connector

3. Hinge 10. Lateral Support Frame

4. 500 kN Load Bridge Il. Lateral Support Brace

5. 500 kN Servo Hydraulic Actuator 12. Rod

6. Horizontal Support Bridge 13. Truss

7. Vertical Support

Figure 4-29 Test Setup: Example 2 - Testing a Truss
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4.7.2 Test Setup: Example 2 - Testing a Truss

When testing beams or trusses with lengths greater than 10m, the tracks can be rotated 90

degrees, so as to run along the length of the test floor. Shorter secondary tracks are then used

to connect one end support at the end of the test floor as illustrated in Figure 4-29.

In this example the 500 kN servo hydraulic actuator is used together with the 600 kN load

bridge to apply a vertical load at mid span of the truss.

When a lateral supporting mechanism with a single fixing point is used, the lateral frame can

be adjusted as illustrated in Figure 4-29. In this example a rod is used to provide lateral

support at the supports and at mid span.

The truss, supports and servo hydraulic actuator are offset from the centre line (the Z-axis)

between the tracks to allow for the use of a longer rod.

4.7.3 Test Setup: Example 3 - Testing a Slab

Slabs and wider beams can be tested using two vertical supports to create a wider and stiffer

support as illustrated in Figure 4-30.

In this example a slab is tested using the three load bridges to apply a vertical load at quarter

spans. No lateral support is provided for the slab, as lateral torsional buckling would not be a

failure mechanism.
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1. Tracks 6. 500 kN Servo Hydraulic Actuator

2. Hinge 7. Horizontal Support Bridge

3. 62.5 kN Load Bridge 8. Vertical Support

4. 600 kN Load Bridge 9. Lateral Support Brace

5. 50 kN Servo Hydraulic Actuator 10. Slab

Figure 4-30 Test Setup: Example 3 - Testing a Slab
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1. Tracks 8. Lateral Support Frame / Support Connector

2. Hinge 9. Lateral Support Frame

3. 62.5 kN Load Bridge 10. Lateral Support Brace

4. 50 kN Servo Hydraulic Actuator Il. Guide Tracks

5. Horizontal Support Bridge 12. Beam

6. Vertical Support 13. Support Connector

7. Lateral Support Frame / Load Bridge

Connector

Figure 4-31 Test Setup: Example 4 - Testing a Cantilever
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4.7.4 Test Setup: Example 4 - Testing a Cantilever

In Figure 4-31 a cantilever beam is tested using the 62.5 kN load bridge and the 50 kN servo

hydraulic actuator to apply a vertical point load at the cantilever end.

The supports are bolted back to front and connected using a connector of at least the same

stiffness as the cantilever beam, as explained in section 4.5. Lateral support is provided at the

cantilever end using guide tracks. As the beam would be bolted to the support, the bolted

connection together with the stiffness of the lateral support brace and the vertical support

would determine the degree of torsional fixity.

4.7.5 Test Setup: Example 5 - Testing a Multi-span Beam/Column

In Figure 4-32 a continuous beam of equal spans is tested under a combination of axial, shear

and moment forces.

The end supports are extended to create a fixing point for the tension hydraulic actuator and

are fixed by using a connecting tie to the first floor and support stops in order to resist the

axial forces on the beam. As an alternative to the ties (although not ideal) a compression

member can also be used in a similar manner to the tie in Figure 4-33. A single horizontal

support bridge and vertical support is used as mod span support.

The 62.5 kN load bridges together with the 50 kN servo hydraulic actuators are used to apply

a vertical point load at the centre of each span. Cables are used to supply lateral support at

the supports and at mid span.
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1. Tracks 10. Lateral Support Frame / Support Connector

2. Hinge 11. Lateral Support Frame / Load Bridge Connector

3. 62.5 kN Load Bridge 12. Lateral Support Frame

4. 50 kN Servo Hydraulic Actuator 13. Lateral Support Brace

5. Horizontal Support Bridge 14. Cables

6. Vertical Support 15. Tie

7. Support Extension 16. Support Stop

8. Single Horizontal Support Bridge 17. Tension Hydraulic Actuator

9. Single Vertical Support 18. Beam

Figure 4-32 Test Setup: Example 5 - Testing a Multi-span Beam/Column
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1. Tracks 9. Lateral Support (Guide Track)

2. Gravity Simulator Track Connector 10. Rod (and Tension Hydraulic

Actuator)

3. Gravity Simulator 11. Strut

4. Horizontal Support Bridge 12. Tie (Cable)

5. Vertical Support 13. Support Stop

6. Lateral Support Frame / Support Connector 14. Compression Hydraulic Actuator

7. Lateral Support Frame / Track Connector 15. Beam

8. Lateral Support Frame

Figure 4-33 Test Setup: Example 6 - Testing a Beam/Column under Bi-axial Bending
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4.7.6 Test Setup: Example 6 Testing a Beam/Column under Bi-axial Bending

Test example 6, as illustrated in Figure 4-33, displays a beam tested under a combination of

axial (vertical and lateral) shear and bi-axial bending moments.

The top brace of the supports are removed to provide for the compression hydraulic actuator.

The supports are fixed using the support stops and tying the top of the supports together

using a tie member such as a cable.

A vertical point load is applied at mid span using the gravity load simulator. Lateral support

is provided at the end supports using guide tracks, while lateral loading and support are

applied at third spans using a rod mechanism comprising of a tension Hydraulic Actuator.

Struts are used, as explained in section 4.6, to increase the capacity of the lateral support

frames.
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5 RATIONAL PLANNING AND TESTING USING THE MULTI-PURPOSE

BEAM/COLUMN TESTING APPARATUS

5.1 Introd uction

It is important for each test to yield a set of meaningful and therefore useful results or data

for later use. Without such an outcome, a test can be considered wasted. It is this reason that

makes rational planning-and-testing a vital part of each test.

This chapter will take a closer look at the process of rational planning and testing under the

following headings:

• Definition of Rational Planning-and-Testing

• Pre-test Planning

• Testing

• Test Evaluation

5.2 Definition of Rational Planning-and-Testing

Rational Planning-and- Testing can be defined as the process of preparing, testing and

evaluating the results of a structural test. It will ensure economic and safe testing and provide

meaningful test results. This process will link the previous chapters on testing and the MTA,

and forms a good summary on testing beams and columns, although it also applies to testing

in general.

As can be seen in Figure 5-1 the rational planning process can be divided in three separate

phases (or time periods), namely the period before testing, the period during testing and the

period after testing.

The period before testing, or pre-test planning period, is required to make decisions on the

test sample, the test setup, loading, test data acquisition, the specification, the test value and

safety. During testing the test sample and test arrangement need to be evaluated and test data
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needs to be acquired. After the test, the test data and behaviour of the test specimen should be

evaluated in order to make meaningful conclusions. These periods will be discussed in more

detail in the following sections.

Rational Planning-

and-Testing

~ u ~
Pre-test Planning Testing Test Evaluation

Test Sample Setting up Behaviour

Test Setup Test run & Zero Readings Method of Failure

Loading Test Data Acquisition Test Data Processing

Test Data Acquisition Testing

Test Value Safety

Safety Disassembly

Figure 5-1 Rational Planning-and-Testing Summary

5.3 Pre-Test Planning

Pre-test planning is vital to ensure successful testing and can be seen as a decision making

process in which the test sample, the layout, static and kinematic boundary conditions,

stability boundary conditions, loading and test data acquisition are varied and the effects

thereof compared to the test specification, the test value and safety requirements. This

planning process is illustrated in Figure 5-2.

The test sample, the layout, the boundary conditions, the loading and test data acquisition are

referred to as test variables, as it can be varied to comply to the test specification, the test

value and safety requirements of a test. The test specification, the test value and safety

requirements are fixed and are referred to as the test fixities.
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Test Sample
f---=----:--=-:-.:......,.-=--:--------+- ----------------,-----------------------------------
Beam/ Siab/ Column '

Material Properties

Geometry

Test Layout
I--:::--,-:-:---:-:::--:---:---:-::-~-:-----+-----------------:
Cantilever/ Single- / Multi-span :

L, W, B

I Test Specification

Static and Kinematic

Boundary Conditions
1--::------,-----------+- ----------------
Capacity

Restrictions

Test Value

Test Value vs, Test Cost

Stability Boundary Conditions

Capacity

Restrictions

I Safety
Loading

I-=---,,-----=----------,~ ---------------- ,
Equipment Capacity

Loading Type and Position

Specimen Forces

Test Data Acquisition ,
f-:-:,--------,-------,-=-:-------+- ----------------'-----------------------------------
Measurement and Storage

Equipment Capacity

Measurement and Position

Figure 5-2 Pre-Test Planning Flow Diagram
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Pre-test planning is an iterative process in which the influence of each variable on the other

variables and the test fixities are determined. The variables must then be adjusted in order to

optimise the test.

In this section the different variables and fixities that influence the pre-test planning and

decision-making process will be looked at.

5.3.1 Test Sample

During the pre-test planning phase the suitability and preparation of the test sample must be

evaluated in relation to the test variables and fixities. This requires the size and loading

restrictions the MT A is set up to complies to the test sample. If the test sample is to big for

the MTA a scale model can be tested. It is also required to estimate the behaviour of the test

sample. The expected behaviour must be re-evaluated in relation to any changes in the test

variables in order to see if the test will comply with the test fixities.

The behaviour of the test sample can be estimated from basic structural behaviour and the

attributes of the test sample. These attributes include geometrical and material properties and

were discussed in detail in chapter 2. Finite elements can also be used to estimate the

behaviour of the test sample and are very useful in this regard provided the user understand

the concept and limitations of finite element analisys.

The attributes of the selected random test samples must be recorded, which will enable one to

relate the test results with regards to the statistical variables of the attributes of the test

sample. This will result in the need for fewer tests, as the statistical parameters of the test

sample will enable one to draw conclusion on the variability of the test results. As an

example: the tolerances in cross sectional properties of an I-Beam will result in a variance in

test results. If the tolerances in cross sectional area are varied the influence on the test results

can be calculated and verified by doing fewer tests.
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5.3.2 Test Layout

The test layout is usually prescribed by the test specification. Other testing variables, such as

the specimen size, loading and test data acquisition, can also affect the layout, although

usually only on the practicality of the test. Various test layouts and standard test were

discussed in chapter 2, and this forms a good background when decisions on the layout is to

be made.

5.3.3 Static and Kinematic Boundary Conditions

The End Supports need to satisfy the required static and kinematic boundary conditions, by

providing the required restraints or freedom of restraint as required by the test setup. Various

standard boundary conditions were discussed in chapter 2, and the use of these boundary

conditions using the MTA was illustrated in chapter 4.

The force / displacement / rotation capacity of the end supports should not be exceeded as

this will lead not only to unsatisfactory boundary conditions, but also to the failure of the

supporting structure. Restraining forces caused by the imperfection of the boundary

conditions should also not influence the test results, to ensure that the test comply with the

test fixities.

5.3.4 Stability Boundary Conditions

Stability boundary conditions or lateral support, if required by the test specification, will

prevent undesirable lateral (stability) failure of the test specimen. The advantages and

disadvantages of the various types of lateral supporting mechanisms were discussed in

chapter 2 and the user should carefully consider each mechanism as this can influence the

cost, the safety and the results of the test.

The force / displacement capacity of the laterally supporting frame and mechanism should

not be exceeded, as this will lead to unsatisfactory boundary conditions and cause the failure
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of the supporting structure. To ensure that the test comply with the test fixities, restraining

forces caused by the lateral supporting mechanism should also not influence the test results.

5.3.5 Loading

Loading, and the attributes and types of loading, were discussed in detail in chapter 2. The

specimen forces caused due to specific loading types were also discussed. All this, including

the available loading equipment and the capacity of the equipment, should be evaluated

during the pre-test planning period and compared to the test fixities.

5.3.6 Test Data Acquisition

As discussed in chapter 2, meaningful and therefore useful test results or data is required

from each test for later use. This includes visual observations as well as measured readings

(manual and electronic) and the storage of such data.

Considering the above during the pre-test planning phase will require summarising the

available equipment and the capacity thereof. Critical positions for measurement must be

identified from the expected behaviour of the test sample. The test specification may also

have prescribed measurement positions. If the test sample is to be tested to failure, it is

required to decide on the time of removal of the measuring equipment, in order to prevent

damage.

Any changes in the test variables will require the re-evaluation of the acquisition of the test

data to ensure that the test complies with the test fixities.

5.3.7 Test Specification

All tests require a specification. This may be prescribed by a national testing standard such as

the SABS Standard Methods, or a user defined specification. Chapter 2 provides a good
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background to standard tests. Using a test specification will enable the user to compare test

results as a test specification is a fixity and cannot be varied.

The test specification will usually prescribe the layout, the required boundary conditions

(static, kinematic and stability), the loading, the required test data and test sample

preparations for a specific test and test sample. The test variables should be adjusted to

comply to the test specification.

Where no test specification exists, the user needs to create a specification. The test variables

need to comply with this "created" specification. This specification can then be varied in

order to optimise the variables.

Tests can also be performed in order to develop a test standard. In such a case, one must vary

the standard of each test, comparing the practicality and end results before making a final

decision on the required specification.

5.3.8 Test Value

Each test should be assigned a test value, which can be considered to be the value of a

successful test. This test value is a hypothetical value, which will express the research and

educational value of a successful test as a financial value. In the case where testing is

required for product development or quality control, it is easier to assign such a financial

value to a successful test as the financial gain due to a product of high quality or a new

product is known.

At various stages during the rational planning process, the Test Value must be compared to

the test cost. The test cost is not only a function of the financial cost of the test, but also of

time and other available resources and is expressed in terms of a fmancial value. If the test

value is greater than the test cost, testing or an additional test can be justified. Ifnot, the test

cannot be justified and should seriously be reconsidered (e.g. the fifth test of an identical test

sample tested to failure under the same test arrangement as the previous four).
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Safety forms an important part of testing, not only because of cost related to injury, damage

or loss, but because of the legal implications (Law on Career Safety, Law 85 of 1993). It is

therefore important to identify the risk and danger of each test and to do everything within

reason to minimize this danger and risk. Here follows a few safety regulations to ensure safe

testing (For a full set of safety regulations and the view of the University of Stellenbosch to

the Law on Career Safety, refer to The Safety User's Manual for the Department of Civil

Engineering [20}):

General Safety Regulations:

• Nobody is allowed to work in a laboratory or workshop on hislher own. Another

person should be at least within shouting distance. This applies especially after hours.

• Nobody may use any crane machine or apparatus without proper training. Training

means that a person was informed about the working of and the risk concerning the

equipment in question and that he has signed a register confirming the above.

• Students must display their names, as well as the name of the relevant lecturer, at the

test set-up. This will also prevent equipment being removed or tampered with.

• It is compulsory to wear ear protection ifthe noise levels are high.

• It is compulsory to wear eye protection when working with a grinding/cutting

machine.

• No loose hair or clothing may be worn when working with any machinery.

• No sandals or open shoes may be worn in the workshop and laboratories.

• A safety hat must be worn if work is being done overhead.

• Only qualified persons may modify electrical equipment.

• Keep your working environment neat and clean to prevent accidents.
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Safety Regulations Using MTA:

• Make sure that all equipment is in working order before using it.

• Do not exceed the capacity of the testing or measuring equipment, as this will damage

the equipment beyond repair.

• Stand at a safe distance and wear the necessary protective garments during testing.

• Make sure that all connections on the MTA are as requ ired for the test. Where

movement is required, make sure it can be achieved.

• The tests set-up must include emergency switches to stop the test ifrequired.

• Ensure that the failure of the sample will not cause damage or injury. Remove

measurement equipment before failure and keep a save distance at failure.

5.4 Testing

Testing in terms of the rational planning refers to all laboratory work required before, during

and after testing. As can be seen in Figure 5-2, this would include the setting up of the test

sample in the MTA with the required boundary and loading conditions, a test run, taking zero

readings, testing the specimen, test data acquisition, safety during testing and the cleaning up

afterwards.

The selected test sample must be prepared and set up in the MTA so that the test variables

comply with the fixities as required and determined in the pre-test planning process. The

laboratory time required for setting up will be drastically reduced pending the detail of the

pre-test planning. The attributes of the test sample (geometric, and especially material

properties) also need to be verified. This will prevent testing a false sample that will lead to

unexplained test results.

Before commencing with the test, the test set-up and equipment must be tested to ensure a

successful test. This is done best by a test run or trail load. The test sample is loaded and the

load released to ensure that the test set-up and all measurement and loading equipment and

safety precautions are in order. The loading during the test run could be as little as 5 % of the

total load [21] but should not exceed the elastic limit of the test piece to ensure that the test
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run will not influence the test result. The test run will enable the user to re-evaluate the test

setup and make minor adjustments to the setup if required prior to testing.

Once the test run is completed successfully and no more minor adjustments are required, zero

readings can be taken and the test can commence. The behaviour of the test sample, the test

setup, the loading and data acquisition equipment will have to be monitored during the test to

ensure a successful test. Any deviation to the expected behaviour should be evaluated to

ensure that it is not caused by imperfections in the test setup. Measurement and loading

equipment are constantly to be monitored to ensure the correct working thereof during the

test.

Manual adjustments and the removal of measurement equipment (if required) must be done

with care to ensure safety and accurate test data. It is also important to maintain the highest

safety standards and monitor all safety precautions during testing to prevent injury and loss.

Upon completion of the test, the test must be evaluated as described in the following section.

If evaluated as successful, the test setup can be disassembled and cleaned to allow for the

next test.

5.5 TestEvaluation

Before a test can be deemed successful it must first be evaluated. In this evaluation process

the behaviour of the test sample needs to be compared to the expected behaviour. One should

verify that any deviations to the expected behaviour were not caused by an inaccurate test

sample or test set up. Similarly, an inaccurate setup should not cause the test sample to

behave in the expected manner. For these reasons it is important to monitor the test sample

and test setup during the test as discussed in the previous section.

The expected behaviour, as it is only the expected behaviour, will not always be assumed

correctly, and the user needs to keep this in mind when the test is evaluated. This will require

the user to re-evaluate the expected behaviour by interpreting the test behaviour. The user
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might require retesting the test sample, or the preparation and testing of another sample to

verify the behaviour of the test sample before he will be able to adjust his expected

behaviour.

The collected test data must also be evaluated to ensure the correct recording of the test data.

A preliminary plot of deflection or strain versus the applied load would give a good

indication of this. In the case where the set sample is tested to failure, the method of failure

must correlate with the collected test data. Notes during testing on the behaviour of the test

sample would also be useful to evaluate the authenticity of the test data.

Note that this process will not require the test data to be interpreted, but only the verification

of a correct test sample, correct test setup an the correct recording of the test data. Such a test

yields meaningful and therefore useful results or data for later use and can be deemed to be

successful.
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6 EVALUATION OF THE MULTI-PURPOSE BEAM/COLUMN TESTING

APPARATUS

6.1 Introduction

To date the MT A has been used for the testing of various structural elements, including the

simulation of the wheel loads of an overhead crane on a rail track, vertical and lateral loading

on a crane beam and the deflection of trusses with welded and bolted connections.

As an illustration and evaluation of the use of the MT A and the Rational Planning Process,

the process followed to test and the testing of a welded truss will be discussed in more detail.

6.2 Deflection Evaluation of Steel Trusses

Steel trusses were tested as part of under-graduate research [22] to compare the theoretical

deflections of the steel trusses to the experimental values. In this section we will take a closer

look at the objective of the research, the pre-test planning, the testing and the test evaluation

of this experimental work (Refer to appendix B for more detail on the testing).

6.2.1 Objectives of Research

The objective of the research was to compare the theoretical deflections of a steel truss to

experimental values and to draw conclusions on the findings. Although the research required

the testing of two similar steel trusses, one with welded and one with bolted connections,

only the testing of the welded truss will be used to illustrate the use of the MTA.

The trusses were designed for two point loads of 35 kN each at third span. The deflection of

the truss at mid span was analytically calculated for various point loads and was compared to

the experimental readings.
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6.2.2 Pre-test Planning

The iterative process of the pre-test planning phase is illustrated in Figure 6-1. The two test

samples (or trusses) were made of standard angle sections (grade 300 WA steel), one with

bolted and one with welded connections, and were designed to fall within the size and

loading limits of the MT A. A typical truss is illustrated in Figure 6-2. These trusses were set

up as simply supported trusses as to comply with the test specification.

No manual adjustments to the lateral supporting system were desired during the tests, hence

the decision to use linear guide tracks at the supports and at third spans to provide lateral

support as they will allow large deflections with no restraining forces. The capacity of all

supports and restraints were checked and verified to exceed the required values of the test.

Two gravity load simulators, using 20 ton Enerpack hydraulic loading actuator, were used to

apply a stabilising linear increasing point load. Strain gauges, load cells and LVDTs were

used to collect test data digitally as indicated in Figure 6-2. The theoretical test setup is

illustrated in Figure 6-2 and Figure 6-3.

The theoretical deflection of the truss at various load increments up to the design load was

calculated beforehand to compare with the values during the test. This gave a good indication

of the expected behaviour of the test samples. It was expected for the welded truss to be

stiffer than the bolted truss, as slip of the bolted connections would be expected.

6.2

Stellenbosch University http://scholar.sun.ac.za



Test Sample
----- -------------------------~

Sample 1: Welded Steel Truss ,

Sample 2: Bolted Steel Truss

Material: Grade 300 WA Steel

Geometry: Indicated in Figure 6-2 and Figure 6-3 ,
,,

Test Layout
,,,

-----1
Single-span, simply supported

,
Test Specification,,,

L = 7 200 mm B = 110 mm
,

Simply supported truss with point,,

H = 1200 mm loads at third span.
, Deflection required at mid span.,

Static and Kinematic Boundary Conditions ,
-- -

Cr » Cu= 35 kN Test Value

Restrictions: simply supported Test Value» Test Cost
,, , ,,, , ,

,
Stability Boundary Conditions

-- -
Cr » Cu= 0,565 kN

Vertical linear guide used, no restraints or ,
adjustments required during test

,

,
Safety,,

Loading LVDT removed at Pu

Equipment: 2No. Gravity load simulators (20 ton)
-- ---

,,
Loading: Stabilising Point load at third span

Forces: calculated using Prokon software
,
,

Test Data Acquisition
----- -------------------------

Measurement Equipment:

Strain gauges - as indicated in Figure 6-2

Load cells - at loading points (third spans)

LVDT - measure deflection at m id span

Equipment Capacity» Test Requirements

Measurement and Position

Figure 6-1 Pre-Test Planning Flow Diagram
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7200

5. LVDT (Displacement Measurement)

6. LVDT (Displacement Measurement)

7. Strain Gauges

1. Truss

2. Pinned Support

3. Roller Support

4. Load Cell and Loading Actuator

Figure 6-2 Theoretical Test Setup

The test value was not only related to the value of the pre-graduate research, but the bolted

truss was also built as a display experiment and used in an engineering open day display.

The test cost can be related to the cost of the trusses. Each truss, weighting around 146kg,

costs about R1700.00 (working on current steel manufacture and erection rates, and ignoring

possible salvage values). As the test value exceeds the test cost, the tests can be justified.

The test setup and testing were done with the safety regulations and precautions (as discussed

in the previous chapter) in mind. Only the welded truss was to be tested to failure, and the

LVDTs had to be removed at the design load.
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1. Tracks 7. Lateral Support Frame / Support Connector

2. Gravity Simulator Track Connector 8. Lateral Support Frame

3. Gravity Simulator 9. Lateral Support Frame Brace

4. Horizontal Support Bridge 10. Lateral Support Mechanism: Guide Tracks

5. Vertical Support 11. Truss

6. Lateral Support Frame / Track Connector

Figure 6-3 Test Setup for Deflection Evaluation of Steel Truss
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6.2.3 Testing

As discussed in the previous chapter, testing refers to all laboratory work. In the case of

testing the trusses it included the preparation of the test samples, setting up for testing,

checking all measurement equipment, ensuring safety precautions are in place, a test run,

minor adjustments and testing.

As the experiment was aimed at steel trusses in practice, the section sizes of all steel

members and the accuracy of the manufactured truss were assumed to be within the

allowable tolerances as stipulated by SABS 1200 [23] and SABS 0162 [2].

Test Sample 1, or rather the welded truss, did not require any special preparation. The truss

was set up and tested up to the design load, adhering to the testing procedure as described in

the previous cbapter. The loads were then gradually released so that any permanent

deflections could be measured. The truss was then retested up to failure, with the LVDT

being removed at the design load (the test results for this truss will be discussed in the

following section).

The preparation of Test Sample 2, or rather the bolted truss, required all bolts to be tightened

to the same tension. As these bolts were not friction grip bolts, the tension value in this

research was not of importance. The truss was then set up and tested up to the design load.

The loads were then gradually released so that any permanent deflection caused by the

slipping of the bolted connections could be measured. The truss was then again tested to the

design load and the load released to measure if slip still occurs. The truss was not tested to

failure as to allow future tests with friction grip bolts and to use as a display exhibit.

After the completion of the tests, the test data was verified and the test area cleaned up, so as

to comp lete the test.
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6.2.4 Test Evaluation

As the research relating to the deflection of trusses and interpretation of the test data falls

outside the scope of this thesis, only a brief summary of the test results of the welded truss

will be discussed to illustrate the use of the MTA and the Rational Planning concept.

The test data of the welded truss was imported into a spreadsheet, and calibrated. The

theoretical and experimental displacements were then plotted against the loads in order to

compare them, as illustrated in Figure 6-4.

The experimental values correlate closely to the theoretical values, indicating a correct

assumption of the expected behaviour of the truss and a successful test. The test data of the

welded truss can now be used to compare to the values of the bolted truss and to draw

conclusions on the deflection and deflection calculation of trusses.

Test Results: Displacement vs. Load
Welded Truss

14~------------------------~----------------------------~--~
12+- ~--------~~L~VD~T~R~~~~------------~

O~------r_----_,------~--_.--~------~------~------r_-~--__
o 3010 20 40

Load [P (kN)l

50 60 70

Figure 6-4 Displacement versus Load: Test Sample 1
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6.3 Evaluation of the MTA

As illustrated in this chapter the MTA allows for flexibility in testing as a variety of standard

and unique tests have already been performed using the MTA as basis for the test setup.

The MTA also allows for fast effective testing in line with the rational planning-and-testing

concept, making testing more cost effective, and also allows faster advances in research.
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7 SYNOPSIS

7.1 Overview of the Thesis

In this thesis a multi-purpose beam/column testing apparatus (MTA) has been

developed following a literature study on laboratory tests of structural elements.

The objective of the MTA were to ensure successful testing and to maximize the

potential of the main test floor of the Structures Laboratory as the fixing points of

the test floor is spaced at 920 mm cross-centres, which limited the testing of

beams.

The apparatus, adhering to all testing requirements, makes provision for testing

beams and columns of various sizes, static and kinematic boundary conditions,

and variable load combinations. These test variables can be adjusted with

minimum effort in order to deduce the cost of setting up as the MTA consists of

different components. These different components also increase the flexibility of

the apparatus. The flexibility of the MTA was illustrated by using three-

dimensional sketches created by cross-referenced drawings.

A rational planning procedure to assist in the pre-test planning phase was

developed. This planning process ensures meaningful test results and is

illustrated together with the use of the MTA in testing a simply supported truss.

A literature review provides the reader with a good understanding to structural

tests, which together with the rational planning process will ensure successful

testing.
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7.2 Future Research, Development and Improvements of the MTA

The MTA makes provision for testing beams under various static and kinematic

boundary conditions. As part of future research, the use of various techniques to

provide static and kinematics boundary conditions and the effectiveness of each

technique on the test results can be evaluated. New and possibly more effective

techniques can be researched and developed.

Due to the flexibility of the MTA an additional overhead frame for the MTA can

be developed to apply a point load using the servo hydraulic actuators. Ideally

this frame should allow for the overhead and horizontal application of a point

load in a similar manner to the load bridges.

7.3 Conclusions

Not only did the MTA perform as planned in the test example, but to date it was

also used, with great success, in testing other structural elements including

testing a truss, a crane wheel on a crane track, an overhead crane beam and a

portal frame.

The use of the rational planning process, together with three-dimensional

modelling, was illustrated. This ensures an effective pre-test planning process

resulting in meaningful test results.

Although the flexibility of the MTA is not displayed in the test example, future

tests and research will be enhanced and not limited due to the flexibility of the

MTA.
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APPENDIX A

This appendix contains a full drawing register of all drawings, the production

drawings and an example of the use of the three-dimensional cross-referenced CAD

drawings.

A.I. Drawing Register and Production Drawings

Drawing Code:

01-01/1
I ~ Sheet no.

1-----1 ... No. off detail drawing...
r--. 3D 3-dimensional drawings

4 WS Workshop drawings

1-------1 ..~ Item no. Item

01 Tracks
02 Hinge, Pins, Bearings
03 Loading Bridges
04 Supports
05 Lateral Supports

D Welded Part

o Bolted Component

Figure A.I Explanation of Drawings and Drawing Numbers
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A.l.l. List of Three Dimensional Workshop Drawings

Drawing Drawing Name/Description Latest Revision

Number

01-3D-Ol Track 12/02/2000

02-3D-Ol Hinge 12/02/2000

02-3D-02 Hinge Fixing Bracket 12/02/2000

03-3D-Ol 500 kN Bridge 12/02/2000

03-3D-02 50 kN Bridge 12/02/2000

03-3D-03 Gravity Load Simulator 05/01/2001

03-3D-04 Type A Connector 05/01/2001

04-3D-Ol Support 12/02/2001

05-3D-Ol Lateral Support 12/02/2001

05-3D-02 Connector: Type B 12/02/2001

05-3D-03 Connector: Type C 12/02/2001

05-3D-04 Connector: Type D 12/02/2001

Note: These drawings were created usmg three-dimensional geometric

entities available in AUTOCAD 14 and therefore do not reflect the full detail

of the component.
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A.l.2 List of Detail Drawings

Drawing No. Drawing Name/Description Latest Revision

01-0111 Tracks: FrontITop View 02/08/2000

01-0112 Tracks: Section BB 02/02/2000

02-01/1 Hinge: FrontITop/Left View 25/10/1999

02-0112 Hinge: Detail A (Welding) 25/10/1999

02-02/1 Hinge: Pins & Bushes 05/01/2000

02-03/1 Hinge: Fixing Bracket 25/10/1999

03-0111 500kN Load Bridge 02/09/2000

03-0112 500kN Bridge: Sections AAI BB 25/01/2000

03-01/3 500kN Bridge: Welding Detail 25/01/2000

03-02/1 50kN Load Bridge 02/09/2000

03-02/2 50kN Bridge: Sections AAlBB 25/0112000

03-02/3 50kN Bridge: Welding Detail 25/01/2000

03-03/1 Gravity Load Simulator 03/03/2001

03-03/2 Connector: Type A 25/10/1999

04-01/1 Vertical Support 25/10/1999

04-01/2 Vertical Support: Welding Detail 25/10/1999

04-02/1 Support Bridge 25/10/1999

04-02/2 Support Bridge: Welding Detail 25/10/1999

05-0111 Lateral Support Frame 25/10/1999

05-01/1 Lateral Support Frame: Welding 25/10/1999

05-02/1 Connector: Type B 02/01/2001

05-03/1 Connector: Type C 02/01/2001

05-04/1 Connector: Type D 25/10/1999
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A.I.3 List of Workshop Drawings

Drawing Latest Revision Drawing Name/ Item Mark

Number /Description/

Ol-WS-l 2/12/2000 Track

01 - Ol ~ Angles

01 - 01 2 Base Plate

01-WS-2 26/01/2000 Track

01 - Ol ffi Web Stiffener

01 - 01 4 Web Stiffener

02-WS-l 26/10/1999 Hinge

02 - Ol ~ Web Plates

02 - 01 2 Base Plate

02-WS-2 11/01/2000 Hinge

02 - 02 ~Pin
02 - 02 2 PlO Bushes

02-WS-3 26/10/1999 Fixing Bracket

02 - 03~web
02 - 03 2 Flange

02-WS-4 11/01/2000 Hinge

02 - 02 ~ Pin
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03-WS-l 26/01/2000 500kN Bridge
,---

03 - Ol 1 Flange Plate
r-------

03 - 01 2 Flange Plate
r-------

03 - Ol 5 Flange Plate

26/01/2000
~

03-WS-2 500kN Bridge
,---

03 - 01 3 Web Plate

03 - Ol ~ Web Plate

03 - Ol rs Web Plate

03-WS-3 27/01/2000 500kN Bridge
L__

03 - o I ~ Flange Plate

03 - 01 8 Flange Plate

03-WS-4 27/01/2000 500kN Bridge

03 - Ol ~ Hinge Plate

03 - 01 9x Hinge Plate

03-WS-5 27/01/2000 500kN Bridge

03 - o I ~ Hinge Plate

03 - Ol lOx Hinge Plate

03-WS-6 27/0112000 500kN Bridge

03 - 01 ---yy- Web Stiffener
-

03 - 01 12 Web Stiffener

03 - 01 ---u- Web Stiffener

50kN Bridge
-

03-WS-7 27/0l/2000
-

03 - 02 1 Flange Plate

03 - 02 ~ Flange Plate
-

Flange Plate03 - 02 5
-

03-WS-8 28/01/2000 50kN Bridge
-

03 - 02 3 Web Plate
-

03 - 02 4 Web Plate
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03-WS-9 03/02/2000 50kN Bridge

03 - 02 ~ Hinge Plate

03 - 02 9x Hinge Plate

03-WS-1O 26/10/1999 50kN Bridge

03 - Ol t;l Hinge Plate

03 - 01 lOx Hinge Plate

03-WS-11 26/10/1999 Connector A

03 - 03 EjBase Plate

03 - 03 2 Base Plate

03-WS-12 26/10/1999 Connector A
-

03 - 03 4 Web Plate

03 - 03 s- Web Plate

03 - 03 ~ Web Plate

04-WS-I 05/10/2000 Vertical Support

04 - 01 ~ Support Column

04-WS-2 05/10/2000 Vertical Support

04 - 01 ~ Support Column

04-WS-3 20/10/2002 Vertical Support
-

04 - 01 3 Support Brace

04 - Ol ~ Support Brace

04 - 01 ---s- Support Brace
-

04-WS-4 26/10/1999 Vertical Support

04 - OlaSupport Cap Plate

04 - 01 7 Support Base Plate

04-WS-5 20/10/2002 Vertical Support

04 - 01 ~ Brace End Plate
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04-WS-6 05/10/2002 Support Bridge

04 - 02 ~ Support Beam

04-WS-7 26/10/1999 Support Bridge

04 - 02 ~ Support Plate

04 - 02 3 Web Stiffener

04-WS-8 26/10/1999 Support Bridge

04 - 02tjWeb Stiffener

04 - 02 5 Web Stiffener

05-WS-l 26/10/1999 Lateral Frame

05 - Ol ~ Lateral Frame: Column

05 - 01 2 Lateral Frame: Beam

05-WS-2 26/10/1999 Lateral Frame

05 - Ol ~ Lateral Frame: Beam

05 - 0] 8 Stiffener

05-WS-3 26/10/1999 Lateral Frame

05 - OltjBase Plate

05 - 01 5 End Plate

05-WS-4 26/10/1999 Lateral Frame

05 - OlaEnd Plate
05 - 01 7 End Plate

05-WS-5 26/10/1999 Connector: Type B

05 - 02 ~ Base Plate
05 - 02 2 Base Plate

05-WS-6 26/10/1999 Connector: Type B
-

05 - 02 3 Web Plate

05 - 02 ~ Web Plate
-

05 - 02 5 Web Plate
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05-WS-7 26/10/1999 Connector: Type C

05 - 03 ta Base Plate
05 - 03 Base Plate

05-WS-8 26110/1999 Connector: Type C

05 - 03 3 Web Plate

05 - 03 4 Web Plate

05 - 03 5 Web Plate

05-WS-9 26110/1999 Connector: Type D

05 - . 04 ta Base Plate
05 - 04 Base Plate

05-WS-1O 26/10/1999 Connector: Type D

05 - 04 3 Web Plate

05 - 04 4 Web Plate

05 - 04 5 Web Plate

A.l.4 Three-Dimensional Cross-Referenced CAD Drawings:

Each component of the MTA is modelled from of basic geometric entities using

AUTO CAD 14. These components are cross-referenced to a master three-

dimensional drawing with the test floor layout as basis. Three-dimensional

modelling test-setups can be checked in the pre-test planning phase, and display

models created with AUTOCAD 14. CAD features such as render, hidden line

and different viewpoints make it ideal for modelling visual display setups and it

was used to create test examples in chapter 4.
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In Figure A.2 a test setup is created using the three-dimensional cross-referenced

CAD drawings and basic AUTO CAD 14 functions such as move and copy.

Drawing layers can be turned on and off, and the shade, hidden line and

viewpoint functions used to create display setups as in Figure A.3 and Figure

AA.

As all the components of the MT A are to scale, it is possible to check for any

otherwise unforeseen problems that might occur with the test setup.
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NoTEI NOT TO SCALE

TRACK
Ol-3D-Ol

12/02/2000
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~

REFER TO THE FOLLO~ING
DETAIL DRA~INGS,
02-01/1
02-0112
02-02/1

REFER TO THE FOLLO~ING
\JDRKSHOP DRA\JINGS,
02-\JS-l
02-\JS-2
02-\JS-4

\JELD DETAIL GIVEN IN
DRA\JINGS,
02-01/2

ALL MATERlAL' GRADE 300\J A

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS

HINGES & PINS
DESCRIPTION:DR\.v',NO,:
NOTE' NOT TO SCALE

HINGE
02-3D-Ol

12/02/2000
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HINGE FIXING BRACKET

REFER TO THE FOLLO~ING
DETAIL DRA~INGS,
02-03/1

REFER TO THE FOLLO~ING
~ORKSHOP DRA~INGS,
02-~S-3

~ELD DETAIL GIVEN IN
DRA~INGS,
02-03/1

ALL MATERIAL' GRADE 300~A

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION: HINGE FIXING BRACKE
DR\J, NO,: 02-3D-02
NOTE, NOT TO SCALE

12/02/2000
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500 kN BRIDGE ~ HINGES

N T I

REFER TO THE FoLLo~ING
DETAIL DRA~INGSI
03-0111
03-0112

REFER TO THE FOLLO~ING
~oRKSHoP DRA~INGSI
03-~S-1
03-~S-2
03-~S-3
03-~S-4
03-~S-5
03-~S-6

~ELD DETAIL GIVEN IN
DRA~INGSI
03-01/3

ALL MATERIALI GRADE 300~A

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION:
DR\v',NO,:

500kN BRIDGE
03-3D-Ol

NoTEI NOT TO SCALE

12/02/2000
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50 kN BRIDGE ~ HINGES

~

REFER TO THE FOLLO~ING
DETAIL DRA~INGSI
03-02/1
03-02/2

REFER TO THE FOLLO~ING
~ORKSHOP DRA~INGSI
03-~S-7
03-~S-8
03-~S-9
03-~S-10

~ELD DETAIL GIVEN IN
DRA~INGSI
03-02/3

ALL MATERIALI GRADE 300~A

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION:
DR\J, NO,:
NOTE: NOT TO SCALE

50kN BRIDGE
03-3D-02

12/02/2000
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REFER TO THE FOLLO~ING
DETAIL DRA~INGS,
03-03/1
SR/Ol TO SR/27
03-03/2

REFER TO THE FOLLO~ING
~ORKSHOP DRA~INGSI
SR/Ol TO SR/27
03-~S-11
03-~S-12

~ELD DETAIL GIVEN IN
DRA~INGSI
03-03/3

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION: GRAVITY LOAD SIMULATOR
DR'w',NO,: 03-3D-OlGRAVITY LOAD SIMULATOR &

TYPE A CONNECTOR NOTE, NOT TO SCALE

05/01/2001
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TYPE A CONNECTOR

REFER TO THE FOLLOVING
DETAIL DRAVINGSI
03-03/1
03-03/2
REFER TO THE FOLLOVING
VORKSHOP DRAVINGSI
03-VS-ll
03-VS-12
VELD DETAIL GIVEN IN
DRAVINGSI
03-03/2

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION: TYPE A CONNECTOR
DR\,./,NO,: D3-3D-D4
NOTE: NOT TO SCALE

Stellenbosch University http://scholar.sun.ac.za



SUPPORT ANDVERTICAL
HORIZONT AL SUPPORT BRIDGE

NOTES'

REFER TO THE FoLLoVING
DETAIL DRAVINGS,
04-01/1
04-02/2

REFER TO THE FDLLDVING
VORKSHOP DRAVINGS,
04-VS-l 04-VS-5
04-VS-2 04-VS-6
04-VS-3 04-VS-7
04-VS-4 04-VS-8

VELD DETAIL GIVEN IN
DRAVINGS,
04-0112 04-02/2

ALL MATERIAL' GRADE 300VA

SUPPORT
04-3D-Ol

12/02/2001

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION:
DR\.J,NO,:
NOTE' NOT TO SCALE
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LATTERAL SUPPORTING FRAME

NOTES:

REFER TO THE FOLLO~ING
DETAIL DRA~INGSI
05-0111

REFER TO THE FOLLO~ING
~ORKSHOP DRA~INGS:
05-~S-1
05-~S-2
05-~S-3
05-~S-4

~ELD DETAIL GIVEN IN
DRA~INGSI
05-01/2

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION: LATERAL SUPPORT
DR\J, NO,: 05-3D-Ol

NOTE. NOT TO SCALE

12/02/2000
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CONNECTOR: TYPE B

USE \JITH lATERAL
SUPPORTS AND
TRACKS

NOTESI

REFER TO THE FOllO\JING
DETAIL DRA\JINGSI
05-02/1

REFER TO THE FOllO\JING
\JORKSHOP DRA\JINGSI
05-\JS-5
05-\JS-6

\JElD DET AIll

All ROUND 6MM FIllET U.N.O.

All MATERIALI GRADE 300\JA

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION:
DR\v',NO,:
NOTE: NOT TO SCALE

CONNECTOR: TYPE B
05-3D-02

12/02/2001
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CONNECTOR: TYPE C

USE VITH lATERAL
SUPPORTS AND
SUPPORTS

NoTESI

REFER TO THE FoLLoVING
DETAIL DRAVINGSI
05-03/1

REFER TO THE FoLloVING
VORKSHOP DRAVINGSI
05-VS-7
05-VS-8

VELD DETAIll

All ROUND 61"l1"lFIllET U.N.O.

All MATERIALI GRADE 300VA

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION:
DR\J, NO,:
NOTE: NOT TO SCALE

CONNECTOR: TYPE C
OS-3D-03

12/02/2001

Stellenbosch University http://scholar.sun.ac.za



)

CONNECTOR: TYPE D

USE \WITH LATERAL
SUPPORTS AND
LOAD BRIDGES

NOTES,

REFER TO THE FoLLo\WING
DETAIL DRA\WINGSI
05-04/1

REFER TO THE FOLLo\WING
\WORKSHOP DRA\WINGSI
05-\WS-9
05-\WS-10

\WELD DETAIL'

ALL ROUND 6MM FILLET U.N.O.

ALL MATERIALI GRADE 300\WA

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION:
DRW', NO,:
NOTE, NOT TO SCALE

CONNECTOR: TYPE D
05-3D-04

12/02/2001
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r-- ~--"T"?" --"-II --- -:
' !!

I: '90 I

"--"==- ru= t----
i

II u--r= --__u t f
11 • 9: - 10,20

1 00

FRONT VIEW'

II 410
1~

21 e 460 = 9 660 410
10

~B
(SEE DR'w' 01-01/2)

SECTION AA: TOP VIEW'

2 TRACKS AS DRA~N

02/08/2000

DEVELOPEMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION:
DRW', NO,:

TRACK
01-01/1

SCALE 1'20 UNLESS NOTED OTHER'w'ISE
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/16

r H I

6S

1

3

? I

6S

I r ..16
65

1

32

'1
6S

I

44

I

"J6

r-- I..

1/
GI 24 x 100xl0 FLAT-----.. x 138 MM

I]) 48 x 100xl0 FLAT
x 44 MM

~ !TI 4 x 100x65xl0
ANGLES x 10

~
5001'11'1

jgJ I x 550x20 FlLAT

I

~
x 10 5001'11'1

:::
SECTION BB

2 TRACKS AS DRA~N

~

\JELDING PREPERAnONI
AS PER DETAIL DRA\JINGS

USE E70XX ELECTRODES

DEVELOPEMENT OF A MULTIPORPOSE
BEAM TESTING APPARATUS
DESCRIPTION:
DR'w',NO,:

TRACK
01-01/2

SCALE 1~ UNLESS NOTED OTHER\JISE

02/09/2000
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n 170 T~ 90 ·H· 170 n
DETAll A ~ ll:t *~ ~

[I] 4 x 150x20 FLAT x
350",,,,

:1: ,_jI
DRIJ 02-01/2

I ] I :
I I~

I~~I, 2~5 I 2~5 I~~I I 300 .1 ~ 1 x 500x30 FLAT x
680",,,,

0 0 0

- !'""" - - - r- - !- ~'<f

0 0 0
-

I 680 I
DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS

6 HINGES AS DRA\JN DESCRIPTION: HINGEDR\J, NO,: 02-01/1

SCALE 1110 UNLESS NOTED OTHERIJISE

25/10/1999
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v3"
45' r--

~

I I
I I

~ j..2

1----------- []4 x 150x20 FLAT x
350MM

- -
1----------- 55MM DIAMETER HOLE FOR

PAP 5020 PlO INA BUSHES

f --[Z] I x 500x30 FLAT x
680MM

tiQIT.S.!.

WELDING PREPERA nON:
AS PER DETAIL DRAWINGS

DETAIL A
REFER TO DR'w' 02-01/1

USE E70XX ELECTRODES

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION:
DR\J, NO,:

HINGE
02-01/2

SCALE 1,2 UNLESS NOTED OTHERWISE

25/10/1999
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r--- [[] 50 ROUND x 225 MM

12 PINS AS DRA 'WN

W
48 PAP 5020 PlO BUSHES

8 0 HOLE FOR
MB BOLT

~ 55 ROUND x 8 MM

24 PIN CAPS

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION: HINGE PINS s BUSHES
DR\J, NO,: 02-02/1
SCALE 1:2 UNLESS NOTED OTHERWISE

05/0112000
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AT TA

r
'-'-------------'-'-------------,-r1~_~-~-------------~-~-------------~-LJ___]

FRONT VIE\V

B

B

SECTION AA: TOP VIE\V

6 HINGE FIXING BRACKETS AS DRA'v./N

ill 1 x 100x20 FLAT x
680 MM

[2] 2 )( 100x20 FLAT
)( 680 MM

SECTION BB

~

'w'ELDING PREPERA nON:
AS PER DETAIL DRA'w'INGS

USE E70XX ELECTRODES

DEVELOPMENT OF A MULTIPORPOSE
BEAM TESTING APPARATUS

DESCRIPTION: HINGE FIXING BRACKE
DR'W, NO,: 02-03/1

SCALE 1:5 UNLESS NOTED DTHER'w'ISE

25/10/1999
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02/09/2000

(SEE DR.....,01-0112) 305 MM LVL

960

(SEE DR.....,03-0112)

FRONT VIE\J

370

1-~I~~....i..",~"'~~~'!!bIO:-::'F'"I==-=_:-=~=-===-=_=",_==-=:'FC=-=:"'=-=_="'-=_= =_ -=..:=-===-=~::-:==_=:-=::-===-=- :=r-I==",==-==:-=_=-===-==",=_-=FI:'~~~~:~:~_-~--'-8·~~- _~__~~ ~~
I :: I

SECTION AA: TOP VIE\J DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS

1 BRIDGE AS DRAwN

DESCRIPTION:
DRW', NO,:

500 kN BRIDGE
03-01/1

SCALE 1'20 UNLESS NOTED DTHER.....,ISE
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I
:52

1

32

1

:52

~
~ ~ x 59x20 FLAT

/ x 3 OOOMM

~f- []I ~ 4 x 142x8 FLAT
x 370MM

[J]J ~ 4 x 142xS FLAT

~
x 370MM

~ I 12- I []I 2 x 100x12 FLAT.,..;
x 3 OOOM",

GI 2 x 100x12 FLAT

'f-
x 3 000,.,,,,

~ 1 x 450x16 FLAT

II
I. I

li
x 3 000",,,,::

SECTION CC

I
S2 n 268

1

32

'1

S9

'I
~I-- I I I I

~ 4 x 59x20 FLAT
x 3 OOOMM

I 47 \ [)] 2 x 100x12 FLAT
1~ X 3 0001'11'\

~ I I
00 1 x 268x20 FLAT

X 2 360MM

GI 2 X 100x12 FLAT
x 3 0001'1'"

~t= ~ 1 X 450x16 FLAT

~
X 3 0001'1'"

(ilJ 4 x 13Sxl0 FLAT

t3B 10
x 1361'\1'\ DEVELOPMENT OF A MUL TIPURPoSE1m 4 x 138xl0 FLAT

~ X 134MM BEAM TESTING APPARATUS[IJ 4 x 138xlO F"LAT
x 671'\M

[]I 2 x 130xl0 FLAT DESCRIPTION: BRIDGE
X 960l'\M

~I-- [li 1 x 450x16 FLAT DR"", NO,: 03-01/2

I I
X 960l'\M

4"in ml 2 x 450x16 F"LAT
x 5871'\1'\ SCALE 1:5 UNLESS NOTED DTHERW'ISE

SECTION BB 25/0112000
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45'

SECTION CC

'w'ELDING PREPERAnON.
AS PER DETAIL DRA'w'INGS

USE E70XX ELECTRODES

SECTION BB

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION:
DR'w',NO,:

BRIDGE
03-01/3

SCALE 1.5 UNLESS NOTED OTHER'w'ISE

25/01/2000
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305 MM LVL

B
(SEE DRV 03-02/2) (SEE DRV 03-02/2)

FRONT VIE'w'

- - - - - - - - - - - - - - - - - - - - -.....J...._____- _-_~~~~~=============================~~~~~~B-~-~-~-- -~=~==:-=====~==:~~==:-~~=-=~-=~-:~=--=~~==:=~~==:~
I. ... __.S;;.._L~I2IL-~ -------001: .1

SECTION AA: TOP VIE'w'
DEVELOPEMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS

2 BRIDGE AS DRAwN DESCRIPTION:
DRV/, NO,:

50 kN BRIDGE
03-02/1

SCALE 1120 UNLESS NOTED DTHERVISE

02/09/2000
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1

5S!

1

32

'1
5S!

~
~ 4 x 59x20 FLAT x

/ 3 0001'11'1

~;- I T T T ~ ~ 4 X 142x8 FLAT
X 370MM

12._ UQI !iQ29 4 X 142x8 FLAT
X 3701'11'1

~ ~ [l] 2 X 100x12 FLAT X
.;:. I I 3 OOOMM

GJ 2 X 100x12 FLAT X
3 OOOMM

~I- [31 1 X 450x16 FLAT

II
~ .1 ,II

X 3 OOOMM

:;
SECTION CC

I
:SS!

1"1
26B

1""1
5'2

I~= I I I l
~ 4 X 59x20 FLAT X

3 OOOMM

I 47 '\ Cl 2 X 100x12 FLAT X

12
3 OOOMM

~ I I
CD 1 X 268x20 FLAT

X 2 360MM

GJ 2 X 100x12 FLAT X
3 0001'11'1

DEVELOPMENT OF A MUL TIPURPoSE
~I-- [31 1 X 450x16 FLAT
-:: X 3 OOOMM BEAM TESTING APPARATUS

I
I :: .1

,I DESCRIPTION: BRIDGE
DR'W, NO,: 03-02/2

SECTION BB SCALE 115 UNLESS NOTED OTHERIJISE

25/0112000
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45'

SECTION CC

SECTION BB

~

WELDING PREPERATION,
AS PER DETAIL DRAWINGS

USE E70XX ELECTRODES

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION:
DR\J, NO,:

BRIDGE
03-02/3

SCALE 115 UNLESS NOTED OTHERWISE

25/0112000
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700

S71281.415 L vL

SEE DR'w' SR/Ol -SR/27
FOR DETAILS OF
GRAVITY LOAD
SIMULATORS

s:z 232,000 L vL

s:z 120,000 L vL

SEE DR'w' 03-03/2
FOR DETAIL OF
TRACK CONNECTOR

DEVEloPEMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS

2 GRAVITY LOAD SIMULATORS DESCRIPTION: GRAVITY LOAD SIMULATOR
DR\J, NO,: 03-03/1

SCALE 1.15 UNLESS NOTED OTHERWISE

03/03/2001
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4 TYPE A CONNECTORS AS DRAwN

200

FRONT VIEW'

(DI" r "'\
x..

1/ ~II II \.:J
II II +II II
II II____ -1.1_____ IL ____

- - - -,1- - - - -11- - --
II II
II II
II II

____ 11_____ 11____
- - - - ïl- - - - -Ir - - - -

+ II II +II II
II II

( "'\ II II r "'\
\.. ./ \...J

SECTION AA: TOP VIEW'

SECTION BB: LEFT VIEW'

[] 1 x 400x400 x
16 MM THK

[gJ 1 x 300x300 x
16 MM THK

~ 2 x SOx8 FLAT x
400MM

GD 2 x 90x8 FLAT x
9êMM

~ 4 x 90x8 FLAT x
146MM DEVELOPMENT OF A MULTIPURPOSE

BEAM TESTING APPARATUS

DESCRIPTION:
DR'vI, NO,:

TYPE A CONNECTOR
03-03/2

SCALE 115 UNLESS NOTED OTHERVIISE

25/10/1999
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2300, LvLS7

1500, LvLSZ

I
I

~~
I

I
I

I
I

I

Q] 1 x IPE 100
x 942.5MM

[
lID 2 x 160x132.5 ----1

x 10 FLAT
@] 2 x IPE 100

x 665.8MM

!SJ 1 x IPE 100
x 1 021MM

t==~:...:..:=.:::..=--=:.....:~---+
~B I.FRDN;êO VIE\J

[al ~ x 12r:;,~~~ H ----II,HC--~~;-:JHQ, [] 1 x ê54xê54 H

. . x 1 985.8MM

254,2 LvLV

SECTION BB: LEFT VIEW'

SECTION AA: TOP VIEW'

4 VERTICAL SUPPORTS AS DRAwN

I
I

u
I

, I, I

I
I

i I

I~
,II
il

t

[(J 2 x 254x254.2
x30 FLAT

IïJ 2 x 254x254.2
x30 FLAT

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS

DESCRIPTION: VERTICAL SUPPORTS
DR'W, NO,: 04-01/1

SCALE 1120 UNLESS NOTED OTHER'w'ISE

25/20/1999
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VERTICAL SUPPORTS

TYPICAL AT END PLATES

TYPICAL

FRONT VIE'w'

I
I

/1
I

I
I

I
I

I

NOTES,

\./ELDING PREPERATIDN,
AS PER 'DETAIL DRA\./INGS

6MM FILLET ALL ROUND U,N,O,

USE E70XX ELECTRODES

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION: VERTICAL SUPPORTS
'DR\J,NO,: 04-01/2
SCALE 1:20 UNLESS NOTED DTHER\./ISE

25/20/1999
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GD 18 x 120x8 FLAT
x 225.5 MM

~ 12 x 120x8 FLAT
x 94 MM

~ 2 x 254x20 FLAT
x 600 MM

4 x 120x8 FLAT
x l l l.S MM B SECTION BB:

LEFT VIEW'
FRONT VIEW'

ii ' ··~t~ .!....II • i -II Ei_. il. 61& II • • • • • • • • • - • ••~ .....U_...t - ... --- j..........1-. ~. 61& • • I· ·I· · • • • • • - • -II· • • II E - • •• OJ 1 x 254x254x73H
x 3 2221'11'1

600 600

:1::::
SECTION AA: TOP VIEW'

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION: SUPPORT BRIDGE
DR'W,NO,: 04-02/1

SUPPORT BRIDGES AS DRAwN4 SCALE 1120 UNLESS NOTED DTHER\JISE

25/10/1999

LvL
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TYPICAL
61'(i

TYPICAL AT END PLATES
ANi ~

.'\
II 111'\ ~

"

FRONT VIEW'

SUPPORT BRIDGE

II III II
II

NOTES'

WELDING PREPERATIDN,
AS PER DETAIL DRAWINGS

6MM FILLET ALL ROUND U.N.O.

USE E70XX ELECTRODES

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION: SUPPORT BRIDGE
DRV/. NO.: 04-02/2
SCALE 1'20 UNLESS NOTED OTHERWISE

25/10/1999
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5 LATERAL SUPPORTS AS DRAwN

4180 LviSZ

402 Lv[SZ

1 x 200x200
x12 FLAT

\ 1\

~ ~ 3 x 200xlOO ~ lID I x IPE 200 ~ GlI I x IPE 200
IIIx12 FLAT x2 560 MM x2 050 MM

[SJ 2 x 200x100
x8 FLAT

lID 8 x 50x80 -'ill
t---- [] 2 x IPE 200

xe FLAT

x 3760 MM

W
SECETIoN

N,T,S,

DEVELoPEMENT OF A MULTIPU
BEAM TESTING APPARATUS

t> A DESCRIPTION: LATERAL SUPPORT
@] 2 x 200x200

DR\J, NO,: 05-01/1
=== '==

AA

FRAME
[.x12 FLAT

25/10/1999

SCALE 1125 UNLESS NOTED OTHERw'ISE

RPoSE
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TYPICAL AT END PLATES

~ \Ir

LATERAL SUPPORTS

I~

TYPICAL AT END PLATES

SECETION AA
N,T,S,

NOTES'
'w'ELDING PREPERATIDN,
AS PER DETAIL DRA'w'INGS
6MM F"ILLET ALL ROUND U.N.O.
USE E70XX ELECTRODES

DEVELOPEMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS
DESCRIPTION: LATERAL SUPPORT FRAME
DRW', NO,: 05-01/2
SCALE 1'25 UNLESS NOTED OTHER'W'ISE

25/10/1999
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FRONT VIE\v'

I I

$ 1$ $1 $1 I
I I
1 1

c==~~

*
I 1

I~ I 4: $:
I I-,

SECTION AA: TOP VIE\v'

II] 1 x 200x12 FLAT x
400MM

~ 1 x 200x12 FLAT x
lOOMM

[3J 2 x 100xlO FLAT x
254MM

~ 2 x 200x8 FLAT x
254MM

~ 1 x 200xlO FLAT x
254MM

6 TYPE B CONNECTORS AS DRA~N

I I

I I

I- 116 _I
SECTION BB: LEFT VIE\.!

USE 'vIITHLATERAL
SUPPORTS AND
TRACKS

DEVELOPEMENT OF A MULTIPURPOSE
BEAMTESTING APPARATUS
DESCRIPTION: TYPE B CONNECTOR
Drw. no.: 05-02/1

SCALE 115 UNLESS NOTED OTHERW'ISE

02/01/2001
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:::
FRONT VIE\v'

420

, I I:% I
$1 $1

1 1
1 1c::--------:::t

$ I~---\-$1 $
I I

I \ I
\

SECTION AA: TOP VIE\v'

1- : -I

SECTION BB: LEFT VIE\v'

[IJ 1 x 250x12 FLAT
x 420MM

USE \v'ITH LATERAL
SUPPORTS AND
SUPPORTS

~ 1 x 200x12 FLAT x
200MM

Cl 2 x 124xlO FLAT
x 110MM

~ 2 x 124x8 FLAT x
250MM

~ 1 x 124xl0 FLAT x
200MM

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS

DESCRIPTION: TYPE C CONNECTOR
DR\v', NO,: 05-03/1

SCALE 1:5 UNLESS NOTED OTHER'vIISE

4 TYPE C CONNECTORS AS DRAwN 02/0112001
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SEeTON AA: TOP VIE\.!

6 TYPE D CONNECTORS AS DRA~N

~B

.I~B
FRONT VIE\.!

!Jf EB

:% $',
, ,, ,c--------:::J
i ~---\-~ i

EB \ EB
\

SECTION BB: LEFT VIE\.!

ill 1 x 400x12 FLAT x
400MM

[]] 1 x 200x12 FLAT x
200MM

USE 'wIITH LATERAL
SUPPORTS AND
LOAD BRIDGES

[]I 2 x 110xl0 FLAT x
69MM

~ 2 x 69xB FLAT x
400MM

~ 1 x 69xlO FLAT x
200MM

25/10/1999

DEVELOPMENT OF A MULTIPURPOSE
BEAM TESTING APPARATUS

DESCRIPTION: TYPE D CONNECTOR
DR\v', NO,: 05-04/1

SCALE 1,5 UNLESS NOTED DTHER'w'ISE
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MARK [))[ESC[R~1P1J~ON MA1J[ER~AIL OIlY [))~M!ENS~ONS
01..()1 [I] 11RACK: 100x65x10 ANGLIE 8 I 6::i IANGllES x10500mm

"'::. '"
!::.. 1]

10 sao

01..()1 [2] TRACK: 55Ox20 FLAT 2 -
!BASE PLATIE x10500mm

/ ",,'" '" ,.. -+- -+- ] ~

-
1
120

I II e ~: " 10 120 I 120:1 t.L 500

IDlEVElOPEMEINT OF A MUL TIPURPOSIE
!SEAM TIEST~NlGAPPARA TUS

DIESCR~PTION: TRACK WORKSHOP DETAIL
IDIRW.1NI0.: 01-WS-1

NOTE: NOT TO SCALE

2/12flOOO
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MARK DESCR~!PT~O[NJMAT[E[R~Al allY D~MENS~O[NJS

01-01 I3J TRACK: 100x 10 FLAT 96
WlEBSTIFFIENIERSx44mm r--

~

'--

I ~a .1 lJ
01-01 l4J TRACK: 100x 10 FLAT 96 -

WEB STIFFENERS x138mm

s

'--

I. 138 I lJ
DEVElOPEMrENlT alF A MULT~IPUIRPOSIE
BlEAM11ESTINGAPPARATUIS

DESCR~PTION: TRACK WOIRIKSHOPDET~l
DRW.INO.: 01-W8-2

NOTE: NOT TO SCALE

26101/2000
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MARK DIESCR~lP"~O~ MATlER~Al QIlY D~IMlIE~S~O~S

02-01 [IJ IHI~NGE: 150x20 FLAT 24 ~
wsa PLATES x350mm -~Jef ~

-!-a~I 35D I

01-01 [2] IHI~INGE: 5OOx30 FLAT 6 -
!BASIEPLATIE x680mm

~ 0 0 - ---]I

~ ~"i

0 0 0 - ---
-

I':ll 295 I 225 I':lI ~

DEVElOPEMIENlT OIFA MUL "'~PUIRPOSIë
BlEAM TIESTING APPARATUS

DESCRIPT~ON: IHIIN1GIEWORKSIHIOP DET~L
DRW. NO.: 02-WS-1

NOTE: NOT TO SCALE

2el1011999
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MARK DrESCR~~"~ON MA"1E1R~Al Q1'Y D~[MJ[ENS~ONS

02-02 [IJ H~INGE:PINS 50 ROUND 12
x 225mm

[ Ir 8 pi HOLE FOR--~......... ,....,., Ma BOLT
::;::;i>- - - -(

's~....s

I 225 I

02-02 !2J H~NGE: PAP 5020 1P10 48
5020 P10 IBUS~IES _t

=r ~ ----J ~(\_:))
~

=
~

SECTION AA

DEVElOPEMIENT OIF A MLDL1l1PUlIRPOSIE
BlEAM TIESr~INGAPPARATUlS

DESCRIPTION: HINGlE WORlKSHOP DErA~l
DRW. NO.: 02-W8-2

NOTE: NOT TO SCALE

1110112000
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MARK D[ESCR~P'f~ONMA'f[ER~Al Q'fY D~M[ENS~ONS

02-03 [IJ fiXING BRACKET: 100x20 FLAT 6
fLANGIE x680mm .a

1% 1 ~TICf) Cf)

I 1,80 I +
02-03[2] fiXING BRACKIE1I": 8Ox20 fLAT 12

WlEB x680mm
r 1:Jr

01
I l,SO I

OEVElOPEMIENT OIFA MUL 11PUlRPOSIE
BlEAM TEST~NG APPARATUS

DESCR~PT!ON: HIINGIEWORKSIHIOP DETAIL
DRW. NO.: 02-W8-3

NOTE: NOT TO SCALE

2811011999
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MARIK [D)[ËSCR~~"f~ON MA,.[ËIR~Al QlY [D)~!M[ËNS~ONS

02-02 [3J HINGE: PIN! CAIPS 55 ROUND 24
x8mm -

Ó ---

-
55 lAl

OEVElOPEMENT Of A MULTIPUIRPOSfE
BlEAM TIESTING APPARATUS

DESCIRIPT~OIN: HINGle WORKSHOP DETAil
DRW. NO.: 02-W8-4

NOTE: NOT TO SCALE

11/01/2000
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MARK DlESCR~[P>T~ONMATlER~Al QTV D~MlENS~ONS

03-01[1] LOAD BRIDGE: 3OOx20 FLAT 1 UFlANGE PLATE x3000mm I I
I 2360 J

==4I ~nnn

03-01 [2] lOAD BRIDGE: SOx20 FlAT 2 ==lIFlANGE PLATE x3000rnm

1===4l _3000

03-01 [5J LOAD BRIDGE: 450x 16 FLAT 1

:~FlANGE PLATE x3000mm I
I I

I
I 2360 I

J===4I ~nnn

DEVELOPEIVIENTOIFA MULTIIPUIRPOSIE
BlEAMllEST~NG Al?PARATUS

[)ESCR~PT~ON: 18R~[oGIEWORKSIHIOPDETAil
IDRW. NO.: 03-W8-1

NOTE: NOT TO SCALE

2MtI12fXXJ
-------------
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MARK [D)[ESCR~P"~ON MAT!ER~Al allY [D)~M!ENS~ONS

03-01 [ID lOAD BRIDGE: 100x 12 fLAT 2

JliWElS !PLATES x3000mm 0' (+)~'"'" :.. '"'" :.. -

:1 JrI:
121l I I 12Q

allee

03-01 ~ lOAD BRIDGE: 100x 12 fLAT 2

JliWElS !PLAras x3000mm (+)~k?)' '"'" :.. '"'" :.. -

:1 JrI:
121l I I 121l

31lell

03-01 [BJ lOAD BRIDGE: 130x 10 fLAT 2

1~ll+! -+-1
WElS !PLATES x2068mm ~I ~]

w..!-I

DEVElOPEMIENIT Of A MULnpURPOSIE
!BlEAMTESTiNG APPARATUS

DeSCRiFrIOIN: BRIDGE WORKSHOP DETAil
DRW. NO.: Oa..WSa2

NOTE: NOT TO SCALE

2&'0112000
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MARK DESCR~Plr~ON MAlrfER~Al Ql'Y D~MENS~ONS

03-01 [IJ lOAD BRIDGE: 450 x 16!FLAT 1 r-- ,-
!FlANGIE PLATES x954mm

~
0
If')....

'-- +I q~4 I

4==-1 ft'--+
03-01 [I] lOAD BRIDGE: 450 x 16!FLAT 2 ,--- -

!FlANGIE PLATES x596mm

~
0
If')....

'-- +I S9p I

*=, ~--+3 •

DEVElOPEMENT OF A MUL '"PURPOSE
BlEAM TEST~NG APPARATUS

IDESCRll?lr101N: !BRIDGIEWOIRKSIHIOP DETAil
DRW. NO.: 03-W8-3

NOTE: NOT TO SCALE

2110112000
-- _--
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MARK DESCR~PT~O~ MATER~Al QTV D~M[E~S~O~S

03-01[i] lOAD BRIDGE: 150x8 FLAT 2
~HINGlEPlATIES x 370mm
,- -

~

...0- ~ ~,:.

I ,-'-l 120 +370

03-011DX lOAD BRIIDGE: 150x8 FLAT 2
~HINGlEPlATIES x 370mm
,- .-

lf

"'8- ~ ~-
I .-

l;>n I +~nn

DEVElOPEMIENT OF A MULTIPURPOSIE
BlEAMTlESTINGAPIP'ARATUS

DESCR~f?T~OIN: fBR~DGlEWORKSHOP DETAil
DRW. NO.: 03-W8-4

NOTE: NOT TO SCALE

2710112000
--_.~.
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2

2

MARK DlESCR~!P'T~ONMAT[EfR~Al

03-01 [Iq lOAD BRIDGE: 150 x 8 FILAr
HINGle PlATIES x 370mm

03-01 HID lOAD BRIDGE: 150 x 8 FlAT
HINGle PLATIES x 370mm

DEVElOPEMENJT OF A MULTIPURPOSE
BlEAM 1'IESl'~NGA1PlPARATUS

IDESCR~I?TION:IBRIOOIEWORKSHOP DETAil
IDRW.NO.: 03-W8-5

~ ~n==============~~_
~r- I

f-- ---..:>I

~

oP0-
~f- r- 1t±===============1=====1===20~_

S~ I

~~ ~n==============~~,_
f- r-- __:,j

319

NOTE: NOT TO SCALE

-

-

+

,-

1-

+

2710112000
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MARK D[ESCR~PT~ONMATER~Al QTV D~M[ENS~ONS

03-01 111 lOAD BRIDGE: 150x 10 FLAT 4
~WEB STIFFENERS x 136mm -

~

I. I
-

IJB -10+-
03-01 [12: lOAD BRIDGE: 150 x 10 FLAT 4

~WEB STIFFENERS x 134mm -

~

: I
-

IJB -10+-
03-01 [1I lOAD BRIDGE: 150x 10 FLAT 4 rWEB STIFFENERS x 68mm

!
~]

IJB I -10+-
DEVElOPEMlENITOIFA MULTIPURPOSIE
BlEAM1lEST~NGAlPIPARATUS

IDESCRIIP1'IOIN:IBRIOOEWORKSHOP DETAil
DRW. NO.: 03-W8-6

NOTE: NOT TO SCALE

27101/2000
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MARK [D)ESCR~PT~ONMAT[EIR~Al QTV D~M[ENS~ONS

03-02 [IJ lOAD BRIDGE: 300x20 FLAT 2

~
FlANGE PLATE x3000mm I I

I 23bO _I

==4l .acon

03-02 [2J lOAD BRIDGE: SOx20 FLAT 4 ==tflANGE PLAl'E x3000mm

J==4I 3000

03-02 [5J lOAD BRIDGE: 450x 16 FLAT 2

I~

FlANGE PLATE x3000mm I
I I

I
I 23bO J

J==4I anon

DEVElOPEMENT Of A MULTIPURPOSIë
BlEAM 11ESr~fNGAPPARATUS

DESCRIPTION: I8R~I!)GIEWORKSHOP DETAil
IDRW. NO.: 03-WS-7

NOTE: NOT TO SCALE

27101J2000
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03-02 III lOAD BRIIDGE:
WEB !PLATES

03-02 III lOAD BRIDGE:
WEB !PLATES

100x 12 fLAT
x3000mm

100x 12 fLAT
x3000mm

06 :I---~_ j 1}4-
1

-e- -s- f:\ e
,,+) -

I~: _120__ 1 __ ~30oo I_, _12°~:1 dr

IDEVElOPEMENlT Of A MULllPURPOSE
BlEAM 11EST~INGAI?!PARAllJS

DESCRIFll01N: IBR~DGIEWORKSHOP DETAil
IDRW.NO.: 03-Ws-a

NOTE: NOT TO SCALE

2810112000
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MARK D[ESCR~~"~ON MA"!ER~Al a'fY D~MENS~ONS

03-02[i] lOAD BRIDGE: 150 x 8 FLAT ~ ~IHIINGIEPlATIES x 370mm
- ,-

~

·..8- ~ ~

I --I l::>n +370

03-02 ~ lOAD BRIDGE: 15Ox8 FLAT ~ ~
HINGlE PLATES x 370mm

- -
e~ ~(S)- ~ ~...

I -
I

- +120

~l7n

IDEVELOPEMIENT Of A MUL 1I1PURPOSIE
BlEAM 1'IEST~INGAlPI?ARATUS

DESCR~IP1'ION:BRIDGE WORKSHOP DETAil
IDRW. NO.: 03-WS-9

NOTE: NOT TO SCALE

03I0212OOO
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03-02 [10: LOAD BRIDGE: 150x 8 FLAT
HINGlE PLATIES x 370mm

~---~~============~~~-
~I- I

t--

-

[
I ~

1 ;..;

~

./:i)- ~
l?n1-1-- ----::>I~ I~================~-

"i? I
-

+~lR

03-02 HID lOAlD BRIDGE: 150 x 8 FlAT
!HINGlE PLATIES x 370mm

1-

~

..,~0-
~I- ~ ---:>!1±:==============l==?n~_

52 I +318

DEVELOPEIVIIENlTOf AMULTIPURPOSIE
BlEAM TESTING APPARATUS

DESCRIPr~ON: BRIDGIEWORKSIHOPDETAil
IDRW.NO.: 03-WS.10

NOTE: NOT TO SCALE

2811011998
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MARK DESCR~f>1r~ON MA1r!ER~Al QllY D~MENS~ONS

03-03 [Il CONNECTOR: 400x 16 fLAT 4 300
I I

!BASE !PLATIE x400mm $ $
r0-

l-f:-

~ ~

~~ $ ="""--

I ~oo I ~

03-03 [2]
;:>nn

CONNECTOR: 300 x 16 FILAT 4 I
!BASE PLATE x300mm I I -

4- 4- =-

~

#,,10 4- ==

I 300 I ~

IDEVElOPEMIENT OIFA MUL T~PUIRPOSIE
!BEAM TEST~NG APPARATUS

IDESCR~PT~ON: IBR~DGIEWORKSIHIOP DETAil
IDRW. NO.: 03-WS-11

NOTE: NOT TO SCALE

2611011998
-- - -
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MARK D[ESCR~[P>T~ONMATER~Al QTV D~MENS~ONS

03-03 [3J CONNECTOR: SOx8 FLAT 8 I
300

IWlEIB PLATE x400mm

/ \ ~]
I 400 J Jl

03-03~ CONNECTOR: SOx8 FLAT 16 I
96

I
WEIB PLATE x 146mm

/ ~]
I l~fI I Jl

03-031I1 CONNECTOR: 80 x 8IFLAT 8
WEIB PLATE x 92mm D ~]

I 92 I Jl

IDEVElOPEMIENiT Of A MULTIPURPOSIE
!BlEAMTIEST~NG APPARATUS

IDESCR~I?1'IOIN: IBRIIDGIEWORKSHOP DETAIL
IDRW. NO.: Oa..WS-12

NOTE: NOT TO SCALE

2611011999
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MARIK ID[ESC!R~[P1r~ONMA1rER~Al QlIY

~~[I] ~nn~ ~@OnnI1lTOI1\l ~~ }! ~~ }!13[}{] ~
}!~ M~.$11IJj)11IJj)

D~MlENS~ONS

l 80 I 23 li! BO = ]Bc4D

I III I I I I I I I I I I I I I I I I I I I I I
I I I I I I I i I I I I I I I I I i I I I I I I I -II IotAN(lHa
I BID TOP I
I I

I I
~

l_

I 4]92 I

-1r $ $ $ $ ~ $ $ ~$ $ $ $ $ $ $ $ $ $ $ ES Ef) $ $
I I

I I$ $ ES $ 'E~$ ES $- $ Ef) $ $ Ef) Ef) $ $ Ef) $ $ $ Ef) $ ES
I

I

I
l':In lClA"R lJ

[Q)®W®~@[p)!li1Il®O'il~©1f tj} !MlM~~Ir»!!ll~ ~!l!li1ll

ïi~~O'il~ ~[P)tj}~~!!ll~

lOllëlC~IF'il1(o)oo: WIm'1l©~ IlUl[P)lP'<O~l
\VNJ(O)~IHI(Q)[P)ID)IE1J'~1lA

lOl_.IM@.: ~11

OO@'1l'IE: ~(Q)il're~
NI1~
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~~ ~ ~(lII~[p)@1J'ft ~@~1UI1l11il1T!l ~~ ~ ~~ ~ 1$ I}{] ~
~~ ~~@.~1l11il1l11il

I 80 Jl' , , I 13@, 80 =, 1040 I , , I , I Ii
r-~:r::::rP=::::¢::=::Q:r::::rtr=:::I!r=::d~:$::::rt:r=::r:~:$::::rt:r=::r:tr::::rP==::sii

I
, , , , , , I i , , , , , i i

MMK'nt8
I ENDTOP

I_k:====r!r=' ====================================:::::::;~I JA9S :

! EB EB/J. EB EB EB EB EB ~EB EB EB EB EB l
I !
I

II EB EBEDe EB EB EB $ $ $- $ $ $ $ $I II i

bJ !l8S8 13~
[Q)®w®U@jp)Il'i7il®IJ'i)~©1f ~ [M](J.I]~~[p)!UI~ ~~1l'i7il
li~~IJ'i)~ ~jp)fID~~(J.I]~

1O>[!~IF1J'U@OO: W~ ~lUllPllF@mr
~IXI(o)IPlIO>!E'U'~1JA

1Ol_. IRII(Q).: ~WM
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~®u1k\ [Q)@®@!rO~UO@[fi) ~®U@!iO®~ ~ [Q)O[7iTi)@[fi)®O@[fi)®

~~~ ~llD~!p)@1l'Il ~1J1l@® O[p)~ ~@@ ~ 8558

};'!~~D@1II1il1ll1il

8558

~~~ ~llDjp)jp)@1l'Il ~lf'lil©® O[p)~ ~@@ ~ I I};'!_D$1II1il1ll1il

I I6658

~~~ ~Q.O~1l'Il ~11'il@® O[P)[ë ~@@ 11 9;>5.5 95.5

I};'! ~@~~ III1\)III1il -, -,
q~~ I 92~.5

[Q)®W®~@[P)Il'iJi)®I1il~©il t§l !ftAIlUI~~~!l.lJ[l'l~@~ ~t§l1l'iJi)

ii~~I1il~ ~~®~~1UI~

!o)fëOO~fF'1l'1IlO>OO:W~~ 1ll.DIFlMrFlll
W©>~lHItO>lFl !o)IE1l"P\II~

@mwJ. ~«».: ~

OO<Olm: ~@ll(o) ~
_1~
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[R1]@1fIk< !Q>@®@l1'il~fW©1TIl [R1]@~@l1'il@~ ~ !Q>UIJi1i)@ITIl®U©ITIl®

~~[IJ ~Wl[p)iP>@1l'Il~~[p) ~on ~~}l ~@ IF~ ~ 130
~MmroIID'il I I - ;-

:~ ~
I
I Ó-jI -

I I

~
I----------- J

~ [r----------_ 1
I
0

I ~-01 -
I I
I I

- -

I 2:2~ I U

~~[Ï] ~Wl[p)jpJ@Il'IlI!3m® ~on ~~ }l ~@ IFD~ft ~ 130

~~1ID'il1ID'il I I - -
I

~ ~
I

I I :-jI -
I I

~
I J

lê [7-----r---- -----1

I 0 : - ___ -
I I

L 1 '--

I 2:ï~ I U

[Q)®w®~@~I7i1il®IJi)~ ©1F (il 1Ml01l~~[p)01l1J'!P)@~ ~~17i1il
LFd~lJi)®~~(il~~01l~

ID>g©~IFiI'II@OO: W~~ $lIJ)lP>lPl@~'!J'
~(Q)O» [O)[E'!J'~OA

~.~@.: ~

~@'!1'1!: ~@'!J' re ~
~®l1I_
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[KJAI®ITfu IQ)®®@IT'llIWUD@!1il [KJAI@U®IT'll@O ~ IQ)~Ui1il@!1il®D@!1il®

~~1Il ~1I'il©® ~m~1Ift ~ ®(ID };:{ ~ @ [,S'IJil!l ~
~~~~.@ II1TilIl1Til

~

~J 1"1'\
xV

I. I. :::
.1

I

[Q)®w®O@~I1i1il®O'i)U @{F lil lMlonoon[p)M~ ~!l11i1il
1F~~0'i)~ ~[p)lil~on~

[o)~~IF'Ii'II<OlOO: W~ ~(UJ[P>1F@m'
~~lHItO>1P> 1O)1E1I'~~

1O>1mW. ~@.: ~

rMlOll1E: ~lOlil' ro ~ ...~
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MARK DESC[R~pr~O~ MAl'lERaAl Qnt'

~~[i] ~Wljp)1PJ©1I'it ~mro ~~~ ~~~ 1~[}{] ~
~mmromro

D~MlEINS~O~S

57,5 1 1931 23 ti! 12Z = 2921 1931 1 5Z,5

II I I I I I I I I I I I I I I I I I I I I
III~

I J I =::==::=::= __ i -k----
I ;:>;:>n;:> I

C •• • • • • • • • • • • • • • • • • • • • • • • • •-=---S&1I."= ••• ~=u.=a n::c=::1III~--1I' s·_-lta• ...-sS._sa~::sz2~&$:~~.=&.~n&S!lS" ~-.~~ ~ ••uaa~".-=.=

•• • • • • • • • • • • • • • • • • • • • • • • • •

t
510 I. :::: I 510

:1

[Q)®W®~@[plIJi7il®I7il~©1f ~ [M]M~~[p)(!.[]~ ~~1Ji7il

'iJ'®~~I7il~ ~[pltWl1'®~(!.[]~

[o)1E~~IF1rII@OO: ~1UlW@U ISlmoolE
~~ [o)1E1l'~1lA

[o)1RI.'W.~(Q).: ~

~:~@1I'ro~
@511~
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~®~ [Q)@®@u1J[p)fro@[J1) ~®fr®u1J@~ ~ [Q)U!Ti1il®Uil®U@Uil®

~~~ ~Wl[p)(p)@11'It [P)~ft ~~ }A ~@ [F~!l~ ~
>AM11Inl11lnl ~

EB EB "1 ~
K =~? I '!'

0 a

Bl 300

€,oo

I
"-ï-

~

I l20 ,I

[Q)®w®~@[p)IJ'iJil®[)'i)~©1r ~ 1MUl\l)~~~!!J)IJ'!P>©~ ~~1J'iJil
"iF®~~[)'i)~ ~~~~~t!.Il~

1Dl1E~~IFIJ'D@@!]: ~1lJ)~1Rl1I' IS3mlOOlE
~IHI~ 1D)1E1I'~~

[O)~. !M@.: (Mo._.,'''
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~®~ [Q)~@IT'D~O@1Ji) 1MI®~®u1i@~ ~ [Q)~[1i1i)®IJi)®~@IJi)®

~~[I] W®1b> ~1!W®1l'il®11' ~~@ ~~ IFO~ ~~

~
~@.@1Ti1il1Ti1i)

~

CJ
~~~ W<alb> ~MM®Il'il<a11' ~~@ ~ $ IFOIlltt ~ II~~~~.!ITi1ilITi1i)

r---

~::

'---

~

[Q)®W®~@~I1i1il®IJ'i)~©lf [il lMI!lll~~~ruJ~ ~[il11i1il

li~~IJ'i)~ ~~tIDtr[il~OJl~

~~: ~lUlW©lmIMDMIE
\YNl(O)~@1P' lC)!E'1I'tt\II~

lC)~. ~@.: ~

~@m: ~@". iI'(o) ~
~(O)Ill_
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MARK DESC[RJPT~OINl MATER~Al Q1Y D~MEINlS~OINlS

05-01 [IJ !LATIERAl FRAME: ~PlE200 10
COLUMN x3758mm I~fli 2él!HO = 3é~0 lf

I I

I I I I I I I I 'H I I I I I ~~K;ó:IS:~
11401124

Io~
0
Ifl

I • • • • • • • • • : t t • • • /. • :~: ~]• • • • • • • • • • • • •

! ~~~: .11

05-01 I2J LATIElRAl FRAME: ~I?IE200 5
!BEAM x2536mm Ilal Izel~o = 2380 Ilel

ITI
"""iQ

0
Ifl

• • • • • • • • • • • • :~ • ~l· : II]• • • • • • • • • • • • • • •II. ;: :11

IDEVlELOI?IEMIENlTOF A MUL TIPURIPOSE
IBIEAIMll'ESTING A1PI?ARATUS

IDIESCR~IP1"IOIN:LATIEIRAl FRAME
IDIRW.NO.: .Os..W8-1

NOTE: NOT TO SCALE

2el1W1999
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MA~ DIESC[R~[PT~O[NJ MATER~Al QTV D~ME[NJS~O[NJS

()5.{)1~ LATERAl FRAME: ~IPIE200 5
!BEAM x2026mm I In

flI
~: :~ "1

05-01 lID LATlERAl FRAME: 5Ox8 FLAT 40
STifFENER x80mm

s

I ::iC I

IDEVELOI?EMEINI1rOF A MULTIPUIRI?OSE
BlEAMTESTING APPARATUS

IDESCR~I?T~ON:LATERAl FRAME
IDIRW.NlO.: 05-WS-2

NOTE: NOT TO SCALE
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MARK DESC[R~PT~O[N MATIER~AlL QTV D~M[E[NS~O[NS

05-01 [JJ ILATERAl FRAME: 100 x 12 FILAT 10
!BASEPLATE x200mm I III III I

I Ha I
,- .--

co
~ -@~" EB f-

~ ~;:.

EB EB -

I. 2QC ( ..jl2j_

05-01[5J LATERAl FRAME: 100 X 8 FLAT 10
ENIDPLATE x200mm I Ha I

co

~
,~@41" EB

EB EB
I Z!!!! .1 .4-

DIEVELOPIEMIEINTOF A MULTIPURPOSE
BEAIMlTESTING APPARATUS

DIESCR~IPT~ON:LATfë!FW. FRAME
IDIRW. NlO.: Os..W~

NOTE: NOT TO SCALE
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MARK DlESCR~PT~ON MATIER~Al Q1Y D~MIENS~ONS

05-01[§J LATERAL FRAME: 100)( 12 FLAT 15
!ENIDPlATE x200mm I III III I

I BO I

<0

1 ~~

fil'" EB

EB EB
I 200 I -W-

12

I I I I I I05-01[l] ILATEIRALFRAME: 200x 12 FLAT 5 I I

IENIDPlATIE x200mm I 100 I
,-

J
MARK THIS
END TOP

~'?>'t-

eB@ ~

rI 200 -ti-
IDIEVELOPIEMEINITOIFA MULTllPUfRPOSE
!BlEAMTESTING APPARA TUS

IDIESCR~Fr~ON:LATERAl FRAME
IDRW.NlO.: 05cW8-4

NOTE: NOT TO SCALE
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MARIK DteSCR~[P1'~O~ MA1'IER~AIL QIlY D~MIE~S~O~S

05-02 [IJ CONNECTOR: 200 x 14IFLAT 6
!BASEPLATE x400mm ,-

~~~ $ r-
I- {~r-

, , I-
-l-
I-

'---,_

I
I. :~~ .1 I Jl

05-02 [2J CONNECTOR: 200 x 14IFLAT 6
!BASE !PLATIE x 100mm ~...'O

~B(J§ $

$ $
I I

I
I.

~~ I .1 Jl
IDlEVElOIPEMENT OIFA MUL T~PURIPOSIE
!BEAM TIESTING APPARATUS

IDIESCR~IP1I"~ON:TYPE B CONNECTOR
IDRW.NlO.: 05-WS-5

NOTE: NOT TO SCALE
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MARK DIESCR~[P>IJ~ONMAIJIER~Al QlY [D)~MIENS~ONS

05-02[3] CONNECTOR: 100x 10 FLAT 12 ~j
~

WElS PLATE x 254mm

I 2:H I -tt-
-

05-02~ CONNECTOR: 200x8 FLAT 12
WElS PLATE x 254mm

~

- -rg
-

05-02~ CONNECTOR: 200x 10 FLAT 6
WElS PLATE x 254mm

~

i-I 2:H -I-+-
10

IDlEVlElOIPEMEINTOF A MULTIPURlPOSE
!BEAM TESTING APPARATUS

[)ESCR~IPTIONl: TYl?E B CONNECTOR
IDRW. NlO.: 05-WS-6

NOTE: NOT TO SCALE
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()5.()3 [IJ CONNECTOR:
!BASE !PLATIE

05-03 ~ CONNECTOR:
!BASE !PILATIE

260x 12
x 420mm

200 x 12 flLAT
x200mm

4

4

,-

I-
1-1--
I-

_Q_-

~ ~

I I. ~!~ .1 I Ji_-
DEVlElOlPlEMlElNTOF A MULTIPURPOSE
!BlEAM TESTING APPARATUS

IDIESCR~IPTION: !BRIDGE WOIRKSIHIOP DETAil
IDRW. NO.: 05-WS-7

NOTE: NOT TO SCALE
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MARK [D)[ESCIR~PT~ONMA1J[ER~Al QTV [D)~MIENS~ONS

05-03 [3J CONNECTOR: 110 x 10 FLAT 8
WEB !PLATIE x 117.8mm /~

-
-W-I. uzs I
10

05-031!l CONNECTOR: 130)(8 FLAT 8 I aDD 'I
WElS PLATIE x 254mm

V::

i-I a:5!1 -4-

05-03 [SJ CONNECTOR: 200 x 10 FILAT 4
WlEB PLATIE x 177.8mm ,-

~

I-I. 184 -tt-
DIEVELOPEMIEINT OF A MUL TIPUIRPOSE
BlEAM TESTING APPARATUS

IDIESCR~PT~ON: TYPIE C CONINIlECTOR
IDRW. NO.: 05-W8-8

NOTE: NOT TO SCALE
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aon05-04 II] CONNECTOR:
!BASE PLATE

400x 12
x400mm

6 -

J -W.--
~------~~------~ 12

,'--
-~,_

DlEVElOIPEMIENT OF A MUL TIPURIPOSE
BEAM TESTING APPARATUS

IDIESCR~PT~ONl:1YI?1ED CONNECTOR
IDRW. NO.: 05-WS-9

NOTE: NOT TO SCALE
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MARK DIESC[R~~l'~ONMAl'IER~Al QTV D~M[ENS~ONS

05-04 [3J CONNECTOR: 100 x 10 !FLAT 12
WElS PLATE x 69mm ~J ~J

I. liJD I ~

I zoe '105-04 [!] CONNECTOR: 70 X 8!FLAT 12
WEISPLATE x400mm / ~ ~J

I 4nn I ~

05-04 [5J CONNECTOR: 100 x 10 !FLAT 6
WlEB PLATfë X 184mm I IJ ~J

I la~ ·1 -tt-
DEVElOPEMENT OF A MUL TIPURIPOSE
!BEAM TESTING APPARATUS

DIESCRII?TION: TYPE 0 CONNECTOR
lDRW. NO.: 0!>-WS-10

NOTE: NOT TO SCALE
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APPENDIXB

B.l. Deflection Evaluation of Steel Trusses

B.l.l. Test Sample Information

For more information on the design and detail drawings of the test samples, refer to

Appendix A of 'Verplasing van Staal Vakwerke' by J. Neveling, February 2001,

Department of Civil Engineering, University of Stellenbosch [22].

BJ.2. Test Arrangement

The test arrangement is described in chapter 6 and in 'Verplasing van Staal

Vakwerke' by J. Neveling, February 2001, Department of Civil Engineering,

University of Stellenbosch [22].

B.l.3. Test Data

The truss layout with the positions of the measuring equipment is indicated m

Figure B.l.

The calibrated test data for the following tests is attached and a summary thereof is

plotted in FIGURE B.2.

B.1
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ru [3J

]_J

~
x
Cl
<o
X
<:)

-o

50,50,3 2L~ ~

"--[2] DJ ~[] @]

7200

Test Layout:

C. Roller SupportA. Truss

B. Pinned Support

Measurement Data:

1.

2.

3.

4. LVDT: Horizontal Displacement Measured

5. Strain Gauges: Strain Measured

6. Strain Gauges: Strain Measured

Load Cell: Force Measured

Load Cell: Force Measured

LVDT: Vertical Displacement Measured

Figure B.1 Truss Set
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Test Results: Displacement vs. Load
Welded Truss

14.-------------------------------------------------------------,
LVDT Removed12+---------------------------------------------------------~~

Ê 10+-------------------------------------------------~~--------;.§.

o 10 20 35 405 15 25
Load [P (kNIl

30 45

W6 W7 W10 I

Test Number Test Description

Welded Truss: Loaded to design load, Load released

Welded Truss: Loaded to design load, Load released

Welded Truss: Loaded to failure

W6

W7

WIO

Figure B.2 Summary of Test Data

B.3
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APPENDIXC

The MTA was designed in accordance with SABS 162: 1- 1993 The

Structural use of Steel Part 1: Limit-States Design of Hot-Rolled

Steelwork [2] and Structural Steelwork Connections (Limit States Design)

[29]. The Southern African Structural Steelwork Detailing Manual [30]

was used to assist in connection details.

An ultimate limit state load factor of 1.6 and a service ability limit state

load factor of 1.0 (corresponding to the live load factors ofSABS 162: 1-

1993 The Structural use of Steel Part 1: Limit-States Design [2]) were

used in the design of all loading equipment.

Due to the stiffuess requirements of the supports and lateral supporting

frames unfactored loads were used to create the load and deflection

envelopes.

For a summary of the capacity ofthe MTA refer to Appendix D.

C.l
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C.l. Load Application with the MTA

CJJ. Vertical Loads

A vertical load can be applied to the test specimen by using one or more

of the following loading bridges:

a. The Gravity Load Simulator

b. 600 kN Hydraulic Actuator Bridge (600 kN Maximum static load)

c. 62.5 kN Hydraulic Actuator Bridge (62.5 kN Maximum static load)

C.l .1.1. The Gravity Load Simulator:

200 kN 200 kN

Figure C. 1 Applying a Vertical Load along the Tracks using the Gravity

Load Simulator.

For loading refer to Figure C.l.

The Gravity Load Simulators were designed and build under the

supervision of Prof. P. E. Dunaiski (1986).

C.2
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C.l.l.2. 600 kN Hydraulic Actuator Bridge:

600 kN kN

<~= =~>

Figure C. 2 Applying a vertical load along and across the Tracks using the

600 kN Actuator Load Bridge.

Load Factor = 1.6 (Live Load)

For loading and load envelopes refer to Figure C. 2, Figure C. 3 and Figure C. 4.

Bending Moment Envelope

500+_----------------------~=,----------------------~

Ê /
~400+---------------~~--~--------------------~
1: /'

~ 300+_---------,~~--------------------------------~

i200 /

~ 100 /

oV
o 0.4 0.6 0.8 1

Load Position [x (m)]
1.2 1.4 1.60.2

Figure C. 3 Bending Moment Envelope for 600 kN Hydraulic Actuator Bridge

C.3
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C.l.l.2. 600 kN Hydraulic Actuator Bridge:

600 kN 600 kN

=:=::::;:><~==

Figure C. 2 Applying a vertical load along and across the Tracks using the

600 kN Actuator Load Bridge.

Load Factor = 1.6 (Live Load)

For loading and load envelopes refer to Figure C. 2, Figure C. 3 and Figure C. 4.

Bending Moment Envelope

600

---/
/
/
/
:/

500

Êz
~ 400

ë
GI

~ 300

==Cle
'6 200e
GI
ID

100

o
o 0.2 0.4 0.6 0.8 1

Load Position [x (m)]
1.2 1.4 1.6

Figure C. 3 Bending Moment Envelope for 600 kN Hydraulic Actuator Bridge
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Shear Force Envelope

1000

900

BOO I----. ---r--700
Z -I---~ 600

~ 500 -----0
IL -----ii 400
J:.
I/)

300

200

100

0.2 0.4 0.6 O.B 12 1.4 1.6

Load Position Ix (ml]

Figure C. 4 Shear Force Envelope for 600kN Hydraulic Actuator Bridge

CJ.l.3. 62.5 kN Hydraulic Actuator Bridge:

62,5 KN 62,5 KN

~ I-
<i====

,- ====:> <i==== r-- ====:>
;:::: ~

x = AA0

~ ~

Figure C. 5 Applying a vertical load along and across the Tracks using the

62.5 kN Actuator Load Bridge.
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Load Factor = 1.6 (Live Load)

For loading and load envelopes refer to Figure C. 5, Figure C. 6 and Figure C. 7.

Bending Moment Envelope

70~~--------------=-~--~--~------------------~
oo~--------------------------=--=======----~

ï50 ~
~ /""
~ 40+------------- __~~~----------------------------~
~30 /'

f20 /
al 10 /

DV
o 0.2 0.4 0.6 0.8 1

Load Position [x (m)]
1.2 1.4 1.6

Figure C. 6 Bending Moment Envelope for 600 kN Hydraulic Actuator Bridge

Shear Force Envelope

----80 r---... ---_____
~ 60+-----+-----+-----+-----r------~~----_r----_r----~j r---___
= 40+-----+-----+-----+-----+-----+-----+-----+---~
~

20+-----+-----+-----+-----+-----+-----+-----+---~

o 0.2 0.4 0.6 0.8 1.2 1.4 1.6

Load Position [x (ml]

Figure C. 7 Shear Force Envelope for 62.5 kN Hydraulic Actuator Bridge
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Design of the MT A

Design: Tracks

C.2.l.1.

See

Section

C.I and

Figure C.

8

The tracks are used for guiding and fixing the loading bridges, supports and

lateral supports to the test floor.

Loading:

Note: The reactions at the fixing points should not exceed 400 kN vertical and

200 kN horizontal as this will exceed the capacity of the test floor.

Two extreme load cases:

• Load case 1

•

Total vertical Load = 684 kN (upwards)

Load case 2

Total vertical Load = 684 kN (downwards)

I HINGE I

r'A kN
136,3 kN

[..

x~
~ 136.3 kN

'I

~ = ~ ~"""

tRI t t tR2
- 400KN Rll Rl2

I
-

I
I 11@920 = 10 120 I

Figure C. 8 Loading on Track: Verti~al Loading moving along track

Vu = 341.9 kN I Mu= 77.3 kNm
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C.2.l.2. Properties

Geometcy:

11 span simply supported beam, L = 920 mm

Refer to drawings 01-3D-O 1, 01-01 II and 01-0112 for more detail on the tracks.

The cross section is shown in Figure C. 9.

I 44 I
65

1

32

1

65

I
138

I
65

1

32

1

ss

I
44

I[=,= ~ L________,

[IJ 1n~.~~0:6i;I~00~~I

11~ [2J 1 x 550,,20 Flot x

I

~ --J--l

I

10 500~~

I :::
I

Figure C. 9 Cross section through Track

Section properties for build up section:

A= 17240 mnr'

y=38.7mm

I = 31.6 x 106 mm4

C.7
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Profile class:

bllt

SABS 162-1 Legs of angles supported at one end: 65/10 = 6.5 b lit < 200/..Jfy= 11.5
Table I

Class 3

Web (98-10)/10 = 8.8 bl/t< 1l00/..Jfy=63.5

Class 1

Section class: 3 Class 3

C.2.l.3. Tracks

SABS 162-1 1. Shear:
§13.4.

Vr = ~AvFvu

= 0.9 X (4xl0x93) X 0.66 X 300

= 662.4 kN

Vr> v, = 341.9 kN Vr=

662.4

kN

SABS 162-1 2. Bending:
§13.5.

Mr = ~Zefy

= 0.9x31.6xl 06/(118-38.7) X 300

= 101.3 kNm

Mr> Ms= 77.3 kNm Mr=
lOl

kNm

C.8
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C.2.l.3 Base Plate:

SABS 162-1

§15.9.
3. Web yield and crippling:

Bearing length: N = 100 mm

a. Interior loads:

1. Br = 1.10~tw(N+ 5k)fy

= 1.l0xO.9xIOx(lOO +5xI0)x300

= 445.5 kN /web

2. Br = 300~~/{ l+3(N/h)(tw/tr)15H(~ttltw)

= 300xO.9xI02
{ I+3(100/98)(10/10)L5H(300xl OliO)

= 18992 kN Iweb

b. End Reactions:

1. Br = 1.l0~tw(N + 2.5k)~

= 1.l0xO.9xIOx(l00 +2.5 x lO) X 300

= 371.3 kN /web

2. Br = 150~t,/{1+3(N/h)(tw/tf)L5H(~ttltw)

= 150xO.9x102
{ 1+3(100/98)(1 0/10)15H(300xl OliO)

= 949.6 kN /web

684 kN 684 kN

1
~--~------------------------~~----~~

+'

1
~10+2t) ~'__-------'680 +2X (98+t )----------;~

Figure C. 10 Base plate design of track.
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Refer to Figure C. 10.

SAISC 1. Reinforced Concrete Floor Slab:
Structural
Steelwork Br = O.4:t;,u

Connections, = O.4x20

(12.1) =8MPa

Area = 4x(lO+2t)x(680+2x(98+t»

= 4x(lO+2x20)x(680+2x(98+20»

= 183.2xl03 mm"

ab =F/A

= 684xl03/183.2xlo3

= 3.7 MPa

crb < Br = 8 MPa

2. Base Plate Thickness:

Minimum base thickness with a = 44 mm:

SAISC t, = ..J(3ab a2/O.9fy)
Structural

= ..J(3x3.7x442/O.9x300)Steelwork
Connections, =8.9mm
(12.2)

t = 20 mm > tp = 8.9 mm

C.lO
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C.2.l.4. Bending of Angles:

SABS 162-1

§135.

684/2 kN

Refer to Figure C. Il for position of bending sections.

Figure C. Il Bending of Angle Legs

Bending Resistance at section 1:

Mrl = ~Zefy

=O.9xl02/6x680x300

Mul = 684xl03/4xlO

= 1.71 kNm

Mu2 = 684xl03/4x25

=4.28 kNm

= 3.06 kNm

Section 1

Section 2++---+=

10 thk Stiffener
I I

-

-9 r-20
-<:}--714

Mrl >Mul = 1.71 kNm

C.1I
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Bending Resistance at section 2:

With web stiffeners: 10 thk / 460mm spacing

Properties at section 2:

= 8180 mm"

= 775.312xl03 mm"

y =7.9 mm

Ze = 16.820x103 mm"

A

I

SABS 162-1 Mr2

§13.5.

C.2.l.5. Welding of Angles, Web Stiffeners & Base Plate:

Weld to

SASCH

Table 6.16:

Single bevel

Manual

groove weld:

= ~Zefy

= 0.9x16.82x103x(680+50) X 300

=4.54 kNm

Mr2> Mu2= 4.28 kNm

)Si"-,
/

Figure C. 12 Welding detail of web and base plate

Welding detail is shown in Figure C. 12.

Use E70XX electrodes

C.l2
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1. Angles:

SABS162-1 Axial Loading:
Table 3

a) Tr=Cr = ~wAwfuw

= O.67xlOx480

= 3.22 kN/mm

b) Tr=Cr = ~Awfy

= O.9xlOx300

= 2.7 kN/rnm

SABSI62-]: Shear:
Table 3

a) Vr = O.67~wAwfuw

= O.67xO.67xlOxlO500x480

= 22 624.6 kN

b) Vr = O.67~Awfy

= O.67xO.9xlOxlO500x300

= 18994.5 kN

Vr >Vu=200kN

2. Web Stiffeners:

SABSI62- Shear:
1:1

Table 3 a) Vr = O.67~wAwfuw

= O.67xO.67x5x2x(44+98)x480

= 681.6 kN

b) Vr = O.67~Awfy

= O.67xO.9xlOx(44+98)x300

= 462.0 kN

C.13
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C.2.I.6. Torsion capacity of Tracks

C.2.l.7. Holding Down Bolts:

DYWfDAG

Single

Thread Bar

Tendons:

Technical

data

RRETffiSCJ.I(_ITlITir.rle)
J = 1.718i 1,= 62.5El

9m'cmre
X=215 Y~19.6

Figure C. 13 Torsional Properties ofa Track

The torsional properties of the tracks are calculated using Prokon Software and

is indicated in Figure C. 13.

Tmax = aZt,with a = 195 MPa
Tmax = 195x62.5x103

= 12.18 kNm

Use 26E DYWIDAG bars:

T; = ~~sAz

= O.9x460

= 414 kN

T.,,,=
12.18

kNm

T, =

412 kN

C.14
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C.2.2. Design: Load Bridges

C.2.2.1. The Gravity Load Simulator

See •
Section

C.l. and

Drawings:

SR/OI- •

SR/27

The loading bridges are used to apply a vertical load between the tracks.

Three loading bridges are designed for use:

a. The Gravity Load Simulator

b. 600 kN Hydraulic Actuator Bridge

c. 62.5 kN Hydraulic Actuator Bridge

Loading

Capacity of Gravity Load Simulator:

Vertical Load (upwards) = 200 kN

Vertical Load (downwards) = 150 kN

Load transfer to Track Connector:

Vertical Load = 1.6x132 = 211.2 kN (Not Critical)

Properties

Geometry:

Mechanism,

L = 2760 mm, h = 927.415 mm.

Refer to drawings 03-3D-03, 03-03/1 and SR/Ol to SR/27. The Gravity Load

Simulator is shown in Figure C. 14.

C.15
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SZ 1297.415 lvi

Grovity Lood Slr-uto t or-
os designed by
Prof P,E, Dunoiski
C1986l

248,000 lvi

118,000 lvi

Figure C. 14 The Gravity Load Simulator

Gravity Load Simulator Design:

The Gravity Load Simulators were designed and build under the supervision of

Prof. P. E. Dunaiski (1986).

Track Connector (Type A) Design:

Refer to drawings 03-3D-04 and 03-03/2.

Minimum Axial Properties of Column:

A= 6400 rnnr'

1= 12.68x103 mm"

r=44.51 mm

C.l6
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1. Axial Load:
SABS 162·1 --
§13.3

'A.=kLir ,J(fy/n2E) = 0.022

Cr = ~Afy(l +')..2nrlln
= 0.9x6400x300(1 + 0.0222xl34rI/134

= 1 727.9 kN

Cr > Cu = 211.2 kN

2. Top Base Plate:

crb =F/A

= 211.2xl06/(200x200)

= 5.3 MPa

Minimum base thickness with a = 100 mm

SAISC

Structural = ,J 3crba2/~fy
Steelwork

tp

Connections,

(121 ) t, =,J 3x5.3xlO02/0.9/300

=24.2 mm

t= 25 mm> tp

3. Bottom Base Plate:

crb =F/A

= 132xl06/(300x300)

= 2.3 MPa

C.17
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Minimum base thickness with a = 100 mm

SAISC

Structural
tp = ...J30"ba2/~fy

Steelwork

Connections,

(12.2) t, =...J 3x2.3xI502/O.9/300

=24.2 mm

t= 25 mm> tp

Welding Column Plates & Base Plates:

Welding fillet 5 thick all round. (Use E70XX electrodes)

SABS 162-1: 4. Shear:
Table 3

a) Vr = 0.67~wAwfuw

= 0.67xO.67x(5/...J2)x8x200x480

= 1218 kN

b) Vr = 0.67~Amfy

= 0.67xO.9x(5/...J2)x8x200x300

= 1023 kN ,

Vr>Vu=211.2kN

C.l8

Stellenbosch University http://scholar.sun.ac.za



C.2.2.2. 600 kN Servo Hydraulic Actuator Bridge

Loading

See • Most severe Loading on bridge:
Section

c.l.
Total vertical Load = 1.6x600= 960 kN (up or downwards).

Note: The end reactions should not exceed 684 kN, as this will cause the

capacity of the test floor to be exceeded (See Figure C. 15).

1.6x600 = 960 kN
[,~~------x------~--500_'_

~

1~-----,27601------------~J
Rl R2

Figure C. 15 Loading on Bridge: Vertical Load moving across bridge.

Properties

Geometry:

Simply supported beam,

L=2760mm

Refer to drawings 03-3D-Ol, 03-0111, 03-01/2 and 03-01/3. Also refer to Figure

C. 16 and Figure C. 17 for extracts of drawings 03-01/1 and 03-01/2.
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Section AA: Top View

Figure C. 16. Detail of600 kN Servo Hydraulic Actuator Bridge.
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Section BB Section CC

Figure C. 17. 600 kN Servo Hydraulic Actuator Bridge: Section BB and CC

Section properties for built up sections:

Section BB Section CC

- -

y= 154.0 mm y= 67.5 mm

A= 30956 mm2 A = 20134 mm2

1= 341.67 X 106 mm" 1= 62.8 X 106 mm"
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Profile class:

bIlt

SABS 162-1 Section BB: Bottom Flanges 138/18 = 7.67 b/t < I 451..Jfy = 8.37
Table I

Class I

Section BB: 106/10 = 10.6 bilt < IIOOI..Jfy = 63.5

Top Web Class I

Section BB: Bottom Web 136/10 = 13.6 b/t < 1100I..Jfy = 63.5

Class I

Section class: 1 Class I

Section Design:

SABS 162-1 1. Shear:
§134.

Vr = ~Avfvu

Vr> V u(refer to Figure C. 18)

Figure C. 18. 600kN Bridge: Shear Design.
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SABS 162-1

§135.

SABS 162-1

§15.9.

2. Bending:

Mr> Mu (refer to Figure C. 19)

600 kN Bridge Design: Bending Moment

600r------r----~------~----_r----_.------~----_r----_.

1.4 1.6

/ ---
500r------r----~------+_--~~~~~------+_----_+----~

~ /~~
~400 ~1300r------r--~~~~----_+------~----~----_+------+_----~

i200 #
~ /
ID 100 /

oV
I - Bending Moment Envelope (kNm) I

----- Mer (kNm) I-

0.2 0.4 0.6 1.2

Figure C. 19. 600kN Bridge Design: Bending Moment

3. Web yield and crippling:

Bearing length: N = 100 mm

For Section BB & CC (12 thick flanges)

a. Interior loads:

1. Br = 1.l0$tw(N + 5k)fy

= 1.l0xO.9x12x(100 +5x18)x300

= 677.2 kN /web

2. Br = 300$t/{1+3(N/h)(tw/tf)L5}'J (fytr!tw)

= 300xO.9x122 {I +3(lOO/106)(12/18)15}'J (300x12/18)

= 1396.9 kN /web
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b. End Reactions:

1. Br = 1.l0~tw(N + 2.5k)t;,

= 1.l0xO.9xI2x(100 +2.5x20)x300

= 534.6 kN /web

2. Br = l50~tw2{1+3(N/h)(tw/tr)l5}'J (fyY/tw)

= 150xO.9xI22{l +3(100/l06)(12/20)15}'J (300xI2/20)

= 603.8 kN /web

Br> n,
For Section BB (10 thick flanges)

a. Interior loads:

1. Br = 1.l0~tw(N + 5k)fy

= l.10xO.9x12x(lOO +5 X 18) X 300

= 677.2 kN /web

2. Br = 300~t/{ 1+3(N/h)(tw/tr)l5}'J (fytrltw)

= 300xO.9xI22{ 1+3(100/1 06)(12/18)15}'J (300xI2/18)

= 1396.9 kN /web

b. End Reactions:

1. Br = 1.10~tw(N + 2.5k)t;,

= 1.l0xO.9x12x(l 00 +2.5x20)x300

= 534.6 kN /web

2. Br = 150~tw2{1+3(N/h)(tw/tr)15}'J(fytrltw)

= 150xO.9x122{1+3(lOO/106)(12/20)15}'J (300x12/20)

= 603.8 kN /web

Br> s,

4. Bending of Flanges:

Refer to Figure C. 20 for position of bending sections.

Mul = 960xI03/8x(3+5)

=0.96 kNm

Mu2 = 960xl03/8x(3+5+6)x(lOl/124)

= 1.37 kNm
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SABS 162-1

§IJ5

960/4 kN

Sec-tion 1
,-----

Sec-tion 2
I"I

-cP-li-<J- 3
--{po r=-lO

\C==~P----~~112~6~)-==~t-__ Sec -tion 3

f<:l- __ lO -thk S-tiffener-

Figure C. 20. Bending of Angle Legs

Mu3 = 960xI03/8x(l38-12-3-5)

= 14.16 kNm

Bending Resistance at Section 1:

Mrl = ~z.fy

=O.9xl 82/6xl 80x300

=2.62 kNm

Mrl > Mul = 0.96 kNm

Bending Resistance at Section 2:

Mr2 = ~z.fy

=O.9x122/6x(180+2x(3+6+9+14))x300

= l.58 kNm

C.24
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SABS 162-1

§1J5.

Bending Resistance at Section 3:

(without any stiffeners)

Mr3 = ~Zefy

= 0.9xI82/6x(180+2x(l24+118))x300

=9.68kNm

Mr3 < Mu3= 14.16 kNm

Add Stiffeners: 10 thick with 320 mm spacing

Bending between stiffeners:

Mr = 60xl03x320/2-60xl03x90/2

=6.9 kNm

Property of Section between Stiffeners:

A

I

=4818 mm2

= 13304.3xl03 mm4

Mr = ~z.fy

= 0.9xI49.0xl03x300

=40.23 kNm

Mr> M,> 6.9 kNm

5. Stiffeners Design:

Axial Properties of Stiffener:

A= 1380 mm2

1= 11500 mm4

C.25

y = 52.7 mm

Ze = 149.0x103 mm'

r= 2.886 mm
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Axial Loading:

SABSI62-1: --
§133 A= kLir ...J(fy!1t2E) = 0.581

Cr = ~Afy(1 +A2n)"l/n

= 0.9x1380x300(l + 0.5812x134)"1/134

=318.6 kN

Cr> Cu= 60 kN

6. Welding of Flanges, Webs & Web Stiffeners:

Weld to c=:::J ::=:J c=:"SASCH G:as.
Table 6.16:

1 G
cx: 3 V 4"5'

Single Bevel
~

J

~Manual

"groove weld:
G
is·
1

3 V

~

------
~

------------
~,'
G,5

Section BB Section CC
(Port) (Port)

Figure C. 21. Welding detail of web and base plate

Welding detail is shown in Figure C. 21.

(Use E70XX electrodes)

12 Thick Webs:

SABSI62-1: Axial Loading:
Table 3

a) r.i- c, =~wAwfuw

= 0.67x12x480

= 3.86 kN/mm
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b) Tr=Cr = ~Awfy

= O.9x12x300

=3.24 kN/mm

SABSI62-1: Shear:
Table 3

a) Vr = O.67~wAwfuw

= O.67xO.67x12x480

= 2.59 kN/mm

b) Vr = O.67~Awfy

= O.67xO.9x12x300

= 2.17 kN/mm

10 Thick Webs:
SABSI62-1: Axial Loading:
Table 3

a) Tr=C =~wAwfuw

= O.67xlOx480

= 3.22 kN/mm

b) Tr=Cr =~Awfy

= O.9xlOx300

=2.70kN/mm

SABS162-1: Shear:
Table 3

a) Vr = O.67~wAwfuw

= O.67xO.67xlOx480

= 2.15 kN/mm

b) Vr = O.67~Awfy

= O.67xO.9xIOx300

= 1.81 kN/mm
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Web Stiffeners:
SABSI62-1: Shear:
Table 3

a) Vr = 0.67~wAwfuw

= 0.67xO.67x5x2x(136) X 480

= 293.0 kN

b) Vr = 0.67~Awfy

= 0.67xO.9xlOx(136) X 300

=249.6 kN

Welding as shown in Figure C. 21 is sufficient.
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C.2.2.3. 62.5kN Servo Hydraulic Actuator Bridge:

See

Section

C.l.

Loading:

• Most severe Loading on bridge:

Total vertical Load = 1.6x62.5= 100 kN (up or downwards).

(See Figure C. 22).

1.6x62,5 - 100 kN

~k x ~~300-
1

~

!~..----2760---_________,J
Rl R2

Figure C. 22. Loading on Bridge: Vertical Loading moving across bridge.

Properties

Geometry:

Simply supported beam,

L=2760mm

Refer to drawings 03-3D-02, 03-02/1,03-02/2 and 03-02/3. Also refer to

Figure C. 23 and Figure C. 24 for extracts of drawings 03-02/1 and 03-02/2.
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Section AA: Top View

Figure C. 23. Detail of 62.5 kN Servo Hydraulic Actuator Bridge.
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Section BB Section CC

Figure C. 24. 62.5 kN Servo Hydraulic Actuator Bridge: Section BB and CC

Section properties for built up sections:

Section BB

-

y=67.5 mm

A= 20136 mm2

1= 62.8 X 106mm"
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Profile class:

bIlt

SABS 162-1 Section BB Flanges
Table 1 59/18 = 3.28 b/t < 1451..[ fy= 8.37

Class I

Section BB Web: 106/10 = 10.6 bIlt < 11001..[ fy= 63.5

Class 1

Section class: 1 Class 3

Section Design:

SABS 162-1 1. Shear:
§134.

Vr = ~Avfvu

Vr> V u (refer to Figure C. 25)

62.5 kN Bridge: Shear Force Design

1000

000 il
800

_ 700

Z
.II:
- 800
GI
~
0 500
LI....
ft! 400
GI.c:
U) 300

-+- Shear Force Envelope (kN)

200 ---Shear Force Lim~ Value (kN)
--Vcr (kN)

100

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x(m)

Figure C. 25. 62.5kN Bridge: Shear Design.
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SABS 162-1 2. Bending:
§13.5.

Mr =~Zefy

Mr> Mu (refer to Figure C. 26)

62.5 kN Bridge Design: Bending Moment

250

!200 1\
Êz;.
C150
ell
E
0
:::i:
C)lOO
C:sc
ell
ill

50
!--

------ ~ I -Bending Moment Envelope (kNm)

.>: --Mer (kNm)
0 ~
0 0.2 0.' 0.6 0.8 1 1.2 1.. 1.6

x(m)

Figure C. 26. 62.5 kN Bridge Design: Bending Moment

SABS 162-1 3. Web )::ieldand crippling:
§15.9.

Bearing length: N = 100 mm

For Section CC

a. Interior loads:

1. Br = 1.l0~tw(N + 5k)fy

= 1.IOxO.9xI2x(100 +5xI8)x300

= 677.2 kN /web

2. Br = 300~tw2{ I+3 (N/h)(tw/tr) 15H(t;,ttltw)

= 300xO.9xI22{l +3(100/1 06)(12/18)L5H(300xI2/18)

= 1396.9 kN Iweb
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b. End Reactions:

1. Br = 1.l0~tw(N + 2.5k)~

= 1.l0xO.9x12x(100 +2.5x20)x300

= 534.6 kN /web

2. Br = 150~tw2{l+3(N/h)(tw/tf)L5H (fyttltw)

= 150xO.9x122{1+3(100/106)(12/20)L5}"(300x12/20)

= 603.8 kN /web

Br> n,

4. Bending of Flanges:

Refer to Figure C. 27 for position of bending sections.

100/4 kN
-'- Section 1

\ Section 2,.
--{:+.'.120

\
Section 3

Figure C. 27. Bending of Angle Legs

Mul = 100xl03/8x(44/2+3)

= 0.31 kNm

Mu2 = 100xl03/8x(44/2+3+6)

=0.39 kNm
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SABS 162-1

§135.

MU3 = 1OOxl 0' /8x(138-6-3-44/2)

= 1.34 kNm

Bending Resistance at Section 1:

Mr) = ~z.fy

= 0.9x182/6x2x63x300

= 1.83 kNm

Mrl >Mul= 0.31 kNm

Bending Resistance at Section 2:

Mr2 = ~z.fy

= 0.9xI22/6x(2x(69+9+ 14 )x300

= 1.19 kNm

Mr2> Mu2= 0.39kNm

Bending Resistance at Section 3:

Mr3 = ~z.fy

= 0.9xI82/6x2x(53+ 118+132)x300

= 8.84 kNm

Mr3 > Mu3 = 1.34 kNm

5. Welding of Flanges, Webs & Web Stiffeners:

Welding as for 600 kN Servo Hydraulic Actuator Bridge. Detail as shown in

Figure C. 21 Section CC (Part).

(Use E70XX electrodes)
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C.2.3.l. Loading:

Design: Hinge

The hinge connects the hydraulic actuator bridges to the tracks. The purpose of

the hinge is to eliminate torsion on the tracks. Refer to drawings 02-3D-Ol, 02-

3D-02, 02-0111, 02-03/1 for more detail on the hinge and fixing brackets. The

hinge is shown in Figure C. 30.

Section
See • Two extreme loading cases:

C.l.,

Figure C.

28 and

Figure C.

29

Load case 1:

600kN hydraulic actuator at centre ofloading bridge.

Load case 2:

600kN hydraulic actuator at end of loading bridge.

Note: The maximum loading on the hinge should not exceed 684 kN, as this will

cause the capacity of the test floor to be exceeded (Refer to Figure C. 28 and

Figure C. 29).

1.6 x 600 = 960 kN

'P2
~~~~~~~~~~~

~ ~500~ wa

11----.. -2760-_______'.1

Figure C. 28. Load case 1: Vertical load at centre of loading bridge:

R2= -480 kN, ~ = -0.0821 radians.
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684 KN

~
~
~

t. 2760 J
Rl R2

Figure C. 29. Load case 2: Vertical load end ofloading bridge:

R2= -684 kN, ~ = 0 radians.

C.2J.2. Hinge Design:

Permaglide For Frictionless rotation use Permaglide'" PlO bearings.
Plain

Bearings,
Technical Data:

INA Inside diameter of bush: dj = 50 mm.

Catalogue Bearing Load: F = 684 kN (Static Load)
705

..

Catalogue70 1. Permissible sQecific bearing load:
5

pm.x= 250 N/mm2
Table I

Static:

Very low Sliding speeds: Pm.x== 140 N/mm2

Rotating, oscillating: Pm.x== 56 N/mm2

Minimum width of Bush: p= F/d].b

bmin = 684x1 03/250x50

= 54.7mm
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20mm

thick

Use 4 x Webs 20 mm thick with 4 x PAP 5020 PlO Maintenance free INA 4 Webs

Bearings

2. Load capacity of bearings:

Loading Condition

Static:

Very low Sliding speeds:

Rotating, oscillating:

~350

1
I

~ V 1
m" ,,",eo "0' x

M ~. 350~~

lil:l: :1: ~
,___300_ ~(Zl 1 x 500x30 riot x

6801'11'1

o
ru

If)

1
~

1
'----- __j ----j"'-,-----,-

11-----462----11

Figure C. 30. Detail of Hinge
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C.2.3.2. Base Plate Design:

For Member forces refer to Figure C. 31.

1 §13.4.2

SABS 0162- 1. Shear:

SABS 0162-

1§ns (a)

Vr = O.66~Afy

= O.66xO.9x30x462x300

=2470 kN

Vr> v« = 205.7 kN

4x 171 = 684 kN

1 !! !
~ ~ ~

~295----5 ----1---·1, -295--1
205.7

136.3 n
O 34.7

Shea r' For c e ~=====~========t---l
Dioqr-o r- (kN) -------c U tJ

34.7

136.3
205.7

Bending MOMeni
Dioqr o.n (kNM)

~2 o~

V
11.1

Figure C. 31. Base plate design: Shear Force and Bending Moment Diagrams

2. Bending:

Mr = ~Zefy

= O.9x1l6x302x462x300

= 18.7 kN
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C.2.3.3. Hinge Web Plate Design:

1. Bearing: Pin and Web Interaction:
SABS 0162- Br = ~tafu
1§13.10(1) = 0.67x20x83x450

= 500.5 kN
SABS 0162- Br = 3~tdt;.
1 §13.10(2) = 3xO.67x20x55x450

= 995.0 kN

Br = 500.5 kN> 684/4 = 171 kN

2. Axial Tension:
SABSI62-1: a) Tr = ~Agfy
§13.2 (a) = 0.9x20x350x300

= 1 880 kN
SABS162-1 b) Tr = 0.85~Anefu
§13.2 = 0.85xO.9x20x(350-55)x450
(b)

= 2 031 kN

Tr>Tu=205.7kN

3. Bending & Compression:

For Member forces refer to Figure C. 32.

Mr = ~z.fy

= 0.9xl/6x202x350x300

= 6.3 kN

r = "2333x10J/700 = 5.77

--
A = kL/r"(fyl7CE) = 2.0x70.0/5.77d(300/3.l42x200xl03) = 0.299
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SABSI62-1: Cr
§13.3

Weld to

SASCH

Table 6.16:

Double

Bevel

Manual

groove weld:

171 kN

I
~

0,06 kNM

-

- - 0,005 X 171 = 0,8SSkN
(SABS 162-1· 1993 §8.6.2)

= ~Afy(l + A?nr1/n

= O.9x20x350x300(1+ 02992xU4rl/U4

= 1836.4 kN

Sufficient capacity for Bending & Axial Compression

- -

4. Welding of Web & Base Plates:

-

Figure C. 32. Web Plate in Compression and Bending

Figure C. 33. Welding detail of web and base plate

-

/ ~3
2
45"

G

~ IIiI..IIII

I
M

~

9 2
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SABS 162-1:. Shear:

SABSI62-1:

Table 3

Table 3

Refer to Figure C. 34.

Axial Loading:

a) T;> Cr = ~wAwfuw

= 0.67x20x350x480

= 2251.2 leN

b) Tr= Cr = ~Awfy

= 0.9x20x350x300

= 1890.0 kN

a) Vr = 0.67~wAwfuw

= 0.67xO.67x20x350x480

= 1508.3 leN

b) Vr = 0.67~Awfy

= 0.67xO.9x20x350x300

= 1266.3 kN

Vr > V, = 0.855 kN

C.2.3.4. Hinge Bolts:

Use 6 M30 Grd 8.8 Bolts

SABSI62-1: 1.Tension:
§131 L3

T, = 0.75~bAb~

= 0.75xO.67x707x800

= 284 kN/Bolt

r, >Tu=684/4= 171 kN
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C.2.3.5. Pin:

SABSI62·1

Table 6,

§22.8

2.Layout:

Minimum Edge Distance = 1.4d

= 1.4x30

=42mm

Edge Distance = 45 mm> Minimum Edge Distance

For Member forces refer to Figure C. 34.

Use pin with diameter = 50 mm

171 kN

1
171 kN

1
~

f~,__!_· :::===========~k_!~·r
171

DSheo..- Force
Diog,,-oM (kN) D

171

2.4 2.4

Bending MOMentL__/ \__,
Ilio qr-c r- CkN",)

Figure C. 34. Pin design: Shear Force and Bending Moment Diagrams
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SABSI62-1. 1. Shear:
§13.1I.2

Vr = O.6~bAbfu

= O.6xO.67x3.l4x502/4x450

= 35.2 kN

SABSI62-1:. 2. Moment:
§135

Mr = ~Zefy

= O.9x3.l4x253/4x300

= 3.3 kN

SABSI62-1. 3. Layout:
Table 6,

§22.8
Pin: Minimum Edge Distance = l.5d

= 1.5x50

=75mm

Bush: Minimum Edge Distance = LSd

= 1.5x55

= 82.5 mm

Edge Distance = 83 mm> Minimum Edge Distance

C.2.3.6. Hinge Fixing Bracket:

The Hinge Fixing Bracket is drawn in Figure C. 35.

Across Bracket:

Properties:

L= 122 mm

SABS 0162- 1. Shear:
I: §13.4.2

Vr = ~O.66AfY

= O.9xO.66x20x680x300

= 2 423.5 kN

Vr>Vu=171kN
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SABS 0162-

I: §13.5 (a)

~------------~B~------------~

Front View

~B

f
~32 8:> 8:> ~

_j
I

~B
I 45295 29

Section AA' Top View

"

[I] 1 , 100,20 Ftc t

t '6BO nn

20
[2] 2 x 100x20 Flo t

50 x 680 1"'11"1

--4+--10~
20 20

Section BB

Figure C. 35. Hinge Fixing Bracket

2. Bending:

Mr = ~Zefy

= 0.9xl/6x202x680x300

= 12.2 kN

Mr> Mu = 10.43 kN

Along Bracket:

Properties:

L =2 x295 mm

y = 31.6 mm

I: §13.4.2

SABS 0162- 1. Shear:

Vr = ~0.66Afy

= 0.9xO.66x5240x300

= 933.5 kN

Vr> Vu = 102.9 kN

C.44

A = 5240 mm'

= 1 899.2xl03 mm"
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SABS 0162- 2. Bending:
I: §13.5 (a)

Mr = ~Zefy

= O.9x(1 899.2xlO2/43.9)x300

= 11.6 kN

Mr>Mu=5.55kN

CA5
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C.2.4.1. Loading and Serviceability:

See • Loading on supports:
Section

C.l.,

Figure C.

36

Design: Supports

The Supports consist of a horizontal support bridge and a vertical support. Refer

to drawings 04-3D-Ol, 04-01/1, 04-0112, 04-02/1 and 04-02/2 for more detail on

the supports.

Load case 1:

600kN Vertical (hydraulic actuator at centre of loading bridge).

Load case 2:

End reaction not to exceed 684 kN Vertical and 200 kN

horizontal as this will cause the capacity of the test floor to be

exceeded

• Serviceability of supports:

Deflections of the supports will have to be negligible compared to the

deflections of the test specimen.

p

x

~~EI I I
II 2760

Figure C. 36. Loading on the supports

C.46

Stellenbosch University http://scholar.sun.ac.za



SABS 162-1 2. Shear:
§13.4.1. L (a)

C.2.4.2.

SASCH

Table 5.4:

SABS 162-1

§15.9.

Due to the flexibility of the supports, the supports can be made stiffer or the

capacity increased by using two supports together. For this reason the capacity

and deflection for a single support be calculated.

Horizontal Support Bridge Design:

1. Bending:

For unsupported length < 3m

Mr =267 kNm

(Note: bending is only applicable with P is upward)

End Section:

hw/tw = 94/8.6 = 10.9 < 440...J(kjfy) = 58.7

(assume no web stiffeners, kv = 5.34)

Vr = ~Avfvu

= 0.9 X 94 X 8.6 X 0.66 X 300

= 134 kN

Centre Section:

hw/tw = 225.6/8.6 = 26.2 < 440...J(kjfy) = 58.7

(no web stiffeners, kv = 5.34)

Vr = ~Avfvu

= 0.9 X 225.6 X 8.6 X 0.66 X 300

= 345.7 kN

3. Web yield and crippling:

a. Interior loads:

Bearing length: N = 254 mm

C.47
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SABS 162-1

§13.IU

Structural

Steelwork

Connections,

(12.2)

SAISC

Structural

Steelwork

Connections,

(12.1 )

1. Br = 1.1O~tw(N+ 5k)fy

= 1.I0xO.9x8.6x(254 + 5x27.1)x300

= 994.8 kN

2. Br = 300~tw2{1+3(N/h)(tw/tr)L5}'J(fyt/tw)

= 300xO.9x8.62{I +3(254/254)(8.6/l4.2)15}'J(300x8.6/14.2)

= 1072.4 kN

b. End Reactions:

Not applicable (3 mm Pack plate would be required for down ward loading at

end)

4. End Bolts:

Use 4 M24 Grade 8.8 Bolts

T, (four bolts) = 0.75~bnAbfu

= 0.75xO.67x4x452x800

= 726.8 kN> 684 kN

5. Base Plate:

Minimum base thickness to mach capacity of bolts: bending caused by bolt in tension:

Mu = 684/4x(130/2-12.7 -8.6/2)

= 8.2 kNm

Average effective length of plate:

Ie = 442 mm (Determined graphically assume 30° load dispersion unto web stiffeners)

11> = >J(6MufO.9Iefy)

= >J(6x8.2xI03/O.9x442x300)

=20mm

6. Bearing unto Reinforced Concrete Floor slab:

(Refer to Figure C. 37)

Br = 0.4(,u = 8 MPa

Area = 254xl098 = 278.9x103 mm"

crb = F/A

=2.45 MPa
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SABS 162-1

§113.3

(

I .. 1098 .. I

Figure C. 37. Bearing unto Floor Slab

Stiffeners ensure direct bearing unto test floor.

Design bv = 90 mm

bvltv < 200/~ fy

Therefore tv= 8 mm

Web Length = 25t.. = 25x8.6 = 215 mm < 254 mm

Stiffener Properties:

Area = 2x90x8 + 215x8.6 = 3286 mm"

lxx = 215x8.63/12 + 2x8x9031l2 + 2x90x8x(45+8.6)2

= 5.12x106 mnr'

Rxx = ~ Ixx /A = 39.5

Le = O.75x(254 - 2xI4.2) = 169.2 mm

Cr = ~Afy

= O.9x3286x300

= 887.2 kN I stiffener

(Note: two stiffeners loaded at a time, therefore Cr = 1774.4 kN)

SABS 162-1 6. Stiffeners:
§15.6.2
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C.2.4.3. Vertical Support Design:

7. Capacity Envelope for the Support Bridge:

The Capacity envelope for the Support bridge is shown in Figure C. 38.

Capacity Envelope for Support Bridge

r698-r------------......,...------,.".p-----.- 6.0

Figure C. 38. Capacity Envelope for Support Bridge

Similar to the support bridge, the load was iterated to determine the maximum

capacity of the vertical support using Prokon software. The loading capacity for

the vertical support is shown in Figure C. 39, Figure C. 40, Figure C. 41, Figure

C. 42, Figure C. 43 and Figure C. 44. The design files and Excel files with the

capacity values for the support are on the CD rom accompanying the thesis.
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v 1.5 m Lvi Testing Capacity Envelope

10

8

6

4 Ê
2

.§.
ë
GI

0 E
GI
CJ

-2 III
Q.
<II

-4 s
-6

-8

-10

Upper LimitVertical (+ !

1 Horizo~tal (+)

Horizontal (kN)

Figure C. 39. 1.5m LvI Support Capacity Envelope: Vertical Load

1.5 m Lvi Testing Capacity Envelope

v
8

Vertical (+ [ "" I

~jzontal (+)

6

4

-4

-6

-8

LowerUmitL- -a4lO9-L- -l_10

Horizontal (kN)

Figure C. 40.1.5 m LvI Support Capacity Envelope: Vertical and Horizontal

Loads
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v 2.3 m Lvi Testing Capacity Envlope

r---------------~~~--------------------_r10
Vertical (+) I

~jzontal (~)

-8

~--------------------------~~~---------------------L-10
Horizontal (kN)

Figure C. 41. 2.3 m LvI Support Capacity Envelope: Vertical Loads

v 2.3 m Lvi Testing Capacity Envelope

Ê
§.
ë
GI
E
GI

2 :il
Q.
III

i5

Horizontal (kN)

Figure C. 42. 2.3 m LvI Support Capacity Envelope: Vertical and Horizontal

Loads
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Cantilever Testing Capacity

V -5-2500 -,----------- ....

-4.5

50 100 150 200 250 300 350

Moment (kNm)

Figure C. 43. Support Capacity for Cantilever Testing: Displacement of Support

Cantilever Testing Capacity

-2500 ')
V

>.0005

-2000 Vertical (+)

L~WJ ).001

Z
).0015

~ -1500 '6'"
I'll

-e 0.002 s:! Rotatation c
...I ,g
ii 0.0025 7ii
U -1000 ë:e 0:::al> 0.003

-500 0.0035

0.004
50 100 150 200 250 300 350 0

0 0.0045
Moment (kltn)

Figure C. 44. Support Capacity for Cantilever Testing: Rotation of Support
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C.2.5.1. Loading and Serviceability:

Refer to

Figure C.

45

Design: Lateral Supporting Frame

The lateral supporting frames are used to provide lateral support to the

supporting mechanism. Refer to drawings Figure C. 46, 05-3D-OI, 05-01/1,05-

0112 for more detail on the supports frame and to 05-3D-02, 05-3D-03, 5-3D-04,

05-02/1,05-03/1 and 05-04/1 2 for more detail on the connectors.

• Extreme load case:

• Load case I

Horizontal Load = -25 kN / column

at h = 1.492 m

Deflections of the frame will have to be negligible compared to the deflections

of the test specimen to ensure effective lateral support.

r--215u[}----+-I~--,27601----______11

CJ
OJ
CJ
"<t

25 kN 25 kN

! !
_j J
" %

Figure C. 45 Loading on Lateral Supporting Frame: Horizontal Loading at

height h.
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C.2.5.2 Properties

418~
2560 .211L

r-r- \~-------.----------I
\\_ ~ 3 • 21)(",,00 ~ m 1 • IPE 2DO

\_

)<Ic fLAT )r2 560 .......

[SJ '" 'II 2(0)<100
:.8 fLAT

-1lJ2)tJPEE'OO
)< )7&D .......

~[jJI"P[2DO
)<2 050 1"11"1 ILl I )( 2(JlbeO

)OIZ rlAT

Figure C. 46 Lateral Supporting Frame

SECETIDN AA
N.T.S.

Geometry:

Portal frame,

L= 2760 mm

h =4080 mm

The supporting frame is shown in Figure C. 46.
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C.2.5.2 Frame Design:

Section Design:

Profile class:

bllt

SABS 162-1 Flanges of I sections: 10012x8.5 = bllt < l451v1fy= 8.372
Table 1 5.88 Class 1

Web: 83/5.6 = 14.86 bIlt < 1100lvify = 63.5

Class 1

Section class: 1 Class 1

SABS 162-1 1. Shear:
§13.4.l.L (a)

= 15915.6 = 28.4 < 440vl(kJfy) = 58.7hwltw

(no web stiffeners, kv= 5.34)

Vr =~Avfw

= 0.9 X (200-2x8.5) X 5.6 X 0.66 X 300

= 182.6 kN

Vr> Vu = 36.3 kN

SABS 162-1 2. Bending:
§13.6.

Mer = m2n/KL -V[ElyGJ + (nEIKL)\Cw]

ElyGJ = 200xl03x1.42xl06x77xl03 = 1.535xl021

(nE/KL)2IyCw=(1tX200x1031l.44/4080)2xl.42xl06x13.l xl 09

= 2.128xl02O
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SABS 162-1

§15.9.

tiJ2 = 1.0

Mer = lx7tl1.44/4080 --J[1.535xl021+ 2.128xIQ20]

= 22.35 kNm

0.67Mp = 44.4 kNm > Mer

Mr=~Mcr

= 0.9x22.35

= 20.1 kNm

Mr> M;> 19.5 kNm

3. Web yield and crippling:

Bearing length: N = 50 mm

a. Interior loads:

3. Br = 1.10~1w(N+ 5k)fy

= 1.10xO.9x5.6x(50 + 5x20.5)x300

= 253.6 kN

4. Br = 300~1w2{1+3(N/h)(1w/tr)15}--J(t;,tl1w)

= 300xO.9x5.62{I +3(50/200)(5.6/8.5l5}--J(300x5.6/8.5)

= 253.2 kN

b. End Reactions:

3. Br = 1.10~1w(N+ 2.5k)t;,

= 1.10xO.9x5.6x(50 +2.5x20.5)x300

= 168.4 kN

4. Br = 150~tw2{l+3(N/h)(tw/tf)15}--J(f;,t/tw)

= 150xO.9x5.62{I +3(501200)(5.6/8.5)15}--J(300x5.6/8.5)

= 126.6 kN

____. __ _L ~_
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C.2.5.2

Connections,

(12.4)

SABS 162-1

1999

§13_1L3

Column/Base Connection: Base Plate Design:

r....
1

r-14o---=j
o

o

o 1
CJ

1o

~5,23 kNI'1

~36.l kN ttlil36.l kN

~17450

Figure C. 47. Base plate & holding down bolts design.

Refer to Figure C. 47 for forces on base plate

Use dz = 50 mm

=>

SAlSC M, - (bdz<rb)(d1-dz/2) = 0
Structural

Steelwork

= 3.61 x200x50

= 36.1 kN

Use 4 M16 Grade 8.8 Bolts

T, (two bolts) = 0.75cpbnAbfu

= 0.75xO.67x2x20Ix800

= 161.6 kN
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§13.1 L2(b).

§13.114.

Vr (two bolts) = 0.6$bnAbL

= 0.6xO.67x2xO.75x201x800

= 97.0 kN

VjVr+Tu!Tr = 13.1/97.0+36.1/161.6=0.213 < 1.4

Bolt combination sufficient

SAISC Minimum base thickness with a = 50-8 -6 = 36 mm:
Structural

Steelwork

Connections,

(12.2)

C.2.5.3

= ..J(3CJba2/O.9fy)

= ..J(3x3.6x362/O.9x300)

=7.2mm

Minimum base thickness: downward bending caused by bolt in tension:

M, = (36.l/2)x(30-5-8/2)

= 0.288 kNm

effective length of plate (assume 30° load dispersion):

le= 55.4 mm

t, = ..J(6Mu/0.9Iefy)

= ..J(6x0.288xl03/0.9x55.4x300)

= 10.7 mm

t = 12 mm > tp = 10.7 mm

ColumnlBeam Connection:

Refer to Figure C. 48 for forces.

End Plate:

Moments taken about tension bolts:

M, + Cu.c - (bd2CJb)(d]-d2/2)= 0

With d2 = 8.6 mm

~ CJb= 125.23 MPa
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SABS 162-1

§13.IL3

§13.1L2(b).

§13.11.4.

SAISC

Structural

Steelwork

Connections,

(7.37)

50

H rW
T 0 0 1 ru 9 kN1~8 kNC) C) r-,C) '<t >ru 1 lf)

1 \J)

Lc~ 16.6 kNr"l
0 0

~[JJ
8.5

f=-100--= [2J
~

Figure C. 48_ Bolted column to beam moment connection.

Tb= ObAb- Cu

= 125.23xl00x8.6 - 17.8xl03

= 89.9 kN

Use 4 M16 Grade 8.8 Bolts

T; (two bolts) = 0.75c!>bnAbfu

= 0.75xO.67x2x201x800

= 161.6 kN

Vr (two bolts) = 0.6c!>bnAbt:.

= 0.6xO.67x2xO.75x20lx800

= 97.0 kN

V jYr + Turrr = 9.0/97.0 + 89.9/161.6 = 0.649 < 1.4

Bolt combination sufficient

Minimum base thickness: downward bending caused by bolt in tension:

(plate is bent in double curvature)

lp = .,j(1.5Tu'rn/c!>91jfy)

where m=(g-twb-2e)= 17.2mm

II = Pb+3.5m = 602 mm

e=5 mm
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~=0.9

t, = ..J(1.5x89.9x103x17 2/0.9x602x300)

= 11.9 mm

t = 12 mm > t,= 11.9 mm

1.Welding:

Use E70XX electrodes, 6 mm fillet weld

SABSI62-1: a) Vr = 0.67~Awfuw
Table 3

= 0.67xO.67x(6/..J2)x1 00x480

= 91.4 kN

b) Vr = 0.67~Awfy

= 0.67xO.9x10x100x300

= 180.9 kN

Vr >Vu=89.9kN

SABS 162-1 2. Web Xield and crippling:
§15.9.

Br = l.10~twc(1fl,+ t, + 5kc)t;,

= l.10xO.9x5.6x(8.5 + 12 + 5x20.5)x300

= 186.0 kN

Br > Cu' = 107.7 kN

SABS 162-1 3. Welding:
1999 §15.9.

= 7~fy tf/Cr

= 7xO.9x300x8.52

= 136.6 kN

Cr >Cu'=107.7kN

SABS 162-1 4. Shear:
1999 §15.9.

Vr = 182.6 kN> Cu' = 107.7 kN
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C.2.5.4

SABS 162-1

§13.11.3

§13.11.2(b).

§1311.4.

Beam/4.080 lvI Connection:

Figure C. 49. Bolted beam to tracks at 4.080 lvI.

Refer to Figure C. 49 for forces.

1. End Plate:

M, = 36.3xl03xlOO/4

= 0.908 kNm

Mr = cjlz.fy

= 0.9x122x200/6x300

=0.908 kNm

Use 2 M30 Grade 8.8 Bolts

T, (two bolts) = 0.75cjlbnAbfu

= 0.75xO.67x2x707x800

= 528.4 kN

Vr (two bolts) = 0.6cjlbnAbt:.

= 0.6xO.67x2xO.75x707x800

= 341.1 kN

VuNr + TufTr = 2.6/341.1 + 36.3/528.4 = 0.076 < 1.4

Bolt combination sufficient
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C.2.5.5. Frame Design:

Refer to Figure C. 50, Figure C. 52 and Figure C. 51 for the load capacity

envelope of the lateral support

Capacity Envelope for Lateral Support Frame

4000 4.5

Loading Envelope ~ 4.03500

~ ~ 3.5
3000

< r 3.0 Ê
Ê 2500

(
~ectlon Envelope for -~ E

.§. 2.5 -;
::i: 2000 .2
.21 "X'_ ........... s: 2.0 ~
ell

1.5 ~
:r:: 1500

~ <, : < I\, L... ~ :lo

1000

~J ~
1.0

500 0.5Defection "'" """:::rt
0

for~<2200mm ~
0.0

0 50 100 150 200
lateral load (kN)

Figure C. 50. Capacity Envelope ofthe Lateral Support Frame

Capacity for lateral Support Frame using a Tie Rod

3500 ---.,
Loading Envelope )

3000 , Floor Capacity

~ 2500
E ,
.§. 2000 m7~-+i::
.~ 1500
:r::

1000 . '-

500

0
100 120 140 160 180 200 220

lateral load (kN)

Figure C. 51. Capacity of the Lateral Support Frame using a Tie Rod
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Z 30.00....
:; 25.00
nlo
...J 20.00

Deflection of the Lateral Support Frame

50.00 I h=500mm

I
I
I h=2500mm

h= 1500mm /'

I ./ .>
I ./
I »:> -~I .c-:
I ~

s:

c-: I" D '- é il

45.00

40.00

35.00

15.00

10.00

5.00

0.00
0.0 1.0 2.51.5 2.0 3.0 3.5 4.00.5

Deflection at Load Plont (mm)

Figure C. 52. Deflection of the Lateral Support Frame
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C.2.5.6

SABSI62-1:

§13.1

SABSI62-1:

§133

Connector (Type B) Design:

Refer to drawings 05-3D-02 and 05-02/1 for more detail on the connector.

Minimum Properties of Column:

A = 3600 mm2

lxx = 22.68xl03 mm"

Iyy = 1.35xI03 mm4

rxx = 79.4 mm

ryy= 19.4 mm

1. Bending:

Mxx= 21.43 kNm Myy= 5.24 kNm

Mr> Mu= 5.23 kNm

2. Axial Loading:

Cr = +Afy(1 +t_Zn)"lin

= 0.9x3600x300(1 + 0.1802x134)"1/134

=964.7 kN

3. Top base Plate:

The design of the top base plate is the same as for column base plate. Refer to

C.2.5.2. and Figure C. 47.

C.65

Stellenbosch University http://scholar.sun.ac.za



4. Bottom Base Plate:

SAISC Mu- (bd2crb)(dl-d:J2) = 0
Structural

Steelwork

Connections,

(12.4 )

SABS 162·1

§13.1 L3

§13.112(b)

§13.11.4.

Use d2= 100 mm

crb= 1.05 MPa

= 1.05x200x100

= 20.9 kN

Use 4 M30 Grade 4.8 Bolts

T, (two bolts) = 0.75~bnAbfu

= 0.75xO.67x2x707x420

= 298.4 kN

Vr (two bolts) = 0.6~]>llAbt;.

= 0.6xO.67x2xO.75x707x420

=179.lkN

V jYr + Tuff, = 13.1/179.1 + 20.9/298.4 = 0.143 < 1.4

Bolt combination sufficient

SAISC Minimum base thickness with a = 100 - 8/2 = 96 mm:
Structural

Steelwork

Connections,

(12.2)

= '-'(3crba2/O.9fy)

= '-'(3xl.05x962/O.9x300)

= 10.4 mm

Minimum base thickness: downward bending caused by bolt in tension:

M, = (20.9/2)x(50-10J2-5)

= 0.418 kNm

effective length of plate (assume 30° load dispersion):

le = 119.2 mm
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tp = -,J(6MJO.91efy)

= -,J(6x0.418xl 06/0.9xl19.2x300)

= 8.8 mm

t = 12 mm > tp= 10.4 mm

5. Welding Column Plates & Base Plates:

Welding fillet 5 mm thick all round.

(Use E70XX electrodes)

Table 3

SABS162-1: 6. Shear:

a)Vrmin = 0.67~wAwfuw

= 0.67xO.67x(5/-,J2)x2x(2x1 00+200)x480

=609.4 kN

b) Vr = 0.67~Amt;.

= 0.67xO.9x(5/-,J2)x2x(2xl 00+200)x300

=511.7kN

Vr> Vu = 13.1 kN
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C.2.5.7. Connector (Type C) Design:

SABS 162-1:

§13.1

SABSI62-1:

§13.3

Refer to drawings 05-30-03 and 05-02/1 for more detail on the connector.

Minimum Properties of Column:

A= 3600 mm"

i.= 22.68x103 mm4

Iyy= 1.35xl03 mm"

rxx = 79.4 mm

ryy = 19.4 mm

1. Bending:

Mxx= 21.43 kNm Myy= 5.24 kNm

Mr> M, = 5.23 kNm

2. Axial Loading:

Cr = ~Afy(l +;>.}nr1/n

= 0.9x3600x300(1 + 0.0932xL34rl/L34

=970.8 kN

3. Top Base Plate:

The design of the top base plate is the same as for column base plate. Refer to

C.2.5.2. and Figure C. 47.
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SAISC M, - (bd2ab)(dl-dz/2) = 0
Structural

Steelwork

Connections,

(124)

SABS 162-1

§I3.IL3

§13.11.2(b).

§I3.11.4.

4. Bottom Base Plate:

Use d2= 100 mm

=> ab = 0.62 MPa

= 0.62x254xlOO

= 15.68 kN

Use 4 M24 Grade 4.8 Bolts

T, (two bolts) = 0.75<pbnAbfu

= 0.75xO.67x2x452x420

= 190.8 kN

Vr (two bolts) = 0.6<pbDAbt;,

= 0.6xO.67x2xO.75x452x420

= 114.5 kN

VjVr+Tu!T, = 13.1/114.5 + 15.7/190.8 =0.197 < 1.4

Bolt combination sufficient

SAISC Minimum base thickness with a = (420-200-8)/2 = 106 mm:
Structural

Steelwork

Connections,

(12.2)

= "(3ab a2/O.9fy)

= "(3xO.62x1062/O.9x300)

= 8.77mm

Minimum base thickness: downward bending caused by bolt in tension:

Mu =(15.68/2)x211

= 0.599 kNm

effective length of plate (assume 30° load dispersion):

le = 127 mm
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SABS162-1 6. Shear:
Table 3

t, = --J(6MulO.91efy)

= --J(6x0.599xl06/0.9xI27x300)

= 10.24 mm

t = 12 mm> tp= 10.24 mm

5. Welding Column Plates & Base Plates:

Welding as for Connector (Type C): fillet 5 thick all round.

(Use E70XX electrodes)

a)Vrmin = 0.67~wAwfuw

= 0.67xO.67x(5/--J2)x2x(2xI00+200)x480

= 609.4 kN

b) Vr = 0.67~Am~

= 0.67xO.9x(5/--J2)x2x(2xI00+200)x300

=511.7kN

Vr> Vu = 13.1 kN
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C.2.5.8. Connector (rype D) Design:

SABS162-1

§IJI

SABS162-1

§13.3

Refer to drawings 05-3D-04 and 05-02/1 for more detail on the connector

Minimum Properties of Column:

A= 3600 mnr'

lxx= 22.68x103 mm4

Iyy= 1.35x103 mm"

rxx = 79.4 mm

ryy = 19.4 mm

1. Bending:

Mxx = 21.43 kNm Myy= 5.24 kNm

Mr> M, = 5.23 kNm

2. Axial Loading:

Cr = ~Afy(1 +)}nr/n

= 0.9x3600x300(1 + 0.0642xI34rl/134

= 971.5 kN

3. Top Base Plate:

The design of the top base plate is the same as for column base plate. Refer to

C.2.5.2. and Figure C. 47.
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SAISC

Structural

Steelwork

Connections,

(124)

SABS 162-1

§13.I1.3

§13 I l.2(b).

§13.11.4.

4. Bottom Base Plate:

Use d2 = 100 mm

O"b= 0.44 MPa

= 0.44x400xl00

= 17.43 kN

Use 4 M30 Grade 4.8 Bolts

T, (two bolts) = 0.75~bnAbfu

= 0.75xO.67x2x707x420

= 298.4 kN

Vr (two bolts) = 0.6~bnAbt

= 0.6xO.67x2xO.75x707x420

= 179.1 kN

VjVr+Tu!Tr = 13.11179.1 + 17.43/298.4=0.131 < 1.4

Bolt combination sufficient

SAISC Minimum base thickness with a = 100-5 = 95 mm:
Structural

Steelwork

Connections,

(12.2)

= ..J(30"ba2/O.9fy)

= ..J(3xO.44x952/O.9x300)

=6.6 mm

Minimum base thickness: downward bending caused by bolt in tension:

M, = (17.43!2)xI40

= 1.22 kNm

effective length of plate (assume 30° load dispersion):

1. = 200 mm
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t, = ",,(6MjO.91.fy)

= ",,(6xl.22x106/O.9x200x300)

= 11.64 mm

t = 12 mm > tp = 11.46 mm

5. Welding Column Plates & Base Plates:

Welding as for Connector (Type C): fillet 5mm thick all round.

(Use E70XX electrodes)

Table 3

SABS162-1 6. Shear:

a)Vrmin = 0.67cpwAwfuw

= 0.67xO.67x(5/",,2)x2x(2xI00+200)x480

= 609.4 kN

b) Vr = 0.67cpAmf;.

= 0.67xO.9x(5/",,2)x2x(2xl 00+200)x300

= 511.7 kN
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APPENDIXD

This appendix contains a summary of the size and loading capacity ofthe

MTA. For more details on the design and the restrictions on the size refer

to appendix C and chapter 3 respectively.

D.I. Size Restrictions of the MTA

Minimum Single Span Multi-span Height Width

(m) (m) (m) (m)

Minimum 2 2x2 - -
Maximum

Normal Set up 10 2x5 1.5 2.7

Rotated Set up 20 2xl0 1.5 2.7

Table D.I. Maximum and Minimum Sizes for Test Specimen

D.2. Loading Capacity of the MTA

D.2.I. Test Floor Capacity

Maximum Load (kN)

Vertical 400 kN at 4 920 cIc for 4 points

Horizontal 200 kN at 4 920 cIc for 4 points

Table D.2. Test Floor Capacity

D.I
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Track Capacity

The applied loads on the track should not cause the reaction at any fixing point to

exceed the loading as given above in D.2.1. The Loading Envelope of a track is

given in Figure D.I.

Loading Envelope for Track

700

/\ /\
1"\ / \ / \
ï -, / -, ,/ -,

~p

.

600

Z
:! 500

~
ii400

~
II> 300

E
::II

Ei 200

100

920 ,.<0 2780

Position x (m)

Figure D.l. Loading Envelope for a Track
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D.2.3. Loading Bridges Capacity

D.2.3.1. The Gravity Load Simulator

• Capacity of Gravity Load Simulator:

Vertical Load (upwards) = 200 kN

Vertical Load (downwards) = 150 kN

as indicated in Figure D.2.

150 kN (MAX)

200 kN (MAX)

Figure D.2. The Loading Capacity of the Gravity Load Simulator

D.2.3.2. 600 kN Servo Hydraulic Actuator Bridge (and Hinge)

Maximum unfactored static load 600kN

The factored end reaction at the hinge should not exceed the load capacity ofthe

track as given in section D2.2 as this will exceed the capacity of the test floor.

D.2.3.3. 62.5 kN Servo Hydraulic Actuator Bridge (and Hinge)

Maximum unfactored static load 62.5 kN
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The End/ Span Supports Capacity

The factored reaction the supports transfer to the Tracks and the Test Floor

should not exceed the load capacity of the test floor or track as given in sections

D.2.l and 0.2.2 respectively.

0.2.4.1. The Support Bridge

The Loading and Deflection Envelope ofa support bridge is given in Figure D.3.

500

400

300

200

ZO 100
~
e, 0
"0
III
0
...I -100

-200

-300

-400

-500

Capacity Envelope for Support Bridge

6.0p

x
Loadng Envelope(Floor Capacity =400 kN) r~~::::~ -

HoriZonta...J..1(...J..+)~-'--'__ll1=

4.0

1000 1500

-4.0

~----------------------------------------------~~.O
Position x (mm)

Figure 0.3. Capacity Envelope for Support Bridge
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D.2.4.2. The Vertical Supports

The loading and deflection envelope of a vertical support is given in Figures D.4

to 0.9 for testing at the 1.5 m level, in Figures 0.10 to 0.15 for testing at the

2.3 m level and in Figures 0.16 to 0.18 for testing a cantilever beam.

v 1.5m Lvi Testing Capacity Envelope,
" Iff ! .,"""

1(+ iE;;i Up.Unit
!~I

"VVV\

rizontal (+)

."""

ft

so -130 \ -80 -30 20 ~
.""'"

L -
_"VVV\

.I ~
L~Uri'

Vertica

~

Horizontal (kN)

Figure D.4. 1.5 m Lvi Support: Load Capacity Envelope
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v 1.5 m Lvi Testing Capacity Envelope

Vertical (+ "

1 Horizontal~+)

Horizontal (kN)

Figure D.5. 1.5 m Lvi Support: Horizontal Deflection Capacity Envelope

v 1.5 m Lvi Testing Capacity Envelope

§.
c
.2
~ -
'(jj
c

1000 1500 2000 2500

Vertical (kN)

Figure D.6. 1.5 m Lvi Support: Vertical Deflection Capacity Envelope
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1.5 m Lvi Testing Capacity Envelope

LowerUmi

Horizontal (kN)

Figure D.7. 1.5m LvI Adjusted Support: Load Capacity Envelope

1.5 m Lvi Testing Capacity Envelope

v

I::::
§.
co
~-
'(jj
C

Horizontal (kN)

Figure D.8. 1.5m Lvi Adjusted Support: Horizontal Deflection Capacity

Envelope
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1.5 m Lvi Testing Capacity Envelope

Eg
c
.2
U -3
III

~

-2500 -2000 -1!!OO -1000 1000 1!!OO 2000 2500

Vertical (kN)

Figure D.9. 1.5 m LvI Adjusted Support: Vertical Deflection Capacity Envelope
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-100

v 2.3 m Lvi Testing Capacity Envlope

-20

Horizontal (kN)

Figure D.l 0.2.3 m Lvi Support: Load Capacity Envelope

Ê.§.. -1
c
.2

~
'iio

v 2.3 m Lvi Testing Capacity Envlope

Horizontal (kN)

Figure D.II. 2.3 m Lvi Support: Horizontal Deflection Capacity Envelope
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v 2.3 m Lvi Testing Capacity Envlope

Vertical (+) :

~izontal (~)

-2000 1000 2000

Vertical (kN)

Figure D.12. 2.3 ID LvI Support: Vertical Deflection Capacity Envelope
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Figure D.13. 2.3 ID LvI Adjusted Support: Load Capacity Envelope
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2.3 m Lvi Testing Capacity Envelope

Horizontal (kN)

Figure D.l4. 2.3 m LvI Adjusted Support: Horizontal Deflection Capacity

Envelope

2.3 m Lvi Testing Capacity Envelope

Ê
.§.
c _
.2
li
~

Vertical (kN)

Figure D.l5. 2.3 m LvI Adjusted Support: Vertical Deflection Capacity

Envelope
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Cantilever Testing Capacity

-2500,----------~ v

50 100 150 300 350200 250

Moment (kNmI

Figure D.l6. Cantilever Testing: Load Capacity Envelope

Cantilever Testing Capacity
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v
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~ontal(+)
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Figure D.l7. Cantilever Testing: Displacement Capacity Envelope
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Figure D.t8. Cantilever Testing: Rotation Capacity Envelope
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Lateral Support Capacity

The load and deflection capacity of the support is given in Figure 0.19 and

Figure 0.20 respectively. The load capacity for the lateral support frame using a

tie brace is given in Figure 0.21 and the deflection of the support frame for

loading at various heights is given in Figure D.22.

Capacity Envelope for Lateral Support Frame

4000

loading Envelope ~
,
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~
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~,
"""""-

,

3500

3000

Ê 2500

.§.
~ 2000
Cl
"iii
:I: 1500

1000

500

o 50 100
Lateral Load (kN)
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Figure 0.19. Lateral Support Frame: Load Capacity Envelope
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Figure 0.20. Lateral Support Frame: Deflection Capacity Envelope
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Figure 0.21. Capacity of the Lateral Support Frame using a Tie Rod
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Figure D.22. Deflection of the Lateral Support Frame
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