Automatic Video Captioning Using Spatiotemporal
Convolutions on Temporally Sampled Frames

by

Simbarashe Linval Nyatsanga

Thesis presented in partial fulfilment of the requirements for the degree of Master of
Science in Applied Mathematics in the Faculty of Science at Stellenbosch University

Supervisor: Prof. Willie Brink
March 2020

Stellenbosch University https://scholar.sun.ac.za

Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained
therein is my own, original work, that I am the sole author thereof (save to the extent
explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch
University will not infringe any third party rights and that I have not previously in its

entirety or in part submitted it for obtaining any qualification.

Copyright (C) 2020 Stellenbosch University
All rights reserved.

Stellenbosch University https://scholar.sun.ac.za

Abstract

Being able to concisely describe content in a video has tremendous potential to enable
better categorisation, indexed based-search and fast content-based retrieval from large
video databases. Automatic video captioning requires the simultaneous detection of local
and global motion dynamics of objects, scenes and events, to summarise them into a
single coherent natural language description. Given the size and complexity of video
data, it is important to understand how much temporally coherent visual information is
required to adequately describe the video. In order to understand the association between
video frames and sentence descriptions, we carry out a systematic study to determine how
the quality of generated captions changes with respect to densely or sparsely sampling
video frames in the temporal dimension. We conduct a detailed literature review to
better understand the background work in image and video captioning. We describe
our methodology for building a video caption generator, which is based on deep neural
networks called encoder-decoders. We then outline the implementation details of our video
caption generator and our experimental setup. In our experimental setup, we explore the
role of word embeddings for generating sensible captions with pretrained, jointly trained
and finetuned embeddings. We train and evaluate our caption generator on the Microsoft
Video Description (MSVD) dataset. Using the standard caption generation evaluation
metrics, namely BLEU, METEOR, CIDEr and ROUGE, our experimental results show
that sparsely sampling video frames with either finetuned or jointly trained embeddings,
results in the best caption quality. Our results are promising in the sense that high quality
videos with a large memory footprint could be categorised through a sensible description
obtained through sampling a few frames. Finally, our method can be extended such that

the sampling rate adapts according to the quality of the video.

Stellenbosch University https://scholar.sun.ac.za

Opsomming

Die vermoé om 'n video se inhoud bondig te beskryf, het geweldige potensiaal vir beter
kategorisering, indeksgebaseerde soektogte, en vinnige inhoudgebaseerde ontrekking uit
groot video databasisse. Die outomatiese generering van video-onderskrifte vereis die
gelyktydige opsporing van lokale en globale bewegingsdinamika van voorwerpe, tonele en
gebeure, om in 'n enkele, samehangende, natuurlike taalbeskrywing opgesom te word.
Vanweé die grootte en kompleksiteit van video data is dit belangrik om te verstaan
hoeveel tyd-samehangende visuele inligting nodig is om die video voldoende te beskryf.
Ten einde die verband tussen video-rame en sinbeskrywings te verstaan, voer ons 'n sis-
tematiese studie uit om te bepaal hoe die gehalte van gegenereerde onderskrifte veran-
der soos video-rame digter of yler in die tyd-dimensie gemonster word. Omns voer 'n
gedetailleerde literatuurstudie uit om bestaande werk in die generering van beeld- en
video-onderskrifte beter te verstaan. Ons beskryf ons metodologie vir die bou van 'n
video-onderskrifgenerator, wat gebaseer is op diep neurale netwerke wat enkodeerder-
dekodeerders genoem word. Omns gee dan 'n uiteensetting van die implementerings-
besonderhede van ons video-onderskrifgenerator en ons eksperimentele opstelling. In ons
eksperimentele opstelling ondersoek ons die rol van woordinbeddings vir die generering
van sinvolle onderskrifte met vooraf-afgerigte, gesamentlik-afgerigte, en verfynde inbed-
dings. Ons onderskrifgenerator word afgerig en evalueer op die Microsoft Video Descrip-
tion (MSVD) datastel. Deur gebruik te maak van standaard evalueringsmaatstawwe,
naamlik BLEU, METEOR, CIDEr en ROUGE, toon ons eksperimentele resultate dat
yl gemonsterde video-rame, met verfynde of gesamentlik-afgerigte inbeddings, die beste
onderskrifkwaliteit lewer. Ons resultate is belowend in die sin dat hoé gehalte video’s
met groot geheue-vereistes gekategoriseer kan word, deur middel van sinvolle beskrywings
vanaf enkele rame. Ons metode kan ook uitgebrei word deur die monstertempo aan te

pas volgens die kwaliteit van die video.

Stellenbosch University https://scholar.sun.ac.za

Contents

1 Introduction

2 Literature Review
2.1 Image Captioning
2.2 Strategies for jointly encoding visual and semantic modalities
2.3 Video Captioning
2.4 SUummary ... oL
Technical Background
3.1 Artificial Neural Networks
3.1.1 Artificial Neural Network Operations
3.1.2 Limitations of Linear Operations
3.1.3 Activation Functions,
3.1.4 Prediction Loss
3.1.5 Optimisation
3.2 Convolutional Neural Networks
3.2.1 Architecture Overview
3.3 Recurrent Neural Networks
3.3.1 Architecture Overview
3.3.2 Limitations of Recurrent Neural Networks
3.4 Long Short-Term Memory (LSTM)
3.4.1 Architecture Overview,
3.5 Encoder-Decoder Architectures
3.6 Word Embeddings
3.6.1 Pretrained Word Embeddings
3.6.2 Jointly Trained Word Embeddings
Proposed Approach
4.1 Encoder
4.1.1 Architecture Overview
4.1.2 Training Lo
4.2 Decoder e
4.2.1 Architecture Overview
4.2.2 Training
4.2.3 Design Motivations oL
4.2.4 Model Implementation Details

4.3 Evaluation Metrics

10
10
19
24
27

29
29
30
31
31
35
42
49
49
23
93
95
26
57
99
61
61
62

Stellenbosch University https://scholar.sun.ac.za

5

4.3.1 Bilingual Evaluation Understudy (BLEU) 68

4.3.2 Recall Oriented Understudy for Gisting Evaluation (ROUGE) . . . 69
4.3.3 Metric for Evaluation of Translation with Explicit Ordering (ME-

TEOR) . . . o 70

4.3.4 Consensus Based Image Description Evaluation (CIDEr) 71

4.3.5 Semantic Propositional Image Captioning Evaluation (SPICE) . . . 72

5 Experiments and Results 74

5.1 Experimental Setup 74

5.2 Dataset 75

5.3 Quantitative Results 7

5.3.1 Jointly Training Word Embeddings 7

5.3.2 Transplanting Pretrained Word Embeddings 79

5.3.3 Finetuned Word Embeddings 82

5.4 Qualitative Results 85

5.4.1 Jointly Trained Word Embeddings 85

5.4.2 Finetuned Word Embeddings 87

5.4.3 Pretrained Word Embeddings 88

5.5 Discussion 90

6

Conclusion and Future Work 91

Stellenbosch University https://scholar.sun.ac.za

1 INTRODUCTION 6

1 Introduction

Deep learning has become a popular solution in multiple disciplines, unifying seemingly
disparate domains including healthcare, transportation, computational simulation and
language modelling. It has also revolutionised computer vision in many applications.
Using an end-to-end trainable model, a machine can now perform image classification, in-
stance segmentation, object detection and natural language understanding in the form of
translation, comprehension and question answering. Furthermore, and of interest to this
study, is caption based visual understanding where a machine can take as input an image
or a video and produce a natural language description of the input’s content. Although
a challenging task, deep learning architectures have made it possible to incorporate com-
puter vision and natural language processing models into a single architecture, allowing a
model to not only encode the visual features in the input but be able to “translate” them

into a natural language description.

In image captioning the model’s objective is to find a mapping from the image’s visual
representation to a natural language sentence that concisely describes the content. In
mathematical terms, this means finding a smooth, differentiable function mapping from a
source probability distribution over raw pixel intensities to an output probability distribu-
tion over a sequence of words. In video captioning, the problem is further compounded by
the sheer size and complexity of the input data that needs to be handled. The nature of
a video stream with high temporal dependencies, complex actions and object interactions
as well as variable length, makes it a much more challenging problem. Despite the chal-
lenge, many architectures have been proposed resulting in substantial progress in both
image and video captioning research. At the heart of the majority of these architectures
is the so-called encoder-decoder architecture, a unified end-to-end model composed of an
encoder and a decoder inspired by work in neural machine translation [1]. The encoder
converts the input into a compact vector representation and the decoder takes as input
the set of previously generated words, an internal state and the vector representation of

the image, to generate the next word in a caption.

While there has been significant progress in both image and video captioning, the former
has seen relatively more progress because of the availability of large, diverse and well
captioned image datasets, e.g. Flickr8k, Flickr30k and MSCOCO, upon which models can
be trained [2-4|. Furthermore, transfer learning, where model parameters learnt in one
domain can be applied in a different domain, has allowed the image captioning task to
take advantage of state-of-the-art models in image classification and object detection [5-8].
This is possible because the relative simplicity of image data compared to video data has

given rise to a generic image descriptor that can be used in other related tasks. Image

Stellenbosch University https://scholar.sun.ac.za

1 INTRODUCTION 7

captioning is one of these tasks, where the image descriptor features are used to influence
the prediction of words, generating a sentence that correctly describes the image’s content.
Despite the difference in pace of progress, several fundamental mechanisms are either
shared or transferrable from the image to the video captioning task, including the use
of encode-decoder architectures [9,10], devising a common embedding space between the
visual and semantic modalities [11-13| and the use of attention mechanisms for fine-

grained captioning [10, 14].

For encoding visual information, convolutional neural networks (CNNs) have been ex-
tremely successful at visual representation in practical applications including image and
video classification, object detection and instance segmentation [5,6,8,15|, making them a
suitable choice for image and video captioning. For generating sequences, recurrent neu-
ral networks (RNNs) have been found to be effective for sequence modelling in machine
translation and sentiment analysis [1,16-18]. Therefore the majority of model architec-
tures in image or video captioning use a combination of a CNN encoder and RNN decoder
to generate descriptions of visual content [9,10,12,13,19-22|, although RNNs have also
been effectively used as an encoder for videos given their ability to process temporal
data [20,23,24|.

Building upon these established successes in image and video captioning, this study is
interested in further progress in video captioning of open domain videos. An important
question in that regard is “How far apart do frames of a video need to be, in order to
adequately describe its content?” Particularly, we aim to understand how the sampling
rate, when preprocessing videos, affects the quality of the generated captions. Moreover,
just as a generic image descriptor has been found to be effective for image captioning,
a generic video descriptor called spatiotemporal convolutions (3D CNN), was proposed
by Tran et al. [25] which preserves a video’s temporal coherence. A video’s temporal
coherence is important because understanding the order in which objects interact and
when events occur, leads to better video recognition as evidenced by impressive results
in video classification and action detection tasks [25,26]. In video captioning, temporal
coherence can lead to more sensible natural language descriptions. Therefore in this study,
we intuit that a generic video descriptor, constructed using an optimal sampling rate that
maintains temporal coherence, is an important constituent for a video caption generator
that can generalise to open domain videos. We aim to verify this suggestion by training
and evaluating our caption generator on an open domain video dataset [27]. Additionally,
we suggest that a sufficiently low sampling rate that maintains temporal coherence for
quality caption generation has far reaching implications for efficient processing of typically

large video datasets.

An equally important issue in our study is the role of word embeddings when generating

natural language descriptions that are specifically meant to be visually informative. Word

Stellenbosch University https://scholar.sun.ac.za

1 INTRODUCTION 8

embeddings encode the meaning of words in a geometric space where distance can be
interpreted as how semantically close any two words are to each other. The intuition
is informed by the distributional hypothesis which states that words that are frequently
used or appear in similar contexts have similar meaning [28]. Word embeddings have
become an integral part of generative models in natural language processing because they
can encode vital co-occurence context leading to signficantly higher quality and sensible
sentences [29-32|. Moreover, word embeddings have contributed significantly to transfer
learning in natural language processing because word embeddings trained in one task,
e.g. text classification, can be applied in a different task, e.g. caption generation [33].
Word embeddings can either be pretrained on large text corpora, jointly trained as part
of a primary task, or they can be used as a primer for a neural network layer and then
finetuned for the desired task. In our study, we are interested in comparing the efficacy of
these three embedding configurations in order to generate sensible and visually informative

video captions.

We carry out a systematic evaluation to determine what frame sampling rate is required
in order to adequately describe a video for applications in automatic description, cata-
loguing and content based retrieval. The work of Tran et al. [25] extracts only 16 frames
from every variable length video in order to create spatiotemporal features for video clas-
sification. We also use 16 frame long spatiotemporal features, but vary the sampling rate
from temporally close frames to temporally distant frames. We also devise three model
configurations where we use pretrained GLOVE embeddings [31], jointly trained embed-
dings and finetuned GLOVE embeddings, and compare the quality of generated captions.
For all model configurations, we use the BLEU, METEOR, ROUGE and CIDEr [34-38|
caption quality metrics to determine the best configuration of spatiotemporal features and
word embeddings. Firstly, since temporal coherence is important for both video classifi-
cation and captioning [25, 26|, we study the inherent trade-off between densely sampled
spatiotemporal features that will result in more accurate captions but potentially miss
significant video sections, and sparsely sampled features that cover longer video sections
but potentially start to lose temporal coherence. Secondly, we did a comparative study
of the effects on captioning quality when using word embeddings that are pretrained on a
large text corpus, versus those jointly trained or finetuned on a much smaller task specific
dataset.

Automatic video captioning has many important practical applications. As of 2019, about
500 hours of video content are uploaded to YouTube every minute [39]. However poorly
tagged videos can make search difficult and lead to poor search results [14]. Video caption-
ing can provide a robust solution to improve cataloguing and indexing for better search
results as well as content based retrieval. In conjuction with speech synthesis technol-

ogy, annotating videos with natural language descriptions can potentially also improve

Stellenbosch University https://scholar.sun.ac.za

1 INTRODUCTION 9

accessibility of videos for the visually impaired.

Our study is structured into five major chapters. In the Literature Review, we give a
detailed review of the background work that has been done in image and video caption
generation. We delve into different techniques that have become prominent in both image
and video captioning and highlight the shared ideas between the two. In the Technical
Background, we discuss the foundational mechanisms of neural networks that form the
basis of our deep learning based approach to video caption generation. We detail the
anatomy of neural networks, how they are trained and the specific optimisation based
techniques used to obtain task specific weights. We also give a detailed review of CNNs
and RNNs, the constituents of our encoder-decoder caption generator. In the Proposed
Approach, we discuss the implementation details of our encoder-decoder architecture. We
give a detailed architectural overview of our spatiotemporal convolutions and the merge
strategy used to incorporate visual features in to the caption generation process. We
give a theoretical overview of the evaluation metrics we chose to implement for measur-
ing the caption quality of our model. In the Experiments and Results, we discuss the
experimental setup for comparing differen spatiotemporal strides as well as word embed-
ding configurations. We present all quantitative results according to BLEU, METEOR,
ROUGE and CIDEr. For qualitative results, we give illustrative examples of the captions
generated by our model. We conclude the chapter with a short discussion to explain our
observed results. The Conclusion and Future Work completes our study by discussing the
limitations of our study as well as highlighting potentially important areas that can be

improved within our study and in video caption generation as a whole.

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 10

2 Literature Review

The success of deep learning models in many machine learning tasks [40] has led to
the dominance of CNNs in computer vision tasks such as image classification [5,6,15,41],
object recognition [7,8,42,43|, speech recognition [44], and video classification [26]. Mean-
while, RNNs have dominated sequence modelling tasks such as neural machine transla-
tion [1,18], sentiment analysis [16,17| and modelling time series data [45], and have been
found to be surprisingly effective for image and video recognition [20]. The success of
these two classes of models has led to substantial interest and research in solving the
problem of automatically describing visual data using natural language. In deep learning
approaches, a model can understand visual input in the form of an image or video and
be able to articulate this understanding in the form of a single or multiple natural lan-
guage sentences. This has advanced both image and video caption generation research
where different configurations of CNNs, RNNs or both have been used. In this chap-
ter, we give a detailed review of research in image and video captioning, and highlight
their close relationship. In particular, the literature shows that several mechanisms are
shared between the two captioning problems, including multimodal learning, attention
and encoder-decoder architectures. We first discuss the mechanisms in the context of

image captioning, then discuss how video captioning also utilises them.

2.1 Image Captioning

Multiple approaches have been proposed to tackle the image captioning problem. We
describe three broad deep learning based approaches, namely multimodal representations,

encoder-decoder representations and dense image captioning.
Multimodal Representations

A significant amount of research has reframed the problem of image captioning as multi-
modal with the intuition that the semantic data, to some degree, identifies and describes
the entire image or some region of it. This entails devising a common multimodal space
that associates and encapsulates the similarities between the image representation and the
semantic representation, thus associating the image with its sentence description. Prac-
tically, this is done by learning a common visual-semantic embedding in order to directly

associate image segments with natural language phrases.

Kiros et al. [46] introduced multimodal neural language models, which are adaptions
of neural language models that can be influenced by other modalities including images,
speech and video. The motivation is that descriptive language almost always appears

within the context of other modalities, e.g. images accompanying a textual advertisement

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 11

or natural language descriptions of image or video content. Hence by jointly learning an
image-text representation, a neural language model can be used to generate descriptions
of images in addition to enabling the retrieval of an image given a natural language query.
They improved on a probabilistic language model [47] by either injecting the image context
vector as an additive bias to the word prediction, or using the image context vector to
modulate the word representation matrix in order to influence the conditional probability
scoring towards the correct word. This approach generates full sentence descriptions but
uses a fixed context window as opposed to an RNN which typically has access to all

previously generated words.

Kiros et al. [48] directly built on the multimodal neural language models by introducing
an encoder-decoder architecture that unifies the task of first learning a joint image-text
representation through an encoder and then a neural language model as a decoder to
generate the description. Importantly, this work represents the first time the encoder-
decoder architectures were adapted from work in neural machine translation [1, 18| for
image caption generation. In addition to learning a common image-text representation,
image caption generation can be thought of as the task of translating an image into a
description, analogous to translating from a source language to a target language. At
the encoding stage the image feature from a CNN [5,15] is projected on the embedding
space of the hidden states of an LSTM [49] and at the decoding stage, a neural language
model decodes the encoding into a natural language description that is of signficantly
better quality compared to previous work [46]. The improvement in quality is primarily
due to the neural language model being able to decompose the sentence structure to its
content, influenced by representations produced by the encoder. While this constitutes an
improvement on previous solutions, the approach still generates fairly simplistic captions
that do not adequately capture various details in images. Attention based models, in
which the decoder learns to focus on certain image regions while generating a sentence,

have been shown to generate more descriptive captions [10].

Karpathy et al. [11] improved the performance of multimodal representations by formu-
lating a structured max-margin objective for a deep neural network that learns to embed
both visual and language data in a common multi-modal space. They do so by not only
learning the image-text embeddings, but also learning a fine-grained embedding space be-
tween image fragments (objects) and sentence fragments (phrases) which are represented
as dependency tree relations [50]. Using a Region-CNN for object detection [7] pretrained
on the ImageNet dataset [51], the model is able to break down an image into fragments
and explicitly associate them with specific sentence fragments, resulting in more inter-
pretable image-phrase associations in the generated captions. The model learns a latent
association between the image and sentence fragments by computing an inner product

between their embedding vectors, as illustrated in Figure 1.

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 12

RCNN Detections Fr!;;%i‘s Inner Product: Fragment Similarity Fsrzrg“mezzfs D;Z?:t?:::y
o] ¢ ¢ ¢ "Female lions chasing a
8 J->lo00 }__, brown buffalo"
2 O © © |<-|- (AMOD, female, lions)
o] [©© 0]« (DEP. chasing, lions)
8 -->loo o} ‘.‘ © 0 O |<-|- (DOBJY, buftalo, chasing)
— O O O |<-[-- (AMOD, brown, buffalo)
8 1 -).. < [
o
. L

Image-Sente'nce Similarity

Figure 1: Computing the respective fragments and image-sentence similarities. Left:
CNN representations of detected objects (green) are mapped into the fragment embedding
space (blue). Right: Dependency tree relations in the caption are embedded. Centre:
The model then interprets the individual inner products as a similarity score. The shaded
boxes signify the degree of cross fragment alignment. Image inspired by [11].

The model then computes a global image-sentence score as a fixed function of the scores
of their respective fragments. Intuitively, an image-sentence pair will obtain a high score
if the respective fragments are highly compatible. The result is that given an image,
the model can retrieve the highest scoring corresponding sentences (image captioning)
and conversely given a sentence, the model retrieves the highest scoring image (image
retrieval). Overall this use of typed tree dependencies offers a rich set of relationships
for explicitly identifying objects in images. While the use of dependency trees provides
an efficient representation of sentences, it is somewhat rigid and not always approriate
because certain complex sentences that describe a single object can be parsed as multiple
fragments, for example “white and brown hamster” can be parsed as two relations (and,
white, brown) and (attr, white, hamster) leading to two fragments that neither fully
identify the object in the image. Additionally there are many dependency relations that
do not identify any objects in images, for example the phrase “two dogs barking at each
other” will have an ambiguous relation “each other” which does not identify any of the

subjects (i.e. the dogs).

Mao et al. [13] proposed a multimodal recurrent neural network (mRNN) which encap-
sulates a CNN for image processing, an RNN for language modelling and a multimodal
layer that connects the CNN and the RNN. Previous multimodal approaches framed the
image captioning task as a retrieval problem [11,52]. These approaches first extract the
word, sentence and image features and then, through optimising a ranking cost, learn an
embedding model that maps both modalities (image and sentence) into a common seman-
tic feature space. In this way, they can directly calculate the association between images
and sentences using for example the inner product of the embedding vectors [11]. This
however means that these approaches generate a caption for a given image by retrieving
sentences that are most associated with the image and therefore somewhat lack the abil-

ity to generate novel sentences or describe images that contain unseen combinations of

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 13

@—> Embedding 1 |—>{ Embedding Il e[RNN]—> Multimodal Softmax %
&@e image :
i mRNN model for one time step I '

@—> Embedding 1 |—={ Embedding IT ~>[RNN]—> Multimodal Softmax 4)@

?

Embedding I —>{ Embedding II ~>[RNN J—> Multimodal Softmax

Figure 2: Multimodal Recurrent Neural Network (mRNN). wy,w,, ..., w repre-
sent the word sequence, and wy, w, are the START and END tokens. Unlike the standard
RNN, mRNN is composed of two embedding layers, a custom RNN unit and a multi-
modal layer that takes in the vectorised word, from the last embedding layer, and the
image feature from the CNN. The model then predicts the probability over all the words
for the next word in the caption. Image inspired by [13].

objects and scenes.

Without explicitly framing the image captioning problem as a retrieval task, the mRNN
approach of Mao et al. [13] is able to not only generate novel sentence descriptions of
images but is able to support image and sentence retrieval, illustrated in Figure 2. The
approach achieves this by learning a probability density over the common space of multi-
modal inputs (images and sentences). In this regard it is closely related to the approach
of Kiros et al. [46] which uses a probabilistic language model for sentence generation.
Where the approach of Kiros et al. [46] is restricted to a fixed context window, this one
stores the temporal context within the RNN architecture and thus can generate variable

length sentences.

Several works have demonstrated the effectiveness of storing context information within
the RNN structure, producing signficantly improved results in the image captioning and
retrieval tasks [9,12,20,48|. The mRNN of Mao et al. [13] differs from these approaches
in that it employs two word embedding layers that learn word representations more ef-
ficiently, and instead of injecting the image feature directly either as the first word or
into the recurrent layer, it injects it directly into the common multimodal layer at every

time step together with the respective word from the sentence. This approach efficiently

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 14

utilises the capacity of the recurrent layer, allowing improved image captioning results
while using a relatively low-dimensional RNN. At a given time step, the mRNN first in-
gests the current word vector, and converts it into a dense word representation within the
two embedding layers. Notably, instead of initialising the word embedding layers with
precomputed vectors as in other image-sentence multimodal models [11,46, 52, 53], they

are randomly initialised and learned from the training data.

The resulting dense word representation is passed into the recurrent layer where the
recurrent activation from the previous time step is mapped into the vector space of word
representation, and the two are added together with an element-wise operation. The
resulting recurrent activation is then passed to the multimodal layer along with the original
word representation from the last embedding layer and the image feature is extracted
through two CNN variants |5,15] pretrained on ImageNet [51]. These inputs are mapped to
the same multimodal vector space and added together to obtain the final activation. The
final activation is passed to a softmax layer to generate a probability distribution over all
words in the relevant dataset’s vocabulary. The mRNN is trained using the log-likehood
loss function and the resulting model can support sentence generation, image retrieval
using a query sentence and sentence retrieval using an image query. This model produced
significant improvements on the TAPR TC-12, Flickr8K, Flickr30K, MSCOCO |24, 54]
benchmark datasets, according to the BLEU-4 score [34] for sentence generation and the
recall rate. The recall rate, RQK, measures the percentage of correct images or sentences

in the top K retrieved candidates for an image or sentence query [52,53].
Dense Image Captioning

Dense image captioning reframes the problem as a generalisation of both object detection,
where an image region is described by one label, and image captioning where one or more
sentences are generated to describe a whole image. Dense image captioning attempts
to generate one or more sentence descriptions for multiple sub-regions corresponding to

multiple objects in a single image, as illustrated in Figure 3.

Karpathy et al. [12] learned a multimodal embedding space between visual data in the
images and semantic data in the text descriptions, which results in model configurations
that can generate both full image level captions and region level captions. They directly
build upon a previous approach of Karpathy et al. [11], by replacing the dependency tree
relations with a bi-directional RNN to compute word representations in the sentence.
Unlike dependency tree relations, the bi-directional RNN is more suitable for modelling
word sequences and allows for unbounded interactions of words and their context in the
sentence. The key insight with this approach is that sentence descriptions can be thought
of as weak labels in which contiguous word segments correspond to some particular but

unknown location in the image. The solution in this approach has two steps: (i) using

Stellenbosch University https://scholar.sun.ac.za
2 LITERATURE REVIEW 15

Label Density

>
8 g . .
Classification Detection
horse
woman
Single hat
£ i
Label Horse-riding
Iﬁ obstacle
-
~
horse jumping
over an obstacle
woman riding a
"A woman
Sequence ~ riding & horse
black hat in
horse" o
mid air
white obstacle
Label
Complexity v
& J L J
Al Y
Whole image Image Regions

Figure 3: Taxonomy of image description tasks. Dense captioning generalises both image
captioning and region-level detection. Image inspired by [55].

images and corresponding descriptions to learn a model that aligns image regions with
sentence snippets, and (ii) using the image-text alignments to train a multimodal RNN to
generate sentences corresponding to the image regions. The resulting model was evaluated
for full image captioning and also on region level captioning. In the former case, the
model was trained and evaluated on full image and caption pairs from the MSCOCO
dataset [4], while in the later case, evaluation was done on a subset of the MSCOCO test
data comprised of image regions and region level captions. The region level model was
shown to not only generate sensible full image level captions but also generate fine-grained
region level captions that capture the detail of multiple objects which would otherwise
not be captured in one sentence. Overall, the approach of Karpathy et al. [12] has a
few limitations. Notably, the model can only generate a caption of one input array of
region pixels at a fixed resolution. It consists of two models that are trained separately as
opposed to an end-to-end solution that can be trained jointly. Additionally, the caption
generator uses a bi-directional RNN which is known to have the vanishing or exploding
gradient problem, making it not only unable to retain long-term dependencies in sentences
but also difficult to train [56,57].

Inspired by Karpathy et al. [12], Johnson et al. [55] formally introduced the dense image

captioning task, unifying the then orthogonal tasks of image captioning with complex

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 16

sentences as labels, and object detection for identifiying multiple salient image regions.
In order to jointly address the localisation and description task, they proposed a fully
convolutional localisation network (FCLN) architecture that can process an image with
a single efficient forward pass, requiring no external image region proposals and can be
trained end-to-end with a single objective function. The architecture is composed of a
CNN [5], a novel dense layer for object localisation and an LSTM [49] for generating de-
scriptions. In particular, the dense localisation layer is fully differentiable and is portable
to any neural network for region-level training and inference tasks. The CNN receives
an image as input and generates an output which encodes the appearance of the image
as a set of uniformly sampled image locations. This encoding forms the input into the

localisation layer.

The localisation layer identifies spatial regions of interest and smoothly extracts a fixed-
sized representation from each region. Similar to Ren et al. [43], the localisation layer
predicts a set of variably-sized region proposals which include scalar bounding-box co-
ordinates, region features and confidence scores indicating whether the region contains
a desired object. The set of region proposals are then subsampled using an intersection
over union (IoU) threshold [7,42,43] which scores how well a region intersects with any
ground-truth region. In order to interface with the fully-connnected recognition network
and the LSTM, the variably-sized region proposals need to be transformed into fixed-sized
inputs. The model does this using bilinear interpolation, replacing Ren et al.’s use of a
region-of-interest (Rol) pooling operation [43|. Unlike the Rol pooling operation, bilin-
ear interpolation is fully differentiable meaning gradients can be backpropagated from the
output features, through the input features all the way to the region proposal coordinates.
Features from each region are flattened and passed into the recognition network, each re-
sulting in a 4096-dimensional encoding. These encodings are then passed to the LSTM
decoder. Using each region encoding as the first word, the LSTM decoder is conditioned
to generate the corresponding caption per region. The FCLN model is trained and eval-
uated on the Visual Genome dataset [58,59], a specialised intersection of MSCOCO and
YFCC100M [4] where region-level captions were collected through Amazon Mechanical
Turk [60]. During evaluation, the model is tested against IoU thresholds for object locali-
sation and the METEOR metric [35] for language modelling. The FCLN model performs
well against full image captioning and previous region-captioning baselines [12] in both
localisation and captioning tasks. In addition, the model supports image retrieval given a
set of random region-level query captions and tasked with retrieving images and localising

the objects described in the query captions.
Encoder-Decoder Representations

Encoder-decoder representations are inspired by successes in neural machine transla-

tion [1, 18] where the task is to encode the word representations of a sentence from a

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 17

"men" "playing" "football" <end >

< start > "men" "playing" "football"

Figure 4: Illustration of encoder-decoder architectures where the CNN image feature is
used to condition the text generation. The green path is when the image feature is input
as the first word. The red path is when the image feature is used to initialise the hidden
state. The blue paths are when the image feature is merged with the vectorised activation
emerging from the RNN unit.

source language, and then decode that into a sentence in the target language. In image
captioning, the idea is to encode the image representation and, using this representation,
decode into a target sentence describing the image. The models usually constitute a CNN
for image encoding and an RNN for decoding to a sentence, because of their respective
strengths in image feature extraction and sequence modelling. The two components can be
pretrained on large image datasets [51] and large sentence corpora [61], and they are then
usually jointly trained or finetuned for the image captioning task using image-sentence

pairs. An archetypal encode-decoder architecture is illustrated in Figure 4.

Vinyals et al. [9] proposed the neural image caption generator (NIC), the first joint model
trainable through stochastic gradient descent [62-64]. The NIC model simultaneously
learns the visual and semantic information in order to maximise the likehood of a target
caption given an image. The model employs a state-of-the-art CNN [41]| that is pre-
trained for image classification, to encode images. Unlike Karpathy et al. [12] who use
a multimodal RNN for decoding, they use an LSTM architecture [49] for decoding to a
natural language caption. The NIC model also represents a direct improvement on the
encoder-decoder approach first used by Kiros et al. [48]. While Kiros et al. [48] use a
separate encoder and decoder to define a joint embedding space, the NIC model simul-
taneously defines this space by jointly training the two sub-networks. Additionally, even
though the approach of Kiros et al. [48] can generate sentences, it is tuned for multimodal
image-sentence ranking. An advantage of the use of two sub-networks that are suitable for
processing visual and semantic information, is that they can be pretrained separately on
large image datasets and text corpora respectively and enable the advantages of transfer
learning. In this approach, the extracted image feature vector is provided as the first

word to the LSTM decoder, as opposed to Karpathy et al. [12] who provide the image

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 18

feature as part of the first hidden state of a multimodal RNN. Additionally, Vinyals et
al. |9] empirically verified that injecting the image feature as the first word works better
than injecting it at every LSTM time step. This is because when the LSTM attempts
to jointly model the image and semantic information, it can learn to memorise the asso-
ciation between image-sentence pairs which can lead to overfitting. The image and the
words are mapped to the same embedding space, via the image feature from the CNN

and the LSTM’s embedding layer which is initialised randomly for simplicity.

During training the objective function is the sum of the negative log-likehood of the correct
word at each time step, minimised with respect to all the parameters of the LSTM, the top
layer of the CNN and the word embeddings. During inference on a given image, the model
generates a sentence by sampling the first word, according to maximum probability, then
provides the corresponding embedding as input for the next time step, repeatedly until
the end token is sampled. A better performing approach is to use BeamSearch [65] which
iteratively considers a set of k sentences up to a time step t as candidates to generate
sentences of size ¢t + 1. Overall, the NIC model generates high quality sentences that not
only correlate highly with human judgement but are diverse and novel, meaning they are
not always found in the training set. However, NIC represents the entire image as a single
static feature vector which works well for classification, moderately well for detection,
but not necessarily so for captioning which usually requires information about the spatial

relationships of multiple objects in the image.

Xu et al. [10] proposed an attention based model that improves on NIC by learning to
dynamically focus on salient sub-regions of an image as and when they are needed during
caption generation. The idea is inspired by research in neuroscience [66,67| which illus-
trates the effective use of attention in the human visual system to compress huge amounts
of visual information into a natural language sentence. Instead of representing an image
as a single static feature vector at the encoding stage, Xu et al. [10] represent the image
as multiple features called annotation vectors. The annotation vectors, extracted using
a CNN encoder, correspond to certain image regions. In order to obtain correspondence
between the 2D portions of the image and the annotation vectors, image features are
extracted from an early convolutional layer whose kernels have small receptive fields that
cover only sub-regions of the image. Using these annotation vectors allows the model to
selectively focus on certain salient features of the image by weighting the corresponding

annotation vectors based on the word being generated.

The model extends the soft attention mechanism found by Bahdanau et al. [18] to be
effective in neural machine translation. The attention mechanism is formulated in two
ways: (i) soft deterministic attention, trainable by stochastic gradient descent [62-64],
and (ii) hard stochastic attention, trainable by maximising an approximate variational
lower bound or equivalently using the REINFORCE algorithm [68]|. In the case of hard

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 19

stochastic attention, the model generates weights associated with the annotation vectors
such that the weight for every region is the probability this it is the correct place to focus
on for generating the next word. The formulated objective function is a variational lower
bound on the marginal log-likelihood of observing a certain sequence of words given an
annotation vector. Maximising this function is equivalent to the REINFORCE learning
rule where the reward for the attention resulting in the correct sequence of words is pro-
portional to the log-likelihood of the target sentence. Alternatively for soft deterministic
attention, the weights represent the relative importance of a region when blending all
the image locations together. The formulated objective function is an expectation on
the resulting weighted annotation vector, which is smooth and differentiable, and thus
end-to-end training of the entire model can be done with standard backpropagation and
stochastic gradient descent [62,69].

In both attention mechanisms, a multilayer perceptron [69] conditioned on the last hidden
state of the decoder is used to generate the attention weights. Intuitively, this means the
computed weights at every time step are highly dependent on the previously generated
words, i.e. where the model should be looking next depends on the previously generated
words. An important attribute of these attention mechanisms is that the attention weights
can be visualised at every time step in order to understand where the model was looking
when it generated a certain word, which makes for an interpretable model. A visual

illustration of the two attention mechanisms is shown in Figure 5.

There is an inherent trade-off between soft and hard attention mechanisms. Soft atten-
tion’s smooth objective function makes it easier to optimise using stochastic gradient
descent but its blended attention maps make it less obvious to distinguish which region
the model was looking at when generating a word. Hard attention’s objective function
is more difficult to estimate but results in sharper attention maps showing exactly what
the model was looking at when it generated a particular word. Overall, the attention
based approach [10] produced state-of-the-art performance on the BLEU and METEOR
evaulation metrics [34,35] while also providing greater interpretability. Particulary, hard

attention performed better than soft attention in generating fine-grained image captions.

2.2 Strategies for jointly encoding visual and semantic modalities

Usually when an RNN is used for image caption generation in encoder-decoder architec-
tures, the image features are either directly injected into the RNN as a first word, as part
of the initial hidden state, or merged together with the final hidden state of the RNN,
right before the word prediction. However there has not been a systematic evaluation of
which of these strategies is the most effective way to inject image features and thus con-
dition sentence generation. To address this issue, Tanti et al. [70] conducted an empirical

study of the different methods, placing the image captioning architectures into two broad

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 20

(b) A woman is throwing a frisbee in a park.

Figure 5: Visualisation of the difference between hard attention (top) and soft attention
(bottom). Images by Xu et al. [10].

categories. Inject architectures are where the image features are included either early in
the generation process or during the whole generation process. In this case, the internal
hidden state will modify the image feature at each generation step. Merge architectures
are when the image feature is only included after the hidden state has been produced. In
this case, the same image feature is preserved and used to condition the word prediction at
every generation step. From a theoretical perspective, understanding where to introduce
the image features during image caption generation has profound implications for insights
into how language can be associated with visual information. From a model engineer-
ing perspective, the relative performance of the different architectures can provide useful
heuristics for selecting an architecture applicable in image captioning and other related
but more challenging tasks, including video captioning and paragraph generation. The

distinction between inject and merge architectures is further delineated in Figure 6.

e [nit-inject: The image feature vector is used to initialise the RNN’s hidden state.
In this case the image vector needs to be the same size as the RNN’s hidden state
vector and will be modified during generation. Multiple works have employed this
architecture in image captioning [71-73] and neural machine translation [74]. Ad-
ditionaly, Xu et al.’s attention based method [10]| uses init-inject to provide the

image vector as a representation of the whole image while salient image regions are

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 21

() Init — inject : The image vector is used to initialise the RNN's hidden state (b) Pre—inject : The image vector is used as the first word input

RNN RNN RNN
image .5 { image] image
(c) Par —inject : The image and word are combined as input at every time step (d) Merge: The image vector is merged with the hidden state

Figure 6: Taxonomy of the inject and merge architectures.

provided via par-inject (described below) at each time step.

e Pre-inject: The image feature vector is treated as the first word into the RNN
followed subsequently by the word vector inputs [9,75,76]. The image vector will
be modified during the generation steps and needs to be the same size as the input
word vectors. Alternatively, as a way to improve image caption quality, the RNN
takes image attributes as the first word or the first two words consisting of the image
vector followed by the image attributes [77,78].

e Par-inject: The image and word vectors are either passed as separate inputs or
combined into a single input for the RNN, at every step. It is the most com-
monly used architecture with the largest variety of implementations. Most common
is par-injecting the image through all the time steps in the RNN [20] while also
init-injecting the image attributes [72,78|. Other less common implementations
involve par-injecting the image but only in the first word [12,79]. Because the par-
inject architecture modifies the image representation, it is commonly used to process
differing representations of the same image with every word, so that visual infor-
mation changes depending on the word being generated. Zhou et al. [80] perform
an element-wise multiplication of the image vector and the last generated word’s
embedding vector in order to attend to different image regions. In general, modified

image representations are most effectively used in attention mechanisms for image

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 22

caption generation [10,76,81].

e Merge: The image vector is only merged with the output of the hidden state right
before word prediction at every step. In this case the RNN’s capacity is only utilised
for the language modelling and the image feature’s representation is preserved [82,
83]. Hendricks et al. [19] use the merge architecture in order to separately train
the CNN image encoder and the RNN language decoder using unpaired images and
sentences respectively. At every time step, they then combine the two resultant
vectors in a multimodal layer which uses an inner-product to predict the next word.
This not only makes the two model components independent and portable, but
it also allows the model to generate sentences using unseen words as opposed to
when using paired image-sentence datasets. Some attention-based architectures
utilise merge architectures by merging different image representations at every time
step. One implementation is to merge as well as par-inject attended image regions
[10,81], and another is to only merge the regions while par-injecting a fixed image
representation [84]. Multimodal representation models that do not use RNNs, but
instead use probabilistic language models [47|, also utilise merge architectures to

merge the image representation and the word presentation [46,48,85].

To evaluate the performance of the inject and merge architectures, Tanti et al. [70] mea-

sured the quality of captions using four broad criteria.

e Generation quality quantifies the degree of overlap and correlation between gener-
ated captions and the ground-truth captions. The metrics used were BLEU [34],
METEOR |[35], ROUGE-L [36,37] and CIDEr [38].

e Caption diversity is based on the entropy of unigram and bigram frequencies in the
generated captions. A high entropy yields a more uniform frequency distribution
of the unigrams or bigrams, thus indicating the model equally uses all words in the

vocabulary leading to diverse captions.

e Retrieval quantifies how well a model performs at retrieving the most relevant image
given a caption as a query. Relevance is measured as the probability of the whole
sequence of words in a caption occurring, given the image. The standard RQK
metric [2| was used, which is a percentage of captions such that the image each

caption correctly describes is among the K retrieved images.

e Visual information retention quantifies how much the image representation influ-
ences the caption generation over the entire sequence. This is done by recording
the multimodal vector at every time step of the RNN decoder for an image-caption
pair. The caption is then paired with a randomly chosen image to create an image-

caption mismatch and the resulting multimodal vector is recorded at every time

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 23

step. The mean absolute difference between the original multimodal vector and the
mismatched multimodal vector is measured at every time step. The convergence of
this difference over time implies that the vectors are becoming more similar which
indicates that the RNN is losing image information and being influenced more by
the previously generated words in the caption. By contrast, a constant distance
indicates that the different image used in the image-caption mismatch will result
in significantly different multimodal vectors than those from the original matching

image-caption pair.

For the generation quality and retrieval criteria, Tanti et al. [70| demonstrated that al-
though the par-inject and init-inject performed best [9,10, 20,48, 55], it is not especially
detrimental to performance to merge the image features after the recurrent layer of the
RNN as in merge architectures. Additionally, merge architectures exhibited comparable
performance, while using a considerably lower hidden state dimension for the RNN de-
coder since they do not have to simultaneously encode visual and semantic information.
From a model engineering perspective, this leads to a much smaller and memory efficient
RNN whose capacity is fully utilised for language modelling, in addition to exhibiting

more stable training dynamics.

Pertaining to caption diversity, merge architectures performed best showing higher vo-
cabulary variation and also exhibiting the smallest percentage of generated captions that
appear in the training set. An intuitive interpretation of this result is that inject architec-
tures jointly encode the words and image representations in the RNN hidden state, which
can lead to a tight coupling of image-caption pairs from the training set. This results
in a tendency to reuse captions from the training set. In contrast, merge architectures
decouple the image and linguistic modelling, leading to a looser image-caption association

that manifests in more diverse captions.

Lastly, for the wvisual information retention criterion, the merge architectures showed the
best retention since the image information is not handled or modified by the RNN’s hidden
state. In contrast, init-inject and par-inject had significantly less retention. This result
demonstrated that for generating long captions, and given the finite memory of RNNs, the
merge architectures will maximally retain image information and thus generate captions

that are most influenced by the image being described.

Overall, our analysis of the various image caption generation implementations can be
distilled down to whether visual information is injected into the RNN decoder or merged
with the RNN hidden state right before word prediction. From the literature it is evident
that the inject architectures are the dominant variation and tend to perform best in
corpus based metrics like BLEU and CIDEr [34,38]. Among these, the encoder-decoder

sub-category has proved to be the most popular and performant way to translate visual

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 24

information to text, and we therefore adopt this as our foundational architecture for video
caption generation. Merge architectures however are interesting as they have been shown
to perform better for caption diversity, have a significantly smaller RNN memory footprint
and have better image information retention [70|. Crucially, they decouple the visual and
language modelling meaning they tend to generate less generic and stereotypical captions
by exploiting the multimodal information more effectively. Therefore our model is closely
related to merge architectures, because as explained later, we modify the encoder-decoder
architecture to instead merge the video information with the RNN output right before

word prediction.

2.3 Video Captioning

In light of the discussion on architectures used in image captioning, CNNs and RNNs have
become the de facto solution for many visual feature extraction and language modelling
problems respectively. By extension, leveraging the strengths of these two models has been
identified as an effective way to tackle the video captioning problem. Traditional video
captioning approaches like the subject-verb-object [86-88]| first perform visual recognition
with handcrafted features and then generate lexical tokens that form the caption. Deep
learning methods automate the process of feature extraction and caption generation by
using CNNs to learn video features to be used for influencing the prediction of a sentence
description in the RNN. Therefore, the encoder-decoder architecture is widely adopted as
a solution for video caption generation. The crucial difference however is that the complex
and temporal nature of videos makes video description a more challenging problem, in
addition to the fact that a typical video has a larger memory and storage footprint than

its image counterpart.

Donahue et al. [20] proposed the first deep learning solution to video captioning in the
form of a long-term recurrent convolutional network in three configurations, all of which
take in visual predictions of the video from a conditional random field (CRF) [89]. This
allows the model to observe the entire video at every time step, instead of incrementally
frame by frame. The first of these configurations uses a two-layer LSTM encoder-decoder
with CRF max predictions inspired by statistical machine translation (SMT) based video
captioning [90]. The first LSTM layer encodes a one-hot vector of the input sentence,
allowing for variable length inputs, and the final hidden representation of the first layer
is fed into the second layer which decodes the input into a sentence one word at each
time step. The second configuration of the model uses an LSTM decoder with CRF max
predictions and encodes the semantic representation as a single fixed length vector for
input to the LSTM at each time step, effectively collapsing the problem into an image
captioning task. The third and final configuration uses an LSTM decoder with CRF

probabilities, since LSTMs can naturally incorporate probability vectors during training

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 25

and testing time allowing them to learn uncertainties in caption generation. Although all

these configurations outperformed the SMT approach, they are not end-to-end trainable.

Venugopalan et al. [23| proposed the first end-to-end trainable deep network. The model
simultaneously learns a latent semantic state and a fluent grammatical model of the
associated language. An LSTM is used to model sequence dynamics and, to avoid inter-
mediate representations as in Donahue et al. [20], the LSTM is directly connected to a
deep CNN which processes input video frames. Additionally, unlike Donahue et al. [20]
who showed results on a limited cooking dataset [91], Venugopalan et al. [23| showed
results on YouTube Clips [27] which is an open-domain video dataset. In order to ef-
fectively summarise an input video representation, one in every ten frames is sampled,
and processed by a CNN resulting in a feature vector. A mean pooling operation is then
performed on a collection of these feature vectors, resulting in a single fixed length vector
which is passed to a two-layer LSTM. Aggregating multiple frames into a single vector
representation reduces the problem into an image captioning task and works better than
previous approaches. However, the indiscriminate averaging of frames results in loss of
valuable temporal information of the video such as the order in which objects appear
and interact, which adversely affects the quality of the captions for long form videos and

makes this approach only suitable for short clips with a single major event.

Open-domain videos comprise of complex interactions among actors and actions, there-
fore aggregated features might not adequately capture such temporal dynamics. Yao et
al. [14] proposed a spatiotemporal 3D CNN based encoder, trained on the UCF-101 activ-
ity recognition dataset [92| and using an LSTM as a decoder, that is able to capture global
temporal structure and fine-grained motion information between consecutive frames. The
local motion is summarised and preserved by dividing the video into groups of 16 frames
which are each encoded into a 3D spatiotemporal cuboid represented by concatenating
its histogram of oriented gradients, oriented flow, and motion boundary [93,94]. Global
temporal structure is preserved by employing a temporal attention mechanism adapted
from soft attention, first devised in neural machine translation work by Bahdanau et
al. [18]. Crucially, using the attention mechanism, the decoder assigns a relevance weight
to every cuboid at every caption generation time step which steers the model towards
the most relevant video segment and results in fine-grained captions that can capture
complex dynamics in videos with more than one major event. Similarly, Pu et al. [21]
proposed a spatiotemporal 3D CNN and LSTM based model which uses a temporal at-
tention mechanism to selectively and sequentially focus on different convolutional layers,
taking advantage of the fact that low level layers capture fine-grain details while higher
level layers have a larger receptive field and therefore capture the global temporal structure
of the video.

However, all the discussed approaches rely on fixed video representations which can be

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 26

limited in modelling various temporal dynamics. Models that rely on variable visual rep-
resentations can directly map variable length inputs (video frames) into variable length
outputs (words or sentences). Venugopalan et al. [24| proposed an LSTM based archi-
tecture that addresses the variable length problem for both the encoding and decoding
stages. The encoder LSTM processes the sequence of video frames and the decoder LSTM
uses the last hidden state of the encoder to sequentially decode the caption one word at
a time. This approach represents the first time that sequence-to-sequence modelling was

adapted from neural machine translation for the video captioning task.

Recently more attention is being put towards video dense captioning or video paragraph
generation. The previously discussed approaches focus on summarising the content of a
video in one or two sentences, making them mostly suitable for short videos with one major
event. These approaches result in oversimplified captions for long videos with multiple,
sometimes overlapping, events. Yu et al. [95] proposed a hierarchical RNN model that can
exploit both spatial and temporal attention. The model’s decoder is comprised of a gated
recurrent unit (GRU) [96] for generating short sentences associated with an event and a
higher-level recurrent layer responsible for combining the sentence vectors from the GRU.
This higher-level recurrent layer can thus capture inter-sentence dependencies resulting
in a sequence of relevant consecutive sentences. Closely related is work by Krishna et
al. [22] which proposes a new dense captioning task using an event proposal technique
that predicts the start and end of an event. The proposed model can then simultaneously
detect multiple events in a single pass and attempt to describe them. This work represents
the first attempt to detect and caption multiple and overlapping events in a video using
the ActivityNet Captions dataset [97,98].

As noted earlier, various forms of RNNs including vanilla RNNs, LSTMs and GRUs
have been extensively utilised for the video captioning task because of their effectiveness
in sequence modelling. However, the recurrent units make them particularly difficult
to train because of the vanishing or exploding gradient problem and finite memory re-
sources [56,57]. Moreover, in order to predict the next word, a typical RNN only has
available to it the current hidden state which is a cumulative result of all previous states
and the input word from the current hidden time step. For long sequences and due to
memory constraints, this results in short term memory which is not ideal for modelling
long term semantic dependencies. Vaswani et al. [99] proposed the Transformer model,
which is solely based on attention mechanisms that completely replace recurrent units in
a decoder. Unlike recurrent models that learn a conditional probability of the occurence
of words in a sequence, the Transformer model uses self-attention to learn a sequence
representation such that every word’s probability of occurring is directly influenced by all
preceeding words through weighted relevance. Naturally, the Transformer model presents

a compelling alternative to the recurrent based models for the video captioning task. Zhou

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 27

et al. [100] proposed an adapted Transformer model for the video captioning task. The
model extends on the work of Krishna et al. [22], consisting of a video sequence encoder,
a proposal decoder that converts the video representation into a set of different anchors
to form video event proposals, and a captioning decoder that decodes the event proposals
into captions. Crucially, unlike the work of Krishna et al. [22] where the event proposal
and captioning are separate, Zhou et al. [100] connect the two components with a network
that produces a differentiable mask, allowing the caption generation to directly influence

the event proposal for better quality captions.

2.4 Summary

In this literature review we discussed the various approaches that have been employed
in tackling the closely related problems of image and video caption generation. Their
close relationship stems from the fact that both problems can be broadly thought of as
visual-semantic processing with the goal to ground natural language descriptions in visual
information. A common theme in the literature is to establish a multimodal space that
associates the visual features with semantic information in order for the former to influence
the generation of the latter. Due to the success of CNNs for visual feature extraction and
RNNss for language modelling, encoder-decoder architectures have emerged as a prominent
solution for both image and video caption generation. In these architectures, and inspired
by work in neural machine translation, the CNN and RNN work in unison to translate
an image or video into a natural language description. Crucially, during training, the
language model can share gradients with the CNN, thereby optimising the CNN’s feature
extraction in order to maximise the likelihood of generating the correct caption. We
therefore use the encoder-decoder architecture as the foundation of our model for video

caption generation.

Most CNN implementations operate on a collection of video frames with kernels that
collapse the spatiotemporal information, leading to loss of the video’s temporal stucture.
This effectively collapses the video captioning problem into an image captioning problem.
However the temporal structure of videos has been shown to be important for accurate
classification and fine-grained description [14,21,26]. Tran et al. [25] proposed a 3D
CNN which operates on the video spatially and temporally, preserving a video’s temporal
dynamics. Attention based approaches have been proposed where the CNN, using spa-
tiotemporal features, can dynamically focus on different sections of the video depending
on the word that is about to be generated [14,21]. We adopt such spatiotemporal video

features when processing videos for input into our video caption generator.

In establishing a multimodal space, where visual features and words can be associated,
the literature has a diversity of approaches on how to incorporate visual features in order

to condition the caption generation. Particulary in image captioning, directly injecting

Stellenbosch University https://scholar.sun.ac.za

2 LITERATURE REVIEW 28

the image feature as an initial hidden state of the RNN (init-inject) or combining it with
the word at every generation step (par-inject), has emerged as the most performant and
popular approach [70]. Tanti et al. [70] carried out a systematic evaluation of the different
image feature injection configurations and found that merging the image feature with the
output of the RNN, right before word prediction, has comparable performance to inject
approaches. Merging the image feature and the output of the RNN, and not injecting it in
the RNN, preserves the image features and ensures that they maximally influence the word
prediction. Since the RNN is not responsible for jointly modelling visual and semantic
information, its capacity can be effectively used for language modelling, resulting in a
significantly lower memory footprint which is critical for model engineering. Therefore,
in addition to spatiotemporal video features, we use the merge approach where the video
feature is merged with the output of the RNN unit, right before word prediction. These

ideas form the foundation of our study.

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 29

3 Technical Background

At the heart of the image and video caption generation tasks is the fundamental problem of
multimodal learning, where a model has to learn to associate visual and semantic informa-
tion. Deep learning models have showcased great success in visual-semantic association,
particularly due to advances in convolutional neural networks (CNNs) and recurrent neu-
ral networks (RNNs) [15,40,49]. These two models have been successful primarily because
of the following factors: (i) the availability of large quantities of annotated visual and se-
mantic data upon which the models’ data driven parameter optimisation can outperform
traditional strategies, (ii) increasingly powerful compute resources in the form of graphics
processing units (GPUs) [101| and application specific integrated circuits (ASIC) hard-
ware [102], and (iii) increasingly complex and expressive models that can learn hierarchical
features. Encoder-decoder architectures that combine CNNs and RNNs, leverage the two
models’ respective strengths in order to translate visual information into natural language
descriptions. While a CNN encodes visual information into a vector representation, an
RNN leverages the representation and word embeddings to generate the description. In
this chapter we focus on the mathematical theory that underlies neural networks, how
they learn from data and then, particularly, how CNNs and RNNs extract salient features
from visual and semantic data, respectively. We then discuss how word embeddings, that
inscribe semantic meaning in vectorised form, are utilised in encoder-decoder architectures

to generate sensible descriptions for visual information.

3.1 Artificial Neural Networks

Artificial neural networks (ANNs) belong to a computing paradigm inspired by, and
loosely modelled on biological neural networks. Unlike programmable computing sys-
tems, ANNs learn to perform a specific task by observing example inputs and desired
outcomes. Without any prior knowledge about the task, ANNs can in principle extract
salient characteristics from examples and learn to use these to output the desired outcome
on new examples. In our case, a specialised ANN should learn to process a video signal
and translate it into a natural language description. An ANN is comprised of artificial
neurons or nodes, connected together by artificial synapses that constitute adjustable
weights to modulate the strength of the input signal. Typically, artificial neurons are
grouped into layers, and the input signal travels from the first layer to the last layer with
multiple signal transformations performed at every layer. Figure 7 is an illustration of a

simple ANN with three layers.

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 30

Hidden

Input Output

Figure 7: Tllustration of a 3-layer artificial neural network. The nodes are interconnected
with artificial weighted connections.

3.1.1 Artificial Neural Network Operations

In order to produce desired outcomes, e.g. a natural language description, an ANN’s
layers will typically have to transform a high-dimensional input signal like an image or a
video into lower-dimensional characteristics, called features, that can be used to generate
the output. Typically, a matrix multiplication is performed between the signal and the
connection weights at a particular layer, and the result is passed on to the next layer of

neurons until the final output is realised. Figure 8 is an illustration of this operation.

Next Layer

Figure 8: Ilustration of the linear algebraic operation between a neuron’s weighted con-
nections and its inputs.

It is common to append the input signal with an additional value of 1, for an additional
bias term in the summation at every neuron, to give the network greater expressibility.
The combined operation at all the neurons of a particular layer can be expressed as a
matrix multiplication. Given this matrix formulation, batched mathematical expressions

involving multi-dimensional arrays can be evaluated in parallel using efficient vectorised

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 31

Next Layer
Figure 9: Illustration of the linear transformation followed by a nonlinear activation.

operations. This forms the basis of deep learning frameworks like TensorFlow, PyTorch
and Theano [103-105] supported by single instruction, multiple data (SIMD) hardware,
e.g. GPUs and TPUs [101,102]. Consequently, using a composition of these operations
across all layers, the ANN can be generally represented as a sequence of linear transfor-

mations.

3.1.2 Limitations of Linear Operations

The aim of a neural network is to approximate some unknown function between given
inputs and outputs, and most datasets like images and text cannot be modelled sufficiently
well with a linear neural network. In order for ANNs to be more expressive and be capable
of modelling nonlinearities, an additional nonlinear operation can be performed on the
result of the linear operation at a neuron, just before it is passed to the next layer of
neurons. These operations are referred to as activation functions. Figure 9 shows the
linear transformation, now modified to include an activation function. The activation can
work as a threshold on the signal depending on the magnitude of the weighted sum in the
preceding matrix operation. Intuitively, it is loosely analogous to the synaptic activation
that occurs in biological neural networks, where an incident electrical signal activates the
next neuron depending on the signal’s intensity [106]. In artificial neural networks this
means neurons can be specialised to activate when stimulated by specific features of the

signal.

3.1.3 Activation Functions

Activation functions take a real number and perform a fixed mathematical operation
on it. Crucially, activation functions also need to be at least partially differentiable for
the gradient based learning dynamics of neural networks, as we discuss later on. In

this section we discuss commonly used activation functions, their motivations and their

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 32

| |
0.5 1

Figure 10: Ilustration of the sigmoid function.

respective limitations.
Sigmoid

The sigmoid function takes a real-valued number and returns a number in the range [0, 1].

The function is illustrated in Figure 10, and takes the mathematical form

B 1
o l4eF

(1)

o(2)

Note that large negative numbers result in outputs close to 0 and large positive numbers to
outputs close to 1. The function has seen frequent use due to its intuitive interpretation as
the activation rate of a neuron, ranging from not activating at all at 0 to fully activated at
1. While historically a popular choice in practice, the sigmoid function has the following

drawbacks.

e Saturated neurons kill gradients. When a neuron’s activation saturates at either 0 or
1, the gradient is almost zero. Because the network learns by recursively multiplying
and propagating back these gradients to update the network weights, a small to
zero gradient effectively kills the gradient at that neuron, preventing the flow of the
gradient signal to preceding neurons. When using the sigmoid, weight initialisation
is particularly important because very large positive or negative weights will result

in immediate saturation of neurons and the network will not learn.

e Sigmoid outputs are not zero-centered. The sigmoid will always propagate positive
activations. This means that depending on the sign of the incoming gradient signal
from all the subsquent layers up to the sigmoid, the gradient into the weights pre-
ceding the sigmoid will either all be negative or all be positive and this can prevent

the network from converging towards optimal weights.

e Faxpensive to evaluate. From a model engineering perspective, the exponent term
in the sigmoid is computationally expensive to calculate and even more so for very

large neural networks with hundreds of millions of parameters.

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 33

14

Figure 11: Illustration of the tanh function.

Tanh (Hyperbolic Tangent)

The tanh function takes a real-valued number and outputs a number in the range [—1, 1].

The function is illustrated in Figure 11, and takes the mathematical form

e — 1

tanh(z) = m

(2)
Analogous to the sigmoid function, tanh has a constrained range meaning large negative
inputs will be close to —1 and large positive inputs will be close to 1. It also shares the
advantage of the sigmoid of being interpretable as an activation rate. In fact, the tanh is

simply a scaled sigmoid:

tanh(z) = 20(22) — 1. (3)

The formulation in Equation 3 ensures that it has zero-centered outputs which results
in symmetrical weight updates. For this reason the tanh is usually preferred over the
sigmoid for its better training dynamics. However it also shares in the drawback that
activations close to —1 or 1 can kill the gradient signal. Additionally the exponent terms

are computationally expensive to evaluate.
ReLU (Rectified Linear Unit)

The ReLU function uses a threshold in which real values less than 0 are set to 0, otherwise
the output is the identity of the input. The function is illustrated in Figure 12, and takes

the mathematical form

z ifz>0
f(z) = . : (4)
0 ifz2<0

The function has gained popularity because of its speed of convergence towards optimal

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 34

10—+

-20 -10 0 10 20

51

104

Figure 12: lustration of the ReLLU function.

weights. Its effective use by Krizhevsky et al. [15] showcased significant accuracy improve-
ments in the ImageNet classification task [51,107]. The function has several advantages

over the sigmoid and tanh functions.

e Avoids neuron saturation. The ReLU function has a linear output for inputs greater
than zero, ensuring no saturation of any arbitrarily strong signal. This also means
constant gradient of 1 for values greater than 0, which allows for gradients to flow
rapidly through the network to all the preceding weights, resulting in accelerated

convergence.

e Computationally inexpensive. The ReLLU function is computationally simple to im-

plement with mathematical operations that simply change negative signals to 0.

The function has one major drawback, which is that neurons with 0 or negative outputs
will effectively become inactive. This is an irreversible state because, in gradient-based
optimisation, only neurons that contribute to the incident signal will have a non-zero
gradient and hence will be updated and thus continue to contribute to the signal. There-
fore the inactive neurons become permanently unactivated which ultimately reduces the
learning capacity of the neural network. Careful weight initialisation and choosing an

appropriate learning rate for updating the weights, are therefore critical.

Leaky ReLU, Parametric ReLU and ELU

Figure 13: Illustration of the Leaky ReLU (left) and ELU (right) functions.

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 35

Leaky ReLU, Parametric ReLU and ELU (Exponential Linear Unit) are variants of ReLLU
that try to address the problem of inactive neurons. Leaky ReLU (left in Figure 13) allows
a small gradient for values less than 0, which allows potentially inactive neurons to recover
during training and be able to contribute to the incident signal [108|. Parametric ReLU
extends this idea and parameterises the coefficient of leakage, such that it can be learned
with other neural network parameters [109]. ELU (right in Figure 13) is an identity for
values greater than 0, just like the ReLU, but smoothly tends to a small gradient for
values less than 0 [110]. Leaky ReLU, Parametric ReLU and ELU are mathematically

formulated as follows:

z ifz>0
z) = (5)
0.01z if2<0
z ifz2>0
gz =9 (6)
az ifz<0
z if z>0

h(z) = (7)

ae* —1) if2<0

Overall, activation functions have become an integral part of deep neural networks in tasks
like computer vision, language modelling and speech recognition, where linear models are
insufficient to model the data. In the context of our work in automatic video captioning,
we choose to use the standard ReLLU activation function for both video feature extraction
and natural language generation, because it is computationally cheap and, with careful

weight initialisation, allows for acceptable network convergence.

3.1.4 Prediction Loss

In the previous section we discussed how artificial neural networks composed of simple
linear transformations, can be extended with nonlinearities to increase their expressive
capacity. In essence, these neural networks perform a sequence of linear tranformations
with interwoven nonlinearities in order map input data to the desired output. We want to
measure and adjust the influence of the neural network’s weights so that they transform
the input into the correct output. In order to achieve this, we need to include a special
output layer that will convert output from the network’s last hidden layer to scores.
Together, the linear transformations, nonlinearities and output layer form a score function
that outputs a set of scores associated with all possible outputs, called class labels, where

the objective is to have the highest score associated with the correct class label.

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 36

In order to quantify and optimise how consistent the class scores are with the given class
labels in the training data, an additional function is needed. This is called an objective,
cost or more commonly a loss function and it quantifies how much the neural network’s
prediction deviates from the correct prediction. The loss function is usually constituted of
(i) a data loss based on the training data and (ii) regularisation loss, to control the neural
network’s complexity. Optimisation in the context of neural networks is the process
of minimising this loss. In this section we discuss various common loss functions and
highlight their different characteristics. In general, any loss function can be expressed as
a function of the weights of the neural network, the input data and the predicted score.
For example, given a data point z;, the loss L; is a function of the final output of the neural
network ¢ and the corresponding class label y;. The neural network is itself a function
of weights W' and nonlinearities ¥'. [€ {1,...,k} represents the [-th layer of the neural
network. Given a training dataset of N examples, the overall loss can be expressed as the

numerical average of all the individual losses calculated for every input data point:

1 (X
Loss = i (; LZ) : (8)

Multiclass Support Vector Machine Loss / Hinge Loss

This loss formulation is usually used and associated with the support vector machine,
a type of classification model that transforms the final feature activations of a neural
network into predictions, in the form of classification scores [111]. The formulation is
such that the score for the correct class label should be higher than all the other incorrect

classes by at least some fixed margin. We illustrate this in the following equations:

S =W . Wkt Yk 2y, (9)
L= Z max (0, s; — sy, +9). (10)
JFYi

Given a set of class scores S predicted for an example x;, the loss L; is the summation
over the differences between the every individual class score s; and the score of the correct
class label s,,. In order to minimise the loss, the score s,, must be large enough such that
the difference s; —s,, is so small that adding a margin J results in a value still less than or
equal to 0. The result s; — s,, + 0 is clamped to 0 by the max operation. The multiclass
SVM loss is sometimes referred to as the hinge loss. The squared hinge loss is a variant
of the hinge loss which instead penalises the violation of the § margin quadratically, as

follows:

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 37

desired region of — log(p;)

desired region of — log(py,)

5 -4 -3 -2 -1 0 N 3 4

Figure 14: Illustration of the negative log-likelihood objective of a softmax loss. Minimis-
ing the loss implies that —log(p,,) for the correct class approaches 0 and —log(p;) for an
incorrect class is asymptotically large.

L; = Z max(0, s; — s, +6)°. (11)

J#Yi
Softmax Loss

The softmax loss is associated with the softmax classifier, which is another commonly
used classification model [112]. Unlike the previously described hinge loss which treats
the outputs of the neural network as uncalibrated and possibly difficult to intepret class
scores, the softmax classifier takes real-valued outputs and normalises them to values in
the range [0, 1], such that they sum to 1. Intuitively, these values can then be interpreted
as class probabilities. Given a set of uncalibrated class scores S, the softmax classifier is

as follows:

e®vi

/"L = Z] esSi

(12)

In Equation 12, s,, is the class score of the correct class. The softmax classifier is set up
such that the correct class score is as high as possible (close to 1) and the other incorrect
classes are as low as possible (close to 0). This is in contrast to the SVM which only
requires the correct class score to be high by a margin §. Using the softmax function p,

the softmazx loss is then formulated as follows:

L; = —log(p). (13)

With the scores converted to class probabilities, the objective of the softmax loss function
is to maximise the log-likelihood of the correct class. Since we want to minimise the loss,
the softmax loss function is defined as the negative log-likelihood of the correct class.
In Figure 14, we illustrate desired loss regions for the correct and incorrect class labels,

respectively.

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 38

Equation 13 is the softmax loss for one example x;. The full loss across all training
examples is a numerical average, as in Equation 8. The softmax loss is also commonly
known as the categorical cross-entropy loss, which is a combination of the softmax function
and cross-entropy loss, motivated by an information theoretic view [112]. In information
theory, the cross-entropy between the true distribution p and an estimated distribution
q, both over a given set (in this case a set of C' classes), quantifies the different between

these two distributions, and is defined as follows:

C

H(p,q) ==Y _plsy,) - logla(sy,)]. (14)

i=1
Using this formulation and given an input example z;, the objective is to minimise the
cross-entropy between the estimated class probabilities ¢ resulting from the softmax func-
tion in Equation 15, and the true distribution p which can be interpreted as the distri-
bution where all the probability mass is assigned to the correct class label y; for input
x;. In other words, the cross-entropy wants the predicted distribution to have all the
probability mass assigned to the correct class label. Combining the softmax function and

the cross-entropy implies substituting the former into Equation 14, which leads to

H(p,q) = =) _p(sy) -log [56] : (15)

In the specific case of multi-class classification, the term p(s,,) is 1 only for the correct
label and O for all the other labels in the “true” distribution p. Therefore the summation

in Equation 18 collapses to only the term when p(s,,) = 1, resulting in the softmax loss.

The hinge loss and the softmax loss are the two most commonly used loss functions for
classification. The hinge loss penalises weights when the score of the correct class is not
higher than all the scores of the incorrect classes, by a defined margin §. Once the margin
is satisified all incorrect class scores are simply clampled to 0 by the max operation which
makes hinge loss a bounded optimisation function. However it produces class scores that
are uncalibrated and difficult to intepret because the scores can be wildly different for
different weight initialisations. The softmax loss solves this problem by normalising the
scores to a range [0, 1] which makes them intuitively interpretable as confidence scores or
probabilities over the classes. In the context of our research in video caption generation we
choose to use the softmax loss in order to easily and intuitively interpret class probabilities
over a vocabulary of words when predicting the next word in a natural language sentence.

Every class in this case is simply a set with one unique word from the chosen vocabulary.

The softmax loss, however, does not have a margin requirement for how far apart the cor-

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 39

rect class probability needs to be from all the wrong classes which makes it an unbounded
optimisation function. This unbounded nature can contribute to overfitting, a scenario
where the neural network learns very specific features in the training dataset, preventing
it from generalising for new examples. In general, the overfitting problem is alleviated
by augmenting the full loss function with a class of functions called regularisers, that we

discuss in the next section.
Regularisation

Regularisation plays an important role in controlling a neural network’s capacity in order
to prevent overfitting. The primary motivation for this set of techniques is to regulate
accuracy on the training data in exchange for a network that will better generalise for new
examples. Additionally, from a model engineering perspective, certain weights are more
preferrable than others. For a memory efficient model, and for robustness, regularisation
functions would encode a preference for small weights over large weights. Such a preference
would be encoded and adjusted as part of the optimisation process, generally represented

as an additional term in the full loss function as follows:

1 N
Loss = (; LZ-) + AR(W) (16)

regularisation loss
data loss
where A is a hyperparameter which in this case is used to modulate the strength of the
regularisation. The data loss is a function of the weights and data, while the regular-
isation loss is only a function of the weights. We briefly discuss some commonly used

regularisation functions and highlight their different characteristics.
L2 Regularisation

The L2 regularisation is a popular formulation, and it discourages large weights through

an elementwise quadratic penalty [113]. The formulation is as follows:

RW) =) > W, (17)

J
where j is the row index and k is the column index in W. A compelling example of
the effectiveness of L2 regularisation is that penalising large weights tends to improve
generalisation. This is because it discourages any arbitrarily large weight dimension from
having a disproportionately large influence on the final class scores. For example given
an input vector z = [1,1,1,1] and two candidate weigths w; = [1,0,0,0] and wy =
[0.25,0.25,0.25,0.25]. In both cases the dot product is 1. However the L2 penalty for w;

is 1, while for ws is 0.25, so to minimise the overall loss the neural network will prefer to use

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 40

weq. Intuitively, by using ws the neural network is encouraged to take into account diffuse
signals from all input dimensions instead of strong signals from a few input dimensions.
Notably from Equation 20, in order to minimise the overall loss, the regularisation loss
will want the weights to all be 0. However, because the weights have to be non-zero in
order for the neural network to learn, the data loss term and the regularisation term will
pull the neural network between the two extremes of large capacity and small weights

until an equillibrium is reached.
L1 Regularisation

L1 regularisation discourages large weights through an element-wise absolute value penalty
[113]. The formulation is

ROV) =3 > Wl (18)

where j is the row index and k is the column index in W. An intriguing property of
L1 regularisation is that it tends to lead to sparse weight vectors during optimisation.
Intuitively, neurons with L1 regularisation end up using a sparse subset of their most
important inputs and thus become nearly invariant to “noisy” inputs. In contrast, neurons
with L2 regularisation have small diffuse weights which try to use all their inputs. In
practice this means L2 regularisation is more suitable if explicit feature selection is needed,
whereas L1 regularisation would be a suitable guard against noisy signals if no explicit

feature selection is performed.
Elastic Net Regularisation

Elastic Net Regularisation additively combines L1 and L2 regularisation, while modulating
the strength of the L2 term [114]. The formulation is

RW) =) W+ Wikl (19)
7 k

The hyperparameter [is trainable and can be adjusted during model validation.

Max Norm Regularisation

The max norm penalises large weights by enforcing an absolute upper bound on the
Euclidean norm of the weight vector of every neural connection [115]. Given a weight

vector W = (wy, ws, ..., w,), the following constraint is placed on the Euclidean norm:

Wl = \Jw} +wd+ -+ w? <c. (20)

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 41

AW A\\ X
NIA__AY

WK /
. 7
=
AW . S
il

A

OO
M’M (K
/_M\HM
ii‘i&.m&.
A

Figure 15: Mlustration of dropout. Left is a standard neural network with dense connec-
tivity. On the right is a neural network with a random set of neurons and connections set
to 0.

In this expression, the Euclidean norm is bound to be less than a constraint ¢. During
optimisation, the weights are adjusted normally, but the constraint is satisfied by clamping
the weight vector. A desirable property of this regularisation is that the neural network
weights have an absolute upper bound even when an aggressive coefficient of weight update

(learning rate) is applied.
Dropout Regularisation

Dropout is a simple but effective form of regularisation that specifically alleviates over-
fitting by randomly setting a collection of neurons and their respective connections to 0

during training time [116]. An illustration of the technique is shown in Figure 15.

The intuition with this technique is that, in large neural networks, neurons tend to co-
adapt towards the learning goal. Roughly speaking, certain connections can conspire to
produce the desired result and this leads to overfitting. Randomly dropping a subset of
the neurons and their connections discourages this tendency and thus reduces the net-
work’s potential capacity to learn specific features or noise in the data. A neural network
® with n units can be seen as a collection of 2" possible “thinned” neural networks. During
each training cycle, a new thinned neural network ¢ with m < n units is sampled from
® and then, after the loss is computed, only the m units are updated in ®. In practice,
dropping units is controlled by a hyperparameter p where 0 < p < 1, representing the
probability of the unit being retained. During test time, dropout is not applied but the
units’ outputs are scaled by a factor of p to match the signal intensity that was observed
during training with a lower capacity network ¢. The scaling can be interpreted as taking
the average of final outputs that were each sampled from the exponential combination
of thinned neural networks. Model combination, by averaging predictions from multiple

neural network configurations, has been shown to be largely beneficial to the performance

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 42

of machine learning methods [116]. However, for large neural networks, it is prohibitively
expensive to train a large number of independent model configurations and then combine
them during test time where inferencing speed is critical. In light of this, dropout is
effective at simulating the training of multiple neural network configurations, simulating
the combination of multiple neural networks’ predictions at test time, all while reducing
the network’s capacity to overfit. Morever it has been found to improve performance
on supervised learning tasks in compution vision, speech recognition, document classifi-
cation and computational biology [116]. In the context of our research in video caption

generation, we choose to use dropout regularisation on two units in our caption generator.

e Video feature: We apply dropout to the video feature that comes from the video
encoder in order to reduce the chance of overfitting on specific salient visual features.
Additionally, it allows the caption generation to be robust for different “thinned”

video feature vectors.

o FEmbedding vector: We apply dropout to the embedding vector generated from the
caption prefix, before passing it to the recurrent unit. Similar to the video feature,
it is useful to ensure the recurrent unit does not overfit on specific semantic features
encoded in the embedding vector, discouraging the caption generator from effectively
memorising and reciting word sequences. We train our embeddings from scratch,

and dropout is effective at discouraging co-adaption of the layer’s neurons.

3.1.5 Optimisation

In the previous sections we discussed the components of a loss function that quantify how
far a prediction is from the ground truth. The data, the neural network’s architecture,
its output function and the loss function can be thought of as the static parts of neural
network that generally do not change during training. The dynamic parts are the network
weights that are changed during training in order to minimise the loss. Optimisation is the
process of iteratively refining weights to accomplish that minimisation. A helpful intuition
is to think of the neural network starting from a certain altitude on a high-dimensional
loss landscape where the objective is to descend towards the area of lowest altitude which
corresponds to the minimum loss. The process of approaching the point of minimum
loss is also called convergence. A naive optimisation method would be to repeatedly and
randomly sample weights, compute the loss and then keep track of the weights which result
in minimum loss. This however is not scalable for large neural networks with hundreds
of millions of weights. A more systematic solution is to follow the negative of the slope
of the loss function. The slope indicates the rate of change of the loss with respect to the
weights. For this, the loss function should be at least partially differentiable with respect
to the weights. Using the gradient of the loss function, we are guaranteed to descend

towards the minimum loss of a convex loss function.

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 43

An example is using the finite difference approximation to estimate the derivative of a
1-D loss function. Given a 1-D loss f which is a function of weight x, the finite difference
involves applying a small finite change ¢ to x and computing the resulting gradient. A
positive gradient means the loss will increase and therefore the weight’s influence needs
to be diminished. A negative gradient means the loss will decrease and therefore the
weight’s influence must be magnified. In practice, weights are multi-dimensional vectors
and therefore the gradient of f with respect to x is a vector of partial derivatives. For
brevity, weight vector components are also referred to as parameters. There are three

ways to compute the gradient of f:

e Numerical method: Given a weight vector x, add a small change ¢ for all vector
components and calculate the gradient using the difference between f(z + §) and
f(x). This method is an easy to implement approximation of the gradient vector
at any point of the loss function. However, it is slow and scales linearly as the
number of parameters increase. For large neural networks with hundreds of millions

of parameters it would be computationally very expensive.

e Analytical method: Given the full loss function, a more accurate and fast way to
compute the gradient is to evaluate the derivative of the function using differential
calculus. Using the analytical solution, the gradient with respect to an entire weight
vector can be evaluated in closed form. Because of function composition, the chain
rule can be used in order to determine the gradient of the loss with respect to
every weight. The analytical method is more error prone especially for complex loss

functions where determining the derivate by hand is difficult.

o Automatic differentiation is a set of techniques for numerically evaluating the deriva-
tive of a function specified by a computer program [117]. Automatic differentiation
exploits the fact that any arbitrarily complex computer program is composed of
elementary arithmetic operations (addition, subtraction, division) and elementary
functions (sin, cos, exp, log). By applying the chain rule repeately to these oper-
ations, the derivatives of arbitrary order can be evaluated automatically and accu-
rately. In practice, the derivatives are progressively evaluated through the depth
of the network in a method called backpropagation [69]. Automatic differentia-
tion forms the foundation of gradient based optimisation in deep learning frame-
works [103-105].

Gradient Descent

Once the gradients have been computed for the loss function, gradient descent is the
process of iteratively refining the network weights in order to minimise the prediction loss
by descending on the loss landscape. The general algorithm for performing this process

is shown in Listing 1.

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 44

while training:
weights_grad = evaluate_gradient(loss_func, data, weights)

weights += - learning_rate * weights_grad # parameter update

Listing 1: Gradient descent algorithm for iteratively evaluating gradients and updating
weights [118].

The weights are updated by the gradients scaled by a coeffient called the learning rate.
While the gradient determines the direction of descent, the learning rate is a hyperpa-
rameter that determines the magnitude of descent in that direction, i.e. how much the
weights need to be adjusted in that direction. This iterative algorithm is the foundation
for training neural networks and our learning algorithm for the video caption generator

is derived from it.

In practice, training datasets should typically have thousand or even millions of examples
in order for the neural network to learn effectively. Therefore gradient descent can be

done in one of the following ways.

e Batch gradient descent: At every step, the loss and gradients are evaluated on the
entired training set. This results in a stable gradient estimation on the training set,
but might be computationally wasteful to evaluate in order to adjust the weights
once. Moreover, because of hardware memory constraints, it is difficult to fit the

typically large training set in memory in order to perform the full evaluation.

e Stochastic gradient descent: At every step, the loss and gradients are evaluated on
one randomly selected training example. It is much faster to evaluate than batch
gradient descent since only a single example is needed. However, it is also compu-
tationally inefficient to update all network weights for one example. Additionally,
it can result in unstable gradient estimates on the training set that not only signif-

icantly impact the speed of convergence, but are difficult to interpret.

e Mini-batch gradient descent: At every step, the loss and gradients are evaluated on a
small subset of the training set. This is an efficient, relatively stable, approximation
of the gradient on the train set, fast to evaluate and memory efficient since only a
small batch is needed at every step. The size of the mini-batch is a hyperparameter
that can be cross-validated, although usually set to a power of 2 for fast vectorised
operations on parallel compute hardware [101,102]. Notably, mini-batch gradient
descent is usually referred to as stochastic gradient descent (SGD) in deep learning
frameworks, even though it uses mini-batches. In the context of our research, we use

this method of gradient descent especially because of our limited compute resources.

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 45

Optimisers

The previously discussed forms of gradient descent are all based on the simple algorithm
of updating weights using the product of the gradients and a constant learning rate as
in Listing 1. If the learning rate is constant, the algorithm can be slow to converge.
Optimisers are more sophisticated algorithms that accelerate the rate of convergence by
dynamically adapting the learning rate. A faster rate of convergence is critical for training
neural networks because it allows rapid experimentation and refinement of the model. In

this section we discuss a number of prominent optimisers.
Momentum

Momentum [119] utilises the idea of physical momentum in which the weight updates are

accelerated based on consistent gradients over time. The algorithm is given in Listing 2.

v =20

mu = 0.9

while training:
weights_grad = evaluate_gradient(loss_func, data, weights)
v = mu * v - learning rate * weights_grad

weights += v # parameter update

Listing 2: Gradient descent algorithm using momentum update [118|.

The momentum update involves two notable terms, namely v which can be thought of
as velocity and mu which can be thought of as a dampening term or coefficient of fric-
tion. In reference to an earlier intuition, the neural network starts at some loss altitude,
where v = 0, with the objective to descend to the minimum loss. As the neural net-
work descends towards a minimum, its velocity v accumulates for consistently negative or
positive gradients. In other words, it corresponds to accelerated diminishing of weights
that produce positive gradients, and accelerated magnification of weights that produce
negative gradients. The accumulated velocity needs to be regulated, so mu dampens the
velocity to ensure stable convergence. In pratice, the value of mu can be steadily in-
creased for more regulation as the neural network approaches a minimum loss. However,
the neural network can accumulate enough velocity to overshoot the minimum loss, even
though the mu term acts as a dampener. Nesterov accelerated gradient, or Nesterov mo-
mentum [120] improves upon regular momentum by looking ahead in the direction of
descent in order to determine when to decelerate before the gradients become positive,
or in other words before the minimum is overshot. The main idea with Nesterov momen-
tum is that given a weight vector at some position x and disregarding the second term

-learning_rate * weights_grad in Listing 2, the dampening term alone will nudge the

10

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 46

vector to x + mu * v. Therefore, since x + mu * v is the approximate future position,
the gradients can be computed against this position instead of the original x, as shown in

Listing 3.

v =20
mu = 0.9
weights = random.rand(4,) # random starting position
while training:
weights_ahead = weights + mu * v
weights_grad_ahead = evaluate_gradient(data,
loss_func,
weights_ahead)
v = mu * v - learning rate * weights_grad_ahead

weights += v # parameter update

Listing 3: Gradient descent algorithm using Nesterov momentum update [118|.

Using this approximate look-ahead position results in better convergence rates than regu-
lar momentum, in addition to leveraging the future position to determine which direction
to decelerate in. Both regular and Nesterov momentum are able to adapt the weight up-
dates (or learning rate) depending on the gradients of the loss function, thus accelerating
standard gradient descent. Instead of manipulating the learning rate globally and equally
for all parameters, adaptive gradient algorithms can adapt the updates to each individual
parameter depending on its influence. This effectively means every parameter can perform
a larger or smaller update in the direction of descent depending on its influence, using its

own learning rate. We briefly discuss adaptive gradient algorithms next.
Adagrad

Adagrad adaptively updates the parameters using an accumulated cache of all previously

observed gradients, per parameter.

eps = le-6

while training:
weights_grad = evaluate_gradient(loss_func, data, weights)
cache += weights_grad+**2
parameter update

weights += -learning rate * weights_grad / (sqrt(cache) + eps)

Listing 4: Gradient descent algorithm using Adagrad [118,121].

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 47

In Listing 4, cache is an accumulated vector such that every parameter corresponds to
a sum of the squares of the gradients observed, so far, for that parameter in the weight
vector, weights. This implies that cache, weights and weights_grad are vectors of the
same dimension with element-wise correspondence. Because cache is an element-wise sum
of squares that appears in the denominator, it acts as normalisation for the element-wise
parameter update. The normalisation effectively implies that elements of weights that
accumulate large gradients result in progressively smaller update steps, and conversely
those that accumulate small gradients result in progressively larger update steps. This
makes Adagrad well suited for sparse data in training large scale neural networks and
word embeddings where words have a varying frequency of occurrence [119]. Over long
training periods the cache builds up, meaning the learning rate completely decays for

parameters with large gradients and thus the neural network eventually stops learning.
RMSProp

RMSProp (root mean square propagation) improves on Adagrad by decaying some of
the accumulated cache of gradients, thus preserving the equalising effect of Adagrad but

ensuring that learning rates do not completely decay for parameters with large gradients.

eps = le-6

decay_rate = 0.99

while training:
weights_grad = evaluate_gradient(loss_func, data, weights)
cache = decay_rate * cache + (1 - decay_rate) * weights_grad**2
parameter update

weights += -learning rate * weights_grad / (sqrt(cache) + eps)

Listing 5: Gradient descent algorithm using RMSProp [118,122].

Notably, because the cache is consistently modulated by decay_rate, it is effectively a
moving average of squared gradients from within a certain window of recently observed
gradients. Intuitively this means that, for every parameter, the cache forgets the gradients

from early training loops and only keeps track of a portion of the most recent gradients.
Adam

Adam combines the adaptive learning rates of the parameters, using the moving average
of squared recent gradients as in RMSProp, and the decaying average of past gradients

akin to momentum [119].

10

11

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 48

eps = le-8
betal 0.9
beta2 = 0.999

while training:

weights_grad = evaluate_gradient(loss_func, data, weights)

m = betal * m + (1 - betal) * weights_grad # like Momentum

beta2 * v + (1 - beta2) * (weights_grad**2) # like RMSProp

v
parameter update

weights += -learning rate * m / (sqrt(v) + eps)

Listing 6: Gradient descent algorithm using Adam [118,123|.

Notably, the parameter update for Adam is similar to that of RMSProp except that a
decaying average of past gradients m is used as the enumerator instead of the original
gradients weights_grad. This is an important distinction because weights_grad varies
between sampled batches while m is more stable and thus results in more stable param-
eter updates. Additionally, the m and v hyperparameters are initialised as 0-vectors and
therefore are biased towards 0 in early training loops. The parameter update with bias

correction is show in Listing 7.

eps = le-8
betal = 0.9
beta2 = 0.999

while training:
weights_grad = evaluate_gradient(loss_func, data, weights)
m = betal * m + (1 - betal) * weights_grad # like Momentum
mt = m / (1 - betal*x*t)
v = beta2 * v + (1 - beta2) * (weights_grad**2) # like RMSProp
vt = v / (1 - beta2*xt)
parameter update

weights += -learning rate * mt / (sqrt(vt) + eps)

Listing 7: Gradient descent algorithm using Adam with bias correction [118,123].

Adaptive gradient algorithms have an advantage over regular gradient descent and mo-
mentum updates, because they can scale learning rates for individual weights. This adap-
tive learning is especially useful because in practice, manipulating the global learning
rate is computationally expensive [118]. In the context of our research, we choose to

use Adam as the optimiser when training our caption generator. We found it favourable

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 49

because of its stable gradients across batches of (video, caption) pairs. Additionally, its
adaptive parameter updates, found to be effective for training embeddings of frequently
and infrequently occuring words [119], were equally effective when we randomly initialised
and trained word embeddings in conjuction with other parameters of the LSTM caption

generator.

Deep neural networks are large scale artificial neural networks, motivated by the no-
tion that neural networks with many layers of neurons are more efficient at capturing
hierarchical features with multiple levels of abstraction, than ones with few but very
wide layers [40]. Convolutional neural networks (CNNs) have demostrated state-of-the-
art results in computer vision, speech and audio recognition. Recurrent neural networks
(RNNs) have proven effective at processing sequential data including language, time series
and videos. The two networks are the foundation of our video caption generator, where
the CNN processes the video into a video feature and the RNN uses said feature to gen-
erate a natural language description, in a so-called encoder-decoder architecture |9, 10].
In the following sections we discuss details of these neural networks and highlight their

effectiveness in visual and language tasks required for video caption generation.

3.2 Convolutional Neural Networks

Convolutional neural networks are inspired by a seminal neurological study by Hubel and
Weisel on the anatomy and function of the visual cortex [124]. The study hypothesised
the topographical mapping of neurons in the cortex, asserting that locality of the visual
field being mapped onto the retina is preserved in neighbouring neurons of the cortex.
Additionally, the study showed that neurons are hierarchically organised from simple
neurons to complex neurons. This structure is replicated in CNN architectures in order
to capture local spatial features, where increasing levels of abstraction are represented by
deeper layers. CNNs are effective on images and videos because the spatial distribution
and locality of pixels are critical for recognising visual concepts. The architecture was
popularised by LeCun et al. [125] for digit recognition, and more recently by Krizhevsky

et al. [15] for large-scale image classification.

3.2.1 Architecture Overview

CNNs take advantage of the spatial dimensions of an image, with the input being a
volume V; of dimension w; X h; X d;, where w; and h; are the spatial dimensions of
the image and d; is number of colour channels. The architecture is chosen to be more
suitable for processing the 2D grids of image pixels in a way that preserves spatial locality,
unlike a regular neural network that requires a stretched out 1 X (w; - h; - d;) dimensional
input. The CNN architecture is composed of a sequence of interleaving convolutional and

pooling layers, followed finally by fully connected layers. The w; x h; X d; image volume is

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 50

224x224x3 224x224x64

@ convolution+ReLLU

(=) max pooling
fully connected+ReL.U

) softmax

Figure 16: CNN architecture with convolutional, pooling and fully connected layers as
arranged in the VGGNet-16 architecture [5].

processed by the first CNN layer which produces an activation volume. Each subsequent
layer transforms the activation volume through a differentiable function until a flattened
volume is produced for classification. A typical CNN architecture is illustrated in Figure

16.
Convolutional Layer

The convolutional layer is the foundational and typically computationally heavy unit in
a CNN. Unlike a regular neural network where every neuron in a layer is connected to
every output of the previous layer, a convolutional layer consists of neurons arranged in
a wy X hy x dy volume, Vy, where wy < w; and hy < h; and dy is usually a power of
2. All neurons at a depth-level or “slice” of V; only connect to a small region within
the 2D w; x h; spatial dimension of the image, but extend the full depth d; of the image
volume. More importantly, all the neurons at this slice share the same weights, collectively
called a filter, across the w; x h; spatial dimension of the image. Intuitively, a slice in V}
can be visualised as one filter sliding across the w; x h; space and interacting with the
image input volume using the same weights at every point. This arrangement significantly
reduces the number of weights needed to process an image because the same weights are
used to process different image regions. Sharing weights at a slice is analogous to searching
for a particular feature across all image regions. Along the full depth d; in V%, all the
neurons are connected to the same image region but with different slice-level weights. The
sliding operation involves a dot-product between the image region and one slice of the
filter volume V%, followed by a nonlinear transformation such as ReLU, resulting in a 2D

w; X h; activation map. The sliding operation is illustrated in Figure 17.

The activation maps for all the filters are stacked together to produce the final activation

volume. If for example dy = 56, the final activation is w; x h; x 56. This volume is used as

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 51

Figure 17: Illustration of the convolutional operation. The green square represents all the
possible positions of filter. The grey area (including one blue square) is the spatial extent
of the filter on the input image. The blue squares are an example feature in the image
that filter might detect. The filter slides and performs a dot-product operation against
every image region, each time producing a scalar value, eventually accumulating into a
w; X h; activation map [126].

input in the next CNN layer. There are some hyperparameters that determine the reach

of the filters and the dimensions of the output activation volume.

e Receptive field / Filter size: Filters in initial layers typically have small receptive
fields for detecting simple features, while in deeper layers they may have larger

receptive fields for detecting composite features.

e Depth: Previously noted as the d; dimension of V}, the depth corresponds to the
number of filters used at that convolutional layer. Since each filter has different
weights, it will extract a different feature from the same image region. Altogether,

the filters decompose the image volume into dy seperate activation maps.

o Stride: The step size by which the filter slides across the image volume, when
performing the dot-products. For example, when the stride is 1 the filter moves by

1 pixel at a time.

e Zero padding: Since the spatial dimensions of the filter volume V; are less than
the image volume V;, the convolutional operation automatically shrinks the output
volume. This leads to rapid loss of spatial features over repeated convolutional
operations, through the depth of the CNN. Zero padding counteracts this tendency
to lose spatial features too early in the CNN, in order that as many spatial features

are preserved for the classification layers. Given an image volume of size w; x h; X d;,

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 52

filter size F', zero padding P and stride S, the output volume dimensions can be

determined by

w _wi—F+2P+1

o S Y
hozhi_F+2P—|—1 (21)

S)

do = d;

If the image volume is 224 x 224 x 3, the number of filters is 56, F' =5 and S =1,
then P needs to be 2 in order to have an output volume V, = 224 x 224 x 56 that

preserves the original spatial dimensions.

Throughout the convolutional layer, all linear and nonlinear transformations performed
on the image volume are differentiable, and all the shared depth-slice weights are trainable

through backpropagation and gradient descent.
Pooling Layer

Pooling layers are usually interleaved with convolutional layers in a CNN. While zero
padding counteracts against rapid loss of spatial features, a pooling layer progressively
reduces the spatial size of the activation volume, in a deliberate and controlled manner, in
order to reduce the number of parameters and computation, hence regulating overfitting.
Additionally, the pooling operation improves invariance to certain distortions in the input
and increases the receptive field for subsequent convolutional layers. Using fixed filters, the
pooling layer independently operates on every depth-slice of the input volume, reducing its
spatial dimensions while maintaining the depth. The max pooling operation is a common
operation in CNNs [127], where 2 x 2 filters with a stride of 2 uniformly reduce every
depth-slice by computing the maximum value for every 2 x 2 region. This is illustrated

in Figure 18.

i Single depth slice
112x112x64
poel 111124
” max pool with 2x2 filters
5|16 |78 and stride 2 6 |8
l 3 | 2 [EIIN 314
1| 2 ESHEE
224 downsampling He
112
224 Yy

Figure 18: Illustration of the max pooling operation [128].

Given a volume w, X h, X d, from the previous convolutional layer, pool filter size F' and

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 53

stride S, the output volume dimensions can be determined by

w, — F
wy = 5 +1,
he — F
hy =~ + 1, (22)
d, =d,

The pooling layer introduces no trainable parameters since it computes a fixed function
on its input. Other less common pooling operations are average pooling which computes
average of the 2 x 2 region [129], and L2-norm pooling which computes a sum of squares
for the 2 x 2 region [130].

Fully Connected Layer

The fully connected layer has neurons arranged like a regular neural network, where
every neuron is connected to every input in the incoming activation volume. Therefore,
a combination of the linear transformations and nonlinearities like ReLU are used to
compute the final activation of the layer. Normally for a task like image classification,
the final activation would have dimension equal to the number of possible classes, and the
elements would be un-normalised class scores that can be passed to a softmax function to
compute the final class probabilities. In the context of video caption generation, we do
not add the softmax layer and instead pass the final activation to the caption generator

as a conditioning vector.

3.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) can be effective at modelling sequential data. They
utilise the neurological concept of working memory [131]. The output not only depends
on the input but also on the previous outputs that are internally represented as context
by the recurrent unit. Unlike regular neural networks and CNNs, RNNs do not require
a fixed length input and, in theory, can produce an arbitrarily long sequence of outputs
given a variable length sequence of inputs. RNNs have demonstrated their effectiveness
in tasks such as machine translation [1, 18|, processing time series |45, 132], processing

videos [20] and caption or paragraph generation [95].

3.3.1 Architecture Overview

RNNSs consist of a recurrent unit that takes in an input and produces an output just like
a regular neural network unit. Additionally and more importantly, the activation that
results from the input is stored as internal context of the unit. Future predictions will

depend on the inputs at that time and also the stored context. The recurrent unit is

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 54

illustrated in Figure 19.

Figure 19: Illustration of the recurrent unit [133].

When processing a sequence with multiple inputs, e.g. translating a sentence from one
language to another, the recurrent unit sequentially processes a source sequence X =
(0,21, ...,27) to produce a target sequence Y = (yo,%1,...,yr). Given the input z; at
time ¢, the unit will produce an activation h; which can be used to predict the output
y;. Crucially, the context h; is stored and used at time ¢ + 1 when processing ;1.
The sequential process is better illustrated in Figure 20, where each time step is shown

separately.

() hw @ @
o R S S l

& 6 &

Figure 20: Ilustration of the unrolled recurrent unit [133].

v
v

At any given time t, the activation h; depends on the input x; and the previous internal

context h;_1. More formally, this dependency can be expressed as

hy = ¢(W, htfla th)- (23)

where ¢ is the RNN and W contains the RNN weights. Given an input x;, the full

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 55

expression for the predicting 1, is as follows:

hy = tanh(Wyphi—1 + Wapay),

(24)
Yo = (Whyhe).

Whn, Wan and Wy, are learnt projection matrices or weights on hy_q, x; and h, respectively,
and p is the softmax fuction. Given an input sequence X = (zg,z1,...,2r), the same
weights are applied at every time step for every input z;. Similarly, the tanh activation is
used to produce h; and the softmax function then produces the prediction y; at every step.
During backpropagation, the gradients for all prediction losses accumulate into updates
for Wy, Wa, and W, since they contribute to the loss at every step. Backpropagation
is performed through all the time steps of the unrolled RNN using a backpropagation-
through-time (BPTT) approach [134].

3.3.2 Limitations of Recurrent Neural Networks

Recurrent neural networks are effective and flexible at handling sequential data with long

term dependencies [135], but they do have some notable limitations that we discuss below.

o Input sequence limit: In theory, the recurrence function in Equation 23 can be
applied over very long sequences, e.g. a large sentence corpus. However, in practice,
it is infeasible to load the entire sentence corpus in memory, store all context vectors
and all losses in order to perform backpropagation. Instead the recurrence function
is applied on a subsequence with a predefined length, similar to batches in mini-
batch gradient descent, where the final context h; of one subsequence becomes the
initial context for the next subsequence. Therefore, RNNs usually have a predefined

sequence length or number of time steps at initialisation.

e Long term dependencies: RNNs apply the same fixed recurrence function in Equa-
tion 29 across all time steps in a sequence. This repeated operation results in mul-
tiple transformations of the input x; and the context h;, which can lead to gradual
loss of relevant context over very long sequences [56]. Consider trying to predict the
last word in the text “I grew up in France in the small town of Carbonne... T speak
fluent French”. In order to narrow down the language, the RNN needs the con-
text of “France”, but the distance between the current step and the relevant context
is large and repeated transformations by the recurrent unit might have completely

diminished the context for “France” in favour of context from the most recent words.

e Vanishing or exploding gradients problem: Directly and repeatedly transforming
the context over long sequences can have profound effects on the gradient flow dy-

namics and trainability of RNNs [56,57,136]. Considering a long sequence X =

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 56

(20,21, ...,27) and the recurrence formula hy; = tanh(Wpphe—1 + Wypay), the gradi-

ents of the loss function with respect to all the contexts look as follows:

AL Ohy Ohyy by Ol
Ohy, Ohi_y Ohi_y Ohi_s ~ 0Ohy’
oL d d d d

o = Whp, - %(ht—l) “Whhn - %(ht—ﬂ - Whn - %(ht—?)) o Wy %(ho)-

(25)

Given gradient of the loss function at time ¢ and using the chain rule, backpropa-
gation recursively computes gradients through the tanh and then through the term
Whinhi_1, for every time step. Gradients are continuously multiplied by W}, from
time ¢t to time 0, since the weight is repeatedly applied at every time step. If the
Wy, matrix is initialised with small numbers the gradient will vanish because of
continuous multiplication with a small numbers. This means the RNN cannot learn
long term dependencies if the gradient information cannot reach distant time steps.
Similarly if the W), matrix is initialised with large numbers, the gradient will ex-
plode because of continuous multiplication with large numbers, leading to infinite

loss and the RNN being unable to converge to a minimum loss.

The vanishing or exploding gradient problem makes it particularly difficult for RNNs to
learn long term dependencies since any long term corrections are gradually decomposed
[56,57,136|. In practice, exploding gradients can be mitigated with gradient norm clipping
[136] while vanishing gradients can be alleviated by a soft constraint [136]. However, these
mitigations do not alleviate the long term dependency problem caused by direct and
complete transformation of the context h; at every time step. In the following section, we

discuss long short-term memory (LSTM) networks that alleviate this problem.

3.4 Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) networks [49] are a variant of RNNs that are specifically
designed to more effectively learn long-term dependencies. Similar to a regular RNN, the
LSTM retains context with h; but also retains a cell state from which information can be
added and removed in a manner regulated by a set of neural network structures called
gates. Crucially, the cell state allows information to flow through time steps without

being significantly transformed.

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 57

® ® ©

:
A TAL A
© ® ©

Figure 21: Illustration of the LSTM unit showing the gates and interactions contained in
one time step [133].

3.4.1 Architecture Overview

The LSTM network is composed of multiple gates that are used to optionally let infor-

mation through the unit. The mathematical formulation of the gates is as follows:

o= f(Wr oz, him1) © e + (Wi, zp, hie) © g(Wy, 2, hy—q), (26)

hy = o(W,, x, hy—1) © tanh(cy).
Symbols 7, f, o indicate the input, forget and output gates. The input and forget gates
use the previous context h; and z; to determine how much information to add or remove
from the cell state ¢;_;. The output gate determines how much information filters into A,
and continues to the next time step. The ® symbol signifies element-wise multiplication

between vectors. We discuss details of the interactions of these gates next.
Forget Gate

The forget gate decides which information to remove from the cell state, and is formulated

as follows:

f=0Wy-[hi-1, 2] + by), (27)
JOci1.

The gate considers the concatenation of the input x; and previous context h;_1, and using
the sigmoid activation, outputs a value between 0 and 1 for every element of the cell state
vector ¢;_;. A value of 1 indicates that the element must be retained while 0 indicates
that it must be discarded. This vector of activations is then element-wise multiplied with
the cell state ¢;_; to apply the updates. Consider trying to predict the correct pronoun in
the text “Anna gave Simba a pass mark and _ was happy”. In order to correctly predict

“he”, the LSTM needs to remove any context related to “Anna” and add context related

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 58

to “Simba”.
Input Gate

While the forget gate determines what information to remove, the input gate decides what
information to store in the cell state. This is done in two parts, first deciding what values
to update and then computing a candidate vector that could be added to the state. These

operations are as follows:

i =o(Wi-[hi1, 24 + bi),
g = tanh(Wg . [ht—h fft] + bg)a (28)
1Og.

Similar to the forget gate, the input gate considers the concatenation of the input x;
and previous context h; 1, and using the sigmoid activation, outputs a value between
0 and 1 for every element of the candidate cell state vector g. A value of 1 indicates
that the element must be updated while 0 indicates that it must not be updated. g is a
vector of new candidate values that can be added to the state. It is computed by also
considering the concatenation of x; and h;, and producing a vector of elements between
—1 and 1 using a tanh activation. Finally the cell state update is computed by element-
wise multiplication between ¢ and g. If ¢ has elements e; such that 0 < e; < 1 and g has
elements e, such that —1 < e, < 1,7 ©® g can be thought of as coupling two concepts at

play when determining which elements of ¢;_; to update:

e 0 < e; < 1: indicates whether the corresponding element e, from the candidate g
must be added to the cell state. In the case of the previous pronoun prediction
example, the LSTM needs to add the element for “Simba”.

e —1 < e, < 1: indicates how much of the element e, from the candidate g must be
added or subtracted to the cell state.

Once the forget gate is computed for information to be removed and the input gate
has been computed for information to be updated in the cell state, the two vectors are

element-wise added to produce the new cell state as follows:

a=fOca1+i0g. (29)

Crucially, this regulated addition and subtraction from the cell state is how the LSTM
ensures that the internal contexts ¢; and h; are not completely transformed in a way that
diminishes relevant information over long dependencies, as is often observed with regular
RNNs. Additionally, the additive interaction between f ® ¢;—; and i ® g ensures that,

during backpropagation, gradients are evenly distributed across these units’ weights W,

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 59

W; and W, all the way through the time steps, thus preventing the vanishing or exploding
gradient problem. The additive operation also serves a similar purpose in residual units
of residual neural networks (ResNets) [6], a very deep variant of CNNs that use additive
connections to not only prevent completely transforming the input, but also as “gradient

highways” during backpropagation.
Output Gate

Once the new cell state ¢; is computed, the output gate determines how much of it filters
through to the next time step as h;. While ¢; is fully retained in the next time step, h;
is passed to next time step while also being used as input for prediction, e.g. through a

softmax classifier at the current time step. The output gate is formulated as follows:

0=0(Wy-[h_1,2] +b,), (30)
hy = 0 ® tanh(c;).

The output gate considers the concatenation of the input x; and previous context h; 1, and
through the sigmoid activation, produces values between 0 and 1 for every corresponding
element of the cell state ¢;. This determines which elements of the cell state filter through
to the next step as part of h;. The cell state is subjected to a tanh activation, producing
values between —1 and 1 and thus determining how much of each element filters through
to the next step in h;. Similar to the modulating operands of ¢ ® g in the input gate, the
operands of the o ® tanh(c¢;) operation decide which elements of ¢, filter through to h; and

how much of those elements filter through to h;.

LSTMs are more robust at learning long-term dependencies compared to regular RNNs
and have thus become the de facto standard for modelling sequential data in machine
translation [1,18], time series [45,132], videos [20] and caption or paragraph generation
[9,10,95]. The LSTM does have notable variants that make architectural changes to the
gates. Gers and Schmidhuber [137] add “peep hole” connections that allow the forget,
input and output gates to also consider the current cell state ¢; in addition to x; and
hi. Another popular variant is the gated recurrent unit (GRU) [96], which combines the
forget and input gate into a single update gate. It also merges the cell state ¢; and internal

context h; resulting in a simpler model than the standard LSTM.

3.5 Encoder-Decoder Architectures

We have discussed the architectural details of CNNs and RNNs, and showed the charac-
teristics that have made them effective solutions for modelling visual and sequential data,
respectively. Research in image and video caption generation has been able to leverage

the strengths of these two models, and has been inspired by work in neural machine

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 60

translation [1,18] in order to translate image or video data into natural language descrip-
tions [9,10,20,24]. The main idea behind encoder-decoder architectures is to inject visual
context into an RNN to act as a conditioning vector when generating words. Therefore,
given an image, the CNN encodes the image into a representation and the RNN decodes
this representation into a natural language sentence. In an RNN unit, the mathematical

formulation can be as follows:

hy = tanh(Wpphe—1 + Wapae + Wipv),

31
= u(Whyhy). ey

The term v is the activation vector from the last fully-connected layer of a CNN, right
before the classifier. The activation vector interacts with an additional weight W,,. Simi-
lar to weights W3, and Wy, the visual weight matrix W, is repeatedly applied across all
time steps, and all gradients from the accumulated loss will be updated during backprop-
agation. As was prevously noted from image and video captioning literature, the LSTM
is usually chosen as the decoder, where the visual activation is injected into the LSTM

cell in one of several possible ways.

e Xu et al. [10] and Devlin et al. [71] initialise the internal context h; with the image

vector, in a method called “init-inject” [70], as follows:

ht =,
= fWp oz, hiz1) © cpmq + (Wi, 2y, hyq) © g(Wy, 24, hi—q), (32)
hy = o(W,, x, hy—1) ® tanh(cy).

e Vinyals et al. [9] and Nina and Rodriguez [75] input the image vector as the first
word in the LSTM, in a method called “pre-inject” |70]:

Ty =0,
Cy = f(Wfaxbht—l) ®Ct—1 +i(Wi,$t,ht_1) ®g(Wgaxt7ht) (33)
hi = o(W,, x, hy—1) ® tanh(cy).

e Donahue et al. [20] and Yao et al. [78] combine the image vector and word at every

time step, in a method called “par-inject” [70]:

2y =10+ L,
= f(Wf7 2t htfl) ©c-1+ ’i(Wm 2ty ht71> © g(W97 2t htfl)v (34)
ht = O(Wo, Zty htfl) ® tanh(ct).

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 61

The encoder-decoder architecture is particularly effective because the two models can
share gradients and thus be jointly trained for the best weight configurations for visual
recognition and caption generation. Additionally, the CNN encoder can be pretrained on
large visual datasets such as ImageNet, UCF-101 or Sports1M [26,51,92], while the LSTM
decoder can be pretrained on large word corpora like Wikipedia [61]. In pratice, the two
models are initialised with pretrained weights to leverage transfer learning, where weights
learnt from one task with a large data set are reused in a different but related task [138|.
The CNN encoder’s fully-connected layer weights can be finetuned for the captioning task,
while the LSTM decoder can be initialised with trained word embeddings [29,31,32|. In
our video caption generator, we use a CNN encoder pretrained on Sports1M and our
LSTM decoder is trained in multiple configurations with jointly trained word embeddings

and finetuned word embeddings.

3.6 Word Embeddings

Word embeddings are a set of techniques that aim to encode the semantic meaning of
words into a geometric space. This is done by associating an n-dimensional vector, called
an embedding, with every word in the defined vocabulary. The relationships between
words can thus be represented by comparing the words’ embeddings. Intuitively, the
L2 or cosine distance between any two embeddings captures their semantic relationship,
i.e. a short distance implies closely related words while a long distance implies relatively
unrelated words. Word embeddings are computed by applying dimensionality reduction
techniques to datasets of co-occurence statistics between words in a large corpus of text
[139]. For image or video caption generation, word embeddings are crucial for generating
sensible natural language descriptions, because they are optimised to predict words that

appear in their respective contexts.

3.6.1 Pretrained Word Embeddings

Pretrained embeddings are obtained either via neural networks or matrix factorisation
based methods. The method of Mikolov et al. [29,30] uses an unsupervised algorithm
to learn word representations in a continuous vector space from large unlabelled text
corpora. The algorithm relies on the distributional hypothesis which posits that words
that are used and occur in the same contexts have similar meanings [28|. The learnt
representations preserve linear regularities such as differences in syntax and semantics.
This enables computation of analogies via vector addition and cosine similarity, e.g.
king - man + woman = queen. Two simple neural network based models are proposed
for computing embeddings. The continuous bag of words (CBOW) produces embeddings
as a byproduct of predicting a central word given surrounding context words that occur

before and after the central word. The continuous skip-gram is similar to CBOW but

Stellenbosch University https://scholar.sun.ac.za

3 TECHNICAL BACKGROUND 62

tries to predict a range of surrounding context words given a central word. Due the sim-
plicity of these models, very accurate high-dimensional embeddings are produced using

large corpora in the order of billions of words.

The approach of Pennington et al. [31], called GLOVE, improves on the skip-gram model
by observing that while skip-gram produces fine-grained structure in the vector space,
demonstrated by computable analogies via vector arithmetic, it poorly utilises the global
word-word co-occurence statistics of corpora since it is trained on local context windows
instead of global co-occurence counts. The resultant model combines the advantages of
both global matrix factorisation and local context window methods. GLOVE leverages the
statistical information by training only on non-zero elements in a word-word co-occurence
matrix rather than the entire sparse matrix or on individual context windows in a large

COTrpus.

These methods for learning word representations assign distinct word vectors for words
in the vocabulary. Therefore, they ignore the morphology of words, i.e. words that take
different forms depending on a change of a few characters. This is a limitation for mor-
phologically rich languages like Turkish or Finnish where some forms rarely occur in the
training corpus making it difficult to learn robust representations. Bojanowski et al. [32]
tackle this problem by directly improving on the skip-gram model, where each word is
represented as a bag of n-grams. An n-gram is an ordered set of n items from a given
piece of text or speech. Each n-gram is associated with a vector representation and words
are represented as a sum of these representations. This approach takes into account the
internal structure of words, resulting in representations that capture words in different

forms.

3.6.2 Jointly Trained Word Embeddings

Word embeddings are computed as a byproduct of a specific language modelling task.
Embeddings are usually parameters in an embedding matrix that is part of a hidden layer
in a neural network. The word representations are confined to the vocabulary of the task,
e.g. words in the English-French translations or descriptions in an image or video caption
generation task. The word embeddings are thus optimised as part of maximising the
correct word prediction when translating a sentence or generating a caption. There is an
inherent trade-off between pretrained embeddings and jointly trained embeddings. Pre-
trained embeddings are learnt from significantly large text corpora and therefore exposed
to many more contexts, but they might not necessarily be immediately transferrable to a
specific task. Jointly trained embeddings are typically exposed to a significantly smaller
vocabulary and thus fewer contexts, but are closely optimised for the desired task. In
our experiments (Chapter 5) we find that either jointly training embeddings or finetuning

pretrained embeddings, seems to be advantageous in getting the best results.

Stellenbosch University https://scholar.sun.ac.za

4 PROPOSED APPROACH 63

4 Proposed Approach

In the previous chapter we discussed in detail the foundational mechanisms of neural net-
works in deep learning. We described how optimisation based techniques are used to train
CNNs and RNNs for visual and sequence modelling tasks, respectively. Encoder-decoder
architectures, that combine CNNs and RNNs, have become a popular choice for jointly
modelling visual and textual information [140], thus pertinent to our study in video cap-
tion generation. Merge architectures, that efficiently incorporate visual information when
generating captions, have been shown to generate similarly sensible captions, compared
to the more popular inject architectures in image captioning research [70]. In this chapter
we discuss the overall architecture for our encoder-decoder based video caption generator,
that adapts an image captioning based merge architecture for generating video captions.
Additionally, given this architecture, we choose the evaluation metrics that have become
standard benchmarks for natural language generation, namely BLEU, METEOR, CIDEr
and ROUGE. We discuss the theory and intuition behind these metrics and motivate our

choice for using them in our study.

4.1 Encoder

4.1.1 Architecture Overview

The encoder in our video caption generator is a 3D CNN with spatiotemporal convolutions.
Spatiotemporal convolutional operations differ from normal spatial convolutions in that

they can operate on a video in both the spatial and temporal dimensions.

L]]
H k Activation Map |H

w
(a) Spatial Convolution
kw > Activation Map |H
H L
k
L
w w

(b) Spatial Convolution on 3D input

H k@ 7 Activation Volume |H
k! 7

L L
w w

(c) Spatiotemporal Convolution on 3D input

Figure 22: Illustration of different convolutional operations on image and video input.
Image inspired by [25].

Stellenbosch University https://scholar.sun.ac.za

4 PROPOSED APPROACH 64

e Spatial convolutions on 2D input: An example input is an image which in fact is a
3D input with a width, height and depth for the RGB colour channels. A regular
CNN filter of dimensions depth x k x k extending the entire depth of the input,
spatially operates on the input and typically produces a width x height activation
map as in Figure 23(a).

e Spatial convolutions on 3D input: An example input is a video which is a collection
of image frames, where every frame is depth x width x height. Therefore the full
dimensionality of the video volume is (L - depth) x width x height, where L is the
number of frames or the temporal dimension of the video. A regular CNN filter of
dimensions (L - depth) x k x k spatially operates on the video volume and, because
of the dot-product operation between the kernel and the input, collapses the input
volume in the L - depth dimension to produce a width x height activation map as in
Figure 23(b). This spatial operation may lose temporal information that is critical

for video classification [26], action recognition [25] and caption generation [14].

e Spatiotemporal convolutions on 3D input: Given a video input volume of dimensions
(L - depth) x width x height, the 3D CNN filter is of dimensions (I - depth) x k x k
where | < L, and uses a stride of 1 both spatially and temporally. Since the kernel
extends only a depth [in the video volume, it can operate spatially and temporally
through the L frames, producing an (L - depth) x width x height activation volume

as in Figure 23(c). Given such an activation volume, a pooling filter also operates

2 X 2

Spatiotemporal convolutions and pooling operations therefore preserve some tem-

spatially and temporally to produce an (L - depth) x activation volume.
poral information that can be critical for video classification, action recognition and
caption generation. A 3D CNN is effective at producing a feature vector that en-
codes temporal information, critical in order to describe actions, scenes and objects

in video, and thus pertinent for our video caption generator.

4.1.2 Training

We initialise the 3D CNN encoder and, for every network layer, transplant weights trained
on the Sports1M dataset for sports video classification [25]. The encoder is automatically
able to extract and preserve generic spatiotemporal features in open domain videos that
are not in the sports category. For every video in the MSVD dataset [27|, the encoder
takes 16 x 171 x 128 x 3 video segments as input, where 16 is the number of frames, 171
is the width, 128 is the height and 3 is the colour channel depth. The encoder transforms
the video segments into 4096-dimensional feature vectors used as visual information for
training the decoder. We elaborate on the cadence with which we sample the 16 frames

per video, as part of the next chapter.

Stellenbosch University https://scholar.sun.ac.za

4 PROPOSED APPROACH 65

4.2 Decoder
4.2.1 Architecture Overview

The decoder is composed of a 256 x V' embedding layer, where V' is the vocabulary size of
the most frequently occurring words in the captions across the dataset. The embedding
layer is comprised of an embedding matrix, which is a set of trainable parameters used
to encode the meaning of words in vectorised form [29, 31, 32]. Given a 10000 word
vocabulary, i.e. V' = 10000, every word is first represented as a 10000 length one-hot
vector where the 1 is an arbitrary position assigned to that word in the vocabulary. This
lookup position is later used to reference the word during predictions by the decoder. The
word’s embedding is computed by multiplying the embedding matrix, which is randomly
initialised, and the one-hot vector representation of the word. The process is illustrated

in the following equation:

02 03 ... 1 0.2

0.3 —0.3 0 0.3

~
[256, 10000] word embedding matrix ~ [10000, 1] one-hot word input [256, 1] word embedding output

The 256 x 1 word embedding is used as input, x;, into a 256-dimensional LSTM unit,
that updates the cell state ¢; and computes the hidden state h;, both of which are 256-
dimensional. The 4096-dimensional video feature vector from the encoder is condensed
into a 256-dimensional vector through a trainable fully-connected layer. Inspired by the
merge architectures described by Tanti et al. [70], the condensed video feature is merged
with the LSTM output h; via element-wise addition. The resulting 256-dimensional vector
is passed through a fully-connected layer, and then passed into a softmax classifier. The
softmax classifier produces a probability distribution over all the 10000 words, where the

most probable word’s position is used to look up the original word in text form.

4.2.2 Training

The caption generator is trained using the MSVD dataset [27] which is comprised of 1970
open domain videos, each of which having an average of 41 captions in multiple languages,
e.g. English, German, Tamil and Arabic. However, for simplicity, training is done using
only English language captions. The entire dataset is split into 70% for training, 20% for
validation and 10% for testing. Before training, we preprocess every video through the 3D
CNN encoder to produce a video feature vector. These feature vectors and captions form
(video, caption) pairs that we use for training the decoder. For every (video, caption) pair,
the decoder begins with the start token startseq as x; and, through the embedding layer
and LSTM unit, predicts the hidden state h;. The softmax classifier then predicts the

Stellenbosch University https://scholar.sun.ac.za

4 PROPOSED APPROACH 66

N [H LSTM »[LSTM]
4, 096 vector

|Ew(, |Ew1 |Ew,1

& & @

Figure 23: lustration of our full encoder-decoder architecture.

next word, y;, using the merged result video + h;. The next input x;, is a concatenation
of the first two words startseq and y; and this, along with the video, is used to generate
the next word y,,1. The decoder repeats this recurrent prediction cycle until the end

token endseq is generated. The caption generation process is illustrated in Listing 8.

vid = 3d_cnn(video) # extracting the video feature

Input # Output
(vid, startseq) a

(vid, startseq a) lion
(vid, startseq a lion) chasing
(vid, startseq a lion chasing) a

(vid, startseq a lion chasing a) gazelle
(vid, startseq a lion chasing a gazelle) endseq

Listing 8: Example caption generation by the decoder through multiple time steps.

At every time step t, the decoder predicts the next word using the embedding matrix
and LSTM weights. After the endseq has been generated, all the prediction losses at
every time step are summed up to update the weights. Backpropagation through time
(BPTT) is applied to the LSTM weights and the embedding weights since both sets of
parameters contribute to the prediction loss at every time step. The overall encoder-

decoder architecture is fully illustrated in Figure 23.

Stellenbosch University https://scholar.sun.ac.za

4 PROPOSED APPROACH 67

4.2.3 Design Motivations

In designing the caption generator, there are several considerations in order to best support

our experiments.

e Merging visual and semantic information: Our decoder merges the video feature
vector and the hidden state h; from the LSTM unit. Unlike the more prominent
inject architectures that incorporate visual information either through the hidden
state [71] or as the first word in the LSTM [9, 20, 75, 78|, merge architectures sep-
arately handle the two streams of information which simulatenously preserves vi-
sual information, critical for influencing word predictions in the video description,
and reserves all LSTM capacity for modelling semantic information. Literature on
image captioning [70] has shown that merge archictectures maintain comparable
performance against inject archictectures while using significantly smaller LSTM
dimensions, which has important model engineering implications. We adapt this

technique in video captioning, replacing the image features with video features.

e Jointly training embeddings: Instead of using pretrained word embeddings, we train
our word embedding matrix as a by-product of optimising all decoder parameters
for accurate caption predictions. As a rule-of-thumb, pretrained word embeddings
result in a more expressive decoder that generates diverse captions because the em-
bedding matrix is trained on a large and diverse vocabulary. Therefore pretrained
embeddings are suitable for tasks with relatively small datasets, while jointly train-
ing them is suitable when the task’s training set is sufficiently large. There is an
inherent trade-off between the two strategies because, although pretrained embed-
dings can produce more diverse captions, they are likely to be biased towards the
word distribution in the large dataset of the pretraining task. Conversely, while
jointly training embeddings with the decoder will lead to less diverse captions, it
simplifies the decoder, making it end-to-end trainable with only (video, caption)
pairs. This may also result in optimal embedding parameters for the caption gener-
ation task as opposed to parameters trained on a possibly different task. In terms of
caption generation, we compare in the next chapter the performance difference be-

tween pretrained embeddings, a trained embedding layer and finetuned embeddings,
according to the BLEU, METEOR and CIDEr benchmarks.

e Dropout as a regulariser: We use dropout regularisation [116] on the video features
from the encoder and on the vectorised output of the embedding layer. Dropout
discourages neural network parameters from co-adapting towards the optimisation
goal which can lead to overfitting. It also efficiently simulates ensemble training
where different thinned networks are sampled during different training steps, leading

to better performance. It regulates tight coupling between static visual information

Stellenbosch University https://scholar.sun.ac.za

4 PROPOSED APPROACH 68

and semantic information, thus also reducing overfitting.

4.2.4 Model Implementation Details

We implement our model using components in the Keras library with Tensorflow as the
backend [141]. The 3D CNN encoder’s architecture is inspired by the work of Tran
et al. [25], but with its parameters set as weights pretrained on the SportsIM video
classification dataset [26]. We generate 16 frame video clips, for the all sampling strides,
using the OpenCV library [142|. The encoder takes the video clips as input and generates a
4096-dimensional representation which is stored in the serialised pk1 format. Additionally,
we use Keras to implement the decoder, consisting of a dense layer to condense the video
representation from 4096 to 256 dimensions, an embedding layer, an LSTM cell, and
another dense layer before the final softmax activation. For our embeddings, we either
randomly initialise the embedding layer and jointly train with the rest of the decoder
parameters, transplant GLOVE embeddings pretrained on the English Wikipedia dataset
[139], or transplant and finetune the pretrained GLOVE embeddings with the rest of the

decoder parameters.

4.3 Evaluation Metrics

Evaluation of generated video captions is a challenging task because there is no specific
ground-truth or right answer that can be used as reference for benchmarking accuracy.
A video can be correctly described in multiple varied sentences that differ syntatically
and semantically. This is particularly the case with the MSVD dataset we use in our
study, where multiple ground-truth captions are available for the same video. Several
evaluation metrics have been proposed in order to not only tackle this ambiguity, but
also ensure that a performant caption generator produces sentences that are highly cor-
related with human evaluations. For automatic evaluation, three evaluation metrics are
adopted from machine translation, namely bilingual evaluation understudy (BLEU) [34],
recall oriented understudy for gisting evaluation (ROUGE) [36,37] and metric for evalua-
tion of translation with explicit ordering (METEOR) [35]. Additionally, consensus based
image description evaluation (CIDEr) [38] and semantic propositional image captioning
evaluation (SPICE) [143] were proposed fairly recently. These were designed specifically
for image captioning and are also being used in video captioning tasks [140|. We briefly

discuss each of these and highlight their respective merits and demerits.

4.3.1 Bilingual Evaluation Understudy (BLEU)

BLEU [34] is a widely adopted algorithm used to quantify the quality of machine generated
text. It measures the correspondence between a candidate sentence and ground-truth

sentences. The approach works by counting matching n-grams in the candidate sentence

Stellenbosch University https://scholar.sun.ac.za

4 PROPOSED APPROACH 69

and ground-truth sentences. The score varies from 0, where n-grams of the candidate
sentence do not overlap with any n-grams in any of the ground-truth sentences, to 1,
where they exactly match ground-truth n-grams. A high-scoring sentence should match
a ground-truth sentence in length, word choice and word order. BLEU can have many n-
gram length based variants, e.g. BLEU-1 evaluates unigram matches. In practice BLEU-4
is the n-gram length most correlated with human judgements [34]. BLEU is inexpensive
to calculate, language independent and has been found to be well correlated with human
judgement [140]. However, it does not directly account for recall in its evaluation. Recall
is important because it measures the proportion of n-grams in the candidate sentence
that are in the ground-truth sentences and therefore a measure of how much content
was retained [35]. Additionally, it was primarily designed for evaluating translations at a

corpus level and therefore not fully suitable for evaluation over single sentences.

4.3.2 Recall Oriented Understudy for Gisting Evaluation (ROUGE)

ROUGE [36] is a metric for evaluating text summaries and machine translations. Similar
to BLEU, ROUGE is also computed by varying the n-gram count, i.e. unigrams, bigrams
and higher order n-grams. Unlike BLEU which is precision based by matching n-grams
between candidate and ground-truth sentences, ROUGE also includes a recall measure
which measures how much of the ground-truth is recovered or captured by the candidate
sentence. For a given a candidate and ground-truth sentence, ROUGE-1 recall which is

the measure of overlap for unigrams would be computed as:

recall = -2 : (36)

Nyef

where n, is the count of overlapping unigrams between the candidate and the ground-truth
and n,.r is the total number of words in the ground-truth. However, in order to ensure
that the candidate sentence is concise, ROUGE has an additional precision term which
measures how much of the candidate is relevant or needed to match the ground-truth.

Assuming ROUGE-1 again, the precision term is computed as:

Mo

precision = (37)

Neand 7
where n, is the count of overlapping unigrams between the candidate and the ground-
truth and n.4,q is the total number of words in the candidate. For sentences that are both
concise and overlap with the ground-truth, the recall and precision terms are combined

to produce an F-measure as follows:

Foo. (precision - recall) (38)

precision + recall

Stellenbosch University https://scholar.sun.ac.za

4 PROPOSED APPROACH 70

Impossible is try who to him nothing there will There is impossible to him try nothing will who

Thefe is nothing impossible to him who will There is nothing impossible to him who will try

(@) Example alignment with many intersections (b) Example alignment with few intersections

Figure 24: Illustration of unigram alignments between a candidate sentence and a ground-
truth sentence.

ROUGE-L [37] is a variant of ROUGE that is usually used in image and video captioning
evaluation. The metric computes the precision and recall scores of the longest com-
mon sub-sequence (LCS) between candidate and ground-truth sentences. The intuition
with this metric is that the longer the common sub-sequence, the higher the similarity
between the candidate and ground-truth sentences. ROUGE-L does not require consec-
utive matches but rather considers in-sequence matches that reflect sentence level order
in n-grams. It also automatically includes the longest in-sequence common n-grams and

therefore, unlike BLEU-n discussed above, predefining n-gram length is not required.

4.3.3 Metric for Evaluation of Translation with Explicit Ordering (METEOR)

METEOR |35] is designed to alleviate the drawbacks of BLEU of exact lexical matching,
by introducing semantic matching. The algorithm leverages WordNet [144], a lexical
database for the English language, in order to accomplish multiple matching levels, namely
exact token, stemmed token, synonymy and paraphrase matching. The score is computed
based on the alignment between a candidate sentence and ground-truth sentences. During
the process of alignment, every sentence is taken as set of unigrams with each unigram
being mapped to zero or one unigram in a ground-truth sentence. Given one candidate
sentence and a ground-truth sentence, if there exists more than one alignment with the
same number of mappings, e.g. Figure 24, then the alignment with the smallest number

of intersections is chosen, in this case alignment (b).

The final score is a function of unigram recall and precision measures which are calculated
independently. Similar to ROUGE |[36], the precision measures how many of the unigrams
are relevant for a correct candidate sentence, and recall measures how much of the ground-
truth’s content is retained in the candidate sentence. The unigram precision is calculated
as follows:

me

P p—

(39)

)
Meand

where m, is the number of unigrams in the candidate sentence that are found in the

ground-truth sentence, and m.,,q is the number of unigrams in the candidate sentence.

Stellenbosch University https://scholar.sun.ac.za

4 PROPOSED APPROACH 71

The unigram recall is calculated as follows:

me

R:

(40)

)
Myef

where m,, similar to unigram precision, is the number of unigrams in the candidate
sentence that appear in the ground-truth and m,.s is the number of unigrams in the
ground-truth sentence. The precision and recall are combined using a harmonic mean

where the recall is weighted 9 times more than precision:

10PR

mean — m (41)

However, the F,cq, score only ensures congruency of individual words between candidate
and ground-truth sentences. In order to ensure congruency for longer sentence segments,
longer n-gram matches are used to compute an alignment penalty. First the candidate
sentence’s unigrams are grouped into the fewest possible chunks that, when mapped, are
adjacent in the ground-truth sentence. The alignment penalty is directly proportional the
number of chunks, for example more chunks imply the candidate sentence is fragmented

into multiple chunks that are adjacent to corresponding chunks in the ground-truth. The

2
C
=0.5- 42
p <Umap>) ()

where ¢ is the number of chunks and U, is the number unigrams mapped from the

penalty is computed as:

candidate to the ground-truth sentence. The METEOR score for a segment is calculated

as follows:
Fmeteor = Fmean : (1 - p)‘ (43)

To compute the score over a whole corpus or multiple sentence segments, the aggregate
values of P, R and p are combined using the same formula in Equation 47. In the
case where there are multiple ground-truth sentences for a given candidate sentence, the
highest METEOR . score between a candidate and ground-truth sentence is adopted as
the final score. METEOR has demonstrated better correlation with human judgements
compared to BLEU, and performs better than other contemporary metrics for image

captioning [145].

4.3.4 Consensus Based Image Description Evaluation (CIDEr)

CIDEr [38] is a metric designed for evaluating image captions based on a measure of con-
sensus between candidate and ground-truth sentences. Given an image, CIDEr evaluates

how well a candidate sentence matches the consensus of a set of ground-truth sentences.

Stellenbosch University https://scholar.sun.ac.za

4 PROPOSED APPROACH 72

The approach first stems off all words in the candidate and ground-truth sentences, for
example “work”, “worked” and “working” are converted to the root “work”. Every sentence
is subsequently represented as a set of 1 to 4 length n-grams. Consensus encodes how
often n-grams in the candidate sentence occur in the ground-truth sentences. Conversely,
n-grams not present in the ground-truth are not expected to be in the candidate. Fi-
nally, n-grams that commonly occur across all ground-truth sentences for all images in
the dataset should be disregarded as they are likely to be less visually informative. In
order to encode this intuition, the n-grams are assigned weights using the using term fre-
quency inverse document frequency (TF-IDF) [146]. The “term frequency” term assigns
large weights for n-grams that occur frequently in the ground-truth sentence of an image,
whereas the “inverse document frequency” term assigns small weights on n-grams that fre-
quently occur across the whole dataset. Given these weights, a candidate sentence ¢; and
set of ground-truth sentences S for image i, the CIDEry, score for k-length n-grams is com-
puted using the average cosine similarity between candidate and ground-truth sentences,

as follows:

oL L 85(e) 8 (sy)
CIDEra(ci, §) = Z lg*(c:) g™ (s;)]” "

where g¥(c;) and g*(s;) are vectors formed by ¢*(¢;) and ¢*(s;), corresponding to weights
encoding the frequency of k-length n-grams in the candidate and ground-truth sentences,
respectively. m is the number of ground-truth sentences describing the image 7. In order
to capture the grammatical properties and richer semantics of the text, CIDEr uses higher
order n-grams in its final score by combining scores from n-grams of varying length as
follows:

N
CIDEr(c;,) = Y w,CIDEr,(c;, S), (45)

n=1
1
where N = 4 and w,, being uniformly N having been found to work well [38].

4.3.5 Semantic Propositional Image Captioning Evaluation (SPICE)

SPICE [143] is the most recently proposed metric for image and video captioning. The
approach is based on decomposing the candidate sentence into a scene graph and then
grouping the nodes into tuples of the candidate and ground-truth sentences. This inter-
mediate representation of the candidate and ground-truth sentences encodes the semantic
propositional content they are describing. The scene graph is used to parse the candidate
sentence into semantic tokens such as object classes, relation types and attribute types.
For example a SPICE scene graph parses a candidate sentence, ¢, into a scene graph tuple

using the following;:

G<C) = [O(C), E(C)v K(C)]7 (46)

Stellenbosch University https://scholar.sun.ac.za

4 PROPOSED APPROACH 73

where G(c) denotes the scene graph, O(c) is the set of objects, E(c) denotes relationships
between objects and K (c) denotes objects’ attributes. Using these tuples, recall and pre-
cision measures are calculated and the final score for SPICE is calculated using a similar
F-measure defined for ROUGE in Equation 38. For our study we choose to evaluate video
captions using BLEU, METEOR, CIDEr and ROUGE metrics because of their comple-
mentary qualities. While BLEU is widely adopted in literature, we noted its deficiencies
that are alleviated by taking recall into account using ROUGE. METEOR extends preci-
sion and recall beyond individual words into longer sentence segments while introduction
synonym matching. We incorporated CIDEr because it is one of the metrics specifically
designed for the captioning task unlike BLEU and METEOR that are adopted from ma-
chine translation. We do not include SPICE in our experiments for practical reasons
because we found computing and caching the scene graphs for the ground-truth sentences

to be too expensive on our limited compute resources.

Stellenbosch University https://scholar.sun.ac.za

5 EXPERIMENTS AND RESULTS 74

5 Experiments and Results

Generic image descriptors, learnt in image classification tasks, have been used effectively
in other related tasks e.g. object detection [7,8,42,43|, semantic segmentation and image
caption generation [9,10|. In the same vein, generic video descriptors have been developed
using spatiotemporal convolutions (3D CNNs) for video classification [25,26] and pose es-
timation [147]. Using a generic video descriptor trained on a video classification task [26],
we train a video caption generator with multiple video features obtained using temporal
sampling. We perform the temporal sampling with a constant temporal stride between
sampled frames in a video. Since our encoder-decoder model is pretrained to sample 16
frames for every video, following the approach by Tran et al. [25], we devise experiments
to determine how temporal sampling affects the quality of the generated captions. In this
chapter we discuss the experiments and results of our encoder-decoder architecture using

pretrained and jointly trained semantic embeddings.

5.1 Experimental Setup

(a) Consecutive Frames (b) Every 2nd Frame (c) Every 3rd Frame

(d) Every 4th Frame (e) Every 8th Frame (f) Every 10th Frame () Every 16th Frame

Figure 25: Hlustration of sampling stride used during experiments. The caption generator
is separately trained with video features resulting from every sampling configuration.

For the entire video dataset, we sample video features that will be used as visual features in
our caption generator. The sampling configurations are as illustrated in Figure 25. We use
video features in the validation and test sets for evaluating accuracy and generalisation.

We outline the steps taken to convert the input videos into video features below.

Stellenbosch University https://scholar.sun.ac.za

5 EXPERIMENTS AND RESULTS 75

e We extract video volumes that will be used to condition the caption generation,
from the MSVD open domain video dataset [27]. For every video we create 7
separate video volumes, by sampling 16 frames with a temporal stride of ¢, where
i€{1,2,3,4,8,10,16}. For example, for i = 2, we sample every second frame until
we have sampled 16 frames. D is 3 x 16 x 171 x 128, the dimensions of the video
volume; 3 is the RGB colour dimension, 16 is the number of frames and 171 x 128

is the spatial dimension of every frame.

e We also generate a set of video features corresponding to every video volume. Each
of these features is a 4096-dimensional activation from the 3D CNN encoder, which
is pretrained on the SportsIM dataset with input dimension D [26]. The features
are associated with a list of human generated captions linked to the videos, and we
train the caption generator using the (video feature, captions) pairs. Every caption’s
words are vectorised through the embedding layer and passed into the LSTM unit.
We concatenate the hidden state h; with the video feature via element-wise addition
before the final word prediction [70].

e We train the decoder by minimising the categorical cross-entropy loss on predicting
the corresponding ground-truth word, at every time step. The loss function is as

follows:

w
J=— Zyilog(f(y)i% (47)

where y; is the ground truth in the vocabulary of size W, and f(y); is the softmax

classification score of the target word y;:

esvi

fly)i = W

(48)
For every sampling stride i € {2,3,4, 8,10, 16}, we train a decoder for 100 epochs using
a single Nvidia GTX 1060 GPU. One epoch represents a time period in which the model
has observed every (video feature, captions) in the training set. After observing the model
performance over multiple experiments, we include early stopping to speed up experi-
mentation. Early stopping terminates training when the model’s validation loss does not
improve for a preset number of epochs. This not only helps to speed up experimentation
but prevents the model from overfitting on the training set which will regress performance

on the test set.

5.2 Dataset

We use the Microsoft Video Description (MSVD) [27] open doman video dataset for all

our experiments. The dataset consists of 1970 variable length videos, each between 10

Stellenbosch University https://scholar.sun.ac.za

5 EXPERIMENTS AND RESULTS 76

and 60 seconds long, drawn from diverse categories including sports, cooking, animals,
movie clips and music. Each video depicts a single, fairly unambiguous action or event.
Additionally, each video is annotated with about 41 natural language descriptions, across
35 languages including English, German, Hindi, Tamil and Mandarin. In addition to being
useful for video caption generation, the dataset effectively provides parallel translations
which are useful in machine translation tasks. For simplicity in our experiments, we utilise
only the English captions. Due to the variable length and disparate quality of videos, we
studied some descriptive statistics of the dataset in order to inform our choices for frame
sampling and facilitate fair comparison between high framerate and low framerate videos.

The statistics are given in Table 1.

Statistic Frame count Duration (seconds) Frames per second
Min 41 1.74 6.00
Max 1799 60.03 60.00
Mean 275 9.65 28.98
Median 240 8.02 29.95
Standard deviation 192 6.18 8.56
25th percentile 150 6.01 25.00
50th percentile 240 8.02 29.95
75th percentile 326 11.01 29.98

Table 1: Descriptive statistics in the MSVD dataset.

When preprocessing every video, we sample 16 frames due to the input dimension D =
3 X 16 x 171 x 128 upon which our 3D CNN is pretrained. This means that in some of
our sampling configurations (shown in Figure 25), some videos might not have sufficiently
many frames to add up to 16. In such cases we pad the volume with all zero frames
until we have 16 frames. Therefore large strides can discriminate against videos with
low frame counts or frame rates. However, there is an inherent trade-off between large
strides that cover longer portions of a video, versus shorter strides that cover shorter
portions of the video but ensure more image frames are likely to be sampled for the
video’s resulting visual feature. For example, 41 is the lowest frame count and therefore
1 or 2 stride configurations would ensure that for all videos, there will be enough image
frames to sample. On the other hand, when using the 16 stride configuration, about 41%
of the videos have 256 or more frames in order to avoid the zero padding. This trade-off is
balanced by the 8 and 10 stride configurations which simultaneously cover longer portions
of videos while ensuring that most videos have enough frames to sample, as illustrated in
Figure 26.

Stellenbosch University https://scholar.sun.ac.za

5 EXPERIMENTS AND RESULTS 7

100

0 0 2 4 6 10 2 1

8
Stride

8 3 8

Percentage of Videos

=]

16

Figure 26: Comparison between the stride configurations and the percentage of videos
with enough frames to sample.

We split our data into 70% for training, 20% for validation and 10% for the testing. We
also preprocess the associated captions by first stripping all punctuation and building a
vocabulary of 10452 most frequently occurring words. Every word is assigned a uniquely
identifiable integer index, which the decoder and softmax classifier will attempt to predict
through the assigning of highest probability. The predicted index is then used to look up
the associated word, adding to the natural language description. Therefore the embedding
matrix that encodes the semantic representation of every word in the vocabulary, is of
dimension 256 x 10452.

5.3 Quantitative Results

We train the video caption generator using the seven different sampling configurations
outlined in the Section 5.1. For every one of these configurations, we evaluate the resulting
model’s caption generation capability using the BLEU, METEOR, CIDEr and ROUGE-
L metrics 34,35, 37,38] that we discussed in the previous chapter. In addition to these
sampling configurations, we train our models using jointly trained embeddings, pretrained
GLOVE embeddings [31] and finetune GLOVE embeddings [31] to determine which of

those embedding configurations might result in the best quality captions.

5.3.1 Jointly Training Word Embeddings

In this configuration, the embedding layer of the caption generator is randomly initialised

as a trainable set of parameters. During backpropagration through time, the embedding

Stellenbosch University https://scholar.sun.ac.za

5 EXPERIMENTS AND RESULTS 78

matrix is updated along with the parameters of the LSTM unit. In particular, only the
embeddings for the words that were predicted are updated instead of the entire embed-
ding matrix, since they are responsible for the evaluated loss. In this experiment, the
embedding layer only learns the context and semantics of the words that appear in the
vocabulary of the ground-truth captions. With this model, we present the results of eval-
uating caption generation quality, according to the aforementioned benchmarks, in Table
2 and Figure 27.

Stride BLUE-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROGUE-L CIDEr

1 0.621 0.481 0.331 0.208 0.239 0.529 0.297
2 0.614 0.461 0.298 0.189 0.226 0.526 0.257
3 0.620 0.469 0.317 0.190 0.233 0.541 0.275
4 0.661 0.513 0.353 0.218 0.251 0.549 0.318
8 0.629 0.482 0.332 0.219 0.244 0.545 0.320
10 0.641 0.502 0.340 0.212 0.250 0.539 0.280
16 0.636 0.474 0.320 0.212 0.242 0.540 0.291

Table 2: Experimental test results using jointly trained embeddings.

BLEU_1
0.6

ROUGE_L
0.5

BLEU_ 2

0.4

Metric Score

BLEL_3
0.3 CIDEr

METEOR

BLEU_4
0.2

2 4 6 8 10 12 14 16
Stride

Figure 27: Illustration of experimental test results using jointly trained embeddings.

From our experiments, we obtain the best caption quality for the 4 and 8 strides that cover
relatively long portions of the video. However the performance diminishes slightly for large
strides because video volumes are padded with more all zero frames, which translates to

loss of visual data that is otherwise useful for caption generation. Although the jointly

Stellenbosch University https://scholar.sun.ac.za

5 EXPERIMENTS AND RESULTS 79

trained embeddings are closely optimised for the caption generation task, they are fairly
limited to a small vocabulary of 10452 words which can lead to the caption generator
reusing more captions from the training data. In pursuit of more diverse captions, we
introduce pretrained GLOVE embeddings that are based on a much larger word corpus.

We elaborate on this addition in the following section.

5.3.2 Transplanting Pretrained Word Embeddings

In this configuration, the embedding layer and the LSTM unit are jointly trained similar
to the previous section. However, at evaluation time, we replace the embedding layer with
GLOVE word embeddings pretrained on a large Wikipedia dataset [31,61]. GLOVE is an
unsupervised learning algorithm that produces vector representations of words by using
co-occurrence statistics of words in a large corpus [148]. We first initialise an embed-
ding matrix of zeros, then from the GLOVE embeddings we select the set of embeddings
corresponding to the words in the vocabulary of the ground-truth captions [139]. Each
selected word embedding is a 200-element vector that encodes the associated word’s se-
mantic meaning, learnt during pretraining. To conform with the 256 x 10452 dimension
of the embedding layer, we zero pad every 200-element vector with 56 additional elements

to be used with a 256 x 10452 matrix that we set as weights for the embedding layer.

The intuition with this strategy is that word representations from a pretrained embedding
encapsulate much richer semantics since they are trained on a much larger dataset and
therefore encounter many more word co-occurrences across more contexts, as opposed to
the limited set of ground-truth captions. However, this means that words that appear
in the captions but not in the GLOVE embeddings will have a 256-vector of zeros and
will remain without any semantic meaning encoded in the embedding matrix’s geometric
space. However, we found that this only affected words that were misspelled in the
vocabulary. We report results of running the aforementioned benchmarks using pretrained

embeddings in Table 3 and Figure 28.

Stride BLUE-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROGUE-L CIDEr

1 0.231 0.087 0.018 0.00 0.108 0.374 0.075
2 0.056 0.020 0.004 0.00 0.069 0.196 0.041
3 0.139 0.041 0.013 0.00 0.099 0.303 0.072
4 0.094 0.018 0.000 0.00 0.082 0.288 0.068
8 0.129 0.033 0.006 0.00 0.075 0.265 0.056
10 0.179 0.053 0.009 0.00 0.082 0.308 0.053
16 0.189 0.055 0.000 0.00 0.088 0.330 0.060

Table 3: Experimental test results using pretrained GLOVE embeddings.

Stellenbosch University https://scholar.sun.ac.za

5 EXPERIMENTS AND RESULTS 80
CIDET BLEU_1
035 —— BLEU 4 ROUGE_L
BLEU_3 METEOR
BLEU_2
0.30
0.25
g
o
@ 0.20
2
2 o015
0.10
0.05
0.00 — —
2 4 6 8 10 12 14 16
Stride

Figure 28: Illustration of experimental test results using GLOVE embeddings.

Across all metrics, we obtain the best caption quality when using the shortest stride.
Notably the overall scores are significantly worse than when we use a jointly trained em-
bedding layer. In particular, the BLEU score deteriorates significantly to 0 for BLEU-4.
BLEU-4 is the most challenging BLEU metric in our experiments, requiring the model to
generate a caption that retains at least four ordered words or quad-grams from a ground-
truth caption. In this case the generated captions have no quad-grams that overlap with
any of the ground-truth captions, and our qualitative results show that the model gen-
erates unintelligible captions. An explanation for this result is that, although pretrained
embeddings originate from a large word corpus, they are trained on a different learning
task that is not necessarily optimised for caption generation. Therefore simply using these
embeddings without finetuning is similar to randomly initialising the embedding matrix
and freezing the embedding weights. Another explanation for the markedly worse per-
formance is that the particularly important words startseq and endseq, that prime the
decoder to start and stop generating sentences, are not present in the GLOVE embeddings
and therefore are missing vital co-occurrence context that they would otherwise obtain
when jointly trained with the rest of the decoder’s weights. We contrast the difference
in semantic encoding between the pretrained embeddings and the jointly trained embed-
dings, where the first two vectors of the 256 x 10452 matrix represent the startseq and

endseq tokens in Listing 9.

Stellenbosch University https://scholar.sun.ac.za

5 EXPERIMENTS AND RESULTS 81

(2 X 256) startseq and endseq representations using

pretrained embeddings

array(([0., O., 0., 0., O., O., O., 0., 0., O., O., O., 0. ...],
[0., o., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. ...11)

(2 X 256) startseq and endseq representations using

jointly trained embeddings

array([[0.02508733, 0.04892572, 0.04317002, 0.02298352, -0.03714135,
-0.00219072, -0.04738931, 0.03398378, -0.0405638 , 0.00202782,

0.00091969, 0.00147787, -0.01984164, ...],
[0.03953084, -0.04639492, -0.03263773, 0.01540521, -0.00485314,
0.11522665, -0.08679304, 0.09251759, ...11)

Listing 9: Comparison of embeddings for the startseq and endseq words when using
pretrained embeddings versus a jointly trained embedding layer. The embeddings for
startseq and endseq are set to zero vectors in the GLOVE embeddings, versus non-zero
vectors in jointly trained embeddings.

For example given startseq at ¢ = 0, x(is a 1 x 256 vector of all zeros that interacts

with the LSTM unit’s input, forget and output gates as follows:

a1 = f(Wy, o, ho) ® co + i(W;, o, ho) © g(Wy, zo, ho) (49)
hy = o(W,, xg, ho) ® tanh(c;)

xg is concatenated with hg, via an addition operation, then multiplied by the input,
forget and output gates’ weights. z(is not co-adapted with the hidden state hy or cell
state ¢g and thus adds no additional semantic context. Consequently this inexpressive
interaction does not appropriately influence the LSTM unit to generate a sensible word
to follow startseq. In the case of jointly trained embeddings, the startseq and endseq
embeddings are randomly initialised, and then updated during backprogation through
time, as illustrated by the non-zero embedding vectors in Listing 9. Notably, only the
endseq embedding is updated because its occurrence depends on the variable length of
ground-truth captions. This can lead to the example predicted and ground-truth captions

in Listing 10.

Stellenbosch University https://scholar.sun.ac.za

5 EXPERIMENTS AND RESULTS 82

Predicted caption
"startseq Two men are playing a piano endseq"
Ground-truth caption

"startseq Two men are playing a black piano endseq"

Listing 10: Example of a predicted and ground-truth caption.

Cross-entropy loss will be registered between the predicted subsequence "piano endseq"
versus the expected subsequence "black piano endseq", which leads to an update of the
endseq’s embedding to discourage the co-occurrence of the predicted subsequence while
encouraging that of the ground-truth subsequence, when given the caption prefix. Since
there are several ground-truth examples of where the endseq word should occur given the
same video, its resulting embedding encodes a sort of average that most likely results in a
predicted caption that exactly matches any ground-truth caption. In contrast, startseq
is always observed at the beginning of both predicted and ground-truth captions, hence

registering zero loss and thus not needing an update.

Besides startseq and endseq, we also observed that 1884 words from the 10452 vocabu-
lary where missing in the GLOVE embeddings and therefore remained with no meaningful
semantic representation. However, almost all of these words turned out to be mispellings
in the captions that would otherwise result in unintelligible captions in our qualitative
results. Overall the qualitative results of using the pretrained embeddings configura-
tion were also worse, with the decoder generating significantly longer and non-sensible
sentences because of missing co-occurrence context for the startseq and endseq words.
With this result in mind we noted the need to not only incorporate pretrained embeddings
that were trained on a large corpus, but to optimise these embeddings specifically for the

caption generation task.

5.3.3 Finetuned Word Embeddings

In the previous section we demonstrated that replacing the embedding layer’s matrix with
pretrained GLOVE embeddings results in poor caption quality. While pretrained embed-
dings theoretically encapsulate more semantic meaning, they are likely to bias the caption
generator towards generating word sequences that reflect the co-occurrences encountered
in the large Wikipedia corpus. Moreover, the words encountered in the captions but
not in the pretrained embeddings are left devoid of co-occurrence context that is vital
for generating sensible captions, resulting in poor performance as was demonstrated in
the previous section. Since the pretrained embeddings are trained on a different task
and therefore not necessarily optimised for the caption generation task, we finetune the

embeddings for caption generation. To achieve this, we prime the embedding layer with

10

11

12

13

14

15

Stellenbosch University https://scholar.sun.ac.za

5 EXPERIMENTS AND RESULTS 83

the pretrained GLOVE embeddings and then train the caption generator in order to not
only optimise the embeddings for captioning but also fill in the missing context of words
that were not present in the Wikipedia corpus upon which the GLOVE embeddings were
trained. This configuration is similar to jointly training the embedding layer from scratch,
with the only difference being in the initialisation. In Listing 11, we compare the em-
beddings for startseq and endseq words from pretrained GLOVE embeddings versus
finetuned GLOVE embeddings, after training.

(2 X 256) startseq and endseq representations using

pretrained embeddings

array([[0., O., O., 0., O., O., O., 0., 0., O., O., O., 0. ...],
[0., o., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. ...11)

(2 X 256) startseq and endseq representations using

after finetuning pretrained embeddings

array([[0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, ...J,

[2.90071443e-02, -3.23250405e-02, 3.09367999e-02,
-3.57646942e-02, 7.82455876e-02, -7.57628866e-03,
6.80529401e-02, -1.07432917e-01, 3.32835279e-02,
-7.29207993e-02, ...]11)

Listing 11: Comparison of embeddings for the startseq and endseq words when using
pretrained embeddings versus finetuned embeddings.

As we established earlier, the embedding for startseq remains the same since it is always
observed at the same position of every ground-truth caption versus a generated caption,
and therefore generates no cross-entropy loss during training. However the endseq’s
embedding is jointly optimised with other decoder parameters for the caption generation
task. The result is more sensible captions that are more or less the length of those found
in the ground-truth. We present the results of the caption generator using finetuned
embeddings in Table 4 and Figure 28.

Stellenbosch University https://scholar.sun.ac.za

5 EXPERIMENTS AND RESULTS 84
Stride BLUE-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROGUE-L CIDEr
1 0.624 0.479 0.334 0.222 0.240 0.540 0.321
2 0.617 0.475 0.321 0.216 0.241 0.535 0.300
3 0.527 0.374 0.244 0.155 0.221 0.526 0.287
4 0.579 0.435 0.289 0.179 0.240 0.537 0.249
8 0.566 0.434 0.290 0.185 0.234 0.528 0.296
10 0.650 0.502 0.343 0.228 0.248 0.560 0.301
16 0.632 0.498 0.350 0.229 0.245 0.548 0.315

Table 4: Experimental test results using finetuned GLOVE embeddings.

0.6

0.5

0.4

Metric Score

03

0.2

8
Stride

12

BLEU_1

ROUGE_L

BLEU_2

BLEU_3

CIDEr

METEOR
BLEU_4

16

Figure 29: Illustration of experimental test results using finetuned GLOVE embeddings.

Similar to experimental results when using jointly trained embeddings, we find that

sparsely sampling frames generally performs better since a longer portion of the video
is included. In this case we find that the 10 and 16 strides balance the trade-off of the

largest stride while ensuring to have enough non-zero video frames to influence the video

captioning. Additionally, randomly initialising and jointly training the embedding layer,

and finetuning GLOVE embeddings are the best performing strategies, although there is

no clear winner among the two. Table 5 illustrates the best scores on the aforementioned

benchmarks for the two strategies.

Stellenbosch University https://scholar.sun.ac.za

5 EXPERIMENTS AND RESULTS 85

Strategy BLUE-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROGUE-L CIDEr

J.T. 0.661 0.513 0.353 0.219 0.251 0.549 0.320
F.G. 0.650 0.502 0.350 0.229 0.248 0.560 0.321

Table 5: Experimental test results using jointly trained embeddings (J.T.) versus fine-
tuned GLOVE embeddings (F.G.).

5.4 Qualitative Results

Next we present examples of generated captions obtained through the three embedding
configurations, each using the model checkpoint with the best performing stride. We se-
lected a set of videos for which we generate captions with all the embedding configurations,
and qualitatively divide results into good, average and bad. We use the jointly trained
embedding configuration’s results as a benchmark against the other two configurations
that utilise pretrained embeddings. For the jointly trained and finetuned embedding con-
figurations, we report and discuss both positive and negative qualitative results using the
same set of videos. For the pretrained embeddings, we present results that substantiate

the poor performance we noted in the quantitative results.

5.4.1 Jointly Trained Word Embeddings

Ground - truth captions
"man is riding on trotting horse"

"man is riding horse down the street

Generated Caption Ground - truth captions

"person is slicing an onion"
"someone is cutting an onion into pieces"

Figure 30: Experimental test results from using jointly trained embeddings, showing good
caption predictions.

Figure 30 illustrates good captions generated using the model checkpoint trained with
randomly initialised and jointly trained embeddings. The model generates sensible cap-
tions that adequately capture the event or action in the video. Moreover the generated

captions overlap with some that are found in the training dataset.

Stellenbosch University https://scholar.sun.ac.za

5 EXPERIMENTS AND RESULTS 86

Generated Caption Ground - truth captions

"woman is peeling potato") "woman peels an fzpple" ')
woman peels an apple in the kitchen

Generated Caption Ground — truth captions
"woman is playing guitar" "girl is playing flute"
"young lady is playing flute"

Figure 31: Experimental test results from using jointly trained embeddings, showing
average caption predictions.

Figure 31 illustrates average captions using the same model checkpoint. We define average
predictions as instances where the model is able to recognise an action or event but fails to
identify the object or subject. In the first video, the model correctly identifies “peeling”,
but incorrectly identifies an apple as a potato. Similarly, for the second video, the model

identifies the “playing” of an instrument but states the wrong instrument.

Generated Caption Ground - truth captions
"player is playing ball" "men are playing cricket"
" players are playing cricket"

Generated Caption Ground - truth captions
"man is dancing" "girl falls on the balance beam"
" girl has an accident while doing gymnastics"

Figure 32: Experimental test results from using jointly trained embeddings, showing bad
caption predictions.

Figure 32 illustrates bad captions using the same model checkpoint. We define bad pre-
dictions as instances where the model fails to identify the action, objects and subjects in

the video. In the first video the model is able to understand the event as a kind of sport,

Stellenbosch University https://scholar.sun.ac.za

5 EXPERIMENTS AND RESULTS 87

but is unable to identify cricket or the multiple players. Similarly, in the second video, the

model incorrectly identifies a woman as a man and misidentifies gymanstics as dancing.

5.4.2 Finetuned Word Embeddings

Lt 2 S

Generated Caption Ground - truth captions
"man is riding horse" "man is riding on trotting horse"
"man is riding horse down the street"

Generated Caption Ground - truth captions
"man is slicing carrot" "person is slicing an onion"
"someone is cutting an onion into pieces"

Figure 33: Experimental test results from using finetuned embeddings, showing good
caption predictions.

Figure 33 illustrates captions generated for the same videos used as a benchmark for good
captions in the jointly trained embeddings configuration. The model correctly captions the
first video, it correctly identifies the “slicing” action in the second video but misidentifies
the onion as a carrot. These experimental results show that the jointly trained embedding

configuration can perform slightly better than finetuned embeddings.

Generated Caption Ground - truth captions

"woman is slicing potato" "woman peels an apple"
" woman peels an apple in the kitchen"

Generated Caption Ground - truth captions
"man is singing on stage" "girl is playing flute"
"young lady is playing flute"

Figure 34: Experimental test results from using finetuned embeddings, showing average
caption predictions.

Stellenbosch University https://scholar.sun.ac.za

5 EXPERIMENTS AND RESULTS 88

Figure 34 illustrates captions generated for videos used as a benchmark for average cap-
tions in the jointly trained embeddings configuration. The model is able to identify the
subject and “slicing” action in the first video, although it misidentifies the object. In the
second video, it neither identifies the action, subject nor object. For these videos, the

jointly trained embeddings configuration performs better than finetuned embeddings.

Generated Caption Ground - truth captions
"man is running" "men are playing cricket"
" players are playing cricket"

Generated Caption Ground — truth captions
"man is playing the ball" "qirl falls on the balance beam"

" girl has an accident while doing gymnastics"

Figure 35: Experimental test results from using finetuned embeddings, showing bad cap-
tion predictions.

Figure 35 illustrates captions generated for videos used as a benchmark for bad captions
in the jointly trained embeddings configuration. Similar to the jointly trained embedding
model, this model performs poorly on the given videos. In the first video, it generally
understands the “running” but not the overall context of the cricket match within which

it happens. For the second video it fails to identify the action, subject and object.

5.4.3 Pretrained Word Embeddings

From our quantitative results, we noted the significant regression in performance when
comparing caption quality between jointly trained embeddings and transplanting pre-
trained GLOVE embeddings without finetuning. We further qualified this result by not-
ing that the pretrained embeddings are not optimised for the caption generation task. In
this section we illustrate how the qualititative results are equally poor when using this
embedding configuration against all the benchmark videos. In all but the first video of
Figure 36, the model generates non-sensible captions that poorly describe the events in

the videos.

Stellenbosch University https://scholar.sun.ac.za

5 EXPERIMENTS AND RESULTS

Generated Caption Ground - truth captions
"rider on horse" "man is riding on trotting horse"
"man is riding horse down the street"

Generated Caption Ground — truth captions
"slicing slicing slicing slicing slices is to to" "person is slicing an onion”"
"someone is cutting an onion into pieces"

Figure 36: Experimental test results from using pretrained embeddings.

Generated Caption Ground - truth captions
"the is of" "woman peels an apple"

" woman peels an apple in the kitchen"

Generated Caption Ground - truth captions
"eirl girl is is" "girl is playing flute"
"young lady is playing flute"

Figure 37: Experimental test results from using pretrained embeddings.

89

Stellenbosch University https://scholar.sun.ac.za

5 EXPERIMENTS AND RESULTS 90

Generated Caption Ground - truth captions
"boy boy is is" "men are playing cricket"
- " players are playing cricket"

Generated Caption Ground - truth captions
"girl girl is is" "girl falls on the balance beam"
" girl has an accident while doing gymnastics"

Figure 38: Experimental test results from using pretrained embeddings.

5.5 Discussion

In this chapter we elaborated on the experiments conducted and the results obtained
when trying to determine the most efficient way to sample video frames in order to
adequately describe its content. We trained several model configurations using different
sampling strides. In addition to these stride configurations, we trained the models on
three word embedding configurations, namely jointly trained, pretrained and finetuned
embeddings. Our results generally showed that sparsely sampling frames results in better
caption generation quality since a longer portion of the video is covered and therefore
a longer portion of the event in question is captured. However there is an inherent
trade-off between using a short stride that captures a short portion of the video versus
a longer stride which potentially discriminates against short videos which will result in
inadequate video volumes being augemented by zero value frames. The statistics of the
data showed that using 8 or 10 strides simultaneously covers longer portions of videos while
ensuring that most videos have enough image frames to build a feature rich presentation.
Equally important are our findings from experiments on the viability of word embeddings.
We found that randomly initialising and jointly training word embeddings, using the
vocabulary of the ground-truth captions in the training set, is effective for generating
sensible captions at test time. We introduced pretrained GLOVE embeddings and found
that they significantly regress the performance if they are not finetuned for the aption
generation task, having been trained on a different task. Upon finetuning, we found them
to be more or less equally effective as compared to the jointly trained embeddings. Our
results show that pretrained embeddings can be a good initialisation upon which further

task-specific optimisation can be done.

Stellenbosch University https://scholar.sun.ac.za

6 CONCLUSION AND FUTURE WORK 91

6 Conclusion and Future Work

Given the ubiquity of video data being continuously generated on multimedia platforms,
automatic caption generation has far reaching applications in terms of organising this
data for cataloging, indexed searches and content based retrieval purposes. The temporal
nature of videos makes them more complex than images and caption generation algo-
rithms need to be able to efficiently select features needed to adequately describe events
in the video. In our study we discussed how encoder-decoder architectures have been ef-
fectively used in the literature for image caption generation. Inspired by this, we adopted
encoder-decoder architectures for our video caption generator. Just as generic image de-
scriptors can be effective for image caption generation, spatiotemporal convolutions as
generic video descriptors, can be effective for video understanding tasks. We therefore
incorporated spatiotemporal convolutions in our encoder-decoder architecture for video
caption generation. We devised experiments to determine an efficient temporal sampling

rate for selecting a small number of frames needed to adequately describe a video.

Our results generally showed that sparsely sampled video features results in better caption
quality since longer portions of the video are included and thus a longer portion of the
event in question is covered. Pretrained word embeddings have been proven to be effec-
tive priors for encoding word representations in natural language processing tasks [31,32].
With this in mind, we designed experiments to compare the performance of our caption
generator using jointly trained embeddings versus pretrained embeddings. We found that
the model performs more or less equally effectively when using either jointly trained em-
beddings or using GLOVE embeddings that are finetuned for the caption generation task.
We found that simply incorporating pretrained embeddings resulted in poor performance
since the embeddings are not co-adapted with other caption generator parameters for the

captioning task.

Our models have limitations that can be tackled as part of future work. In the previous
chapter we showed that videos in the MSVD dataset not only have variable length but have
different frame counts and frame rates. We manually selected the sampling strides that
we thought could be effective for extracting salient features in the majority of videos.
An improvement would be to train the sampling rate as an additional parameter to
dynamically adapt between videos of disparate frame count and frame rate. We only
tested our temporal sampling hypothesis on the MSVD dataset and therefore the models
where optimised for the visual-semantic co-occurrence statistics of one dataset. For better
generalisation, we would like to test this hypothesis on other video datasets including
MSRVTT [149], a larger dataset with 10000 video clips and 260000 video-caption pairs.

Our models, just like the majority of encoder-decoder architectures, utilise some form of

Stellenbosch University https://scholar.sun.ac.za

6 CONCLUSION AND FUTURE WORK 92

a recurrent neural network (RNN) for generating natural language descriptions. However,
recently, attention based models have been developed with the aim to replace recurrent
units which are inherently serial and therefore not parallelisable during training. Attention
based models like the Transformer [99] are based fundamentally on attention mechanisms
where the probability of a word being the next in a sequence is directly influenced by
a weighted attention of all the preceeding words. This is unlike an RNN where the
probability is conditionally dependent on recursively evaluating the hidden state of all the
preceeding words. Transformer based models are quickly becoming a dominant strategy
for language modelling tasks [150-152] and have been employed recently for dense video
caption generation in videos with multiple overlapping events [100]. We would like to
pursue the use of attention based caption generators with a view to make them more
widely used for video understanding tasks that invariably involve a language modelling
subtask.

Dense video captioning work by Krishna et al. [22] showed that there is a high agreement
in the temporal event segments among human subjects. This is in line with research in
neuroscience which suggests that during narrative perception, brain activity is naturally
structured into semantically meaniful events [153]. This makes dense video captioning a
more well-defined task where the video can be decomposed into discrete events, unlike
general video captioning. The ActivityNet [22] dataset provides an opportunity to train
video caption generators using videos with multiple overlapping events. The resulting
video caption generator would be much more robust to complex open domain videos, as
opposed to those trained on single event video datasets like MSVD and MSRVTT.

Ultimately video caption generation is a subset of the general task of learning the latent
relationship between multiple modalities in order to describe the visual modality using the
textual modality. Besides captions, videos are usually accompanied by audio and speech
data and these can be integrated into an encoder to create a multi-modal feature that
is used as input by the decoder [154]. Experimental results have shown the effectiveness
of using a multi-modal fusion encoder, with significant performance gains on the BLEU,
METEOR, ROUGE and CIDEr benchmarks. In the future we would like to explore
incorporating the audio modality in order to understand how that can improve caption

generation performance.

Stellenbosch University https://scholar.sun.ac.za

93

References

1]

2l

13l

4]

17l

18]

19]

[10]

[11]

[12]

K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the properties of
neural machine translation: Encoder-decoder approaches,” Association of Compu-
tational Linguistics (ACL), 2014.

M. Hodosh, P. Young, and J. Hocknmaier, “Framing image description as a ranking

task: Data, models and evaluation metrics,” International Joint Conference on

Artificial Intelligence (IJCAI), 2013.

P. Young, A. Lai, M. Hodosh, and J. Hocknmaier, “From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions,”
Association for Computational Linguistics (ACL), 2014.

T. Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona,
D. Ramanan, C. L. Zitnick, and P. Dollar, “Microsoft COCO: Common objects in
context,” Furopean Conference on Computer Vision (ECCYV), 2014.

K. Simonyan and A. Zisserman, “Very deep convolulations networks for large-scale
image recognition,” International Conference on Learning Representations (ICLR),
2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
Computer Vision and Pattern Recognition (CVPR), 2016.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for ac-
curate object detection and semantic segmentation,” Computer Vision and Pattern

Recognition (CVPR), 2014.

K. He, G. Gkioxari, and R. Girshick, “Mask R-CNN.,” International Conference on
Computer Vision (ICCV), 2017.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image
caption generator,” Computer Vision and Pattern Recognition (CVPR), 2015.

K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, and
Y. Bengio, “Show, attend and tell: Neural image caption generator with visual
attention,” International Conference on Machine Learning (ICML), 2015.

A. Karpathy, A. Joulin, and L. Fei-Fei, “Deep fragment embeddings for bidirectional

image sentence mapping,” Neural Information Processing Systems (NeurIPS), 2014.

A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for generating image
descriptions,” Computer Vision and Pattern Recognition (CVPR), 2015.

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

[21]

22|

23]

Stellenbosch University https://scholar.sun.ac.za

94

J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille, “Deep captioning
with multimodal recurrent neural networks (m-RNN),” International Conference
on Learning Representations (ICLR), 2015.

L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and A. Courville,
“Describing videos by exploiting temporal structure,” International Conference on

Computer Vision (ICCV), 2015.

A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with deep

convolulational networks,” Neural Information Processing Systems (NeurIPS), 2012.

X. Glorot, A. Bordes, and Y. Bengio, “Domain adaption for large-scale sentiment
classification: A deep learning approach,” International Conference on Machine
Learning (ICML), 2011.

L. Zhang, S. Wang, and B. Liu, “Deep learning for sentiment analysis: A survey.”
arXiv preprint arXiv:1801.07883 (2018).

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learn-
ing to align and translate,” International Conference on Learning Representations
(ICLR), 2015.

L. A. Hendricks, S. Venugopalan, M. Rohrbach, R. Mooney, K. Saenko, and T. Dar-
rell, “Deep compositional captioning: Describing novel object categories without

paired training data,” Computer Vision and Pattern Recognition (CVPR), 2016.

J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
K. Saenko, and T. Darrell, “Long-term recurrent convolutional networks for visual
recognition and description,” Computer Vision and Pattern Recognition (CVPR),
2015.

Y. Pu, M. R. Min, Z. Gan, and L. Carin, “Adaptive feature abstraction for trans-

lating video to text,” Association for the Advancement of Artificial Intelligence
(AAAI), 2018,

R. Krishna, K. Hata, F. Ren, L. Fei-Fei, and J. C. Niebles, “Dense captioning events
in videos,” International Conference on Computer Vision (ICCV), 2017,

S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, and K. Saenko,
“Translating videos to natural language using deep recurrent neural networks,” Con-

ference of the North American Chapter of the Association for Computational Lin-
guistics (NAACL), 2015.

[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

32|

33]

[34]

[35]

[36]

Stellenbosch University https://scholar.sun.ac.za

95

S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, and K. Saenko,
“Sequence to sequence: Video to text,” International Conference on Computer Vi-

sion (ICCV), 2015.

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spatiotem-
poral features with 3D convolulations networks,” International Conference on Com-

puter Vision (ICCV), 2015.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F.-F. L., “Large-
scale video classification with convolutional neural networks,” Computer Vision and
Pattern Recognition (CVPR), 2014.

D. L. Chen and W. B. Dolan, “Collecting highly parallel data for paraphrase eval-
uation,” in Association for Computational Linguistics (ACL), 2011.

J. R. Firth, “A synopsis of linguistic theory 1930-55.,” vol. 1952-59, pp. 1-32, 1957.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word rep-
resentations in vector space,” Neural Information Processing Systems (NeurIPS),
2013.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed repre-
sentations of words and phrases and their compositionality,” Neural Information
Processing Systems (NeurIPS), 2013.

J. Pennington, R. Socher, and C. Manning, “GLOVE: Global vectors for word rep-
resentation,” Empirical Methods in Natural Language Processing (EMNLP), 2014.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with

subword information,” Association for Computational Linguistics (ACL), 2017.

S. Ruder, M. E. Peters, S. Swayamdipta, and T. Wolf, “Transfer learning in natural
language processing,” in North American Chapter of the Association for Computa-
tional Linguistics (NAACL), pp. 15-18, 2019.

K. Papineni, S. Roukos, T. Ward, and W. Zhu, “BLEU: A method for auto-
matic evaluation of machine translation,” Association of Computational Linguistics
(ACL), 2002.

A. Banerjee and A. Lavie, “METEOR: An automatic metric for mt evaluation with
improved correlation with human judgements,” Worshop on Intrinsic FEvaluation
Measures for MT and/or Summarization at Association for Computational Lin-
guistics (ACL), 2005.

C. Lin, “ROUGE: A package for automatic evaluation of summaries,” Association
of Computational Linguistics (ACL), 2004.

Stellenbosch University https://scholar.sun.ac.za

96

[37] C. Lin and F. J. Och, “Automatic evaluation of machine translation quality using
longest common subsequence and skip-bigram statistics,” Association of Computa-
tional Linguistics (ACL), 2004.

[38] R. Vedantam, C. L. Zitnick, and D. Parikh, “CIDEr: Consensus-based image de-
scription evaluation,” Computer Vision and Pateern Recognition (CVPR), 2015.

[39] “Youtube by the numbers stats, demographics and fun facts.” https://www.

omnicoreagency.com/youtube-statistics/. Accessed: 2020-01-30.
[40] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, 2015.

[41] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, and D. Erhan, “Go-
ing deeper with convolulations,” Computer Vision and Pattern Recognition (CVPR),
2015.

[42] R. Girshick, “Fast R-CNN,” International Conference for Computer Vision(ICCV),
2015.

[43] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time ob-
ject detection with region proposal networks,” Neural Information Processing Sys-
tems(NeurIPS), 2015.

[44] O. Abdel-Hamid, A. Mohammed, J. Hui, L. Deng, G. Penn, and D. Yu, “Convolula-
tional neural networks for speech recognition,” ACM Transactions on Audio, Speech
and Language Processing (ACM/TASLP), vol. 22, No. 10, pp. 1533-1545, October
2014.

[45] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent neural net-
works for multivariate time series with missing values,” International Conference on
Learning Representations (ICLR), 2017.

[46] R. Kiros, R. S. Zemel, and R. Salakhutdinov, “Multimodal neural language models,”
International Conference on Machine Learning (ICML), 2014.

[47] A. Mnih and G. Hinton, “Three new graphical models for statistical language mod-

elling,” International Conference on Machine Learning, 2007.

[48] R. Kiros, R. Salakhutdinov, and R. S. Zemel, “Unifying visual-semantic embeddings
with multimodal neural language models,” Neural Information Processing Systems
(NeurIPS): Deep Learning Worshop, 2014.

[49] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,
1997.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

61

[62]

Stellenbosch University https://scholar.sun.ac.za

97

M. de Marneffe, B. MacCartney, and C. D. Manning, “Generating type dependency
parses from phrase structure parses,” International Conference on Language Re-
sources and FEvaluation (LREC), 2006.

J. Deng, W. Dong, R. Socher, L. L. J., and F.-F. L., “ImageNet: A large-scale

hierarchical image database,” 2009.

R. Socher, A. Karpathy, Q. V. Le, C. D. Manning, and A. Y. Ng, “Grounded com-
positional semantics for finding and describing images with sentences,” Association
for Computational Linguistics (TACL), 2014.

A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato, and T. Mikolov,
“DeViSE: A deep visual-semantic embedding model,” International Conference on
Machine Learning (ICML), 2014.

M. Grubinger, P. Clough, H. Muller, and T. Deselaers, “TAPR TC-12: A new eval-
uation resource for visual information systems,” International Worshop Ontolmage,

pp- 13-23, May 2006.

J. Johnson, A. Karpathy, and L. Fei-Fei, “DenseCap: Fully convolutional local-
ization networks for dense captioning,” Computer Vision and Pattern Recognition

(CVPR), 2016,

Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gra-
dient descent is difficult,” IEE Transactions on Neural Networks, 1994.

D. Gilbao, B. Chang, M. Chen, G. Yang, S. S. Schoenholz, H. E. Chi, and J. Penning-
ton, “Dynamical isometry and a mean field theory of Istms and grus,” International
Conference on Machine Learning (ICML), 2018.

R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalan-
tidis, L. Li, D. A. Shamma, M. S. Bernstein, and L. Fei-Fei, “Visual genome: Con-
necting language and vision using crowdsourced dense image annotations,” Inter-
national Journal of Computer Vision (I1JCV), 2016.

B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth,
and L. L., “YFCC100M: The new data in multimedia research,” Communications
of the ACM, vol. 59, No. 2., pp. 64-73, February 2016.

“Amazon Mechanical Turk.” https://www.mturk.com/. Accessed: 2019-05-04.

“Wikipedia multilingual corpus.” https://dumps.wikimedia.org/enwiki/latest/. Ac-
cessed: 2019-04-28.

H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of
Mathematical Statistics, vol. 22, No. 3., pp. 400-407, September 1951.

Stellenbosch University https://scholar.sun.ac.za

98

[63] J. Keifer and J. Wolfowitz, “Estimation of the maximum of a regression function,”
The Annals of Mathematical Statistics, vol. 23, No. 3., pp. 462—466, 1952.

[64] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large scale
machine learning,” Society of Industrial and Applied Mathematics (SIAM), vol. 60,
No. 2., pp. 223-311, 2018.

[65] A. Graves, “Sequence transduction with recurrent neural networks,” International
Conference on Machine Learning(ICML), 2012.

[66] M. Corbetta and G. L. Shulman, “Control of goal-directed and stimulus-driven at-

tention in the brain,” Nature Reviews: NeuroScience, 2002.
[67] R. A. Rensik, “Dynamic representation of scenes,” Visual Recognition, 2000.

[68] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist

reinforcement learning,” Machine Learning, vol. 8, pp. 229-256, May 2017.

[69] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal represen-
tations by error propagation,” Parallel Distributed Processing: FExplorations in the
Microstructure of Cognition, vol. 1., pp. 318-362, 1986.

[70] M. Tanti, A. Gatt, and K. P. Camilleri, “Where to put the image in an image caption
generator.” arXiv preprint arXiv:1703.09137 (2017).

[71] J. Devlin, H. Cheng, H. Fang, S. Gupta, L. Deng, X. He, G. Zweig, and M. Mitchell,
“Language models for image captioning: The quirks and what works,” Association
of Computational Linguistics (ACL), 2015.

[72] S. Liu, Z. Zhu, N. Ye, S. Guadarrama, and K. Murphy, “Improved image captioning
via policy gradient optimization of spider,” International Conference on Computer

Vision (ICCV), 2017.

[73] M. Wang, L. Song, X. Yang, and C. Luo, “A parallel fusion RNN-LSTM architec-
ture for image caption generation,” International Conference on Image Processing

(ICIP), 2016.

[74] 1. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural

networks,” International Conference on Image Processing (ICIP), 2014.

[75] O. Nina and A. Rodriguez, “Simplified LSTM unit and search space probability
exploration for image description,” International Conference on Information, Com-
munications and Signal Processing (ICICS), 2015.

[76] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel, “Self-critical sequence
training for image captioning,” Computer Vision and Pattern Recognition (CVPR),
2017.

[77]

78]

[79]

[80]

[81]

82]

[83]

[84]

[85]

[86]

87]

88

Stellenbosch University https://scholar.sun.ac.za

99

Q. Wu, C. Shen, A. van den Hengel, L. Liu, and A. Dick, “Image captioning with
an intermediate attributes layer.” arXiv preprint arXiv:1506.01144v1 (2015).

T. Yao, Y. Pan, Y. Li, Z. Qiu, and T. Mei, “Boosting image captioning with at-
tributes,” International Conference on Computer Vision (ICCV), 2017.

J. Hessel, N. Savva, and M. J. Wilber, “Image representations and new domains
in neural image captioning,” Empirical Methods in Natural Language Processing
Vision + Language Worshop (EMNLP), 2015.

L. Zhou, C. Xu, P. Koch, and J. J. Corso, “Image caption generation with text-
conditional semantic attention.” arXiv preprint arXiv:1606.04621 (2016).

Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo, “Image captioning with semantic
attention,” Computer Vision and Pattern Recognition (CVPR), 2016.

J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille, “Learning like a
child: Fast novel visual concept learning from sentence descriptions of images,”
International Conference on Computer Vision (ICCV), 2015.

J. Mao, W. Xu, Y. Yang, J. Wang, and A. Yuille, “Explain images with multi-
modal recurrent neural networks (m-RNN),” Neural Information Processing Systems
(NeurIPS), 2014.

J. Lu, C. Xiong, D. Parikh, and R. Socher, “Knowing when to look: Adaptive
attention via a visual sentinel for image captioning,” Computer Vision and Pattern
Recognition (CVPR), 2017.

M. Song and C. D. Yoo, “Multimodal representation: Kneser-ney smoothing/skip-
gram based neural language model,” International Conference on Image Processing
(ICIP), 2016.

J. Thomason, S. Venugopalan, S. Guadarrama, K. Saenko, and R. Mooney, “Inte-
grating language and vision to generate natural language descriptions of videos in

the wild,” International Conference on Computational Linguistics: Technical Papers
(COLING), 2014.

N. Krishnamoorthy, G. Malkarnenkar, R. J. Mooney, K. Saenko, and S. Guadar-
rama, “Generating natural-language video descriptions using text-mined knowl-
edge,” Association for the Advancement of Artificial Intelligence (AAAI), 2013.

S. Guadarrama, N. Krishnamoorthy, G. Malkarnenkar, S. Venugopalan, R. J.
Mooney, T. Darrell, and K. Saenko, “Recognizing and describing activities using
semantic hierarchies and zero-shot recognition,” International Conference on Com-
puter Vision (ICCV), 2013.

[89]

[90]

[91]

[92]

193]

[94]

[95]

196]

197]

98]

[99]

[100]

Stellenbosch University https://scholar.sun.ac.za

100

J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” International Con-
ference on Machine Learning (ICML), 2001.

M. Rohrbach, W. Qiu, I. Titov, S. Thater, M. Pinkal, and B. Schiele, “Translat-
ing video content to natural language descriptions,” International Conference on

Computer Vision (ICCV), 2013.

A. Rohrbach, M. Rohrbach, Q. W.; A. Friedrich, M. Pinkal, and B. Schiele, “Co-
herent multi-sentence video description with variable level of detail,” in German
Conference on Pattern Recognition (GCPR), 2014.

K. Soomro, A. R. Zamir, and M. Shah, “UCF-101: A dataset of 101 human action
classes from videos in the wild.” arXiv preprint arXiv:1212.0402 (2012).

N. Dalal, B. Triggs, and C. Schmid, “Human detection using oriented histograms of
flow and appearance,” Furopean Conference on Computer Vision (ECCYV), 2006.

H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid, “Evaluation of local
spatiotemporal features for action recognition,” British Machine Vision Conference
(BMVC), 2009.

H. Yu, J. Wang, Z. Huang, Y. Yang, and W. Xu, “Video paragraph captioning using

hierarchical recurrent neural networks,” Computer Vision and Pattern Recognition

(CVPR), 2016.

K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, D. Bahdanau,
and Y. Bengio, “Learning phrase representations using RNN encoder-decoder for

statistical machine translation,” Empirical Methods in Natural Language Processing
(EMNLP), 2014.

F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles, “ActivityNet: A large
scale video benchmark for human activity understanding,” Computer Vision and
Pattern Recognition (CVPR), 2015.

“ActivityNet Captions Challenge, Task 5: Dense captioning events in videos.” http:
//activity-net.org/challenges/2017/index.html. Accessed: 2019-04-21.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Poloshukhin, “Attention is all you need,” Neural Information Processing Sys-
tems (NeurIPS), 2017.

L. Zhou, Y. Zhou, J. J. Corso, R. Socher, L. Jones, and C. Xiong, “End-to-end
dense video captioning with masked transformer,” Computer Vision and Pateern
Recognition (CVPR), 2018.

Stellenbosch University https://scholar.sun.ac.za

101

[101] “What’s the difference between a CPU and a GPU?.” https://blogs.nvidia.com/
blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/. Ac-
cessed: 2019-06-01.

[102] “An in-depth look at Google’s first Tensor Processing
Unit (TPU).” https://cloud.google.com/blog/products/gcp/
an-in-depth-look-at-googles-first-tensor-processing-unit-tpu. Ac-
cessed: 2019-06-01.

[103] “TensorFlow.” https://www.tensorflow.org/. Accessed: 2019-06-04.
[104] “PyTorch.” https://pytorch.org/. Accessed: 2019-06-04.

[105] T. D. Team, “Theano: A python framework for fast computation of mathematical
expressions,” arXiv e-prints, vol. abs/1605.02688, May 2016.

[106] M. London and M. Hausser, “Dentritic computation,” Annual Review of Neuro-
Science, vol. 28, pp. 503-532, July 2005.

[107] O. Russakovsky, J. Deng, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, A. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual
Recognition Challenge,” International Journal of Computer Vision, vol. 115, No.
3., pp. 211-252, April 2015.

[108] A. L. Maas, A. Y. Hannum, and A. Y. Ng, “Rectifier nonlinearities improve neural
network acoustic models,” International Conference on Machine Learning (ICML),
2013.

[109] K. He, X. Zhang, S. Ren, and H. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification,” International Conference on
Learning Representations (ICLR), 2016.

[110] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network
learning by exponential linear units,” International Conference on Learning Repre-
sentations (ICLR), 2016.

[111] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,
No. 3., pp. 273-297, September 1995.

[112] 1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:

//www .deeplearningbook.org.

[113] A. Y. Ng, “Feature selection, L1 vs L2 regularization, and rotational invariance,”
International Conference on Machine Learning (ICML), 2004.

[114] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,”
Journal of the Royal Statistical Society, 2003.

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

Stellenbosch University https://scholar.sun.ac.za

102

N. Srebro and A. Shraibman, “Rank, Trace-Norm and Max-Norm,” In Proceedings
of the 18th Annual Conference on Learning Theory, 2005.

N. Srivastava, G. Hinton, A. Krizhevsky, and R. Salakhutdinov, “Dropout: A simple
way to prevent neural networks from overfitting,” Journal of Machine Learning
Research (JMLR), vol. 15, pp. 1929-1958, 2014.

A. Baydin, B. Pearlmutter, A. Radul, and J. Siskind, “Automatic differential in
machine learning: A survey,” Journal for Machine Learning Research, vol. 18.,
pp. 1-43, 2017.

“Cs231n: Convolutional neural networks for visual recognition - learning.” http:
//cs231n.github.io/neural-networks-3/. Accessed: 2019-06-16.

S. Ruder, “An overview of gradient descent optimisation algorithms,” arXiv preprint
arXiv:1609.04747 (2017).

Y. Nesterov, “A method for solving a convex programming problem with convergence

rate o(1/k?),” Soviet Mathematics Doklady, vol. 27, pp. 327-376, 1983.

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learn-
ing and stochastic optimisation,” Journal of Machine Learning Research, vol. 12,
pp. 2121-2159, 2011.

“RMSProp: Divide the gradient by a running average of its recent
magnitude.” https://www.cs.toronto.edu/ tijmen/csc321/slides/lecture_
slides_lec6.pdf. Accessed: 2019-04-23.

D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimisation,” Inter-
national Conference in Learning Representations (ICLR), 2015.

D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex,” The Journal of Physiology, vol. 160, No. 1.,
pp. 106-154, September 1962.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the Institute of FElectrical and Electronics
Engineers (IEEE), vol. 86, pp. 2278-2324, November 1998.

“Theano: Convolutional arithmetic tutorial.” http://deeplearning.net/
software/theano/tutorial/conv_arithmetic.html. Accessed: 2019-06-16.

M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun, “Unsupervised learning of invari-

ant feature hierarchies with applications of object recognition,” Computer Vision

and Pattern Recognition (CVPR), 2007.

Stellenbosch University https://scholar.sun.ac.za

103

[128] “Cs231n: Convolutional neural networks for visual recognition - cnns.” http://
cs231n.github.io/convolutional-networks/. Accessed: 2019-06-16.

[129] C. Lee, P. W. Gallagher, and Z. Tu, “Generalizing pooling functions in convolutional
neural networks: Mixed, gated and tree,” International Conference on Artificial
Intelligence and Statistics (AISTATS), 2016.

[130] “Convolutional neural networks.” http://cbl.eng.cam.ac.uk/pub/Intranet/
MLG/ReadingGroup/cnn_basics.pdf. Accessed: 2019-04-27.

[131] A. Miyake and P. Shah, “Models of working memory: Mechanisms of active main-

tenance and executive control,” 1999.

[132] J. Gamboa, “Deep learning for time-series analysis.” arXiv preprint
arXiv:1701.01887 (2016).

[133] “Understanding LSTM networks.” https://colah.github.io/posts/
2015-08-Understanding-LSTMs/. Accessed: 2019-06-16.

[134] P. J. Werbos, “Generalization of backpropagation with application or recurrent gas
market model,” Neural Networks, vol. 1., pp. 339-356, 1988.

[135] “The unreasonable effectiveness of recurrent nueral networks.” http://karpathy.
github.i0/2015/05/21/rnn-effectiveness/. Accessed: 2019-07-04.

[136] R. Pascanau, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent

neural networks,” International Conference on Machine Learning (ICML), 2013.

[137] F. A. Gers and J. Schmidhuber, “Recurrent nets that time and count,” International
Joint Conference on Neural Networks, 2000.

[138] 1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:

//www .deeplearningbook.org.

[139] “Using pre-trained word embeddings in a Keras model.” https://blog.keras.
io/using-pre-trained-word-embeddings-in-a-keras-model.html. Accessed:

2019-07-27.

[140] N. Aafaq, S. Z. Gilani, W. Liu, and A. Mian, “Video description: A survey of meth-
ods, datasets and evaluation methods.” arXiv preprint arXiv:1806.00186 (2018).

[141] “Keras.” https://keras.io/. Accessed: 2020-01-28.
[142] “OpenCV.” https://opencv.org/. Accessed: 2020-01-28.

[143] P. Anderson, B. L. Fernando, M. Johnson, and S. Gould, “SPICE: Semantic
propositional image caption evaluation,” Furopean Conference on Computer Vision
(ECCV), 2016.

[144)

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

Stellenbosch University https://scholar.sun.ac.za

104

G. A. Miller, “WordNet: A lexical database for english,” vol. 38, No. 11, pp. 3941,
Nov 1995.

D. Elliot and F. Keller, “Comparing automatic evaluation measures for image de-

scription,” Association for Computational Linguistics (ACL), 2014.

S. Robertson, “Understanding inverse document frequency: On theoretical argu-
ments for idf,” Journal of Documentation, vol. 60, No. 5., pp. 503-520, October
2014.

A. Grinciunaite, A. Gudi, E. Tasli, and M. den Uyl, “Human pose estimation in space
and time using 3D CNN,” FEuropean Conference on Computer Vision Workshops
(ECCV), 2016.

“GLOVE: Global vectors for word representation.” https://nlp.stanford.edu/
projects/glove/. Accessed: 2019-08-2.

J. Xu, T. Mei, T. Yao, and Y. Rui, “MSR-VTT: A large video description dataset
for bridging video and language,” in Computer Vision and Pattern Recognition
(CVPR), 2016.

J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint

arXiv:1810.04805, 2018.

Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov,
“Transformer-XI: Attentive language models beyond a fixed-length context,”
https://arziv.org/abs/1901.02860, 2019.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language

models are unsupervised multitask learners,” 2019.

C. Baldassano, J. Chen, A. Zadbood, J. Pillow, U. Hasson, and K. Norman, “Dis-
covering event structure in continuous narrative perception and memory,” Neuron,
vol. 95, No. 3., pp. 709-721, August 2017.

Q. Jin, J. Chen, S. Chen, Y. Xiong, and A. Hauptmann, “Describing videos us-
ing multi-modal fusion,” ACM International Conference on Multimedia, vol. 16,

pp. 1087-1091, October 2016.

