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Preface 

Abstract 

Sugarcane is a tropical perennial grass species belonging to the Poaceae (true grasses) family. 

Mature sugarcane is comprised mostly of sugarcane stalks, which accumulate high amounts 

of sucrose, a fact that has led to its wide cultivation of sugarcane for sucrose production. 

Sugar yields from sugarcane have been improved in the past by either creating transgenic 

sugarcane or through using traditional breeding methods. Increasing sugar yields in sugarcane 

is still of interest and new cisgenic strategies are being considered to alleviate consumer 

concerns over transgenic plants. 

This thesis consists of two parts. The first was aimed at understanding the relation between 

trehalose-6-phosphate (T6P) synthesis and sucrose accumulation in sugarcane. In this study 

the E. coli genes involved in trehalose synthesis, otsA and otsB, were overexpressed in 

sugarcane in order to observe their effects on soluble sugar accumulation. Nine otsA and two 

otsB overexpressing lines were created, confirmed by gDNA insertion PCRs, sq-RT-PCR and 

immuno detection of encoded enzymes. Preliminary measurements of soluble sugars showed 

that four out of the nine otsA lines had significantly decreased and one line significantly 

increased sucrose concentrations. Correlating sq-RT-PCR results with soluble sugar 

measurements suggest that trehalose-6-phosphate synthase (TPS) expression affects sucrose 

levels in sugarcane, but further research of TPS activity is required before a conclusion can be 

reached. Further analysis of mature cane material in regard to relevant enzyme levels, 

carbohydrate levels and gene expression should contribute to more conclusive results.  

Three novel sugarcane TPS encoding sequences were isolated and proven to be functional 

through complementation of the growth defect in tps1∆ yeast grown on glucose as a carbon 

source. Sugarcane TPS isoforms named SoTPSa, SoTPSb and SoTPSc, were isolated by 

successful application of 5‟ RACE alongside standard PCR using primers based on other 

monocotyledonous TPS sequences. The encoded SoTPSa contains a 25 amino acid insertion 

within the partial TPP domain. The encoded SoTPSc contains a 126 amino acid long N 

terminal truncation, which removes one of the thirteen amino acids found within the active 

site of the TPS domain. Future characterization of the encoded enzymes will determine the 

effects of these modifications on TPS activity. 
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The second part of this thesis describes initial efforts made in attempting to develop a 

cisgenic in vitro selectable marker system for sugarcane, S. officinarum callus, which uses a 

diphenylether type (DPE) herbicide as a selection agent and a sugarcane protoporphyrinogen 

oxidase (PPO) gene as a selection marker. Firstly the plastid targeted PPO from tobacco 

(NtPPO-1) was isolated and mutagenized, to mimic the double mutated Arabidopsis PPO, 

used by Li et al., (2003) in maize. However, sugarcane calli transformed with the double 

mutated NtPPO-1 and grown on media containing fomesafen herbicide, were incapable of 

regenerating. Future efforts will utilize a N-terminal sequence that is targeted to the plastid 

organelle, so as to ensure translocation of the enzyme to that subcellular location. Also, 

random mutations were induced in the NtPPO-1 gene to screen for mutations that confer DPE 

herbicide resistance, however this work is currently on hold until a heme deficient E. coli can 

be obtained. Secondly, attempts were made to isolate a putative sugarcane plastid targeted 

PPO gene, so as to eventually use this in developing a cisgenic strategy. 5‟ RACE was 

successful in revealing additional nucleotide sequence adding 1006 bp to the already known 

partial sugarcane PPO sequence. However the fragment isolated was still a partial sequence.  

Samevatting 

Suikerriet is 'n tropiese meerjarige gras spesie wat deel is van die Poaceae (ware grasse) 

familie. Volwasse suikerriet bestaan hoofsaaklik uit suikerrietstamme, wat hoë hoeveelhede 

sukrose akkumuleer, 'n feit wat gelei het tot die wye verbouing van suikerriet vir sukrose 

produksie. In die verlede is suikeropbrengste vanuit suikerriet verbeter deur die skep van 

transgeniese suikerriet óf die gebruik van tradisionele teelmetodes. Toenemende suiker 

opbrengste in suikerriet is steeds van belang en nuwe cisgeniese strategieë word oorweeg om 

verbruikerskommer oor transgeniese plante te akkommodeer. 

Hierdie tesis bestaan uit twee dele. Die eerste deel is daarop gemik om die begrip van die 

verhouding tussen trehalose-6-fosfaat (T6P) sintese en sukrose ophoping in suikerriet te 

verstaan. In hierdie studie is die E. coli gene wat betrokke is in trehalose sintese, otsA en otsB, 

ooruitgedruk in suikerriet ten einde die uitwerking daarvan in die opgaar van oplosbare suiker 

te bestudeer. Nege otsA en twee otsB verhoogte uitdrukkings lyne is geskep, bevestig deur 

gDNA bygevoegde PKR, sq-RT-PKR en immuno opsporing van geïnkripteerde ensieme. 

Voorlopige metings van oplosbare suikers toon dat vier van die nege otsA lyne ŉ beduidende 

afname in sukrose vlakke en een lyn „n beduidende toegeneem in sukrose vlakke getoon het.  

Korrelerende sq-RT-PKR resultate met oplosbare suikermetings dui daarop dat trehalose-6-

fosfaat sintese (TPS) geenuitdrukking sukrose vlakke sal affekteer, maar verdere navorsing 
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van TPS aktiwiteit is nodig voordat 'n gevolgtrekking gemaak kan word. Verdere ontleding 

van volwasse riet materiaal met betrekking tot relevante ensiem vlakke, koolhidrate vlakke en 

geenuitdrukking, behoort by te dra tot meer volledige resultate. 

In hierdie studie is drie nuwe suikerriet TPS gene geïsoleer en dit is bewys as funksioneel 

deur die komplimentering van die groeidefek van tps1Δ gis, gegroei op glukose as 'n koolstof 

bron. Suikerriet TPS isoforme, genoem SoTPSa, SoTPSb en SoTPSc, is geïsoleer deur die 

suksesvolle toepassing van 5 'RACE, in kombinasie met standaard PKR, deur van spesiaal 

ontwerpte primers, gebaseer op ander eensaadlobbige TPS gene, gebruik te maak. Die 

gekodeerde SoTPSa bevat 'n 25 aminosuur invoeging binne-in die gedeeltelike TPP domein. 

Die gekodeerde SoTPSc bevat 'n 126 aminosuur lange N terminaal afkapping, wat een van 

die dertien aminosure binne die aktiewe terrein van die TPS domein verwyder. Toekomstige 

karakterisering van hierdie geïnkripteerde ensiemes sal die effek van hierdie veranderinge op 

TPS aktiwiteit bepaal. 

Die tweede deel van hierdie tesis beskryf die aanvanklike probeerslae wat gemaak is in 'n 

poging om „n cisgeniese in vitro selekteerbare merker vir suikerriet, S. officinarum kallus te 

ontwikkel. Hierin word gebruik gemaak van 'n difenylether tipe (DPE) onkruiddoder as 'n 

seleksie agent, en 'n suikerriet protoporphyrinogen oksidase (PPO) geen as 'n seleksie merker. 

In 'n poging om dit te bewerkstellig is daar eerstens plastied geteikende PPO van tabak 

(NtPPO-1) geïsoleer en geteikende mutagenese suksesvol daarop uitgevoer. Mutasies wat 

geinduseer is, is gegrond op die dubbele gemuteerde Arabidopsis PPO, wat gebruik was in 

mielies deur Li et al., (2003). Alhoewel die suikerriet kallus getransformeer is met die 

dubbele gemuteerde NtPPO-1 konstruk en geselekteer is op media wat fomesafen 

onkruiddoder bevat, was die kallus nie in staat om te regenereer nie. In toekomstige pogings 

sal probeer word om 'n N-terminale volgorde, geteiken op „n plastied organel, te benut sodat 

translokasie van die ensiem aan die plastied organel verseker kan word. So ook is toevallige 

mutasies veroorsaak in die NtPPO-1 gene om te soek vir nuwe mutasies wat DPE 

onkruiddoderweerstand verleen, maar hierdie werk is tans gestop totdat 'n heem gebrekkige E. 

coli mutant verkry kan word. Tweedens, is pogings aangewend om 'n vermeende suikerriet 

plastied geteikende PPO gene te isoleer, om uiteindelik te gebruik in die ontwikkeling van 'n 

cisgeniese strategie in suikeriet. 5 'RACE was suksesvol in die onthulling van bykomende 

nukleotiede volgorde deur 1006 bp by te voeg by die reeds bekende gedeeltelike suikerriet 

PPO fragment. Nie teenstaande is die fragment wat nuut geïsoleer is, steeds slegs 'n 

gedeeltelike volgorde volgens vergelykings met ander bekende plant PPO gene. 
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Aim 

The first aim of this study is to take initial steps in understanding the link between trehalose-

6-phosphate and sucrose accumulation in sugarcane, so as to potentially utilize this in 

increasing sucrose accumulation in sugarcane. This is to be achieved by isolating and 

characterizing a functional sugarcane TPS gene. E. coli TPS and TPP genes are also to be 

overexpressed in sugarcane, to observe the affects thereof on sucrose accumulation in 

sugarcane.  

The second aim is to develop a cisgenic selectable marker system for sugarcane callus, using 

a plant PPO gene and a DPE herbicide as a selectable marker. As a proof of concept, the 

double mutated tobacco PPO-1 gene is to be overexpressed in sugarcane callus and tested if 

these can be selected on media containing fomesafen herbicide. A sugarcane PPO-1 gene is 

also to be isolated and characterised, to develop this as a cisgenic selectable marker. 

 

Layout of thesis 

Each chapter has an introduction, materials and methods, results and discussion section. This 

thesis is divided into the following chapters: 

Chapter 1 Is a survey of literature focussing on sugarcane and the two enzyme 

encoding genes studied in this thesis. The first part of the chapter focuses on sugarcane as an 

economically important crop. The second part focuses on literature concerning 

protoporphyrinogen oxidase. The third part focuses on literature concerning trehalose-6-

phosphate and the enzyme responsible for its synthesis. 

 

Chapter 2 describes work done in understanding the link between trehalose-6-

phosphate and sucrose accumulation in sugarcane. The first part describes work done in 

creating otsA and otsB overexpressing sugarcane lines and the initial measurements of soluble 
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sugars performed on these lines. The second part describes efforts made to isolate a putative 

sugarcane gene, resulting in the isolation of three sugarcane TPS genes, where these were 

shown to be functional in yeast complementation assays. 

 

Chapter 3 describes work done in developing a selectable marker system for 

sugarcane callus. The first part describes efforts to isolate a putative sugarcane PPO-1 gene. 

The second part describes the creation of a double mutagenized tobacco PPO-1 construct and 

testing whether this could be used to select for transformed sugarcane callus, selected on 

media containing fomesafen. Also described is the effort made in trying to identify other 

tobacco PPO mutations that confer herbicide resistance. 

 

Chapter 4 presents general conclusions of the results obtained in chapters 2 and 3 and 

future prospects which may result in conclusive findings for this study  
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1.1  Modification of agricultural traits in sugarcane 

Sugarcane is largely cultivated for sugar production and it is estimated that roughly 75% of 

sugar produced worldwide is from sugarcane agriculture, with the remaining 25% being 

harvested from sugar beet. Breeding methods have been successful in the past in creating 

sugarcane cultivars with increased sucrose yields and other traits beneficial for sugarcane 

cultivation. However, recent progress in creating further improvement in sugarcane cultivars 

has been slow and this has been attributed to a lack in genetic diversity (Dal-Bianco et al., 

2012; Zhou et al., 2013).  

Alternatively, the creation of genetically modified sugarcane has been used with the same 

goal of improving agricultural traits in sugarcane. Techniques for genetically modifying 

sugarcane were developed in the early 1990‟s and have been refined since then (Franks and 

Birch, 1991; Bower and Birch, 1992; Van der Vyver et al., 2013). These techniques include 

protocols for in vitro regeneration, transforming gene constructs into sugarcane and the 

selection of transformed plants. Potential genes for modification of sugarcane have been 

identified, influencing agricultural traits such as insect resistance, herbicide resistance, 

drought tolerance and increased sugar accumulation (Wu and Birch, 2007; Groenewald and 

Botha, 2008; Arruda, 2012). Additionally, herbicide resistance genes have been developed for 

use in in vitro selecting of putative transformed sugarcane clones (Negrotto et al., 2000; Jain 

et al., 2007; Van der Vyver et al., 2013). Some problems have been encountered with genetic 

modification strategies, such as somaclonal variation and difficulties in backcrossing 

transgenic lines with parental cultivars (Dal-Bianco et al., 2012) 

Another strategy that is receiving more attention recently is the use of cisgenics, rather than 

transgenics to further enhance agricultural traits in crop plants. Transgenic crop plants are 

genetically modified plants that contain genes from different species. One example of a 

transgenic strategy is the targeted expression of a bacterial sucrose isomerase to the vacuoles 

of sugarcane, which was done by Wu and Birch, (2007). Commercialization of such 

transgenic plants is difficult due to regulations and public concerns about expressing genes 

from different species in crop plants. Cisgenic plants differ from this as they are altered using 

genes from their own genome and not from different species (Schubert and Williams, 2006; 

Jacobsen and Schouten, 2009). An example of this cisgenic sugarcane created by Vickers et 

al., (2005), where overexpression of the sugarcane polyphenol oxidase gene in sugarcane lead 

to enhanced browning of sugar. Another successful use of cisgenics, was the silencing of 

fructose-6-phosphate 1-phosphotransferase (PFP) activity in sugarcane by Groenewald and 
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Botha, (2008) by constitutively expressing a sugarcane PFP gene, resulting in increased 

sucrose accumulation.  

Although regulations still present difficulties in developing and utilizing new genetically 

modified crop plants, some countries have approved the use of transgenic and cisgenic crops. 

Recently, the US approved the use of a cisgenic potato line called Innate, which was 

developed by Simplot Plant Sciences (New york times, Pollack, 2014). This line expresses a 

gene from a wild potato relative, conferring traits such as reduced acrylamide content, 

reduced water usage and reduced bruising of potatos during transport (Jones et al., 2014; New 

york times, Pollack, 2014). Also, Indonesia has scheduled the planting of a drought tolerant 

genetically modified sugarcane line for the year 2014 (Waltz, 2014). During field trials in 

drought conditions, a sugarcane line expressing the glycine betaine gene from Rhizobium 

meliloti showed increased sucrose accumulation in comparison with wild type sugarcane 

(Waltz, 2014)  

Future research would be focused on attaining endogenous genetic sequences from sugarcane 

and using these for further genetic modification of sugarcane. It is hoped that the creation of 

cisgenic sugarcane cultivars would ease regulation and aid in commercialization of these new 

cisgenic cultivars (Jacobsen and Schouten, 2009). 

1.2  Protoporphyrinogen oxidase 

The enzyme protoporphyrinogen oxidase (PPO) (EC 1.3.3.4; BRENDA: http://www.brenda-

enzymes.org/) catalyses the oxidation and conversion of protoporphyrinogen IX (Protogen) to 

protoporphyrin IX (Proto) (Narita et al., 1996). PPO enzymes can be found in both 

prokaryotic and eukaryotic organisms such as animals, bacteria, fungi and plants. Within all 

these organisms, protoporphyrin IX is the last common intermediate shared by both the heme 

and chlorophyll biosynthetic pathways (Nishimura et al., 1995; Narita et al., 1996; Li and 

Nicholl, 2005; Patzoldt et al., 2006). PPO deficiency has been linked to variegate porphyria in 

humans and poor aerobic growth and light sensitivity in bacteria (Nishimura et al., 1995; 

Narita et al., 1996). Diphenylether type (DPE) herbicides are inhibitors of PPO activity in 

plants, causing cellular death, via light dependant mechanisms (Narita et al., 1996; Li and 

Nicholl, 2005). 
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1.2.1 Conserved domain and enzyme structure 

When the PPO enzyme is present it is responsible for catalysing the oxidation and removal of 

six electrons from the protogen ring structure, to form protoporphyrin IX. This oxidation 

allows further modification of the porphyrin ring structure contained within the 

protoporphyrin IX molecule (Figure 1.1) (Nishimura et al., 1995; Narita et al., 1996; Li and 

Nicholl, 2005; Patzoldt et al., 2006).  

 

Figure 1.1: Oxidation of protoporphyrinogen IX to porphyrinogen IX by protoporphyrinogen oxidase 

enzyme. 

PPO enzymes possess a general architecture with variations in amino acid sequences between 

organisms. In all eukaryotic, and some prokaryotic organisms, PPO enzymes possess a 

NAD(P)-binding Rossmann-like domain situated near the N terminus of the PPO protein. 

PPO enzymes with an NAD(P)-binding Rossmann-like domain tend to use oxygen as the 

final electron acceptor, while prokaryotic PPO enzymes without this domain, use the cell‟s 

respiratory chain as a final electron acceptor (Figure 1.2) (Dailey et al., 1994; Dailey and 

Dailey, 1996; Kuk et al., 2005; Marchler-Bauer et al., 2013). 
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Figure 1.2: General conserved domain structure of PPO enzymes in eukaryotes and prokaryotes (A) 

General conserved domain structure of PPO enzymes that utilize oxygen as a final electron acceptor. 

This conserved domain structure is found in most eukaryotic PPO enzymes and certain bacteria PPO 

enzymes, such as B. subtillus. (B) General conserved domain structure of most prokaryotic PPO 

enzymes, which tend to use an electron transport chain as an electron acceptor. 

1.2.2 Protoporphyrinogen oxidase‟s role in heme and chlorophyll synthesis 

Eukaryotic PPO enzymes are known to occur in both the mitochondrial and chloroplastic 

membranes (Jacobs and Jacobs, 1987; Camadro et al., 1991). At that point, protoporphyrin IX 

is formed as a result of PPO activity and can be modified to form either a heme or chlorophyll 

structure (Nishimura et al., 1995). Hemes usually contain an iron molecule situated in the 

centre of the porphyrin ring structure, while chlorophyll contains a magnesium ion instead. 

Hemes form prosthetic groups in cytochromes, which are required for the functioning of 

electron chain transports and aid in the indirect generation of ATP (Nishimura et al., 1995). 

They also form parts of co-factors in catalases, cytochromes, haemoglobin, oxygenases and 

peroxidases (Chiu et al., 1989; Nishimura et al., 1995). Chlorophyll synthesis on the other 

hand is used for the absorption and utilization of radiant light energy, which is used to drive 

photosynthetic processes in algae, cyanobacteria and plants. The synthesis of protoporphyrin 

IX is, therefore, essential for the synthesis of chlorophyll as a light harvesting pigment and for 

the synthesis of heme, which serves as an essential cofactor in cytochromes and other 

enzymes (Nishimura et al., 1995; Li and Nicholl, 2005; Patzoldt et al., 2006). 
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1.2.3 Diphenylether type herbicides and inhibition of PPO activity  

DPE class herbicides have been shown to have a strong inhibitory effect on PPO enzymes, 

binding to the catalytic site of the enzyme and blocking access to its substrate, 

protoporphyrinogen IX (Camadro et al., 1991; Jacobs et al., 1991). Prior to 1991, it was 

known that treating plants with DPE herbicides resulted in the accumulation of intracellular 

photo-reactive protoporphyrin IX, resulting in cellular death and damage via light dependant 

mechanisms (Camadro et al., 1991; Jacobs et al., 1991). Jacobs et al., (1991) characterised 

DPE inhibition in plants and described a mode of action for DPE inhibition in plants (Figure 

1.3). Briefly, when DPE herbicides inhibit chloroplastic PPO enzymes, this results in the 

accumulation of protoporphyrinogen IX, which leaks into the cytosol and is oxidised by DPE 

insensitive peroxidases to form protoporhyrin IX. Accumulated protoporphyrin IX in the 

cytosol reacts with light to form reactive oxygen species, leading to membrane damage and 

cell death (Li et al., 2003). 

 

Figure 1.3: DPE inhibition in plants. DPE inhibition as described by Jacobs et al., (1991) and 

illustrated by Li et al., (2003), indicating the synthesis of protoporhyrin IX in both the mitochondria 

and chloroplast by the PPO enzyme. When the PPO enzyme activity is blocked, protoporhyrinogen IX 

leaks into the cytosol where it is oxidised to form protoporphyrin IX, which reacts with reactive 

oxygen species leading to membrane damage and cellular death. 
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1.2.4 PPO isolation and characterization 

1.2.4.1  PPO isolation and characterization in prokaryotes 

Prokaryotic PPO genes have been isolated from Bacillus subtillus, Desulfovibrio gigas, 

Escherichia coli and Myxococcus xanthus as well as various other bacteria (Klemm and 

Barton, 1987; Hansson and Hedestedt, 1992; Sasarman et al., 1993; Dailey et al., 1994; 

Nishimura et al., 1995; Dailey and Dailey, 1996). Unlike other prokaryotic PPO enzymes, the 

B. subtillus and M. xanthus PPO enzymes use oxygen as an final electron acceptor (Dailey et 

al., 1994; Dailey and Dailey, 1996). Following the identification of the E. coli PPO gene 

came the isolation of PPO deficient mutants used in screening for eukaryotic and plant PPO 

genes (Nishimura et al., 1995). Uniquely, the B. subtillus PPO was shown to be only weakly 

inhibited by acifluorfen, which is a DPE class herbicide that strongly inhibits both animal and 

plant PPO enzymes (Dailey et al., 1994; Dailey and Dailey, 1996; Li and Nicholl, 2005; Kuk 

et al., 2005). This unique ability of the B. subtillus PPO gene led to efforts to express this 

enzyme in plants, in order to engineer plants that are resistant to PPO inhibiting herbicides 

(Lee et al., 2000). 

1.2.4.2  PPO isolation and characterization in eukaryotes 

Protoporphyrin oxidase activity has been characterised in mammals as early as 1976 (Poulson, 

1976). The interest in isolating and characterising PPO genes in eukaryotes was mainly to 

understand associated diseases caused by deficient PPO activity, such as variegate porphyria 

(Nishimura et al., 1995; Narita et al., 1996). To date, PPO encoding genes have been isolated 

and characterised in animals, fungi, plants, humans and mice (Nishimura et al., 1995; 

Camadro and Labbe, 1996; Dailey et al., 2002). 

1.2.4.3  PPO isolation and characterization in plants 

An A. thaliana PPO cDNA sequence was first isolated by Narita et al., (1996), using the 

hemG deficient mutant VSR-800 E. coli strain, to screen an A. thaliana cDNA library (Narita 

et al., 1996). The isolated A. thaliana PPO cDNA (NCBI accession number: D83139.1; 

NCBI: http://www.ncbi.nlm.nih.gov/) was 1.7 kb and encoded a 537 amino acid protein with 

an additional putative leader peptide responsible for transport into the mitochondria (Narita et 

al., 1996).  
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Lermontova et al., (1997) reported the isolation of two tobacco PPO cDNA‟s, using the 

hemG deficient VSR-751 E. coli strain, derived from the VSR-800 strain (Narita et al., 1996). 

The first sequence (1644 bp; 59.13 kDa protein; NCBI accession number: Y13465) contained 

a 50 amino acid putative transit peptide that enabled transport to the chloroplast and was 

termed PPO-1. The second sequence, termed PPO-2 (1515 bp; 55.4 kDa protein; NCBI 

accession number: Y13466) was found to be targeted to the mitochondrial membrane. Both 

proteins only share 27.2% identity in amino acid sequence when aligned with one another 

(Lermontova et al., 1997). They also noted that the tobacco PPO-1 and PPO-2 shared 71.2% 

and 24.6% sequence identity with the Arabidopsis PPO sequence (Narita et al., 1996; 

Lermontova et al., 1997). 

The full length plastid targeted PPO-1 cDNA sequence for spinach (1689 bp; 59.9 kDa 

protein; NCBI accession number: AB029492) was isolated and characterised by Che et al., 

(2000) using the E. coli BT3 strain (ΔhemG::Kmr). The translated spinach PPO-1 was 78% 

similar to the Arabidopsis PPO-1 and 71% similar to the tobacco PPO-1 proteins and 

contained a 49 amino acid N terminus transit peptide (Che et al., 2000). 

The spinach PPO-2 cDNA sequence (1593 bp; 58.4 kDa protein; NCBI accession number: 

AB046993.1) was isolated by Watanabe et al., (2001) and was found to have two in-frame 

start codons that code for two proteins, where one protein is targeted to the chloroplast and 

the other is targeted to the mitochondria. The sequence displayed 70% identity to the tobacco 

PPO-2 cDNA sequence and 28% identity to the spinach PPO-1 cDNA and a unique 5‟ 26 

amino acids sequence that aligned with the 33 amino acid N terminal sequence also found in 

maize PPO-2 cDNA (Figure 1.4). Immunoblot analysis of spinach leaf extracts showed that 

two products of approximately 59 kDa and 55 kDa, were present in chloroplast and 

mitochondrial organelles, respectively (Watanabe et al., 2001). This dual targeting peptide 

would later be shown to also be present in the sorghum hypothetical PPO-2 as well as in 

waterhemp (Figure 1.5) (Patzoldt et al., 2006; Rousonelos, 2010). 
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Figure 1.4: Alignment of the N terminal regions of PPO amino acid sequences from various eukaryotic 

species. Sequences are from spinach (NCBI accession number: BAB60710.1), Arabidopsis (NCBI 

accession number: BAA11820.1), tobacco (NCBI accession number: CAA73866.1), potato (NCBI 

accession number: CAA12401.1), soybean (NCBI accession number: BAA76348.1), yeast (NCBI 

accession number: NP_010930.1), and humans (NCBI accession number: BAA07538.1) (Watanabe et 

al., 2001).  

Two A. thaliana PPO cDNA sequences were later isolated by Li et al. (2003) using the E. 

coli PPO mutant strain SASX38, which is also unable to grow without an exogenous supply 

of heme or an alternate source of PPO activity (Sasarman et al., 1993). The first sequence, 

corresponded to the sequence described by Narita et al., (1996) was designated PPO-1 (NCBI 

accession number: AX084732). The Arabidopsis PPO-1 contained a putative peptide 

sequence targeted to the chloroplast organelle (Li et al., 2003). The second sequence was 

designated PPO-2 (NCBI accession number: AX084734), which was 1738 bp long, and 

encoded a putative transit peptide targeted to the mitochondria. The PPO-2 cDNA sequence 

was 53% similar and 28% identical to the PPO-1 cDNA sequence (Ward and Volrath, 1998; 

Li et al., 2003). Following the isolation of the A. thaliana PPO-1 gene and its use as 

hybridization probe, PPO-1 genes were also successfully identified in Zea mays, Triticum 

aestivum, Oryza sativa, Gossypium hirsutum, Beta vulgaris, Saccharum officinarum and 

Brassica napus (Narita et al., 1996; Ward and Volrath, 1998; Li et al., 2003). 

From the analysis of isolated plant PPO genes, two classes of PPO enzymes can be seen to 

exist, namely PPO-1 enzymes, which are targeted to the chloroplast and PPO-2 enzymes, 
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which are targeted to the mitochondria (Ward and Volrath, 1998; Li et al., 2003; Li and 

Nicholl, 2005; Patzoldt et al., 2006). Additionally, certain PPO enzymes contain in frame 

transit peptides, which enable dual targeting to the mitochondria or chloroplast (Watanabe et 

al., 2001; Patzoldt et al., 2006; Rousonelos, 2010). 

1.2.5 Natural DPE resistance in plants  

The mechanism of resistance in A. tuberculatus was investigated by Patzoldt et al. (2006). 

Results showed that resistance to lactofen, a DPE class herbicide, was due to an incomplete 

dominant trait conferred by a single gene. PPO-1 and PPO-2 cDNA sequences from both 

resistant and susceptible A. tuberculatus biotypes were isolated, PPX1 (NCBI accession 

number: DQ386112), PPX2 (NCBI accession number: DQ386113) and PPX2L (NCBI 

accession number: DQ386114). The PPX2L sequence isolated from resistant A. tuberculatus 

was shown to contain a codon deletion that conferred resistance to lactofen herbicide. 

Specifically, the codon deletion is a glycine residue deletion at amino acid position 210. 

Following complementation studies, it was confirmed that the 3 bp deletion for the glycine  

amino acid  was necessary for conferring lactofen resistance to the enzyme encoded by 

PPX2L (Sasarman et al., 1993; Li et al., 2003; Patzoldt et al., 2006). The PPX2L was 

predicted to encode two proteins that contain transit peptides that enable into either the 

mitochondria or chloroplast, similar to the dual targeting seen in the spinach PPO-2 

(Figure1.5) (Watanabe et al., 2001; Patzoldt et al., 2006; Rousonelos, 2010).  
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Figure 1.5: Alignment of N terminal extension of plant PPO-2 genes. Amino acid alignment of 

translated PPO-2 sequences from various plant species, showing the in frame N terminal extension that 

enables dual targeting to either the mitochondria or chloroplast. Sequences are from spinach 

(BAB60710.1), waterhemp (NCBI accession number: ABD52329.1), maize (NCBI accession number: 

NP_001105004), sorghum (NCBI accession number: XP_002446710), Arabidopsis (NCBI accession 

number: NP_196926.2), potato (CAA12401), tobacco (CAA73866.1), soybean (BAA76348), and 

Helianthus (HELI_7CDS.CSA1.5882) (http://www.ncbi.nlm.nih.gov/) (Rousonelos, 2010). 

1.2.6 Development of DPE resistant crop plants and PPO genes 

Two goals are desired with the development of DPE herbicide resistance in crop plants. The 

first would be the development of a DPE herbicide resistance selection system for the creation 

of cisgenic and transgenic plants. This would entail the isolation of a gene that encodes for a 

DPE herbicide resistant PPO enzyme, which can function as an in vitro selection gene 

situated within a plant expression plasmid vector. The second goal would be the creation of 

transgenic crop plants that would be resistant to DPE herbicides when applied in crop fields. 

This would essentially enable herbicide treatment in fields so as to kill unwanted weeds, 

while leaving crop plants unaffected (Li and Nicholl, 2005).  

Various strategies have been utilized in order to create DPE herbicide resistant plants. These 

have involved the improvement of plant PPO genes via directed evolution, where these genes 

were subjected to random mutagenesis and then screened for novel mutations that are 

resistant to DPE herbicides (Li et al., 2003; Li and Nicholl, 2005). Efforts have also been 

made to create DPE resistant plant lines, through traditional tissue culture methods and 

selection on media containing DPE herbicides (Ichinose et al., 1995; Watanabe et al., 2001; 

Li and Nicholl, 2005). Overexpression of plant and certain microbial PPO transgenes have 

also been used in attempts to create DPE resistant plants (Li and Nicholl, 2005).   
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Different results have been observed when PPO gene expression is altered in either the 

mitochondria or chloroplast (Narita et al., 1996; Lermontova et al., 1997; Li and Nicholl, 

2005; Patzoldt et al., 2006).  For example, DPE resistant tobacco and soybean cell lines have 

been developed by Ichinose et al., (1995). The cell line was initially derived from a 

photomixotrophic suspension culture and selected for with medium containing S23142, 

otherwise known as N-(4-chloro-2-fluoro-5-propargyloxyphenyl)-3,4,5,6-tetrahydrophtha- 

limide, to decrease chlorophyll levels (Ichinose et al., 1995; Li and Nicholl, 2005). 

Determination of PPO mRNA levels showed that mitochondrial PPO-2 mRNA levels were 

ten times higher in YZ1-1S in comparison with wild type cells, while plastid PPO-1 mRNA 

levels were the same in both lines. They concluded that the tolerance of YZ1-1S cells to 

S23142 was due to the up-regulation of the tobacco PPO-2 gene within these mutant cells 

(Watanabe et al., 1998; Li and Nicholl, 2005). Likewise, a soybean cell line that is resistant to 

the DPE herbicide oxyfluorfen was developed by Warabi et al., (2001). They used a stepwise 

selection method with oxyfluorfen, expression analysis showed that the resistant cell line had 

higher levels of mitochondrial PPO-2 mRNA in comparison with wild type cells (Warabi et 

al., 2001; Li and Nicholl, 2005).  

Furthermore, when the A. thaliana PPO-1 gene was overexpressed in tobacco plants, the 

resulting transgenic plants were observed to be five-fold more resistant to treatment with 

acifluorfen (Lermontova and Grimm, 2000). The B. subtillis PPO gene was also 

constitutively expressed and tested in rice. Lee and colleagues (2000) noted that transgenic 

rice lines with the B. subtillis PPO targeted to the chloroplast had higher resistance to DPE 

herbicides in comparison with lines with the transgene targeted to the mitochondria. 

Expression of the B. subtillis PPO gene in tobacco plants also resulted in transgenic plants 

being tolerant to treatment with oxyfluorfen, where the transgene was stably transmitted into 

T3 rice plants (Choi et al., 1998).  

Li et al., (2003) reported on the induction of random mutations in the Arabidopsis PPO-1 

gene, which in turn was used to create a PPO selectable marker system. Random in vivo 

mutagenesis was induced in the cDNA and screened in SASX38 E.coli cells grown on 

medium containing butafenacil. This initial screening identified a PPO-1 insert containing a 

single amino acid change near the N-terminus that conferred tolerance to butafenacil by 

increasing the growth rate of SASX38 cells (Li et al., 2003). A second round of random 

mutagenesis was performed and 90% of the resulting PPO-1 inserts contained single amino 

acid changes. Some of the amino acid changes identified that conferred significant resistance 

to butafenacil were A220V, Y426C and G221S (Li et al., 2003; Li and Nicholl, 2005). Clones 
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containing either the A220V or Y426C mutations had delayed growth in the absence of 

butafenacil. A third round of mutagenesis was performed on these two mutant clones in order 

to mitigate the growth delay. Of the resulting mutants, one amino acid change in particular, 

S305L increased growth rate significantly for both A220V and Y426C clones. Site directed 

mutagenesis of wild type PPO-1 gene sequences further identified butafenacil resistance 

without growth defects, such as alanine at position 220 that could be changed to valine, 

threonine, leucine, cysteine or isoleucine and tyrosine at position 426 that could be changed to 

cysteine, isoleucine, leucine, threonine or methionine. Further research done by Li and 

colleagues successfully developed DPE resistant Arabidopsis and maize, utilizing constructs 

derived from the double mutant Y426M + S305L (Li et al., 2003, Li and Nicholl, 2005). 

Transgenic plants showed a fifty fold increase in resistance to butafenacil when compared 

with wild type seedlings (Li et al., 2003; Li and Nicholl, 2005). Transgenic Arabidopsis 

seedlings were also tested for cross tolerance to other DPE herbicides. Transgenic seedlings 

showed up to tenfold tolerance to fomesafen or lactofen treatment and more than tenfold 

tolerance to acifluorfen treatment, amongst several other DPE herbicides tested (Li et al., 

2003). 

In transgenic maize, the Y426M + S305L PPO double mutation conferred butafenacil 

resistance, resulting in plants resistant to field rates of butafenacil, namely 50 µm butafenacil 

or higher (Li et al., 2003). Li et al., (2003) also developed this Y426M + S305L PPO double 

mutant gene as an in vitro selectable marker gene for maize transformations. Putative 

transformed calli were selected on 750 nM butafenacil and resulted in a 19.2% transformation 

efficiency.  

1.2.7 PPO as an alternative in vitro selection system 

Selectable marker systems are available for use in transgenic work for a large number of plant 

species. However, development of multiple selectable marker systems would allow for trait 

stacking through sequential transformations (Armstrong, 1999; Li et al., 2003). Furthermore, 

new selections systems are desired which might reduce the time required for selection of 

transformants. An example of this was shown in results from Li et al., (2003), where they 

noted that the time to detect transformants was reduced by 6 to 8 weeks when using light 

treatment along with the PPO selectable marker system. Furthermore, new selectable marker 

systems could allow more flexibility in detecting transformed callus when other selective 
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pressures such as light and temperature are introduced, in addition to a herbicide. The 

possibility of still utilizing the selectable system after the selection of transformed callus, has 

also been mentioned. An example of this would be the ability to spray the herbicide used 

during tissue culture in a field of crops to separate transgenic plants from non-transgenic 

plants in a field. Another aspect to consider when creating a new selectable marker system is 

to use a cisgenic strategy, by isolating endogenous genes and to develop these for use in a 

selectable marker system.  

1.2.8 PPO research aims and objectives 

 The first objective is to start developing a selectable marker system for sugarcane callus, 

using a plant PPO gene and a DPE herbicide as a selectable marker. Results from Li et al, 

(2003) were considered, specifically the Y426M + S305L PPO double mutated gene, which 

was used successfully as a selectable marker gene in maize callus grown on medium 

containing DPE herbicide. To test if this strategy would work in sugarcane, the tobacco PPO-

1 gene will be isolated and targeted mutagenesis performed, to induce double mutations in the 

gene that correspond to the double mutation used by Li et al., (2003). This double mutated 

tobacco PPO-1 gene will then be transformed into sugarcane callus and be constitutively 

expressed under the maize ubiquitin promoter (UBI). Transformed sugarcane callus will then 

be selected on medium containing DPE herbicide to test whether this double mutated gene 

could be used as a selectable marker. 

 The second objective is to identify additional mutations that could render the isolated tobacco 

PPO-1 resistant to DPE herbicides. Once the tobacco PPO-1 gene is isolated, it will be 

subjected to random mutation, where the resulting random mutations can be tested for 

resistance to DPE herbicides. For random mutagenesis, inserts will be transformed into XL1-

Red E.coli cells. Randomly mutated gene inserts will be tested by transforming into the 

mutant VSR-800 E. coli strain. Mutations that confer DPE herbicide resistance can be 

identified by their ability to complement the growth defect in VSR-800 cells (Narita et al., 

1996). 

 The third objective is to isolate a sugarcane PPO-1 gene to use as a base gene instead of the 

tobacco PPO-1. To isolate the sugarcane PPO-1, both 5‟ Rapid amplification of cDNA ends 

(5‟ RACE) and PCR with sorghum based primers will be used, where sorghum based primers 

will be designed using the putative sorghum PPO-1 sequence. Once a full length sugarcane 

PPO-1 gene is isolated this could be altered and established as a workable in vitro selectable 

marker gene for sugarcane. The use of a sugarcane PPO-1 gene would be favoured as to us a 

cisgenic strategy in creating a new selectable marker system for sugarcane callus selection. 

Stellenbosch University  https://scholar.sun.ac.za



15 

 

1.3  Trehalose-6-phosphate Synthase 

Trehalose is a non-reducing disaccharide, which consists of two α-glucose molecules joined 

by an α,α-1,1-glucoside bond (Schluepmann et al., 2012). This disaccharide is found in 

various organisms, such as algae, archaea, bacteria, fungi, insects and plants (Schluepmann et 

al., 2012). It was initially thought that trehalose did not occur in plants, except for 

resurrection plants, since trehalose accumulated in previously undetectable levels in plants 

(Muller et al., 1995; Wingler, 2002). Later, trehalose synthesis genes were discovered in 

various plant species with multiple isoforms (Schluepmann et al., 2012).  

Since its detection in plants, various roles have been revealed for trehalose and its 

intermediate, trehalose-6-phosphate (T6P). One of the functions of trehalose is that of a stress 

protectant during abiotic stress conditions, where it has been shown to be capable of 

stabilizing membranes and protein structures during abiotic stresses. It is suggested that 

during these abiotic stresses, trehalose stabilizes proteins by forming hydrogen bonds with 

polar residues, replacing the role of water (Crowe et al., 1998; Wingler, 2002; Schluepmann 

et al., 2012). Much research has been focused on manipulating T6P synthesis in order to 

create transgenic plants that are resistant to desiccation and high salinity stresses (Jang et al., 

2003; Penna, 2003; Zang et al., 2011). Research into the function of T6P has also indicated 

that it could act as a signal of sucrose availability in plants (Kolbe et al., 2005; Lunn et al., 

2006; Schluepmann et al., 2012). T6P has been shown to influence the regulation of enzymes 

involved in carbon utilization, in turn effecting enzymes such as sucrose non-fermenting 1-

related protein kinase (SnRK1) and ADP-glucose pyrophosphorylase (AGPase) (Kolbe et al., 

2005; Lunn et al., 2006; Zhang et al., 2009; Schluepmann et al., 2012; Martins et al., 2013). 

T6P levels have been shown to increase in Arabidopsis seedlings that were supplied with 

sucrose exogenously (Lunn et al., 2006). However, the exact relation between T6P levels and 

sucrose levels is not fully understood yet. One theory put forward so far is that T6P acts as a 

signal of carbon availability in plants, where T6P is synthesized when sucrose is readily 

available and so T6P activates enzymes or processes that are involved in anabolic processes 

within the plant (Lunn et al., 2006; Schluepmann et al., 2012; O‟Hara et al., 2012). 
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1.3.1 Trehalose synthesis pathways 

Many alternative pathways for trehalose synthesis have been identified in bacterial and fungal 

species, but one pathway, namely the TPS/TPP pathway, both synthesizes and uses T6P 

(Koen et al., 2000). This pathway is well characterised and is present in bacteria, fungi and 

plants (Figure 1.6). This pathway uses uridine diphospho-glucose (UDPG) and glucose-6-

phosphate (G6P) as substrates to synthesize trehalose and consists of two reactions. The first 

is catalysed by the trehalose-6-phosphate synthase enzyme (TPS) (EC 2.4.1.15) and joins 

UDPG to G6P via an α,α-1,1-glucoside bond, resulting in the formation of T6P. In the second 

reaction, T6P is dephosphorylated, which is catalysed by trehalose-6-phosphate phosphatase 

(TPP) (EC 3.1.3.12) to form trehalose. Trehalose can be further hydrolysed by trehalase (EC 

3.2.1.28) to produce two molecules of glucose (Elbein et al., 2003; O‟Hara et al., 2012). 

 

Figure 1.6: Basic outline of the TPS/TPP pathway. Abbreviations, trehalose-6-phosphate synthase 

(TPS); uridine diphospho-glucose (UDPG); glucose-6-phosphate (G6P); trehalose-6-phosphate 

phosphatase (TPP); and trehalose (TRE1). 

In literature concerning bacteria, TPS genes are named otsA and TPP, otsB, where the otsAB 

operon can code for trehalose synthesis in the TPS/TPP pathway (Giaever et al., 1988). In 

literature concerning yeast, TPS genes are sometimes referred to as TPS1 and TPP as TPS2 

(Koen et al., 2000; Schluepmann et al., 2012).  

1.3.2 Domains and general protein structure 

All bacterial TPS enzymes so far characterised contain a single TPS domain, which is 

sometimes called a GT1 TPS domain. This domain is part of the glycosyltransferase GTB 

type superfamily (Marchler-Bauer et al., 2013). Bacterial TPP enzymes usually contain a 

single TPP domain, which is also called PRK10187 and forms part of the PRK101817 

superfamily (Marchler-Bauer et al., 2013). Fungal TPS enzymes, such as the S. cerevisiae 

TPS enzyme and the Schizosaccharomyces pombe TPS enzyme, possess a single TPS domain 

(Schluepmann et al., 2012). Most functional plant TPS enzymes characterized so far possess a 
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TPS domain situated near the N terminus and a partial TPP domain near the C terminus 

(Figure 1.7) (Schluepmann et al., 2012). More specifically the TPS domain in plant TPS 

sequences is the GT1 TPS domain and the partial TPP domain is called trehalose_PPase 

(Marchler-Bauer et al., 2013). In plant TPS sequences, both these domains form part of a 

larger alpha,alpha-trehalose-phosphate synthase (UDP-forming) domain (Figure 1.7). The 

amino acid sequences in these domains are longer than similar domains found in yeast, but 

are similar in that the TPS domain is active and the TPP domain is incomplete and unable to 

catalyse the phosphorylation of T6P. Plant TPP enzymes, however, possess a single 

catalytically active TPP domain, situated within a larger trehalose phosphatase domain 

(Figure 1.7) (Schluepmann et al., 2012; Marchler-Bauer et al., 2013). 

 

Figure 1.7: General conserved domain structure of plant TPS and TPP proteins. (A) a functional plant 

trehalose-6-phosphate (TPS) protein, which contains a functional TPS domain on the N terminus of the 

protein and a partial TPP domain on the C terminus; (B) a plant trehalose-6-phosphate phosphatase 

(TPP). 

1.3.3 Isolation and characterization of trehalose synthesis genes 

T6P and trehalose synthesis genes have been isolated or characterised in various eukaryotes, 

where the function of these genes can vary across the different eukaryotic kingdoms and 

phylums.  

Stellenbosch University  https://scholar.sun.ac.za



18 

 

1.3.3.1 Characterization of trehalose synthesis in yeast 

Trehalose synthesis genes have been extensively researched in yeast, where a working model 

has been put forward for its function in regulating carbon metabolism and glycolysis 

(Blazquez et al., 1993; Schluepmann et al., 2012). Research in yeast had also resulted in the 

discovery of mutants with defects in these trehalose synthesis pathways. These greatly aided 

in the identification of TPS and TPP genes in plants (Gonzalez et al., 1992; O‟Hara et al., 

2012; Schluepmann et al., 2012) 

In yeast, trehalose has been suggested to act as a storage carbohydrate along with glycogen, 

but mainly it has been proposed to act as a stress protectant (Bell et al., 1992). TPS and TPP 

genes have been isolated and characterized in S. cerevisiae and Schizosaccharomyces pombe 

(Bell et al., 1992; Blazquez et al., 1994). Studies on S. cerevisiae mutants suggested that the 

yeast TPS1 gene and T6P regulate the flow of glucose into the glycolysis reaction (Van Aelst 

et al., 1993; Blazquez et al., 1993; Neves et al., 1995; Zentella et al., 1999), while studies 

using Schizosaccharomyces pombe suggest that T6P is needed for spore germination 

(Blazquez et al., 1994).  

Initially it was observed that the S. cerevisiae mutants, fdp1 and cif1 were unable to grow on 

media containing glucose as the only carbon source. Both these mutants were used during 

studies conducted to understand the regulation of glycolysis in yeast and the role of fructose-

1,6-diphosphate (Van de Poll et al., 1974; Navon et al., 1979; Blazquez et al., 1994). The 

fdp1 and cif1 mutants were renamed to tps1∆ mutants with the discovery that the yeast TPS1 

gene shared a high similarity to the cif1 fdp1 genes. Similar to fdp1 and cif1 mutants, tps1∆ 

mutants were unable to grow on media containing glucose (Bell et al., 1992). The addition of 

glucose to tps1∆ mutants did not cause an increase in cyclic adenosine monophosphate 

(cAMP) concentrations but, instead caused a depletion of ATP levels and an increase in 

glycolytic intermediates (Van de Poll et al., 1974; Navon et al., 1979; Gonzalez et al., 1992; 

Blazquez et al., 1994). These results suggested that T6P regulated the rate at which the initial 

steps of glycolysis occurred (Blazquez et al., 1993). Later the yeast TPS1 enzyme complex, 

along with its product T6P were shown to inhibit the catalytic activity of hexokinase II which 

regulates the entrance of glucose into glycolysis (Blazquez et al., 1993; Schluepmann et al., 

2012) 

Loundesborough and Vuorio, (1991) reported the purification of a proteolytically modified 

enzyme complex with an approximate size of 800 kDa from S. cerevisiae. This was identified 

Stellenbosch University  https://scholar.sun.ac.za



19 

 

to have both TPS and TPP activity and contained three polypeptides of 57, 86 and 93 kDa. 

Additionally they also purified a protein dimer composed of 58 kDa subunits, which 

increased the activity of TPS but not TPP activity (Loundesborough and Vuorio, 1991; Bell et 

al., 1992). Bell et al., (1992) added to these results by isolating the TPS1 gene that encoded 

the smallest subunit of the TPS/TPP complex. That contained an open reading frame of 1485 

bp, and coded for a protein of 495 amino acids (Bell et al., 1992). Upon sequencing the TPS1 

gene it was found to be almost identical to the CIF1 gene, which was known to be involved in 

de-activating carbon catabolites. In their report, Bell and colleagues generated a yeast mutant 

containing disrupted TPS1. This mutant was confirmed to have low TPS activity and was 

unable to grow on media containing glucose, similar to fdp1 and cif1 mutants (Bell et al., 

1992).  

The effects of T6P on inhibiting enzymes involved in the initial stages of glycolysis were 

investigated by Blazquez et al., (1993). Specifically, they looked at the effects of T6P on 

phosphorylation of glucose and fructose by hexokinase isoforms in a number of organisms 

(Blazquez et al., 1993; Blazquez et al., 1994). In S. cerevisiae they reported that T6P 

competitively inhibited the phosphorylation of glucose and fructose by hexokinase II and 

weakly inhibited hexokinase I (Blazquez et al., 1993). When yeast tps1∆ mutants were fed 

glucose, a depletion of ATP levels and an increase in glycolytic intermediates was observed 

(Blazquez et al., 1994). Disruption of the hexokinase II encoding gene, HXK2 in tps1∆ 

mutants, restored their ability to grow on media with glucose as a carbon source. It was 

concluded that T6P acts as a feed-back inhibitor of hexokinase II in yeast (Blazquez et al., 

1994). This would mean that a disruption in the yeast TPS1 gene causes uncontrolled 

phosphorylation of the fermentable sugars glucose and fructose which leads to sequestration 

of the phosphate pool as G6P and F6P. This is accompanied by an inability to produce ATP 

because of the lack of phosphate (Blazquez et al., 1993; Blazquez et al., 1994).  

Functional TPS genes can be identified by complementation of tps1∆ mutants grown on 

media containing glucose. These have been used successfully to isolate functional TPS genes 

from many eukaryotic organisms (Gonzalez et al., 1992; O‟Hara et al., 2012; Schluepmann et 

al., 2012). 

1.3.3.2 Characterization of trehalose synthesis in plants 

Early research had identified trehalose accumulation in desiccation resistant plants, such as 

Selaginella lepidophylla, Myrothamnus flabellifolius and Craterostigma planitagineum 
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(Adams et al., 1990; Drennan et al., 1993; Crowe, 2002; O‟Hara et al., 2012). It was 

hypothesised that in these plants trehalose protected against desiccation. In crop plants, 

trehalose synthesis could only be confirmed by trehalase activity, which was found in 

sugarcane (Glasziou and Gayler, 1969; Alexander, 1972; Bosch, 2005). Trehalose was 

eventually detected in crop plants through methods utilizing gas chromatography mass 

spectrometry (GC-MS), first in potato tuber extracts and secondly in Arabidopsis (Roessner et 

al., 2000; Vogel et al., 2001). Characterization of the Arabidopsis TPS encoding gene, 

AtTPS1 (NCBI accession number: NM_106505.4), was accompanied by detection of its 

activity in protein extracts (Blazquez et al., 1998). With the sequencing of the Arabidopsis 

genome in 2000, eleven TPS isoforms were identified through alignment searches (Leyman et 

al., 2001).  

In plants, functional TPS genes have been isolated and characterized in A. thaliana, S. 

lepidophylla, Oryza sativa and Zea mays (Blazquez et al., 1998; Zentella et al., 1999; Jiang et 

al., 2010; Zang et al., 2011). Although many TPS isoforms can exist in a single plant species, 

not all are functional. For example in Arabidopsis, of the eleven TPS genes known to exist 

only AtTPS1 (Blazquez et al., 1998) and AtTPS6 (Chary et al., 2008) have been shown to 

encode functional enzymes through complementation assays with yeast tps1∆ mutants 

(Blazquez et al., 1998; Leyman et al., 2001). It has been proposed that these isoforms could 

have an unknown regulatory role(s) (Vandesteene et al., 2010; Schluepmann et al., 2012).  

Plant TPS genes have been divided into two classes based on their similarity to the S. 

cerevisiae ScTPS1 and ScTPS2 genes (Leyman et al., 2001). Current models suggest that 

functional TPS genes are part of the class I TPS gene subfamily, while the inactive TPS 

isoforms belong to the class II subfamily of TPS genes. An exception to this seems to be 

AtTPS6, which was classed as a class II TPS (Leyman et al., 2001), but has been shown to 

possess both TPS and TPP activity (Chary et al., 2008).  

1.3.4 Possible functions of trehalose synthesis in plants 

1.3.4.1 Effects of trehalose synthesis on plant growth 

Results from experiments done on S. cerevisiae were initially considered when determining 

the role of trehalose and T6P in plant species. However, these would be shown to have 

dissimilar functions in plant species compared with yeast as well as between diverse plant 
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species. A primary difference is that the hexokinase activity in Arabidopsis is not inhibited by 

T6P (Eastmond et al., 2002; Schluepmann et al., 2012). Instead results suggest that it plays a 

role as a signal molecule in carbon metabolism, growth regulation and plant embryo 

development. Also, trehalose accumulation has been observed in certain desiccation resistant 

plants but trehalose accumulation in other plants is too low to serve as a primary metabolite or 

transport carbohydrate (Muller et al., 1995; O‟Hara et al., 2012). Overexpression of TPS 

genes from either E. coli or S. cerevisiae in plants has resulted in increased resistance to 

abiotic stresses in plants. Some of these transgenic plants have also displayed stunted growth 

or other aberrations, suggesting that T6P plays a role in growth development in plants 

(Schluepmann et al., 2012; O‟Hara et al., 2012). 

Early experiments conducted on Cuscuta reflexa indicated that exogenously fed trehalose was 

toxic to plants and that it acted as an inhibitor of plant growth (Veluthambi et al., 1981). 

Species that exhibited high trehalase activity however, seemed to be unaffected by trehalose 

feeding, displaying no growth inhibition (Veluthambi et al., 1981). Furthermore, Arabidopsis 

seedlings were growth arrested when grown on medium containing trehalose. Specifically 

root growth was inhibited, while shoots accumulated starch and showed decrease levels of 

sucrose (Wingler et al., 2000; Schluepmann et al., 2004). However, transgenic plantlets 

expressing the E. coli trehalase gene treF were capable of normal growth (Schluepmann et al., 

2004). Later research attributed the growth inhibition to be due to increased T6P levels 

(Schluepmann et al., 2004).  

Schluepmann et al., (2004) reported a rapid increased of endogenous T6P levels in 

Arabidopsis plantlets that were fed trehalose exogenously. Transgenic Arabidopsis expressing 

either an E.coli T6P hydrolase or trehalase genes were capable of uninhibited growth on 

trehalose media, but growth was noted to be slower (Schluepmann et al., 2004). Schluepmann 

et al., (2004) also reported microarray analysis data that showed that increased T6P levels 

correlated with the expression of genes involved in responses to abiotic stresses. What has not 

been determined yet is how endogenous T6P levels rise in response to high trehalose supplied 

exogenously. Another undetermined factor is how exactly these increased T6P levels cause 

growth aberrations and growth inhibition. It has been proposed that increases in T6P levels 

could influence the expression of genes involved in responses to abiotic stress, where this 

expression in turn affects plant growth (Schluepmann et al., 2004; Schluepmann et al., 2012; 

O‟Hara et al., 2012).  
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These data indicate that the presence of increased trehalose or T6P can be detrimental to plant 

growth. Exceptions to this were shown with the overexpression of TPS activity in rice and 

sugarcane. Li et al., (2011) overexpressed OsTPS1 in rice and observed increased tolerance to 

abiotic stresses, without growth aberrations. Zhang et al., (2006) reported on the 

overexpression of a fungal Grifola frondosa TPS in sugarcane, which improved drought 

tolerance without any growth aberrations. This would also suggest that monocotyledonous 

plant species may not be sensitive to fluctuations in T6P and trehalose levels (Zhang et al., 

2006; Li et al., 2011).  

Other experiments have also shown that T6P is also necessary for normal growth and embryo 

development. Eastmond et al. (2002) reported that Arabidopsis AtTPS1 deletion mutant seeds 

failed to germinate, with embryo development becoming terminated at the torpedo stage. 

These seeds still failed to germinate even after trehalose was supplied in the medium. 

Arabidopsis AtTPS1 deletion mutant seeds expressing the E. coli otsA gene were, however, 

capable of germination (Schluepmann et al., 2003). These results indicate that T6P is required 

for embryo development in Arabidopsis, but its exact role is still unclear (Schluepmann et al., 

2012; O‟Hara et al., 2012). 

Later experiments suggested that T6P acts as a signal of carbon availability. Transgenic 

Arabidopsis seedlings overexpressing the otsB and T6P-hydrolase encoding treC gene were 

generated by Schluepmann et al., (2003), to create plants with lowered T6P levels. 

Arabidopsis overexpressing otsA were also generated. Seedlings with lowered T6P levels 

displayed slow growth when grown on glucose, fructose or sucrose (Schluepmann et al., 

2003). In contrast, seedlings overexpressing otsA grew faster than wild type Arabidopsis 

when grown on medium containing sucrose. Seedlings overexpressing the E. coli trehalase 

treF gene were observed to have similar growth to wild type seedlings. These results indicate 

that T6P is required for normal carbon utilization in Arabidopsis seedlings, since T6P 

overexpression seems to improve growth when sugars are supplied in high amounts. 

Increased T6P as a result of trehalose feeding has been shown to inhibit plant growth, but this 

growth inhibition can be overcome by the addition of sucrose to medium (Wingler et al., 

2000; Schluepmann et al., 2004). Thus, T6P is inhibitory to growth in plants, unless it is 

increased in balance with carbon supply where it would improve growth. Thus, it has been 

proposed that T6P acts as a signal of carbon availability in plants (Schluepmann et al., 2003; 

Schluepmann et al., 2004). Results by Lunn et al., (2006) also supported this theory, as they 

observed an increase in Arabidopsis endogenous T6P levels in response to exogenously fed 

sucrose. 
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1.3.4.2 Effects of T6P on AGPase and SNRK1 

Some of the previously mentioned studies indicated that the toxicity of trehalose was due to 

the increase in starch content (Wingler et al., 2000). The Arabidopsis starch-less mutant 

adg1-1 has also been observed to have partial resistance to growth inhibition when grown on 

trehalose (Fritzius et al., 2001). These results indicate that trehalose may lead to the 

accumulation of starch and a decrease of transport carbohydrates, such as sucrose. This shift 

in carbon metabolism would cause growth inhibition, due to sucrose not being available for 

transport throughout the plant (Wingler et al., 2000; O‟Hara et al., 2012). However, this 

theory is not supported by the observation that trehalose inhibits growth in the starch-less 

pgm-1 Arabidopsis mutant (O‟Hara et al., 2012; Schluepmann et al., 2012). 

A study by Kolbe et al., (2005) reported that Arabidopsis overexpressing otsA had increased 

redox activation of AGPase activity and starch synthesis, while otsB overexpression 

prevented the redox activation of AGPase in response to sucrose feeding or trehalose feeding. 

Intact chloroplasts incubated in T6P were also shown to increase the reductive activation of 

AGPase activity. Kolbe et al., (2005) concluded that T6P increased AGPase activity by 

increasing post translational redox activation of AGPase. The precise mechanism of how T6P 

led to the activation of AGPase was not shown. Results from Lunn et al., (2006) supported 

the theory that T6P acts as a signal of carbon availability in plants. Arabidopsis seedlings 

were first starved of sucrose, after which sucrose was fed exogenously. In these seedlings, 

T6P levels were observed to increase 26 fold in response to sucrose re-supply (Lunn et al., 

2006). These increases in T6P were also accompanied by redox activation of AGPase activity 

and increased starch synthesis. Lunn et al., (2006) did conclude that T6P could act as a signal 

of carbon availability in plants, mediating sucrose induced changes in starch synthesis. 

Martins et al., (2013) investigated this proposed theory further by controlling the expression 

of the otsA gene in Arabidopsis, via an ethanol inducible promoter. During the day with 

ethanol induction they observed an 11 fold increase in T6P levels, followed by an increase in 

starch accumulation, but they showed that this increase in starch was not due to redox 

activation of AGPase. Martins et al., (2013) concluded that T6P is probably part of a 

signalling pathway, which mediates the feedback regulation of starch breakdown by sucrose. 

They also theorised then that T6P links starch degradation to the sucrose demand by growing 

organs during night time. 

SnRK1 is a plant protein kinase that shares significant homology with the yeast sucrose non-

fermenting 1 kinase (SNF-1) and is involved in plant energy signalling. SnRK1 has been 
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shown to activate genes involved in catabolic processes and photosynthesis, while also 

deactivating anabolic processes (Zhang et al., 2009; Schluepmann et al., 2012; O‟Hara et al., 

2012). Interestingly, SnRK1 has also been shown to phosphorylate class II TPS proteins and 

regulate their transcription (Glinski and Weckwerth, 2005; Harthill et al., 2006; Baena-

Gonzalez et al., 2007; Zhang et al., 2009). Zhang et al., (2009) showed that SnRK1 activity in 

Arabidopsis seedlings is inhibited by T6P. This was shown to be non-competitive and 

required a yet unknown intermediate (Zhang et al., 2009). Further analysis showed that 

SnRK1 activity was inhibited in all tissue of Arabidopsis seedlings except mature leaves. 

Microarray analysis also showed that T6P up-regulated genes that are usually down-regulated 

by SnRK1 (Zhang et al., 2009). Delatte et al., (2011) reported a down regulation of marker 

genes in Arabidopsis seedlings grown on trehalose media, where those marker genes were 

known to be controlled by SnRK1 activity and bZIP11. A more complex system of regulation 

exists with SnRK1 where the exact relations with T6P levels are not yet clear. Regardless, 

T6P has been shown at a basic level to inhibit SnRK1 activity (Zhang et al., 2009; Delatte et 

al., 2011). 

1.3.5 Expression of TPS in plants 

Attempts have been made to overexpress trehalose synthesis genes from S. cerevisiae and E. 

coli to create transgenic plants with increased abiotic stress tolerance. Overexpression of TPS 

genes in transgenic Arabidopsis and tobacco plants resulted in increased abiotic stress 

tolerance and photosynthetic capabilities, but also resulted in stunted growth and lancet leaf 

formation (Penna, 2003). Similar experiments using TPP genes led to reduced photosynthetic 

rates, yet no growth aberrations (Holmstrom et al., 1996; Goddijn et al., 1997; Romero et al., 

1997; Goddijn and Van Dun, 1999; Paul et al., 2001; Penna, 2003). Tobacco plants 

constitutively expressing ScTPS1 displayed growth stunting, lancet shaped leaves and 

reduced sucrose, along with increased drought tolerance (Romero et al., 1997). These growth 

defect phenotypes would later be eliminated through either controlled expression of TPS or 

by expressing bi-functional fusions of TPS and TPP genes, while still maintaining increased 

abiotic stress tolerance. It had also been noted that reports of growth defects due to trehalose 

accumulation, were mostly observed in dicotyledonous plant species (Garg et al., 2002; 

Penna, 2003; Li et al., 2011). A bi-functional fusion of the otsA and otsB genes was 

characterised by Seo et al., (2000), where the encoded fusion TPSP protein was shown to 

have a higher efficiency due to the increased proximity of the TPS and TPP protein domains. 

This TPSP protein was transformed into rice and expressed under the control of a tissue 

specific and stress inducible promoter. Transgenic rice plants displayed increased tolerance to 
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abiotic stresses, with no growth aberrations (Garg et al., 2002). Li et al., (2011) reported the 

overexpression of an N terminal truncated OsTPS1 gene in rice that was capable of conferring 

increased tolerance to cold, salinity and drought stresses with no growth aberrations. This 

showed that the increase of TPS activity alone in rice did not cause growth defects as it did in 

Arabidopsis and tobacco. Stress related genes WS118, RAB16C, HSP70 and ELIP were found 

to be up-regulated in in transgenic rice lines overexpressing OsTPS1 (Li et al., 2011). 

1.3.6 Trehalose in sugarcane 

The earliest indication of trehalose synthesis being present in plants was the detection of 

trehalase activity in sugarcane in 1969 (Glasziou and Gayler, 1969; Alexander, 1972; 

Fleischmacher et al., 1980; Bosch, 2005). Current methods are capable of detecting the small 

amounts of trehalose that occur in plants, but reports of trehalose accumulation in sugarcane 

are sparse (Bosch, 2005). Trehalose accumulation in five sugarcane cultivars was reported by 

Bosch (2005), using quadropole GC-MS to measure sucrose and trehalose in sugarcane 

internode tissue. Trehalose was found to accumulate at levels ranging from 0.42 to 078 

nmol/g internode tissue, in comparison with sucrose levels which range from 132 to 293 

µmol/g internode tissue (Bosch, 2005). The Grifola frondosa trehalose synthase gene was 

constitutively expressed in sugarcane by Zhang et al., (2006), which resulted in transgenic 

sugarcane that displayed increased abiotic stress resistance. Zhang et al., (2006) reported that 

trehalose accumulated in transgenic sugarcane leaves up to 8.805 and 12.863 mg/g fresh 

weight, wherease trehalose levels in non transgenic sugarcane was undetectable. 

TPS expression has been studied in sugarcane placed under water or temperature stresses, 

using partial sugarcane TPS and TPP sequences (McCormick et al., 2009; Nicolau et al., 

2013). McCormick et al., (2009) reported a decrease in TPS and an increase in TPP 

expression as sucrose levels increased in sugarcane leaves subjected to cold girdling. These 

results again suggest a role for T6P as a sugar signal in plants (McCormick et al., 2009). A 

better understanding of the influence T6P has on sucrose levels could potentially lead to 

increasing sucrose content in transgenic sugarcane (McCormick et al., 2009; Schluepmann et 

al., 2012). 
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1.3.7 Trehalose research aim and objectives 

The reported research concerned with T6P and trehalose synthesis in plants, aimed to  

understand the role of T6P and trehalose in sugarcane carbon metabolism. Various signalling 

roles have been proposed so far but limited information is available on the influence that 

trehalose and T6P can have on sucrose levels, where these shifts in carbon metabolism can 

also affect plant growth. Sugarcane is a plant known to naturally accumulate high amounts of 

sucrose, compared with other plants. Understanding sucrose synthesis in sugarcane could aid 

in increasing sucrose content and so lead to better yields. Further understanding of the effect 

T6P has on sucrose could aid in this objective. . 

 The first research objective is to determine whether the manipulation of T6P levels in 

transgenic plants could potentially aid in manipulating sucrose levels in plants. This would be 

achieved by overexpressing the E. coli otsA and otsB genes separately in sugarcane, where 

these transgenes were constitutively expressed under the control of the maize ubiquitin 

promoter. Once transgenic plants are grown, expression studies can be performed and sugar 

levels measured, in order to correlate these and understand the effects T6P has on sucrose 

content in sugarcane. 

  The second objective is to isolate a functional SoTPS gene from sugarcane. A putative SoTPS 

will have to be isolated, where this will then have to be shown to be functional by 

complementing S. cerevisiae tps1∆ mutants grown on medium containing glucose. Once a 

functional SoTPS gene is isolated further characterisation can be performed on the encoded 

enzyme and its biochemical properties. A functional SoTPS gene could also be transformed 

into sugarcane with the goal of overexpression or gene silencing. 
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2.1  Introduction 

Trehalose is a non-reducing disaccharide found in various prokaryotic and eukaryotic 

organisms such as algae, bacteria, fungi, insects and some plant species. In trehalose synthesis 

both uridine diphospho-glucose (UDPG) and glucose-6-phosphate (G6P) are used as 

substrates. Trehalose-6-phosphate synthase (TPS) catalyses the bonding of UDPG to G6P via 

an α,α-1,1-glucoside bond, while trehalose-6-phosphate phosphatase (TPP) catalyses the 

dephosphorylation of T6P to form trehalose. Since its detection in plants, various roles have 

been revealed for trehalose and its intermediate, trehalose-6-phosphate (T6P). Trehalose has 

been shown to act as an abiotic stress protectant in fungi, bacteria and certain resurrection 

plants (Crowe et al., 1998; Crowe, 2002; Wingler, 2002). However, initial genetic 

manipulation of trehalose synthesis in transgenic plants, to enhance stress tolerance, led to 

plant growth aberrations such as detrimental development and embryogenesis (Penna, 2003). 

In monocot plant species the altering of trehalose synthesis however does not seem to result 

in growth aberrations (Zhang et al., 2006; Li et al., 2011). 

Further research into the function of T6P has also shown possible involvement in carbon 

utilization in plants. T6P, along with an unknown intermediate, has been shown to inhibit 

sucrose non-fermenting 1 related protein kinase (SnRK1) activity in Arabidopsis seedlings 

(Zhang et al., 2009). However, T6P is unable to inhibit SnRK1 in mature leaves of 

Arabidopsis (Zhang et al., 2009). Martins et al., (2013) had shown that increasing T6P levels 

via an ethanol promoter resulted in starch accumulation, but this was not caused by redox 

activation of ADP-glucose pyrophossophorylase (AGPase). It was also shown that at night, 

increasing T6P inhibited starch degradation. These results together with results of T6P effects 

on plant development indicate a possible role for T6P as a signal of sugar status in plants, 

although the exact role of T6P and its effects on sugar levels in plants is still being elucidated 

(Schluepmann et al., 2004; Lunn et al., 2006; Schluepmann et al., 2012; Martins et al., 2013).  

So far, a number of functional TPS genes have been isolated from plants, including 

Arabidopsis AtTPS1 (NCBI accession number: NM_106505.4) and AtTPS6 (NCBI accession 

number: NM_202376.2), Selaginella lepidophylla SlTPS1 (NCBI accession number: 

U96736.1), maize ZmTPS1 (NCBI accession number: EU659122.2) and rice OsTPS1 (NCBI 

accession number: HM050424) (Blazquez et al., 1998; Zentella et al., 1999; Jiang et al., 

2010; Zang et al., 2011). In sugarcane, trehalase activity was detected as early as 1969, which 

indicated that trehalose may be present in sugarcane as well (Glasziou and Gayler, 1969; 

Alexander, 1973; Fleischmacher et al., 1980; Bosch, 2005). Reports of the presence of 
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trehalose in sugarcane have been limited due to difficulties in measuring trace amounts of it 

in plants (Bosch, 2005). Accumulation of trehalose in five sugarcane cultivars was reported 

by Bosch in 2005. Specifically, trehalose and sucrose levels were measured in different 

sugarcane internode tissue, using quadropole GC-MS. Bosch, (2005) reported trehalose 

accumulating at levels ranging from 0.42 to 078 nmol/g internode tissue, in comparison with 

sucrose levels ranging from 132 to 293 µmol/g internode tissues. When the Grifola frondosa 

(mushroom) trehalose synthase gene was constitutively expressed in sugarcane an increase in 

abiotic stress resistance was seen (Zhang et al., 2006). This higher level of resistance was 

accompanied with an increase in trehalose levels of around 8-12 mg/g leaf tissue in contrast 

to undetectable levels in the untransformed leaves (Zhang et al., 2006). Additionally, TPS 

expression has been studied in sugarcane using partial sugarcane TPS and TPP sequences 

(McCormick et al., 2009; Nicolau et al., 2013). McCormick et al., (2009) reported a decrease 

in TPS expression and an increase in TPP expression as sucrose levels increased in sugarcane 

leaves subjected to cold girdling. These results again suggest a role for T6P as a sugar signal 

in plants (McCormick et al., 2009).  

The overall goal of this study is to understand the effects of T6P on sucrose levels in 

sugarcane. To make progress towards this, a functional sugarcane TPS gene has to be isolated 

and characterised to commence further research. T6P levels can also be altered in sugarcane, 

so as to make initial observations on the effects of increasing and decreasing T6P levels on 

sucrose in sugarcane. The first objective is to isolate a functional full length sugarcane TPS 

cDNA and show that it encodes a functional TPS enzyme. 5‟ rapid amplification of cDNA 

ends (RACE)  will be used to isolate a full length putative TPS gene sequence. Once that is 

identified, complementation of yeast tps1∆ mutants grown on glucose will show whether a 

functional TPS enzyme is encoded by the isolated sequence. The second objective is the 

overexpression of the E. coli otsA and otsB genes in sugarcane, in order to see the effects of 

their overexpression on sucrose accumulation in transgenic sugarcane. With otsA 

overexpression it is assumed that T6P would accumulate and result in decreased sucrose 

levels, while when otsB is overexpressed it should decrease T6P levels and, therefore, 

possibly increase sucrose accumulation (Lunn et al., 2006; Schluepmann et al., 2012; O‟Ha et 

al., 2012).  
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2.2  Materials and Methods 

2.2.1 Chemicals, kits and reagents 

Acids and chemicals used were obtained from Bio-Rad (Hercules, CA, USA), Sigma-Aldrich 

(St. Louis, MO, USA), Merck Chemicals (Gauteng, RSA) and Whatman (Maidstone, United 

Kingdom). Kits and enzymes used were obtained from Clontech (Mountain View, CA, USA), 

Fermentas (Hanover, MD, USA), Invitrogen (Carlsbad, CA, USA), Promega (Madison, WI, 

USA), New England Biolabs (Ipswich, MA, USA), Qiagen (Dusseldorf, Germany), 

Separations (Johannesburg, RSA), Sigma-Aldrich (St. Louis, MO, USA), Takara (Otsu, Shiga, 

Japan), Thermo Scientific (Waltham, MA, USA) and Zymo Research (Orange, CA, USA).  

Competent cells used were obtained from Agilent Technologies (Santa Clara, CA, USA), 

Lucigen (Middleton, WI, USA), Clontech (Mountain View, CA, USA), Invitrogen (Carlsbad, 

CA, USA) and Takara (Otsu, Shiga, Japan). Yeast strains used in yeast complementation 

assays were provided by the Laboratory of Molecular Cell Biology (Katholieke Universiteit 

Leuven, Leuven, Belgium). Plasmids that were not previously available within the IPB were 

obtained from Addgene (Cambridge, MA, USA). 

2.2.2 Primer design and synthesis 

Primers were designed using either Primer 3 (http://primer3.ut.ee/) or Primer3Plus 

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/). Primers were 

synthesized by Inqaba Biotech (Pretoria, South Africa). 

2.2.3 General applied molecular techniques 

2.2.3.1 Bacterial growth  

Luria Bertani (LB) medium (10 g/l (w/v) tryptone, 5 g/l (w/v) yeast extract and 10 g/l (w/v) 

NaCl) was used for routine growth and culturing of bacterial strains. LBA solid medium was 

LB medium with 12 g/l (w/v) bacterial agar added. All media was autoclaved prior to use. 

Antibiotics and other additions were added to media after cooling to approximately 60ºC prior 

to pouring of plates in a laminar flow cabinet.  
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2.2.3.2 Bacterial transformation 

Standard heat shock protocols were used for routine transformation of DH5α competent cells 

(Sambrook and Russel, 2001). Briefly, competent cells were mixed with plasmid DNA (50 

ng) and left on ice for 30 min prior to heating cells to 42°C for 45 seconds. After heat shock, 

cells were left on ice for 2 min and LB medium added to a final volume of 1 ml. Tubes 

containing transformed E.coli DH5α were incubated at 37°C for 1 hour with shaking at 200 

rpm. After incubation, 150 µl of transformed cells were plated out on LBA plates containing 

appropriate antibiotics and incubated overnight at 37°C. Colonies were inoculated in liquid 

LB medium in preparation for plasmid purification.  

2.2.3.3 Production of chemically competent cells 

Chemically competent DH5α cells were manufactured using a modified protocol from 

Sambrook and Russel, (2001), which utilizes calcium chloride. DH5α cells were initially 

streaked out on a LBA plates and incubated overnight at 37°C. A single colony was 

inoculated into 5 ml of LB and incubated overnight at 37°C with shaking at 200 rpm. The 

overnight starter culture was then inoculated into 200 ml of fresh LB and grown to an OD600 

of 0.6. Cells were transferred to pre-cooled 50 ml polypropylene tubes and kept on ice for 40 

min. Cells were harvested by centrifuging at 5000 g for 10 min at 4°C The resulting cell pellet 

was re-suspended twice in ice cold 0.1 M CaCl2 and recovered by centrifugation at 5000 g for 

10 min at 4°C. Finally, the cells were re-suspended in 3 ml of ice cold 0.1 M CaCl2 and 100 

µl of re-suspended cells were aliquoted into microcentrifuge tubes for storage at -80°C until 

use. 

2.2.3.4 Extraction of plasmid DNA 

For standard plasmid isolation, a modified protocol from Sambrook and Russel, (2001) was 

used. Solutions prepared and used were Alkaline Solution 1 (AS1) (50 mM glucose, 25 mM 

Tris-HCL pH 8, 10 mM EDTA, pH 8 and 20 µg/ml DNase-free RNase A), Alkaline Lysis 

Solution 2 (AS2: 0.2 M NaOH, 1% (w/v) SDS) made fresh each time and Alkaline Lysis 

Solution 3 (AS3) (5 M potassium acetate, pH 5.2). Cells from 5 ml overnight cultures were 

harvested by centrifugation at 8000 g for 5 min, these centrifugation settings were the same 

throughout the extraction procedure. Bacterial pellets were re-suspended in 100 µl of cold 

AS1 followed by the addition of 200 µl of freshly prepared AS2 and mixing by inverting the 
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tubes 5 times. AS3 (150 μl) was added and samples were left on ice for 5 min followed by 

centrifugation. The resulting supernatant was transferred to new tubes. An equal volume of 

PCIA solution [phenol:chloroform:isoamyl-alcohol (25:24:1)] was added, mixed and 

centrifuged. DNA was precipitated by adding 2 volumes of ethanol and pelleted by 

centrifugation. DNA pellets were washed twice with 700 ul 70% (v/v) ethanol, after which 

the supernatant was aspirated and plasmid DNA re-suspended in sterile  water for storage. 

Plasmids isolated for sequencing were isolated using the GeneJET Plasmid Miniprep Kit 

(Thermo Scientific; Waltham, MA, USA), following the specifications of the manufacturer. 

2.2.3.5 RNA isolation 

For RNA isolation, performed without the use of an RNA isolation kit, a modified protocol 

from Malnoy et al., (2001) and Hu et al., (2002) was followed. RNA extraction buffer (2% 

(w/v) cetyl trimethyl ammonium bromide (CTAB), 2% (w/v) polyvinylpyrrolidone (PVP), 

100 mM Tris-hydroxymethyl aminomethane (Tris-HCL) pH8, 25 mM ethylenediamine tetra 

acetic acid (EDTA) and 2 M NaCl dissolved in diethyl pyrocarbonate (DEPC) treated water 

was autoclaved prior to each RNA extraction. Plant material was ground to a fine powder 

using liquid nitrogen. Prior to adding to ground material, 30 µl of β-mercaptoethanol was 

added to 1470 μl of extraction buffer and heated at 65°C. Frozen ground plant material (200 

mg) was then added to pre-heated extraction buffer and vortexed. Samples were heated at 

65°C for 1 hour and vortexed every 5 min. Samples were centrifuged for 15 min at 8000 g 

and the supernatant was transferred to new tubes. Chloroform/isoamylalcohol extraction was 

performed by adding 1 volume CI solution [chloroform/isoamylalcohol (24:1)] to the 

resulting supernatant and centrifuging for 10 min at 8000 g. The chloroform/isoamylalcohol 

extraction was performed twice. For RNA precipitation, 8 M LiCl was added to the resulting 

supernatant to a final concentration of 2 M, overnight at 4°C. The following day, samples 

were centrifuged at 4°C for 1 hour at 8000 g. The resulting pellets were washed twice by 

adding 500 µl of 70% (v/v) ethanol and centrifuging at 8000 g for 10 min. RNA pellets were 

air dried and re-suspended in appropriate volumes of DEPC treated water. 

2.2.3.6 cDNA synthesis 

Prior to cDNA synthesis, isolated RNA was treated with DNase I, RNase-free (Thermo 

Scientific; Waltham, MA, USA). Once RNA was cleaned of genomic DNA, cDNA was 
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synthesized, using the RevertAid H Minus Reverse Transcriptase kit (Thermo Scientific; 

Waltham, MA, USA). 

2.2.3.7 Polymerase chain reactions (PCR)  

For general diagnostic PCR and colony PCR, GoTaq DNA Polymerase (Promega; Madison, 

WI, USA) was used. Master mixes were assembled on ice for individual 50 µl PCR reactions. 

Reactions contained 10 µl GoTaq 5X Green Reaction Buffer (contains 7.5 mM MgCl2), 1 µl 

dNTP mix (10 mM of each dNTP), 5 µl of each  primer (10 µM ), template DNA , 0.25 µl 

GoTaq enzyme (5 U/µl) and sterile water to a final volume of 25 or 50 µl. The general PCR 

program followed for GoTaq PCR reactions was an initial denaturation at 95°C for 2 min 

followed by 32 cycles of denaturation at 95°C for 20 sec, annealing for 20 sec and elongation 

at 72°C for 1 min per 1 kb to be amplified followed by a final elongation at 72°C for 5 min.  

For colony PCR‟s, small amounts of bacterial colonies were used as template DNA. 

Phusion® High-Fidelity DNA Polymerase (Thermo Scientific; Waltham, MA, USA) was 

used for cloning of inserts that required a proof-reading high fidelity taq (Waltham, MA, 

USA). Master mixes were assembled for 50 µl reactions according to the manufactures 

instructions. The general PCR program followed was an initial denaturation at 98°C for 10 

sec followed by 30 cycles of denaturation at 98°C for 1 sec, annealing for 20 sec, elongation 

at 72°C for 15 sec per 1 kb followed by a final elongation at 72°C for 2 min. For high GC 

content templates such as sugarcane cDNA, PCR reactions contained 5x Phusion GC Buffer 

and the addition of 6 to 10% DMSO with an extended denaturing time of 30 sec.  

2.2.3.8 Separation of DNA and RNA fragments by gel electrophoresis  

PCR amplification products and restriction digests were usually separated on 1.2% (w/v) 

agarose gels containing 5% (v/v) pronosafe (Separations; Johannesburg, RSA). TBE buffer 

consisting of 5.4 g/l Tris base, 2.75 g/l boric acid, 0.465 g/l EDTA (pH 8.0) was used for the 

making and running of electrophoresis gels. Gels were submerged in TBE buffer and DNA 

fragments separated within the gel at 120 mV for an hour. Separated fragments were viewed 

under a UV-light. Depending on the separation of DNA fragments, the corresponding correct 

PCR products were purified using the GeneJET Gel Extraction Kit or PCR Purification Kit, 

both from Thermo Scientific (Waltham, MA, USA).  
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2.2.3.9  Cloning of inserts into a vector 

For cloning of inserts via ligation into a destination vector the following strategy was 

followed. The purified gene inserts and vector DNA were digested using restriction digestion 

enzymes from Thermo Scientific (Waltham, MA, USA). Restriction ends of the digested gene 

inserts were phosphorylated using T4 Polynucleotide Kinase (PNK) and vector ends were 

dephosphorylated using Fast Alkaline Phosphatase (FastAp), both from Thermo Scientific 

(Waltham, MA, USA). Inserts were ligated into the vector overnight at room temperature 

using T4 DNA Ligase Thermo Scientific (Waltham, MA, USA). Resulting constructs were 

transformed into competent DH5α cells via heat shock (see section 2.2.3.2) and transformants 

were selected on LBA plates containing an appropriate antibiotic. Colony PCR was 

performed using GoTaq DNA Polymerase (Promega; Madison, WI, USA) to identify positive 

transformants. A gene-specific primer, along with a plasmid specific primer was used in 

colony PCR‟s to confirm the gene insert was cloned in the correct orientation. When 

sequencing was required, plasmid DNA was purified using the GeneJET Plasmid Miniprep 

Kit (Thermo Scientific; Waltham, MA, USA) and plasmids were sent for sequencing at the 

Central Analytic Facility, Stellenbosch University (CAF). 

2.2.4 Genetic transformation of sugarcane with E.coli otsA and otsB 

2.2.4.1 Initiation and maintenance of embryogenic sugarcane callus  

Wild-type sugarcane plants (Saccharum species hybrid cultivar NCo310), grown on 

Welgevallen farm, Stellenbosch were used for callus initiation. Mature stalks were harvested 

and washed continuously with ethanol while leaves and old stem tissue were removed with a 

sterilized secateurs (Felco). The removal of the final leaf sheath was done in a laminar flow 

cabinet while spraying with 70% (v/v) ethanol. After the removal of the last leaf, the soft 

inner meristematic leaf tissue was cut into 2 mm thick disks. The disks were transferred to 

callus induction MSC3 medium (4.4 g/l MS salts and vitamins) (Murashige and Skoog, 1962; 

Highveld Biological, South Africa), 20 g/l sucrose, 0.5 g/l casein, 3 mg/l 2,4-D (2,4-

dichlorophenoxyacetic acid) and 2.2 g/l gelrite was added after the pH was adjusted to pH 

6.8, using 1 M NaOH) and incubated for six weeks in the dark at 26°C. Every 2 weeks, 

actively growing calli were sub-cultured onto fresh sterile MSC3 medium.  
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2.2.4.2 Isolation of otsA and otsB genes  

In order to study the effects of altering trehalose synthesis on sucrose accumulation in 

sugarcane, the otsA (NCBI accession number: EG11751) and otsB (NCBI accession number: 

EG11752) genes were isolated from BL21(DE3) E.coli for eventual expression in sugarcane. 

For isolation, the BL21 E. coli strain was streaked out on LBA medium (see section 2.2.3.1) 

containing 34 ug/ml chloramphenicol and incubated overnight at 37°C. These colonies served 

as template for PCR isolation reactions. Primers were designed for the full length gene with 

the addition of a NotI restriction site at the 5‟ end and an EcoRI restriction site at the 3‟ end of 

the amplified product (Table 2.1). 

Table 2.1: Primers used to isolate the otsA and otsB gene fragments from E. coli. 

 

Gene Primer name  Sequence 

otsA 

otsA Fw NotI 5‟- TGCGGCCGCGACTATGAGTCGTTTAGTC -„3 

otsA Rev EcoRI 5‟- CGAATTCTCGGCGAAAAGAGTTATT -„3 

otsA int Fw 5‟- TTTGCCAGAGCGTTTTCTCG -„3 

otsB 

otsB Fw NotI 5‟- AGCGGCCGCACCGGATGACAGAACCGT -„3 

otsB Rev EcoRI 5‟-AGAATTCATCCGGTTAGATACTACGACTA-„3 

otsB int Rev 5‟- ACTACAGCTACTGGCAACC -„3 

 

PCR amplification of these genes were performed using Phusion® High-Fidelity DNA 

Polymerase (Thermo Scientific; Waltham, MA, USA) and master mixes were assembled 

according to the manufacturer specifications and PCR program settings as described in 

section (2.2.3.7). 

2.2.4.3 Ligation of transgenes into the pUBI 510+ plant expression vector  

Purified otsA and otsB gene fragments were ligated separately into the pUBI 510+ vector 

(Figure 2.1) to create the pUBI 510::otsA and pUBI 510::otsB constructs, using methods as 

described in section 2.2.3.9 (Groenewald and Botha, 2001).  

 

Stellenbosch University  https://scholar.sun.ac.za



47 

 

 

Figure 2.1: Vectors utilized in sugarcane transformation. (A) pUBI 510+ plant expression vector (5401 

bp). (B) pEmuKN selection vector (5465 bp). 

NotI and EcoRI restriction sites within both the inserts and the pUBI 510+ vector was used for 

directional cloning. Transformant clones containing constructs were selected on LBA plates 

containing 100 µg/ml ampicillin and colony PCR was performed, using GoTaq DNA 

Polymerase (Promega; Madison, WI, USA). Plasmid DNA was purified using the GeneJET 

Plasmid Miniprep Kit (Thermo Scientific; Waltham, MA, USA) and gene insertion was 

confirmed by sequencing at the Central Analytic Facility, Stellenbosch University (CAF).  

To isolate pUBI 510::otsA and pUBI 510::otsB plasmid DNA the Zyppy Plasmid Maxiprep 

Kit (Zymo Research; Orange, CA, USA) was used (Orange, CA, USA). Large scale plasmid 

isolation was done according to the manufacturer instruction and final plasmid concentrations 

of 1 µg/ul were used for particle bombardment experiments. 

2.2.4.4 Biolistic transfer of pUBI 510::otsA and pUBI 510::otsB constructs into sugarcane 

callus 

Plasmids pUBI 510::otsA and pUBI 510::otsB were transformed into sugarcane callus using 

biolistic bombardment based on the method described by Bower and Birch (1992) and Bower 

et al., (1996) with modifications. Briefly, small actively growing sugarcane embryogenic calli 

were collected from the initiation plates and transferred to MSC3Osm medium (MSC3 

containing 0.2 M sorbitol and 0.2 M mannitol), 3 hours prior to bombardment. Calli were 
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arranged in a 3 cm diameter circle in the center of the plates and incubated at 26°C in the 

dark. Construct DNA was co-bombarded along with pEmuKN to enable selection on MSC3 

medium containing 50 μg/mL geneticin (Figure 2.1B) (Bower et al., 1996). For DNA 

preparation, 5 mg tungsten powder (Bio-Rad; Hercules, CA, USA) (0.7 micron per particle) 

was sterilized with 400 μl ethanol and rinsed three times with sterile dH2O. The tungsten was 

re-suspended in 50 μl sterile water. After this, 5 μL each of a 1 μg/μl constructed plasmid 

DNA and pEmuKN vector DNA were precipitated on the tungsten by the addition of 50 μL 

2.5 M CaCl2 and 20 μl 0.1 M spermidine (Sigma-Aldrich; St. Louis, MO, USA). For particle 

bombardment, outlet pressure at the helium cylinder was adjusted to 1000 kPa and the 

solenoid timer to 0.05 seconds. Excess supernatant (100 μl) was removed from the 

precipitation mixture and the remaining mixture was re-suspended. The precipitation mixture 

(5 μl) was loaded onto the center of the macro carrier. The MSC3Osm media plates containing 

the calli, were placed in center of the vacuum chamber of the gene gun, 16 cm from the macro 

carrier. At a pressure of 80 kPa, the tungsten containing the DNA was fired into the calli. The 

bombarded calli were kept on MSC3Osm medium for the following 4 hours after which it was 

transferred onto fresh MSC3 medium. After two days in the dark at 26 °C the calli were 

transferred to MSC3 medium containing 50 μg/mL geneticin (Sigma-Aldrich; St. Louis, MO, 

USA). The calli, kept in the dark, was sub-cultured every 2 weeks onto fresh MSC3 geneticin 

medium until putative transgenic callus, surviving selection, could be identified after about 8 

weeks. 

2.2.4.5 Regeneration and hardening off of putative transformed sugarcane plantlets 

Putative transformed calli were regenerated on MS medium (4.4 g/l MS, 20 g/l sucrose, 0.5 

g/l casein, 2.2 g/l gelrite, pH 6) and incubated at 16h/8h day/night cycles at 24°C. Positive 

clones were left to grow for 6 weeks, with sub-culturing every two weeks onto fresh media. 

Regenerated shoots were transferred into small pots containing MS media for another 8 

weeks to form roots. Plantlets were transferred to pots containing a mixture of vermiculite 

(Rosarium, South Africa), potting soil and sand at a ratio of 1:1:1 and acclimatized for 5 days 

in plastic bags. Plants were watered three times a week and grown under natural day/night 

cycles at 25°C in the greenhouse. 

2.2.4.6 Confirmation of transgene insertion  

Leaf material from putative transgenic sugarcane plants were harvested and used for genomic 

DNA (gDNA) extraction. gDNA was extracted using the DNeasy Plant Mini Kit (Qiagen; 

Stellenbosch University  https://scholar.sun.ac.za



49 

 

Dusseldorf, Germany), according to the manufacturer‟s instructions. For testing putative otsA 

lines the UBI_prom-F (Table 2.2) and otsA Rev EcoRI (Table 2.1) primers were used in PCR 

reactions. For testing putative otsB lines the UBI_prom-F (Table 2.2) and otsB int Rev (Table 

2.1) primers were used. PCR reactions were performed using GoTaq DNA Polymerase 

(Promega; Madison, WI, USA). PCR master mixes and program settings were setup as 

described in section 2.2.3.7. PCR products were separated and visualized on 1.2% agarose 

TBE gels (see section 2.2.3.8). 

Table 2.2: General PCR and vector primers. 

 

Gene or vector Primer name  Sequence 

Actin 
Actin forw1 5‟-TCACACTTTCTACAATGAGCT-„3 

Actin rev1 5‟-GATATCCACATCACACTTCAT-„3 

pUBI 510+ 
UBI_prom-F 5‟-AATTTGATATCCTGCAGTGCAGCGTG-„3 

CaMV-R 5‟-AGGGTTTCTTATATGCTCAAC-„3 

 

2.2.4.7 Confirmation of transgene expression – sq-RT-PCR  

Semi quantitative RT-PCR (sq-RT-PCR) was performed on otsA and otsB transgenic lines to 

determine transgene expression levels. The actin housekeeping gene was used as internal 

standard to evaluate the quality and equalize the amount of cDNA from each sample in a PCR 

trial using the primer pair, actin forw1 and actin rev 1 (Table 2.2). The otsA primer pair 

consists of otsA int Fw and otsA Rev EcoRI primers and the otsB primer pair consists of otsB 

Fw NotI and otsB int Rev (Table 2.1). The otsA int Fw and otsB int Rev primers are primers 

designed to bind internally to their intended target gene. PCR reactions were performed using 

GoTaq DNA Polymerase (Promega; Madison, WI, USA) for 50 µl reactions according to the 

manufacturer‟s instructions. 1 µg of total RNA (see section 2.2.3.5) from each line was used 

to synthesise cDNA (see section 2.2.3.6) and a total of 50 ng of cDNA was used as template 

in the sq-RT-PCR s. The linear amplification range was determined with actin primers by 

removing 10 uL from the PCR reaction after 15, 20, 25, 30 and 35 cycles, respectively. These 

10 µl volumes were separated on an agarose gel and visualised under UV light. The quantity 

of actin PCR fragments were visually estimated according to band intensity and the linear 

amplification range determined. A minimal signal density of 30 cycles was chosen as the 

baseline and the cDNAs adjusted to give the same signal strength for actin when amplifying 

the cDNA stocks. 
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2.2.4.8 Confirmation of transgene expression – Western blotting  

Protein extraction and visualization 

Protein extraction buffer [1 mM MgCL2, 2 mM EDTA, 1 mM phenylmethylsulfonyl fluoride 

(PMSF), 0.1% (v/v) Triton X-100, 1 mM dithiothreitol (DTT), 1% bovine serum albumin 

(BSA) and 10% (v/v) glycerol] was added to 50 mg grounded sugarcane leaf material. The 

samples were centrifuged at 8000 g for 5 minutes at 4°C and the supernatant containing crude 

protein extract was transferred to new tubes and stored at -20°C until use. Protein 

concentrations were determined using assay protocols developed by Bradford, (1976). The 

OD595 was measured on a spectrophotometer (Fluostar Optima Spectorphotomer;  BMG Lab 

Tech) using Bradford reagent (Bio-Rad; Hercules, CA, USA). 0.1 µg to 0.6 µg BSA were 

used to create a standard curve of protein concentration vs absorption, and used to estimate 

protein concentration of extracts. 

For separation of proteins, crude protein extracts were denatured and separated using sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The 10% (v/v) SDS-PAGE 

resolving gel [0.1% (w/v) sodium dodecyl sulphate (SDS), 30% (v/v) acrylamide/Bis solution 

diluted to 10% (v/v), 375 mM Tris-HCL pH 8.8, 0.1% (w/v) ammonium persulfate (APS) and 

0.04% (w/v) Temed (tetramethylethylenediamine)] was cast first and left to solidify for 40 

min, after which a stacking gel [0.1% (w/v) SDS, 30% (v/v) acrylamide/Bis  solution diluted 

to 5% (v/v). 130 mM Tris-HCL pH 6.8, 0.1% (w/v) APS and 0.01% (w/v) Temed] was cast 

on top of the resolving gel with plastic loading wells mold and left to solidify for 40 min. The 

SDS-PAGE gel was then connected and fastened into a protein gel electrophoresis tank and 

submerged in PAGE running buffer [0.1% (w/v) SDS, 0.25% (w/v) glycine and 25 mM Tris-

HCL, pH 8.3]. Prior to loading in SDS-PAGE gels, protein samples were denatured with 

protein loading dye. 4X Protein loading dye [0.2 M Tris-HCl pH 6.8, 8% (w/v) SDS, 40% 

(v/v) glycerol, 588 mM β-mercaptoethanol, 50 mM EDTA and 0.08% (w/v) bromophenol 

blue] was added to 10 µg of crude protein extract and protein samples were boiled at 95°C for 

15 min. Denatured protein samples were then loaded onto the cast SDS-PAGE gel and 

separated at a voltage of 140 mV for approximately 1 hour, until the samples were separated 

completely. 

Coomasie blue staining was used to visualize proteins on SDS-PAGE gels. SDS-PAGE gels 

were stained by covering with coomasie blue staining solution [0.1% (w/v) Coomassie Blue 

Stain R-250, 50% (v/v) methanol, 10% (v/v) acetic acid and 50% (v/v) H2O] and shaking 
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gently overnight. The next day, stained gels were washed by covering with de-staining 

solution [50% (v/v) methanol and 10% (v/v) acetic acid in H2O] and shaking gently for 

approximately 30 min and pouring off excess stain solution. Wash steps were repeated at least 

3 times until individual protein bands could be distinguished.  

Immunoblotting  

10 ug crude protein extracts were separated on 10% (v/v) SDS-PAGE gels as previously 

described. SDS-PAGE gels containing the separated proteins were soaked in 1X transfer 

buffer [190 mM glycine, 25 mM Tris-HCL pH 8.3 and 20% (v/v) methanol] for 30 min with 

gentle agitation. A piece of nitrocellulose membrane (Whatman; Maidstone, United 

Kingdom) was cut to the same dimensions as the gels and soaked in 1X transfer buffer for 30 

min with gentle agitation. For semi-dry transferal of proteins to the nitrocellulose membrane 

the Trans-Blot SD system (Bio-Rad; Hercules, CA, USA) was used. Three filter paper pieces 

were briefly soaked in 1X transfer buffer and layered onto the transfer pad followed by the 

SDS-PAGE gel on top of the filter paper layer. The nitrocellulose membrane was then placed 

on top of the SDS-PAGE gel and covered with 3 filter paper pieces, also soaked in 1X 

transfer buffer. The transfer setup was then fastened within the Trans-Blot SD and proteins 

were transferred to the nylon membrane at 30 mV for 2 hours.  

Once proteins were transferred, the nitrocellulose membrane was briefly rinsed with 1X Tris 

buffered Saline Tween (TBST) [50 mM Tris-HCL pH 7.3, 150 mM NaCl and 0.1% (v/v) 

Tween 20]. The membrane was then incubated with 40 ml of blocking buffer [2% (w/v) BSA 

and 3% (w/v) non-fat milk in 1X TBST] with shaking for 1 hour at room temperature. The 

membrane was washed with TBST for 5 min and incubated with a 1:500 dilution of primary 

antibody in TBST with gentle shaking at 4°C, overnight. The primary antibodies used were 

either anti otsA or anti otsB (both raised in rabbit) and were a kind gift of Dr John Lunn (Max 

Planck Institute of Molecular Plant Physiology, Germany). The next day the membrane was 

washed twice with TBST for 5 min each. The membrane was then incubated with a secondary 

antibody (1:7500 dilution; Anti Rabbit IgG from Sigma-Aldrich) in TBST, with gentle 

shaking for 1 hour. The membrane was washed twice with TBST and finally rinsed with 1X 

Tris buffered Saline buffer (50 mM Tris-HCL pH 7.3 and 150 mM NaCl). For the colour 

reaction, SIGMA-FAST RCIP/NBT (Sigma-Aldrich; St. Louis, MO, USA) was dissolved in 

10 ml of sterile H20. The membrane was incubated with the dissolved colour reagent for 1 

hour with gentle shaking, until bands could be visualized.  
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2.2.4.9 Determination of sugar accumulation in transgenic lines 

Sugar extraction 

Sugarcane leaf material from each transgenic line and control wild type plants were grounded 

to a fine powder with liquid nitrogen. Approximately 20 mg of ground leaf tissue was 

weighed in separate tubes and exact weights were recorded. Sugar extraction was done twice 

with the addition of 250 µl of 80% (v/v) ethanol, incubation at 95°C for 30 min with shaking. 

After each incubation, samples were centrifuged at 8000 g for 10 min and the resulting 

supernatant was collected and kept on ice. For the last extraction the ethanol concentration 

was lowered to 50% (v/v). Supernatant was stored at -20°C until measurements were 

performed.  

Sugar measurement 

Prior to sugar level determinations the following stock solutions were assembled; sugar assay 

buffer (100 mM KOH, 3 mM MgCl2, pH 7), in which 2 U/µl hexokinase (HK), 2 U/µl 

phosphoglucoisomerase (PGI) and 6 U/µl invertase (Inv) were dissolved. For measurement of 

sugar levels in samples with spectrophotometry a buffer mix consisting of 15.5 ml sugar 

assay buffer, 480 µl 100 mM ATP, 480 µl 45 mM nicotinamide adenine dinucleotide (NAD) 

and 60 U of glucose-6-phosphate dehydrogenase (G6PDH) was assembled. In each 96-well 

assay  plate well, 160 µl of buffer mix was added to 10 µl of sample supernatant and the 

absorbance continuously measured at OD340. Sugars were measured through the consecutive 

addition of 1 μl of HK (for glucose), 1 μl of PGI (for fructose) and 1 μl of Inv (for sucrose). 

Only after the endpoint of each reaction was achieved was the next enzyme added. Sugar 

concentrations were determined based on the ∆OD340 after addition of each enzyme.  
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2.2.5 Isolation of a sugarcane TPS gene 

2.2.5.1 Amplification of a partial SoTPS1 cDNA 

A partial sugarcane TPS cDNA sequence (SoTPS1) (NCBI accession number: EU761244.1) 

was available on the National Centre for Biotechnology Information (NCBI) database 

(Nicolau et al., 2013). This sequence was used as a search reference in nucleotide BLAST 

(blastn) homology searches (http://www.ncbi.nlm.nih.gov/) and for designing primers. The 

TA49 and CA13 primer pairs were designed using the partial SoTPS1 sequence to amplify 

558 bp and 1066 bp segments respectively (Table 2.3). The OsCons primer pair was designed 

to amplify the GT1 TPS conserved domain found in the rice OsTPS1 sequence (HM050424), 

amplifying an 804 bp segment (Table 2.3). Furthermore, due to the high similarity between 

the sorghum hypothetical TPS (NCBI accession number: XM_002440041.1) and the isolated 

sugarcane partial TPS1 sequence, the sorghum hypothetical TPS1 sequence fragment was 

used as a reference to design SoTPS1 internal primers (Table 2.3). The SoTPS1 inter primers 

were designed to amplify a 544 bp segment in the 5‟ region of the SoTPS1 gene. 

Table 2.3: Primers designed for TPS gene fragment amplification.  

 

Primer pair Primer name  Sequence 

TA49 
Ta49 Forward 5‟-TGAGAGCCCTCTGTGAGGAT-„3 

Ta49 Reverse 5‟-CAGAAGGGTACTCGGGATCA-„3 

CA13 
CA13 Forward 5‟-GCCTCCCTCTTGTCATGTCC-„3 

CA13 Reverse 5‟-GGGGTAGTCGAAGGTGTGAA-„3 

OsCons 
OsCons Forward 5‟-CAGTGGTCCCTGGAGATCAG-„3 

OsCons Reverse 5‟-TCTTTTGCGGAATTCCTTTG-„3 

 

PCR amplification was performed using Phusion® High-Fidelity DNA Polymerase (Thermo 

Scientific; Waltham, MA, USA), with reaction reagents being assembled according to 

manufacturer‟s instructions and program settings as outlined in section 2.2.3.7. Template 

DNA used was cDNA synthesized (see section 2.2.3.6) from sugarcane leaf-roll RNA (see 

section 2.2.3.5). PCR products were visualised on TBE gels (see section 2.2.3.8) and DNA 

bands of interest were excised and purified. Purified PCR products were cloned into the pJET 

1.2 vector for sequencing purposes, using the CloneJET PCR Cloning Kit (Thermo Scientific; 

Waltham, MA, USA). 
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2.2.5.2 Rapid Amplification of cDNA Ends (RACE) 

RNA for 5‟ RACE was isolated using the RNeasy Plant Mini Kit (Qiagen; Dusseldorf, 

Germany), according to the manufacture‟s specifications. RNA was isolated from mature 

Saccharum officinarium cv. NCo310 leaf-roll tissue. RiboLock RNase Inhibitor (Thermo 

Scientific; Waltham, MA, USA) was used to halt any potential digestion of extracted RNA. 

RNA was DNase treated with DNase I, RNase free (Thermo Scientific; Waltham, MA, USA). 

DNase I reactions were set up according to the manufacturer‟s instructions. RNA was 

separated on a 1.2% agarose gel at 100V for 20 min, to confirm the quality of RNA as 

previously described in section 2.2.3.8.  

Table 2.4: SoTPS 5' RACE primers. 

 

 Gene Primer name  Sequence 

SoTPS1 
SoTPS1 GSP 1 5‟-CAAGTGATTGTGCTGCCCCAGCAAACTC-„3 

SoTPS1 GSP 2 5‟-AGTGGAACAGCGGCCACAGGATG-„3 

RACE 

universal 

primers 

Long primer 
5‟-CTAATACGACTCACTATAGGGCAAGCAGT 

     GGTATCAACGCAGAGT-„3 

Short primer 5‟-CTAATACGACTCACTATAGGGC-„3 

Nested primer 5‟-AAGCAGTGGTATCAACGCAGAGT-„3 

 

The technique of rapid amplification of cDNA ends (Sambrook and Russel, 2001) was used 

in order to isolate unknown fragments of the putative sugarcane TPS genes (SoTPS). 5‟ 

RACE was performed using the SMARTer™ RACE cDNA Amplification Kit (Clontech; 

Mountain View, CA, USA). Briefly, 5‟ RACE cDNA was synthesized using the 

SMARTScribe™ Reverse Transcriptase enzyme, which creates a unique 5 bp overhang. An 

oligonucleotide containing this 5 bp sequence as well as an additional 25 bp was added to the 

cDNA synthesis reaction. PCR reactions were performed on 5‟ RACE cDNA using a forward 

universal primer that contains the 25 bp sequence on the 5‟ ends and a reverse gene-specific 

primer designed to anneal to the partial SoTPS1 gene (Table 2.4). Specifically, a universal 

primer mix containing 0.4 µM long primer and 2 µM short primer was used with the gene-

specific reverse primer (Table 2.4). The first gene-specific reverse primer SoTPS1 GSP 1 was 

designed based on results from amplifying a partial SoTPS1 segment. The second gene-

specific reverse primer was designed based on 5‟ RACE results. 5‟ RACE PCR was 

performed using Phusion® High-Fidelity DNA Polymerase (Thermo Scientific; Waltham, 

MA, USA), with master mixes assembled as described in section 2.2.3.7. 400 ng of 5‟ RACE 
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cDNA was used as template in each RACE PCR reaction. The PCR program used was as 

follows: initial denaturation at 98°C for 30 sec, 38 cycles of 98°C for 5 sec, 68°C for 20 sec 

and 72°C for 1 min followed by a final elongation at 72°C for 3 min. The elongation time of 1 

min allowed for the possible amplification of PCR products of 4 kb. RACE PCR products 

were visualised on agarose TBE gels and amplicons of expected size were isolated and cloned 

into the pJET 1.2 vector and sequenced. 

2.2.5.3 Assembling and cloning the full length putative SoTPS gene 

SoTPS full length primers were designed, using the 5‟ RACE data and the hypothetical 

sorghum TPS sequence (Table 2.5). PCR amplification was performed using Phusion® High-

Fidelity DNA Polymerase with an optimal annealing temperature of 67.8 °C and an 

elongation time of 45 sec. 

Table 2.5: Putative SoTPS cloning primers.  

 

Primer pair Primer name  Sequence 

SoTPS inter 
SoTPS int Forward 1 5‟-TACGACATCTTCGCGTCGGA-„3 

SoTPS int Reverse 1 5‟-TTGCCAGCCTGTCCTCCTGTGGT-„3 

SoTPS full 

length  

SoTPS  Forward 1  5‟-CACCGCGGCGCATGAGCTCTGACG-„3 

SoTPS  Forward 2 5‟-CACCCGGCGATGCCAACCTCATCGC-„3 

SoTPS Reverse 1 5‟-AAAGCCCGGAGGCTCCACCAG-„3 

 

2.2.6 Investigation of the activity of the isolated sugarcane TPS gene 

2.2.6.1 Yeast media 

Medium used for regular growth of yeast strains consisted of 10 g/l yeast extract and 20 g/l 

peptone with an additional appropriate sugar carbon source (YP). When solid growth medium 

was required, 20 g/l bacteriological agar was added (YPA). As a sugar carbon source, either 

galactose or glucose was added to a final concentration of 3% or 2% (w/v), respectively as 

recommended by Zentella et al., (1999).  

For selection of transformed autotrophic yeast mutants, synthetic complete (SC) medium was 

used. For use in SC medium, yeast synthetic drop-out medium (Drop-out mix) and yeast 
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nitrogen base, without amino acids, (YNBa) was purchased (Sigma-Aldrich; St. Louis, MO, 

USA). The drop-out mix included all amino acids, except histidine, leucine, tryptophan and 

uracil. SC medium [0.67% (w/v) YNBa, 2% (w/v) Drop-out mix and 2% (w/v) Bacto agar] 

was autoclaved and a filter sterilized sugar carbon source was added after SC medium was 

cooled to 60°C. Additional filter sterilized amino acids were also added after autoclaving of 

media to a final concentration of 0.3 mM histidine, 2 mM leucine, 0.4 mM tryptophan and 0.2 

mM uracil. 

2.2.6.2 Yeast strains and growth 

The following yeast strains were used for TPS activity determinations: W303 a leu2-3, 112 

ura3-1 trp1-1 his3-11, 15 ade2-1 can1-100 GAL SUC2 (wild-type yeast), W303-1A 

tps1∆::TRP1 (tps1∆ yeast), W303-1A tps2∆::LEU2 (tps2∆ yeast) and W303-1A MATa 

tps1∆::TRP1 tps2∆::LEU2 (tps1∆ + tps2∆ yeast). Yeast strains were provided by the 

Laboratory of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium. 

To initiate growth of yeast for transformation, yeast strains were inoculated from glycerol 

stocks on YPA + 3% (w/v) galactose medium and incubated for 3 days at 28°C.  

2.2.6.3 Yeast transformation 

For yeast transformation, a modified protocol by Gietz and Woods (2002) was followed. A 

single yeast colony was inoculated into 5 ml YP + 3% (w/v) galactose medium (YPgal) and 

incubated overnight at 28°C with shaking at 200 rpm. 700 µl was inoculated into a 250 ml 

Erlenmeyer flask containing 50 ml of YP + 3% (w/v) galactose medium. The culture was 

incubated at 28°C with shaking for 3 hours, after which cells were harvested by centrifuging 

at 3000 g for 1 min. The supernatant was removed and pelleted cells were re-suspended in 25 

ml of sterile water. Cells were pelleted at 3000 g, the supernatant removed and re-suspended 

first in 1 ml and after a second harvest in 400 µl of 100 mM lithium acetate (LiAc). 50 µl of 

cells were aliquoted into tubes and the following transformation mix added: 240 µl of 50% 

(w/v) PEG 4000, 35 µl of 1 M LiAc, 25 µl of boiled carrier ssDNA (10 mg/ml), 50 µl of 

sterile water and lastly 5 µl of construct DNA (100 – 200 ng/µl). 

Cells were re-suspended in transformation mix by vortexing and incubated at 30°C for 30 

min, after which they were heat shocked at 42°C for 25 min. Cells were then pelleted by 
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centrifuging at 3000 g for 1 min and the supernatant was discarded. Pelleted cells were re-

suspended in 200 µl sterile water and plated out on appropriate selection medium. Plates with 

transformed yeast were incubated at 28°C for 3 days. 

2.2.6.4 Yeast expression vector 

For expression in yeast, the pAG426GPD vector was purchased (Addgene; Cambridge, MA, 

USA). pAG426GPD is based on PRS yeast shuttle vectors that were modified to be Gateway 

compatible by Alberti et al., (2007) (Figure 2.2).  

 

Figure 2.2: Map of the pAG426GPD-ccdB vector. 2u origin = 2 micron origin, AmpR = ampicillin 

resistance gene, pBR322 = pBR322 promoter, GPD = GPD promoter, attR = attR recombination sites, 

ccdB = cytotoxic ccdB protein gene, CYC1 = CYC1 terminator and URA3 = uracil selection marker. 

2.2.6.5 Creation of yeast complementation assay control constructs 

The pAG426GPD-ccdB vector was purchased because it is Gateway compatible, but 

complications occurred with clonase reactions and further cloning reactions were done using 

standard ligation instead. For yeast complementation assays, two control plasmids were made 

for use alongside experimental constructs. The E.coli otsA (EG11751) was cloned into the 

pAG426GPD-ccdB vector to create the pAG426GPD::otsA construct to act as a positive 

control. An “empty” plasmid construct was also created, where a segment of the MCS in 
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pAG426GPD-ccdB, which included the ccdB gene, was removed to create the empty 

pAG426GPD vector. 

The otsA gene was isolated with PCR from a single DH5α colony using the following primer 

pair: 5‟ GCGGCCGCGACTATGAGTCGTTTAGTC „3 and 5‟ CTGCTCGAGCGAAAAGA 

GTTA „3. PCR amplification was performed using Phusion® High-Fidelity DNA Polymerase 

(Thermo Scientific; Waltham, MA, USA). The otsA gene was cloned into the pAG426GPD-

ccdB vector via ligation, using NotI and XhoI restriction sites.   

To create the empty vector control, the pAG426GPD-ccdB vector was subjected to a 

restriction digestion with NotI and XhoI. Both NotI and XhoI sites border a 1600 bp 

nucleotide segment that includes the ccdB gene. Restriction digested DNA was separated on a 

1.2% agarose TBE gel and the linearized vector was isolated and gel purified using the 

GeneJET Gel Extraction Kit (Thermo Scientific; Waltham, MA, USA). Digested ends of the 

linearized pAG426GPD vector were blunted using T4 DNA Polymerase I and self-

circularised using T4 DNA Ligase, both from Thermo Scientific. Plasmid DNA was then 

transformed into competent E.coli DH5α cells using standard heat shock (see section 2.2.3.2) 

and transformants were selected for on LB plates containing 100 µg/ml ampicillin. Plasmid 

DNA was purified using the Wizard® Plus Minipreps DNA Purification System (Thermo 

Scientific; Waltham, MA, USA) and stored at -20°C until it transformation into yeast and use 

in complementation assays. 

2.2.6.6 Cloning of putative SoTPS sequences into pAG426GPD-ccdb 

Putative SoTPS sequences were re-amplified from the pJET cloning vector using the 

following primers; SoTPS SpeI fwd: 5‟ CGCACTAGTGCATGAGCTCTGACG 3‟ and 

SoTPS XhoI rev: 5‟ AAAGCCCGGAGGCTCGAGCAG 3‟ using Phusion® High-Fidelity 

DNA Polymerase in GC buffer with 6% DMSO (see section 2.2.3.7). Putative sequences 

were then ligated (see section 2.2.3.9) into pAG426GPD-ccdb using SpeI and XhoI sites for 

directional cloning. 

2.2.6.7 Yeast complementation assay 

For selection of autotrophic yeast mutants transformed with gene constructs, synthetic 

complete (SC) medium was made that included all amino acids, except uracil. Additionaly, 
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either 3% (w/v) galactose was added to SC medium (SCgal) or 2% (w/v) glucose was added 

to SC medium (SCglu) as carbon sources. Thus, either SCgal medium excluding uracil 

(SCgal –ura) or SCglu medium, excluding uracil (SCglu –ura) was used in yeast 

complementation assays. Yeast cells, transformed with both test and control constructs, were 

plated on SCgal –ura and SCglu –ura media and incubated at 28°C for 3 days. 

2.3  Results  

2.3.1 Overexpression of otsA and otsB in transgenic sugarcane  

2.3.1.1 Isolation, cloning and transformation of otsA and otsB into sugarcane callus 

The otsA and otsB genes were successfully isolated from BL21 (DE3) E.coli (Figure 2.3) and 

cloned into the pUBI 510+ vector. Sequencing of the final pUBI 510::otsA and pUBI 

510::otsB constructs confirmed intact transgene sequences (Annexures, Figures A2.1 and 

A2.2). 

 

Figure 2.3: PCR amplification of otsA and otsB genes from E. coli, visualised on 1.2% agarose gels. 

Lanes M = PstI digested lambda DNA. (A) otsA gene with an expected size of 1425 bp, (B) otsB gene 

with an expected size of 800 bp. Lanes 2 to 6 represent multiple E.coli stocks used as template for PCR 

amplification. 

The pUBI 510::otsA and pUBI 510::otsB constructs were separately co-bombarded with the 

selection plasmid pEmuKN (Figure 2.1) into sugarcane embryogenic callus. Eighteen putative 

transgenic otsA callus clones and 7 putative transgenic otsB callus clones survived after 8 

weeks of in vitro selection on geneticin. For otsA, 9 of the 18 putative clones regenerated 

shoots and roots in vitro. These otsA lines (1, 7, 8, 10, 11, 12, 13, 14 and 15) were hardened 

off in the greenhouse (Figure 2.4A). For otsB calli, 3 of the 7 putative clones were capable of 
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forming shoots and were further regenerated. otsB lines 2, 1.2 and 1.4 were hardened off in 

the greenhouse (Figure 2.4B). 

 

Figure 2.4: Four week old transgenic sugarcane plantlets in the greenhouse after 1 week of 

acclimatization. (A) putative otsA expressing sugarcane; (B)  putative otsB expressing sugarcane . 

2.3.1.2 Analysis of otsA and otsB transgenic sugarcane lines 

Genomic DNA was extracted from the leaves of hardened off putative transgenic otsA and 

otsB plants to confirm transgene insertion. This was confirmed in all 9 of the putative otsA 

transgenic lines and all 3 of the putative otsB transgenic lines with gene-specific otsA Rev 

EcoRI and otsB int Rev primers in combination with the UBI_prom-F promoter specific 

primer in a PCR reaction (Figure 2.5). 

 

Figure 2.5: PCR amplification of transgenes from genomic DNA extracted from putative transgenic 

otsA and otsB leaf material, visualized on 1.2% agarose gels. (A) otsA lines = otsA transgenic lines. (B) 

otsB lines = otsB transgenic lines. C =NCo310 wild type control. W = Water control.  
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Sq-RT-PCR was used to investigate the relative transgene expression levels in the transgenic 

sugarcane plants. The actin gene expression signal was used as internal standard denominator 

to measure relative gene transcript quantity (Annextures, Figure A2.3). 

Sq-RT-PCR results showed that all nine otsA transgenic sugarcane lines expressed the otsA 

transgene (Figure 2.6). otsA expression varied between lines, with the weakest expression 

occurring in otsA line 11 (Figure 2.6). Only two of the three otsB transgenic lines expressed 

the otsB transgene (Figure 2.7). otsB expression in lines 2 and 1.2 vary slightly (Figure 2.7). 

 

Figure 2.6: Sq-RT-PCR on otsA transgenic sugarcane lines as visualized on a 1.2% agarose gel. (A) = 

otsA primers. (B) = Actin primers. C =NCo310  control. = pUBI 510::otsA plasmid DNA. W = Water 

control. 

 

Figure 2.7: Sq-RT-PCR on otsB transgenic sugarcane lines as visualized on 1.2% agarose gel. (A) = 

otsB primers. (B) = Actin primers, C =NCo310  control. P = pUBI 510::otsB construct DNA. W = 

Water control. 
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2.3.1.3 otsA and otsB immunoblots 

Immunoblotting was performed as described in (section 2.2.4.8) on otsA and otsB 

overexpressing lines (Figure 2.8). Immuno detection showed expected signals at around 55 

kDa in the otsA lines (Figure 2.8A) and expected signals between 35 kDa and 25 kDa in the 

otsB lines (Figure 2.8B). 

 

 

Figure 2.8: Immunoblots of otsA and otsB. (A)  immunoblot of otsA transgenic lines, (B) immunoblot 

of otsB transgenic lines. M = PageRuler Prestained Protein Ladder 10 kDa to 170 kDa. C = NCo310 

control. E = crude protein from E. coli.  
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2.3.1.4 Transgenic sugarcane trials with lines containing otsA and otsB transgenes 

Non-transgenic control and transgenic lines expressing transgenes were planted (July 2014) in 

a randomised pot trial in a growth tunnel on the Welgevallen experimental farm, Stellenbosch 

(Figure 2.9). The phenotype of all the transgenic plants is similar to that of the non-transgenic 

control plants. Analysis of these plants will commence when they reach maturity in 

approximately 8 to 12 months‟ time. 

 

Figure 2.9: otsA and otsB transgenic plants in a growth tunnel on the Welgevallen experimental farm, 

Stellenbosch.  

2.3.1.5 Sugar level determination 

Sugar extraction was performed on ground leaf material from both otsA and otsB transgenic 

lines using the method described in section 2.2.4.9. Changes in OD340 after the addition of 

enzymes were used in calculating the preliminary sucrose (Figure 2.10A), glucose (Figure 

2.10B) and fructose (Figure 2.10C) levels in young leaves. The mean value for concentrations 

was calculated from 3 biological repeats from one individual plant per transgenic line. 

Standard error of the mean was calculated from the standard error calculated for each 

transgenic line. An asterisk marks the significantly different sugar concentrations (p< 0.05) 

when compared with sugar concentrations in wild type NCo310 (WT). Significant differences 

(p< 0.05) were calculated using a two tailed t-test that assumed unequal variance, with the 

null hypothesis being that there is no difference in the mean sugar levels measured in wild 

type NCo310 (WT) leaves and transgenic leaves. 
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Figure 2.10: Soluble sugar concentrations (µmol/g FW) in young leaves of otsA and otsB 

overexpressing lines. (WT) = wild type NCo310 and average sucrose (A), glucose (B) and fructose (C) 

concentrations. Asterisks mark the significantly different values (p< 0.05) from wild type NCo310 

(WT).  

2.3.2 Isolating a full length sugarcane TPS gene  

2.3.2.1 Initial isolation of a partial SoTPS1 coding sequence 

Gradient PCRs were performed with the sugarcane Ca13, Ta49 and the OsCons rice primer 

pairs (Table 2.3), using cDNA from sugarcane leaf-roll tissue as a template. No amplification 

was achieved with Ca13 and OsCons primers. Gradient PCR using Ta49 primers yielded 

three bands of around 500 bp, 600 bp and 700 bp (Figure 2.11), where the expected amplicon 

size was 558 bp. The 600 bp and 700 bp bands were subsequently isolated, cloned and 

sequenced. Sequencing results showed that the smaller band was 558 bp long and aligned 

with the known database SoTPS1 partial sequence. The larger band was shown to be 631 bp 

long and contained a 75 bp insertion fragment that was not present in other 

monocotyledonous TPS sequences. These two isolated sugarcane TPS sequences were then 

used as template to design a gene-specific primer (SoTPS1 GSP1 primer; Table 2.4) for use in 

5‟ RACE PCR. 
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Figure 2.11: Gradient PCR using sugarcane leaf roll cDNA template over an annealing gradient range 

from 55°C to 66.5°C with Ta49 primers, visualized on a 1.2% agarose gel. M = PstI digested lambda 

DNA. W = water control.   

 

2.3.2.2 5’ RACE 

High quality RNA was isolated from sugarcane leaf tissue (Figure 2.12A) to perform RACE. 

An initial 5‟ RACE PCR reaction was performed with the SoTPS1 GSP1 primer (Table 2.4), 

using 5‟ RACE cDNA synthesized from sugarcane leaf-roll RNA. Various size PCR 

amplicons were generated and only the two largest bands were excised from the gel, cloned 

and sequenced (Figure 2.12B1). Sequencing results indicated that the two amplicons were 

homologous and only differed in size. Thus 5‟ RACE PCR resulted in the addition of 758 bp 

of new sequence to the known SoTPS1 gene fragment. However, alignments with TPS 

sequences from other monocotyledonous plant species showed that a potential 497 bp of 

sequence still had to be amplified. 5‟ RACE was repeated using the SoTPS1 GSP2 primer 

(Figure 2.12B2), however this only revealed a further 33 bp of sequence and still lacked the 5‟ 

ATG codon (Annexures, Figure A2.4). The new partial SoTPS revealed through 5‟ RACE, 

shared 97% identity with the sorghum hypothetical TPS sequence (XM_002440041.1), 96% 

identity with the functional maize ZmTPS1 (EU659122.2) and 88% identity with the 

functional rice OsTPS1 (HM050424).  
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Figure 2.12: SoTPS1 5‟ RACE as visualized on a 1.2% agarose gel. M = PstI digested lambda DNA, 

W = water control. (A) = Isolated RNA for 5‟ RACE cDNA synthesis; (B1) 5‟ RACE with primer 

SoTPS1 GSP1; (B2) 5‟ RACE with primer SoTPS1 GSP2. Isolated bands indicated on the figure were 

gel purified for further analysis. 

2.3.2.3 SoTPS full length amplification 

The newly isolated partial SoTPS RACE sequence showed high homology to the predicted 

sorghum TPS gene. New primers based on the homologous regions with the sorghum TPS 

sequence were designed. These primers included two forward primers, designed to bind at 

separate potential start codons present at nucleotide positions 1 and 70 of the sorghum TPS 

sequence (Table 2.5: SoTPS Forward 1 and SoTPS Forward 2). Both these start codons are in 
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frame with one another and the second start codon at nucleotide position 70 aligns with the 

functional maize TPS start codon (EU659122.2).  

Gradient PCR‟s were performed using the SoTPS Forward 1 and SoTPS Forward 2 primers  

in combination with the SoTPS int Reverse primer 1 with annealing temperatures ranging 

from 67°C to 70°C in combination with a high GC and 6% DMSO PCR buffer mix (see 

section 2.2.3.7). A PCR fragment of the expected size 700 bp was amplified with primers 

binding at the first codon (Figure 2.13A), but no amplification occurred with the
 
second start 

codon forward primer (Figure 2.13B).  

 

Figure 2.13: Gradient PCR using sugarcane leave roll cDNA template over an annealing gradient 

range from 67°C to 70°C. The SoTPS Forward 1 and SoTPS Forward 2  primers were used in 

combination  with the SoTPS int Reverse 1 primer and visualized on a 1.2% (w/v) agarose gel. (A) 

SoTPS Forward 1. (B) SoTPS  Forward 2. M = PstI digested lambda DNA, W = water control. 

Finally, putative full length sugarcane TPS gene fragments were amplified using the first 

ATG codon primer in combination with the 3‟ SoTPS Reverse 1 primer (Table 2.5). Three 

DNA amplicons  of approximately 2800 bp, 2700 bp and 2600 bp were amplified (Figure 

2.14).  

 

Figure 2.14: Full length SoTPS Gradient PCR. Gradient PCR using sugarcane leave roll cDNA 

template over an annealing gradient range from 66° to 71°C with SoTPS Forward 1 and SoTPS 

Reverse 1, visualized on a 1.2% agarose gel. M = PstI digested lambda DNA. W = water control. 
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The amplicons were purified from the gel, cloned separately into the pJET 1.2 cloning vector 

and sequenced. Sequencing results analysed with blastx (http://www.ncbi.nlm.nih.gov/), 

showed that these amplicons represent three possible isoforms of putative sugarcane TPS 

sequences. Two of the isolated isoforms encode a 24 amino acid N-terminal sequence also 

found in the sorghum TPS, while the third isoform encodes an 18 amino acid N-terminal 

segment also matching the sorghum TPS. (Figure 2.15).  

 

Figure 2.15: Amino acid alignment of the N-termini of predicted TPS genes from sorghum, maize and 

sugarcane. SbTPS = hypothetical sorghum TPS (NCBI accession number: XP_002440086.1), ZmTPS 

= functional maize TPS (NCBI accession number: ACD35326.2), SoTPSa = putative sugarcane TPS 

isoform a, SoTPSb = TPS isoform b and SoTPSc = TPS isoform c. 

The largest amplicon (3003 bp), termed SoTPSa, contains a 75 bp in-frame insertion in the 3‟ 

end of the sequence that matches the insertion found in the original 631 bp Ta49 sequence 

(Figure 2.16). The middle sized amplicon (2928 bp) termed SoTPSb, does not contain any 

significant insertions or deletions, when compared with the SbTPS, ZmTPS1 and OsTPS1 

sequences in alignments (Figure 2.16). The smallest amplicon (2550 bp) termed SoTPSc, 

contains a 378 bp deletion at the 5‟ end (Figure 2.16). This deletion is situated 54 bp 

downstream from the start of the gene and ends 48 bp in the GT1 TPS conserved domain, 

resulting in a partial GT1 TPS domain. SoTPSa shares 98%, 95% and 89% sequence identity 

with SbTPS, ZmTPS1 and OsTPS1 respectively. SoTPSb shares 97%, 95% 88% sequence 

identify with SbTPS, ZmTPS1 and OsTPS1 respectively. SoTPSc shares 98%, 96% and 88% 

sequence identity with SbTPS, ZmTPS1 and OsTPS1 respectively. A visual representation of 

the construction of these three sequences can be seen in figure 2.16. The SoTPSa, SoTPSb and 

SoTPSc nucleotide sequences are shown in Annexures figures A2.4, A2.5 and A2.6, 

respectively.  

Stellenbosch University  https://scholar.sun.ac.za

http://www.ncbi.nlm.nih.gov/


70 

 

 

Figure 2.16: A graphical representation of the three putative SoTPS sequences isolated from sugarcane 

cDNA. SoTPSa, SoTPSb and SoTPSc differ in size due to both an insertion and deletions as described. 

The red block represents the GT1 TPS domain and the green block represents the partial TPP domain, 

which are both found in plant TPS sequences.  

2.3.2.4 Functional analysis of putative SoTPS sequences  

The pAG426GPD::SoTPSa, pAG426GPD::SoTPSb and pAG426GPD::SoTPSc constructs 

were transformed into tps1∆ yeast cells to assess the complementation of the growth defect of 

tps1∆ yeast cells on SCglu-ura medium. All three putative SoTPS sequences were able to 

complement the growth defect of tps1∆ yeast cells grown on glucose medium (Figure 2.17).  
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Figure 2.17: Complementation of tps1∆ yeast cells transformed with putative SoTPS genes. (A) SCgal-

ura medium containing 3% galactose and all amino acids except uracil; (B) SCglu-ura medium 

containing 2% glucose and all amino acids except uracil. tps1∆ yeast transformed with constructs were 

streaked out in the following order 1: tps1∆pAG426GPD::SoTPSa, 2: tps1∆pAG426GPD::SoTPSb, 3: 

tps1∆pAG 426GPD ::SoTPSc, 4: tps1∆ pAG426GPD::otsA, as positive control 5: tps1∆ pAG426GPD, 

6: tps1∆ with no plasmid. 

2.4  Discussion 

2.4.1 Overexpression of otsA and otsB in transgenic sugarcane 

To progress towards understanding how T6P affects the sucrose content in sugarcane, two 

trehalose synthesis genes from E. coli, otsA and otsB, were successfully introduced into 

sugarcane. These overexpressing transgenic sugarcane lines were successfully generated and 

transgene insertion and expression confirmed with PCR, sq-RT-PCR and immuno-blotting 

with otsA and otsB antibodies.  

2.4.1.1 Phenotype of transgenic plants 

In past research, when yeast or E. coli TPS genes were constitutively expressed in 

dicotyledonous plant species such as Arabidopsis, tobacco, tomato and potato, stunted growth 

had been observed as a resulting phenotype (Romero et al., 1997; Goddijn and Van Dun, 

1999; Schluepmann et al., 2003; Cortina and Culianez-Macia, 2005). These growth 
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aberrations were most likely due to accumulation of T6P and trehalose levels. In contrast, 

monocotyledonous plant species do not seem to be sensitive to fluctuations in T6P and 

trehalose levels (Zhang et al., 2006; Li et al., 2011). In this study no phenotypic differences 

were observed in either otsA or otsB transgenic lines when compared with wild type 

sugarcane plants. Thus, the constitutive expression of an E. coli TPS or TPP gene in 

sugarcane, a monocotyledonous species, did not result in any pleiotropic phenotypes. Similar 

results was obtained when Li et al., (2011) and Zhang et al., (2006) overexpressed the 

functional OsTPS1 or fungal Grifola frondosa TPS in rice and sugarcane, respectively, 

without any growth defects. In these plants, the overexpression of TPS resulted in the up-

regulation of TPP and trehalase which most likely caused the catabolization of T6P and so 

decreased the toxic effects caused by excessive T6P accumulation. Future enzymatic analysis 

of our mature transgenic sugarcane plants will determine whether a similar scenario occurs 

within the otsA and otsB overexpressing sugarcane lines.  

2.4.1.2 Soluble sugar accumulation in transgenic plants 

Early studies involving TPS overexpression in plants was concerned with increasing drought 

tolerance and not much data is available on sucrose levels in these plants (Holmstrom et al., 

1996; Romero et al., 1997; Goddijn and Van Dun, 1999; Garg et al., 2002; Penna, 2003; 

Cortina and Culianez-Macia, 2005; Li et al., 2011; Lyu et al., 2013). Only one study by 

Romero et al., (1997), noted a decrease in sucrose levels as a result of accumulating T6P 

levels in transgenic tobacco plants. Later studies reported the effect of T6P on starch 

accumulation in Arabidopsis, where increases in T6P levels caused an accumulation of starch 

in transgenic plants when sucrose was exogenously supplied to plants (Kolbe et al., 2005; 

Lunn et al., 2006; Martins et al., 2013). Martins et al., (2013) did observe that induced TPS 

expression resulted in a decrease in sucrose concentrations in the leaves of transgenic 

Arabidopsis, during night time. However, these studies did not focus on sucrose accumulation 

due to changes in T6P levels. This current study is the first attempt to better understand the 

influence of TPS and TPP overexpression on the internal sucrose levels in plants with special 

emphasis on sugarcane, a plant species which normally accumulates high amounts of sucrose. 

Initially it was hypothesised that otsA overexpression would result in reduced sucrose levels, 

as certain studies had shown that T6P increases result in starch accumulation, accompanied 

by a decrease in sucrose (Romero et al., 1997; Wingler et al., 2000; Schluepmann et al., 2004; 

Martins et al., 2013). Preliminary analysis of soluble carbohydrate concentrations in the otsA 

transgenic lines showed six out of the nine lines had reduced sucrose levels. Four of these 
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lines, namely otsA 7, 8, 11, and 15 had significantly reduced sucrose levels and only otsA 12 

had significantly increased sucrose levels in comparison with the non-transgenic control 

sugarcane plants (Figure 2.10). When looking at glucose, eight of the nine otsA lines showed 

increase glucose levels with four lines, namely otsA 1, 7, 10 and 12 with significantly 

increased glucose in comparison with wild type NCo310. Only otsA 7 and otsA 12 showed 

significant changes in both sucrose and glucose. Althought glucose levels were increased in 

both the otsA 7 and otsA 12 lines, and contrast was seen in sucrose accumulation, where otsA 

7 had decreased sucrose levels and otsA 12 had increased sucrose levels. 

When looking at the relative otsA gene expression levels using sq-RT-PCR (Figure 2.6) all 

the lines with the higher gene expression, otsA 7 and to a lesser extend, otsA 10 and 15 seem 

to have lower sucrose and higher glucose levels, with the change in sucrose only being 

significant for otsA 7 and 15. It is possilbe that a high level of otsA gene expression results in 

a decrease in sucrose. However, analysis of the carbohydrate levels in mature cane is needed 

before any conclusion can be made. Including measurements of T6P levels alongside 

measurements of other sugars would also aid in future analysis. Along with quantitative gene 

expression studies, more biological and technical sample replicates should be included in 

future experiments to improve the experimental setup. 

With otsB overexpression it was assumed that T6P levels would be decreased, but it was 

considered that a flux might occur driving more T6P synthesis (Lunn et al., 2006; 

Schluepmann et al., 2012; O‟Hara et al., 2012; Martins et al., 2013). When looking at sucrose 

accumulation in the otsB lines, lines 2 and 1.2 acted contradictory to one another, but only the 

decrease in sucrose in otsB 2 was considered to be significant. Glucose and fructose levels 

seemed to increase in both lines when compared with the non-transgenic control, with the 

changes in otsB 1.2 being significant. Specifically, otsB 1.2 leaf extract had roughly five fold 

increased glucose when comparing with extract from control leaves (Figure 2.10). Semi 

quantitative PCR showed similar levels of relative transgene expression in both lines (Figure 

2.7). Once again, final conclusions will only be made once data from mature cane can be 

analyzed with the proper replicates in place.  

Concerning the possible effects of otsA and otsB overexpression on glucose, only 

assumptions can be made until trehalose levels are measured in leaf extracts. Glucose can 

either be a source (G6P) for trehalose production or the end product if trehalose is hydrolyzed 

by trehalase into glucose. It is considered unlikely that trehalose hydrolysis would affect 

glucose levels, since Bosch, (2005) observed that trehalose occurs at concentrations below 1 
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nmol/g in sugarcane internodes. Thus, trehalose would probably occur at levels at least a 

thousand fold less than glucose concentrations. However, Zhang et al., (2006) reported 

trehalose accumulation in the leaves of transgenic sugarcane overexpressing a fungal TPP 

gene at around 8 to 12 mg/g leaf tissue, compared with undetectable levels in wild type 

controls. Trehalose levels of otsA and otsB sugarcane would have to be measured in future 

studies to determine these unknown factors. 

2.4.2 SoTPS isolation 

2.4.2.1 Isolation of a partial SoTPS 

Initially, a partial SoTPS1 sequence (EU761244.1) was available on NCBI website, which has 

been isolated from two Brazilian sugarcane cultivars, Saccharum spp. SP90-1638 and SP83-

2847, during a water stress experiment (Nicolau et al., 2013). Attempts to PCR amplify this 

known sequence from Saccharum cv. NCo310 sugarcane material resulted in three different 

length amplicons. Sequencing of the two largest amplicons showed that both were partial 

segments of the partial SoTPS1 sequence on NCBI, where the larger band contained a 75 bp 

previously unknown insertion fragment. By applying 5‟ RACE, 758 bp additional sequence 

was added to this known partial database TPS sequence. Alignment of the 5‟ RACE fragment 

with the SbTPS, ZmTPS1 and OsTPS1 gene sequences showed that parts of the TPS domain 

and a start codon were still missing. The newly isolated 2431 bp sugarcane TPS sequence 

showed between 88 and 98% homology with other monocot TPS genes. Especially the known 

sorghum TPS showed very high homology (98%) to the newly isolated putative sugarcane 

TPS sequence fragment. 

2.4.2.2 Isolation of full length putative sugarcane TPS gene sequences 

After aligning a number of TPS sequences with each other and with the newly isolated partial 

sugarcane TPS sequence, two possible start codons, 69 bp apart, that are in frame with each 

other, where identified. It has been show that isoforms from which  the first start codon is 

absent, namely ZmTPS1 (EU659122.2) and OsTPS1 (HM050424), still can encode for a 

functional TPS in maize and rice, respectively (Jiang et al., 2010). Both start codons can also 

be seen in the hypothetical sorghum SbTPS (XM_002440041.1) and the predicted Setaria 

italica TPS (NCBI accession number: XM_004961429.1) gene sequences. However, recently, 

ZmTPS isoforms KC788563 to KC788570 (unpublished), that do contain this first start codon 
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along with the second start codon, have been submitted to the NCBI database by Jiang, 

(2013). Initial PCR‟s had been performed with primers binding at both possible start codons. 

Only the primer binding in the first start codon in combination with an internal reverse primer 

yielded a single amplicon of the expected size. Using this first start codon primer, three full 

length SoTPS sequences were eventually isolated and sequenced, ranging in size from 2550 to 

3003 bp. With the exception of SoTPSc, which had a 378 bp deletion when compared with 

other monocot TPS genes, the newly isolated full length sugarcane TPS isoforms were very 

similar to known TPS genes, with homology around 97%, 95% and 88% when compared with 

sorghum, maize and rice sequences, respectively. Of importance is the insertion of 75 bp 

found in sugarcane isoform SoTPSa and the 5‟ end deletion in SoTPSc that removes 48 base 

pairs of the GT1 TPS domain and excludes the second start codon when compared with the 

other available monocot TPS genes.  

2.4.2.3 The possibility of identifying more putative SoTPS isoforms 

Past studies have shown numerous TPS isoforms to be present in plant species, such as the 

eleven putative Arabidopsis TPS isoforms identified by Leyman et al., (2001). Other 

examples are the eleven putative rice OsTPS isoforms identified by Zang et al., (2011), and 

the recently submitted eight maize isoforms on NCBI (Jiang, 2013). During this study, three 

potential SoTPS isoforms have successfully been isolated. Furthermore, during initial 

attempts to amplify partial sugarcane TPS gene fragments, primers designed to bind within 

the 3‟ region of the gene resulted in three amplicons of which the smallest were not isolated 

and characterized (section 2.3.2.1). Assuming that the smaller band amplified with the initial 

3‟ end primers (Figure 2.11) was a SoTPS sequence, at least one other truncated potential 

SoTPS isoform, containing a deletion located within the 3‟ end of the SoTPS sequence, might 

be present in sugarcane.  Another consideration is that during attempts to isolate a full length 

SoTPS sequence, cDNA derived from sugarcane leaf tissue was used as a template. Using 

cDNA derived from intermodal tissue as a template could probably yield new SoTPS 

isoforms in PCR, since different tissue might express different isoforms, but no studies have 

observed whether this does occur with plant TPS genes. Future work can consider these 

aspects in attempts to identify more putative SoTPS isoforms.  

  

Stellenbosch University  https://scholar.sun.ac.za



76 

 

2.4.2.4 Functional analysis of putative sugarcane TPS sequences 

Multiple TPS isoforms have been isolated in other plants species, which share high sequence 

similarity, to one another and other plant TPS sequences. However, further analysis of these 

sequences show that not all these isoforms would code for functional enzymes. Examples of 

this is the eleven isoforms in Arabidopsis and rice, where only one in each species have been 

shown to code for a functional enzyme (Leyman et al., 2001; Zang et al., 2011). Similarly, 

although the SoTPSa, SoTPSb and SoTPSc sequences show high similarity to the functional 

ZmTPS1 and OsTPS1 sequences, yeast complementation assays needed to be performed to 

determine whether these sequences coded for functional TPS enzymes. Additionally, further 

analysis of the three isoforms showed alterations in domains and it remained to be seen 

whether these would still be able to complement yeast mutant strains. 

Both the tps1∆ and tps1∆ + tps2∆ strains are incapable of growing on media containing 

fermentable sugars, such as glucose, but galactose can be used as a replacement carbon source 

to initiate growth. In addition, tps1∆ and tps1∆ + tps2∆ are incapable of growing on medium 

containing 2% glucose, unless supplemented by a functional TPS gene. The pAG426GPD-

ccdB vector contains a uracil synthesis gene for the selection of transformed autotrophic yeast 

mutants on medium that lacks uracil. The pAG426GPD::otsA construct acted as a positive 

control where the encoded otsA protein should synthesize T6P and enable growth of tps1∆ 

yeast mutants on medium containing glucose as a carbon source (Wang et al., 2000). The 

pAG426GPD empty vector control should enable growth on medium lacking uracil, yet not 

enable growth of tps1∆ yeast mutants on medium containing glucose as a carbon source; 

additionally showing that complementation of the tps1∆ yeast mutation is not due to the 

plasmid vector sequence. All three sugarcane isoforms were shown to be able to complement 

the growth defect of tps1∆ yeast grown on glucose medium and it was concluded that all three 

isoforms code for functional TPS activity. 

Most plant TPS genes consist of a GT1 TPS domain (TPS domain) and a partial TPP domain, 

where the GT1 TPS domain is around 466 residues long with 13 active sites, according to the 

Conserved Domain Database (CDD) (Marchler-Bauer et al., 2013). In the isolated SoTPSa 

isoform, a 75 bp insert is present in the TPP domain. However, since this isoform was shown 

to be active in the yeast mutants, it is assumed that the insertion did not disrupt the TPS 

activity, most likely because it is not located within the GT1 TPS domain. Future enzymatic 

studies could show if this insertion has any effect on the rate of T6P synthesis. The SoTPSc 

isoform contains a deleted segment that excludes the first 16 residues of the GT1 TPS domain. 
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According to CDD on NCBI, this deletion also excludes 1 out of the 13 active site residues 

for the GT1 TPS domain (Marchler-Bauer et al., 2013). However, the complementation assay 

showed that missing 1 active site and excluding 16 out of 466 amino acids (3.43%) of the 

GT1 TPS domain did not disable TPS activity. Van Dijck et al., (2002) showed that 

truncating the N terminal extensions of the Arabidopsis AtTPS1 and Selaginella lepidophylla 

SlTPS1 resulted in higher TPS activity when overexpressed in yeast. Specifically, 86 residues 

was truncated on the N terminal extension of AtTPS1 and 99 residues was truncated on the N 

terminal extension of SlTPS1 (Van Dijck et al., 2002; Li et al., 2011). Thus, the enzymatic 

activity of the encoded protein may have been altered, since the truncation stretches for 126 

residues. It could be assumed that alternative splicing of SoTPS sequences occur in sugarcane, 

resulting in altered TPS activity. Future enzymatic studies will have to be conducted to study 

the effects on TPS activity, caused by either the N terminal truncation of SoTPSc or the 

insertion of SoTPSa.  

2.5  Conclusions 

otsA and otsB overexpressing transgenic sugarcane lines were successfully created with no 

phenotypic abnormalities. Preliminary soluble sugar determinations suggested a possible 

trend where otsA overexpression results in a decrease in sucrose content in sugarcane, 

however, otsB overexpressing lines resulted in inconsistent carbohydrate levels which will 

have to be determined again in the future when mature cane material becomes available. In 

the future, additional replicate measurements and expression analysis of mature cane material  

will lead to more conclusive results.  

Three putative SoTPS isoforms, namely SoTPSa, SoTPSb and SoTPSc were isolated from 

sugarcane leaf-roll cDNA. All three isoforms were shown to encode functional TPS enzymes 

by complementing the growth defect of tps1∆ yeast grown on glucose. Differences between 

the three SoTPS isoforms suggest alternative splicing and future enzymatic studies will 

determine the effect of splicing on TPS activity. Results suggest that potentially more 

isoforms exist which can be isolated in future studies. 
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2.7  Annexures 

 

Figure A2.1: Nucleotide sequence of otsA in the pUBI 510+ vector. The start and stop codons of the 

otsA gene are highlighted in green and red respectively. The NotI and EcoRI restriction sites are 

highlighted in light blue. 

 

Figure A2.2: Nucleotide sequence of otsB in the pUBI 510 + vector. The start and stop codons of the 

otsB gene are highlighted in green and red respectively. The NotI and EcoRI restriction sites are 

highlighted in light blue. 

 

GCGGCCGCGACTATGAGTCGTTTAGTCGTAGTATCTAACCGGATTGCACCACCAGACGAGCACGCCGCCAGTGCCGGTGGCCTTGCCGTTGGCATACT

GGGGGCACTGAAAGCCGCAGGCGGACTGTGGTTTGGCTGGAGTGGTGAAACAGGGAATGAGGATCAGCCGCTAAAAAAGGTGAAAAAAGGTAACAT

TACGTGGGCCTCTTTTAACCTCAGCGAACAGGACCTTGACGAATACTACAACCAATTCTCCAATGCCGTTCTCTGGCCCGCTTTTCATTATCGGCTCGA

TCTGGTGCAATTTCAGCGTCCTGCCTGGGACGGCTATCTACGCGTAAATGCGTTGCTGGCAGATAAATTACTGCCGCTGTTGCAAGACGATGACATTAT

CTGGATCCACGATTATCACCTGTTGCCATTTGCGCATGAATTACGCAAACGGGGAGTGAATAATCGCATTGGTTTCTTTCTGCATATTCCTTTCCCGAC

ACCGGAAATCTTCAACGCGCTGCCGACATATGACACCTTGCTTGAACAGCTTTGTGATTATGATTTGCTGGGTTTCCAGACAGAAAACGATCGTCTGGC

GTTCCTGGATTGTCTTTCTAACCTGACCCGCGTCACGACACGTAGCGCAAAAAGCCATACAGCCTGGGGCAAAGCATTTCGAACAGAAGTCTACCCGA

TCGGCATTGAACCGAAAGAAATAGCCAAACAGGCTGCCGGGCCACTGCCGCCAAAACTGGCGCAACTTAAAGCGGAACTGAAAAACGTACAAAATAT

CTTTTCTGTCGAACGGCTGGATTATTCCAAAGGTTTGCCAGAGCGTTTTCTCGCCTATGAAGCGTTGCTGGAAAAATATCCGCAGCATCATGGTAAAAT

TCGTTATACCCAGATTGCACCAACGTCGCGTGGTGATGTGCAAGCCTATCAGGATATTCGTCATCAGCTCGAAAATGAAGCTGGACGAATTAATGGTA

AATACGGGCAATTAGGCTGGACGCCGCTTTATTATTTGAATCAGCATTTTGACCGTAAATTACTGATGAAAATATTCCGCTACTCTGACGTGGGCTTAG

TGACGCCACTGCGTGACGGGATGAACCTGGTAGCAAAAGAGTATGTTGCTGCTCAGGACCCAGCCAATCCGGGCGTTCTTGTTCTTTCGCAATTTGCG

GGAGCGGCAAACGAGTTAACGTCGGCGTTAATTGTTAACCCCTACGATCGTGACGAAGTTGCAGCTGCGCTGGATCGTGCATTGACTATGTCGCTGGC

GGAACGTATTTCCCGTCATGCAGAAATGCTGGACGTTATCGTGAAAAACGATATTAACCACTGGCAGGAGTGCTTCATTAGCGACCTAAAGCAGATAG

TTCCGCGAAGCGCGGAAAGCCAGCAGCGCGATAAAGTTGCTACCTTTCCAAAGCTTGCGTAGGAGCGGTTAATCTCCCGTAAGTGGAACTAACAGCAC

ATCGACCTCACTTGAGGCAATAACTCTTTTCGCCGAGAATTC 

GCGGCCGCACCGGATGACAGAACCGTTAACCGAAACCCCTGAACTATCCGCGAAATATGCCTGGTTTTTTGATCTTGATGGAACGCTGGCGGAAATCA

AACCGCATCCCGATCAGGTCGTCGTGCCTGACAATATTCTGCAAGGACTACAGCTACTGGCAACCGCAAGTGATGGTGCATTGGCATTGATATCAGGG

CGCTCAATGGTGGAGCTTGACGCACTGGCAAAACCTTATCGCTTCCCGTTAGCGGGCGTGCATGGGGCGGAGCGCCGTGACATCAATGGTAAAACACA

TATCGTTCATCTGCCGGATGCGATTGCGCGTGATATTAGCGTGCAACTGCATACAGTCATCGCTCAGTATCCCGGCGCGGAGCTGGAGGCGAAAGGGA

TGGCTTTTGCGCTGCATTATCGTCAGGCTCCGCAGCATGAAGACGCATTAATGACATTAGCGCAACGTATTACTCAGATCTGGCCACAAATGGCGTTAC

AGCAGGGAAAGTGTGTTGTCGAGATCAAACCGAGAGGTACCAGTAAAGGTGAGGCAATTGCAGCTTTTATGCAGGAAGCTCCCTTTATCGGGCGAAC

GCCCGTATTTCTGGGCGATGATTTAACCGATGAATCTGGCTTCGCAGTCGTTAACCGACTGGGCGGAATGTCAGTAAAAATTGGCACAGGTGCAACTC

AGGCATCATGGCGACTGGCGGGTGTGCCGGATGTCTGGAGCTGGCTTGAAATGATAACCACCGCATTACAACAAAAAAGAGAAAATAACAGGAGTGA

TGACTATGAGTCGTTTAGTCGTAGTATCTAACCGGATGAATTC 
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Figure A2.3: Sq-RT-PCR amplification of wild type NCo310 cDNA using actin primers (Actin 

forw1 and Actin rev1). A total of 50 ng of cDNA was used as template in PCR. PCR cycles = number 

of cycles. 

 

Figure A2.4: Nucleotide sequence of the isolated SoTPSa isoform. The start codon is highlighted in 

green. The GT1 TPS and partial TPP domains are highlighted in light blue and yellow, resepectivly. 

The unique 75 bp insert area is highlighted in purple. 

 

GCGGCGCATGAGCTCTGACGCCGCGGGGGGACAGCGCAGCATCAGCAACTGCACGAGGGACGACGCGGCGGCGGCGGCGATGCCAACCTCATCGCC

CTTTGTCGGCGACAGCAGCAGCGGTGCGGGCTCCCCGATCCGCGTGGACCGAATGGTCCGGGAGCACGGCCGCCGCTACGACATCTTCGCGTCGGACG

CGATGGATACCGACGGCGCCGAGGCGGCGTCGGCTTCCGCGGGGGCCTTCGCGGTGGATGGGATCCAGTCGCCTGGGCGTGCGTCACCCGCCAACAT

GGAGGATGCCAGCGGCGCGGCCGCTGGGCACGCCGCGCGACCGCCGCTCGCCGGCTCCCGCAGCGGTTTCCGCCGCCTCGGCCTCCGTGGCATGAAG

CAGCGCCTCCTCGTCGTGGCCAACCGCCTCCCTGTTTCCGCCAACCGCCGCGGCGAGGACCAATGGTCTCTTGAGATCAGCGCCGGCGGCCTCGTGAG

CGCCTTGCTTGGCGTGAAGGACGTCGATGCGAAATGGATTGGCTGGGCGGGCGTCAACGTACCAGATGAGGTTGGCCAGCGAGCCCTCACCAAAGCT

CTTGCCGAGAAGAGATGCATACCAGTGTTCCTGGACGAGGAGATTGTGCACCAGTACTACAATGGGTACTGCAACAACATCCTGTGGCCGCTGTTCCA

CTACCTAGGACTACCACAGGAGGACAGGCTGGCAACAACGAGGAACTTTGAGTCACAGTTCGACGCGTACAAGCGTGCTAACCAGATGTTCGCTGAT

GTCGTGTACCAGCACTACCAGGAGGGGGATGTAATCTGGTGCCATGACTACCACCTCATGTTCCTGCCCAAGTGCCTCAAGGACCATGACATCAATAT

GAAGGTCGGGTGGTTCCTGCACACGCCATTCCCATCATCAGAGATTTACCGAACACTGCCGTCCCGCTTGGAGCTGCTTCGCTCGGTGTTGTGTGCTGA

TTTAGTCGGATTTCATACTTACGACTATGCGAGGCATTTTGTGAGTGCTTGCACTAGAATACTTGGACTTGAGGGTACCCCTGAGGGTGTGGAAGATCA

AGGAAGACTAACCAGGGTTGCAGCGTTTCCTATTGGGATAGACTCTGATCGTTTCAAGCGAGCATTGGAGCTTCCAGCAGTAAAAAGGCACATCAGTG

AATTGACAGAACGTTTTGCTGGTCGAAAGGTAATGCTTGGTGTTGATCGACTTGACATGATTAAGGGAATTCCACAAAAGATTTTGGCCTTTGAAAAG

TTTCTTGAGGAAAACCCAGATTGGAACAACAAAGTTGTTCTACTGCAGATTGCTGTGCCAACAAGAACTGACGTCCCTGAGTATCAAAAGCTAACGAG

CCAAGTGCATGAAATTGTTGGGCGCATAAATGGTCGATTCGGAACGTTGACTGCTGTCCCTATTCATCATCTGGACCGATCTCTTGATTTCCATGCCTT

GTGTGCTCTTTATGCAGTCACTGATGTTGCTCTTGTAACATCACTGAGAGATGGGATGAACCTTGTGAGCTATGAGTACGTTGCATGCCAAGGGTCTAA

GAAAGGAGTTCTGATACTTAGTGAGTTTGCTGGGGCAGCACAATCACTTGGAGCTGGCGCCATTCTAGTAAACCCTTGGAATATTACAGAAGGTGCAG

ACTCAATACGGCATGCTTTAACGATGCCATCCGATGAGAGAGAGAAACGACACAGGCACAACTATGCTCATGTCACAACTCACACGGCTCAAGATTG

GGCTGAAACTTTTGTATTTGAGCTAAATGACACGGTTGCTGAGGCACTACTGAGGACAAGACAAGTCCCTCCTGGTCTTCCTAGTCAAATGGCAATCC

AGCAATATTTGCGCTCTAAAAATCGTCTGCTCATATTGGGTTTCAATTCAACATTGACTGAGCCAGTCGAATCCTCTGGGAGAAGGGGTGGTGACCAA

ATCAAGGAAATGGAACTCAAGTTGCATCCTGACTTAAAGGGTCCTCTGAGAGCCCTCTGTGAGGATGAGCACACTACAGTTATTGTTCTCAGTGGCAG

TGACAGGAGTGTTCTTGATGAAAATTTTGGAGAATTTAAAATGTGGTTGGCGGCAGAGCATGGGATGTTTTTACGCCCGACTTACGGAGAATGGATGA

CAACAATGCCTGAGCATCTGAACATGGATTGGGTTGACAGCGTAAAGGTGTGTCTGTTTCATGAATAATGTTCTGTTGCGTCAAACTAATATCAAGCTT

CTGATATCATTTTTTTTCTCCAGCATGTTTTTGAATACTTTACAGAAAGAACCCCAAGATCCCATTTCGAACATCGTGAAACATCATTTGTGTGGAACTA

CAAGTATGCTGATGTTGAATTTGGAAGGCTACAAGCAAGAGATATGCTGCAGCACTTGTGGACAGGTCCGATCTCAAATGCAGCTGTTGATGTTGTTC

AAGGGAGTCGGTCAGTTGAAGTTCGGTCTGTTGGAGTTACAAAGGGTGCTGCAATTGATCGTATTTTAGGGGAGATATTTCACAGCGAAAACATGGTT

ACTCCAATTGACTATGTCCTGTGTATAGGGCATTTCCTTGGGAAGGATGAGGACATCTATGTCTTTTTTGATCCCGAGTACCCTTCTGAATCCAAAATA

AAACCAGAGGGTGGCTCAGCTTCACTTGACCGGAGGCCGAACGGAAGGTCACCATCGAATGGCAGGAGCAGCTCCAGGAACCCACAGTCCAGGACAC

AGAAGGCGCAGCAGGCTGCATCCGAGAGGTCATCCTCATCAAGCCACAGCAGCGCAAGCAGCAACCACGACTGGCGCGAAGGGTCCTCGGTCCTTGA

TCTCAAGGGCGAGAACTACTTCTCCTGCGCCGTCGGAAGGAAGCGGTCCAACGCCCGTTACCTGCTGAGTTCGTCGGAGGAGGTTGTCTCTTTCCTCAA

GGAATTGGCATCGGCAACAGCTGGCTTCCAATCCAGCTGTGCTGATTACATGTTCATGGATAGGCAGTAA 
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Figure A2.5: Nucleotide sequence of the isolated SoTPSb isoform. The start codon is highlighted in 

green. The GT1 TPS and partial TPP domains are highlighted in light blue,and yellow, respectively. 

 

Figure A2.6: Nucleotide sequence of the isolated SoTPSc isoform. The start codon is highlighted in 

green. The partial GT1 TPS and partial TPP domains are highlighted in light blue and yellow, 

respectively. 

GCGGCGCATGAGCTCTGACGCCGCGGGGGGACAGCGCAGCATCAGCAACTGCACGAGGGACGACGCGGCGGCGGCGGCGATGCCAACCTCATCGCC

CTTTGTCGGCGACAGCAGCAGCGGTGCGGGCTCCCCGATCCGCGTGGACCGAATGGTCCGGGAGCACGGCCGCCGCTACGACATCTTCGCGTCGGACG

CGATGGATACCGACGGCGCCGAGGCGGCGTCGGCTTCCGCGGGGGCCTTCGCGGTGGATGGGATCCAGTCGCCTGGGCGTGCGTCACCCGCCAACAT

GGAGGATGCCAGCGGCGCGGCCGCTGGGCACGCCGCGCGACCGCCGCTCGCCGGCTCCCGCAGCGGTTTCCGCCGCCTCGGCCTCCGTGGCATGAAG

CAGCGCCTCCTCGTCGTGGCCAACCGCCTCCCTGTTTCCGCCAACCGCCGCGGCGAGGACCAATGGTCTCTTGAGATCAGCGCCGGCGGCCTCGTGAG

CGCCTTGCTTGGCGTGAAGGACGTCGATGCGAAATGGATTGGCTGGGCGGGCGTCAACGTACCAGATGAGGTTGGCCAGCGAGCCCTCACCAAAGCT

CTTGCCGAGAAGAGATGCATACCAGTGTTCCTGGACGAGGAGATTGTGCACCAGTACTACAATGGGTACTGCAACAACATCCTGTGGCCGCTGTTCCA

CTACCTAGGACTACCACAGGAGGACAGGCTGGCAACAACGAGGAACTTTGAGTCACAGTTCGACGCGTACAAGCGTGCTAACCAGATGTTCGCTGAT

GTCGTGTACCAGCACTACCAGGAGGGGGATGTAATCTGGTGCCATGACTACCACCTCATGTTCCTGCCCAAGTGCCTCAAGGACCATGACATCAATAT

GAAGGTCGGGTGGTTCCTGCACACGCCATTCCCATCATCAGAGATTTACCGAACACTGCCGTCCCGCTTGGAGCTGCTTCGCTCGGTGTTGTGTGCTGA

TTTAGTCGGATTTCATACTTACGACTATGCGAGGCATTTTGTGAGTGCTTGCACTAGAATACTTGGACTTGAGGGTACCCCTGAGGGTGTGGAAGATCA

AGGAAGACTAACCAGGGTTGCAGCGTTTCCTATTGGGATAGACTCTGATCGTTTCAAGCGAGCATTGGAGCTTCCAGCAGTAAAAAGGCACATCAGTG

AATTGACAGAACGTTTTGCTGGTCGAAAGGTAATGCTTGGTGTTGATCGACTTGACATGATTAAGGGAATTCCACAAAAGATTTTGGCCTTTGAAAAG

TTTCTTGAGGAAAACCCAGATTGGAACAACAAAGTTGTTCTACTGCAGATTGCTGTGCCAACAAGAACTGACGTCCCTGAGTATCAAAAGCTAACGAG

CCAAGTGCATGAAATTGTTGGGCGCATAAATGGTCGATTCGGAACGTTGACTGCTGTCCCTATTCATCATCTGGACCGATCTCTTGATTTCCATGCCTT

GTGTGCTCTTTATGCAGTCACTGATGTTGCTCTTGTAACATCACTGAGAGATGGGATGAACCTTGTGAGCTATGAGTACGTTGCATGCCAAGGGTCTAA

GAAAGGAGTTCTGATACTTAGTGAGTTTGCTGGGGCAGCACAATCACTTGGAGCTGGCGCCATTCTAGTAAACCCTTGGAATATTACAGAAGGTGCAG

ACTCAATACGGCATGCTTTAACGATGCCATCCGATGAGAGAGAGAAACGACACAGGCACAACTATGCTCATGTCACAACTCACACGGCTCAAGATTG

GGCTGAAACTTTTGTATTTGAGCTAAATGACACGGTTGCTGAGGCACTACTGAGGACAAGACAAGTCCCTCCTGGTCTTCCTAGTCAAATGGCAATCC

AGCAATATTTGCGCTCTAAAAATCGTCTGCTCATATTGGGTTTCAATTCAACATTGACTGAGCCAGTCGAATCCTCTGGGAGAAGGGGTGGTGACCAA

ATCAAGGAAATGGAACTCAAGTTGCATCCTGACTTAAAGGGTCCTCTGAGAGCCCTCTGTGAGGATGAGCACACTACAGTTATTGTTCTCAGTGGCAG

TGACAGGAGTGTTCTTGATGAAAATTTTGGAGAATTTAAAATGTGGTTGGCGGCAGAGCATGGGATGTTTTTACGCCCGACTTACGGAGAATGGATGA

CAACAATGCCTGAGCATCTGAACATGGATTGGGTTGACAGCGTAAAGCATGTTTTTGAATACTTTACAGAAAGAACCCCAAGATCCCATTTCGAACAT

CGTGAAACATCATTTGTGTGGAACTACAAGTATGCTGATGTTGAATTTGGAAGGCTACAAGCAAGAGATATGCTGCAGCACTTGTGGACAGGTCCGAT

CTCAAATGCAGCTGTTGATGTTGTTCAAGGGAGTCGGTCAGTTGAAGTTCGGTCTGTTGGAGTTACAAAGGGTGCTGCAATTGATCGTATTTTAGGGGA

GATATTTCACAGCGAAAACATGGTTACTCCAATTGACTATGTCCTGTGTATAGGGCATTTCCTTGGGAAGGATGAGGACATCTATGTCTTTTTTGATCC

CGAGTACCCTTCTGAATCCAAAATAAAACCAGAGGGTGGCTCAGCTTCACTTGACCGGAGGCCGAACGGAAGGTCACCATCGAATGGCAGGAGCAGC

TCCAGGAACCCACAGTCCAGGACACAGAAGGCGCAGCAGGCTGCATCCGAGAGGTCATCCTCATCAAGCCACAGCAGCGCAAGCAGCAACCACGACT

GGCGCGAAGGGTCCTCGGTCCTTGATCTCAAGGGCGAGAACTACTTCTCCTGCGCCGTCGGAAGGAAGCGGTCCAACGCCCGTTACCTGCTGAGTTCG

TCGGAGGAGGTTGTCTCTTTCCTCAAGGAATTGGCATCGGCAACAGCTGGCTTCCAATCCAGCTGTGCTGATTACATGTTCATGGATAGGCAGTAA 

GCGGCGCATGAGCTCTGACGCCGCGGGGGGACAGCGCAGCATCAGCAACTGCACGAGGGGCGGCGAGGACCAATGGTCTCTTGAGATCAGCGCCGGC

GGCCTCGTGAGCGCCTTGCTTGGCGTGAAGGACGTCGATGCGAAATGGATTGGCTGGGCGGGCGTCAACGTACCAGATGAGGTTGGCCAGCGAGCCC

TCACCAAAGCTCTTGCCGAGAAGAGATGCATACCAGTGTTCCTGGACGAGGAGATTGTGCACCAGTACTACAATGGGTACTGCAACAACATCCTGTGG

CCGCTGTTCCACTACCTAGGACTACCACAGGAGGACAGGCTGGCAACAACGAGGAACTTTGAGTCACAGTTCGACGCGTACAAGCGTGCTAACCAGA

TGTTCGCTGATGTCGTGTACCAGCACTACCAGGAGGGGGATGTAATCTGGTGCCATGACTACCACCTCATGTTCCTGCCCAAGTGCCTCAAGGACCAT

GACATCAATATGAAGGTCGGGTGGTTCCTGCACACGCCATTCCCATCATCAGAGATTTACCGAACACTGCCGTCCCGCTTGGAGCTGCTTCGCTCGGTG

TTGTGTGCTGATTTAGTCGGATTTCATACTTACGACTATGCGAGGCATTTTGTGAGTGCTTGCACTAGAATACTTGGACTTGAGGGTACCCCTGAGGGT

GTGGAAGATCAAGGAAGACTAACCAGGGTTGCAGCGTTTCCTATTGGGATAGACTCTGATCGTTTCAAGCGAGCATTGGAGCTTCCAGCAGTAAAAAG

GCACATCAGTGAATTGACAGAACGTTTTGCTGGTCGAAAGGTAATGCTTGGTGTTGATCGACTTGACATGATTAAGGGAATTCCACAAAAGATTTTGG

CCTTTGAAAAGTTTCTTGAGGAAAACCCAGATTGGAACAACAAAGTTGTTCTACTGCAGATTGCTGTGCCAACAAGAACTGACGTCCCTGAGTATCAA

AAGCTAACGAGCCAAGTGCATGAAATTGTTGGGCGCATAAATGGTCGATTCGGAACGTTGACTGCTGTCCCTATTCATCATCTGGACCGATCTCTTGAT

TTCCATGCCTTGTGTGCTCTTTATGCAGTCACTGATGTTGCTCTTGTAACATCACTGAGAGATGGGATGAACCTTGTGAGCTATGAGTACGTTGCATGC

CAAGGGTCTAAGAAAGGAGTTCTGATACTTAGTGAGTTTGCTGGGGCAGCACAATCACTTGGAGCTGGCGCCATTCTAGTAAACCCTTGGAATATTAC

AGAAGGTGCAGACTCAATACGGCATGCTTTAACGATGCCATCCGATGAGAGAGAGAAACGACACAGGCACAACTATGCTCATGTCACAACTCACACG

GCTCAAGATTGGGCTGAAACTTTTGTATTTGAGCTAAATGACACGGTTGCTGAGGCACTACTGAGGACAAGACAAGTCCCTCCTGGTCTTCCTAGTCA

AATGGCAATCCAGCAATATTTGCGCTCTAAAAATCGTCTGCTCATATTGGGTTTCAATTCAACATTGACTGAGCCAGTCGAATCCTCTGGGAGAAGGG

GTGGTGACCAAATCAAGGAAATGGAACTCAAGTTGCATCCTGACTTAAAGGGTCCTCTGAGAGCCCTCTGTGAGGATGAGCACACTACAGTTATTGTT

CTCAGTGGCAGTGACAGGAGTGTTCTTGATGAAAATTTTGGAGAATTTAAAATGTGGTTGGCGGCAGAGCATGGGATGTTTTTACGCCCGACTTACGG

AGAATGGATGACAACAATGCCTGAGCATCTGAACATGGATTGGGTTGACAGCGTAAAGCATGTTTTTGAATACTTTACAGAAAGAACCCCAAGATCCC

ATTTCGAACATCGTGAAACATCATTTGTGTGGAACTACAAGTATGCTGATGTTGAATTTGGAAGGCTACAAGCAAGAGATATGCTGCAGCACTTGTGG

ACAGGTCCGATCTCAAATGCAGCTGTTGATGTTGTTCAAGGGAGTCGGTCAGTTGAAGTTCGGTCTGTTGGAGTTACAAAGGGTGCTGCAATTGATCG

TATTTTAGGGGAGATATTTCACAGCGAAAACATGGTTACTCCAATTGACTATGTCCTGTGTATAGGGCATTTCCTTGGGAAGGATGAGGACATCTATGT

CTTTTTTGATCCCGAGTACCCTTCTGAATCCAAAATAAAACCAGAGGGTGGCTCAGCTTCACTTGACCGGAGGCCGAACGGAAGGTCACCATCGAATG

GCAGGAGCAGCTCCAGGAACCCACAGTCCAGGACACAGAAGGCGCAGCAGGCTGCATCCGAGAGGTCATCCTCATCAAGCCACAGCAGCGCAAGCA

GCAACCACGACTGGCGCGAAGGGTCCTCGGTCCTTGATCTCAAGGGCGAGAACTACTTCTCCTGCGCCGTCGGAAGGAAGCGGTCCAACGCCCGTTAC

CTGCTGAGTTCGTCGGAGGAGGTTGTCTCTTTCCTCAAGGAATTGGCATCGGCAACAGCTGGCTTCCAATCCAGCTGTGCTGATTACATGTTCATGGAT

AGGCAGTAA 
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Figure A2.7:Yeast mutants streaked out on SCgal medium. (A) SCgal medium. (B) SCgal medium 

excluding histidine, leucine and tryptophan. (C) SCgal medium excluding leucine. (D) SCgal medium 

excluding tryptophan. (E) SCgal medium excluding leucine and tryptophan. Yeast mutants were 

streaked out in the following order 1: wild type yeast, 2: tps1∆ yeast, 3: tps2∆ yeast, 4:  tps1∆ + 

tps2∆ strain. 
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Table A2.1 : TPS sequences from members of the Poaceae family 

Gene Accession Sequence 

Sorghum bicolor 

hypothetical SbTPS 

gene 

XM_002440041

.1 

CACTCGCGTGCTCGCAAACAAGCGTCCGAGTTCGAGGCGTGGCGGCCCGTTTTTGCATGTTGCG

TTTGCATGCCGTAGCGGCTCTGCTGCCGGTGTTCCTCCCCTTCCGAACCCTTGGCCACCACCTCT

CGGCCGTCTCGTGATTCGAATCACTGCTCCCATTGCGAACGAGCCGCCACAGCTGTTGCCAGGC

TCAAGGAGGGCTCGGGCTCCCACACGCGCCGGGGGCGATCGATCGATCGGAGAGGCGGCGACT

CGGGATCGGGTGAGTCGTTGTTTCATCTTCCGCTTCGTCCGAAACCAACCCGCCGCCTCCCTGCG

TGGCGTGATGGGCGGCCTGCCTGTTGTGTCCGCCTGTTGCCGCCTCGTCGTCGTCGCTCACCAAG

CGCGTCCGCCTATGAATGCTGCAGGCCGGGGCACGGCGGGGAGTCGCGGCGGCGCATGAGCTC

TGACGCCGCGGGGGGACAGCGCAGCATCAGCAACTCCACGAGGGGCGACGCGGCGGCGGCGA

TGCCAACCTCATCGCCCTTTGTCGTCGGCGACAGCAGCGGCGGCGCGGGCTCCCCGATCCGCGT

CGACCGAATGGTCCGGGAGCACGGCCGCCGCTACGACATCTTCGCGTCGGACGCGATGGATAC

CGACGGCGCCGAGCCGGCGTCGGCTTCCGCGGGGCCCTTCGCCGTGGATGGGGTCCAGTCGCCT

GGCCGTGTGTCACCCGCCAACATGGAGGATGCCGGCGGCGCGGCCGCTGGGCACGCCGCGCGA

CCGCCGCTCGCCGGCTCCCGCAGCGGTTTCCGCCGCCTCGGCCTCCGTGGCATGAAGCAGCGCC

TCCTCGTCGTGGCCAACCGCCTCCCTGTTTCCGCCAACCGCCGCGGCGAGGACCACTGGTCGCT

TGAGATCAGCGCCGGCGGCCTCGTGAGCGCCCTGCTTGGGGTGAAGGACGTCGACGCGAAATG

GATTGGCTGGGCGGGCGTCAACGTTCCAGACGAGGTTGGCCAGCGAGCCCTCACCAAAGCTCTT

GCCGAGAAGAGATGCATACCAGTGTTCCTGGATGAGGAGATTGTGCACCAGTACTACAATGGG

TATTGCAACAACATCCTGTGGCCGCTGTTCCACTACCTAGGACTACCACAGGAGGACAGGCTGG

CAACAACGAGGAACTTTGAGTCACAGTTCGACGCGTACAAGCGTGCTAACCAGATGTTTGCTGA

TGTCGTGTACCAGCACTACCAGGAGGGGGATGTAATCTGGTGCCATGACTACCACCTCATGTTC

CTGCCCAAGTGCCTCAAGGACCATGACATCAATATGAAAGTCGGTTGGTTCCTGCACACGCCAT

TCCCATCATCAGAGATTTACCGAACACTGCCATCCCGCTTGGAGCTGCTTCGCTCGGTGCTGTGT

GCTGATTTAGTCGGATTTCATACTTACGACTATGCGAGGCATTTTGTGAGTGCTTGCACTAGAAT

ACTTGGACTTGAGGGTACCCCTGAGGGTGTGGAAGATCAAGGAAGACTAACCAGGGTTGCAGC

GTTTCCTATTGGGATAGACTCTGATCGTTTCAAGCGAGCATTGGAGCTTCCAGCAGTAAAAAGG

CACATCAGTGAATTGACACAACGTTTTGCTGGTCGAAAGGTAATGCTTGGTGTTGATCGACTTG

ACATGATTAAGGGAATTCCACAAAAGATTTTGGCCTTTGAAAAGTTTCTTGAGGAAAACCCAGA

CTGGAACGACAAAGTTGTTCTACTGCAGATTGCTGTGCCAACAAGAACTGACGTCCCTGAGTAT

CAAAAGCTAACAAGCCAAGTGCATGAAATTGTTGGGCGCATAAACGGTCGATTCGGAACGTTG

ACTGCTGTCCCTATTCATCATCTGGACCGATCTCTTGATTTCCATGCTTTGTGTGCTCTTTATGCA

GTCACTGATGTTGCTCTTGTAACATCACTGAGAGATGGGATGAACCTTGTGAGCTATGAGTATG

TTGCATGCCAAGGGTCTAAGAAAGGAGTTTTGATACTTAGTGAGTTTGCTGGGGCAGCACAATC

ACTTGGAGCTGGCGCCATTCTAGTAAACCCTTGGAATATTACAGAAGTTGCAGACTCAATACGG

CACGCTTTGACGATGCCATCCGATGAGAGAGAGAAACGGCACAGGCACAACTATGCTCATGTC

ACAACTCACACGGCTCAAGATTGGGCTGAAACTTTTGTATTTGAGCTAAATGACACGGTTGCTG

AAGCACTACTGAGGACAAGACAAGTTCCTCCTGGACTTCCTAGTCAAACGGCAATCCAGCAAT

ATTTGCGCTCTAAAAATCGTCTGCTCATATTGGGTTTCAATTCAACATTGACTGAACCAGTCGAA

TCCTCTGGGAGAAGGGGTGGTGACCAAATCAAGGAAATGGAACTCAAGTTGCATCCTGACTTA

AAGGGTCCTCTGAGAGCCCTCTGTGAAGATGAGCGCACTACAGTTATTGTTCTTAGTGGCAGTG

ACAGGAGTGTTCTTGATGAAAATTTCGGAGAATTTAAAATGTGGTTGGCAGCAGAGCATGGGA

TGTTTTTACGCCCGACTTATGGAGAATGGATGACAACAATGCCTGAGCATCTGAACATGGATTG

GGTTGACAGCGTAAAGCATGTTTTTGAATACTTTACAGAAAGAACCCCAAGATCCCATTTCGAA

CATCGTGAAACATCATTTGTGTGGAACTACAAGTATGCTGATGTTGAATTTGGAAGGCTACAAG

CAAGAGATATGCTGCAGCACTTGTGGACAGGTCCGATCTCAAATGCAGCTGTTGATGTTGTTCA

AGGGAGTCGGTCAGTTGAAGTTCGGTCTGTTGGAGTTACAAAGGGTGCTGCAATTGATCGCATT

TTAGGGGAGATAGTTCACAGCGAAAACATGGTTACTCCAATTGACTATGTCCTGTGTATAGGGC

ATTTCCTTGGGAAGGATGAGGATATCTATGTCTTTTTTGATCCCGAGTACCCTTCTGAATCCAAA

ATAAAACCAGAGGGTGGCTCAGCTTCACTTGACCGGAGGCCCAACGGAAGGCCACCATCGAAC

GGCAGGAGCAACTCCAGGAACCCACAGTCCAGGACACAGAAGGCGCAGCAGGCTCAGGCTGC

ATCCGAGAGGTCATCCTCTTCAAGCCACAGCAGCGCAAGCAGCAACCATGACTGGCGCGAAGG

GTCCTCGGTCCTTGATCTCAAGGGCGAGAACTACTTCTCCTGCGCCGTTGGAAGGAAACGGTCC

AACGCCCGCTACCTGCTGAGTTCGTCAGAGGAGGTTGTCTCCTTCCTCAAGGAGCTGGCAACAG

CAACAGCTGGCTTCCAATCCAGCTGTGCTGATTACATGTTCCTGGATAGGCAGTAAGTAGATTG

GTGGAGAGCCTCCGGGCTTTACCAGAGAAGCACCTTGGCAAGAAAAAAAAATATATTCATTCC

TCATTTGCGCGACAGAGTTACACCCGTAGCTAGCCAGCGTGCTGTACAATCCTGTACAAAATTT

ATGCTCCTGATGATAAAACTGCGAGAGGGGAGCAAATGGGAAAAGGATAAAGGAGTTTAGAG

AGTTCGGTTGCTTCTGGTATGATATACAATCGTTCTCCGGCTTTTGATTTCTC 
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Oryza sativa 

OsTPS1 

HM050424.1 CATCTCTCTCTCTCCTCCCCCTCCTCCTCCGCGGGCGGCGCGAGCGAGCGCGCGCGCGGGCGCC

ATGCCGACCCCCGCGCCGTCGGCATCGTCCTCCTCCTCCTTCTCCTGCGGCGGCGGTGGCGGTG

GCGCCGGGGCCGCGTCGTCCTACTCCTCCTCCTCCTCCTCCTCCCCGGACGACCGCATGCTCCGC

GGGGAGTGCGGCCGCCGCCACCCCTTCGCGTCGTCGGCGGCGGTGGGGGCCGGTTCCCCGGAC

GCCATGGACACGGACTCCGCGGAGCCTTCCTCCGCGGCGACCTCCGTCGCGGACTTCGGGGCCC

GGTCGCCGTTCTCGCCGGGGGCCGCCTCGCCCGCCAACATGGACGACGCGGGCGGCGCGTCGG

CGGCGGGGCACGCGGCGCGGCCGCCGCTCGCCGGGCCGCGCAGCGGGTTCCGCCGCCTCGGCC

TCCGCGGGATGAAGCAGCGCCTCCTCGTCGTCGCCAACCGCCTCCCCGTCTCCGCCAATCGCCG

CGGCGAGGACCAGTGGTCCCTGGAGATCAGCGCCGGCGGCCTCGTCAGCGCCCTCCTCGGCGTC

AAGGACGTGGACGCGAAGTGGATCGGATGGGCGGGCGTCAACGTCCCCGACGAGGTCGGCCAG

CGAGCTCTCACACGAGCGCTCGCCGAGAAGAGATGTATACCAGTGTTCCTGGATGAGGAAATC

GTGCACCAATACTACAACGGATACTGCAACAACATACTCTGGCCTCTGTTTCACTACCTGGGAT

TGCCACAGGAGGACAGGTTGGCGACGACGAGGAATTTCGAGTCACAGTTCAACGCGTACAAGC

GAGCAAACCAGATGTTCGCTGATGTTGTGTACCAGCACTACAAGGAAGGGGATGTGATCTGGT

GCCATGATTACCACCTCATGTTCCTGCCCAAGTGCCTCAAGGATCATGACATCAACATGAAGGT

CGGGTGGTTCCTGCACACGCCATTCCCTTCTTCGGAGATTTACCGGACGCTGCCCTCCCGGTCGG

AGCTGCTTCGCTCCGTGCTCTGTGCTGATTTAGTCGGATTTCATACATATGATTATGCAAGACAT

TTTGTGAGCGCATGTACAAGAATACTTGGACTGGAGGGCACTCCTGAGGGTGTGGAAGACCAA

GGAAGGCTAACCAGAGTTGCTGCGTTTCCTATTGGGATAGACTCTGAACGTTTCAAGCGAGCAT

TGGAGCTTCCAGCAGTTAAAAGACACATCACTGAATTAACACAACGTTTTGATGGTCGAAAGGT

AATGCTTGGTGTTGACCGACTTGACATGATCAAAGGAATTCCGCAAAAGATTTTGGCCTTTGAA

AAGTTTCTCGAAGAAAACCATGAATGGAATGATAAAGTGGTTCTACTTCAAATTGCTGTGCCGA

CAAGAACTGATGTCCCTGAGTATCAAAAGCTTACAAGTCAGGTGCATGAAATTGTTGGGCGCAT

AAATGGCCGATTTGGAACACTGACTGCTGTTCCTATTCATCATCTGGACCGATCTCTTGATTTCC

ATGCCTTGTGTGCCCTTTATGCAGTCACTGATGTGGCCCTTGTAACATCGCTGAGAGATGGAAT

GAATCTTGTAAGCTATGAATATGTTGCATGCCAAGGATCAAAAAAAGGAGTGTTGATATTGAGT

GAGTTTGCTGGGGCAGCACAGTCTCTTGGAGCCGGTGCTATTTTAGTAAACCCCTGGAATATTA

CCGAAGTCGCAGACTCAATCAAGCATGCTTTGACAATGTCATCTGATGAGAGAGAAAAGCGAC

ATAGGCATAACTATGCTCATGTGACAACTCACACTGCACAAGATTGGGCCGAAACTTTTGTATG

TGAGTTAAATGAGACAGTTGCTGAAGCTCAGCTGAGAACAAGACAAGTTCCACCTGATCTCCCT

AGTCAAGCAGCAATTCAACAATATCTGCATTCCAAAAATCGGTTGCTCATATTGGGGTTCAATT

CAACATTGACTGAGCCAGTTGAATCCTCTGGGAGAAGGGGTGGTGACCAAATCAAGGAAATGG

AGCTCAAGTTGCATCCTGAGTTGAAGGGCCCTTTGAGAGCCCTCTGTGAGGATGAGCATACTAC

AGTTATTGTTCTTAGTGGAAGTGACAGGAGCGTCCTTGATGAAAATTTCGGAGAATTCAATATG

TGGTTAGCAGCAGAGCATGGCATGTTTTTACGTCCAACTAATGGAGAGTGGATGACAACAATGC

CTGAGCATCTGAACATGGATTGGGTAGACAGTGTAAAGAATGTTTTTGAATACTTTACAGAAAG

AACCCCAAGGTCTCATTTTGAACACCGTGAGACATCATTTGTATGGAATTACAAGTATGCTGAT

GTTGAGTTTGGACGGCTCCAAGCAAGAGATATGCTGCAGCACTTGTGGACAGGTCCAATCTCAA

ATGCAGCAGTCGATGTTGTTCAAGGAAGCCGATCAGTTGAAGTTCGGTCTGTCGGAGTTACAAA

GGGTGCTGCAATTGATCGTATTCTAGGAGAGATAGTTCATAGCAAAAGCATGATTACTCCAATT

GATTATGTTCTATGCATTGGGCACTTCCTAGGAAAGGATGAGGACATCTATGTCTTTTTCGATCC

CGAGTACCCTTCTGAATCAAAAGTAAAACCAGATAGCAGCGGCTCGGTATCTCTTGACAGGAG

GCCAAATGGACGACCATCAAACGGCAGGAGCAATTCCAGAAACTCGCAGTCAAGGACACCCAA

GGCACAGGCTGCTCCGGAGAGGTCATCGTCATCATCTTCATCAAGCCAGGGCACCCCAAACAG

CCACCATGACTGGCGCGAAGGGTCCTCGGTCCTTGACCTCAAGGGCGAGAATTATTTCTCCTGC

GCTGTTGGAAGGAAGCGGTCCAACGCCCGCTACCTGCTTAACTCGTCAGAGGAGGTCGTCTCCT

TCCTCAAGGAGATGGCAGATGCAACGGCGGCTCACAATGGGTTCCAGTCCACAACTGCGGATT

ACATGTTCTTGGATAGGCAGTAG 
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Zea mays ZmTPS1 EU659122.2 ATGCCAACCTCATCGCCCTTTGTCGGCGACAGCGGCGGCGCGGGCTCCCCGATCCGCGTCGAGC

GAATGGTCCGCGAGCGTAGCCGCCGCTACGACATCTTCGCGTCGGACGCGATGGATACCGACG

CCGAGGCGGCCTTCGCGCTGGATGGGGTCCAGTCGCCTGGACGTGCGTCACCCGCCAACATGG

AGGATGCTGGCGGCGCGGCCGCAGCGCGACCGCCGCTCGCCGGCTCCCGCAGCGGTTTCCGCC

GCCTAGGCCTCCGTGGCATGAAGCAGCGCCTCCTCGTCGTGGCCAACCGCCTGCCTGTATCCGC

CAACCGCCGCGGAGAGGACCACTGGTCGCTTGAGATCAGCGCCGGCGGCCTTGTGAGCGCCCT

CCTTGGCGTGAAGGACGTCGACGCGAAGTGGATTGGCTGGGCAGGCATCAACGTACCGGACGA

GGTTGGTCAGCGAGCCCTCACTAAAGCTCTTGCGGAGAAGAGATGCATACCAGTGTTCCTGGAC

GAAGAGATTGTGCACCAGTACTACAATGGATACTGCAACAACATCCCGTGGCCACTGTTCCACT

ACCTAGGACTACCACAGGAGGACAGGCTGGCAACAACGAGGAACTTTGAGTCACAGTTCGACG

CGTACAAGCGTGCTAACCAGATGTTCGCTGATGTCGTGTACGAGCACTACCAGGACGGGGATGT

GATCTGGTGCCATGACTACCACCTCATGTTTCTGCCCAAGTGCCTCAAGGACCATGACATCAAT

ATGAAGGTCGGGTGGTTCCTGCACACGCCGTTCCCGTCATCAGAGATTTACCGGACACTGCCGT

CCCGCTTGGAGCTGCCTCGGTCGGTGCTGTGTGCCGATTTAGTTGGATTTCATACTTACGACTAT

GCGAGGCATTTTGTGAGTGCTTGCACTAGAATACTTGGACTTGGGGGTACCCCTGAGGGCGTTG

AAGATCAAGGAAGGCTAACCAGGGTTGCAGCGTTTCCTATTGGGATAGACTCTGATCGTTTCAA

GCGAGCATTGGAGCTTCCAGCAGTGAAAAGGCACGTCAGTGAATTGACAGAACGTTTTGCCGG

TCGAAAGGTAATGCTTGGTGTTGACCGACTTGACATGATTAAGGGAATTCCGCAAAAGATTTTG

GCCTTTGAAAAGTTTCTTGAGGAAAACCCAGACTGGAACAACAAAGTTGTTCTACTGCAGATTG

CTGTGCCAACAAGAACTGACGTCCCTGAATATCAAAAGCTAACGAGCCAAGTGCATGAAATTG

TTGGGCGCATAAACGGTCGATTTGGAACGTTGACTGCTGTCCCTATTCATCATCTGGACCGATCT

CTTGATTTCCATGCCTTGTGTGCTCTTTATGCAGTCACTGATGTTGCTCTTGTAACATCACTGAG

AGATGGGATGAACCTTGTGAGCTATGAATATGTTGCATGCCAAGGGTCTAAGAAAGGAGTTCT

GATACTTAGCGAGTTTGCTGGGGCAGCACAATCACTTGGAGCTGGTGCCATTCTAGTAAACCCT

TGGAATATTACAGAAGTTGCGGACTCAATACGGCATGCTTTAACGATGCCATCCGATGAGAGA

GAGAAACGACACAGACACAACTACGCACATGTCACAACTCACACGGCTCAAGATTGGGCTGAA

ACTTTTGTATTTGAGCTAAATGACACGGTTGCTGAAGCACTACTGAGGACAAGACAAGTTCCTC

CTGGTCTTCCTAGTCAAATGGCAATTCAGCAATATTTGCGCTCTAAAAATCGTCTGCTCATATTG

GGTTTCAATTCGACATTGACTGAGCCAGTCGAATCCTCTGGGAGAAGGGGTGGTGACCAAATCA

AGGAAATGGAACTCAAGTTGCATCCTGACTTAAAGGGTCCTCTGAGAGCCCTCTGTGAGGATGA

GCGCACTACAGTTATTGTCCTTAGCGGCAGTGACAGGAGTGTTCTTGATGAAAATTTTGGAGAA

TTTAAAATGTGGTTGGCGGCAGAGCATGGGATGTTTTTACGCCCGACTTACGGAGAATGGATGA

CAACAATGCCTGAGCATCTGAACATGGATTGGGTTGACAGCGTAAAGCATGTTTTTGAATACTT

TACAGAAAGGACCCCAAGATCCCATTTCGAACATCGTGAAACATCATTTGTGTGGAACTATAAG

TATGCTGATGTTGAGTTCGGAAGGCTACAAGCAAGAGATATGCTGCAGCACTTGTGGACAGGTC

CGATCTCAAATGCAGCTGTTGATGTTGTTCAAGGGAGTCGATCAGTTGAAGTTCGGTCTGTTGG

AGTTACCAAGGGTGCTGCAATTGATCGTATTTTAGGGGAGATAGTTCACAGCGAAAACATGATT

ACTCCAATTGACTATGTCCTGCGCATAGGGCATTTCCTTGGGAAGGATGAGGACATCTACGTCT

TCTTTGGTCCCGAGTACCCTTCTGAATCCAAAGTAAAGCCAGAGGGCGGCTCAGCATCACTTGA

CCGGAGGCCGAACGGGAGGCCACCATCGAATGGCAGGAGTAACTCCAGGAACCCACAGTCCAG

GACACAGAAGGCGCAGCAGGCTGCATCCGAGAGGTCATCCTCATCAAGTCACAGCAGCACGAG

CAGCAACCACGACTGGCACGAAGGGTCCTCGGTCCTTGATCTCAAGGGCGAGAACTACTTCTCC

TGCGCCGTCGGGAGGAAGCGGTCCAACGCCCGCTACCTGCTGAGCTCGTCGGAGGAGGTTGTCT

CCTTCCTCAAAGAGTTGGCGACAGCGACAGCTGGCTTCCAGGCCACCTGTGCTGACTACATGCA

TGTTCTTGGATAG 
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Chapter 3 

 

 

Protoporphyrinogen Oxidase Activity in 

Alternative In vitro Selection Systems for 

Sugarcane 
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3.1  Introduction 

Two broad methods exist for the improvement of crop plants such as sugarcane, namely 

traditional breeding methods and targeted molecular approaches. The former usually involves 

the selection or cross breeding of crop plants, in order to attain new crop varieties that possess 

favourable agricultural traits. For example, most modern sugarcane cultivars are thought to 

result from a cross between Saccharum officinarum and S. spontaneum, where S. officinarum 

usually accumulates high sucrose and S. spontaneum possesses traits for increased 

adaptability to adverse conditions (Zhou et al., 2013). However, the development of new crop 

varieties through breeding is usually hampered by the time required to develop these new 

varieties (Waclawovsky et al., 2010; Zhou et al., 2013). Targeted molecular approaches can 

be considered, which aim to identify and utilize specific genes that would enhance 

agricultural traits in crop plants. These are not as widely accepted as traditional breeding 

methods by consumers, but to address these concerns, cisgenic strategies have been 

considered (Jacobsen and Schouten, 2009; Waclawovsky et al., 2010; Arruda, 2012; Zhou et 

al., 2013). These cisgenic strategies aim to change and utilise an organism‟s own genetic 

makeup, rather than introduce a gene from another organism, such as in transgenic strategies.  

Protocols for the genetic manipulation of sugarcane have been available since the early 

1990‟s. These include those for the transformation of sugarcane callus via particle 

bombardment and for selecting and regenerating transformed callus into whole plants (Franks 

and Birch 1991; Bower and Birch 1992; Van der Vyver et al., 2013). Once sugarcane is 

transformed with a DNA construct, selection methods are important to separate transformed 

cells from the rest of the cell mass. Selection would involve expression of a gene that would 

enable only cells containing it to grow on media which contains a selection agent, such as an 

antibiotic.  

As mentioned in chapter 1, various strategies have been employed to develop 

protoporphyrinogen oxidase (PPO) based selection systems in plants. These strategies 

included the overexpression of plant PPO genes, the alteration of the PPO binding site to 

avoid diphenyl ether type herbicide (DPE) binding, the selection of DPE herbicide resistant 

PPO genes by random mutagenesis and the over-expression of microbial PPO genes with 

DPE resistance (Li and Nicholl, 2005). Also in these strategies, different results were 

observed with the use of either chloroplast targeted PPO-1 or mitochondrial targeted PPO-2 

genes. When successfully developed, these selection genes should enable the in vitro 

selection of transformants on media containing DPE herbicide. Additionally, the selection 

Stellenbosch University  https://scholar.sun.ac.za



92 

 

genes should continue functioning in the whole plant resulting in DPE herbicide tolerance in 

the field during crop production. 

In the review by Li and Nicholl, (2005), results from various attempts to develop PPO genes 

as selectable markers are discussed. In one of these studies, Li et al., (2003) was successful in 

using random in vivo mutagenesis to identify various novel mutations in the Arabidopsis 

thaliana PPO-1 gene that conferred DPE herbicide resistance (Li and Nicholl, 2005). 

Specifically, Li et al. (2003) mentions three amino acid mutations that conferred resistance to 

DPE susceptible SASX38 E. coli cells. One of these mutations was a tyrosine to methionine 

change at amino acid position 426 (Y426M). SASX38 cells that rely on these mutations for 

DPE resistance showed poor growth rates, even when not grown on DPE herbicides. 

However, additional mutations that counteracted poor growth rates, such as a serine to leucine 

change at amino acid position 305 (S305L) and the double Y426M + S305L mutation was 

later also identified as inducing herbicide resistance in plants.  

In this study the aim is to make advancements towards developing a cisgenic in vitro 

selectable marker system for sugarcane, S. officinarum, callus using a DPE herbicide as 

selection agent and a DPE resistant PPO-1 gene as selection gene. For proof of concept, the 

tobacco PPO-1 gene was isolated and targeted mutagenesis performed on it. This involved a 

tyrosine to methionine change at amino acid position 437 and, secondly, a serine to leucine 

change at amino acid position 316, which corresponds with the mutations used by Li et al., 

(2003) in maize. This mutated tobacco PPO-1 gene would be transformed into sugarcane 

callus and tested as a selectable marker for callus grown on medium containing the DPE 

herbicide, fomesafen. The second objective was to isolate a full length sugarcane PPO-1 gene 

and identify novel mutations for herbicide resistance in sugarcane cisgenic transformation 

systems. As proof of concept, random mutations were induced in the tobacco NtPPO-1 gene, 

using the XL-1 Red E. coli strain. DPE herbicide resistant mutations would be identified by 

screening in the mutant VSR-800 E. coli strain with DPE herbicides complementing the 

growth defect of VSR-800 cells on LB medium.  
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3.2  Materials and Methods 

3.2.1 Isolation, cloning and mutation of a tobacco NtPPO-1 gene 

3.2.1.1 Plant material and RNA isolation 

RNA was isolated from tobacco leaf tissue (Nicotiana tabacum cv. Samsun) using a RNA 

extraction protocol described by Wang et al., (2011), which utilizes TRIzol (Sigma-Aldrich; 

St. Louis, MO, USA). RNA extraction buffer (100 mM Tris-HCL, pH9 dissolved in diethyl 

pyrocarbonate (DEPC) treated water) was autoclaved and stored at room temperature. Prior to 

use, 2% (v/v) β-mercaptoethanol was added to the RNA extraction buffer. Other solutions 

prepared and used were a 20% (w/v) SDS (sodium dodecyl sulphate) solution dissolved in 

DEPC treated water and TRIzol. 

Briefly, plant material was ground to a fine powder using liquid nitrogen and 200 mg of 

powdered material was added to 400 µl of RNA extraction buffer and incubated at room 

temperature for 15 min. 20 µl of a 20% (w/v) SDS solution was added to the samples, gently 

inverted and centrifuged at 8000 g for 10 min at 4°C. The resulting supernatant was 

transferred to new tubes. Two volumes (800 µl) of TRIzol reagent was added to samples and 

mixed by vortexing, after which samples were incubated at room temperature for 10 min. 240 

µl of chloroform was then added to samples, mixed by vortexing and centrifuged at 8000 g 

for 10 min at 4 °C. Samples were kept cold for the remainder of the extraction protocol. RNA 

was precipitated from the supernatant with equal volumes of isopropanol and harvested by 

centrifugation. The RNA pellet was re-suspended gently in 400 µl of DEPC treated water and 

purified by adding an equal volume of citrate buffer [saturated phenol pH 4.3/chloroform 

(1:1)] and mixing thoroughly. RNA samples were subjected to centrifugation at 8000g for 10 

minutes. The supernatant was transferred to new tubes and an equal volume chloroform added 

and mixed thoroughly. The resulting supernatant was transferred to new tubes and 1/10
th
 

volume (40 µl) of 3 M sodium acetate (pH 4.8) and 2 volumes (800 µl) of ethanol was added 

to precipitate RNA at -20 °C overnight. Samples were centrifuged  at 8000 g and pelleted 

RNA washed by adding 500 µl of 70% (v/v) ethanol. The supernatant was discarded and 

pellets were air dried. RNA was re-suspended in 30 µl of DEPC treated water after which 

concentrations were determined by measuring absorbance at 260nm.  
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RNA samples were DNase treated with DNase I, RNase free (Thermo Scientific; Waltham, 

MA, USA). DNase I treated RNA was visualised on 1.2% (w/v) agarose TBE gels to assess 

RNA quality. RNA was used as soon as possible to synthesize cDNA, using RevertAid H 

Minus Reverse Transcriptase (Thermo Scientific; Waltham, MA, USA). 

3.2.1.2 NtPPO-1 gene isolation and cloning 

The tobacco NtPPO-1 gene (NCBI accession number: Y13465.1) was isolated from tobacco 

leaf cDNA by PCR amplification using the following primer pair; NtPPO-1 fwd (5‟ 

AGAATTCCGGTCTACAAGTCAGGCAGTC „3) and NtPPO-1 rev (5‟ CGAATTCCTACC 

CCCAACACAGGTTTC „3). Both primers include EcoRI sites for cloning into the pMOS-

Blue vector (Amersham Biosciences, Amersham, UK). PCR was performed with Phusion® 

High-Fidelity DNA Polymerase (Thermo Scientific; Waltham, MA, USA) and master mixes 

were assembled as described in section 2.2.3.7. The PCR program used was as follows: initial 

denaturation at 98°C for 10 sec, 32 cycles of 98°C for 1 sec, annealing at 60°C for 20 sec and 

72°C for 30 sec followed by a final elongation at 72°C for 2 min. 

The PCR amplified NtPPO-1 gene was gel purified and cloned into the pMOS-Blue vector, 

according to the manufacture‟s instructions. pMOS-Blue::NtPPO-1  constructs were 

transformed into competent DH5α cells and transformants were selected on LBA plates 

containing 50 µg/ml ampicillin. Once transformants with inserts were identified, plasmid 

DNA was purified using the GeneJET Plasmid Miniprep Kit (Thermo Scientific; Waltham, 

MA, USA) and sequenced.  

3.2.1.3 Targeted mutagenesis of NtPPO-1 gene 

Targeted nucleotide base pair mutations were introduced in the NtPPO-1 gene inside the 

pMOS-Blue::NtPPO-1 construct using primers designed to change base pairs at two desired 

positions in the gene (Table 3.1). These mutation sites were designed to first change the 

tyrosine (TAC) at amino acid position 437 to methionine (ATG) and secondly, the serine 

(TCT) at amino acid position 316 to leucine (CTC). Primer pairs were designed back-to-back 

over the desired mutation site; in order to amplify the entire vector and gene insert as one 

fragment. 
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PCR for targeted mutagenesis was performed using PrimeSTAR® GXL DNA polymerase 

(Takara; Otsu, Shiga, Japan). The PCR program used was 98°C for 10 sec, 30 cycles of 98°C 

for 10 sec, 60°C for 15 sec and 68°C for 5 min, followed by 68°C for 2 min. PCR products 

were purified using the GeneJET PCR Purification Kit (Thermo Scientific; Waltham, MA, 

USA). The resulting linear double stranded PCR product was self-circularized in a standard 

T4 DNA ligase reaction (Thermo Scientific; Waltham, MA, USA) as described by the 

manufacturers. The tobacco NtPPO-1 gene insert in pMOS-Blue was sequenced after each 

targeted mutagenesis reaction to confirm site-directed mutations and that no additional 

mutations were introduced during the amplification process.  

3.2.2 Transformation of sugarcane with the mutated NtPPO-1 gene 

3.2.2.1 Plant transformation vector detail 

After targeted mutagenesis was performed, the mutated NtPPO-1 (NtPPO1-DM) insert was 

sub-cloned into the pUBI 510+ plant expression vector (see section 2.2.4.3; Figure 1) using 

EcoRI restriction sites. The resulting pUBI 510::NtPPO1-DM construct was transformed into 

chemically co\mpetent DH5α cells using a heat shock protocol described in section 2.2.3.2. 

Transformed cells were plated out on LBA plates containing 100 μg/ml ampicillin for 

selection and incubated overnight at 37°C. The NtPPO1-DM insert orientation in the pUBI 

510+ construct was confirmed with PCR (see section 2.2.3.7) using the gene-specific reverse 

primer (NtPPO-1 rev1: 5‟ CGAATTCCTACCCCCAACACAGGTTTC „3) and a forward 

primer binding in the ubiquitin promoter region (PromUbi FW: 5‟ 

AATTTGATATCCTGCAGTGCAGCGTG „3). Plasmid DNA was purified from overnight 

cultures, using the GeneJET PCR Purification Kit (Thermo Scientific; Waltham, MA, USA) 

and sequenced to re-confirm site-directed mutations.  

Table 3.1: NtPPO-1 targeted mutagenesis primers. 

 

NtPPO-1 mutation Primer name  Sequence 

Ser 316 to Leu 
NtPPO1 316 For 5”- ACTAAGTCAGAAAAAGGAGGATATCAC-„3 

NtPPO1 316 Rev 5”- AATGCTGAGAAGCTTCCATGATAGTTT-„3 

Tyr 437 to Met 
NtPPO1 437 For 5”- GCAAAAAATCCTGAAATTTTGTCTAAGAC-„3 

NtPPO1 437 Rev 5”- TCCTCCAATCATGTTCAAGAGTAGC-„3 
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3.2.2.2 Biolistic transformation of sugarcane callus with the mutated NtPPO-1 gene 

The pUBI 510::NtPPO1-DM construct was transformed into sugarcane callus using biolistic 

bombardment as described in section 2.2.4.4. 5 μg each of pUBI 510::NtPPO1-DM and 

pEmuKN was co-bombarded into embryogenic sugarcane callus. A total of 10 prepared 

sugarcane callus transformation plates were bombarded, where each plate contained a 2 cm 

diameter circle of sugarcane calli. After a two day incubation, in the dark on MSC3 medium, 

bombarded callus was transferred to MSC3 medium containing 10 μg/ml fomesafen and 

further incubated at 16h/8h day/night cycles at 24°C. Specifically, Fomesafen PESTANAL®, 

analytical standard (5-[2-Chloro-4-(trifluoromethyl)phenoxy]-N-(methylsulfonyl)-2-

nitrobenzamide) (Sigma-Aldrich; St. Louis, MO, USA) was used. The optimum fomesafen 

herbicide concentration for sugarcane callus selection was previously determined at the IPB 

(Van der Vyver, personal communication). Callus was sub-cultured every 2 weeks onto fresh 

MSC3 fomesafen medium and callus survival monitored over a 6 week period. 

3.2.3 Random mutagenesis of the tobacco PPO-1 gene 

3.2.3.1 Random mutagenesis with E. coli XL1-Red 

The tobacco NtPPO-1 gene was sub-cloned from pMOSBlue::NtPPO-1 into pBK-CMV 

(Agilent Technologies; Santa Clara, CA, USA) to create pBK-CMV::NtPPO-1 using methods 

as described in section 2.2.3.9. This was created in order to induce random mutations into the 

NtPPO-1 gene insert. KpnI and XbaI restriction sites were used for directional cloning into 

pBK-CMV. The pBK-CMV::NtPPO-1 construct was then transformed into XL1-Red 

competent E. coli cells (Agilent Technologies; Santa Clara, CA, USA) for random 

mutagenesis according to the manufacturer‟s instructions. After incubation, 200 µl of 

transformed cells were plated out on LBA plates containing 50 µg/ml kanamycin and 

incubated at 37°C for 24 hours. 200 colonies were picked and inoculated into individual tubes 

containing 5 ml LB with 50 µg/ml kanamycin and incubated overnight at 37°C with shaking 

at 200 rpm. 2 ml was taken from each overnight culture and combined in 100 ml of fresh LB 

and further incubated at 37°C for 1 hour. This 500 ml cell mixture was used to maxi-prep a 

mixture of mutated DNA constructs using the Zyppy Plasmid Maxiprep Kit (Zymo Research; 

Orange, CA, USA). 
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3.2.3.2 Manufacture of chemically competent VSR-800 cells 

VSR-800 cells were purchased from the National Institute of Genetics, Japan 

(http://www.nig.ac.jp). Chemically competent VSR-800 cells were produced using a modified 

protocol from Sambrook and Russel, (2001) as described in section 2.2.3.3. Throughout the 

protocol, cells were covered to block light exposure, as the mutant strain is described to be 

light sensitive. 

3.2.3.3 Testing of mutated NtPPO-1 gene in the VSR-800 E. coli strain 

The NtPPO1-DM insert was sub-cloned from pMOS-Blue into pBK-CMV to create pBK-

CMV:: NtPPO1-DM using cloning methods as described in section 2.2.3.9. KpnI and XbaI 

restriction sites were used for directional cloning. The construct was sent for sequencing and 

this showed no unwanted mutations were present. It was transformed into VSR-800 E. coli 

cells to confirm the VSR-800 reverted normal phenotype on LBA medium. 

3.2.3.4 Growth curve determinations of the mutant VSR-800 E. coli strain 

Prior to transformation and testing of constructs, the growth of VSR-800 was compared with 

that of the control E. coli strain, DH5α on both solid and liquid LB media. Fomesafen or 

acifluorfen herbicides were also added to liquid medium at concentrations of 25 mg/l, 50 mg/l 

or 100 mg/l. On solid medium, fomesafen herbicide concentrations of 10 mg/l or 40 mg/l 

were tested. The influence of light exposure on bacterial growth was also investigated.  

Cultures were initiated from -80°C stocks on LBA medium. Single colonies from each strain 

were inoculated into 5 ml of LB for overnight incubation at 37°C with shaking at 200 rpm in 

the dark. 45 ml of sterile LB was then added and incubated until the cultures reached an OD600 

of 0.1. 100 µl of this was streaked out on LB plates and incubated at 37°C overnight. LB 

plates containing fomesafen herbicide were also tested and replicates were made for testing in 

both light and darkened conditions. 

For testing in liquid culture, 5 ml of an overnight cultures for both strains were inoculated 

into an Erlenmeyer flask containing 100 ml of sterile LB. Cultures were incubated at 37°C 

with shaking, while measurements of absorption at OD600 was taken every hour. At least three 
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replicates of each culture were made for each strain. VSR-800 cultures were grown in the 

dark and in the light. 

3.2.4 Isolating a full length sugarcane PPO-1 gene 

3.2.4.1 SoPPO5’ RACE  

Initially, a partial sugarcane PPO sequence (NCBI accession number: BD291972) was 

available on the NCBI database. A reverse gene-specific primer (SoPPO1 GSP1) was 

designed based on this available partial coding sequence (Table 3.2). The second gene-

specific primer was designed based on sequence revealed with the first 5‟ RACE PCR (Table 

3.2). 

Table 3.2: SoPPO1 5' RACE primers 

 

 Gene Primer name  Sequence 

SoPPO1 
SoPPO1 GSP 1 5‟-CTCAACGCATCTGCCTAGGGCAACTC-3‟ 

SoPPO1 GSP 2 5‟-GCGGCGCACGAACTCCTCCA-3 

RACE 

universal 

primers 

Long primer 
5‟-CTAATACGACTCACTATAGGGCAAGCAGTGGT 

ATCAACGCAGAGT-3 

Short primer 5‟-CTAATACGACTCACTATAGGGC-3 

Nested primer 5‟-AAGCAGTGGTATCAACGCAGAGT-3 

 

5‟RACE ready cDNA, to be used as a template in PCR reactions, was synthesized using RNA 

from sugarcane leaf-roll tissue. 5‟ RACE ready cDNA synthesis is described in detail in 

chapter 2 (see section 2.2.5.2). 5‟ RACE PCR reactions were performed using Phusion® 

High-Fidelity DNA Polymerase (Thermo Scientific; Waltham, MA, USA) and master mixes 

were assembled according to the manufacturer‟s instructions using universal RACE primers 

in combination with either the SoPPO1 GSP1 or GSP2 primer (Table 3.2). 400 ng of 5‟ 

RACE ready cDNA was used as template in each PCR reaction. The PCR program used was 

as follows: initial denaturation at 98°C for 30 sec, 38 cycles at 98°C for 5 sec, 68°C for 20 sec 

and 72°C for 1 min followed by a final elongation at 72°C for 3 min. The elongation time of 1 

min allowed for the possible amplification of PCR products up to 4 kb. PCR products were 

visualised on a 1.2% (w/v) agarose TBE gel and bands of expected size were isolated and 

purified. Purified PCR products were cloned into the pJET 1.2 vector and sequenced.  
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3.2.4.2 Full length putative SoPPO isolation and cloning 

High similarity was shared between the partial sugarcane PPO sequence revealed through 5‟ 

RACE and the sorghum SbPPO-1 (NCBI accession number: XM_002455439.1). Thus, 

primers SoPPO1 fwd1 (5‟ GGATATGGTCGCCGCCGCC‟3) and SoPPO1 rev1 

(5‟TTGTAGGGCAGTGAACAGAACAATCTCC‟3), based on the sorghum SbPPO-1 

sequence, were used in further attempts to amplify the full length SoPPO-1 sequence through 

PCR. PCR amplification was performed using Phusion® High-Fidelity DNA Polymerase (see 

section 2.2.3.7). The PCR program used was an initial denaturation at 98°C for 30 sec, 36 

cycles of 98°C for 5 sec, anneal  68°C for 20 sec and elongation at 72°C for 30 sec followed 

by a final elongation at 72°C for 2 min.  

3.3  Results 

3.3.1 Double mutated NtPPO-1 as a selection marker in sugarcane 

3.3.1.1 Isolating of the tobacco PPO-1 gene 

The tobacco NtPPO-1 gene was amplified from cDNA synthesised from RNA isolated from 

tobacco leaf material and ligated into the pMOS-Blue vector. Sequence analysis showed that 

it was identical to the NCBI listed sequence. 

3.3.1.2 Targeted mutagenesis of NtPPO-1 

Targeted mutagenesis was performed, initially using the NtPPO1 437 primer pair (Table 3.1). 

Sequence analysis revealed that the TAC sequence at nucleotide position 1278 was 

successfully replaced with an ATG sequence, which changes the tyrosine at amino acid 

position 437 to a methionine (Figure 3.1). The NtPPO1 316 primer pair (Table 3.1) also 

successfully replaced the TCT sequence at the nucleotide position 975 with CTC, a switch 

from serine to leucine at amino acid position 316 (Figure 3.2). Sequence data showed that no 

unwanted mutations were present and the double mutated tobacco PPO-1 was sub-cloned into 

the pUBI 510+ plant expression vector (Annexures, Figure A3.1).  
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Figure 3.1: NtPPO-1 Y437M mutation with changes highlighted and underlined. (A) Nucleotide 

change at position 1278. (B) Amino acid change at position 437. (C) Sequencing chromatogram of 

changed nucleotide sequence. 

 

Figure 3.2: NtPPO-1 S316L mutation with changes highlighted and underlined. (A) Nucleotide change 

at position 975. (B) Amino acid change at position 316. (C) Sequencing chromatogram of changed 

nucleotide sequence. 
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3.3.1.3 Double mutated NtPPO-1 as a selection marker in sugarcane 

The double mutated tobacco PPO-1 construct, pUBI 510::NtPPO1-DM, was bombarded into 

embryogenic sugarcane callus. Putative transformed calli were selected in the light on MSC3 

medium containing 10 mg/l fomesafen and sub-cultured every 2 weeks. After 6 to 8 weeks of 

sub culturing, necrosis (browning) of callus started to occur (Figure 3A). After 8 weeks calli 

were transferred to 2,4-D free MS medium containing 10 mg/l fomesafen and incubated in the 

light. A few callus clones showed small green structures forming, but these failed to 

regenerate further (Figure 3B).  

 

Figure 3.3: Sugarcane callus transformed with the pUBI 510::PPOI-DM construct, selected on medium 

containing fomesafen herbicide. (A) Necrosis of transformed callus after 6 weeks of growth on MSC3 

medium containing 10 mg/l fomesafen. (B) Small green structures growing on callus, further grown on 

MS medium containing 10 mg/l fomesafen. (C) Control Callus grown on MSC3 medium without 

fomesafen. 

3.3.2 Identifying novel mutations in the NtPPO-1 gene that induce herbicide 

resistance 

3.3.2.1 Random mutagenesis of NtPPO-1 in Xl-1 red 

The pBK-CMV::NtPPO-1 construct was made as described in section 3.2.3.1, with the 

sequence being displayed in Annexures Figure A3.2. The pBK-CMV::NtPPO-1 construct was  

transformed into XL-1 red cells to induce random mutations on the NtPPO-1 gene insert. 200 

individual transformed XL-1 red colonies were selected, grown and plasmids isolated from 

them, resulting in a mixture of randomly mutated pBK-CMV::NtPPO-1 constructs. The final 

 

A B C 
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construct mixture had a concentration of 54 ng/µl in a 5 ml volume and was stored at -20°C 

until transformation into VSR-800. 

3.3.2.2 Creation of pBK-CMV::NtPPO1-DM for testing in VSR-800 

The double mutated NtPPO1-DM insert was sub-cloned from pMOS-Blue into pBK-CMV to 

create the pBK-CMV::NtPPO1-DM construct (Annexures, Figure A3.3).  

3.3.2.3 VSR-800 growth analysis  

Initial growth analysis of the un-transformed VSR-800 strain did not show the predicted 

phenotype of poor growth due to the hemG mutation. VSR-800 cells were able to grow on 

LBA medium plates (Annexures, Figure A3.4) both in the dark and light. Also, the growth of 

VSR-800 was comparable with that of normal DH5α when grown in liquid LB medium with 

herbicide added (Figure 3.4). The lack of a defective growth phenotype in the VSR-800 strain 

made it impossible to distinguish between un-transformed VSR-800 and VSR-800 

complimented with a functional PPO gene. Thus the screening for mutations that could 

induce herbicide resistance and the testing of the NtPPO1-DM insert was terminated. 
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Figure 3.4: Comparison of growth rates of VSR-800 and DH5α in liquid culture. The OD at 600 nm 

for each culture was measured every hour. Each culture had 3 replicates and the average OD values 

were plotted against time. DH5α = DH5α in liquid LB, VSR-800 = VSR-800 in LB without herbicide, 

A25 = LB + 25 mg/l acifluorfen, A50 = LB + 50 mg/l acifluorfen, A100 = LB + 100 mg/l acifluorfen, 

F25 = LB + 25 mg/l fomesafen, F50 = LB + 50 mg/l fomesafen, F100 = LB + 100 mg/l fomesafen.   

3.3.3 Isolating a full length sugarcane PPO-1 gene 

3.3.3.1 5’ RACE 

An initial 5‟ RACE PCR was performed with the SoPPO1 GSP1 primer (Table 3.2), using 5‟ 

RACE cDNA synthesized from sugarcane leaf-roll RNA as a template. Visualization of 5‟ 

RACE PCR products showed amplicons of various sizes, but the two largest bands were 

excised and cloned into pJET 1.2 for sequencing (Figure 3.5). 
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Figure 3.5: SoPPO 5‟ RACE PCR. 5‟ RACE PCR with SoPPO1 GSP 1 primer and Universal primer 

mix using sugarcane cDNA as template, visualized on a 1.2% agarose gel. M = Lambda ladder, W = 

Water control. Isolated bands indicated on the figure were gel purified for further analysis. 

Sequencing results showed that the smaller band was a truncated version of the larger band. 

Further analysis showed that through 5‟ RACE PCR, and addition of 1006 bp was added to 

the initial known partial sugarcane PPO-1 gene (BD291972). However, alignments with 

PPO-1 sequences from other monocotyledonous plant species showed that a potential 297 bp 

of sequence still needed to be amplified (Figure 3.6). 5‟ RACE was repeated using the 

SoPPO1 GSP 2 primer, however this did not yield any new sequence. The new partial 

SoPPO-1 sequence shared 98% identity with the known sorghum hypothetical PPO-1 

sequence (XM_002455439.1), 95% identity with the maize PPO-1 (NCBI accession number: 

BT037840.1) and 88% identity with the rice PPO-1 (NCBI accession number AB057749.1). 

The partial SoPPO-1 sequence is detailed in figure A3.5 of the Annexures. 
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Figure 3.6: Graphical representation of 5‟ RACE PCR results. The blue regions represent un-translated 

regions of the PPO genes, the red region represents the protoporphyrinogen oxidase domain and the 

green region represents the NAD(P)-binding Rossmann-like domain. (A) representation of aligned 

maize, rice and sorghum PPO-1 genes. (B) representation of initial partial sugarcane PPO gene 

(BD291972). (C) representation of sugarcane PPO revealed through 5‟ RACE. 

3.3.3.2 SoPPO-1 full length amplification 

Due to the high similarity shared between the isolated sugarcane PPO 5‟ RACE fragment and 

the sorghum PPO-1 (XM_002455439.1), full length primers based on the sorghum PPO-1 

sequence were used in an attempt to amplify a full length sugarcane PPO-1 sequence (see 

section 3.2.4.2). Bands of expected size were observed upon visualization alongside some 

other amplicons (Figure 3.7). The 1700 bp band was sequenced, however, upon analysis of 

the isolated sequence it was observed that the SoPPO1 fwd1 primer alone amplified the 1700 

bp fragment, which encodes an unknown sugarcane sequence that shows low similarity to a 

maize splicing factor U2af (NCBI accession number: EU957623.1). Numerous further 

attempts were made, for example, altering PCR buffer mixes, adding DMSO and using either 

sugarcane leaf cDNA or 5‟ RACE cDNA. However, no new PPO sequence data was 

generated. 
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Figure 3.7: SoPPO-1 full length PCR using SoPPO1 fwd1 and SoPPO1 rev1 primers. M = Lambda 

ladder. Isolated bands indicated on the figure were gel purified for further analysis. 

3.4  Discussion  

3.4.1 Site directed mutated NtPPO-1 as a selection marker in sugarcane 

In this study the aim was to develop an in vitro selectable marker system for sugarcane using 

an herbicide resistant gene as a selection marker. The first established protocols for creating 

transgenic sugarcane utilized selection genes, also used in other monocotyledonous species 

such as the phosphinotricin acetyltransferase (bar), hygromycin phosphotransferase (hpt) and 

neomycin phosphotransferase (nptII) selection genes based mostly on antibiotic or herbicide 

resistance (Enriquez-Obregon et al., 1998; Leibbrandt and Snyman, 2003; Van der Vyver et 

al., 2013). Since then, new genes allowing in vitro selection of transgenic sugarcane have 

been developed, such as the acetolactate synthase (ALS) and phosphomannose isomerase 

(PMI) genes using sulfonylurea class herbicides and mannose as selection agents, respectively 

(Negrotto et al., 2000; Joyce et al., 2010; Van der Vyver et al., 2013). Specific mutations in 

acetolactate synthase can confer herbicide resistance when introduced into plant species, 

where amino acid changes would weaken the binding of inhibitory herbicides. Endogenous 

plant genes can therefore be used to confer herbicide resistance by creating modified enzymes 

via site specific mutations (Warwick et al., 2008; Powles and Yu, 2010; Van der Vyver et al., 

2013). An example of this was shown in the study by Li et al., (2003) where a double 

mutation (Y426M + S305L) was identified in the Arabidopsis PPO-1 that conferred 

butafenacil herbicide resistance in both Arabidopsis and maize. For this reason, the targeted 

mutagenesis performed in this chapter aimed to test the effectiveness of this specific double 
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mutation, introduced into the tobacco PPO-1 gene, to convey herbicide resistance to 

sugarcane cells. 

The choice of an endogenous herbicide resistance gene as target for the in vitro selection 

system depends on the plant species‟ sensitivity towards the linked herbicide selection agent. 

In the past the susceptibility of sugarcane callus to various herbicides was investigated (Van 

der Vyver et al., 2013; Koch et al., 2012). Sugarcane callus was shown to be sensitive to 

sulfonylurea class herbicides, specifically chlorsulforon and rimsulforon as well as 

imidazolinones class herbicides, such as imazapyr. Other monocotyledonous plant species 

have been shown to be susceptible to the DPE class herbicides, for example rice to 

oxyfluorfen and maize to butafenacil (Lee et al., 2000; Li et al., 2003). However, prior to this 

study no published data was available in regard to sugarcane‟s susceptibility towards DPE 

herbicides. Recent work performed at the IPB showed that NCo310 sugarcane callus is highly 

susceptible to fomesafen, leading to cell death, but not lactofen, which lead to the choice of 

PPO as target endogenous plant gene for inducing herbicide resistance (Van der Vyver, 

personal communication).  

The tobacco PPO-1 gene (Y13465) was isolated and targeted mutagenesis was performed 

(Y437M + S316L) to replicate the two mutations (Y426M + S305L) in the Arabidopsis PPO-

1 gene, described by Li et al., (2003). However, sugarcane callus transformed with the 

NtPPO1-DM gene construct failed to regenerate on medium containing fomesafen. Callus 

browning and necrosis started to occur around 6 to 8 weeks of selection on the herbicide, 

indicating fomesafen sensitivity, but no new callus regenerated. The probable reasons for the 

lack of tissue development after exposure to the herbicide might be that the biolistic transfer 

of the transgene was unsuccessful. However, this is unlikely since sugarcane calli are 

routinely genetically transformed at the IPB with high rates of success where transgenes are 

driven by the constitutive ubiquitin promoter. It is possible that sugarcane is not sensitive to 

the specific double mutation, even though it conveys herbicide resistance in other monocots 

such as maize as described by Li et al. (2003). 

Another possibility is that the encoded protein needs to be translocated to the plastid. The 

mechanism of PPO inhibition by DPE herbicides involves the leaking of protoporphyrinogen 

IX substrate into the cytoplasm, where it is oxidised to protoporphyrin IX, which in turn 

reacts with reactive oxygen species leading to membrane damage and cellular death (Jacobs 

et al., 1991). Thus, protoporphyrinogen IX needs to be oxidised within either the chloroplast 

or mitochondria organelles before leaking into the cytoplasm. The double mutated NtPPO-1 
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construct created in this study contained the same putative target peptide N terminal sequence, 

192 bp long, as the NtPPO-1 (Y13465) isolated by Lermontova et al., (1997). However, it 

might be that a dicotyledonous transit peptide is unable to function within a 

monocotyledonous species and this might cause the transgenic enzyme to not be translocated 

to the sugarcane chloroplast. This is unlikely, however, since Li et al., (2003) successfully 

utilized a mutated Arabidopsis PPO-1 in transgenic maize, which suggests that a 

dicotyledonous transit peptide can still function within a monocotyledonous species. It is also 

possible that the sequence for the complete transit peptide, which has not been characterised 

so far, was not included in the sequence region in front of the PPO start codon, regardless of 

the Lermontova et al. (1997) claim. Furthermore, it should be noted that the Y13465 sequence 

was isolated using a cDNA library from the tobacco cultivar Samsun. This is in contrast to the 

study by Lee et al., (2000) where they attempted to PCR amplify the N terminal segment in 

the Y13465 sequence from Nicotiana tabacum cv. KY160 gDNA to isolated a N terminal 

segment (NCBI accession number: AF225963.1) containing a 33 nucleotide long insertion 

which might be essential for plastid translocation, but which was not present in the gene 

fragment used in this study. Two constructs were transformed into rice by Lee et al., (2000), 

namely the B. subtilis PPO fused with the isolated N terminal segment AF225963.1 and B. 

subtilis PPO without a transit sequence. They showed that transgenic rice containing the B. 

subtilis PPO targeted to the plastid with the AF225963.1 transit sequence were more resistant 

to oxyfluorfen herbicide than transgenic rice containing the B subtilis PPO targeted to the 

cytoplasm. This provided evidence that translocation of PPO enzymes to the plastid organelle 

is of significance when trying to confer resistance to DPE herbicides (by Lee et al., 2000). 

In the future a solution for the non-functionality of the PPO gene in sugarcane might be to 

directly isolate the NtPPO-1 chloroplast transit peptide from the KY160 tobacco cultivar and 

fuse this to the double mutated NtPPO-1 construct. This new construct can be transformed 

into sugarcane callus and its effectiveness at conferring herbicide resistance re-assessed. 

Another solution to consider is to isolate a known chloroplast transit peptide from a 

monocotyledonous species, such as sorghum, maize or sugarcane and fuse these to the 

NtPPO-1 double mutated construct. Alternatively, once a full length SoPPO-1 is isolated, this 

sequence could also be overexpressed or mutated in sugarcane callus in order to induce 

resistance to the fomesafen herbicide. Overexpression of a un-mutagenized SoPPO-1 in 

sugarcane would allow any transit peptides present in the sequence to function in their own 

biological background. Overexpression of un-mutagenized PPO sequences has also been 

shown to confer certain levels of resistance to DPE herbicides (Li and Nicholl, 2005). For 
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example, tobacco plants overexpressing the Arabidopsis PPO-1 were shown to be fivefold 

more resistant to aciflourfen in a study conducted by Lermontova and Grim, (2000).  

3.4.2 Identification of mutations that confer DPE herbicide resistance in NtPPO-1  

As seen in other studies, certain mutations can disable the inhibitory effects of herbicides, yet 

still allow for the enzyme to perform their intended function. An example of this can be seen 

with mutations identified in the ALS gene that confer herbicide resistance in plants (Chaleff 

and Mauvais 1984; Falco and Dumas 1985; Yadav et al. 1986; Van der Vyver et al., 2013). 

The Arabidopsis PPO-1 (Y426M + S305L) double mutant, isolated by Li et al., (2003), was 

produced by random mutagenesis and screening in a heme deficient E.coli mutant. Thus, the 

second objective of this study was to identify any new mutations in the tobacco PPO-1 gene 

that would confer herbicide resistance to eukaryotes. 

The XL1-Red strain is described as being deficient in three of the primary DNA repair 

pathways resulting in a 5000 fold higher mutation rate than observed in wild type E. coli cells, 

thus making it suitable for random mutagenesis of gene fragments (Li et al., 2003). The 

NtPPO-1 gene was subjected to random mutagenesis in XL1-Red. However, in order to 

identify clones with desired mutations, an efficient screening / selection system must be in 

place to identify useful phenotypes. For this purpose the E. coli VSR-800 strain was 

purchased from the National Institute of Genetics (NIG), Japan.  

The E. coli VSR-800 strain contains a mutation in the hemG gene making it defective in the 

heme biosynthesis pathway. This defect causes the strain to grow poorly on normal LB 

medium (Narita et al., 1996). This poor growth phenotype allows screening for PPO genes, 

where complementation by a functional gene restores growth of cells. Too name a few 

examples, complementation of E.coli hemG mutants grown on LB medium was used 

successfully by Narita et al., (1996) and Lermontova et al., (1997) to isolate plant PPO 

sequences. However, screening of hemG mutants on LB medium would not differentiate 

between a normal PPO gene and one that is resistant to PPO inhibiting herbicides. Li et al., 

(2003) showed that heme deficient SASX38 cells transformed with a functional plant PPO 

gene, were able to grow on normal LB medium, but not on LB medium containing 

butafenacil herbicide. Thus, PPO enzymes containing mutations that confer DPE herbicide 

resistance could be screened on LB medium containing a DPE herbicide. Prior to screening of 

randomly mutated inserts the VSR-800 strain was tested to see that it displayed the advertised 
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poor growth phenotype. The NtPPO1-DM gene construct was also planned to be tested to see 

whether it could complement the growth defect in VSR-800. However, growth analysis 

showed that the VSR-800 strain did not display the heme deficient phenotype. This is most 

likely due to contamination of the cell stocks upon arrival or upon handling of mutant strain 

cells. Thus work was halted until a new heme deficient strain is obtained for screening 

purposes. 

3.4.3 Isolation of a full length sugarcane SoPPO-1 

Although the genomes of other Poaceae members such as rice, sorghum and maize are 

available, the sugarcane genome has not been fully sequenced (Grivet and Arruda, 2001; Goff 

et al., 2002; Paterson et al., 2009; Schnable et al., 2009; Souza et al., 2011). Difficulties 

encountered with sequencing the sugarcane genome include its substantial size and its 

complex structure, which is highly polyploidy (Souza et al., 2011). Resources have been 

made available in the form of expressed sequence tags (ESTs) databases, such as the 

SUCEST database, which contains a substantial amount of sugarcane sequence data (Carson 

and Botha, 2000; Casu et al., 2001; Grivet and Arruda, 2001). Isolation of genes in organisms 

with sequenced genomes is substantially easier due to online algorithms such as BLAST, 

which enable quick identification of putative sequences in-silico, whereupon one can design 

primers to isolate target sequences via PCR. However, other strategies have to be considered 

for gene sequence isolations from an organism with a non-sequenced genome. 

The only sugarcane PPO sequence that was initially available on the NCBI database was a 

partial SoPPO sequence (BD291972), isolated by Johnson et al., (2003). Aligning this 

sequence with PPO sequences from sorghum and maize, SbPPO-1 and ZmPPO-1, 

respectively, showed that a potential 1303 bp of the sugarcane PPO-1 gene still had to be 

determined, which should include a putative NADP binding domain (Marchler-Bauer et al., 

2013). Using the BD291972 sequence as a search query in nucleotide BLAST searches of the 

SUCEST EST database did not yield any additional sequence information. Strategies that 

were considered for the isolation of a full length sequence included the screening of a 

sugarcane cDNA library, performing PCR amplification with primers based on either the 

SbPPO-1 or ZmPPO-1 or amplification of the 5‟ end of the sequence using 5‟ RACE. 

5‟ Rapid amplification of cDNA ends (5‟ RACE) was used in order to attempt isolating a full 

length SoPPO-1 gene. 3‟ RACE involves synthesizing cDNA and amplifying a gene with a 
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polydT primer and a gene-specific forward primer. On the other hand, 5‟ RACE involves the 

attachment of a custom priming site on the 3‟ end of RNA sequences. Following reverse 

subscription, custom priming sites situated on the 5‟ ends of synthesized 5‟ RACE cDNA 

should be created. PCR can then be performed using a gene-specific reverse primer and the 

forward primers designed to bind at the custom binding sites. 5‟ RACE and 3‟ RACE had 

been used before to isolate the spinach PPO-1 and PPO-2 sequences (Watanabe et al., 2001).  

For 5‟ RACE a gene-specific reverse primer was designed based on the partial SoPPO-1 

sequence (BD291972). A 5‟ RACE fragment was initially isolated, which revealed 1006 bp 

of previously unknown sequence. Alignments with SbPPO-1 and ZmPPO-1 showed a 

potential 297 bp of sequence to still be missing (Paterson et al., 2009; Soderlund et al., 2009). 

However, regardless of numerous additional 5‟ RACE attempts no more sequence was 

uncovered. The additional sequence added with 5‟RACE included a putative in frame ATG 

start codon at nucleotide position 73 when compared with SbPPO-1 and ZmPPO-1 sequences. 

This start codon would result in the transcription of a potential protein with only four amino 

acids of a normally 68 amino acid long NADP binding domain as seen for other 

monocotyledonous species, such as in SbPPO-1 and ZmPPO-1. Thus the protein from the 5‟ 

RACE fragment would encode a putative truncated SoPPO-1 protein, which excludes a 

functional NADP binding domain. Whether the encoded protein would be functional without 

a complete NADP binding domain is unknown. Most prokaryotic PPO enzymes do not 

require a NADP binding domain and instead use the cell respiratory chain as an electron 

acceptor when protoporphyrinogen IX is oxidized (Dailey et al., 1994). However, eukaryotic 

PPO enzymes use oxygen as a final electron acceptor during the oxidation of 

protoporphyrinogen IX and therefore would most likely require a working NADP binding 

domain.  

The newly isolated SoPPO partial fragment showed a very high sequence similarity (97%) 

with the known sorghum SbPPO-1 sequence. A large degree of similarity exists between the 

Andropogoneae tribe plant species, such as sugarcane, sorghum and maize and for this reason 

these plants have been described as good models for genomic studies performed in sugarcane 

(Grivet and Arruda, 2001; Paterson et al., 2009). Yet the sugarcane genome is estimated to be 

substantially larger (10 Gbp) than the maize (2.3 Gbp) and sorghum (730 Mbp) genomes 

(Grivet and Arruda, 2001; Paterson et al., 2009; Schnable et al., 2009). In a second attempt to 

obtain the full length SoPPO-1 gene, a strategy was followed where primers based on the 

sorghum sequence were used in PCR. This strategy of using primers based on a sorghum 

sequence led to the isolation of an approximately 1700 bp sequence which, although the 
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expected size, did not encode a PPO. Despite numerous attempts using either sugarcane leaf 

cDNA or 5‟ RACE cDNA as a template, different PCR buffers and the addition of DMSO to 

aid DNA strand separation, no new sequence was added to the already known SoPPO 

sequence fragment. This study only utilized cDNA, synthesized from RNA extracted from the 

young leaves of healthy growing sugarcane, which was the most likely tissue type where PPO 

expression involved in the chlorophyll synthesis pathway should be found. Different 

templates, such as cDNA from internode or mature leave tissue, might yield higher 

concentrations of SoPPO-1, which might aid future sequence isolation attempts. Furthermore, 

testing different primers sites, as seen in the successful isolation attempts of the SoTPS genes, 

might aid in isolating an SoPPO-1 gene sequence fragment. In the future, once a full length 

SoPPO-1 sequence is isolated, work can commence to adapt the sequence to be used as an in 

vitro cisgenic selection gene that confers herbicide resistance in sugarcane callus and crop 

plantings. 

3.5  Conclusions 

A double mutated tobacco PPO-1 gene was expressed in sugarcane callus and selected on 

fomesafen-containing medium. Mutations induced in this study replicated those used by Li et 

al., (2003) where a mutagenized Arabidopsis PPO-1 gene was used as a selectable marker in 

maize. Transgenic sugarcane callus containing the mutagenized tobacco PPO-1 gene were 

incapable of regeneration on medium containing the fomesafen herbicide. In the future, 

targeting of the protein to the chloroplast might aid in regeneration of transgenic sugarcane 

callus on medium containing herbicide. Specifically, fusing a chloroplast transit peptide from 

a closely related monocotyledonous species has been considered for use in creating a new 

transformation construct. Random mutations were furthermore introduced into the tobacco 

PPO-1 gene to try and identify novel mutations that could enable the tobacco PPO-1 gene to 

induce herbicide resistance in sugarcane. Work was halted at the screening phase, since the E. 

coli mutant to be used did not possess the advertised mutant phenotype.  

5‟ RACE was used in attempts to isolate a full length SoPPO-1 sequence, but was only 

successful in adding 1006 bp of previously unknown sequence to the known sugarcane partial 

sequence. PCR can be repeated in the future with new primers based on either the sorghum or 

maize PPO-1 sequences, since high similarity was displayed between the sugarcane partial 

PPO-1, sorghum PPO-1 and maize PPO-1.  
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3.7  Annexures 

 

Figure A3.1: pUBI 510::NtPPOI-DM construct sequence. The NtPPOI-DM insert was ligated into the 

pUBI 510 + vector using an EcoRI restriction site present within the multiple cloning site of the pUBI 

510 + plasmid. EcoRI restriction sites are highlighted in light blue and the start and stop codons are 

highlighted in green and red respectively. The nucleotides changed by targeted mutagenesis are 

highlighted in yellow. 

 

Figure A3.2: pBK-CMV::NtPPO-1. The tobacco NtPPO-1 gene (Y13465.1) was ligated directionally 

into the pBK-CMV vector using KpnI and XbaI restriction sites. KpnI and XbaI restriction sites are 

highlighted in light blue and the start and stop codons are highlighted in green and red respectively. 

  

GAATTCCGGTCTACAAGTCAGGCAGTCATGACAACAACTCCCATCGCCAATCATCCTAATATTTTCACTCACCAGTCGTCGTCATCGCCATTGGCATTC

TTAAACCGTACGAGTTTCATCCCTTTCTCTTCAATCTCCAAGCGCAATAGTGTCAATTGCAATGGCTGGAGAACACGATGCTCCGTTGCCAAAGATTAC

ACAGTTCCTTCCTCAGCGGTCGACGGCGGACCCGCCGCGGAGCTGGACTGTGTTATAGTTGGAGCAGGAATTAGTGGCCTCTGCATTGCGCAGGTGAT

GTCCGCTAATTACCCCAATTTGATGGTAACCGAGGCGAGAGATCGTGCCGGTGGCAACATAACGACTGTGGAAAGAGACGGCTATTTGTGGGAAGAA

GGTCCCAACAGTTTCCAGCCGTCCGATCCTATGTTGACTATGGCAGTAGATTGTGGATTGAAGGATGATTTGGTGTTGGGAGATCCTAATGCGCCCCGT

TTCGTTTTGTGGAAGGGTAAATTAAGGCCCGTCCCCTCAAAACTCACTGATCTTCCCTTTTTTGATTTGATGAGCATTCCTGGCAAGTTGAGAGCTGGTT

TTGGTGCCATTGGCCTCCGCCCTTCACCTCCAGGTCATGAGGAATCAGTTGAGCAGTTCGTGCGTCGTAATCTTGGTGGCGAAGTCTTTGAACGCTTGA

TAGAACCATTTTGTTCTGGTGTTTATGCTGGTGATCCCTCAAAACTGAGTATGAAAGCAGCATTTGGGAAAGTTTGGAAGTTGGAAGAAACTGGTGGT

AGCATTATTGGAGGAACCTTTAAAGCAATAAAGGAGAGATCCAGTACACCTAAAGCGCCCCGCGATCCGCGTTTACCTAAACCAAAAGGACAGACAG

TTGGATCATTCAGGAAGGGTCTCAGAGTGCTGCCGGATGCAATCAGTGCAAGATTGGGAAGCAAATTAAAACTATCATGGAAGCTTCTCAGCATTACT

AAGTCAGAAAAAGGAGGATATCACTTGACATACGAGACACCAGAAGGAGTAGTTTCTCTTCAAAGTCGAAGCATTGTCATGACTGTGCCATCCTATGT

AGCAAGCAACATATTACGTCCTCTTTCGGTTGCCGCAGCAGATGCACTTTCAAATTTCTACTATCCCCCAGTTGGAGCAGTCACAATTTCATATCCTCA

AGAAGCTATTCGTGATGAGCGTCTGGTTGATGGTGAACTAAAGGGATTTGGGCAGTTGCATCCACGTACACAGGGAGTGGAAACACTAGGAACGATA

TATAGTTCATCACTCTTCCCTAACCGTGCCCCAAAAGGTCGGGTGCTACTCTTGAACATGATTGGAGGAGCAAAAAATCCTGAAATTTTGTCTAAGACG

GAGAGCCAACTTGTGGAAGTAGTTGATCGTGACCTCAGAAAAATGCTTATAAAACCCAAAGCTCAAGATCCTCTTGTTGTGGGTGTGCGAGTATGGCC

ACAAGCTATCCCACAGTTTTTGGTTGGTCATCTGGATACGCTAAGTACTGCAAAAGCTGCTATGAATGATAATGGGCTTGAAGGGCTGTTTCTTGGGGG

TAATTATGTGTCAGGTGTAGCATTGGGGAGGTGTGTTGAAGGTGCTTATGAAGTTGCATCCGAGGTAACAGGATTTCTGTCTCGGTATACATACAAAT

GAAACCTGTGTTGGGGGTAGGAATTC 

TCTAGAGGATCTACTAGTCATATCGATAGAATTCCGGTCTACAAGTCAGGCAGTCATGACAACAACTCCCATCGCCAATCATCCTAATATTTTCACTCA

CCAGTCGTCGTCATCGCCATTGGCATTCTTAAACCGTACGAGTTTCATCCCTTTCTCTTCAATCTCCAAGCGCAATAGTGTCAATTGCAATGGCTGGAG

AACACGATGCTCCGTTGCCAAAGATTACACAGTTCCTTCCTCAGCGGTCGACGGCGGACCCGCCGCGGAGCTGGACTGTGTTATAGTTGGAGCAGGAA

TTAGTGGCCTCTGCATTGCGCAGGTGATGTCCGCTAATTACCCCAATTTGATGGTAACCGAGGCGAGAGATCGTGCCGGTGGCAACATAACGACTGTG

GAAAGAGACGGCTATTTGTGGGAAGAAGGTCCCAACAGTTTCCAGCCGTCCGATCCTATGTTGACTATGGCAGTAGATTGTGGATTGAAGGATGATTT

GGTGTTGGGAGATCCTAATGCGCCCCGTTTCGTTTTGTGGAAGGGTAAATTAAGGCCCGTCCCCTCAAAACTCACTGATCTTCCCTTTTTTGATTTGATG

AGCATTCCTGGCAAGTTGAGAGCTGGTTTTGGTGCCATTGGCCTCCGCCCTTCACCTCCAGGTCATGAGGAATCAGTTGAGCAGTTCGTGCGTCGTAAT

CTTGGTGGCGAAGTCTTTGAACGCTTGATAGAACCATTTTGTTCTGGTGTTTATGCTGGTGATCCCTCAAAACTGAGTATGAAAGCAGCATTTGGGAAA

GTTTGGAAGTTGGAAGAAACTGGTGGTAGCATTATTGGAGGAACCTTTAAAGCAATAAAGGAGAGATCCAGTACACCTAAAGCGCCC~GCGATCCGC

GTTTACCTAAACCAAAAGGACAGACAGTTGGATCATTCAGGAAGGGTC~TCAGAGTGCTGCCGGATGCAATCAGTGCAAGATTGGGAAGCAAATTAA

AACTATCATGGAA~GCTTTCTAGCATTACTAAGTCAGAAAAAGGAGGATATCACTTGACATACGAGACACCAGAAGGAGTAGTTTCTCTTCAAAGTCG

AAGCATTGTCATGACTGTGCCATCCTATGTAGCAAGCAACATATTACGTCCTCTTTCGGTTGCCGCAGCAGATGCACTTTCAAATTTCTACTATCCCCC

AGTTGGAGCAGTCACAATTTCATATCCTCAAGAAGCTATTCGTGATGAGCGTCTGGTTGATGGTGAACTAAAGGGATTTGGGCAGTTGCATCCACGTA

CACAGGGAGTGGAAACACTAGGAACGATATATAGTTCATCACTCTTCCCTAACCGTGCCCCAAAAGGTCGGGTGCTACTCTTGAACTACATTGGAGGA

GCAAAAAATCCTGAAATTTTGTCTAAGACGGAGAGCCAACTTGTGGAAGTAGTTGATCGTGACCTCAGAAAAATGCTTATAAAACCCAAAGCTCAAG

ATCCTCTTGTTGTGGGTGTGCGAGTATGGCCACAAGCTATCCCACAGTTTTTGGTTGGTCATCTGGATACGCTAAGTACTGCAAAAGCTGCTATGAATG

ATAATGGGCTTGAAGGGCTGTTTCTTGGGGGTAATTATGTGTCAGGTGTAGCATTGGGGAGGTGTGTTGAAGGTGCTTATGAAGTTGCATCCGAGGTA

CCAGGATTTCTGTCTCGGTATACATACAAATGAAACCTGTGTTGGGGGTAGGAATTCGATCGGATCCCCGGGTACC 

TGGGC 
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Figure A3.3: pBK-CMV::NtPPO1-DM. The NtPPO1-DM insert was ligated directionally into the 

pBK-CMV vector using KpnI and XbaI restriction sites. KpnI and XbaI restriction sites are highlighted 

in light blue and the start and stop codons are highlighted in green and red respectively. Nucleotides 

changed by targeted mutagenesis are highlighted in yellow. 

 

Figure A3.4:: VSR-800 E.coli cells grown on LBA medium containing increasing amounts of 

fomesafen herbicide. (A) LBA medium. (B) LBA medium containing 10 mg/L fomesafen. (C) LBA 

medium containing 40 mg/L fomesafen. 

 

Figure A3.5: Partial SoPPO-1 sequence revealed through 5‟ RACE PCR. Highlighted in light blue is 

the partial NAD(P)-binding Rossmann-like domain. Highlighted in yellow are the SoPPO1 GSP 1 and 

SoPPO1 GSP 2 primer sites, which were used in 5‟ RACE PCR. Highlighted in red is the stop codon of 

the partial SoPPO-1 sequence.   

TCTAGAGGATCTACTAGTCATATCGATAGAATTCCGGTCTACAAGTCAGGCAGTCATGACAACAACTCCCATCGCCAATCATCCTAATATTTTCACTCA

CCAGTCGTCGTCATCGCCATTGGCATTCTTAAACCGTACGAGTTTCATCCCTTTCTCTTCAATCTCCAAGCGCAATAGTGTCAATTGCAATGGCTGGAG

AACACGATGCTCCGTTGCCAAAGATTACACAGTTCCTTCCTCAGCGGTCGACGGCGGACCCGCCGCGGAGCTGGACTGTGTTATAGTTGGAGCAGGAA

TTAGTGGCCTCTGCATTGCGCAGGTGATGTCCGCTAATTACCCCAATTTGATGGTAACCGAGGCGAGAGATCGTGCCGGTGGCAACATAACGACTGTG

GAAAGAGACGGCTATTTGTGGGAAGAAGGTCCCAACAGTTTCCAGCCGTCCGATCCTATGTTGACTATGGCAGTAGATTGTGGATTGAAGGATGATTT

GGTGTTGGGAGATCCTAATGCGCCCCGTTTCGTTTTGTGGAAGGGTAAATTAAGGCCCGTCCCCTCAAAACTCACTGATCTTCCCTTTTTTGATTTGATG

AGCATTCCTGGCAAGTTGAGAGCTGGTTTTGGTGCCATTGGCCTCCGCCCTTCACCTCCAGGTCATGAGGAATCAGTTGAGCAGTTCGTGCGTCGTAAT

CTTGGTGGCGAAGTCTTTGAACGCTTGATAGAACCATTTTGTTCTGGTGTTTATGCTGGTGATCCCTCAAAACTGAGTATGAAAGCAGCATTTGGGAAA

GTTTGGAAGTTGGAAGAAACTGGTGGTAGCATTATTGGAGGAACCTTTAAAGCAATAAAGGAGAGATCCAGTACACCTAAAGCGCCCCGCGATCCGC

GTTTACCTAAACCAAAAGGACAGACAGTTGGATCATTCAGGAAGGGTCTCAGAGTGCTGCCGGATGCAATCAGTGCAAGATTGGGAAGCAAATTAAA

ACTATCATGGAAGCTTCTCAGCATTACTAAGTCAGAAAAAGGAGGATATCACTTGACATACGAGACACCAGAAGGAGTAGTTTCTCTTCAAAGTCGAA

GCATTGTCATGACTGTGCCATCCTATGTAGCAAGCAACATATTACGTCCTCTTTCGGTTGCCGCAGCAGATGCACTTTCAAATTTCTACTATCCCCCAGT

TGGAGCAGTCACAATTTCATATCCTCAAGAAGCTATTCGTGATGAGCGTCTGGTTGATGGTGAACTAAAGGGATTTGGGCAGTTGCATCCACGTACAC

AGGGAGTGGAAACACTAGGAACGATATATAGTTCATCACTCTTCCCTAACCGTGCCCCAAAAGGTCGGGTGCTACTCTTGAACATGATTGGAGGAGCA

AAAAATCCTGAAATTTTGTCTAAGACGGAGAGCCAACTTGTGGAAGTAGTTGATCGTGACCTCAGAAAAATGCTTATAAAACCCAAAGCTCAAGATCC

TCTTGTTGTGGGTGTGCGAGTATGGCCACAAGCTATCCCACAGTTTTTGGTTGGTCATCTGGATACGCTAAGTACTGCAAAAGCTGCTATGAATGATAA

TGGGCTTGAAGGGCTGTTTCTTGGGGGTAATTATGTGTCAGGTGTAGCATTGGGGAGGTGTGTTGAAGGTGCTTATGAAGTTGCATCCGAGGTAACAG

GATTTCTGTCTCGGTATACATACAAATGAAACCTGTGTTGGGGGTAGGAATTCGATCGGATCCCCGGGTACC 

GAGCGCCCCGAGGAAGGGTACCTCTGGGAGGAGGGTCCCAACAGCTTCCAGCCATCCGACCCCGTTCTCACCATGGCTGTGGACAGCGGGCTGAAGG

ATGACTTGGTTTTTGGGGACCCCAACGCGCCGCGGTTCGTGCTGTGGGAGGGGAAGCTGAGGCCCGTGCCATCCAAGCCCGCCGACCTCCCGTTCTTC

GATCTCATGAGCATCCCTGGCAAGCTTAGGGCCGGTCTCGGCGCGCTTGGCATCCGCCCGCCTCCTCCAGGCCGCGAGGAGTCAGTGGAGGAGTTCGT

GCGCCGCAACCTCGGTGCTGAGGTCTTTGAGCGCCTCATTGAGCCTTTCTGCTCAGGTGTCTATGCTGGTGATCCTTCCAAGCTCAGTATGAAGGCTGC

ATTTGGGAAGGTGTGGCGGTTAGAAGAAGCTGGAGGTAGTATTATTGGTGGAACCATCAAGACAATTCAAGAGAGGGGCAAGAATCCGAAACCACTG

AGGGATCCCCGTCTTCCGAAGCCAAAAGGGCAGACAGTTGCGTCTTTCAGGAAGGGTCTTGCCATGCTTCCAAATGCTATCACATCGAGCTTGGGTAG

TAAAGTCAAACTATCATGGAAACTCACGAGCATTACAAAATCAGATGGCAAGGGATATGTTTTGGAGTATGAAACGCCAGAAGAGGTTGTTTCGGTG

CAGGCTAAAAGTGTTATCATGACCATTCCATCATATGTTGCTAGCAACATTTTGCGTCCACTTTCAAGCGATGCTGCAGATGCTCTATCAAAATTCTAT

TATCCACCAGTTGCTGCTGTAACTGTTTCGTATCCAAAGGAAGCAATTAGAAAAGAATGCTTAATTGATGGGGAGCTCCAGGGTTTTGGCCAATTACA

TCCACGTAGTCAAGGAGTTGAGACATTAGGAACAATATACAGCTCATCACTCTTTCCAAATCGTGCTCCTGCTGGTAGGGTGTTACTTCTAAATTACAT

AGGAGGTGCTACAAACACAGGAATTGTTTCCAAGACTGAAAGTGAGCTGGTAGAAGCAGTTGACCGTGACCTCCGGAAAATGCTTATAAATCCTACA

GCAGTGGACCCTTTAGTCCTTGGTGTCCGAGTTTGGCCACAAGCCATACCTCAATTCCTGGTAGGACATCTTGATCTTTTGGAGGCCGCAAAATCTGCC

CTGGACCGAGGTGGCTACGATGGGCTGTTCCTAGGAGGGAACTATGTTGCAGGAGTTGCCCTAGGCAGATGCGTTGAGGGCGCATATGAGAGTGCCG

CACAAATATATGACTTCTTGACCAAGTATGCCTACAAGTGATGGAAGAAGTGGAGCGCTGCTTGTTAATTGTTATGTTGCATAGATGAGGTGAGACCA

GGAGTAGTAAAAGGCATTACGAGTATTTTTCATTCTTATTTTGTAAATTGCACTTCTGTTTTTTTTTCCTGTCAGTAATTAGTTAGATTTTAGTTCTGTAG

GAGATTGTTGTGTTCACTGCCCTGCAAAAGAATTTTTATTTTGCATTCGTTTATGAGAGCTGTGCAGACTTATGTAACGTTTTACTGTAAGTATCAACAA
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4.1  Genetic modification of sugarcane 

Methods for genetically transforming sugarcane were developed in the early 1990‟s (Franks 

and Birch, 1991; Bower and Birch, 1992; Bower et al., 1996). Further advancements in 

improving agricultural traits in sugarcane stem from this work, such as improving insect 

resistance, increased drought tolerance and increased sugar accumulation (Wu and Birch, 

2007; Groenewald and Botha, 2008; Dal-Bianco et al., 2012; Arruda, 2012). Also, new 

selection systems have been developed for use in creating genetically enhanced sugarcane 

(Negrotto et al., 2000; Joyce et al., 2010; Van der Vyver et al., 2013). However, the list of 

available selectable marker systems for sugarcane is still considered to be small. Increasing 

the range of selections systems available for its transformation would allow for the expression 

of increased numbers of genes in sugarcane, conferring more than one trait in a single line 

(Dal-Bianco et al., 2012; Arruda, 2012; Van der Vyver et al., 2013). An additional aim is to 

utilize sequences that are endogenous in sugarcane when developing new selection systems 

and genetically modifying sugarcane. The use of cisgenic strategies in future studies might 

appeal more to public consumers and ease regulation restrictions (Jacobsen and Schouten, 

2009). Recent events have already shown that regulations on cisgenic modified crops might 

be more relaxed than those applying to transgenic crops. Already, the European Food Safety 

Authority (EFSA) delivered a scientific opinion to the European Commission stating that 

similar hazards can be associated with cisgenic and conventionally bred plants, while novel 

hazards can be associated with transgenic plants (Hunter, 2014). More relaxed regulations 

exist in the USA, where the Environmental Protection Agency has proposed to exempt 

cisgenic plants from GMO regulations, although only in the context of protecting against 

pests (Waltz, 2011; Hunter, 2014).  

4.2 Trehalose-6-phosphate synthesis and its effects on sucrose 

accumulation 

The work described in chapter 2 was aimed at trying to understand the relation between T6P 

levels and sucrose accumulation in sugarcane. The otsA and otsB genes from E. coli were 

overexpressed in sugarcane, in order to make initial observations on the effect T6P synthesis 

has on sucrose accumulation in sugarcane. Nine transgenic otsA and three otsB sugarcane 

lines were created. All nine otsA lines showed transgene expression, ranging from very low 

relative expression in otsA line 11 to very high relative expression levels in otsA line 7. In 
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contrast, only two of the tree otsB transgenic lines showed transgene expression, with very 

little variation in the relative expression levels between the two lines. 

Six out of the nine otsA overexpressing lines showed a decrease in sucrose levels, four of 

which were significantly lower than the non-transgenic control line, while one line showed a 

significant increase in sucrose levels. Furthermore, eight of the nine otsA overexpressing lines 

showed increases in glucose levels of which four were significant increases. Two of these, 

namely otsA 7 and otsA 12 showed significantly increased glucose, but contrasted in sucrose 

accumulation, where otsA 12 was shown to have significant increased and otsA 7 decreased 

sucrose levels. Sq-RT-PCR results showed relatively higher transgene expression occurred in 

otsA 7 than otsA 12, suggesting that the level of expression might determine alterations in 

sucrose content. Future analysis of mature cane will, however, have to include more 

biological and technical replicates to obtain a statistically sound dataset from where 

conclusive results can be obtained and consequences of transgene overexpression can be pin 

pointed regarding relevant enzymatic levels, carbohydrate levels and transgene expression 

levels. 

In two otsB overexpressing lines, the first line had a slight increase in sucrose and 

significantly increased glucose and fructose. However, the second otsB overexpression line 

had significantly decreased sucrose levels with non-significant increases in glucose and 

fructose. To make sense of these inconsistent results, measurements will have to be repeated 

to decrease any statistical errors and determining transgenic expression with more 

quantitative methods might yield a better correlation between transgene expression and 

sucrose levels in sugarcane. All these measurements were performed on young leaf tissue and 

different sugar accumulation will occur in mature internode tissue (Bosch, 2005). Future 

studies will involve measurements of soluble sugars, TPS and TPP enzymatic levels as well 

as measurements of trehalose and T6P levels in mature internode tissue. Also, more 

quantitative measurements of expression could provide better correlation of the effects of 

transgenic overexpression on the accumulation of these sugars.  

The second part of chapter 2 describes the isolation of three functional SoTPS isoforms, since 

a functional SoTPS can be used to study TPS activity in sugarcane. An initial fragment was 

isolated using 5‟ RACE. Three putative SoTPS isoforms were then isolated in a PCR reaction, 

using primers based on the 5‟ RACE results. These three isoforms, named SoTPSa, SoTPSb 

and SoTPSc, were transformed in a yeast complementation assay into tps1∆ yeast to 

determine whether these isoforms were functional. All three were shown to be functional. 
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SoTPSa shows high similarity to TPS sequences from monocotyledonous plant species, 

except for an in-frame 75 bp insert absent from other known monocot TPS sequences. 

Similarly, SoTPSc shows high similarity to TPS sequences from monocotyledonous plant 

species, but it contains a 126 amino acid long N terminal truncation. This truncated segment 

removes one of the thirteen amino acids found within the active site of the TPS domain 

(Marchler-Bauer et al., 2013). The SoTPSa and SoTPSc isoforms indicate the occurrence 

either of alternative splicing, or production by the different genome copies within sugarcane. 

Future enzymatic assays will determine the effect that these alterations have on the kinetics of 

TPS activity.  

Another consideration is that these isoforms can be used to make constructs to either 

overexpress or silence TPS synthesis in sugarcane, so as to study their effects on sucrose 

accumulation. otsB overexpression was hypothesized to decrease T6P levels, but it could also 

have caused a flux in T6P and trehalose synthesis. Silencing of endogenous TPS genes in 

sugarcane would cease or lower T6P synthesis, without flux occurring in trehalose synthesis. 

Use of these genes in sugarcane would also be a step forward toward using a cisgenic strategy 

to potentially increase sucrose concentrations in sugarcane.  

4.3 Protoporphyrinogen oxidase as a selectable marker system 

Work detailed in this chapter aimed to create a new in vitro alternative selection system for 

future genetic transformations of sugarcane. Firstly a transgenic strategy was attempted by 

using a mutagenized tobacco PPO-1 gene as a selectable marker. This strategy was based on 

work done by Li et al., (2003) where a mutagenized PPO-1 gene was used as a selectable 

marker in maize. Transgenic sugarcane callus containing the mutagenized tobacco PPO-1 

gene were incapable of regeneration on medium containing the fomesafen herbicide.  

In future attempts, targeting of the protein to the chloroplast might aid in regeneration of 

transgenic sugarcane callus on medium containing herbicide. Specifically, fusing a 

chloroplast transit peptide from a closely related monocotyledonous species has been 

considered for use in creating a new transformation construct. Random mutations were 

furthermore introduced into the tobacco PPO-1 gene to try and identify novel mutations that 

could enable the tobacco PPO-1 gene to induce herbicide resistance in sugarcane. Work was 

halted at the screening phase, since the E. coli VSR800 mutant did not possess the advertised 
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mutant phenotype. Numerous attempts to locate alternative mutant E. coli stains that can 

complement the hemG mutations were unsuccessful.  

A cisgenic strategy was also considered with the aim of isolating a sugarcane PPO-1 gene to 

be developed in the future as an endogenous plant selection gene. Once a sugarcane PPO-1 

gene is isolated this could be manipulated into a selectable marker for in vitro selection 

regimes in sugarcane. 5‟ RACE was used in attempts to isolate a full length SoPPO-1 

sequence, but was only successful in adding more nucleotides to the known partial sequence. 

PCR can be repeated in the future with new primers based on either the sorghum or maize 

PPO-1 sequences, since high similarity was displayed between the extended sugarcane partial 

PPO-1 fragment and the sorghum PPO-1 and maize PPO-1 genes. 
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