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SUMMARY 
 
The distinctive varietal flavour of wines is a combination of absolute and relative 
concentrations of chemical compounds. Volatile compounds are responsible for the 
odour of wine and non-volatiles cause the sensation of flavour. Accompanying these 
senses, a third, tactile, sense of ‘mouth-feel’ is recognizable. This forms the complete 
organoleptic quality of wine. 
 Several hundred different compounds are simultaneously responsible for the 
odour release in wine, and since there is no real character impact compound, the 
aroma of wine can be described as a delicate balance of all these compounds. One 
of the most important groups of volatiles is the monoterpenes, which play a role in 
both aroma and flavour. This is especially significant for the Muscat varieties, but 
these flavour compounds are also present in other non-muscat grape varieties, 
where they supplement the varietal aroma. Monoterpenes occur in wine as free, 
volatile and odorous molecules, as well as flavourless non-volatile glycosidic 
complexes. The latter slowly releases monoterpenes by acidic hydrolysis, but the 
impact on varietal aroma is considered insufficient for wines that are consumed 
young. It is therefore important to supplement the release mechanism, in order to 
enhance the varietal aroma of the wine. The enzymatic hydrolysis mechanism 
functions in two successive steps: firstly, depending on the precursor, the glycosidic 
linkage is cleaved by α-L-arabinofuranosidase, α-L-rhamnosidase, β-D-xylosidase or 
β-D-apiosidase. The second step involves the liberation of the monoterpene alcohol 
by a β-glucosidase. This enzymatic hydrolysis does not influence the intrinsic 
aromatic characteristics of the wine, as opposed to acid hydrolysis. 
 Pectolytic enzymes play an important role in cell elongation, softening of tissue 
and decomposition of plant material. These enzymes are used to improve juice 
yields, release colour and flavour compounds from grape skins, as well as improve 
clarification and filterability. Pectolytic enzymes work synergistically to break down 
pectins in wine. Protopectinase produce water-soluble and highly polymerised pectin 
substances from protopectin, it acts on non-methylated galacturonic acid units. Pectin 
methylesterase split methyl ester groups from the polygalacturonic chain. 
Polygalacturonase break down the glycosidic links between galacturonic acid units. 
Pectin and pectate lyases have a β-eliminative attack on the chain and it results in 
the formation of a double bond between C4 and C5 in the terminal residues. 
 From the above it can be seen that enzymes play a pivotal role in the 
winemaking process. Unfortunately, in winemaking a lot of factors can influence the 
effects of enzymes. One possible factor in the wine medium is the presence of acid-
protease, from yeast and/or fungal origin. This type of enzyme utilizes other enzymes 
as substrates and renders them useless. Pure enzyme preparations were used to 
study the interactions of a yeast acid-protease and a report activity (β-glucosidase) in 
vitro. A bottled wine and a buffer were used as in vitro conditions. Enzyme assays 
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were performed to determine the relative activity over a number of days. The results 
indicated that even though both enzymes showed activity in both the media, the 
yeast protease did not have any significantly affect on the report activity. 
Subsequently wine was made from Sauvignon blanc grapes, with varying enzyme 
preparation additions. Enzyme assays were performed during the fermentation; and 
chemical, as well as sensory analysis were done on the stabilized wine. The results 
confirmed that the yeast protease did not have any significant affect on the report 
activity in these conditions. The protease’s inability to affect the report activity seems 
unlikely due to the fact that it is active at a low pH range and has been suggested as 
the only protease to survive the fermentation process. It seems possible that a wine-
related factor, possibly ethanol, is responsible. Thus it seems that yeast protease 
does not threaten the use of commercial enzymes in the winemaking process in any 
significant way. 
 Future work would entail more detailed enzyme studies of interactions 
between protease, both from yeast and fungal origin, and other report activities in 
specified conditions. The degradation capability could be directed towards unwanted 
enzyme activities that cause oxidation and browning of the must. The 
characterization of interactions between protease and β-glucosidase activities may 
hold key to producing wines with enhanced aroma and colour potential, as well as 
the elimination of unwanted enzyme activities. 
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OPSOMMING 
 
Die herkenbare kultivar karakter van wyn is ‘n kombinasie van absolute en relatiewe 
konsentrasies van verskeie chemiese komponente. Vlugtige komponente is 
verantwoordelik vir die geur, of aroma, van wyn en die nie-vlugtige komponente 
veroorsaak die sensasie van smaak. ‘n Derde, fisiese sensasie, die ‘mondgevoel’, is 
ook herkenbaar. Dit vorm die omvattende organoleptiese kwaliteit van die wyn. 
 ‘n Paar honderd verskillende komponente is gelyktydig verantwoordelik vir die 
aroma vrystelling in wyn en omdat daar geen werklike karakter ‘impak’ komponent is 
nie, kan die aroma van wyn beskryf word as ‘n delikate balans van al die betrokke 
komponente. Een van die mees belangrike groepe vlugtige komponente is die 
monoterpene wat ‘n rol speel in beide aroma en smaak. Dit is veral belangrik by 
Muskaat kultivars, maar hierdie aroma komponente is ook teenwoordig in nie-
muskaat druif kultivars, waar hulle bydra tot die kultivar karakter en aroma. 
Monoterpene kom in wyn voor as vry, vlugtige en aromatiese molekules en in 
geurlose, nie-vlugtige glikosidies-gebonde komplekse. Die gebonde vorm word stadig 
vrygestel deur ‘n suurhidrolise, maar dit word as onvoldoende beskou vir wyne wat 
vroeg gedrink word. Dit is dus belangrik dat die vrystelling van geurstowwe verhoog 
word om die kultivar karakter van die wyn te versterk. Die ensiematiese hidrolise 
proses behels twee opeenvolgende stappe: eerstens, afhangende van die aard van 
die voorloper, word die glikosidiese verbinding deur α-L-arabinofuranosidase, α-L-
ramnosidase, β-D-xilosidase, of β-D-apiosidase gebreek. In die tweede stap word die 
monoterpeen-alkohol deur β-glukosidase vrygestel. Hierdie ensiematiese afbraak 
proses verander nie die intrinsieke aromatiese kenmerke van die wyn, soos met 
suurhidrolise die geval is nie. 
 Pektolitiese ensieme speel ‘n fundamentele rol in selverlenging, sagwording en 
afbraak van plant materiaal. Hierdie ensieme word gebruik om sap opbrengs te 
verhoog, aroma en smaak komponente vry te stel uit die doppe, asook om 
sapverheldering en filtrasie te verbeter. Die pektolitiese ensieme werk op ‘n 
sinergistiese wyse om pektien in wyn af te breek. Protopektinase produseer water-
oplosbare en hoogs gepolimeriseerde pektien uit protopektien, slegs uit nie-
gemetileerde galakturoonsuur eenhede. Pektien metielesterase verwyder metiel-
ester groepe van die poligalakturoonsuurketting. Die glikosidiese bindings tussen 
galakturoonsuur eenhede word deur poligalakturonase afgebreek. Pektien- en 
pektaat-liase het ‘n β-eliminasie aanslag op die ketting en as gevolg daarvan word 
dubbelbindings tussen C4 en C5 in die terminale residue gevorm. 
 Vanuit bogenoemde is dit dus duidelik dat ensieme ‘n kardinale rol speel in die 
wynbereidingsproses. Ongelukkig is daar ‘n verskeidenhied van faktore wat die 
werking van ensieme in die wynbereidingsproses kan beïnvloed. Een moontlike 
faktor is die teenwoordigheid van ‘n suur-protease, van fungisidiese en/of gis 
oorsprong, in die wynmedium, omdat dit ander ensieme as substraat kan benut en 
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degradeer. Suiwer ensiem preparate is gebruik om die ensiem interaksie tussen ‘n 
gis suur-protease en ‘n verslag aktiwiteit (β-glukosidase) in vitro te ondersoek. ‘n 
Gebotteleerde wyn en ‘n buffer is gebruik om die in vitro kondisies na te boots. 
Relatiewe ensiem aktiwiteit is ontleed oor ‘n aantal dae. Beide die ensieme het 
aktiwiteit getoon in die media, maar gis protease het geen statisties beduidende 
invloed gehad op die aktiwiteit van die verslag ensiem nie. Daaropvolgend is wyn 
berei van Sauvignon blanc druiwe, met verskillende ensiempreparaat toevoegings. 
Die ensiemaktiwiteit is deurlopend tydens fermentasie gemeet. Na afloop van 
stabilisasie is chemiese, sowel as sensoriese ontledings op die wyn gedoen. Die 
resultate het bevestig dat gis protease, onder hierdie kondisies, geen beduidende 
invloed op die verslag aktiwiteit gehad het nie. Die protease se onvermoë om die 
verslag aktiwiteit beduidend te beinvloed blyk onwaarskynlik aangesien die suur-
protease aktief is by lae pH vlakke en dit as die enigste protease voorgestel is wat 
die fermentasie proses kan oorleef. Dit blyk asof ‘n wyn-verwante faktor, moontlik 
etanol, hiervoor verantwoordelik kan wees. Dus hou protease geen gevaar in vir die 
gebruik van kommersiële ensieme in wynbereiding nie. 
 Navorsing kan in die toekoms fokus op meer gedetailleerde ensiem interaksie 
studies tussen protease en ander ensiem aktiwiteite, in gespesifiseerde kondisies. 
Die degradasie kapasiteit kan moontlik aangewend word om ongewenste ensiem 
aktiwiteite, wat byvoorbeeld oksidasie en verbruining veroorsaak, te verminder. Die 
karakterisering van die interaksies tussen protease en β-glukosidase kan dus die 
sleutel wees tot die produksie van wyne met verhoogde aroma potensiaal, asook die 
eliminasie van ongewenste ensiematiese aktiwiteite. 
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PREFACE 
 
This thesis is presented as a compilation of 4 chapters.  Each chapter is introduced 
separately and is written according to the style of The South African Journal of 
Enology and Viticulture to which Chapter 3 will be submitted for publication. 
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Chapter 2  Literature Review 
  Biocatalysts and Wine - A Review 
   
Chapter 3  Research Results 
  The Effect of Exogenous Protease on the Relative Enzyme Activity of 
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GENERAL INTRODUCTION 
AND  

PROJECT AIMS   



 

CHAPTER 1: GENERAL INTRODUCTION AND 
PROJECT AIMS 

1.1 ENZYMES IN WINE PRODUCTION 

Until the early 17th century, wine was considered to be the only wholesome, readily 

storable product, and this accounted for the rapid global improvement in wine 

fermentation technology. Today, wine is consumed as a first choice lifestyle product 

of moderation. It has become synonymous with culture and style; and plays a major 

role in the economies of many nations. Annually about 26 billion litres of wine are 

produced from about 8 million hectares of vineyards across the world (Cape Wine 

Academy, 2001). There is, however, a decline in consumption and a steady rise in 

production. This has lead to a current worldwide oversupply of 15-20% (Cape Wine 

Academy, 2001) which creates fierce competition in the market place. Another 

determining factor is the shift in consumer preference from basic commodity wine to 

premium and ultra-premium wines (Pretorius, 2000). These are driving forces for the 

transformation of the wine industry from a production-orientated industry to a market-

driven industry (Cape Wine Academy, 2001). It has resulted in increased diversity 

and innovation, much to the benefit of the consumer. Wine quality is defined as 

“sustainable customer and consumer satisfaction” and for this reason there is an 

urgent demand for further improvements of wine quality, purity, uniqueness and 

diversity (Pretorius, 2000). Fundamental innovations in various aspects of the 

winemaking process are revolutionizing the wine industry, while the market pull and 

technology push continue to challenge the tension between tradition and innovation. 

Now there are new, and for the moment controversial, ways of innovation – genetic 

engineering (Stidwell et al., 2001), protein engineering (Van den Burg & Eijsink, 

2002) and the use of enzyme kinetics (Van Rensburg & Pretorius, 2000). This study 

will focus on the latter. 

Enzyme kinetics is of great importance during grape maturation (Rapp & 

Mandery, 1986) when the potential aroma profile of the “wine” is established, and is 

sensitive to damage. During the fermentation stage enzymes are of importance in the 

following areas: partial release of potential flavour and aromas, enhancement of 

colour and clarification. Enzymes also play an important role in the natural 

stabilization of the wine before bottling. 
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It has become apparent that the release of monoterpene alcohols from their glycones 

could increase the aroma of wine to a great extent (Ribéreau-Gayon et al., 1975; 

Marais, 1983; Rapp & Mandery, 1986); therefore this subject has become a focal 

point on wine-related research. Pectolytic enzymes are used to improve juice yields, 

release of colour and flavour compounds from the grape skins, as well as improve 

clarification and filterability (Blanco et al., 1994; Gainvors et al., 1994; Kotoujansky, 

1987). Cellulases consisting of endoglucanases, exoglucanases and cellobiases act 

in a synergistic manner to increase clarification and prevent cloudiness in wine 

(Eriksson & Wood, 1985). It is used in conjunction with pectolytic enzymes to improve 

filterability and stabilization of wine against haziness (Van Rensburg & Pretorius, 

2000) and other visual problems caused by Botrytis cinerea infections (Verhoeff & 

Warren, 1972). The development of protein haze in white wine is considered the next 

most common physical instability after the precipitation of potassium bitartrate and 

enzymes could possibly be used in future to address this problem. 

There is however, an enzyme that could destroy all the possible benefits of 

other enzymes in wine. Yeast and fungal acid protease uses other enzymes (protein-

based) as substrates and renders them useless (Aschteter & Wolf, 1985; Babayan & 

Bezrukov, 1985; Behalova & Beran, 1979). This will limit the efficiency of any enzyme 

application in the wine making process, as well as having a major economic impact 

on the production costs. Therefore it is of great importance that this enzyme’s kinetics 

are well documented and understood, in order to limit its possible devastating effects 

and possibly apply it to reduce haze formation and protein instability in wine. 

 

 

1.2 ENZYMES IN INDUSTRIAL PROCESSES 

Many chemical transformation processes used in various industries have inherent 

drawbacks from a commercial and environmental point of view. Processes that 

incorporate high temperatures and/or high pressures to drive the reaction, may lead 

to high energy costs and require large volumes of cooling water downstream 

(Anonymous, 2000). Harsh and hazardous processes involving high temperatures, 

pressures, acidity or alkalinity need high capital investment, specially designed 

equipment and control systems; and the process may result in poor yields. There 
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may be production of unwanted or harmful by-products that are costly to dispose of 

and may have a negative impact on the environment (Anonymous, 2000). 

These drawbacks can be virtually eliminated by using enzymes. Enzyme 

reactions are carried out under mild conditions and they are highly specific (Van 

Rensburg & Pretorius, 2000). Their working involves very fast reaction rates and is 

carried out by numerous enzymes with different roles (Underkofler, 1976). As 

industrial enzymes originate from biological systems, they contribute to sustainable 

development through being isolated from micro-organisms, in fermentations using 

primarily renewable sources (Anonymous, 1999). In addition only small amounts of 

the specific enzyme is required to carry out chemical reactions even on industrial 

scale (Pretorius, 1999). These preparations are available in both liquid and solid form 

and take up very little storing space. Developments in genetic and protein 

engineering have led to improvements in both stability and overall application of 

industrial enzymes. 

While the reactions catalysed by a single enzyme are relatively few, their 

numbers are high. This is due to their most important characteristic: specificity, which 

is the capacity of acting on one substance only or on a limited group of substances. 

There are various types and degrees of specificity: 

Chemical groups’ specificity: the enzyme breaks down only a specific chemical 

group or link; in turn such specificity can be absolute or relative. In the first instance a 

small modification of the molecule is sufficient to inactivate the enzyme; in the second 

one several similar substances can be acted upon (Van Rensburg & Pretorius, 2000). 

Specificity of substrate: the enzyme act on certain compounds and not on 

others which are also susceptible to undergo the same reaction (Van Rensburg & 

Pretorius, 2000). 

Enzymes have applications in both the food and non-food industries. The non-

food applications include textile finishing for silk, cotton, denim and wool; leather 

preparation; processing of pulp and paper, animal feed, oil and gas drilling, 

biopolymers and fuel alcohol. Table 1 presents a selection of enzymes currently used 

in industrial processes listed accordingly to class. 
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TABLE 1: Typical enzymes used in industrial processes. 

Class Industrial enzymes 

Oxidoreductases Peroxidases 
 Catalases 
 Glucose oxidases 
 Laccases 
  

Transferases Fructosyl-transferases 
 Glucosyl-transferases 
  

Hydrolases Amylases 
 Cellulases 
 Lipases 
 Pectinases 
 Proteases 
 Pullulanases 
  

Lyases Pectate lyases 
 Alpha-acetolactate decarboxylases 
  
Isomerases Glucose isomerases 
  

 

 

Applications in the food industry are common. Enzymes are used for sweetener 

production, sugar processing, baking, dairy product preparation, brewing, 

winemaking, distilling, protein hydrolysis for food processing and extractions from 

plant material. Hydrolases are used in the industry, especially in the manufacturing of 

food products. Here again, the possible advantages can be nullified if an acid 

protease was to destroy the required enzyme activity. 
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1.3 AIMS OF STUDY 

Saccharomyces cerevisiae is credited as the “wine yeast”, but it is in actual fact the 

enzymes, from whichever origin, that are responsible for the conversion of grape 

juice to the incredibly complex liquid called wine. These enzymes have many 

different functions within this biotransformation, and if correctly exploited, can be of 

an even greater influence in the winemaking process. It can enhance the natural 

flavour and aroma that are locked up in the non-volatile state, as well as reduce 

instabilities in the wine. Health benefits can also be increased through an enzymatic 

application. The primary aim of this study was to determine the interactions between 

a S. cerevisiae (yeast) acid protease and Aspergillus sp. β-glucosidase in wine-

related conditions. Characterizing and quantifying their interactions as expressed in 

two different in vitro conditions and during fermentation. 

We aimed to establish the nature and scale of any affects the protease might 

have on the report activity, by quantifying whether any significant increase/ decrease 

or synergy would occur in the relative enzyme activities. Also we aimed to establish 

how long the protease enzyme would show activity during fermentation conditions. 
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CHAPTER 2: BIOCATALYSTS AND WINE – 
A REVIEW 

2.1 PLANT CELL WALL AND GRAPE BERRY POLYSACCHARIDES 

The composition and structure of the grape berry cell walls are of interest because of 

their importance in wine production technology. Each berry consists of a thin, elastic 

epicarp (the skin), a juicy and fleshy mesocarp (the pulp) and an endocarp, which is 

indistinguishable from the pulp that surrounds the carpels containing the seeds 

(Jackson, 1994; Peynaud & Ribéreau-Gayon, 1971). The plant cell wall is the source 

of most of the polysaccharides found in wine. Although the flesh of the grape berry 

contributes greatly to the volume of juice yield, extraction is primarily from the berry 

skin. The alcohol-insoluble residues obtained from grape berry pulp consist of 

predominantly cellulose, hemicellulose, xyloglucan and the pectic polysaccharides 

homogalacturonan, rhamnogalacturonan I and rhamnogalacturonan II (Saulnier & 

Thibault, 1987; Nunan et al., 1997). 

The hemicellulose and pectin polysaccharides, as well as the aromatic 

compound lignin, interact with the cellulose fibrils, creating a rigid structure 

strengthening the plant cell wall (De Vries & Visser, 2001). They also form covalent 

cross-links, which are thought to be involved in limiting the cell growth and reducing 

cell wall biodegradability (De Vries & Visser, 2001). Two types of covalent cross-links 

have been identified between plant cell wall polysaccharides and lignin (Fry, 1986). 

The first is a linked formed by diferulic acid bridges, which occur between 

arabinoxylans, between pectin polymers and between lignin and xylan (Ishii, 1991; 

Bach Tuyet Lam et al., 1992; Oosterveld et al., 1997). The second type of cross link 

is formed between lignin and glucuronic acid attached to xylan (Imamura et al., 

1994). Recently indications of a third type of cross-linking have been reported 

involving a protein- and pH-dependant binding of pectin and glucaronoarabinoxylan 

to xyloglucan (Rizk et al., 2000). These polysaccharides all contribute to some extent 

to the composition and physical characteristics of the juice and thus have an 

influence on the final product (wine). Their structure and degradation is therefore of 

great importance to the winemaker. 
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2.1.1 Structural Features of Pectins 

Pectic substances are structural heteropolysaccharides and are the main 

constituents of middle lamella and primary cell walls of higher plants (Whitaker,1990). 

Pectin is responsible for lubricating or cementing cell walls, thus insuring integrity and 

coherence of plant tissue (Rombouts & Pilnik, 1978). They are also involved in plant 

host and pathogen interactions (Collmer & Keen, 1986). 

Pectic substances are divided into four main groups (American Chemical 

Society; Kertesz, 1987): protopectins, pectinic acids, pectins and pectic acids. 

Protopectin is considered the parent compound and is water-insoluble. The other 

three are totally or partially soluble in water. The reasons for insolubility is diverse 

and includes binding of polyvalents ions, secondary valency bonding between pectin 

and cellulose, salt-bridging carboxyl-groups of pectin and other cell wall constituents 

(Sakai, 1992). 

Pectic substances consist mainly of α-D-1,4-galacturonic acid molecules 

(pectate) or its methylated ester (pectin) (Pretorius, 1997) as is illustrated in Figure 1. 

In pectin more than 75% of the carboxyl-groups are methylated and free carboxyl-

groups occur in clusters along the chain. The primary chain consists of a “smooth” 

region (Figure 6) of α-1,4-D-galactoronic acid units and are β-1,2 and β-1,4-linked to 

rhamnose units with side chains. This gives the chain a “hairy” character. These 

“hairy” regions, as identified by Schols et al. (1996) consist of three different sub 

units. Subunit I is a xylogalacturonan (xga) (a galacturonan backbone substituted 

with xylose), subunit II is a short section of a rhamnogalacturonan backbone that has 

many long arabin, galactan, and/or arabinogalactan side chains, and subunit III is a 

rhamnogalacturonan composed of alternating rhamnose and galacturonic acid 

residues. It is suspected that subunit III connects the other two subunits. The basic 

linear chain is composed of the same repeating building unit; partially methylated α-

D-1,4-linked galactopyranosiduronic acid residues (Chesson, 1980). The fact that 

there are usually few rhamnose residues present means that long chains of 

galacturonan are linked together by rhamnose-rich blocks (Pilnik & Voragen, 1970). 

The galacturonosyl residues can be esterified with methanol and/or O-acetylated at 

C2 or C3 (McCready & McComb, 1954).  

In rhamnogalacturonan I, the D-galacturonic acid residues in the backbone is 

interrupted by α-1,2-linked L-rhamnose residues, to which long arabinan and 

galactan chains can be attached at O4. The arabinan chain consist of a main chain of 

 10



α-1,5-linked L-arabinose residues that can be substituted by α-1,3-linked L-arabinose 

residues and by feruloyl residues, attached terminally to O2 of the arabinose residues 

(Colquhoun et al., 1994; Guillon & Thibault, 1989). The galactan side chain contains 

a main chain of β-1,4-linked D-galactose residues, which can be substituted by 

feruloyl residues at O6 (Colquhoun et al., 1994; Guillon & Thibault, 1989). 

Rhamnogalacturonan I also contains acetyl groups ester-linked to O2 or O3 

galacturonic acid residues of the backbone (Scholz & Voragen, 1996; 1994). 

Rhamnogalacturonan II is a polysaccharide of approximately 30 monosaccharide 

units with a backbone of galacturonic acid residues that is substituted by four side 

chains. The structure of these side chains have been shown to contain several 

common sugars (Mazeau & Perez, 1998). 

Vidal et al. (2001) determined that there is three-fold more 

rhamnogalacturonan I and II in the skin tissue than in the pulp tissue. These results 

are consistent with the fact that more grape polysaccharides are present in red wines 

than in white wines. Rhamnogalacturonan II is also a prominent polysaccharide in 

juices that are obtained by enzymatic liquefaction of fruits and vegetables (Doco et 

al., 1997). Arabinogalactan proteins are a quantitively major grape polysaccharide in 

wines. They are released as soon as the berry is crushed and pressed (Vidal et al., 

2000). Rhamnogalacturonan I is a quantitively minor component in wine, even 

though its concentration in the cell wall is three fold higher than that of 

rhamnogalacturonan II. Homogalacturonan, which accounts for 80% of the pectic 

substances in grape berry cell walls, has been detected at the initial stage of berry 

processing and its concentration has been estimated at < 100 mg/L in the must (Vidal 

et al., 2000). 

 

  
FIGURE 1:  Examples of pectin models (Internet http://class.fst.ohio- 

state.edu/fst621/Gums/Imag16.gif , 2003). 
 

 11



Pectins are generally soluble in water, where they form viscous solutions, depending 

on the molecular weight and degree of esterification, pH and electrolyte 

concentration (Deuel & Stutz, 1958). Grape pectins together with other 

polysaccharides such as cellulose and hemicellulose greatly influence the 

clarification and stabilization of must and wine. They are responsible for turbidity, 

viscosity and filter blockages and are present at levels of 300 to 1000 mg/L (Van 

Rensburg & Pretorius, 2000). 

 

2.1.2 Structural Features of Cellulose 

Cellulose is the major polysaccharide in woody and fibrous plants and therefore is the 

most abundant polymer in the biosphere (Mathew & Van Holde, 1990). It constitutes 

40-50% of cell wall substances and this percentage is relatively constant between 

species (Coughlan, 1990). 

Cellulose is a polyalcohol of D-anhydroglucopyranose units linked by β-1,4-

glucosidic bonds (Lamed & Bayer, 1988). It consists of a linear polymer of glucose 

units, with each glucose unit rotated 180° with respect to it neighbour along the main 

axis of the chain (Coughlan, 1990). The size of a cellulose molecule can be given as 

a number of repeating units or the degree of polymerization (Figure 2). 

 

 
FIGURE 2:  The primary structure of cellulose (Cowling & Kirk, 1976). 
 

 

The degree of polymerization ranges from 30 to 15 000 units (Coughlan, 1990). The 

chains associate through interchain hydrogen bonds and van der Waals interactions 

to form microfibrils that aggregate to form insoluble fibers (Pretorius, 1997). There 

are areas of order, i.e. crystalline areas, and also less-ordered, or amorphous, areas 

within the cellulose fibers. Bohinski (1987) found that the basis of the water 
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insolubility is the high hydrogen bonding capacity between individual chains, which 

gives a degree of strength. 

Two major types of xyloglucans have been identified in the plant cell wall. 

According to De Vries & Visser (2001), xyloglucan type XXXG consists of repeating 

units of three β-1,4-linked D-glucopyranose residues, substituted with D-

xylopyranose via an α-1,6-linkage, which are separated by an unsubstituted glucose 

residue. In xyloglucan type XXGG, two xylose-substituted glucose residues are 

separated by two unsubstituted glucose residues. According to Hantus et al. (1997) 

and Vincken et al. (1997), the xylose in xyloglucan can be substituted with α-1,2-L-

fructopyranose-β-1,2-D-galactopyranose and α-1,2-L-galactopyranose-β-1,2-D-

galactopyranose disaccharides. L-Arabinofuranose has been detected α-1,2-linked to 

main-chain glucose residues or xylose side groups (Hisamatsu et al., 1992; Huisman 

et al., 2000). In addition, the xyloglucans can contain O-linked acetyl groups (Ring & 

Selvendran, 1981; York et al., 1996). The xyloglucans are strongly associated with 

cellulose and thus add to the structural integrity of the cell wall. 

Glucans are a major cell wall component in most yeast, according to Duffus et 

al. (1982), forming more than 50% of the cell wall. These can be divided into two 

groups. The first and major group have a linear chain of D-glucose units with β-1,3-

links containing β-1,6-branchings (Fleet & Phaff, 1981). The second group is a β-1,6-

glucan with β-1,3-linked lateral chains. These glucans are released into the wine 

during fermentation and cell autolysis. They prevent natural sedimentation of cloud 

particles and cause filter blockages (Van Rensburg & Pretorius, 2000). Fining agents 

such as bentonite can remove the cloudiness, but filter problems remain. Alcohol 

induces polymerization of glucans and thus aggravates the problem towards the end 

of fermentation (Van Rensburg & Pretorius, 2000). 

Botrytis cinerea is another cause of increased concentrations of glucans. 

Generally grape β-glucans consist of short areas of β-1,4-linked glucose moieties, 

interrupted by single β-1,3-linkages. In contrast the high molecular weight β-glucan 

produced by B. cinerea consists of a β-D-1,3-backbone with β-D-1,6-side chains 

(Dubourdieu et al., 1981; Villettaz et al., 1984), see Figure 3. 
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FIGURE 3:  The structure of the β-glucan of Botrytis cinerea (Dubourdieu et al., 1981). 
 

 

2.1.3 Structural Features of Hemicellulose 

After cellulose, hemicellulose is the most abundant renewable polysaccharide in 

nature. It is mostly found in plant cell walls. It can be classified according to chemical 

composition and structure and therefore has been divided into four main groups: 

xylans, which are the major group, mannans, galactans and arabinans (Puls & 

Schuseil, 1993). Hemicellulose may be linear or branched and have a degree of 

polymerization (DP) of up to 200 units. The monomers are linked by β-1,4-glycosidic 

bonds. The exception to this rule is D-galactopyranose residues, which are β-1,3-

linked. The predominant hemicellulose, β-1,4-xylan, has a high degree of 

polymerisation and is highly branched (Thomson, 1993). β-1,4-linked D-

xylopyranosyl residues carry acetyl, arabinosyl and glucanosyl as most common 

substituents. 

There are two types of hemicellulose, namely homopolysaccharides and 

heteropolysaccharides. Most hemicellulose in nature occurs as heteroglucans. The 

heteroglucans in hardwood can contain two or more of the following: D-galactose, D-

glucose, D-glucuronic acid, 4-O-methylglucuronic acid, D-mannose, D-xylose, L-

arabinose and D-galacturonic acid (Coughlan et al., 1993). In grasses hemicellulose 

is comprised of D-xylose, L-arabinose, D-glucose and D-galactose. This causes a 

great extent of different structures to be possible. Therefore unique combinations of 

hemicellulolytic enzymes are needed for effective and total degradation (Puls & 

Schusiel, 1993). 
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FIGURE 4:  Example of a typical xylan model (Macgregor & Greenwood, 1980). 

 

 

Xylan is composed of β-1,4-linked xylose units, see Figure 4, forming a xylan 

backbone with side chains connected to the backbone (Christov & Prior, 1993). In 

hardwoods and grasses, the main chain contains an O-acetyl group at the C2 and/or 

C3 positions, whereas in softwoods and annual plants it can be substituted with 

arabinose at the C3 position. 

According to De Vries & Visser (2001), the arabinose can be connected to the 

main chain via α-1,2- or α-1,3-linkages either as single residues or as short side 

chains. The side chain can also contain xylose β-1,2-linked to arabinose, and 

galactose, which can be either β-1,5-linked to arabinose or β-1,4-linked to xylose. 

Glucuronic acid and its 4-O-methyl ether are attached to the xylan backbone via an 

α-1,2-linkage, whereas aromatic residues (feruloyl and p-coumaroyl) residues have 

so far been found attached only to O5 of terminal arabinose residues (Saulnier et al., 

1995; Smith & Hartley, 1983; Wende & Fry, 1997). Also, xylan can be esterified with 

phenolic acids. The phenolic acids facilitate intermolecular cross-linking between 

xylan and lignin in the cell wall matrix (Strauss et al., 2003). 

Galactomannans and galactoglucomannans form a second group of 

hemicellulolytic structures present in plant cell walls. These compounds are the major 

hemicellulose fraction in gymnosperms (Aspinall, 1980). It consist of a backbone of 

β-1,4-linked D-mannose residues, which can be substituted by D-galactose residues 

via a β-1,6-linkage. Two different structures can be identified within this group of 

polysaccharides (Timell, 1967). Both consist of a β-1,4-linked D-mannose backbone, 

which can be substituted by α-1,6-linked D-galactose. The galactoglucomannan 

backbone also contain β-1,4-linked D-glucose residues. Water-soluble 

galactoglucomannan has higher galactose content than water-insoluble 

galactoglucomannan, and in addition contains acetyl residues attached to the main 

chain (Timell, 1967). 
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2.2 AROMATIC RESIDUES IN PLANT CELL WALL POLYSACCHARIDES 

Wine flavour is a very complex interaction of chemical compounds that are 

collectively responsible for specific and general wine aroma. Each contributes to a 

smaller or larger extent to the final organoleptic whole, as perceived by the 

consumer. The chemical composition of the wine can be roughly divided into two 

groups, volatile and non-volatile (Stidwell et al., 2001). The sensation of smell can be 

attributed to the volatile compounds, whereas the non-volatiles are responsible for 

the perception of taste or flavour. 

The basic taste sensations that are perceived are sourness, bitterness, 

sweetness and saltiness. The sugars, organic acids, polymeric phenols and minerals 

in the wine are responsible for these tastes (Stidwell et al., 2001). These compounds 

posses different organoleptic thresholds, but generally have to be present at levels of 

1% (in total) or more to have an influence on the flavour of the wine (Rapp & 

Mandery, 1986). One of the key differences between the two groups is that volatiles 

can be perceived at much lower concentrations than the non-volatiles (Gaudigni et 

al., 1963). 

The organoleptic properties of the wine are divided according to their origin. 

The first grouping namely ‘primary aroma’ originates from the grape itself, including 

any and all changes that the grapes themselves experience. Secondary aroma or 

‘fermentation aroma’ includes all stages of processing and fermentation (Stidwell et 

al., 2001). The ‘tertiary aroma’ is derived from maturation and is described as the 

bouquet of the wine (Ribéreau-Gayon, 1978). This can be achieved in wooden casks 

and/or the bottle. 

All of these influences play a role, to varying degrees, and directly influence 

the quality of the final product. It is important to begin the process of winemaking with 

a raw product of the highest quality, and then to maintain protective surroundings to 

produce a balanced final product. 

All grapes posses a generic grape aroma that forms the basis of the varietal 

aroma. The cultivar then also incorporates a distinctive aroma that sets it apart from 

other varieties. The basic generic aroma of wines consist of a combination of these 

cultivar-related compounds, as well as fermentation products such as esters, 

aldehydes, ketones, alcohols, phenols, organic sulphurs, and acetates (Stidwell et 

al., 2001). The absolute concentrations of the cultivar-related compounds vary 

between cultivars, but the relative distribution is similar for groups of cultivars, e.g. 
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Muscat varieties. The compounds that are responsible for distinctive aromas are 

often referred to as ‘impact odorants’. None of these are solely responsible for an 

aroma; it is rather a collective effort of chemically closely related compounds (Marais, 

1983). Here the absolute concentrations are important, as it will influence whether an 

aroma is just perceived or indeed recognized (Marais, 1983). But even more 

importantly is the influence of synergistic working, where compounds that are 

chemically related will enhance a certain aroma, without increased concentrations of 

the individual components (Ribéreau-Gayon et al., 1975). Thus even though some 

chemical compounds have distinctive smells, they are not the only ones responsible 

for that smell in the wine. 

The varietal flavour of grapes is mainly due to the profile of volatile secondary 

metabolites. There are a few compounds that are either present in such low 

concentrations that they cannot be detected in the grape must, or their water 

solubility is so poor it effectively prevents them from making an impact on the aroma 

of the must. These include aliphatic n-alkanes and some aromatic hydrocarbons like 

toluene, xilene and alkylbenzenes (Schreier et al., 1976; Stevens et al., 1957; 1967; 

1969). These compounds precipitate with the must slurry during wine making, 

rendering them even more insignificant. Very few esters are present in the Vitis 

vinifera species. According to Rapp & Knipser (1980) they are mainly acetate esters 

of short chain alcohols and acetates of some monoterpene alcohols. (E)-methyl 

geranoate are found in Muscat grape varieties (Schreier et al., 1976). 

According to Rapp & Mandery (1986) aldehydes play a significant role in the 

aroma of wine, as enzymatic processes that form C6-aldehydes and alcohols take 

over at the moment of grape cell destruction. These compounds are quantitively 

dominant, so the aroma of the grape must will be highly dependant on which of these 

compounds were present. 

Also present in the grape must is small fractions of ketones, with 2- and 3-n-

alkanones occurring in the highest concentrations. n-Alcohols with a chain length of 

four to 11 carbons compromise the alcohol fraction (Schreier, 1979). In general these 

alcohols do not significantly contribute to the aroma impact imparted by the alcohol 

fraction in the final product, but according to Welch et al. (1982) they could play a role 

in the varietal aroma of Muscadine grapes. This can be due to the presence of 

isoamyl alcohol, hexanol, benzaldehyde and 2-phenylethanol and its derivatives. 

Particularly the monoterpene alcohols are of great importance in the muscat-

type cultivars as well as the non-muscat types (Marais, 1983; Rapp & Mandery, 
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1986). These terpenols can be either in the free and volatile state (odorous), or in the 

flavourless, non-volatile state bound in glycosidic complexes, see Table 2. 

Glycosylesters of monoterpenes have been observed by Mulkens (1987). β-D-

glucose is the most common feature for glycosidically bounded volatiles (Williams, 

1993). The most common terpenols are geraniol, nerol and linalool (Günata et al., 

1988). Ribéreau-Gayon et al. (1975) found that linalool and geraniol are the most 

aromatic within the terpene fraction. The other monoterpenes generally have a much 

higher perception threshold than that of linalool, which is quite low at 100 μg/L, as 

illustrated in Table 2. 

 

TABLE 2: Properties of monoterpenoids-aroma and sensory threshold data in water (from 
Van Rensburg & Pretorius, 2000). 

Compound Aroma Sensory threshold 
(μg/L) 

Geraniol Floral, rose-like, citrus 132 

Citronellol Sweet, rose-like, citrus 100 

Linalool Floral, fresh, coriander 100 

Nerol Floral, fresh, green 400 
α-Terpineol Lilac 460 

 

 

The monoterpenes (Figure 5) do not only impart the muscat-like aromas, but 

range from spicy, smoky and peppery to grassy. It is possible to distinguish between 

different cultivars according to their unique terpene profiles (Stidwell et al., 2001). It 

contributes largely to the aroma of Muscat cultivars, such as Muscat d’Alexandrie, 

Mario Muscat, and Muscat de Fontignan. It can also support the varietal aromas of 

other cultivars, such as Chardonnay, Cape Riesling and Sauvignon blanc (Rapp & 

Mandery, 1986). Sauvignon blanc can, however, attribute most of its distinctive 

aroma to the methoxypirazines that imparts the grassy and vegetative odours. 

Oxides of these monoterpene alcohols are also common, especially those of 

linalool and nerol. Their perception thresholds are high (3000-5000 μg/L). However, 

although they would not be detected on their own, the perception threshold for the 

group is much lower than for a single component because of the synergistic effect of 

the constituents (Ribéreau-Gayon et al., 1975). 
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TABLE 3: The fractions of the three most common terpenols as they occur in the grape berry 
(Marais, 1985). 

 mg/100g berries % of each alcohol 

 Linalool Nerol Geraniol Linalool Nerol Geraniol 

Skins 14,2 15,2 100 26% 95,6% 94,6% 

Flesh 13,5 0,45 3,5 24% 2,7% 3,3% 

Juice 27,5 0,30 2,5 50% 1,7% 2,5% 

 

 

The monoterpene fraction is located mostly in the skin of the grape berry, and 

to a lesser degree in the juice, as is illustrated in Table 3. The distribution for different 

monoterpenes differ, with 95% of geraniol and nerol being concentrated in the skin of 

Muscat d’Alexandrie, whereas linalool is distributed almost equally between the juice, 

skin and cellular debris (Rapp & Mandery, 1986; Cordonnier & Bayonove, 1978; 

1981). 

The aroma profile does not change significantly during fermentation. This is 

due to the fact that the yeast cannot synthesize monoterpenes and are generally 

unable to break the glycosidic bounds. The most common changes that are observed 

are the conformation shifts and oxidation. Linalool can, however, undergo drastic 

changes during aging; it can be transformed to other terpenes, radically changing the 

relative amounts of individual compounds. Ribéreau-Gayon (1978) observed that it 

remains very difficult to predict the aroma changes during aging as it has been found 

that the perception threshold for monoterpenes in wine ranges from 100 μg/mL to 

700 μg/mL. Also an increase in certain compounds may have little or no effect (e.g. 

linalool oxide) while others like α-terpineol may have a negative influence (Güntert, 

1984; Rapp et al., 1985c). 

Ferulic acid can be linked to both hemicellulose (Smith & Hartley, 1983) and 

the pectin (Rombouts & Thibault, 1986) fractions of plant cell walls and is able to 

cross-link these polysaccharides to each other as well as to the aromatic polymeric 

compound lignin (Ishii, 1997; Lam et al., 1994). This cross-linked structure results in 

an increased rigidity of the cell wall. It has been suggested that these cross-links may 

play a role in preventing biodegradability of the plant cell wall by micro organisms.  
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Additionally, the antimicrobial effects of these aromatic compounds (Aziz et al., 

1998) may contribute to the plant defence mechanism against phytopathogenic micro 

organisms (De Vries & Visser, 2001). 

 

 
FIGURE 5:  Volatile monoterpenes found in wine. I – linalool, II – geraniol, III – nerol,  
IV – citronellol, V – α-terpineol, VI – hotrienol, VII & VIII – linalool oxides, IX – nerol 
oxide, X – rose oxide, XI& XII – ethers (Rapp & Mandery, 1986). 

 

 

2.3 THE AROMA OF WINE (FERMENTATION AND MATURATION) 

The secondary aroma or bouquet of wine is derived by all processing of the grape 

matter, but mainly the fermentation process. Tertiary aroma is derived from ageing of 

the wine in wooden containers (barrels) and/or in the bottle.  

According to Ribéreau-Gayon (1978) there can be distinguished between two 

types of bouquet: the bouquet of oxidation, due to the presence of aldehydes and 

acetyls, and the bouquet of reduction which is formed after bottle ageing. Fine red 

wines in particular benefit from storage in a wooden barrel. A large number of 

aromatic elements are extracted from the wood during storage (Puech, 1987; 

Singleton, 1987; Vivas & Glories, 1996), adding to the complexity of the wine without 
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diminishing the fruit aromas. The main compounds extracted from wooden barrels 

are flavonols and lactones (Puech, 1987; Singleton, 1987). 

Ribéreau-Gayon (1971) has shown increases in the levels of volatile acidity 

and ethyl acetate occur in wines during the ageing in wood barrels. The major acid 

contributing to volatile acidity is acetic acid (Onishi et al., 1977). Direct hydrolysis and 

extraction from wood contributes only a fraction, while alkaline and strong acid 

hydrolysis from hemicellulose is the major sources for the increase in acetic acid 

(Nishimura et al., 1983). 

Acetates are produced enzymatically in excess of their perception thresholds 

and contribute to the pleasant, fruity aroma of wine. According to Simpson (1978a) 

and Marais & Pool (1980) these are hydrolyzed during storage until their levels are 

similar to that of their corresponding acids and alcohols. In contrast to the decrease 

of acetate levels, the ethyl esters of diprotic acids show a constant increase caused 

by the chemical esterification during the course of ageing. 

According to Rapp et al. (1985a; b) various chemical reactions occur during 

bottle maturation which plays an important role in the change of the aroma of the 

wine. These chemical reactions can be divided into four groups: 

(i) changes in concentrations of esters (increase of ethyl esters, decrease of 

acetates); 

(ii) formation of compounds from carbohydrate degradation; 

(iii) formation of compounds from carotinoid degradation; 

(iv) changes in terpeniod concentration. 

 

Vitispirane (a compound resulting from carotinoid degradation) has a 

camphoraceous eucalyptus-like odour, increases during storage (Simpson, 1978b; 

Simpson et al., 1977) and can result in an off-flavour. A decrease in the levels of 

acetate esters during bottle ageing severely depletes the wine’s fruitiness. However, 

the levels of other compounds may increase, and not always with pleasant results. 

1,1,6-trimethyldihydronaphtalene (TDN), a hydrocarbon arising from carotinoid 

degradation, causes a petrol-like character in older wines, especially in the Riesling 

cultivar (Stidwell et al., 2001). Damascenone is another product of carotene 

degradation, but shows a decline in concentration during storage (Güntert, 1984). 

Furane derivatives are examples of carbohydrate degradation. Furfural and ethyl 

furoate are formed in young wines, and furfural amounts increase during wine 

storage (Rapp et al., 1985c). 
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Some of the monoterpenes undergo drastic changes during wine maturation. 

Linalool is transformed to other terpene compounds, with the main reaction occurring 

via α-terpineol to 1,8-terpin, a compound which is only formed during wine ageing.  

The reactions that take place can be summarized as follows: 

(i) a decrease in monoterpene alcohols, like linalool, geraniol and citronellol, 

(ii) an increase in: linalool oxides, nerol oxide hotrienol, hydroxylinalool and 

hydroxycitronellol; 

(iii) formation: 2,6,6-trimethyl-2-vinyl-tetrahydropyran, the anhydrolinalool 

oxides, 2,2-dimethyl-5-(1-methylpropyl)-tetrahydrofuran and cis-1,8-

menthandiol (Hennig & Villforth, 1942; Buttery et al., 1971). 

 

Changes in the average concentration of terpenes have a dramatic effect on the 

aroma profile of the wine. For example, it is estimated that linalool decreases to 10% 

of its original amount after 10 years of storage. If it estimated that an un-aged wine 

has an average of 400 μg/L linalool, it is clear that within a few years the 

concentration would be well below the perception threshold for this compound 

(Güntert, 1984; Rapp et al., 1985b). An increase in α-terpineol could have a negative 

effect on the maturing wine’s aroma profile. This problem occurs mainly in white 

wines, as monoterpenes do not significantly contribute to the flavour of red wines. 

 

 

2.4 BREAKDOWN OF POLYSACCHARIDES BY BIOCATALYSTS 

The reduction in the molecular weight of a polymer saccharide is called 

polysaccharide degradation. According to Gowariker et al. (1986) this can be induced 

by four different types of mechanisms: chemical (acid or alkali), physical (thermal), 

microbial and enzymatic degradation. All of these have oenological and ecological 

advantages and disadvantages. Hydrolysis by acids and alkali result in toxic by-

products which are expensive to treat. Opposite to this mechanism, hydrolysis by 

naturally occurring microbial populations is inexpensive, extremely stable and does 

not cause pollution problems (Kubicek et al., 1993; Pretorius, 1997).  

Enzymes originate from a multitude of habitats. Grapes produce enzymes, as 

well as yeasts and other microbes (such as fungi and bacteria) associated with 

vineyards and cellar equipment (Van Rensburg & Pretorius, 2000). Certainly the most 
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noteworthy fact about enzymes is their specificity. They can act on only one or a 

limited number of substances, recognising a specific chemical group (Uhlig, 1998). 

Another advantage is the ability to carry out single-step or multi-step transformations 

of organic compounds that are not easily accomplished by conventional methods 

(Strauss et al., 2003). This as well as their activity levels are poorly understood, but is 

still of greatest importance in the fermentation process, see Table 4. 

Hydrolytic enzymes have to be secreted or expressed on the cell surface 

because high molecular weight oligomers are unable to enter microbial cells (Warren, 

1996). In eukaryotes, the enzymes secretary pathway starts from the endoplasmic 

reticulum and moves through the Golgi bodies and vesicles to the membrane 

(Kubicek et al., 1993), where it stays confined to the microbe’s cell surface in 

eukaryotes and prokaryotes or is secreted into the growth media (Biely, 1993). 

There are four major areas where enzymes are of particular use to improve the 

winemaking process:  

(i) juice clarification, must processing, colour extraction (pectinases, 

glucanases, xylanases, protease); 

(ii) reduction of ethylcarbamate formation (ureases); 

(iv) release of varietal aromas from the precursor compounds (glucosidases); 

(v) reducing alcohol content (glucose oxidases). 
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TABLE 4: Enzymes derived from grapes and wine associated microbes involved in 
winemaking (adapted from Van Rensburg & Pretorius, 2000). 

Enzyme Remarks 

Grapes (Vitis vinifera)  

Glycosidases Hydrolyse sugar conjugates of tertiary alcohols; inhibited by glucose; 
optimum pH 5-6 

Protopectinases Produce water-soluble, highly polymerized pectin substances from 
protopectins 

Pectin methylesterases Split methyl ester groups of polygalacturonic acids, release methanol, 
convert pectin to pectate; thermo-stable; opt. pH 7-8 

Polygalacturonases Hydrolyse α-D-1,4-glycosidic bonds adjacent to free carboxyl groups 
in low methylated pectins and pectate; optimum pH 4-5 

Pectin lyases Depolymerise highly esterified pectins 

Proteases Hydrolyses peptide bonds between amino acid residues of proteins; 
inhibited by ethanol; thermo stable; optimum pH 2 

Peroxidases Oxidation metabolism of phenolic compounds during grape 
maturation; activity limited by peroxide deficiency and SO2 in must 

Tyrosinases (oxidoreductases) Oxidize phenols to quinines, resulting in browning 

Fungi (Botrytis cinerea)  

Glycosidases Degrades all aromatic potential of fungal infected grapes 

Laccases Broad specificity to phenolic compounds, cause oxidation and 
browning 

Pectinases Saponifying and depolymerising enzymes, cause degradation of plant 
cell walls and grape rotting 

Cellulases Multi-component complexes : endo-, exoglucanses and cellobiases; 
synergistic working, degrade plant cell walls 

Phospholipases Degrades phospholipids in cell membranes 

Esterases Involved in ester formation 

Proteases Aspartic proteases occur early in fungal infection, determine rate and 
extent of rotting caused by pectinases; soluble; thermo stable 

Yeast Saccharomyces 
cerevisiae  

β-Glucosidases Some yeast produce β-glucosidases which are not repressed by 
glucose 

β-Glucanases Extra cellular, cell wall bound and intracellular, glucanases; 
accelerate autolysis process and release mannoproteins 

Proteases Acidic endoprotease A accelerates autolysis process. 

Pectinases Some yeast degrade pectic substances to a limited extent; inhibited 
by glucose levels < 2% 

Bacterial (Lactic acid bacteria)  

Malolactic enzymes Convert malic acid to lactic acid 

Esterases Involved in ester formation 

Lipolytic enzymes Degrades lipids 
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2.4.1 Pectinases 

The pectolytic enzymes in fruits play an important role in cell elongation, softening of 

tissue during maturation and decomposition of plant material (Whitaker, 1990). Apart 

from the grape itself, other micro flora that are associated with grapes also produce 

pectinases. The mould Botrytis cinerea is responsible for grey or noble rot, and it 

produces various extracellular enzymes including pectinases (Verhoeff & Warren, 

1972). It could produce pectolytic enzymes in concentrations 200 times higher than in 

healthy grapes. 

 

Classification of Pectolytic enzymes: 

Pectolytic enzymes are classified on their mode of attack on the pectin molecule. 

They either de-esterify or depolymerise specific substrates (Collmer & Keen, 1986), 

as illustrated in Figure 6. Four enzymes that are closely related and work in a 

synergistic manner achieve this. 

Protopectinase: produce water-soluble and highly polymerized pectin 

substances from protopectin (insoluble). It reacts at sites having three or more non-

methylated galacturonic acid units and hydrolyses the glycosidic bond (Sakai, 1992). 

Type A acts on the actual chain, while type B acts on the polysaccharide chains 

connecting the primary chain to the cell wall. 

Pectin methylesterase: splits the methyl ester groups of polygalacturonic acids 

(Whitaker, 1972). It converts pectin to pectate and produces methanol (McKay, 

1988), but does not reduce the chain length. The hydrolysis of these methyl ester 

groups is thought to proceed in a linear fashion along the galacturonan chain, 

requiring at least one free carboxyl adjacent to the methyl group under attack (Solms 

& Deuel, 1955).  

Polygalacturonase: the most commonly encountered pectic enzyme. It breaks 

down the glycosidic link between galacturonic acid units with the absorption of a 

molecule of water (Blanco et al., 1994). Also, it works synergistically with pectin 

methylesterases in acting only on molecules with free carboxyl groups (Gainvors et 

al., 1994). Exopolygalacturonases break down distal groups of the chain, resulting in 

slow reduction of chain length. Endopolygalacturonases act randomly with faster 

results on chain length and viscosity. 
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Pectin and pectate lyases: the β-eliminative attack of lyases on a chain results 

in the formation of a double bond between C4 and C5 in the terminal residues at the 

non-reducing end, and generates an oligomer with a 4,5-unsaturated galacturonosyl 

at the end (Kotoujansky, 1987). Different lyases can be distinguished on the basis of 

their preference for highly esterified pectinic acid (pectin lyase) or pectic acid (pectate 

lyase) and on the average randomness in the eliminative depolymerisation and 

behaviour towards oligomeric substrates (Pilnik & Rombouts, 1979). Enzyme activity 

is suppressed by chelating agents such as EDTA, but reinstated by the addition of 

calcium ions (Moran et al., 1968; Garibaldi & Bateman, 1971; Chesson & Codner, 

1978). 

 

 
FIGURE 6:  The proposed pectin model and enzymatic degradation thereof (from Van 
Rensburg & Pretorius, 2000). 

 

It has recently been suggested that calcium content in the grape berry may be 

involved in the grape derived polygalacturonase activity. According to Cabanne & 

Donéche (2001) this enzyme activity is absent during the herbaceous growth period 

and increases during ripening. They found that calcium content decreased during 

ripening and that these trends were diametrically opposed. Thus it seems that 

polygalacturonases’ activity increases with degree of maturity and decreases with 

calcium content. Takayanagi et al. (2001) also investigated polygalacturonase 

activity. Their results showed the enzyme activity markedly increased within 24 hours 

after the addition of yeast to crushed grapes, whereas no enzyme activity was 

detected throughout fermentation in must made from the juice alone. They stated that 
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this indicated the yeast produced the polygalacturonase and that the skin fraction 

(seeds and skins) were necessary for production of the enzyme.  

Synergism has been reported between pectinolytic enzymes. Pectin methyl-

esterase from Aspergillus aculeatus strongly enhanced the degradation and 

depolymerisation of pectin by polygalacturonases (Christgau et al., 1996). Similarly, 

rhamnogalacturonan acetylesterase (RGAE) from Aspergillus aculeatus had a 

positive effect on the hydrolysis of the backbone of pectic hairy regions by 

rhamnogalacturonase A and rhamnogalacturonase lyase from A. aculeatus 

(Kauppinen et al., 1995). Pectin lyase positively influenced the release of ferulic acid 

from sugar beet pectin by a feruloyl esterase from Aspergillus niger (De Vries et al., 

1997). Synergy also occurs among pectinolytic enzymes as demonstrated by the 

release of ferulic acid from pectin by a second A. niger feruloyl esterase that is 

positively affected by endoarabinase and arabinofuranosidase from A. niger (Kroon & 

Williamson, 1996). Recently, synergy in the degradation of hairy regions from sugar 

beet pectin was studied using six accessory enzymes and a main-chain-cleaving 

enzyme (De Vries et al., 2000). The positive effect of RGAE on the degradation of the 

hairy-region backbone also positively affected the activity of feruloyl esterase A, β-

galactosidase, and endogalactanase from A. niger. Additionally, synergistic effects 

among these three enzymes, an endoarabinase, and an arabinofuranosidase from A. 

niger were detected.  

 
 

2.4.2 Glucanases (Cellulases) 

Cellulolytic enzymes are produced by a wide variety of micro organisms, such as 

bacteria, actinomycetes and fungi, by higher plants, as well as invertebrate animals 

(Finch & Roberts, 1985). The degradation of cellulose can be achieved by thermal, 

chemical or biochemical processes (Alén, 1990; Blazej et al., 1990). Although 

enzymatic degradation is a much slower process, it is the preferred method of 

cellulose hydrolysis as it is more environmentally friendly.  

The crystalline cellulose fibers are embedded in a matrix of hemicellulose, 

lignin and pectin that is held together by hydrogen bonds. Enzymatic hydrolysis of 

cellulose is complicated by the compactness of the molecules which reduce the 

accessibility of the enzymes (Béquin, 1990). The first step is absorption of the 

enzyme to the surface of the fibre. Temperature and the type of cellulose used does 
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influence the absorption, but it is largely dependant on pH. Ghose & Bisaria (1979) 

put the maximum absorption at 50°C and pH of 4,8. 

A “C1-Cx” hypothesis was proposed in an attempt to explain the enzymatic 

mechanisms involved in cellulose degradation (Reese et al., 1950; Eriksson et al., 

1990). It was postulated as follows: 

 

      C1       Cx

Crystalline cellulose   --→    Amorphous cellulose  --→  Soluble products 

 

This hypothesis proposed that crystalline cellulose is modified by the activity of 

C1 (Reese, 1976) and that the modified products are hydrolyzed by other enzymes. It 

was suggested that C1 is a non-hydrolytic chain-separating enzyme that separates 

the cellulose chains by disrupting the hydrogen bonds (Eriksson et al., 1990). Cx 

represents several randomly acting enzymes that can hydrolyze non-crystalline 

cellulose and β-1,4-oligomers of glucose. The development of separation methods 

has led to the discovery of individual enzymes. Cellulases consist of 

endoglucanases, exoglucanases and cellobiases, see Figure 7. These act in a 

synergistic manner based on research showing that the individual enzymes do not 

degrade cellulose, but a mixture of the three cause extensive hydrolysis (Eriksson & 

Wood, 1985). 

β-glucanases, classified as endo- and exoglucanases, hydrolyse the β-O-

glycosidic linkages of the β-glucan chains, leading to the release of glucose and 

oligosaccharides (Nebreda et al., 1986). These enzymes are not only important for 

the removal of haze-forming glucans, but also the release of mannoproteins during 

aging on yeast lees (Ribéreau-Gayon et al., 2000 

 
Classification of Cellulases:  

Endoglucanases: attack glucans randomly at regions of low crystallinity and 

split the β-1,4-glucosidic bonds. According to Finch & Roberts (1985) they have the 

following general characteristics:  

(i) they occur commonly in multiple forms that differ in molecular weight, 

thermo stabilities and mode of attack; 

(ii) they display acidic pH optimums; 

(iii) the purified enzyme shows little activity against the native cellulose; 
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(iv) they display transferase activity against cellodextrins; 

(vi) turnover numbers are comparable to amylases for starch. 

 

Exoglucanases: release cellobiose from the reducing end of the chain. These 

enzymes show a preference for low molecular weight cellulolytic substrates and, 

while not involved in primary attack on cellulose, they can catalyse further 

degradation of oligosaccharides. The cellulolytic systems are acidic and the enzymes 

show highest activity and stability under these conditions. Endoglucanases have 

broader substrate specificity than exoglucanases, because they can accommodate 

the bulky side chains of the substrate (Penttilä et al., 1986). 

Cellobiases: these are a member of the β-glucosidases and are substrate 

specific exoglucanases (Finch & Roberts, 1985) and are capable of hydrolysing a 

broad spectrum of β-glucosides (Wright et al., 1992). Each of these enzyme classes 

consists of a number of iso-enzymes and they act synergistically to degrade glucans. 

The end product of endo- and exo-glucanases, is cellobiose, which is then 

hydrolyzed by cellobiases (Coughlan, 1990; Pretorius, 1997). 

 

Finch & Roberts (1985) suggest that there are two forms of synergism. The 

first is between exo- and endo-enzymes. The endoglucanases act randomly and 

produce non-redusive ends that become the substrate for exoglucanases (Ladisch et 

al., 1983). This form of synergism appears only on crystalline substrates and is 

absent on soluble derivates (Eriksson et al., 1990). In this case exoglucanases is the 

limiting enzyme. The second form of synergism is where the degradation products 

are inhibitory to the cellulases (cellobioses) and these products are then removed by 

hydrolytic and oxidative enzymes. In addition to the two major types of synergism, 

other unusual types have been observed, including endo-endo and exo-exo 

synergism (Coughlan, 1990; Kubicek et al., 1993). 
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FIGURE 7:  Schematic representation of the enzymatic degradation of glucan and cellulose 
(from Van Rensburg & Pretorius, 2000). 
 
 

2.4.3 Xylanases (Hemicellulases) 

Plant heteroxylan is a complex structure that requires several hydrolytic enzymes to 

facilitate complete breakdown. Hemicellulases include β-D-galacturonases, β-D-

mannases and β-D-xylanases, see Figure 8. 

Endo-1,4-β-xylanase attacks the xylan backbone and generates non-

substituted or branched xylo-oligosaccharides. Endoxylanases are often prevented 

from cleaving the xylan backbone due to the presence of substituents (Thomson, 

1993; Pretorius, 1997). Thus it acts synergistically with acetylesterases, 

exoglycosidases and esterases to liberate the substituents from the xylan backbone 

(Tenkanen & Poutanen, 1992). Synergistic action has been observed between 

endoxylanse, β-xylosidase, arabinoxylans, arabinofuranohydrolase and acetyl-xylan 

esterase in the degradation of different xylans (Kormelink & Voragen, 1993). Synergy 

has also been observed between these enzymes and other xylanolytic enzymes. 
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FIGURE 8:  Schematic representation of the enzymatic degradation of hemicellulose (from 
Van Rensburg & Pretorius, 2000). 
 

 

The release of ferulic acid from xylan by a feruloyl esterase from Aspergillus 

niger was strongly enhanced by the addition of endoxylanses (Bartolome et al., 1995; 

De Vries et al., 2000). Similarly, both endoxylanse and β-xylosidase positively 

influenced the release of 4-O-methylglucoronic acid from birch wood xylan by an α-

glucuronidase (De Vries et al., 1998). Recent studies revealed that synergistic action 

in degradation of xylan does not only occur between main-chain-cleaving enzymes 

and accessory enzymes, but also among accessory enzymes; and nearly all 

accessory enzymes are positively influenced by the activity of main-chain-cleaving 

enzymes (Denison, 2000). A strong synergistic effect has been observed for the role 

of A. niger acetylxylan esterase in the hydrolysis of birch wood xylan by three 

endoxylanases from A. niger (Kormelink et al., 1993). 

The activity of xylans and β-xylosidases depend on the chain length of xylo-

oligosaccharides, the former decreasing with decreasing length, the latter increasing 

(Thompson, 1993). Exo-xylanase and 1,4-β-xylosidase are able to produce D-xylose 

through their specific activities (Biely, 1993). 
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Endoxylanases are classified as debranching and non-debranching enzymes 

according to their ability of attacking glucoronoxylans (Dekker, 1985). Both these 

types are able to attack glucoronoxylans and unsubstituted 1,4-β-D-xylans. The non-

debranching group are the most common and degrade heteroxylans at random 

(Poutanen, 1988). 

A synergistic effect was observed in the degradation acetyl-

galactoglucomannan. The presence of galactose and acetyl residues on the 

backbone severely hindered the activity of β-mannase (Puls et al., 1992). The 

presence of acetylmannanesterase and to a lesser extent α-galactosidase 

significantly increased the β-mannase activity on this substrate. Additionally, the 

action of β-mannase and α-galactosidase on acetylgalactoglucomannan was 

positively influenced by the removal of acetyl residues from the main chain by 

acetylgalactoglucomannan esterase (Tenkanen et al., 1993; 1995). 

 

 

2.4.4 Glycosidases 

The hydrolysis of precursor compounds is very important, as it utilises the potential 

pool of aroma in the wine. This can be achieved by acid hydrolysis or by enzymatic 

liberation. Williams et al. (1982) suggested an acid hydrolysis, but due to its nature is 

not preferred, as it can alter the aromatic character of the wine. Günata et al. (1988) 

proposed enzymatic hydrolysis (see Table 5) as an alternative as the enzymes are 

able to split the β-glycosidic bonds without modifying the aromatic characteristics of 

the wine. The liberation occurs in two steps: the first is the enzymatic cleavage of the 

1,6-intersugar-linkage, which requires the action of a glycosidase (α-

arabinofuranosidase, α-rhamnosidase, β-xylosidase or a β-apiosidase) which acts on 

various sugars. This results in a monoterpenyl glucoside. The second step involves 

the liberation of the terpene alcohol via a β-glucosidase enzyme (Sánchez-Torres et 

al., 1996) which acts only on the glucose sugar.  

Glycosidases may adversely affect the colour of the wine. They cleave the 

sugar from the anthocyanin, leaving an unstable aglycon that will spontaneously 

transform into a stable colourless from (Huang, 1956). Wightman et al. (1997) 

investigated this effect on colour in Pinot noir and Cabernet Sauvignon. They found a 

destruction of total monomeric anthocyanins as well as individual pigments. The 

 32



presence of acylating groups on malvidin-3-glucoside did not appear to affect the 

enzyme activity. Preparations that caused the most anthocyanin degradation also 

produced wines with higher amounts of polymeric anthocyanin. They also found that 

increased enzyme concentration magnified these effects. These treatments had a 

pronounced effect on other phenolics as well. This study confirms that the use of 

enzyme preparations must be carefully considered, as they may alter the composition 

of the wine significantly. Endogenous grape glycosidases are inhibited by glucose. It 

has poor stability at low pH and at high ethanol levels. Therefore these Vitis vinifera 

enzymes would be virtually inactive during winemaking conditions. They are also 

aglycone specific, and are incapable of hydrolysing the conjugates of tertiary 

alcohols. Thus, some of the most important monoterpenes, e.g. linalool, are not 

released by the enzyme (Grossman et al., 1990). Certain processing actions, such as 

clarification, considerably reduce the activity of β-glucosidase. 

 

TABLE 5: Enzymes for aroma extraction (adapted from Van Rensburg & Pretorius, 2000). 

Enzyme Company Activities Time of addition 

Expression20 Darleon Pectinase + β-
glucosidase 

Add to fermentation with residual 
sugar below 10g/L 

Endozym 
Cultivar AEB Africa Pectinase To grapes or must 

Endozym Rouge AEB Africa 
Pectinase + 
hemicellulase + 
cellulase 

During red grape maceration 
before SO2

Vinozym Novo Nordisk Pectinase + side Directly into crusher 

Vinozym FCE Novo Nordisk 
Pectinase, 
hemicellulase, 
cellulase 

Maceration of white grapes 

Novoferm 12 Novo Nordisk Pectinase + side Towards end of alcoholic 
fermentation 

Novarom Novo Nordisk Glycosidases At end of alcoholic fermentation 

Novarom G + 
Novarom L Novo Nordisk Pectinase + β-

glucosidase 
At end of fermentation during 
racking 

Vinozym G Novo Nordisk Pectinase Into crusher, for colour phenolic 
extraction 

Trenolin Bukett Erbslöh Pectinase + β-
glucosidase 

Towards end of alcoholic 
fermentation 

Rapidase X-
Press DSM Pectinase To grapes or mash 

Rapidase 
AR2000 DSM Pectinase + 

Glycosidases At end of alcoholic fermentation 

Lafazym Extract Laffort Pectinases On crushed grapes 
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Canal-Llaubères (1993) suggested that glycosidase preparations from 

Aspergillus sp. could reinforce the varietal aroma if added once the yeast has 

depleted the glucose in the juice. Park (1996) investigated the changes in free and 

glycosidically bound monoterpenes as a function of fermentation, wine aging and 

enzyme treatment. Muscat d’Alexandrie and Gewürztraminer wines were treated with 

crude pectinase, Rohapect 7104 (Röhm, Darmstadt, Germany), containing β-

glucosidase activity, after aging for 8 months. The results indicated that the Rohapect 

7104 enzyme preparation could effectively be used in hydrolysing bound 

monoterpenes. However, it is considered that in normal wines the monoterpenes are 

very stable and are hydrolysed slowly, therefore releasing the floral aroma over a 

long period of time during aging. Conversely, the enzyme-treated wines released all 

the desirable monoterpenes at once, leaving no pool to maintain a constant supply of 

terpenic-floral aroma in the wine. In addition, free monoterpenes (which have 

desirable floral aromas in wine) can be interconverted to other, more chemically 

stable but less desirable compounds, such as α-terpineol. The low pH causes the 

monoterpenes to be unstable and promotes hydrolysis, rearrangement or oxidation of 

the compounds. Park (1996) also suggested it is very important that the commercial 

preparations never contain cinnamyl esterase, as this enzyme can lead to the 

formation of vinyl-phenols with a very undesirable animal odour. 

Grossman et al. (1987) have suggested that yeast glycosidases are not 

inhibited by glucose. Although the activity was lower in must than in wine, it was still 

capable to release monoterpenes. Yanai & Sato (1999) used a purified intracellular 

β-glucosidase from Debaromyces hansenii Y-44 to ferment Muscat juice. The treated 

wines showed a considerable increase in the concentration of monoterpenols 

produced. Linalool and nerol increased by 90% and 116% respectively. Darriet et al. 

(1988) and Dubourdieu et al. (1988) reported that certain strains of Saccharomyces 

cerevisiae also possess a β-glucosidase located in the periplasmic space of yeast 

cells. However this activity seems to be very limited. Grimaldi et al. (2000) identified 

and partially characterized a glycosidic activity from commercial strains of lactic acid 

bacterium, Oenococcus oeni, which are utilized for the malolactic fermentation of 

wine. In evaluating the potential of these activities as liberators of glyco-conjugated 

grape aromas, responses to oenological pH values, glucose, fructose and ethanol 

concentrations were determined. The optimal pH was observed at pH 5,5; but in the 

pH range of 3,5 to 4,0; 12% to 43% of the activity was retained. 
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2.5 UTILIZATION OF BIOTRANSFORMATION FOR CHANGES IN CHEMICAL 
COMPOUND PROFILE 

Grape processing can be divided into three stages: (a) pre-fermentation, (b) 

fermentation and (c) post fermentation. The pre-fermentation stage is the determining 

stage for the quality of the raw grape material. It includes harvesting and transport of 

the grapes, crushing, cold soaking and pressing; as well as settling of the juice. It 

could also include any other processing steps that are taken before the juice is 

allowed to begin fermentation. During this stage the most important areas of enzyme 

influence are clarification of juice and release of varietal aroma. During harvest it is 

an advantage to pick the grapes by hand, as it is easier to clear the bunches and 

remove poor quality grapes. This is also a preventative measure to minimize the 

pathogen related or PR-proteins in the wine (as a result of fungal attack), which 

cause great problems with clarity and filtration. The method of grape processing 

influence the activity of native enzymes, for example, heat treatment to enhance 

colour extraction deactivates enzymes and certain fining agents such as bentonite 

remove it from the medium. Also sulphur-dioxide and other microbes may cause the 

native enzymes to be ineffective. 

Most of the native enzymes (originating from the grape) are either insufficient 

in quantity or ineffective because of other influences as mentioned before. Therefore 

it is very common that the native enzyme activity is supplemented by industrial 

preparations in order to achieve the desired effect. These industrial preparations are 

obtained from organisms such as A. niger, which is cultivated under optimal cell 

growth and enzyme production conditions. Of the 2500 different enzyme-catalysed 

reactions recognised by the International Union Handbook of Enzymes Nomenclature 

(Gacesa & Hubble, 1998) only about 30 are currently used in industrial preparations. 

The pectolytic enzymes were the first commercial enzyme preparation used in 

the wine industry (Rombouts & Pilnik, 1980). Commercial pectinases are used to 

improve juice yields, release of colour and flavour compounds from grape skins and 

to improve clarification and filterability. See Table 6 and 7 for examples of various 

commercially available preparations. Most commercial enzyme preparations are 

obtained from fungal sources (Alkorta et al., 1994), with most strains belonging to 

Aspergillus species. The preparation of deliberately mixed enzymes is very useful as 

it performs multiple functions. The liquefaction enzymes are an example, containing 

cellulases and hemicellulases in addition to pectinases. 
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TABLE 6: Commercial pectinase preparations to improve clarification, filtration and yield of 
juice and wine (adapted from Van Rensburg & Pretorius, 2000). 

Enzyme Company Activities Time of addition 

RapidaseVino Super DSM Pectolytic To juice before settling 

Rapidase Filtration DSM  Pectolytic + β-
glucanase 

Add at end of 
fermentation 

Rapidase X-press L DSM Pectolytic + side 
activities 

To white grapes or 
mash 

Rapidase CB DSM Pectolytic To juice before settling 

Endozyme Active AEB Africa Pectolytic To juice before settling 

Pectizym AEB Africa Pectolytic To juice 

Pectocel L AEB Africa Pectolytic To grapes or juice 

Endozym Éclair AEB Africa Pectolytic To musts with high 
quantities of solids 

Endozym Pectoflot AEB Africa Pectolytic To must, 4h before 
flotation initiation 

Glucanex Novo Nordisk β-glucanase Between first racking 
and filtration 

Ultrazym Novo Nordisk Pectolytic To white and red mash  

Novoclair FCE Novo Nordisk Pectinases To grape must 

Pectinex Superpress Novo Nordisk Pectolytic + 
hemicellulases 

Directly into destemmer 
/ crusher 

Vinoflow Novo Nordisk Pectinases + β-
glucanase At end of fermentation 

Influence Darleon Pectolytic + side 
activities 

In red wine during 
fermentation 

Lafazym CL Laffort Pectolytic Prior to fermentation 

Lafase 60 Laffort Pectolytic In barrel for thermo-
vinification musts 

Extractalyse Laffort Pectolytic + 
glucanases 

In barrel for aging and 
filtration improvement 
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TABLE 7:  Commercial pectinase preparations to improve extraction and stabilization of 
colour during winemaking (adapted from Van Rensburg & Pretorius, 2000). 

Enzyme Company Activities Time of addition 

Enzym’Colour 
Plus Darleon Pectolytic + Proteolytic To juice or must 

Endozym Contact 
Pelliculaire AEB Africa Pectolytic To juice or must 

Endozyme Rouge AEB Africa Pectolytic + side 
activities 

During maceration 
(Before SO2) 

Vinozym EC Novo Nordisk Pectolytic, arabinase + 
cellulase 

Into crusher or mash tank 
for colour and aroma 
extraction 

Rapidase Ex 
Colour DSM Pectolytic + side 

activities Before maceration 

Lallemand OE Lallemand 
Pectinase + 
hemicellulase + 
cellulase 

To grapes before pressing

Lallemand EX Lallemand 
Pectinase + 
hemicellulase + 
cellulase 

To grapes before pressing

Lafase He Grand 
Cru Laffort Pectolytic On crushed grapes at 

start of fermentation 

Lafase HE Laffort Pectolytic During pre-fermentation 
maceration 

 

 

Inhibiting factors are very important to consider with the use of any enzyme 

preparation, as it will influence activity and the amount needed for completion of the 

reaction. This in turn could have economic implications. The optimum pH for 

pectinases originating from grapes and associated micro flora usually varies between 

pH 2 and pH 8. They are therefore not notably inhibited by wine pH (pH 3 – pH 4), as 

illustrated in Table 4 (Van Rensburg & Pretorius, 2000). However, temperature 

significantly influences enzyme activities. Below 10°C their activity drops to levels 

that are too low for effective degradation of pectic substances in grape juice or wine. 

As the temperature rises, the reaction rate doubles with each increase of 10°C (Van 

Rensburg & Pretorius, 2000). In one theory it was stated that one eighth of enzyme 

concentration could be sufficient if the juice was processed at 55°C (Hagan, 1996), 

but it would have detrimental effects on the wine aromas and flavours. 
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The commercial preparations contain the active proteins (enzymes), as well as 

sugars, inorganic salts and preservatives to stabilize and standardize the product 

(Hagan, 1996). These compounds are important in protecting the protein during sub-

optimal storage conditions and exposure to light, which decreases activity (Hagan, 

1996). If the enzyme were for example stored at 50°C for 1 hour, the activity loss 

could increase to 30%. There is, however, no loss of activity upon thawing. 

Because these enzymes are essentially proteins, factors inhibiting proteins in 

general will decrease their effectiveness. This includes juice clarification using 

bentonite, which adsorbs the proteins and settles them out. Alcohol levels above 

17% v/v and SO2 concentrations over 500 mg/L also inhibit pectinases (Van 

Rensburg & Pretorius, 2000). Wines which are high in tannins will show reduced 

enzyme activity as tannins react with the proteins and render them useless. 

The point in time at which the additions are made is, as mentioned before, of 

extreme importance. Pectolytic enzyme preparations based on pectinase activity are 

recommended for clarification of musts after pressing. It’s pectinmethyl-esterasic and 

endogalacturonic activity causes hydrolysis of pectic chains and facilitates the 

draining of juice from the pomace (Brown & Ough, 1981) with an increase yield of a 

free-run juice with a lower viscosity. The addition of this enzyme lowers viscosity and 

causes cloud particles to aggregate into larger units, which settles as sediment 

(Chesson, 1980). The speeding up of the clarification process also produces more 

compact lees. When it is applied to pulp before pressing, it increases juice yield and 

colour extraction (Ough et al., 1975). Pectolytic enzyme preparations for so-called 

liquefaction comprise a mixture of pectinases with cellulases. During maceration, 

pectin degradation affects only the middle lamella pectin, and organized tissue is 

transformed into a suspension of intact cells (Van Rensburg & Pretorius, 2000). At 

the concentration of 2-4 g/hL, 15% increase in juice has been recorded over a time 

period of 4-10 hours (Ribéreau-Gayon et al., 2000). 

James et al. (1999) suggested that the juice yields of Muscadine grapes (Vitis 

rotundifolia Michx.) could be increased with the use of its native cellulase enzyme. 

The characterization of this enzyme indicated that it has optimum activity at an pH of 

4,0 and a maximum temperature of 45°C. Zn2+ and Mg2+ inhibited cellulase activity 

32% and 30% respectively, at a concentration of 10 mM, while Cu2+ and Fe2+ 

stimulated enzyme activity. The enzyme degraded the substrates as an 

endoglucanase and cleaved glycosidic bonds as an exoglucanase. Thus it seems 
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likely to increase juice yields from Muscadine grapes by enhancing the conditions for 

enzyme action during juice manufacture.  

Sims et al. (1988) compared a macerating enzyme (Macerating Enzyme 

GC219; Genecor) with a standard pectinase (Pectinol 60G; Genecor) on a Vitis 

rotundifolia cultivar and a Euvitis hybrid. The first is hard to press and the second has 

difficulty with clarification. The macerating enzyme used consisted of a mixture of 

pectinases, cellulases and hemicellulases. The maceration enzyme was only slightly 

more effective in increasing the free-run juice, but total yields were similar for the two 

enzymes. However, it greatly improved the degree of settling of the Euvitis hybrid, as 

compared to the standard pectinase. 

With the use of pectinases, increases in methanol content were recorded 

(Massiot et al., 1994; Servili et al., 1992). Revilla & Gonzälez-SanJosé (1998) 

evaluated methanol production of different commercial preparations of pectolytic 

enzymes during the fermentation of red grapes. They used two clarifying pectolytic 

enzymes, Zimopec PX1 (Perdomini; 0,03 g/L) and Rapidase CX (DSM; 0,05 g/L), 

and two colour extraction enzymes, Pectinase WL extraction (Wormser Oenologie; 

0,01 g/L) and Rapidase Ex Colour (DSM; 0,05 g/L). Their results indicated that the 

enzymatic treatment enhanced the methanol content during the initial phases of 

fermentation and it remained largely constant during storage. 

Early research conducted by Ough et al. (1975) indicated that pectolytic 

enzyme treatment of red grape musts could accelerate the extraction of colour 

pigments and phenols. They concluded that the only significant effect on wine quality 

was the increased intensity of wine colour. The faster extraction of colour allows the 

pomace to be pressed earlier and is an advantage when tank space is in short 

supply. The shorter skin contact time results in wines of equal colour, but lower 

tannin content. Brown & Ough (1981) tested two commercial enzymes, Clarex-L and 

Sparl-L-HPG (supplied by Miles Laboratories), on grape musts of eight different white 

wine varieties. This study indicated an increase in total juice yields, clarity of wine, 

filterability, methanol production, wine quality, browning capacity and amount of 

settled solids. In contrast Wightman et al. (1997) indicated that some pectinase 

preparations are capable of reducing red wine colour through pigment modification 

and subsequent degradation. Further research showed an increase in colour, but 

with enhanced bitterness and astringency in the wine. Watson et al. (1999) 

investigated two enzymes preparations, Scottzyme Colour Pro and Colour Pro (Scott 

Laboratories) and found that both produced wines with higher concentrations of 
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anthocyanins, higher concentrations total phenols, greater colour intensity and better 

visual clarity than found in the untreated wines. Furthermore the enzyme-treated 

wines had increased aroma and flavour intensity, including enhanced spicy, cherry, 

raspberry aromas and flavours. It also had enhanced astringency and bitter 

characteristics. In further trails by Scott Laboratories, Watson et al. (1999) found that 

wines produced with enzyme treatments were higher in polymeric anthocyanins, 

polymeric phenols and catechin than the control wines, but not in the monomeric 

anthocyanin content. 

In 1994 the Australian Wine Research Institute conducted a review into the 

performance of a range of commercial pectolytic enzyme preparations with respect to 

effect on red must and wine colour (Leske, 1996). This investigation sought to access 

the validity of the hypotheses that the use of pectic enzymes results in (i) greater 

colour extraction during red wine fermentation; (ii) faster colour extraction during 

maceration and fermentation of red grapes; (iii) greater colour extraction from red 

wines at pressing; and (iv) improved clarification. They used various products from a 

range of producers, including macerators and red colour extractors, along with 

several clarifiers in an attempt to determine differences between the groups. The 

results of the enzyme-treated musts showed no significant increase in any of the 

measured parameters at any stage of the processing when compared to the control 

samples. Leske (1996) concluded that the use of pectic enzyme preparations for 

improvements in colour extraction is unnecessary on the basis of these above-

mentioned results. 

Zimman et al. (2002) investigated the effect of a colour extraction enzyme as 

part of a maceration study using Cabernet Sauvignon grapes. They reported an 

increase in total proanthocyanidins due to an increase in specific fractions, but did 

not find an increase in colour intensity. They suggested, however, that these 

increased proanthocyanidins could favour coloured proanthocyanidin formation in the 

long term. 

In stark contrast, Bakker et al. (1999) obtained totally different results in a 

study involving port wine. Two commercial pectolytic enzyme preparations were used 

on pilot scale to evaluate the effect on colour extraction during the short processing 

of crushed grapes prior to fortification to make port wine. The results showed that 

both enzyme preparations enhanced colour extraction during vinification. In the 

young wines the enzymes gave a darker hue to the wine. Maturation led to a general 

reduction in colour, but the differences in colour between the two sets of wines were 
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maintained. Sensory analysis showed that the wines produced with the enzymes had 

significant higher colour index, aroma and flavour intensity than the control. 

Yeasts of the Brettanomyces type are found in red wines and are responsible 

for the production of volatile phenols characterized by animal, leather, ink, horse 

stable or barnyard odours. Certain winemaking techniques that favour extraction of 

phenolic compounds also indirectly favour the production of volatile phenols in wines 

that have been contaminated with Brettanomyces. The use of oenological enzymes 

could potentially cause an excess production of volatile phenols. Cinnamyl-esterase, 

a secondary activity seen in most enzymatic preparations produced by Aspergillus 

niger (pectinases), is the cause of this problem. The use of a purified enzyme without 

cinnamyl-estarase does not seem to induce an overproduction of these volatiles. 

Thus it is of great importance that the preparations used are of a very high quality 

and in a purified state (Gerbaux et al., 2002). 

Glucanex was one of the first commercial preparations to be tested on wines 

made from botrytised grapes (Villettaz et al., 1984). The preparation consists mainly 

of exo-β-glucanase, endo-β-1,3-glucanase, exo-β-1,6-glucanase and an unspecific β-

glucosidase activity. The enzyme treatment improved filtration, but did not cause any 

significant changes in the chemical composition of the wine. The treated samples 

showed a higher residual sugar level, but it could be partly due to the degradation of 

Botrytis glucans to glucose. Miklósy & Pölös (1995) conducted a study where glucans 

were added to Traminer must after skin contact. Three commercial enzyme 

preparations, Glucanex (Novo Nordisk), Novoferm 12L (Novo Nordisk) and Trenolin 

Buckett (Erbslöh), were used. Sensory analysis of the wines took place six months 

after fermentation. Wines treated with Trenolin Buckett was considered by more than 

85% of a tasting panel to have a more desirable aroma, fruity taste and improved 

overall quality than the control. The wines treated with the other enzymes were again 

preferred to the control samples, although the differences were not as pronounced as 

with the Trenolin Buckett. At the present moment commercial β-glucanases are 

available for applications of clarification, filtration and aging of young wines (Canal-

Llaubères, 1998). These enzymes are sourced from Trichoderma species. The 

preparations are active between 15 - 50°C and at pH 3 – 4. The influences of alcohol 

at elevated levels have not been researched, but concentrations up to 14% v/v have 

no reported negative effect. An SO2 level of up to 350 ppm also has no apparent 

negative influence on relative enzyme activity. 
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Enzymes also have important applications as far as health benefits are 

concerned. There is a worldwide trend to consume less alcohol, stimulating the 

search for low alcohol wines. There are various physical treatments available 

involving expensive equipment such as reverse-osmosis (Canal-Llaubères, 1993). It 

can however non-specifically change the sensorial properties of the wine (Pretorius, 

2000). Alternatives have been suggested, including redirecting grape sugars to 

glycerol at the expense of ethanol production, or the use of enzymes such as glucose 

oxidase and catalase (Van Rensburg & Pretorius, 2000). These enzymes convert 

glucose to gluconic acid, which is not metabolized by the yeast. This method results 

in wines with reduced alcohol and elevated acidity. Ethyl carbamate (urethane) is a 

suspected carcinogen that occurs in most fermented food and beverages (Van 

Rensburg & Pretorius, 2000). Thus as a health hazard there is a demand for reduced 

levels in wine. Acid ureases were investigated as a means to reduce urea, which is 

one of the substrate compounds for production of ethyl carbamate, in wine. The 

genes for expression of this enzyme were sourced from Lactobacillus fermentatum, 

and successfully expressed in Saccharomyces cerevisiae but the secretion was very 

low and thus not very successful (Visser, 1999). 

Proteases have proven to be beneficial in the laundering and automatic 

dishwashing. It increases the effectiveness of detergents, especially for use at lower 

temperatures and lower pH levels. Proteases is also used in conjunction with 

glycoamylase and glucose oxidase to prevent plaque, it gives better results in a 

shorter time of application to the dentures (Anonymous, 2000). Wool is made of 

proteins and therefore wool treatments involve protease, which modifies the fibres. It 

reduces the ‘facing up’ of fibres that are caused by the dyeing process, and improves 

the pilling performance and increases softness. Proteases are also used to treat silk. 

The threads of raw silk must be de-gummed to remove sericin, a proteinaceous 

substance that covers the silk fibre. The traditional treatment used a harsh alkaline 

solution; however the use of proteolytic enzymes performs this duty without attacking 

the actual fibres. It is also used in the soaking, bating and de-hairing steps of leather 

preparation. 
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2.6 STABILITY OF BIOCATALYSTS 

Catalysts act by reducing the energy barrier of chemical reactions, therefore 

producing a dramatic increase in reaction rates, ranging from 106 to 1024 fold (Illanes, 

1999). The catalysts of cell metabolism are referred to as biocatalysts, i.e. the 

enzymes. However, in broader terms, biocatalysts are any biological entity capable of 

catalyzing the conversion of substrate into a product. Accordingly, biocatalysts can 

be divided in cellular (growing, resting or non-living cells) and non-cellular (enzymes 

that have been removed from the cell system that produced them) (Illanes, 1999). 

Potential advantages of biocatalysts are their high specificity, high activity 

under mild environmental conditions and high turn-over rate; their biodegradable 

nature and their label as natural product (Polastro, 1989). Drawbacks are inherent to 

their complex molecular structure, which makes them costly to produce and 

intrinsically unstable. 

Biocatalysts are inherently labile; therefore their operational stability is of 

paramount importance for any bioprocess. Recently the potential of extremophiles 

has been recognized, the cloning of termophilic genes into more suitable mesophilic 

hosts is now at hand to produce stable biocatalysts (Illanes, 1999).  

 

Other approaches being utilized presently are: 

(i) site-directed mutagenesis to code for more stable proteins; 

(ii) immobilization and crystallization; 

(iii) reaction media engineering; 

(iv) selection for mutants with increased protein stability (Illanes, 1999). 

 

Different agents, such as extreme temperatures and chemicals, promote enzyme 

inactivation. The latter can often be easily avoided by keeping the chemicals in 

question out of the reaction medium. Temperature, however, produced opposed 

effects on enzyme activity and stability; and is therefore a key variable in any 

biological process (Wasserman, 1984). As indicated by Marshall (1997) and Somkuti 

& Holsinger (1997) enzymes active at both low temperatures and stable at high 

temperatures are of great technological importance. Biocatalyst stability, i.e. the 

capacity to retain activity over time, is undoubtedly the limiting factor in most 

bioprocesses, biocatalyst stabilization being a central issue of biotechnology. 
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Enzyme stability is dictated by its three-dimensional configuration, which is in 

turn determined by genetic (primary structure) and environmental (interactions with 

the surroundings) factors. Research on extremophiles (organisms that does not just 

survive, but also thrive in extreme environmental conditions), as promising sources 

for highly stable enzymes, is a subject of great interest at the present moment 

(Herbert, 1992; Haard, 1998; Davis, 1998). Two of the most prominent properties of 

naturally occurring “hyper stable” enzymes are the presence of large surface area 

networks of electrostatic interactions and a tendency to be multimeric (Sterner & 

Liebl, 2001; Vieille & Zeikus, 2001; Szilagyi & Zavodsky, 2000). Biocatalyst thermo-

stability allows for a higher operational temperature, which has the following 

advantages: higher reactivity (higher reaction rate, lower diffusional restrictions); 

higher stability; higher process yields (increased solubility of substrates and 

products); lower viscosity and fewer contamination problems (Mozhaev, 1993). 

Daniel (1996) claimed that enzymes from thermophiles are stable even at 

temperatures more than 20°C higher than the optimum growth temperature for such 

organisms. It is interesting to note that mesophiles exhibit the same pattern. Although 

a high number of thermo-stable enzymes from thermophiles have been reported, 

their technological use still faces several challenges since knowledge on 

physiological and genetics of such organisms are poor; they are fastidious; grow 

slowly and are not recognized as safe. Thus commercial enzymes from thermophiles 

are still scarce and the thermo-stable enzymes used in industry are still produced 

from mesophiles, as illustrated in Table 8. 

Thermo-stability is the result of differences in specific amino acid sequences 

and it has been ascribed to a more rigid configuration and to the high number of 

hydrophobic interactions. The sequences possibly linked to the thermo-stable 

phenotype organism can be identified by examining the primary sequences of 

termophilic and their mesophilic counterparts (Illanes, 1999). Imanaka et al. (1988) 

illustrated that this opens up the possibility of protein engineering techniques to 

produce point mutations in the mesophilic structural gene, resulting in the 

corresponding amino acid substitution in the primary structure of the encoded protein 

(Daniel, 1996). 
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TABLE 8: Industrial thermo-stable enzymes, commercial enzymes from thermophiles (from 
Illanes, 1999; Kristjánsson ,1989; Coolbear et al.,1992). 

Industrial Thermo-stable Mesophilic 
Enzymes 

Commercial Enzymes from 
Thermophiles 

Thermo-stable 

enzyme 

Mesophile 

Producer 
Top °C

Thermo-stable 

Enzyme 

Thermophile 

Producer 

α-amylase Bacillus 95 omalate 
dehydrogenase T. termophilus 

gluco-amylse Aspergillus 60 β-amylase C. thermo-
sulphuricum 

pullulanse Aerobacter 60 α-galactosidase B. stearo-
termophilus 

gluc isomerase Actinoplanes 60 DNA polymerase P. furiosus 

pectinase Aspergillus 60 α-amylase P. furiosus 

alcalase Bacillus 60 glutamate 
dehydrogenase P. furiosus 

lipase Aspergillus 60 cellulase R. marinus 

acid protease Mucor 50   

lactase Aspergillus 50   

 

 

Protein engineering is also being used to obtain improved biocatalysts. 

Thermo-stable proteases capable of withstanding conditions of high pH and high 

concentrations of strong oxidants, are products of protein engineering produced by 

point amino acid substitutions in the most labile region of the molecule (Anonymous, 

1997; Anonymous, 1998). The improvement of the hydrophobic core packing, 

introduction of disulphide bridges, stabilization of α-helix dipoles, engineering of 

surface salt bridges and point mutations are all aimed at reducing the entropy of the 

unfolded state of the protein (Van den Burg & Eijsink, 2002). 

According to Mozhaev (1993) water acts as a reactant in inactivation reactions 

and also a lubricant in conformational changes associated with protein unfolding. 

Therefore, biocatalyst stabilization under operational conditions is a key issue. 

Stabilizing additives is a customary practice employed to improve shelf life of enzyme 

products, however its use as operational stabilizer has little significance and poor 

predictability (Ye et al., 1988). 
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In non-conventional media the use of additives has proved to enhance 

enzyme activity and stability (Triantafyllou et al., 1997). Chemical modification has 

also been used in that hydrophilic groups have been introduced in the surface on the 

enzyme molecule that reduces the contact of hydrophobic regions with water, thereby 

preventing incorrect refolding after reversible denaturation (Mozhaev, 1993). 

Derivatization with polymers is increasingly being proposed for stabilization of soluble 

enzymes. Sundaram & Venkatesh (1998) indicated that by modifying proteases with 

carbohydrate polymers, like polymeric sucrose and dextran, the enzyme is stabilized 

against inactivation by temperature and chaotropic agents. 

Immobilization to solid carriers is perhaps the most utilized strategy to improve 

operational stability of biocatalysts. Among the methods available, multi-point 

covalent attachment is the most effective in terms of thermal stabilization (Guisán et 

al., 1993), although thermal stabilization has also been reported for gel-entrapped 

enzymes (Gianfreda et al., 1985). Illanes et al. (1988) observed a dramatic increase 

in thermal stability by immobilizing different enzymes to glutaraldehyde-activated 

chitin matrices, where multiple Shiff-base linkages are established between free 

amino acids in the protein and the aldehyde group in the glutaraldehyde linker. 

Cross-linked enzyme crystals (CLEC) are a highly stable novel type of biocatalyst. 

They are produced by stepwise crystallization and molecular cross-linking to 

preserve the crystalline structure. CLEC are extremely stable to temperature and 

organic solvents. The enzyme molecules are compacted to the theoretical limit, 

stabilization being a consequence of intense polar and hydrophobic interactions. 

CLEC are represented in the market with examples of lipases, thermolysin, glucose 

isomerase and penicillin acylase (Margolin, 1996). Medium engineering, the 

manipulation of the reaction medium (Gupta, 1992), is a completely different 

approach where the total substitution of water might be beneficial for biocatalyst 

stability (Bell et al., 1995). It is thus clear that many options are available to improve 

stability of biocatalysts in various media and conditions. 

 

 

 

 46



2.7  PROTEASES AND WINE 

Yeast proteases may have intra- or extracellular origin. The extracellular proteases 

are of importance during the autolysis process, where the wine is aged in contact 

with the yeast lees. Intracellular or cytoplasmic proteases serve to degrade cellular 

macromolecules and are confined to the vacuole (Rothman & Stevens, 1986), but 

can be released upon cell lyses. Only a few proteases however are active under the 

specific conditions of fermentation (Lurton, 1987). It has been reported that with 

prolonged storage on the lees, wine becomes more protein stable due to the action 

of protease A and the release of mannoproteins during autolysis. 

As the enzyme in itself is hazardous to the yeast cell, an inherent protection 

mechanism is in place whereby the endoprotease is synthesized as a pre-protein. 

The pre-peptide is cleaved early in the secretory pathway and the pro-peptide is 

cleaved upon entry of the vacuole (Pretorius, 2000). This is to keep the protease A 

inactive during transport in the cell. According to Luo & Hofmann (2001), for the 

protease to become active, the regulatory-domain (auto-inhibitor) is cleaved by the 

protein or prevented from blocking the active site by other means. 

Yeast autolysis represents an enzymatic self-degradation of cellular 

constituents, which occurs after cell death or causes cell death. The main events 

during autolysis are the breakdown of cell membranes, which allow for the release of 

hydrolytic enzymes, and subsequently, accumulation of degradation constituents in 

the medium (Babayan & Bezrukov, 1985). Therefore, hydrolytic enzymes are a major 

concern during autolysis and among the enzymes involved (phospholipases, 

glucanases, and nucleases), proteases have been studied extensively (Aschteter & 

Wolf, 1985; Babayan & Bezrukov, 1985; Behalova & Beran, 1979). According to 

Behalova & Beran (1979) the relative protease activity could serve as an indicator of 

the rate of autolysis. Various studies on differing yeast autolysis conditions have led 

to contradictory results. The pH of wine is unfavourable for most yeast proteases, so 

that autolysis in wine is a specific case. Protease A is the only acid protease found in 

yeast, which explains its role in nitrogen release. Because protease A is an 

endoprotease, its action should result in peptide release rather than the release of 

amino acids. 

In order to better characterize autolysis during wine aging on lees, Alexandre et 

al. (2001) followed the evolution of protease A activity and nitrogen fractions, 

focusing on amino acids and peptides, during alcoholic fermentation. They reported 
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for the first time protease A activity in yeast cells during alcoholic fermentation and 

autolysis in synthetic must under oenological conditions. It was shown that the 

enzyme activity significantly increase after sugar exhaustion. Previous research has 

shown that protease A activity or its expression is induced during stress conditions, 

especially nutritional stress such as nitrogen starvation (Nakamura et al., 1997). A 

study by Harsen et al. (1977) supported the possibility that the synthesis of protease  

appears to be repressed by glucose. 

Alexandre et al. (2001) noted no extracellular protease activity during alcoholic 

fermentation. Also, they found that extracellular activity is 3- to 30- fold lower than 

intracellular activity measured during alcoholic fermentation and autolysis, 

respectively. The very low extracellular activity raised the question of whether or not 

protease activity can diffuse outside the cell, and whether autolysis awaits breakdown 

of the vacuolar membrane in order to release the enzyme. It seems probable that the 

walls of dead cells remain unbroken during autolysis (though thinner than in living 

cells) and it could still be an efficient barrier (Charpentier & Feuillat, 1993). They 

reported that after alcoholic fermentation, the amino acid content increased 

constantly during autolysis. The kinetics of the amino acid liberation has been 

described as follows: the first stage is a passive diffusion from the intracellular pool, 

but the second stage is linked to the action of protease activity (Lurton et al., 1989), 

especially exoprotease like carboxypeptidase (Sato et al., 1997). Peptide release 

during autolysis is an important oenological factor for various reasons: 

(i) peptides as nitrogen compounds favour malolactic fermentation in wines; 

(ii) the peptides could interact with phenolic compounds and improve natural 

fining in the wine medium; 

(iii) they contribute to the organoleptic properties of the wine. 

 

The development of haziness (protein instability) in white wine is considered the next 

most common physical instability after the precipitation of potassium bitartrate (Van 

Rensburg & Pretorius, 2000). High ethanol and low pH levels induce this instability 

occurring after bottling and during storage (Van Rensburg & Pretorius, 2000).  

Thus far, bentonite, montmorrelite clay, has been used for its absorption 

qualities in the removal of protein hazes. Bentonite adsorption is not specific for only 

proteins; it removes a variety of charged species and aggregates. As a result, large 

amounts of added bentonite can decrease the organoleptic properties of the wines by 

removal of important aroma and flavour components (Voiliey et al., 1990). It also 
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generates large volumes of lees and causes a 5-20% loss of wine (Canal-Llaubères, 

1993). 

Attention has been directed towards proteolytic enzymes, specifically acid 

proteases, as an alternative protein depletion technique to remove excess wine 

protein. These enzymes effectively hydrolyze the peptide linkages between amino-

acid units and could be very effective to reduce haze formation and improve 

clarification and stabilization. The enzymatic hydrolysis of proteins into small peptides 

and their component amino acids could also serve to provide low molecular weight 

peptides and amino acids that may be utilized as substrates by the micro organisms 

in fermentation (Alexandre et al., 2001). Experiments were conducted on proteolytic 

enzymes included the use of grape proteases (Cordonnier & Dugal, 1968), yeast 

proteases (Feuillat et al., 1980; Ledoux et al., 1992) and exogenous proteases 

(Modra, 1989) and the experiments have been performed at low temperatures to 

appropriate wine making. It has become clear that treatment of juices with proteolytic 

enzymes does not confer protection against protein precipitation, because the wine 

proteins are not hydrolyzed under these conditions (Heatherbell et al., 1984; Modra & 

Williams, 1988; Waters et al., 1992; 1995). 

These problems could be overcome by the use of a vacuolar protease A, 

encoded by the PEP 4 gene that is active at low pH levels (Pretorius, 2000). It could 

be possible that the wine becomes more stable due to the action of protease A and 

the release of mannoproteins. On the other hand, secretion of proteins and other 

compounds by the yeast may raise the protein content of the wine and increase the 

haze formation. The search for fungal enzymes that degrade these haze-forming 

grape proteins has thus far remained unsuccessful (Pretorius, 2000). Research has 

shown that the protein-instability is not dependent on the total protein content of the 

wine, but rather on specific protein fractions. These fractions are grape derived and 

their size and iso-electrical points are such that they are susceptible to solubility 

limitations (Boulton et al., 1996). It is normally associated with pathogen related (PR)-

proteins, its production is induced in the grape during fungal attack. 

Therefore, it seems unlikely that protease will replace bentonite fining at this 

point. This is not due to the inactivity or insufficient concentration of enzymes, but the 

inherently resistance of haze-forming proteins to proteolysis. As these specific 

proteins form part of the defence system of the plant against fungal protease, their 

degradation will unlikely to be achieved by an acid protease. This resistance to 

degradation is not due to protection by other components, covalently bonded sugars, 

 49



or associated phenolic compounds. It seems that protein conformation is responsible; 

the interactions with juice components serve to mask the protease sensitive sites 

(Van Rensburg & Pretorius, 2000). It appears that correct viticultural practices hold 

the key to controlling these PR proteins. 

Protease preparations are highly active on exogenous protein substrates, thus 

the ‘ineffectiveness’ of proteolytic enzyme treatment of wines can not be due to the 

presence of protein inhibitors (Modra & Williams, 1988; Waters et al., 1992). These 

observations suggest that grape and wine proteins are extremely resistant to 

proteolytic attack under winemaking conditions (Waters et al., 1992). Furthermore, 

this proteolytic resistance is not due to phenolic association or glycosylation (Waters 

et al., 1995), indicating that it is an inherent property of these polymers. 

Non-specific proteolysis is important not only for protein degradation and amino 

acid recovery, but also for processes such as generation of peptides for antigen 

presentation. Cells and organisms employ targeted proteolysis for the purposes of 

receptor activation, cell-cycle regulation, apoptotic signalling and transcriptional 

regulation, amongst others (Luo & Hofmann, 2001). 

Landbo & Meyer (2001) found that protease addition to black currant pomace 

greatly increased extraction of antioxidative phenols. Their research showed 

protease to significantly increase plant cell wall breakdown in the pomace, and 

suggested it as another application for the industrial enzyme preparations. Perl et al. 

(2000) attempted to establish the effect of protease on plant material necrogenesis 

and speculated that protease technology could in future be used to improve transient 

GUS expression in plants by interfering with different stages in which the 

hypersensitive-like response (HR) might be modulated. Thus it may in future be 

possible to decrease the concentration of proteins in wine and reduce haze-formation 

using protease technology. 
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2.8  CONCLUSION AND PROSPECTS 

Wine producers today face intensifying competition brought about by a widening gap 

between production and consumption. There is a shift of consumer preference away 

from basic commodity wine to top quality wine and economic globalisation. Thus 

there is a need for revolutionising the whole winemaking process. The industry needs 

to transform from being production-orientated to being market-driven, and this 

creates an increasing dependence on, amongst other, biotechnological innovation.  

The single most important factor in winemaking is the organoleptic quality 

(appearance, aroma and flavour) of the final product. The bouquet of the wine is 

determined by the presence of a well-balanced ratio of flavour compounds and 

metabolites (Lambrechts & Pretorius, 2000). There is an ‘untapped pool’ of aroma 

and flavour compounds in glycosidically bond precursors, or their substrates are re-

routed to a different metabolic pathway, which leads to a lesser expression of 

desirable characteristics. Significant progress has been made in the construction of 

yeasts producing colour- and aroma-liberating enzymes (pectinases, glycosidases, 

glucanases and arabinofuranosidases) and ester-modifying enzymes (alcohol acetyl 

transferases, esterases and isoamyl acetate hydrolyzing enzymes) (Van Rensburg & 

Pretorius, 2000; Laing & Pretorius, 1993; Pèrez-González et al., 1993; Lambrechts & 

Pretorius, 2000; Lilly et al., 2000). Furthermore, several yeasts have been developed 

that produce optimized levels of glycerol (Eglinton et al., 2002; Remize et al., 1999), 

those who produce fusel oils and those producing phenolic acids. The accumulation 

of compounds that enhance viability and vigour are also targeted, e.g. sterols, 

threhalose and glycogen (Bauer & Pretorius, 2000). Another aim is to expand the 

capacity of S. cerevisiae to use nitrogen sources such as proline (Henske, 1997). 

Fermentation problems have commercial implication such as wine spoilage, 

waste of fermentation space or aroma loss. Among the targets for improving 

fermentation performance are increased resilience and stress resistance of active 

dried-yeast cells (Ivorra et al., 1999; Kim et al., 1996; Tanghe et al., 2000); improved 

grape sugar and nitrogen uptake and assimilation; enhanced resistance to ethanol 

and other microbial metabolites and toxins; resistance to sulphite, heavy metals and 

agrochemical residues; and reduced foam forming (Pretorius & Van der Westhuizen, 

1991; Pretorius, 1999; Pretorius, 2000; Pretorius, 2001; Pretorius, 2002). The 

enhancement of yeast cell resistance could reduce stuck or sluggish fermentations, 
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which often leads to wine spoilage. Loss of wine due to spoilage impacts enormously 

on the economics of the wine industry each year.  

The fining and clarification of wine includes some expensive and laborious 

practises that generate large volumes of lees for disposal and cause aroma and 

flavour loss to the wine. As an alternative to physical treatments; yeast are being 

developed to secrete proteolytic and polysaccharolytic enzymes that would remove 

haze-forming proteins and filter-clogging polysaccharides (Querol & Ramon, 1996; 

Pretorius, 1999; Van Rensburg & Pretorius, 2000; Gognies et al., 2001; Laing & 

Pretorius, 1993; Pèrez-González et al., 1993; Van Rensburg et al., 1998). 

The uses of enzymes in winemaking have been proven to be highly beneficial in 

various aspects, and it has caused great advances in the quality of wine. However, 

the application of enzymes is still in its infancy. Many problems have to be solved 

before their full potential can be reached. An understanding of the interactions 

between enzymes is needed to in order to explore the diverse advantages this 

technology holds. There is an urgent need for the improvement of enzyme-

application at the following target areas: 

(i) high activity levels (substrate turnover rates per unit of protein) under wine-

specific conditions; 

(ii) high levels of resistance to inactivation by heat treatment; 

(iii) low pH conditions; 

(iv) proteolytic attack. 

Also important is the stabilization of production costs and an extended shelf life 

under ambient conditions, as these have proven to be the most common problems at 

application level. 

Commercial enzyme preparations are frequently used to supplement the 

endogenous enzyme activity. The production process of these types of preparations 

makes it impossible to obtain a pure enzyme product. The result is a mixture or 

cocktail of enzymes, which include a variety of different activities, such as 

glucosidases, glucanases, pectinases and proteases. One of the biggest threats in 

these enzyme cocktails is the presence of acid protease. This enzyme is potentially 

detrimental to all enzyme activities, as it uses other enzymes as its substrate, and 

may render them useless. 
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The exploration of enzyme potential will undoubtedly help the wine industry 

meet the technical and consumer challenges of the 21st century. Tremendous 

progress has been made over the past few years, generating a wide range of 

possibilities. However there are scientific, technical, economic, marketing, safety, 

legal and cultural issues that have to be addressed. At the present moment the 

deeply rooted concerns of consumers and traditionalists give the perception that it 

may border on ‘commercial suicide’ if any winery should prematurely pioneer the first 

wine fermented with recombinant yeast. It would however be self-crippling to the 

industry at large if the phenomenal potential of enzyme technology, which could 

propel the wine industry into the era of ‘designer’ products, would be ignored. The 

vast potential on a multitude of levels and applications will be realized, however, only 

if the application is judicious, systematic and achieved with high regard for the unique 

nature of the product. The diversity, which is the heart of the wine industry, should 

never be threatened by the use of enzyme applications. In fact, it should rather be 

applied as a protection mechanism in order to expand the diversity of high-quality 

wines. 
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Department of Oenology and Viticulture, Institute for Wine Biotechnology. 
Stellenbosch University, Stellenbosch 7600, South Africa 

 
The use of enzymes in winemaking has been proven to be highly beneficial, but the application 
is still in its infancy. Many problems have to be solved before their full potential can be 
reached. There is a need for the improvement of enzyme-application at the following target 
areas: high activity levels (substrate turnover rates per unit of protein) under wine-specific 
conditions, high levels of resistance to inactivation by heat treatment, low pH and proteolytic 
attack. Also important is the stabilization of production costs and a extended shelf life under 
ambient conditions. 

The distinctive varietal flavour of wines is affected by the absolute and relative 
concentrations of many compounds, including monoterpenols. These occur as free volatile 

and odorous molecules, or glycosidically bound, odourless, non-volatile complexes. β-

glucosidases are able to hydrolyze these glycosidic bonds and thereby releasing the aromatic 

terpenols. However grape-endogenous β-glucosidases are inhibited by glucose, exhibit poor 

stability at low pH and high ethanol levels typical in wine medium. 

Commercial enzyme preparations are frequently used to supplement the endogenous 
enzyme activity. The production process of these types of preparations makes it impossible to 
obtain a pure enzyme product. The result is a mixture or cocktail of enzymes, which include a 
variety of different activities, such as glucosidases, glucanases, pectinases and proteases. 
One of the biggest threats in these enzyme cocktails is the presence of fungal acid protease. 
Also yeast protease poses a threat when the juice is inoculated with a yeast culture or when 
spontaneous fermentation occurs. This enzyme is potentially detrimental to all enzyme 
activities, as it uses other enzymes as its substrate, and may render them useless. Therefore in 

this study, we looked at the interactions between a yeast acid protease and a report activity (β-

glucosidase), in order to quantify their interactions and influences in different matrixes. We 
aimed to establish the interactions between the enzymes in two in vitro conditions as well as 
during the fermentation of wine. Using pure enzyme preparations and enzyme assays, the in 

vitro studies indicated that protease did not significantly affect the β-glucosidase activity. 

Subsequently wine from Sauvignon blanc grapes were made, with varying enzyme 
applications. The data from the fermentation study indicated that protease did not significantly 

affect the β-glucosidase activity. Based on our data, we suggest that even though protease 

may potentially inhibit a desired enzyme activity, it does not seem to pose a threat of enzyme 

inhibition of β-glucosidase  enzyme during the fermentation of natural wines. 
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3.2 INTRODUCTION 

Enzymes play a distinctive role in the complex process of winemaking. From pre-

fermentation through fermentation, aging and stabilization, the enzymes present are 

the driving force in this biotransformation. Thus, from a technical and chemical point 

of view, wine can be considered as a product of enzymatic transformation of grape 

juice. 

Fungi obtain their nutrients by absorption of compounds from their 

environment. Therefore most fungi are secretors of hydrolases which could serve to 

degrade extracellular macromolecules to low molecular weight substrates, readily 

transported into the cell (Garraway & Evans, 1984). These substrates are then used 

to support and sustain growth and metabolism. In contrast to many types of yeast, 

members of the genus Saccharomyces do not normally secrete external hydrolases 

(Ogrydziak, 1993) although some mutants have been found that secrete vacuolar 

hydrolases to the external environment (Rothman & Stevens, 1986; Schaffner & 

Weissman, 1973). 

The term enzyme is derived from the Latin words meaning “in yeast”. Thought 

to be living things themselves, the opposite was proven by Eduard and Hans 

Buchner in 1897 when they discovered “zymase” (Walker, 1998). They prepared a 

cell-free extract for medical purposes, and preserved it with sugar. The mixture 

began to bubble and produce foam, thus cell-free fermentation took place. 

Enzymes originate from a multitude of habitats. The grapes itself produce 

enzymes, as well as yeasts and other microbes (such as fungi and bacteria) 

associated with vineyards and cellar equipment. Certainly the most noteworthy fact 

about enzymes is their specificity. They can act on only one or a limited number of 

substances, recognising a specific chemical group. This, as well as their activity 

levels are poorly understood, but is still of greatest importance in the fermentation 

process. With the understanding and quantification of enzyme kinetics, it is possible 

to optimise preferred interactions to favour specific applications and decrease or 

even eliminate unwanted or negative influences. Most of the enzymes originating 

from the grape are either insufficient in quantity or ineffective because of other 

influences, such as sulphur dioxide, temperature or microbes. It is therefore only 

natural that commercial enzyme preparations are used to enhance the reactions. 

These preparations are obtained from organisms such as Aspergillus niger, which is 

cultivated under optimal conditions for growth and production. Of the 2500 different 
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enzyme-catalysed reaction recognised by the International Union Handbook of 

Enzymes Nomenclature (Gacesa & Hubble, 1998) only about 30 are used in 

industrial preparation. There are four major areas where enzymes are of particular 

use to improve the winemaking process: 

(i) juice clarification, must processing (e.g. pressing); 

(ii) reduction of ethyl carbamate; 

(iii) release of varietal aromas from the precursor compounds; 

(iv) reducing alcohol content. 

 

Grape processing can be divided into three stages: (i) Pre-fermentation, (ii) 

Fermentation and (iii) Post-fermentation. There are various enzymes that are of 

particular importance during specific stages of the grape’s processing. 

Monoterpenes and monoterpene alcohols play an important role in the flavour 

of grapes and wines. Although occurring in all cultivars, it is less pronounced in non-

muscat varieties, existing as a subtle support for flavour, whereas it is very important 

in the distinctive aromas of muscat varieties. The flavours they impart are not only 

linked to perfume-like and floral, but also include characters described as spicy, 

peppery, smoky and grassy. The major fractions of these compounds occur in the 

grape as glycosidically bound forms (Günata et al., 1985; Voirin et al., 1992; Williams 

et al., 1982), which render them non-volatile and therefore flavourless.  

There are various sugar moieties to which these terpenols are bound. 

Glycosidic bonds can be liberated by two methods: the first, acid hydrolysis has the 

disadvantage of possibly changing the varietal aroma of the wine. The second 

method is via enzymatic hydrolysis, which is attracting a lot of attention as an easier 

and more efficient means to improve varietal aroma and flavour. The hydrolysis 

mechanism is now well established (Günata et al., 1985; 1988) and entails specific 

glycosidases active in two successive steps. In the first step, the action of α-L-

arabinofuranosidase, α-rhamnosidase, β-xylosidase or β-apiosidase is necessary to 

cleave the inter-sugar linkage (Günata et al., 1988), and this is followed by the 

second step in which a β-glucosidase liberates the aglycone. In cases where the 

disaccharide moiety consists of two glucose units, only a β-glucosidase is needed to 

facilitate the complete reaction (Haisman et al., 1967). The release does not 

necessarily consist of a terpenol; it could have other beneficial properties, especially 

the release of resveratrol, a reported anti-oxidant (Vrhovsek et al., 1997). 
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The use of enzymes have attracted more interest in recent times, as enzyme 

systems in native organisms are sometimes not efficient enough for flavour release 

under the conditions that apply, for instance the low pH and high glucose 

environment of juices. Glycosidases occur nearly in every organism, however, not all 

of these enzymes are suitable for expression in other organisms, for example those 

from plants exhibit high pH optima (pH 5 for Vitis vinifera), and the enzyme is virtually 

inactive at pH 3 - 4, the pH of juices and wine (Aryan et al., 1987). Also the 

glycosidases from fungi are notoriously inhibited by glucose concentrations even as 

low as 9% (Riou et al., 1989). These enzymes are also more active at high pH values 

(Woodward & Wiseman, 1982). Bacterial enzymes generally have the disadvantage 

of being active at high temperatures, 50°C and higher (Woodward & Wiseman, 

1982). Yeast glycosidases exhibit the most favourable characteristics, and have 

therefore become the focal point of characterization and use of heterologous 

expression in other strains. These β-glucosidases have been studied intensively for 

future applications (Ranyal & Guerineau, 1984; Kuranda & Robbins, 1987: Machida 

et al., 1988; Günata et al., 1990; Gueguen et al., 1994; Rosi et al., 1994; Gueguen et 

al., 1995; Riou et al., 1988). 

In this study we have aimed to establish the interactions between protease and 

a β-glucosidase, in order to quantify their interactions and influences in different 

media. Of equal importance is the individual and overall effect on wine quality. Here 

we present the results of in vitro studies and a fermentation study. 

 
 

3.3 MATERIALS AND METHODS 

 
3.3.1 IN VITRO STUDIES 
The in vitro study was set up using two media (a wine and a buffer) as is indicated in 

Table 9. The samples were labelled as follows: Control, β-glucosidase and Protease, 

according to the enzyme additions made to each. All of these samples were done in 

triplicate to ensure statistical validity of the data. Samples were incubated in a water 

bath at 25°C in 2 mL sterilised eppendorfs with a volume of 1,5 mL, to which the 

enzyme additions were made.  

Wine: The wine used was a Sauvignon blanc 1999, from the Paarl area. It had the 

following analysis: pH 3,4; total acidity 6,23 g/L (measured as tartaric acid 
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equivalent); residual sugar 2,2 g/L (measured as glucose equivalent), alcohol 12,0% 

v/v. The wine was stored at 15°C until used. 

Citric buffer: The buffer was prepared using varying volumes of two stock solutions 

(0,1 M citric acid and 0,1 M sodium citrate), blended to a pH of 3,4 to correspond to 

that of the wine medium (Lillie, 1948). 150 µL of buffer at 0,1 M was placed in 2 mL 

eppendorfs and filled to a volume of 1,5 mL with distilled water. 

Cellobiose: Cellobiose was used as a substrate for the β-glucosidase enzyme 

assays. 40 µL of a 16% stock solution was added. The stock solution was prepared 

by dissolving 1,6 g of cellobiose in 100 mL of distilled water. 

 

TABLE 9: Experimental set up of in vitro studies 

Medium Control β-glucosidase Protease 

Buffer +cellobiose +cellobiose 
+ β-glucosidase 

+cellobiose+ β-glucosidase 
+protease (3 concentrations) 

Wine +cellobiose +cellobiose 
+ β-glucosidase 

+cellobiose + β-glucosidase 
+protease (3 concentrations) 

 

β-glucosidase enzyme: Megazyme β-glucosidase. The enzyme addition was made 

at 10 g/hL, as per manufacturer suggestion. 

Assay for β-glucosidase activity: The Sigma Glucose Trinder assay kit was used 

to determine the activity of the β-glucosidase enzyme. The Glucose Trinder reagent 

was prepared according to the instructions. Spectrophotometer set to 505 nm, with 

the absorbance reading set to zero with redistilled water as reference. A series of 

kuvettes was set up and labelled: reagent blank, standard, controls and samples 

(wine and buffer). 1,0 mL of glucose trinder reagent is pipetted into the tubes and left 

to warm up to assay temperature (25°C), as the stock solution is kept in refrigeration 

at 4°C. At timed intervals 5 µL of deionised water, standard, control and samples 

were added to the labelled kuvettes. It was gently mixed using a vortex. The kuvettes 

were incubated for exactly 18 minutes at ambient temperature (18-26°C). The 

absorbance (A) reading was taken at 505 nm at the same time intervals as for the 

additions. The glucose concentration was determined as follows: 

A(sample) – A(blank) / A(standard) – A(blank)  x  Concentration of standard. It 

relates to a glucose concentration in mg/dL. To convert the results to SI units, the 

values are multiplied by 0,5555 to give it in units of mmol/L. 

 71



Protease enzyme: Protease A from Sigma. It is an endopeptide EC 3.4.23.6 from a 

bakers yeast origin. It is presented as a mass of 1 mg, with 34 units per mg. As it is 

presented in a solid form, it was suspended in 5 mL of distilled water, to prevent 

interference from proteins or DNA. Aliquots of 100 uL were stored at 4°C. Additions 

were done in 3 different concentrations as follows: 

(i) Concentration 1 = 1 unit of protein, 

(ii) Concentration 2 = 5 units of protein 

(iii) Concentration 3 = 10 units of protein 

Assay for protease activity: An assay by Roche was used to determine activity, 

using a universal protease (casein and resorufin-labelled substrate) as is indicated in 

Table 10. Absorbance was read at 574 nm, using 2 mL plastic kuvettes. The 

reagents are stipulated as follows: 

(I) Substrate solution 0,4% casein w/v in redistilled water. 

(II) Incubation buffer 0,2 M Tris-HCl pH 7,8 and 0,02 M CaCl2. 

(IV) Sample solution (wine or buffer medium). 

(V) Stop reagent 5% Trichloroacetic acid (w/v) in redistilled water. 

(VI) Assay buffer 0,5 M Tris-HCl, pH 8,8. 

 
TABLE 10:  Protease enzyme assay 

Pipette into reaction vessel Sample blank Sample 

(I) Substrate solution 20 µL 20 µL 

(II) Incubation buffer 50 µL 50 µL 

(III) Redistilled water 120 µL 20 µL 

(IV) Sample solution - 100 µL 

Incubate at 37°C, for 60 minutes. Stop the reaction by addition of Stop Reagent 

(IV) Stop reagent 480 µL 480 µL 
Incubate for 10 minutes at 37°C, subsequently centrifuge for 5 minutes and pipette 

supernatant into kuvettes 
Supernatant 400 µL 400 µL 

(VI) Assay buffer 600 µL 600 µL 

Mix and immediately read absorbance of sample against blank at 15-25°C, 547 nm. 
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3.3.2 FERMENTATION STUDY 
Experimental scale winemaking: Sauvignon blanc juice was used from grapes of 

origin Paarl. The grapes were harvested, destemmed, crushed and then pressed. 

The juice sample was taken at the initiation of pressing, to which 30 parts per million 

(ppm) SO2 was added. It can therefore be considered as ‘free-run’ juice. The 

temperature of the juice at crushing was 22°C. The juice analysis was as follows: 

±220 g/L sugar, pH 3,8; total acidity 8,4 g/L. Overnight settling, without bentonite or 

enzyme additions then took place at 15°C. The juice was transferred to glass 

fermenters with a volume of 4,5 L using N2-gas (0,5 kPa pressure) to prevent 

oxidation. 

The 4 sets of samples were done in triplicate to ensure statistical validity of the data 

and the samples labelled as follows: 

Control – normal fermentation, no additions made 

β-glucosidase – β-glucosidase enzyme added at 5 units/wine 

Protease – protease A addition at 3 units/wine 

β-glucosidase + Protease – β-glucosidase at 5 units/wine and protease A at 

3 units/wine 

 

Fermentation caps (S-shaped, filled with distilled water) were used to prevent 

oxidation. Fermentations were carried out at 15°C in temperature controlled rooms. 

Samples were taken from each fermenter using sterilized Pasteur pipettes and stored 

in autoclaved eppendorfs at 4°C. Sampling was done every 3 days. The wines were 

fermented dry (less than 5 g/L residual sugar, as per law) and cold stabilized at -4°C 

without being racked off the lees. The wines were not filtered prior to bottling. Wines 

were bottled separately using N2-gas into sterilized bottles of 750 ml capacity and 

ring capped. Wines were stored at 12ºC in a temperature and humidity controlled 

room until analyzed.  

 
Enzyme additions: Proteinase A from Sigma and Megazyme β-glucosidase were 

used for the enzyme additions; which is the same enzymes used for the additions in 

the in vitro experiments. The enzymes were handled as specified by the supplier. 

Fermentation yeast: After the enzyme additions were made, the juice was 

inoculated with a Saccharomyces cerevisiae strain, VIN13, with a final concentration 

of 1x106 cells/mL. The active dry yeast culture (ADYC) was rehydrated as specified 

by the supplier.  
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Enzyme activity: Protease activity was measured with the enzyme assay as 

described for the in vitro studies. The β-glucosidase activity was indirectly measured 

by organoleptic evaluation of the wines, see below. 

Chemical composition: The levels of ethanol (% v/v), residual sugar, pH, total 

acidity, malic acid and lactic acid in the finished wines were determined using the 

methods described by Iland et al. (2000). The values obtained were confirmed using 

the Foss Wine Scan (Institute of Wine Biotechnology, Stellenbosch University). The 

Wine Scan method uses infra red light to determine the concentrations of various 

wine compounds. 

Organoleptic evaluation: Organoleptic evaluation of the wines were done in a 

professional wine tasting facility (Department of Oenology, Stellenbosch University), 

which ensured the correct lighting and sufficient air circulation. The tasting panel was 

selected from South African Wine and Spirits Board accredited tasters, who have 

successfully completed the board’s wine judging examination, and have extensive 

training and experience in the local industry and on the Veritas competition. Samples 

were arbitrarily numbered to ensure a good statistical spread. The samples were 

given in random order, with repetitions of samples to ensure consistency; as well as 

prevent palate fatigue, over-sensitation or blunting of the palate. Line scales with a 

range of 0 – 10 were used to evaluate the wine. Line scales were provided in three 

categories, with labels for each factor to be evaluated: 

1) Overall Quality: the quality, flavour concentration, palate weight and general 

intensity of aroma and flavour were judged; 

2) Floral and Fruit: typical Sauvignon blanc flavours such as green pepper and 

grassiness, were judged alongside some other fruit and floral aromas and 

flavours; 

3) Wine Chemical: alcohol, acidity and sweetness were evaluated, and scales 

were provided to indicate any problems such as oxidation, volatile acidity, etc. 

Then the tasters were required to draw up a preference list including all the wines, 

listing which wines they considered to be of highest quality. Results were analysed to 

be presented in a radar graph. 
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3.4 RESULTS AND DISCUSSION 

3.4.1  IN VITRO STUDIES 
The in vitro studies were done to establish possible interactions between the β-

glucosidase activity and acid protease. As the enzyme kinetics of these two enzymes 

have been studied in detail, we hoped to detect clear trends related to a defined set 

of conditions and to make conclusions based on the results, in order to suggest the 

possible interactions in a fermentation medium. Therefore a buffer and a wine 

medium were used to modulate the in vitro conditions. 

 

β-glucosidase activity in vitro
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FIGURE 9: Relative β-glucosidase activity in vitro. The scale of relative activity (%) indicates the 
percentage of experimental values in two different reaction media, wine (solid line) and buffer (dash 
line), relative to the maximum value of the glucose release by the enzyme in each condition. The 
values shown here are the means from the assays done in triplicate ± 5% standard deviation.    ⎯ ⎯ 
Control, ⎯ ⎯ β-glucosidase, ⎯ ⎯ Protease + β-glucosidase. Only the data from two higher 
protease concentration samples were used (an average of the two), as these showed greater stability 
over the time period. 
 

β-glucosidase activity was observed in the samples where the enzyme was 

added as opposed to the sample containing only the substrate (cellobiose), as is 

illustrated in Figure 9 (the standard deviation was < 5%). In the control buffer sample, 

the substrate, cellobiose, was not degraded; as no glucose were detected. This result 

supports the statement that an active β-glucosidase enzyme is needed to degrade 

the cellobiose. Figure 9 shows no significant difference between the relative activity 
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of the β-glucosidase enzyme when it is the single addition to the medium, or when 

protease is present. Based on these results we suggest that over the period of 

enzyme treatment, the presence of an active yeast acid protease had no significant 

inhibiting effect on β-glucosidase activity. 

No significant change was detected in the glucose concentration in the control 

wine sample, but a significant increase in glucose was detected in both the enzymatic 

samples. It is again clearly shown by the data presented that the sample containing 

the protease has similar reported activity (expressed as glucose release) as the 

sample without protease, thus no significant affect on the β-glucosidase activity was 

detected. From this data we conclude that the exogenous yeast protease does not 

significantly inhibit the β-glucosidase activity in a wine medium, nor in buffer medium. 

 It is interesting to note that the β-glucosidase activity increased to an average 

of 50% in the buffer medium over the first week; thereafter the activity was reduced to 

an average of 35% at the end of the second week. In the wine medium an increase in 

β-glucosidase activity is seen in the first week to an average of 20%, with a further 

increase in the second week to an average of 30%. 

In both the media the effect of protease on the β-glucosidase activity is 

insignificant; therefore the smaller increase of the β-glucosidase activity in the wine 

medium seems to be linked to an inhibitor which is present only in the wine medium. 

From these results it could be suggested that it is a wine-related compound that is 

responsible. It could further be suggested that the presence of ethanol (ethyl 

alcohol), a well-known enzyme inhibitor, could be responsible. 

Although β-glucosidase activity shows a greater increase over time in the 

buffer medium, the absolute value for glucose present was still greater in the wine. 

This can be attributed to the fact that the wine had a residual sugar (RS) of 2,2 g/L as 

stated before. The presence of this sugar residue, inflates the values obtained from 

glucose analysis. The majority of this sugar residue is yeast unfermentable sugars; 

however, a small percentage of glucose and fructose could be present in dry wines. 

But, as all the wine samples were obtained from a single wine, this RS was reduced 

to zero for data analysis. 
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Protease activity in vitro
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FIGURE 10: Relative protease activity in vitro. The scale of relative activity (%) indicates the 
percentage of experimental values in two different reaction media, wine (solid line) and buffer (dash 
line), relative to the maximum value of the absorbance obtained by the enzyme in each condition. The 
values shown here are the means from the assays done in triplicate ± 5% standard deviation. ⎯ ⎯ 
Protease [1], ⎯ ⎯ Protease [2], ⎯ ⎯ Protease [3]. The data from all the protease concentration 
samples are presented, to indicate the stability of the two higher concentrations as compared to the 
lowest. 
 

Protease activity was detected only in the samples containing additions of the 

protease enzyme preparation, but not in the control or β-glucosidase activity 

samples, as is shown in Figure 10. It is interesting to note that for protease 

Concentration 1, the measured relative activity decreased with an average of 20% 

after 2 hours, and with about 50% after 1 week in the buffer. This trend was observed 

in both media, however it was more pronounced in the buffer. This trend of initial 

decrease however, was not detected for the two higher protease concentrations, 

which showed no significant change during the time intervals mentioned. 

When the protease activity values in wine is compared to that in buffer, it is 

very interesting to note that the relative protease activity in wine is on average only 

20% of that measured in the buffer medium (data not shown). This level of relative 

activity may, however, be too low to affect (inhibit) other enzyme activities in the wine 

medium. This data also correlates with the results found in the relative activity assay 

for β-glucosidase. The lower relative protease activity reported in the wine medium 

(as opposed to buffer) supports the finding of higher activity of the report enzyme (β-

glucosidase) in the wine medium.  
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These results indicate that the relative protease activity is consistently higher 

in the buffer medium, and that although the higher protease concentrations does not 

relate to a significant activity increase over time, it has potentially greater inhibiting 

power than the lower Concentration 1 which shows a significant decline over the time 

period. 

 

 

3.4.2  FERMENTATION STUDIES 

With the interactions between the β-glucosidase and the protease activities defined in 

the conditions of the in vitro studies, fermentation studies were done to establish 

whether the results reported correlated with that of the fermentation conditions, or if 

the interactions were in fact very different. 

 

Protease activity during fermentation
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FIGURE 11: Relative protease activity during fermentation. The scale of relative activity (%) 
indicates the percentage of experimental values in the fermentation media (solid line), relative to the 
maximum value of the absorbance obtained by the enzyme. The values shown here are the means 
from the assays done in triplicate ± 5% standard deviation. ⎯ ⎯ Control, ⎯ ⎯ β-glucosidase, 
⎯ ⎯β-glucosidase + protease and ⎯ ⎯ Protease.  

 

 As the results in Figure 11 indicate, a protease activity was detected in the 

control and β-glucosidase samples during fermentation. Thus it can be suggested 

that a endogenous acid protease activity was present. The origin of this activity may 

be the yeast responsible for the alcoholic fermentation or the grapes themselves. The 
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protease activity in the samples containing protease additions decreased only to 

about 80% after 15 days, which is still a significant factor in terms of inhibition 

potential in the medium. 
From these results we have shown that acid protease is active even after 18 

days of fermentation. However, this is the first report to indicate that the protease 

does not significantly affect the β-glucosidase activity during fermentation. Neither 

synergism, nor inhibition was detected over the monitored time period.  

When the fermentation data is compared with that of the in vitro studies, we 

can conclude that the acid protease shows relative activity in all the media tested and 

it can be concluded that for at least 18 days of fermentation, protease is active in the 

medium. From our data we have shown that protease exhibits a more stable 

(constant over time) relative activity in buffer, and a declining relative activity in 

fermentation. It might be related to inhibiting factors such as alcohol levels and CO2 

formation in the fermentation. It is also interesting to note that the absolute activity in 

the fermentation was ± 25% of that recorded in the in vitro conditions. The difference 

is significant, but the relative activity in the wine fermentation is still capable of 

degradation of proteins, thus still a possible influence on β-glucosidases. 

 

Sensory evaluations were conducted at the end of the maturation period, 8 

months after the initiation of fermentation. There were only slight differences detected 

between the different wines, but no significant differences between the repetitions of 

applications (triplicate). Most of the tasting panel felt that the control wines and wine 

treated with only protease tended to be thin and watery compared to the wines 

treated with β-glucosidase enzymes. The wines which had any protease additions 

(both as only addition and in combination with β-glucosidase) exhibited a medicinal 

character (Figure 14) and it subsequently scored lower for the overall quality 

assessment, see Figure 12. 

The wines made with only β-glucosidase enzyme scored slightly higher 

compared to the wines treated with both enzymes (β-glucosidase and protease), and 

significantly higher than the control and the protease sample. The β-glucosidase 

treated wines were rated as having a good balance and fresh and crisp aromas. It 

also strongly exhibited typical Sauvignon blanc aromas such as grassy tones, green 

pepper and tropical fruit aromas, see Figure 13. 
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From these indications it can be suggested that β-glucosidase was 

active during the fermentation and as a result enhanced the organoleptic profile of 

the all the wine samples by strengthening the terpenol-related aromas. It seems that 

the protease additions had a slightly negative effect on the aroma profile, in that it 

exhibited a medicinal character; but it did not seem to significantly affect the activity 

of the β-glucosidase enzyme in releasing aromatic compounds.  
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FIGURE 12: Relative wine quality (organoleptic perception). 
 

 

From our data, we suggest that the protease had no significant affect on the β-

glucosidase activity in the fermentation. These results are strongly supported by the 

results found in the in vitro studies, where protease was reported to have no 

significant affect on the β-glucosidase enzyme activity. 

The wines were chemically analysed by methods described by Iland et al. 

(2000), standard analysis required for market ready wines were done, and results 

similar to the industry standard were recorded. The values obtained were confirmed 

using the Foss Wine Scan (Institute of Wine Biotechnology, Stellenbosch University), 

these values are stated in Tables 11 & 12. 
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FIGURE 13: Relative fruit and floral aromas. 
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FIGURE 14: Wine concentration and other taste perceptions.
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The wines treated with both enzymes showed a residual glucose content of 

0,85 g/L. None of the other treatments showed any residual glucose. Residual 

fructose were however present in all the wines, with an average of 3,98 g/L. The 

ethanol content of the wines treated with β-glucosidase was above 13,0% (v/v), 

whereas the other wines had very similar analysis, with values between 12,0 and 

13,0% (v/v). This may be partly explained by the release of glucose molecules by β-

glucosidase and these may be fermented to ethanol. However, it seems unlikely that 

the entire volume of glucose increase could be attributed to enzyme activity. 

 

TABLE 11:  Wine Scan analysis 1 

Sample pH* 
Total acidity** 

g/L 
Glucose 

g/L 
Ethanol 

% v/v 

Control 3.22 6.11 0.01 12.82 

β-glucosidase 3.19 6.19 0.03 13.43 

Protease  3.21 6.26 0.03 12.95 

Protease + 
β-glucosidase 

3.16 6.14 0.85 12.56 

*pH measured as standard SI unit. 
**Total acidity measured as tartaric acid equivalent 
 

 

TABLE 12:  Wine Scan analysis 2 

Sample 
Volatile acidity*

g/L 
Malic acid 

g/L 
Lactic acid 

g/L 
Fructose 

g/L 

Control 0.29 3.10 0.05 4.33 

β-glucosidase 0.26 3.14 0.00 2.78 

Protease  0.30 3.20 0.01 4.00 

Protease + 
β-glucosidase) 

0.22 3.07 0.00 4.60 

*Volatile acidity measured as acetic acid equivalent 
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Our data also included measurements at 1 and 2 hours after the additions of 

the enzymes (data not shown). The reason for this is to establish a ‘benchmark 

reading’, if the enzyme reactions were taking place in a matter of hours, it would 

prevent the study continuing for an extended period of time. But to focus on the 

results after 1 and 2 weeks, is more closely related to the actual winemaking 

conditions in the industry. Another approach would be to wait during fermentation 

while protease inhibits the other enzyme activities present in the medium and then 

allow β-glucosidase to perform after fermentation has been completed. But as we 

have shown, protease does not significantly affect the β-glucosidase activity, and 

therefore the time of application is irrelevant. Thus we can conclude that the natural 

release of components by an enzyme activity over a period of time delivers the best 

quality wine. The reason for this is that other unwanted enzymes present in the 

medium are losing activity over time, which will result in fewer breakdowns of the 

newly formed components, and also the stability of newly formed components is 

enhanced when released over time. 

 

 

3.5 CONCLUSION 

Yeast (Saccharomyces) produces several protease activities, of which the acid 

protease is the only one active in an acidic medium. It is the only protease from yeast 

origin that is active in a low pH medium that could survive the winemaking process. It 

is from a vacuolar origin (Ribéreau-Gayon et al., 2000) to protect the cell from the 

enzymes destruction. It plays an essential role in the turn over of cellular proteins. In 

addition, the protease A is indispensable in the maturation of other vacuolar 

hydrolases as it converts the precursor forms into active enzymes (Ribéreau-Gayon 

et al., 2000). It is released upon cell death and autolysis (Behalova & Beran, 1979), 

which is the degradation of the cell by its own proteases. This enzyme activity is used 

in the production of Champagne wines, where the mannoproteins released by β-

glucanases (Ribéreau-Gayon et al., 2000) during autolysis contribute to the 

organoleptic properties of the wine. 

From our data we have shown that acid protease is active in a wine 

fermentation for at least 18 days. Also we suggest for the first time that protease 

does not significantly affect β-glucosidase during the fermentation of wine. This was 
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confirmed by in vitro studies where the protease had no significant affect on the β-

glucosidase activity in either of the two media used. 

We conclude from our data that protease does not significantly inhibit the β-

glucosidase enzyme during fermentation. Future work might be dedicated to more 

detailed studies on the interactions between acid protease and other enzymes, as 

protease’s kinetics is very well documented. The characterization of these enzymes’ 

interactions may lead to applications in the elimination of unwanted enzyme activity, 

reduction of physical instability and enhanced varietal aroma. Studies are underway 

in our laboratory to continuously screen enzymes and their possible application in 

winemaking. 
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CHAPTER 4: GENERAL DISCUSSION AND 
CONCLUSIONS 

4.1 PERSPECTIVES 

Wine is one of the most complex beverages known to humankind. It is one substance 

consisting of a wide spectrum of flavours, aromas and other organoleptic 

experiences. These flavours stem from a very complex, non-linear system of 

interactions between hundreds of compounds originating from the grape, the 

fermentation process and the aging of the product. The aroma of wine is a cumulative 

result of absolute amounts and specific ratios of many interactive compounds, rather 

than being attributed to a single ‘impact’ odorant (Noble, 1994; Cole & Noble, 1995). 

The secondary aroma and flavour of the wine is the result of the influences of 

the yeast and fermentation conditions. This is because the flavour is derived from 

secondary metabolites of the grapes that undergo various changes in biosynthetic 

pathways. During fermentation the complexity of the wine is increased through the 

extraction of compounds from the solids present in the must, by modifying grape 

derived compounds, and producing a substantial amount of yeast metabolites 

(Scheier, 1979; Rapp & Versini, 1991). 

A high percentage of the metabolites occur in their respective, non-volatile O-

glycoside forms, rendering them odourless. This, however, creates a vast pool of 

aroma compounds that could be released over time, thus sustaining the aroma of the 

wine over a time period. Several studies have showed that the enzymatic hydrolysis 

can increase the amount of ‘free’ aroma compounds and thus drastically intensify the 

varietal character (Canal-Llaubères, 1993; Williams et al., 1982). An example of this 

potential aroma pool is the monoterpene alcohols that naturally occur as 

glycosidically bound structures in grapes. 

β-glucosidases are enzymes able to cleave these glycosidically bound aroma 

precursors. Indigenous grape glucosidases (Canal-Llaubères, 1993) are, however, 

inhibited by low pH and high ethanol levels. In contrast, the β-glucosidases of 

Aspergillus and other fungal species are mostly tolerant of the pH, glucose and 

ethanol levels in wine. These enzymes have been used as components in 
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commercial preparations, which are added to the fermentation or to young wines 

(Canal-Llaubères, 1993). 

Chapter 1 of this thesis sketches the importance and place of wine in the 

society today as a first choice lifestyle product of moderation. Fundamental 

innovations in various aspects of the winemaking process are revolutionizing the 

wine industry, while the market pull and technology push continue to challenge the 

tension between tradition and innovation. Now there are new, and for the moment 

controversial, ways of innovation – genetic engineering, protein engineering and the 

use of enzyme kinetics. This chapter elaborates on the importance of enzyme 

kinetics in various areas concerning the winemaking process. It is involved in the 

grape during maturation for the production of the potential aroma profile, in the 

fermentation process, the reduction of potential hazardous components and 

stabilizing of the wine during maturation. It shows that enzymes can be employed to 

reduce the inherent drawbacks of industrial (chemical) transformation processes 

(Van Rensburg & Pretorius, 2000; Underkofler, 1976). The various enzymes currently 

used in industrial processes are mentioned alongside the different types of specificity 

(Van Rensburg & Pretorius, 2000). The last section of this chapter states clearly the 

danger of an acid protease, which can destroy all the possible advantages of enzyme 

kinetics. This motivates the research presented in the thesis; to identify and 

characterize the effects of an acid protease on one of the most commonly used 

enzymes, β-glucosidase, in the winemaking process. 

From Table 4 it is clear that enzymes have various applications in the 

winemaking process, and are highly beneficial in enhancing the fermentation 

performance, strengthening the varietal aroma, broadening stability, as well as 

adding certain health benefits (Van Rensburg & Pretorius, 2000). Thus it seems 

inevitable that if the multitude of reactions that these enzymes catalyse is going to be 

exploited, the activity in question will have to be enhanced by an enzymatic 

preparation.  

The first section of chapter 2 focuses on plant cell wall and grape berry 

polysaccharides. It describes the structural features of the most important 

polysaccharides in terms of their basic structure as well as oenological significant 

substituents. The aromatic residues in plant cell walls are discussed. Only a small 

fraction of the odorous compounds (monoterpene alcohols) are in a free and volatile 

state and can contribute to the aroma of the wine. The larger fraction is bound to 
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saccharide moieties in the wine, rendering them non-volatile and odourless (Günata 

et al., 1985; Voirin et al., 1992; Williams et al., 1982). Thus as large part of the 

possible aroma could be “lost” as it can not be detected by the consumer. The aroma 

of fermentation and maturation are equally important, as many chemical shifts 

between related compounds occur (Hennig & Villforth, 1942; Buttery et al., 1971). 

Aging of wine in wood contribute significantly to the extraction of different aromatic 

compounds and very slow, controlled oxidation stabilises many compounds as well 

as the wine colour (Puech, 1987; Vivas & Glories, 1996; Singleton, 1987). 

Carbohydrate degradation, carotinoid degradation, formation of esters and shifts in 

terpeniod concentration are the most important chemical changes that occur during 

bottle maturation (Rapp et al., 1985a; b). 

We are introduced to the properties and characteristics of the various classes 

of enzymes that are presently used during winemaking processes. The method of 

degradation of the substrate by the specific enzyme is discussed. It looks at the 

possibility of releasing these bound monoterpenes alcohols and thus increasing the 

flavour of the wine through enzymatic hydrolysis (Günata et al., 1988). The 

importance of pectinases and cellulases in the management of clarification and 

filterability of the wine, especially concerning Botrytis cinerea infected grapes, is 

highlighted (Blanco et al., 1994; Ribéreau-Gayon et al., 2000; Bailey et al., 1993; 

Pretorius, 1997). Glycosidases have the ability to unlock the great aroma potential 

that lies hidden in the glycosidic bounded complexes (Günata et al., 1988).  

The second part of chapter 2 focuses on the utilisation of biotransformation 

for changes in the chemical profile of wine. It emphasizes the importance of 

commercial enzymes and their applications in the industry. This concept is taken 

further when we look at the inhibiting factor for biocatalyst utilisation: stability. 

However, various methods are now available to improve the stability and activity of 

enzymes over the entire specificity range. 

In the final section of this chapter (2) the relationship between wine and 

protease is detailed. This enzymes’ kinetics have both the possibility to destroy other 

biocatalyst’s advantages, as well as the possibility to promote peptide release and 

protein instability (Alexandre et al., 2001). The increased recovery of peptides and 

amino acids during autolysis is an important oenological factor as peptides and 

nitrogen compounds favour malolactic fermentation in wines; the peptides could 

interact with phenolic compounds and improve natural fining in the wine medium and 
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they contribute to the organoleptic properties of the wine (Alexandre et al., 2001). 

The physical instability of haze formation caused by pathogen-induced proteins could 

indirectly be minimized by the use of a vacuolar protease A, encoded by the PEP4 

gene, that is active at pH levels (Pretorius, 2000). It seems that wine becomes more 

stable due to the action of protease A and the release of mannoproteins during 

autolysis. 

There is a shift in global trends in the industry regarding the use of commercial 

enzyme preparations and genetic engineering. It has become clear that if the wine 

industry wants to remain a player in this highly competitive market, the phenomenal 

potential that gene technology poses cannot be ignored. The vast potential on a 

multitude of levels and application will be realized, however, only if the application is 

judicious, systematic and achieved with high regard for the unique nature of the 

product. 

Chapter 3 describes the research into the effect of an exogenous yeast acid 

protease on an Aspergillus sp. β-glucosidase in wine-related conditions. Identifying 

and characterizing their interaction as expressed in various conditions, including two 

different in vitro media and in fermentation of wine would achieve this. 

In the in vitro studies the activity of the respective enzymes was determined in 

a wine and a buffer medium. The conditions in the two media were set to closely 

resemble each other in pH and substrate availability. Thus it was possible to 

determine if there are other influences within the wine medium than could affect 

enzyme activity, such as ethanol or other chemical compounds. Specific influences 

were not investigated. The effect of the protease on the report activity was 

established by quantifying whether the relative activity of β-glucosidase was 

significantly changed. These results were compared with a control and a sample 

containing only a β-glucosidase addition. The data showed a β–glucosidase activity 

increased over the monitored time period. The protease did not affect the β-

glucosidase activity significantly. There was also no difference between the different 

protease concentrations in terms of effect on the β-glucosidase activity, showing that 

increased protease concentration did not affect β–glucosidase activity. It would rather 

seem to be a wine related factor that is responsible for the differences between 

relative activities of the β-glucosidase in the two media. 

The fermentation studies were aimed at the establishment of the relative 

activity of, as well as the interactions between the two enzymes during fermentation 
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conditions. Fermentation is considered to be the crucial stage in the development of 

the wine’s aroma profile and chemical composition. For this reason, enzymes are 

added specifically at this stage to reinforce the enzymatic release of aroma 

compounds and the stabilization of the aroma profile and colour. Experimental scale 

fermentations were set up with various enzyme additions and monitored by enzyme 

assays throughout the process of alcoholic fermentation. The wines were stabilized 

and bottled separately, and sensory and chemical analyses were performed. We 

report that both of the enzymes showed a relative activity during the fermentation of 

the wines. 

The addition of protease to the fermentation did not significantly affect the β–

glucosidase activity when compared to the wine made with only a β–glucosidase 

addition. It was postulated that protease might be able to inhibit or decrease the 

activity of β–glucosidase, and that the addition of β–glucosidase in the presence of 

this protease would therefore be useless. Even though the protease activity was 

shown to be higher in both the wine and buffer medium, when compared to the 

fermentation, it did not seem to adversely affect the activity of β–glucosidase to a 

significant degree. 

From the data presented in this chapter (3) it can therefore be stated that both 

protease and β–glucosidase enzyme preparations are active in different media to 

varying degrees. From our data we have shown that protease is active for at least 18 

days during the fermentation process. It has been shown for the first time that the 

protease did not significantly affect the report activity in the in vitro or the 

fermentation conditions. 

Future work would entail more detailed studies of interactions between 

protease and enzymes in specified oenological conditions. The degradation 

capability of protease could be directed towards unwanted enzyme activities such as 

browning through oxidation of the must. The characterization of proteases’ interaction 

with other enzymes may thus hold the key to producing wines with enhanced aroma 

potential, more stable colour; as well as the elimination of unwanted enzyme 

activities. 
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