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ABSTRACT 

Schizophrenia is a debilitating disease affecting approximately 70 million people worldwide. 

Response to treatment, much like the disorder itself, is highly heritable, heterogeneous, and 

poorly understood. Only 50% of patients respond well to medication, and extensive research 

has provided limited improvement on this figure. Advances in genetic technologies coupled 

with massive increases in study sample size have the potential to explain the “missing 

heritability” of both schizophrenia and treatment response. Genome-wide association studies 

(GWAS) are at the forefront of complex trait research, but have had minimal success in 

terms of explaining the biology of psychiatric drug response. Despite the majority of GWAS 

“hits” being located in noncoding regions, functional interpretation is usually restricted to the 

closest gene. The Encyclopedia of DNA Elements (ENCODE) project has recently shown 

that noncoding variation is not just a functional proxy of adjacent coding regions, but can 

have complex and pervasive regulatory effects.     

This study aimed to investigate the functionality of noncoding single nucleotide 

polymorphisms (SNPs) in schizophrenia treatment response. A novel bioinformatics pipeline 

incorporated coding and noncoding variants implicated in treatment response, regions of 

linkage disequilibrium (LD), regulatory data, and biological pathway predictions. Firstly, the 

literature was mined to identify all variants associated via GWAS with antipsychotic 

response, after which publically available data was employed to find markers in LD with 

these variants. This larger group of variants was analysed with bioinformatic tools such as 

RegulomeDB and rSNPBase to determine regulatory potential. Thereafter, affected gene 

targets and pathways were identified with DAVID and GeneMANIA. In order to investigate 

the findings further, the top predicted regulatory variants and their GWAS partners were 

genotyped with TaqMan® OpenArray® in a South African first episode schizophrenia (FES) 

cohort and analysed for associations with treatment outcomes.  

The bioinformatic portion of this study implicated a region on chromosome 4q24 associated 

with treatment-refractory schizophrenia through involvement of the nuclear factor of kappa 

light polypeptide gene enhancer in B-cells 1 (NFKB1) gene. This gene is a master regulator 

involved in immunity and has over 200 gene targets. NFKB1 and immune dysregulation 

have both previously been implicated in schizophrenia, pointing to a genetic overlap 

between schizophrenia risk and antipsychotic treatment response. The most significant 

variants in the association analyses occurred at the 4q24 locus, with rs230493 and 

rs3774959 significantly associated with poor response in the negative symptom domain (P < 

0.0001). These findings suggest a genetic link between persistent negative symptoms and 
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treatment nonresponse. Additionally, a 14-variant haplotype containing these two 

polymorphisms was associated with 4.41% higher positive symptom severity.  

Not only do these results validate the importance of the 4q24 region in antipsychotic 

response, but they emphasise the overlap of schizophrenia risk and drug response, and the 

potential role of genomic dysregulation in undesirable treatment outcomes. NFKB1 and other 

associated genes should be studied in population-specific, replicative cohorts, in order to 

validate potential biomarkers of treatment response. This study illustrated the importance of 

thorough GWAS interpretation and inclusion of coding and noncoding variants to form 

biological hypotheses and better understand antipsychotic response. 

 

  

Stellenbosch University  https://scholar.sun.ac.za



 

iv 

 

OPSOMMING 

Skisofrenie is ŉ aftakelende siekte wat sowat 70 miljoen mense wêreldwyd raak. 

Behandelingsreaksie is, baie soos die siekte self, hoogs oorerflik en heterogeen, en word 

nog swak verstaan. Slegs 50% van pasiënte reageer goed op medikasie, en uitvoerige 

navorsing het slegs beperkte verbetering op hierdie syfer tot gevolg gehad. Vooruitgang in 

genetiese tegnologieë tesame met ŉ geweldige toename in studie-steekproefgrootte kan 

potensieel die “ontbrekende erflikheid” van sowel skisofrenie as behandelingsreaksie 

verklaar. Genoom-wye assosiasiestudies (GWAS) is aan die voorpunt van komplekse 

kenmerknavorsing, maar het tot dusver minimale sukses ten opsigte van die verklaring van 

die biologie van psigiatriese middelreaksie gehad. Ondanks die feit dat die meerderheid 

GWAS-trefpunte in niekoderende streke voorkom, is funksionele interpretasie gewoonlik tot 

die naaste geen beperk. Die Ensiklopedie van DNS-elemente- (ENCODE-)projek het 

onlangs bewys dat niekoderende variasie nie net ŉ funksionele sekundus van naasliggende 

koderende streke is nie, maar komplekse en deurdringende regulerende gevolge kan hê.  

Hierdie studie was daarop gemik om die funksionaliteit van niekoderende enkel-nukleotied-

polimorfismes (ENPs) in skisofreniebehandelingsreaksie te ondersoek. ŉ Nuwe 

bioïnformatika-pyplyn het koderende en niekoderende variante wat by behandelingsreaksie 

betrek word, streke van koppelingsdisekwilibrium (KD), reguleringsdata, en biologiese 

padvoorspellings geïnkorporeer. Eerstens is die literatuur ondersoek om alle variante te 

identifiseer wat via GWAS met antipsigotika-reaksie geassosieer word, waarna algemeen 

beskikbare data gebruik is om merkers in KD met hierdie variante te vind. Hierdie groter 

groep variante is met bioïnformatika-hulpmiddels soos RegulomeDB en rSNPBase ontleed 

om reguleringspotensiaal te bepaal. Daarna is geaffekteerde geenteikens en paaie met 

DAVID en GeneMANIA geïdentifiseer. Ten einde die bevindings verder te ondersoek, is die 

top- voorspelde reguleringsvariante en hul GWAS-vennote met TaqMan® OpenArray® in ŉ 

Suid-Afrikaanse eerste-episode-skisofrenie-kohort gegenotipeer en vir assosiasies met 

behandelingsuitkomste ontleed.  

Die bioïnformatika-gedeelte van hierdie studie het ŉ streek op chromosoom 4q24 

geïmpliseer wat deur betrokkenheid van die geen nukleêre-faktor-kappa ligte polipeptied 

geen bevorderaar in B-selle 1 (NFKB1) met behandelingsweerstandige skisofrenie 

geassosieer word. Hierdie geen, ŉ meester-reguleerder wat op immuniteit betrekking het, 

het meer as 200 geenteikens. NFKB1 en immuundisregulering is albei vantevore by 

skisofrenie geïmpliseer, wat op ŉ genetiese oorvleueling van skisofrenie-risiko en 

antipsigotika-behandelingsreaksie dui. Die mees beduidende variante in die assosiasie het 
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by die 4q24-lokus voorgekom, met rs230493 en rs3774959 wat albei beduidend met swak 

ná-behandelingsreaksie in die negatiewe-simptoom-domein geassosieer was (P < 0.00001). 

Hierdie bevindings dui op ŉ genetiese verband tussen volhardende negatiewe simptome en 

niereaksie op behandeling. Daarbenewens is ŉ 14-variant-haplotipe wat hierdie twee 

polimorfismes bevat met ŉ 4.41% hoër graad positiewe simptome geassosieer.  

Hierdie resultate staaf nie net die belangrikheid van die 4q24-streek in antipsigotika-reaksies 

nie, maar beklemtoon ook die oorvleueling van skisofrenie-risiko en middelreaksie, en die 

potensiële rol van genoom-disregulering in ongewenste behandelingsuitkomste. NFKB1 en 

ander verwante gene moet in populasiespesifieke, repliseerbare kohorte bestudeer word ten 

einde potensiële biomerkers van behandelingsreaksie te staaf. Hierdie studie illustreer die 

waarde van deeglike GWAS-interpretasie en die insluiting van koderende en niekoderende 

variante om biologiese hipoteses te vorm en antipsigotika-reaksies beter te begryp. 
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CHAPTER 1: Introduction 

1.1. The global burden of mental illness 

Psychiatric disorders place an immense burden on individuals, families, and communities. 

Worldwide, the combination of high prevalence, high cost of treatment, and high disability 

has long called for mental health to be prioritised in public health care (Murray and Lopez, 

1996). Psychiatric illness constitutes approximately 13% of the global disease burden (World 

Health Organization, 2008). In 2010, mental and substance use disorders caused the fifth 

highest number of disability-adjusted life years (DALYs), according to the latest Global 

Burden of Disease study. In fact, these disorders were the leading cause of years lived with 

disability (YLDs), a subcategory of the DALY (Whiteford et al., 2013). Compounding the 

problem, psychiatric disorders often demonstrate comorbidity with other chronic medical 

conditions, and can significantly worsen a patient’s outcome (Patel et al., 2013).  

These findings have far-reaching consequences. Firstly, mental illness creates a global 

economic burden currently estimated at $2.5 trillion, which is predicted to increase almost 

three-fold by 2030 (Bloom et al., 2011). A major contributor to these costs is a lack of 

successful preventions and cures, resulting in relapse and hospitalisation (Ascher-Svanum 

et al., 2010; Collins et al., 2011). Secondly, stigmatisation of psychiatric disorders produces 

a large socioeconomic burden in both urban and rural settings. Affected individuals are often 

cut off from their community, thus restricted from health care, education, employment and 

social support, resulting in significantly shorter lifespans compared to the general population 

(Kadri and Sartorius, 2005). 

Despite the serious and diverse problems created by mental illness, most countries do not 

allocate sufficient resources to psychiatric treatment (Saxena and Skeen, 2012). Mental well-

being is not globally prioritised in comparison to other illness: according to the Mental Health 

Atlas, governments spend approximately $2 per person on mental health annually (World 

Health Organization, 2011a). Even when an effective treatment strategy exists, it may not be 

implemented within the healthcare system, due to a lack of qualified staff or budgetary 

constraints (Tomlinson et al., 2009). For the most part, individuals with mental disorders are 

treated in primary healthcare facilities, with only 20% of adults with common psychiatric 

problems in the United States of America (USA) consulting a mental health specialist (Wang 

et al., 2005). Lack of proper care increases complications, stigma, and the already high 

costs associated with mental well-being (World Health Organization, 2011b). 
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Not surprisingly, the burden of mental illness is amplified in low- to middle-income countries 

(LMIC) such as South Africa. There is extensive evidence that poverty is strongly associated 

with increased risk for mental disorders (Patel and Kleinman, 2003; Murali and Oyebode, 

2004). Despite LMIC taking on as much as 75% of the global burden of psychiatric illness, 

their general healthcare budgets are lower, each with an even smaller portion dedicated to 

mental health (World Health Organization, 2011b). Demyttenaere and colleagues (2004) 

estimate that fewer than 24% of affected people in LMIC receive treatment. Furthermore, 

70% of African countries allocate less than 1% of their healthcare budgets to mental health 

(Lund et al., 2010). 

The dire situation in LMIC is partly attributable to a lack of resources in the form of 

healthcare professionals. For example, there is an average of only one psychiatrist per two 

million individuals in low-income countries (Saxena and Skeen, 2012). To put this in 

perspective, the number of psychiatrists on the African continent is less than the number in 

the state of Massachusetts in the USA (Patel et al., 2013). Additionally, mental health is 

deprioritised in LMIC due to high rates of other diseases such as HIV/AIDS and tuberculosis 

(Lund et al., 2010). The immense health, socioeconomic, and financial burdens of 

psychiatric illness call for increased research, education, and healthcare resources, 

particularly in LMIC. Improving the understanding and treatment of these disorders is vital for 

ensuring sustainable mental well-being. 

1.2. Pharmacogenomics 

An important consideration for the treatment of any disease is pharmacogenomics, or the 

effect of genetic variation on drug response. Often, immense heterogeneity is seen in 

individuals treated with the same medication. This is largely influenced by variants in 

individuals’ DNA, particularly in drug metaboliser and transporter genes (Ozomaro et al., 

2013; Carr et al., 2014). In most cases, psychiatric drug treatment is standardised for all 

patients, proceeds by trial-and-error, and dose or medication type is adjusted only after a 

positive outcome is not reached (Cacabelos et al., 2011). This is a costly and potentially 

dangerous exercise for the treatment of any disease, as drug toxicity and side effects are a 

reality for many patients. For example, Nyakutira and colleagues (2008) discovered that 50% 

of African patients receiving efavirenz for HIV treatment had blood concentrations above the 

toxicity threshold, as a result of a gene-dose interaction. With reference to psychiatric 

treatment, the administration of common antipsychotics can cause tardive dyskinesia, a 

chronic and severe movement disorder, in up to 30% of patients (Chowdhury et al., 2011).  
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Psychiatric treatment is complex, chronic, and requires close monitoring of patients. 

Although expensive, standardised treatment is currently substantially cheaper than the 

resources required for personalised medicine. However, the implementation of 

pharmacogenomics in psychiatry is expected to reduce costs associated with long-term 

treatment outcomes. This field of research has the potential to minimise the development of 

side effects, treatment complications, and hospitalisations, ultimately lowering the amount of 

YLDs and DALYs associated with disease (León-Cachón et al., 2012). In fact, 

pharmacogenomics has already demonstrated its ability to save money on disease 

treatment. Recently, pharmacogenetic screening of patients prior to treatment with the anti-

cancer drug, trastuzumab, decreased the length of the clinical trial by approximately eight 

years, and saved millions of dollars (Cook et al., 2009). Further demonstrating the 

importance of pharmacogenomic considerations, many drugs approved by the Food and 

Drug Administration (FDA) contain labels with pharmacogenomic indications, including over 

30 psychiatric medications such as antipsychotics and antidepressants 

(http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.ht

m).   

Despite these findings, pharmacogenomic applications are limited, as the majority of large-

scale genetic studies have focused on disease susceptibility rather than treatment response.  

By investigating pharmacogenomic interactions in psychiatry, our understanding of treatment 

outcomes, and subsequently our ability to tailor treatment to the individual and improve drug 

design, will increase. The coupling of well-characterised clinical data with genetic and 

bioinformatic resources has great potential for alleviating the extensive burden placed on 

those with mental illness. This is particularly important in LMIC given the magnified burden of 

disease in these countries. Thus, pharmacogenomics is an essential starting point in the 

improved treatment of psychiatric diseases. 

1.3. Genetic diversity in South Africa 

Although pharmacogenomic research shows great promise, the overwhelming majority of 

studies is conducted in developed countries. Paradoxically, Hinds and colleagues (2005) 

estimate that LMIC contain up to 90% of human genetic variation, thus providing an 

unparalleled resource for genetic studies of complex disorders. In fact, Southern African 

populations have demonstrated the highest level of genetic diversity worldwide (Campbell 

and Tishkoff, 2008). The South African Coloured (SAC) population, for example, is highly 

admixed, with African, Asian, and European ancestry contributions (de Wit et al., 2010; Daya 

et al., 2013). South Africa therefore provides a rich genetic resource for uncovering the 
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architecture of complex traits (Ramsay, 2012), and should be viewed as an opportunity for 

genomic research rather than a disease burden to the world.  

 

Nevertheless, South African individuals remain understudied and underrepresented in 

pharmacogenomic research (Drögemöller et al., 2011). Indeed, the extreme gap between 

needs and available services in LMIC is mirrored by the so-called “10/90 gap” in research. 

This is the phenomenon that only 10% of global research funding is spent on the problems 

faced by the poorest 90% of the population (Global Forum for Health Research, 2000). 

Furthermore, only 5% of research published in high impact psychiatric journals originates 

from LMIC, with only 1% from South African authors (Patel and Sumathipala, 2001; de Jesus 

Mari et al., 2009). There is no doubt that South Africa is home to unique and heterogeneous 

genetic variation, and clinically actionable findings from high-income countries may not be 

applicable. Therefore, increased study of its populations is vital for identifying the genetic 

differences underlying complex phenotypes such as psychiatric illness and treatment 

response. By combining the latest technological advances in genetics with overburdened 

and understudied ethnic groups, novel insights into psychiatric pharmacogenomics and 

improved treatment become possible. 
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CHAPTER 2: Literature review 

2.1. Schizophrenia 

2.1.1. Symptoms and stages 

Schizophrenia is arguably the most debilitating psychiatric disorder, and consequently is 

highly stigmatised and costly to treat (van Os and Kapur, 2009). Indeed, of all the mental 

disorders investigated by the latest Global Burden of Disease study, schizophrenia 

accounted for the most disability (Whiteford et al., 2013). The disorder is complex and 

pervasive, permeating all aspects of an individual’s life and manifesting as a range of 

symptoms. Positive or psychotic symptoms are defined as exaggerated states of functioning, 

which are absent in the general population but present in schizophrenia, whilst negative 

symptoms constitute loss of a range of functions that are usually present in healthy 

individuals (Tandon et al., 2009). For example, individuals with schizophrenia may 

experience hallucinations and delusions on the one hand, but impairments in speech, 

motivation and social interest, on the other. General psychopathological symptoms also 

occur, which include mood, motor and cognitive deficits. These symptoms can be quantified 

by different scales, the most common of which is the Positive and Negative Syndrome Scale 

(PANSS; Kay et al., 1987). Seven items on this scale measure positive and negative 

symptoms, respectively, and 16 items measure general psychopathology, as shown in Table 

2.1. Each of the 30 items on the test is scored from 1-7, increasing in severity. Therefore the 

baseline PANSS score is 30, and the maximum possible score is 210. 

Table 2.1: Schizophrenia symptom items measured by the PANSS (Kay et al., 1987). 

Positive symptoms Negative symptoms General symptoms 

Delusions 
Conceptual disorganisation 
Hallucinatory behaviour 
Grandiosity 
Excitement 
Suspiciousness 
Hostility 
 

Blunted affect 
Emotional withdrawal 
Poor rapport 
Social withdrawal 
Difficulty in abstract thinking 
Lack of spontaneity 
Stereotyped thinking 

Somatic concern 
Anxiety 
Guilt feelings 
Tension 
Mannerisms and posturing 
Depression 
Motor retardation 
Unusual thought content 
Uncooperativeness 
Disorientation 
Poor attention 
Lack of judgment and insight 
Poor impulse control 
Preoccupation 
Disturbance of volition 
Active social avoidance 
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The PANSS is widely used to determine symptom severity, response to treatment, relapse, 

and remission in schizophrenia (Levine et al., 2011). Other scales include the Scales for the 

Assessment of Negative (SANS) and Positive (SAPS) Symptoms (Andreasen, 1983; 1984) 

and the Brief Psychiatric Rating Scale (BPRS) (Overall and Gorham, 1962). 

Schizophrenia is a chronic disorder that typically displays a gradual deterioration in 

functioning. It can be divided into four stages or phases, indicated in Figure 2.1. Generally, 

negative and cognitive symptoms surface in childhood or adolescence, followed by the 

development of psychotic symptoms in young adulthood (Mueser and McGurk, 2004). The 

first psychotic episode marks the beginning of the psychotic phase and the official onset of 

schizophrenia, which is usually followed by subsequent episodes in between brief periods of 

remission (Lieberman et al., 2001). The disorder then reaches a stable plateau, which is 

characterised by residual negative and cognitive symptoms and a general decline in 

functioning (Tandon et al., 2009).  

 

Figure 2.1: Representation of the stages observed during the course of schizophrenia (Tandon et al., 

2009).  Reprinted with permission from Elsevier. 

Despite the classification of schizophrenia into different stages, diagnosis of the disorder is 

difficult. Tandon and colleagues (2009) discuss several limitations of the four-phase model of 

schizophrenia. Firstly, there is extensive heterogeneity in the type and severity of symptoms 

seen in individuals, making differentiation between phases difficult. Psychotic symptoms 
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often do not manifest in clear intervals, therefore the definition of the first episode of 

psychosis is somewhat arbitrary. Additionally, more than half of patients that experience mild 

positive symptoms in the prodromal stage do not go on to develop the disorder. Lastly, the 

time course of the illness and extent of deterioration vary between patients (Tandon et al., 

2009). Nevertheless, relapses and persistence of symptoms despite treatment create a 

chronic struggle with schizophrenia for the majority of individuals (Albus, 2012).    

2.1.2. Diagnosis 

The current diagnosis of schizophrenia is determined by clinical interview, based on criteria 

either in the fifth version of the Diagnostic and Statistical Manual of Mental Disorders (DSM-

5; American Psychiatric Association, 2013), or the International Classification of Diseases 

version 10 (ICD-10; World Health Organization, 2015), which are similar and display high 

diagnostic reliability (Peralta and Cuesta, 2003; Mueser and McGurk, 2004). The most 

commonly used system, the DSM-5, advises diagnosis when an individual exhibits two or 

more core symptoms, i.e. hallucinations, delusions, negative symptoms, or disorganised 

thinking. In addition, these symptoms must be present for at least a month before a patient 

can be diagnosed as experiencing their first psychotic episode (American Psychiatric 

Association, 2013). In contrast to previous versions, the DSM-5 does not divide 

schizophrenia into subtypes (paranoid, catatonic, disorganised, schizoaffective, 

undifferentiated, and residual), as this approach has shown limited reliability and validity, and 

poor clinical success (Tandon, 2014). Instead, the manual proposes a broad and thorough 

assessment of symptom severity to address the substantial variation that exists between 

patients.   

The heterogeneity of schizophrenia poses another problem to diagnosis: there is extensive 

overlap with other psychiatric disorders. On the whole, research does not support the 

compartmentalisation of these disorders, as most mental illnesses have been found to share 

risk factors, symptoms, and biological pathways (Adam, 2013; Doherty and Owen, 2014). 

This is displayed in Figure 2.2, in which psychiatric disorders lie upon a spectrum. There is a 

need for reconsideration of nosological boundaries, as many researchers agree that 

schizophrenia’s heterogeneity means it should not be defined as a single disease (Tandon, 

2012; Barch et al., 2013; Alvarez-Rodriguez et al., 2014; Arnedo et al., 2014). Although the 

DSM-5 does not address this developing paradigm shift, taking a dimensional approach to 

diagnosis is a promising first step towards an improved understanding of this complex 

disorder. To provide more precise diagnosing in psychiatry, the National Institute of Mental 

Health (NIMH) has developed the Research Domain Critera (RDoC), which shifts focus 

away from symptoms onto biologically distinct psychopathological mechanisms (Insel et al., 
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Figure 2.2: The spectrum of psychiatric disorders, illustrating overlap between symptoms (Adam, 

2013). Reprinted with permission from Nature Publishing Group. 

2010; Insel and Cuthbert, 2015). Classification of patient subgroups with RDoC considers 

specific biosignatures, identifiable through genetic research and neuroimaging (Insel et al., 

2010). Studies implementing this method are few and require validation, but this is a 

promising step in improving schizophrenia diagnosis and outcome.  

2.1.3. Risk factors 

Schizophrenia presents a lifetime risk of 0.7% (Tandon et al., 2008), with a prevalence of up 

to 1% in the general population (Curtis, 2013). Its aetiology and biological mechanisms are 

poorly understood, and much like the other features of schizophrenia, the risk factors for 

development of the disorder are heterogeneous. The establishment and severity of 

schizophrenia involve the interplay between several genetic and environmental influences 

(Tsuang et al., 2004; Singh et al., 2014).  

Pre- and perinatal risk factors for schizophrenia include maternal infection, stress, 

malnutrition and obstetric complications (Opler et al., 2013). Individuals that have 

experienced childhood trauma also show increased risk for the disorder (Schmitt et al., 

2014). Various sociodemographic stressors contribute towards schizophrenia, such as 

urbanicity (Krabbendam and van Os, 2005), migration (Cantor-Graae and Selten, 2005) and 

lower social class (Mueser and McGurk, 2004). The “social defeat hypothesis” suggests that 

occupying a lower social standing or belonging to a minority increases risk for the disorder 

(van Os et al., 2010). Finally, cannabis use has been linked to schizophrenia development 

(van Os and Kapur, 2009). Despite environmental elements, it is widely acknowledged that 

genetic predisposition is the top contributing risk factor for schizophrenia, with family history 

of the disorder being the most reliable predictor for development in an individual (Sullivan, 

2005; Clarke et al., 2012). 
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2.1.4. Genetics 

Family, adoption and twin studies have shown the heritability of schizophrenia to be 

approximately 81%, making it one of the most heritable psychiatric disorders (Sullivan et al., 

2003; Singh et al., 2014). The risk of developing the disorder increases with the degree of 

relatedness to an affected individual. For example, the concordance between monozygotic 

twins is three times greater than between dizygotic twins (Clarke et al., 2012, Girard et al., 

2012). Despite evidence of genetic aetiology, the complex, non-Mendelian nature of 

schizophrenia and other psychiatric disorders has made the exact biological underpinnings 

tricky to elucidate (Singh et al., 2014). 

Currently, there are two major hypotheses with regards to the genetic mechanisms of 

schizophrenia. The common disease – common variant (CDCV) hypothesis proposes that 

many commonly occurring genomic variants of small effect size bring about a cumulative 

increase in schizophrenia susceptibility. Conversely, the common disease – rare variant 

(CDRV) hypothesis states that a small number of rare, but highly penetrant variants of large 

effect size confer the majority of schizophrenia risk (Stefansson et al., 2009; van Dongen 

and Boomsma, 2013). Recent findings suggest that the truth lies somewhere between these 

two, with a combination of heterogeneous rare and common alleles culminating in the 

pathophysiology of the disease (Mowry and Gratten, 2013).  

Genetic research has unveiled extensive results across this spectrum of variants. Earlier 

studies relied on linkage analyses, which look at co-segregating variants in families, and can 

be a successful tool for understanding simple Mendelian diseases (Kerem et al., 1989; Muir 

et al., 1995; Mowry and Gratten, 2013). Poor replication and weak significance signals led to 

the abandonment of this approach, in favour of a more complex, polygenic view of 

schizophrenia (Rodriguez-Murillo et al., 2012). Candidate gene association studies were the 

next advancement in the study of schizophrenia. This method compares a particular gene in 

schizophrenia cases and controls and determines whether there are common variants that 

associate with the disease (Kim et al., 2011). The SzGene database is a record of all genetic 

association studies, and contains over a thousand genes studied with the candidate 

approach (Allen et al., 2008). However, many results are inconsistent and the majority of 

studies have not been replicated. Additionally, this hypothesis-bound method is restrictive, 

since selecting a candidate gene is based on the limited knowledge we have of 

schizophrenia (Collins et al., 2012). 

Almost a decade ago, fuelled by advances in genotyping technology, the first genome-wide 

association study (GWAS) on schizophrenia was performed (Mah et al., 2006). GWAS have 
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Figure 2.3: Bar graph demonstrating the exponential growth of sample size and discovery of 

schizophrenia risk loci in genetic studies (Flint and Munafò, 2014). Reprinted with permission from 

Nature Publishing Group.  

significant advantages over previous study designs. Firstly, they do not require selection of 

candidate genes; in other words they provide an unbiased and hypothesis-free approach, 

creating the potential for discovery of novel schizophrenia loci (Zhang and Malhotra, 2013a). 

Secondly, by scanning the entire genome, GWAS can simultaneously analyse millions of 

single nucleotide polymorphisms (SNPs) and determine association with schizophrenia in 

large case/ control groups (Kim et al., 2011).  

This approach gives enormous support to the CDCV hypothesis. Since GWAS have been 

applied to the field of schizophrenia, over 100 independent variants have been identified in 

more than 15 GWAS, in unprecedented sample sizes (Zhang and Malhotra, 2013a; 

McCarthy et al., 2014). This highlights the importance of large sample sizes, with increased 

sample size leading to more associations (Figure 2.3). The most notable findings that have 

been replicated in subsequent studies are variants in the zinc finger protein 804A (ZNF804A) 

gene, the major histocompatibility complex (MHC) genes, the neurogranin (NRGN) gene, the 

transcription factor 4 (TCF4) gene, and the dopamine receptor D2 (DRD2) gene (Rodriguez-

Murillo et al., 2012; Ripke et al., 2014). The MHC locus is currently the most replicated 

finding, suggesting a role for the immune system in schizophrenia development (Sullivan et 

al., 2012; Ripke et al., 2014).    

 

 

 

 

 

 

The most noteworthy contributor to this field is the Psychiatric GWAS Consortium (PGC), 

which is spread across 19 countries and over 60 institutions, and currently has access to 

about 40 000 genomes for the study of schizophrenia (Sullivan, 2010; Wright, 2014). With 
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the aim of performing large-scale analyses of psychiatric disorders, the PGC has yielded a 

plethora of results relevant to schizophrenia. Their most recent study identified 108 

significant risk loci, 83 of which were novel. However, there were significant results for genes 

involved in neurotransmitter systems, such as DRD2, which are consistent with previous 

hypotheses of impaired neurodevelopmental functioning in schizophrenia (Ripke et al., 

2014).    

The growing number of novel loci for schizophrenia susceptibility suggests that the disorder 

is even more complex than previously assumed. Moreover, it is estimated that these 

common alleles only account for 1-2% of genetic risk for schizophrenia, making them neither 

vital nor sufficient for development of the disorder (Zhang and Malhotra, 2013a). One must 

also consider that GWAS have limitations. Firstly, the nature of multiple testing requires 

independent replication studies to ensure that variants are not simply statistical artefacts 

(Bertram, 2008), but the majority of GWAS “hits” have not been successfully replicated 

(Sham and Purcell, 2014). Secondly, there is a lack of post-GWAS functional analyses of 

significant loci, leading to a growing list of potentially important genomic regions, but minimal 

understanding of how they operate (Girard et al., 2012; refer to 2.3.2. for more about GWAS 

in relation to the current study).  

The case of missing heritability may in part be solved by analysing rare variants of large 

effect, as stipulated by the CDRV hypothesis. Copy number variants (CNVs) are rare 

mutations that are highly penetrant and demonstrate large effect sizes (Zhang and Malhotra, 

2013a). The most notable example is a de novo microdeletion on chromosome 22q11.2, with 

carriers exhibiting a three-fold increase in risk for schizophrenia (Sullivan et al., 2012). Rare 

point mutations have also been implicated in schizophrenia, although this type of study is in 

its infancy (Mowry and Gratten, 2013).  With advances in whole-genome and whole-exome 

sequencing, Xu et al. (2011) have shown that protein-altering de novo mutations are 

enriched in individuals with schizophrenia, which was confirmed in an independent study by 

Girard and colleagues (2011). More recently, a large study sequenced exomes of over 5000 

individuals, and found rare mutations across many genes that were significantly associated 

with schizophrenia (Purcell et al., 2014).  

These findings highlight the importance of rare variants in future studies of schizophrenia. A 

few years ago, the Grand Challenges in Global Mental Health initiative listed the 

identification of biomarkers as one of the top 25 challenges for progress in mental health 

(Collins, 2011). Ideally, genetic features of schizophrenia should be incorporated into its 

clinical conceptualisation and diagnosis, and there is a call for a more “biologically relevant” 
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nosology (Tandon, 2012; Kim and State, 2014). The current debate about the missing 

heritability of the disorder has generated progress in the form of many heterogeneous risk 

loci. It has been proposed that diverse, large-scale techniques in combination with functional 

analyses be used to identify the remaining predictors across the risk spectrum (Mowry and 

Gratten, 2013). This approach has the potential to improve our understanding of this 

complex disorder. 

2.2. Antipsychotic treatment of schizophrenia 

2.2.1. Background 

The treatment of schizophrenia was revolutionised with the chance discovery of 

chlorpromazine’s antipsychotic properties in the 1950s (Lopez-Munoz et al., 2005). Carlsson 

and Lindqvist (1963) subsequently determined that this drug’s success was brought about by 

dopamine receptor antagonism. This marked the establishment of the dopamine hypothesis 

in schizophrenia treatment (Kapur and Mamo, 2003). Today, over 60 years since the 

introduction of chlorpromazine, all antipsychotics include dopamine D2 receptor blockade in 

their mechanism of action (Brandl et al., 2014).   

Chlorpromazine was the first of over 60 antipsychotics designed to treat schizophrenia 

(Tandon et al., 2010). These drugs can be divided into two classes: the earlier, typical, or 

first generation antipsychotics (FGAs), and the more recent, atypical, or second generation 

antipsychotics (SGAs). Overall, studies have shown that FGAs effectively reduce psychotic 

symptoms and prevent relapses in schizophrenia, but other symptoms persist (Arranz and 

de Leon, 2007; Carpenter and Davis, 2012). These lingering negative and cognitive deficits 

contribute largely to general functional decline and long-term decreased quality of life 

(Kirkpatrick et al., 2006). The introduction of SGAs sought to improve upon treatment 

outcomes by incorporating a wider range of neurochemical targets than FGAs. Besides the 

D2 receptor, SGAs act on other components of the dopaminergic pathway, as well as the 

serotonergic, glutamatergic and adrenergic systems (Meltzer, 2013). 

Despite their multi-target profile, there is ongoing debate about whether SGAs offer 

treatment advantages over FGAs. Only a handful of large-scale studies comparing 

effectiveness of antipsychotics have been performed, including the Clinical Antipsychotic 

Trials of Intervention Effectiveness (CATIE; Lieberman et al., 2005) and the Cost Utility of 

the Latest Antipsychotic Drugs in Schizophrenia (CUtLASS; Jones et al., 2006). Both of 

these studies found no significant differences in the efficacy between the two generations of 

antipsychotics, but there were notable flaws in their study designs (Meltzer, 2013). The only 
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atypical antipsychotic that has clear, extensively replicated advantages over typical 

antipsychotics is clozapine, which is highly successful in treatment-refractory schizophrenia 

when other drugs fail (McEvoy et al., 2006; Bonham and Abbott, 2008; Chowdhury et al., 

2011). There is still much to learn about the mechanisms of these drugs, and advances in 

drug design have been relatively modest (Carpenter and Davis, 2012). Other treatment 

options for schizophrenia are illustrated in Figure 2.4. Despite antipsychotics being the most 

effective option, combining them with other forms of treatment is necessary for improved 

quality of life, given the complex and often lifelong nature of the disorder (Tandon et al., 

2010).  

 

Figure 2.4: Burdens and interventions as determinants of schizophrenia outcome (Tandon et al., 

2010). Reprinted with permission from Elsevier. 

2.2.2. Adverse drug reactions 

Perhaps the most apparent distinction between FGAs and SGAs is the different adverse 

drug reactions (ADRs) with which they are associated. Generally, ADRs caused by 

antipsychotics are diverse, severe, and can be long-lasting (Zandi and Judy, 2010). FGAs 

are associated with motor abnormalities, such as acute and reversible extrapyramidal side 

effects (EPS), namely dystonia, akathisia, and parkinsonism, or with chronic conditions, such 

as tardive dyskinesia (TD; Tandon et al., 2010). TD is the most extensively studied ADR and 
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occurs in 20-30% of individuals after three months of treatment with FGAs (Chowdhury et 

al., 2011).     

In contrast, SGAs present a significantly lower risk of EPS and are predominantly linked to 

weight gain and other metabolic side effects (Tandon et al., 2010). Antipsychotic-induced 

weight gain (AIWG) is observed in up to 30% of SGA-treated patients. Additionally, selected 

SGAs increase the risk of cardiac complications, such as the prolongation of the QT interval 

(Brennan, 2014). The uniqueness of clozapine applies to its side effect profile as well as its 

effect on treating nonresponse in schizophrenia. It has been associated with a small but life-

threatening risk of agranulocytosis, a condition characterised by a decrease in neutrophil 

count (Alvir et al., 1993). Clozapine is thus not recommended as a course of treatment 

unless previous administration of two other antipsychotics has failed (Zhang and Malhotra, 

2013b).  

The potentially detrimental side effects of antipsychotics significantly worsen compliance, 

lead to treatment discontinuation, and inhibit positive outcomes, necessitating the 

improvement of treatment strategies (Brandl et al., 2014). To achieve mental well-being and 

ensure sustained quality of life for schizophrenia patients, these adverse reactions must be 

better understood and minimalised. 

2.2.3. Treatment response 

The goal of antipsychotic treatment is complete and sustained remission without relapse. 

However, much like other aspects of schizophrenia, treatment response is complex and 

heterogeneous, and this is rarely a reality (Robinson et al., 2004). Although methods have 

not been standardised, the quantitative measurement of treatment outcome is commonly 

achieved with scales that measure symptom severity (Leucht et al., 2008). For instance, 

general improvement is determined by comparing baseline and post-treatment BPRS 

scores,  and changes in individual symptom domains are investigated with pre- and post-

treatment PANSS, SANS, and SAPS scores (Remington et al., 2010). In 2005, the 

Remission in Schizophrenia Working Group agreed upon criteria to define remission in the 

disorder (Andreasen et al., 2005). Schizophrenia remission is achieved when particular core 

symptoms, such as hallucinations and blunted affect, are absent or mild (that is, they do not 

affect functioning) for at least six months. These criteria are unambiguous absolutes, as 

opposed to scale-specific degrees of symptom improvement, making them amenable to 

cross-study comparison (Emsley et al., 2011).  
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There are several predictors of treatment outcome in schizophrenia. The most significant of 

these is the duration of untreated psychosis (DUP), which has an inverse relationship with 

positive outcome (Jeppesen et al., 2008). Indeed, individuals experiencing their first episode 

of psychosis show 57-67% better response than those in more advanced stages of the 

disorder, highlighting the importance of early intervention (Emsley et al., 2013). Another 

major influence on treatment efficacy is adherence to medication, with non-adherers five 

times more likely to relapse than adherent patients (Robinson et al., 2004). This problem has 

largely been combatted by the replacement of oral administration with long-acting injectables 

(LAI; Nasrallah, 2007). Lastly, early response and nonresponse have been shown as reliable 

clinical markers for longer term outcome, with response at two weeks predictive of positive 

outcomes, and nonresponse indicative of treatment-refractoriness (Kinon et al., 2010; Case 

et al., 2011).    

Unfortunately, remission is not achieved by the vast majority of patients, and approximately 

50% of individuals show minimal to no response to antipsychotics (Lohoff and Ferraro, 

2010). This is represented in Figure 2.5, which summarises the balance of good and poor 

outcomes in 18 independent studies on antipsychotics. All patients were experiencing their 

first episode of psychosis when recruited, and were monitored for more than one year post-

treatment (van Os and Kapur, 2009). Nonresponse or treatment-refractoriness can be 

defined as a lack of improvement in symptoms after treatment with two different 

antipsychotics for at least six weeks each (Suzuki et al., 2012). In these cases, clozapine is 

the go-to antipsychotic and has shown effective improvement in nonresponsive patients 

(Chowdhury et al., 2011). 

Considering the diverse scope of treatment outcomes, there is much to be discovered with 

regards to the workings of schizophrenia and antipsychotics. The heterogeneous clinical 

presentation of the disorder, high percentage of nonresponders, and severe ADR profiles of 

antipsychotics preclude the option of a standardised, one-for-all treatment design. Currently, 

genetic research into schizophrenia and antipsychotics is the starting point for developing 

individualised treatment and improved outcomes.  
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Figure 2.5: 18 studies demonstrating balanced outcomes of good vs. poor response to antipsychotic 

treatment (van Os and Kapur, 2009). Reprinted with permission from Elsevier. 

2.3. Antipsychotic pharmacogenomics 

2.3.1. Background 

The term pharmacogenetics was created by Vogel in 1959 to explain the interaction between 

genetic differences on the range of treatment outcomes observed between individuals. 

Pharmacogenomics takes this a level further, by encapsulating differences across the entire 

genome that affect drug response. As for schizophrenia, antipsychotic response is 

considered to be a complex, multifactorial trait with a strong genetic basis (de Leon, 2009). 

Twin and family studies have demonstrated the high heritability of treatment response, 

including ADRs, and it is hypothesised that the genetic component of this heterogeneous 

phenotype is brought about by multiple variants of small effect across the genome (Arranz 

and de Leon, 2007; Sun et al., 2012).  

Researchers first investigated genetic predictors of schizophrenia treatment efficacy in the 

early 1990s, and many candidate pharmacogene studies have been performed since then 

(Zhang and Malhotra, 2013b). The roles of these genes in treatment response can be 

divided into two classes, namely pharmacodynamics and pharmacokinetics. The former 

refers to the interaction between a drug, transporters, and its target molecule(s), whilst the 

latter involves the absorption, distribution, and excretion of a drug (Zandi and Judy, 2010). 
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With regards to pharmacodynamics, considerable research has been performed on variation 

within dopamine receptor genes following the establishment of chlorpromazine’s 

antidopaminergic action. Several polymorphisms in dopamine receptor genes, namely 

DRD2, DRD3, and DRD4, have shown associations with the extent of treatment efficacy and 

occurrence of ADRs in independent studies, the results of which are summarised by Arranz 

and Munro (2011). Furthermore, serotonin has been the secondary focus of 

pharmacodynamic studies. Alterations in the serotonergic system have been shown to play a 

role in both cognitive and negative symptoms of schizophrenia (Blanc et al., 2010). As 

previously stated, this system is targeted by SGAs, and polymorphisms in both serotonin 

receptors and transporters have been implicated in treatment outcome and the extent of 

metabolic side effects (Blanc et al., 2010).   

In addition to neurotransmitter systems, numerous studies have been performed on the 

pharmacokinetics of antipsychotics, with a focus on drug-metabolising enzymes (DMEs) 

such as the Cytochrome P450 (CYP) family. CYP2D6 codes for an enzyme essential for the 

majority of FGA metabolism (Lohoff and Ferraro, 2010), and is also highly polymorphic, with 

over 80 alleles having been identified (Rieder, 2014). This variation results in extreme 

individual differences, ranging from poor to ultra-rapid metabolism of drugs. Poor 

metabolisers of antipsychotics are at risk for developing drug toxicity and ADRs, whilst ultra-

rapid metabolisers receive insufficient doses (Lohoff and Ferraro, 2010). In addition, 

CYP1A2 is important for antipsychotic metabolism, and variation in this gene results in 

decreased enzyme activity (Murayama et al., 2004). Other CYP polymorphisms have also 

been associated with variable treatment outcomes, such as those in CYP3A4 and CYP3A5 

(Zandi and Judy, 2010). These studies have provided insight into the potential mechanisms 

of antipsychotics, but given the limited treatment success of drugs for the disorder, the 

candidate gene method has made way for more advanced, hypothesis-free approaches.   

2.3.2. Genome-wide association studies 

Unfortunately, the progress seen in schizophrenia susceptibility GWAS (2.1.4) is not 

matched by antipsychotic response GWAS. Only a handful of genome-wide studies have 

been conducted on the treatment response of schizophrenia, with the majority conducted in 

less than a thousand individuals per study (Alkelai et al., 2009; Lavedan et al., 2009). These 

GWAS are included in the National Human Genome Research Institute (NHGRI) GWAS 

Catalog, a database of all SNPs that have reached genome-wide significance (P ≤ 5x10-8) 

for associations with one of 17 complex traits, including general drug response (Welter et al., 

2013). A diagrammatical layout of the Catalog is shown in Figure 2.6.  
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Figure 2.6: The NHGRI GWAS Catalog: 17 traits, including drug response, with significantly associated SNPs (P ≤ 5x10-8) across the genome, as 

of December 2013 (www.genome.gov/gwastudies/). “Response to drug” includes GWAS on antipsychotic drug response. 
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Collecting samples of suitable size with sufficient statistical power for a GWAS is difficult for 

a complex phenotype such as antipsychotic response. This is likely because a large-scale 

study of schizophrenia treatment outcome ideally involves strict and replicable response 

criteria, as well as a clinically well-defined cohort (Meltzer, 2013). The gap between current 

pharmacogenomics research and clinical utility is vast. Zhang and Malhotra (2013b) state 

that “to date, there is no randomised clinical trial that provides solid support for using genetic 

testing to guide drug treatment in psychiatry”. However, antipsychotic pharmacogenomic 

GWAS do provide us with potential leads for new hypotheses on the mechanisms of both the 

drugs and the disorder, and the findings of these GWAS will be analysed in the current 

study.  

2.4. Functional effects of genetic variation 

2.4.1. Background 

Focus in genetic research has shifted from identifying genes to determining their functions 

and revealing the biology that links genotype to phenotype (Auerbach et al., 2013). With so-

called “next-generation” approaches such as whole-genome sequencing and GWAS, there 

is a wealth of data available on genetic variation, which can provide us with clues to gene 

function, disease aetiology, and the manifestation of complex traits. The current challenge is 

to interpret the plethora of significant results in order to gain understanding of their 

mechanisms (Girard et al., 2012).   

Nonsynonymous variants in protein-coding regions have been widely studied. Predictive 

tools such as Polymorphism Phenotyping (PolyPhen-2; Adzhubei et al., 2010) and Sorting 

Intolerant from Tolerant (SIFT; Kumar et al., 2009) are commonly used to assess the 

functional impact of a SNP based on resulting amino acid changes. There are several 

databases of coding variants that have been linked to disease, including Online Mendelian 

Inheritance in Man (OMIM; McKusick, 1998) and The Human Gene Mutation Database 

(HGMD; Stenson et al., 2009). With regards to pharmacogenomics, all variants that have 

been linked to drug response traits are curated in the PharmGKB database (Thorn et al., 

2010). This resource currently contains over 2000 genes, with information on associated 

drugs and clinical associations (http://www.pharmgkb.org/). Searching for the drug class 

“antipsychotics” returns 114 publications, the majority of which are candidate gene studies. 

These examples illustrate that coding variants have been studied extensively. This is due to 

their being amenable to functional analyses; that is they demonstrate a clear phenotypic 

alteration (Cooper and Shendure, 2011). However, noncoding variants have recently come 

into focus and have important implications for complex traits such as antipsychotic response. 
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2.4.2. Noncoding variation 

Even though studies on coding variation have revealed harmful disease-associated changes 

at the protein level, approximately 98% of the genome contains untranslated DNA and thus 

the majority of genomic variation. Some noncoding regions are transcribed into regulatory 

noncoding RNAs, whilst others act as sequence-specific binding sites for regulatory 

machinery that subsequently affect gene expression (Cooper and Shendure, 2011).  

Gene regulation is a multilevel process involving cis-elements, namely promoters, silencers, 

and enhancers, and trans-elements such as transcription factors that bind to cis-elements 

(Georgitsi et al., 2011). Illustrating the complexity of regulation, transcription factors are 

known to bind to thousands of different downstream target sites (Cooper and Shendure, 

2011). Furthermore, epigenetic mechanisms and environmental factors also influence gene 

expression (Pastinen, 2010).    

Polymorphisms in noncoding regions of the genome may contribute substantially to complex 

trait phenotypes. It is hypothesised that perturbations in regulatory pathways may have 

widespread effects and be significant in schizophrenia development, severity, and 

antipsychotic response (Arranz and de Leon, 2007). Substantiating this, the majority of 

common SNPs associated with disease lie in noncoding regions (Freedman et al., 2011). 

Regulatory SNPs (rSNPs) affect the phenotype by modifying gene expression, and may 

produce larger effects than coding mutations. Georgitsi and colleagues (2011) propose that 

rSNPs likely create greater alterations in the level of protein product, since coding SNPs do 

not necessarily affect efficient transcription and translation.  

Despite the hypothesised functional consequences of rSNPs, there is a shortage of studies 

demonstrating their effect. This is due, in part, to the difficulty of studying these regions. For 

example, tools such as PolyPhen-2 are based on evolutionary constraint analysis, an 

approach that is feasible for protein-coding regions because they are highly conserved. 

However, regulatory regions undergo many more changes over time and are not amenable 

to this type of analysis (Schmidt et al., 2010). Furthermore, the complexity of gene regulation 

and lack of information on the mechanisms of this multifactorial system have made 

characterising rSNPs difficult (Drögemöller et al., 2014a; Ritchie et al., 2014).     

Employing candidate gene approaches, pharmacogenetics has investigated a handful of 

regulatory regions flanking genes coding for DMEs, drug transporters and targets. Selected 

examples of rSNPs for treatment outcomes are listed in Table 2.2. Although these studies 

are hypothesis-bound, they suggest the importance of rSNPs in altering the response 
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phenotype via expression changes in well-studied genes. Indeed, patients are commonly 

genotyped for the VKORC1 promoter variant prior to warfarin administration, and dosage is 

tailored accordingly to avoid warfarin-resistance (International Warfarin Pharmacogenetics 

Consortium, 2009). There are many more pharmacogenes than those listed in the table, but 

a scarcity of studies on related regulatory variants (Georgitsi et al., 2011).   

Table 2.2: Selected rSNPs associated with changes in expression of pharmacogenes. 

Gene Variation Disease and/ or effect References 

UGT1A1 c.-3279T>G Gilbert’s syndrome 

Decreased bilirubinemia in G allele carriers 
Sugatani et al., 2002 

CYP2C19 c.-806C>T 
c.-3402C>T 

Psychiatric disorders 
Poorer treatment outcomes in T 
homozygotes 

Sim et al., 2006 
Li-Wan-Po et al., 2010 

CYP2D6 c.-1584C>G Psychiatric disorders 
Ultrarapid thioridazine metabolism in G 
allele carriers 

Zanger et al., 2001 
Dorado et al., 2009 

CYP3A4 c.522-191C>T Cardiovascular disease 
T allele carriers require lower statin doses 

Wang et al., 2010 

SLCO1B1 g.-11187G>A 
in linkage with 
c.521T>C(*5) 

Hypercholesterolemia 
Reduced pravastatin transport activity and 
reduced cholesterol concentration reduction  

Niemi et al., 2004 
Kameyama et al., 
2005 

VKORC1 c.-1639G>A Warfarin-resistance 

G allele carriers require higher dose 
Yuan et al., 2005 
Flockhart et al., 2008 

c. = mutation in coding DNA; g. = mutation in genomic DNA. 

The development of hypothesis-free, genome-wide approaches allows for the exploration of 

noncoding variation within the genome. In fact, the majority of observed GWAS “hits” are 

located in noncoding regions (Hindorff et al., 2009; Adkins et al., 2011). Unfortunately, 

characterisation of these regions in previous GWAS is rare, because most studies tend to 

focus solely on the functionality of adjacent genes, without investigating the potential role of 

the polymorphism in regulatory networks (Schaub et al., 2012; Ritchie et al., 2014). 

Restricting focus to the closest gene creates problems, since a significant polymorphism 

may only be a proxy for the causal SNP due to linkage disequilibrium (LD). Research has 

shown that significant variants can be in perfect LD with SNPs that are hundreds of 

kilobases away, sometimes outside of the range accounted for by the GWAS tag SNP 

(Schaub et al., 2012). Alternatively, a nearby SNP in perfect LD with the associated variant 

may be ignored in the interpretation phase of GWAS, because it falls within a noncoding 

region. 

Recently, characterisation of noncoding variation has focused on expression quantitative 

trait loci (eQTLs). eQTLs have been identified by combining whole-genome approaches 

such as sequencing and GWAS with quantification of genome-wide expression levels. This 
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allows for a link between variant identification and functional classification (Cookson et al., 

2009). These noncoding loci are associated with the expression of a particular gene that can 

be either proximally or distally located (Pastinen, 2010).  Recently, Qiu et al. (2014) used 

over 300 expression microarrays to assess gene expression levels in treated and untreated 

childhood asthma. The results constituted over 2000 drug-response eQTLs associated with 

several hundred genes; many compelling new targets for asthma treatment research. 

Another study conducted by Mamdani and colleagues (2013) investigated peripheral gene 

expression in antipsychotic treatment response, and identified 22 differentially expressed 

genes between responders and nonresponders. Importantly, many of these genes contain 

eQTLs that could be used as biomarkers for treatment response in future work. These 

studies serve as examples of the benefit of eQTL studies in pharmacogenomics. 

2.4.3. Recent bioinformatic developments 

In the wake of newer genomic techniques generating an abundance of genotype data, result 

interpretation and functional analyses have fallen behind. The mass of results generated has 

little clinical utility and our improvement in understanding complex traits is minimal. However, 

the development of bioinformatic tools to examine the functional implications of genomic 

variation is rapidly breaking through this research bottleneck.  

The first of its kind, the Encyclopedia of DNA Elements (ENCODE) sought to characterise 

and make publicly available all the functional elements of the genome. A functional element 

is defined by its creation of a reproducible biochemical signal (The ENCODE Project 

Consortium, 2007). This definition includes coding and noncoding DNA, noncoding RNAs, 

and cis-regulatory elements. The concept of functional elements is illustrated in Figure 2.7. 

In order to characterise genomic regions, several experimental approaches were used, 

including chromatin immunoprecipitation and sequencing (ChIP-seq), to identify transcription 

factor biding sites (TFBS) across the genome. Additionally, the binding of regulatory factors 

to cis-elements produces changes in chromatin states, which were identified by 

deoxyribonuclease I (DNase I) hypersensitive site (DHS) mapping (Maurano et al., 2013). 

The results generated by ENCODE were overwhelming: 1640 data sets performed on 147 

different cell types, with the controversial conclusion that 80% of the genome is functional, 

much of it previously believed to be “junk” DNA (The ENCODE Project Consortium, 2011). 

Interestingly, ENCODE has revealed that rSNPs are significantly enriched for GWAS 

associations (Schaub et al., 2012). Conversely, noncoding variants associated with GWAS 

were found to be concentrated in regions implicated in regulation (Maurano et al., 2013).   
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The functional annotation of the genome has mapped out regulatory regions and provided 

links between regulatory elements and gene expression. This plethora of findings enables 

researchers to analyse functional implications of noncoding variation, to predict whether they 

significantly alter a regulatory element. For example, in a recent schizophrenia susceptibility 

GWAS by the PGC, the authors used ENCODE to analyse the overlap of significant variants 

with DHSs, in order to assess their regulatory potential (Ripke et al., 2013). The ENCODE 

findings are encouraging for future antipsychotic treatment response studies. With the vast 

amounts of new information at our fingertips, progress in the development of new drugs, as 

well as improvement in the use of existing ones, becomes a possibility.       

 

Figure 2.7: Illustration of the various types of functional elements within the genome defined by 

ENCODE (Ecker et al., 2012). Reprinted with permission from Nature Publishing Group.  

Subsequent to the ENCODE project, several bioinformatic tools were created to pinpoint the 

biological implications of rSNPs; a task that was previously impossible on a large scale 

(Cooper and Shendure, 2011). Several examples are listed here. Firstly, RegulomeDB is a 

database that incorporates ENCODE datasets, computational predictions, a large amount of 

eQTLs, and other published literature to predict the effect that a single base pair change can 

have on the binding of regulatory elements across the genome (Boyle et al., 2012). This tool 
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has been widely used to analyse the impact of noncoding SNPs on gene regulation (Chung 

et al., 2013; Juraeva et al., 2014).  

Another bioinformatic tool, Transcription factor Affinity Prediction (TRAP), is utilised to 

assess the impact of SNPs on known transcription factor motifs (Manke et al., 2010). An 

application specifically designed to predict the impact of single nucleotide changes, sTRAP, 

compares “wild-type” and “mutant” sequences, i.e. potential rSNPs, and evaluates 

subsequent changes in affinity for transcription factors (TFs) to known TFBS motifs. 

rSNPBase is a resource of curated rSNPs identified by experimental analysis including 

ENCODE. Additionally, rSNPs uncovered by eQTL studies and computational predictions 

are included (Guo et al., 2014). The data is used to assess the functionality of noncoding 

variants, as well as predict which downstream genes are affected in which tissue types. This 

tool would be useful for discovering regulators of pharmacogenes, novel candidate 

pharmacogenes, and their corresponding expression levels in relevant tissues such as the 

brain and liver. 

Also analysing genome-wide expression levels, the functional annotation of the mammalian 

genome 5 (FANTOM5; The FANTOM Consortium et al., 2014) is a database of mammalian 

gene expression patterns across different tissues. This catalogue provides functional 

annotation of rSNPs and cell-specific transcriptome profiles, and has information available 

for at least one promoter for 95% of protein-coding genes.  

These resources allow scientists to broaden their focus to whole-genome functionality. 

Inclusion of all possible candidate SNPs via a hypothesis-free approach, coupled with in-

depth functional analyses, increases the likelihood of uncovering true causal variants. If a 

noncoding causal variant is elucidated, downstream gene targets can be predicted, and their 

expression levels in relevant tissues can be determined. This could improve our 

understanding of the complex biological mechanisms behind antipsychotic response. 

Additionally, such biological insights could lead us to biomarkers that improve diagnosis and 

treatment of schizophrenia. 

2.5. The South African context 

As discussed in chapter one, South Africa is home to unique and genetically diverse 

population groups. Pharmacogenetic studies on South African individuals have studied this 

variation with regards to drug response, contributing to the narrowing of the “10/90” research 
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gap between high- and low-to-middle income countries. For example, the population-specific 

diversity of the CYP alleles was illustrated by Gaedigk and Coetsee (2008) in a study of 99 

SAC individuals. The authors uncovered two novel CYP2D6 alleles, and observed 

frequencies vastly different to previously characterised variation in individuals of European 

descent. Both of these findings point to diminished CYP enzyme activity, and thus the need 

for ethnicity-specific treatment regimens. CYP2D6 is an important metaboliser of 

antipsychotics, suggesting that these results have implications for schizophrenia treatment 

as well as other drug responses (Zanger et al., 2004). Mitchell and associates (2011) also 

identified 26 novel alleles in the CYP2C9 gene in a black South African cohort. Additionally, 

this study investigated variation in the well-studied VKORC1 gene, associated with warfarin 

dosage. Variation in these two genes – as well as minor environmental covariates accounted 

for in the study – were found to contribute to approximately 45% of the heterogeneity in 

warfarin dosage. In a larger-scale study, Ikediobi and colleagues (2011) genotyped over 200 

SNPs across 12 genes that have been previously associated with antiretroviral treatment 

response in two genetically unique South African population groups. Significant differences 

in CYP allele frequencies were seen between the two groups, illustrating the diversity of 

South African ancestry and the heterogeneity of treatment response (Ikediobi et al., 2011; 

Warnich et al., 2011).    

With specific reference to antipsychotic pharmacogenomics, a novel approach applied 

exome sequencing to 11 South African first episode schizophrenia (FES) patients, followed 

by variant prioritisation and genotyping in a larger FES and Xhosa cohort (Drögemöller et al., 

2014b). Several loss-of-function variants were identified, the majority previously unidentified 

or at very low frequencies in Asian and European population groups. Once again, this study 

highlights the uniqueness of South African genomes and the need for increased research in 

this field.  

Unfortunately, the pharmacogenomic studies in South Africa have mostly spanned a handful 

of candidate genes in relatively small sample sizes (Warnich et al., 2011). Due to high 

incidence of diseases such as HIV and tuberculosis, the few GWAS that have been 

performed on Southern Africans have focused on these illnesses (Petrovski et al., 2011; 

Chimusa et al., 2014). Globally, GWAS are performed at a ratio of approximately 10:1 

European ancestry vs. all other ancestry groups combined (Need et al., 2009). To date, only 

seven GWAS have been performed exclusively on African individuals, with four others 

including some Africans, none of these focusing on schizophrenia treatment response 

(http://www.genome.gov/gwastudies/).  This is problematic, since the allele frequency of a 

GWAS variant can vary up to 40-fold between population groups (Adeyemo and Rotimi, 
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2010), and patterns of linkage disequilibrium are vastly different between Caucasian and 

African genomes (Dalal et al., 2010). Therefore, the progress made in developed countries 

in schizophrenia risk and treatment GWAS may not be applicable to South Africans.  

These factors call for increased study of the genetic diversity of South African individuals, as 

well as psychiatric pharmacogenomic research applications, in the hope of improving and 

understanding treatment response in schizophrenia in a population-specific manner. 

Optimising treatment with the use of pharmacogenomics is particularly important in LMIC, 

since countries such as South Africa experience a greater health burden. Even though there 

is much research to be done, South Africa is considered the leader amongst developing 

countries in pharmacogenomics and biomarker research (Gupta et al., 2014). 

2.6. Overview of the current study 

2.6.1. Aim and objectives 

This study aims to explore the functional consequences of noncoding genetic variants that 

contribute to complex and heterogeneous antipsychotic treatment outcomes in 

schizophrenia, and subsequently investigate these findings in South African individuals. 

The specific objectives of this study are as follows: 

PART 1: Bioinformatic identification of potential regulatory variants associated with 

antipsychotic treatment response 

 Survey the literature to identify GWAS SNPs that are significantly associated with 

antipsychotic treatment response, including ADRs, in schizophrenia. 

 Make use of publicly available genetic variation data to determine the variants in LD 

with the associated SNPs. 

 Employ recent publicly available data and bioinformatic tools to identify noncoding 

SNPs that potentially affect regulation. 

 Identify affected genes and pathways and assess likelihood of their involvement in 

treatment response. 

PART 2: Associations between predicted regulatory variants and antipsychotic treatment 

outcomes in a South African schizophrenia cohort 

 Prioritise SNPs and genotype in a South African first episode schizophrenia cohort. 

 Perform association analyses to determine which variants are associated with 

treatment outcomes within the cohort. 

 Compare associations with regards to original GWAS SNPs.  
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2.6.2. Strategy 
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CHAPTER 3: 

Bioinformatic identification of potential regulatory variants 
associated with antipsychotic treatment response 

3.1. Summary 

Advances in genetic data generation have increased exponentially in recent years. For 

example, results of the ENCODE project provide masses of novel information on noncoding 

DNA and gene regulation. To interpret the multitude of results, bioinformatic resources are 

constantly being developed and improved upon. These tools allow in-depth interpretation, 

including uncovering the functional implications of noncoding variants associated with 

complex traits. One such trait is antipsychotic treatment response. Antipsychotics are the 

most effective treatment for schizophrenia, a debilitating psychiatric disorder, but up to half 

of patients respond poorly to these drugs and can develop adverse drug reactions.  

To improve our limited understanding of the biological mechanisms underpinning 

schizophrenia treatment outcomes, a novel bioinformatics pipeline was applied in this study. 

Previously significant GWAS variants (P ≤ 5x10-7) were mined, and publically available 

population data was used to find SNPs in LD (r2 ≥ 0.8) with these variants. This approach 

allowed for hypothesis-free evaluation of genome-wide variants. Subsequently, tools making 

use of ENCODE data, namely RegulomeDB and rSNPBase, predicted the regulatory impact 

of the variants and their affected gene targets, including eQTLs. Pathway and network 

analyses were performed with DAVID and GeneMANIA respectively, and tissue-specific 

expression of the affected genes was assessed by FANTOM5.  

Despite few GWAS and poorly-characterised cohorts, several regulatory effects were 

identified. The most important results of this study were that i) treatment-refractory 

schizophrenia was the most common trait significant for regulation, with 16 rSNPs on 4q24 

affecting NFKB1 expression, and ii) there was extensive overlap with regions and functions 

that had been previously implicated in schizophrenia risk, particularly with regards to 

immune dysregulation. NFKB1, which also plays an important role in immune functioning 

and has been previously implicated in schizophrenia, was affected by almost half of the 

identified rSNPs. The significance of NFKB1 was confirmed with pathway and network 

analyses, which illustrated interactions with other genes for three of four predicted pathways. 

Lastly, gene expression analyses showed that four of the top 10 affected genes were most 

upregulated in brain tissues. This study provides evidence for the overlap between 

schizophrenia risk and treatment response. Additionally, the importance of well-
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characterised cohorts for clinical and genetic analyses is clear. NFKB1 and other associated 

genes should be further studied in different, population-specific, and replicative cohorts in 

order to validate potential regulatory biomarkers of treatment response.        

3.2. Introduction 

In the last decade there have been major advancements in elucidating the genetics of 

complex traits and diseases. GWAS enable the simultaneous analyses of hundreds of 

thousands to millions of variants across the genome. This approach is popular, shown by the 

thousands of GWAS recorded in the NHGRI GWAS Catalog (Welter et al., 2013). Despite 

the abundance of data, the biological interpretation of genetic signals associated with 

particular traits is mostly insufficient, and subsequently misguided. The majority of significant 

GWAS variants lie in noncoding regions. Even so, biological interpretations tend to assess 

SNPs in terms of the function of the closest gene, even if the SNP is intergenic and 

hundreds of kilobases away (Ritchie et al., 2014). This approach restricts interpretation, 

particularly since the closest gene may not incorporate all variants within the tag SNP’s 

haplotype, and LD can vary extensively between population groups (Christoforou et al., 

2012).  

Traditionally, coding SNPs have proved far more amenable to functional analyses, which 

means that they are often prioritised post-GWAS for further study, whilst noncoding variants 

are ignored (Cooper and Shendure, 2011). Recently, we have learnt a great deal more about 

noncoding regions with the results of the ENCODE project, which sought to characterise all 

the functional elements of the genome, including regulatory factors (The ENCODE Project 

Consortium, 2011). With this knowledge, it has been revealed that noncoding SNPs 

implicated in regulation, or rSNPs, are enriched for GWAS associations, highlighting the 

importance of analysing these regions for implications in disease (Schaub et al., 2012; 

Maurano et al., 2013). Indeed, rSNPs are potentially more damaging than coding SNPs, 

considering the wider range of expression dysregulation associated with transcription and 

translation candidates (Georgitsi et al., 2011). 

Many bioinformatic tools that make use of the abundance of ENCODE data have recently 

been developed. For example, RegulomeDB (Boyle et al., 2012) and rSNPBase (Guo et al., 

2014) both assess the regulatory potential of a SNP, the former looking at eQTL evidence 

and proximal regulation, and the latter assessing proximal, distal and post-transcriptional 

functioning and predicting downstream gene targets.  
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Schizophrenia, an example of a widely studied heterogeneous disease, is a chronic and 

debilitating psychiatric disorder. Antipsychotics are the main treatment for this disease, 

although treatment proves ineffective for roughly a third of patients (Liou et al., 2012). 

Despite the fact that genetic variation has shown to substantially contribute to antipsychotic 

treatment response, the mechanisms involved are not well understood. Consequently, in the 

last five years, GWAS have been applied to schizophrenia treatment response in an attempt 

to shed light on the genetics of poor treatment response and adverse drug reactions. 

The purpose of this study was to analyse previous antipsychotic response GWAS and 

investigate functionality with the use of these recent bioinformatic advancements. By 

incorporating LD variants from HapMap (The International HapMap Consortium, 2003) and 

1000 Genomes (The 1000 Genomes Project Consortium, 2010) populations, all the potential 

“causal” SNPs to date were accounted for. These variants were then investigated with the 

use of experimentally validated data as well as predictive tools to isolate rSNPs and their 

gene targets. Subsequently, pathways, networks, and tissue-specific expression of these 

genes were assessed. To our knowledge, this is the first study of its kind to investigate 

antipsychotic response GWAS with regards to genomic regulation, and the use of this 

bioinformatics pipeline has the potential to improve our understanding of the biology of 

treatment response in schizophrenia. 

3.3. Materials and methods 

Refer to Electronic Sources (p. 107) for dates of access to online tools. 

3.3.1. Data-mining 

The literature was mined in order to identify all variants from GWAS that have been 

significantly associated with antipsychotic response in schizophrenia, including ADRs. This 

was accomplished with the use of a database of complex disease GWAS, the human 

genome epidemiology (HuGE) Navigator GWAS Integrator version 2.0 (Yu et al., 2008), 

available at http://hugenavigator.net/HuGENavigator/home.do. The search terms 

“antipsychotic”, “schizophrenia”, and “adverse drug reaction” were used successively to 

identify all relevant GWAS. The corresponding articles were accessed in PubMed via HuGE 

Navigator and further investigated. HuGE Navigator is updated regularly, but a survey of the 

NHGRI GWAS Catalog (http://www.genome.gov/gwastudies/) and a manual literature search 

of PubMed (http://www.ncbi.nlm.nih.gov/pubmed) were performed with the same search 

terms to account for any studies that may not have been included on HuGE Navigator.  
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Due to multiple testing, it is generally accepted that the genome-wide significance threshold 

should be P ≤ 5x10-8 (Sham and Purcell, 2014). Using this cut-off point, less than 10 SNPs 

from four GWAS qualified for further analysis (highlighted in Table 3.3), over half of which 

related to antipsychotic-induced metabolic side effects (Adkins et al., 2011; Malhotra et al., 

2012). Due to the restrictive nature of these results, the threshold for inclusion of SNPs was 

raised to P ≤ 5x10-7 in order to increase the amount of variants, independent studies, and 

response phenotypes. Kingsmore and colleagues (2008) refer to this value as a “respected 

threshold” in a review of GWAS study designs. 

Additionally, the SNPs were investigated with SeattleSeq Annotation 137 version 8.07 

(http://snp.gs.washington.edu/SeattleSeqAnnotation137/) to confirm their position with 

respect to the genes listed in the nine GWAS, since there is a tendency to relate the function 

of the closest gene to the effect of the SNP, without considering the variant’s potential role in 

other pathways. SeattleSeq acquires gene information from the Human Genome 

Organisation (HUGO) Gene Nomenclature Committee (HGNC; http://www.genenames.org/).  

3.3.2. Variants in linkage disequilibrium 

To find SNPs in high LD (r2 ≥ 0.8; Carlson et al., 2004) with the significant GWAS variants, 

SNP Annotation and Proxy search (SNAP) version 2.2 was employed 

(http://www.broadinstitute.org/mpg/snap/). This tool conveniently combines two large-scale 

and widely used repositories of human genetic variation, namely HapMap (The International 

HapMap Consortium, 2003) and 1000 Genomes (The 1000 Genomes Project Consortium, 

2010). SNAP allows one to choose between four data sets: 1) 1000 Genomes Pilot 1, 2) 

HapMap phase II release 21, 3) HapMap phase II release 22, and 4) HapMap phase 3 

release 2. For each set, one can specify which population group to analyse. 1000 Genomes 

and HapMap population groups available on SNAP are indicated in Table 3.1. 

Different population groups were analysed depending on the ancestral make-up of the 

patient samples in the GWAS. For example, many of the identified GWAS studied SNPs 

within the CATIE cohort (discussed in 2.2.1), which consisted of 57% Caucasian, 29% 

African American and 14% “other” individuals (McEvoy et al., 2005). Therefore, for CATIE, 

all population groups on SNAP were analysed to account for LD structures within these 

diverse ancestry groups. In another GWAS (Liou et al., 2012), all individuals under study 

were of Han Chinese descent, therefore only the CHBJPT and JPT+CHB+CHD population 

options were used for analysis of these SNPs.   
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Table 3.1: Population groups on SNAP (http://www.broadinstitute.org/mpg/snap/). 

Population code Description Dataset 

CEU Utah residents with Northern and Western European ancestry from 
the Centre d'Etude du Polymorphisme Humain (CEPH) collection 

1, 2, 3, 4 

YRI Yoruba in Ibadan, Nigeria 1, 2, 3, 4 

CHBJPT Han Chinese in Beijing, China, and Japanese in Tokyo, Japan 1, 2, 3, 4 

ASW African ancestry in south west America 4 

CHD Chinese in metropolitan Denver, Colorado 4 

GIH Gujarati Indians in Houston, Texas 4 

LWK Luhya in Webuye, Kenya 4 

MEX Mexican ancestry in California, Los Angeles 4 

MKK Maasai in Kinyawa, Kenya 4 

TSI Toscans in Italy 4 

CEU+TSI Combined panel of CEU and TSI 4 

JPT+CHB+CHD Combined panel of JPT, CHB and CHD 4 

1 = 1000 Genomes Pilot 1; 2 = HapMap phase II release 21; 3 = HapMap phase II release 22; 4 = 
HapMap phase 3 release 2. 

Separate analyses for each dataset for each relevant population were performed. 

Subsequently, the results were manually combined into the appropriate population 

supergroups as defined in this study (Caucasian: CEU, CEU+TSI; African: YRI, ASW, LWK, 

MKK; and other: CHBJPT, CHD, GIH, MEX, JPT+CHB+CHD). For each GWAS, only SNPs 

in common between the supergroups were included for further analyses. Additionally, SNPs 

were excluded if they occurred in either a HapMap or 1000 Genomes dataset, but not the 

other. The SNPs were, therefore, filtered to include only those that were i) in LD with a 

GWAS SNP with an r2 equal to or greater than 0.8, and ii) present in all relevant population 

supergroups in both 1000 Genomes and HapMap datasets (1 and 2 or 3 or 4).   

3.3.3. RegulomeDB analysis 

Original GWAS variants and SNPs in LD were analysed with several bioinformatic 

resources. RegulomeDB (http://regulome.stanford.edu/) is a database that incorporates 

ENCODE datasets, computational predictions, a large amount of eQTLs, and other 

published literature to predict the effect that a single base pair change can have on the 

binding of regulatory elements to DNA (Boyle et al., 2012). This tool has been widely used to 

analyse the impact of noncoding SNPs on gene regulation (Chung et al., 2013; Juraeva et 

al., 2014).  
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RegulomeDB annotates intergenic SNPs within regulatory elements, and predicts the degree 

to which a SNP will interfere with binding and downstream regulatory processes. Regulatory 

elements include promoters, enhancers, and TFBS. Predictions are made using a heuristic 

scoring system based on the amount of evidence available for a particular SNP, as 

illustrated in Table 3.2.   

Table 3.2: RegulomeDB scoring system, with category 1 being most significant and category 6 least 

significant (Boyle et al., 2012).  

Category Description 

 Likely to affect binding and linked to expression of a gene target 

1a eQTL + TF binding + matched TF motif + matched DNase footprint + DNase peak 
1b eQTL + TF binding + any motif + DNase footprint + DNase peak 
1c eQTL + TF binding + matched TF motif + DNase peak 
1d eQTL + TF binding + any motif + DNase peak 
1e eQTL + TF binding + matched TF motif 
1f eQTL + TF binding/DNase peak 
  
 Likely to affect binding 
2a TF binding + matched TF motif + matched DNase footprint + DNase peak 
2b TF binding + any motif + DNase footprint + DNase peak 
2c TF binding + matched TF motif + DNase peak 
  
 Less likely to affect binding 
3a TF binding + any motif + DNase peak 
3b TF binding + matched TF motif 
  
 Minimal binding evidence 
4 TF binding + DNase peak 
5 TF binding or DNase peak 
6 Motif hit 

 

According to Boyle et al. (2012), eQTLs classify a SNP as being highly significant, since 

eQTLs display direct experimental evidence for altering expression levels of a particular 

gene. Therefore, SNPs in category 1 are more significant than any other evidence for 

regulation. Category 1 decreases in significance from subcategories “a” to “f”, with “a” having 

more annotations available than “b”, and so on. These annotations include experimental 

evidence for transcription factor (TF) binding, and computational predictions such as DNase 

footprinting. Category 2 is identical to category 1, with the exception of eQTL evidence. 

Category 3 consists of SNPs with less evidence of regulatory impact and categories 4-6 

exhibit minimal evidence thereof (Boyle et al., 2012).    

The list of combined GWAS and LD SNPs was entered into RegulomeDB and SNPs were 

ranked according to the scoring system. Seven SNPs returned a server error. These rs 

numbers were entered into the Ensembl Genome Browser 
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(http://www.ensembl.org/index.html) to identify synonyms, and the new rs numbers were 

successfully analysed by RegulomeDB. SNPs in categories 1-3 are considered important for 

further investigation, and were prioritised for further study (Chung et al., 2013).    

3.3.4. rSNPBase analysis 

The rSNPBase (http://rsnp.psych.ac.cn/) allows for the assessment of different types of 

regulation, including proximal, distal and post-transcriptional processes (Guo et al., 2014). 

For further insight into the regulatory potential of antipsychotic response variants, the GWAS 

and LD SNPs were analysed with rSNPBase to identify potential rSNPs. Additionally, genes 

predicted to be affected by these rSNPs were retrieved.  

3.3.5. Variants affecting binding motifs 

Concurrent to the rSNPBase and RegulomeDB analyses, Transcription factor Affinity 

Prediction (TRAP) was utilised to assess the impact of the SNPs on known transcription 

factor motifs (Manke et al., 2010). A tool specifically designed to predict the impact of single 

nucleotide changes, sTRAP (http://trap.molgen.mpg.de/cgi-bin/trap_two_seq_form.cgi),  

compares “wild-type” and “mutant” sequences, and evaluates subsequent changes in affinity 

for TFs to known TFBS motifs, attained from the Jaspar database 

(http://jaspar.genereg.net/). In this computational model, changes in affinity are calculated 

based on the log ratio of binding probability between “wild-type” and “mutant” sequences 

(Manke et al., 2010).  

The R package (R Development Core Team, 2010) of sTRAP, tRap, is freely available and 

was utilised to evaluate all SNPs simultaneously (http://trap.molgen.mpg.de/cgi-

bin/download.cgi). A custom Unix script incorporating tRap was designed by Dr N. Ishaque 

of the German Cancer Research Center (Heidelberg, Germany; Script S1). These 

commands were performed in the Unix shell and the output was exported to a .txt file. Firstly, 

a list of all the SNPs were converted to a Browser Extensible Data (BED) file, for which a 

FASTA file was generated. Similarly, BED and FASTA files for the regions 15 base pairs up- 

and downstream of each variant were created. A Perl script was written by Dr Ishaque to 

combine the FASTA files (Script S2), in order to analyse the sequences with tRap.     

The results were ranked by log ratio, r, with the largest positive or negative value indicating 

the most significant increase or decrease in binding affinity respectively, with reference to 

the “wild-type” sequence (Manke et al., 2010). Significant motifs present in humans were 

obtained from Jaspar (http://jaspar.genereg.net/) from the TRAP motif identifiers. 
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To assess the uniqueness of results obtained for schizophrenia treatment response, the 

same workflow was applied to three other complex traits. HuGE Navigator was surveyed for 

drug response GWAS, and two traits with sufficient results were analysed further, namely 

response to antidepressants, and response to hepatitis C treatment. Response to 

antidepressants was selected because, as previously discussed, psychiatric disorders have 

shown biological overlap in susceptibility and treatment response. On the other hand, 

hepatitis C treatment response has not been shown to be related to antipsychotic response. 

Additionally, GWAS on variants associated with eye colour, a complex trait, were analysed. 

The purpose of this was to establish a “baseline” level of regulation within the genome and to 

determine if any motifs were enriched for drug response, and more specifically, response to 

antipsychotics. These “control” traits were evaluated using the methods outlined in 3.3.2 and 

then assessed with the customised tRap script (Script S1).     

3.3.6. Nonsynonymous coding variants 

As an additional analysis, SNPs in coding regions were assessed for effects on protein 

function. To achieve this, PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) was used. 

This resource uses computational prediction to characterise nonsynonymous SNPs based 

on their predicted impact on protein-coding regions of the genome (Adzhubei et al., 2010). 

PolyPhen-2 classifies SNPs as either “benign”, “possibly damaging”, or “probably 

damaging”. Additionally, a score is assigned that translates as the probability of the variant 

being damaging, i.e. a score closer to one indicates a more damaging SNP (Adzhubei et al., 

2010).  

3.3.7. Affected genes and pathways 

To assess the affected genes, functional clustering was performed with the use of pathway 

and network analyses. A list of genes was compiled containing i) eQTL targets from 

RegulomeDB and rSNPBase,  ii) affected genes according to rSNPBase, and iii) genes 

containing any nonsynonymous variants classified by PolyPhen-2.  

The Database for Annotation, Visualization and Integrated Discovery (DAVID) version 6.7 is 

a commonly used online pathway analysis tool available at 

http://david.abcc.ncifcrf.gov/home.jsp (Huang et al., 2009). By entering the gene list into 

DAVID, the aim was to investigate whether the genes were common to any pathways, and 

what the biological significance of these pathways is. The Functional Annotation Clustering 

tool was used to identify pathways via several databases: the Biological Biochemical Image 

Database (BBID), the Kyoto Encyclopedia of Genes and Genomes (KEGG), BioCarta, 

Protein Analysis Through Evolutionary Relationships (PANTHER) and Reactome.  
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Clustered genes from DAVID were further explored with GeneMANIA 

(http://www.genemania.org/). This graphical interface forms connections between genes 

based on co-expression, cell or tissue co-localisation, genetic and physical interactions, and 

predicted functional relationships (Warde-Farley et al., 2010). Relevant genes were grouped 

and visualised together based on functional and pathway classifications from DAVID. 

Subsequently, these annotations were assessed for their likelihood to be of relevance to 

antipsychotic treatment response. 

3.3.8. Tissue-specific gene expression 

Affected genes were assessed with regards to tissue-specific activation. Firstly, genes were 

ranked according to the number of rSNPs predicted to affect them. Subsequently, to 

determine the gene’s potential involvement in antipsychotic response mechanisms, 

expression levels were identified in healthy brain and liver cell lines via the Semantic 

catalogue of Samples, Transcription initiation And Regulators (SSTAR) on the FANTOM5 

database (http://fantom.gsc.riken.jp/5/sstar). This resource uses Cap Analysis of Gene 

Expression (CAGE) sequencing to identify cDNA and subsequently map it to a particular 

transcription start site. The number of sequenced fragments, or “tags”, correlates with the 

level of gene expression in that particular tissue (Kodzius et al., 2006). Expression is 

measured in tags per million (TPM), where a gene is considered to be “switched on” if it 

shows at least 10 TPM (The FANTOM Consortium et al., 2014). Cell lines relating to brain 

and liver tissue on FANTOM5 are listed in Box S1. Each brain and liver cell line was 

analysed for each gene, and the cell line with the highest expression levels was also 

recorded for comparison.   

3.4. Results 

3.4.1. Antipsychotic response GWAS 

The HuGE Navigator GWAS Integrator and the NHGRI Catalog were mined to identify 

previous GWAS on antipsychotic pharmacogenomics. Nine studies with SNPs reaching 

genome-wide significance (P ≤ 5x10-7) were identified. All but one GWAS was found by both 

databases. The most recent study, by Clark et al. (2013), was only listed in the NHGRI 

Catalog, most likely because it is more regularly updated than HuGE Navigator. A literature 

search with PubMed did not reveal any additional studies. The GWAS covered a range of 

responses, namely: adverse motor side effects (EPS), metabolic changes [including 

increases in cholesterol, triglycerides and body mass index (BMI)], changes in 

neurocognitive functioning, changes in symptom severity rated both by the patient and 

clinician, adverse cardiac symptoms, and treatment-refractoriness. The identified GWAS 
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found a combined total of 62 SNPs significantly associated with antipsychotic treatment 

response, as shown in Table 3.3. These variants are ranked by earliest to most recent study 

and, within this ranking, by most significant P-value. Considering the location of the 62 

variants identified, the most commonly occurring region is 4q24, with five SNPs at this locus 

having reached significance in four different GWAS. One of these variants, rs230529, was 

significant for treatment-refractoriness (Liou et al., 2012), whilst the other four – rs7669317, 

rs1405687, rs2636697 and rs2636719 – were associated with EPS, metabolic side effects, 

and clinician-rated symptom severity respectively (Åberg et al., 2010; Adkins et al., 2011; 

Clark et al., 2013). Most of the GWAS indicated the SNP position in terms of the closest 

gene, without specifying whether it is located in an intron or whether it is intergenic. Once 

annotated with SeattleSeq Annotation 137, it was shown that only one SNP, rs17727261, 

occurs in a protein-coding region, namely in an exon of the contactin associated protein-like 

5 (CNTNAP5) gene. Of the other SNPs, 27 are intronic, one occurs in the 3’-UTR of the zinc 

finger protein 202 (ZNF202) gene, and the remaining 33 are intergenic. As shown in bold in 

Table 3.3, there were four instances in which SeattleSeq classified SNPs as intergenic whilst 

the GWAS listed them as occurring within a gene (Clark et al., 2013). 

3.4.2. GWAS cohort ancestry and LD analyses 

The 62 significant SNPs were analysed for variants in linkage disequilibrium according to the 

1000 Genomes and HapMap population groups. Populations were selected according to the 

ancestral make-up of each GWAS, as indicated in Table 3.4. All GWAS were corrected for 

ancestry, in cases where the cohort was comprised of more than one ethnic group. 

Additionally, many of the studies performed subsample testing in order to ascertain whether 

a particular population group was driving a significant association. Except for a few instances 

in which a SNP was invariant in a particular subgroup, the majority of SNPs were significant 

– albeit to varying degrees – across population subgroups. Therefore, to be as inclusive as 

possible, no population groups were excluded for further LD analysis.  

There were several instances in which a variant found on SNAP was in LD (r2 ≥ 0.8) with 

more than one GWAS SNP. No SNPs from independent GWAS studies shared LD for any 

population groups, although there were significant SNPs in LD within specific GWAS. For 

example, rs2636697, and rs2636719 from the Clark et al. study (2013) are in perfect LD (r2 = 

1 for 1000 Genomes CEU), as well as rs7105881, rs7119817, and rs7108821 (r2 = 1 for 

each pair for 1000 Genomes CEU) from the Adkins et al. GWAS (2011). Once all variants for 

all relevant populations were combined, as described in 3.3.2, there was a total of 535 

unique SNPs, including the original 62 GWAS SNPs.  
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STUDY 

SAMPLE SIZE 

VARIANT                          LOCUS 

GENEa   

RESPONSE MEASUREMENT P-VALUE                      EFFECTb Initial,  
Replication 

Designated Mapped 

Åberg et al., 
2010 

738c 

rs17022444 2p12 None Intergenic EPS (SAS) 1 x 10-10 + 

rs7669317 4q24 None Intergenic EPS (AIMS) 8 x 10-8 + 

rs2126709 11q24.1 ZNF202 ZNF202 (3'-UTR) EPS (SAS)  4 x 10-7 + 

Adkins et al., 
2011 

738c 

rs1568679 15q14 MEIS2 MEIS2 (intron) Hip circumference  1 x 10-8 + 

rs1967256 5q14.3 GPR98 GPR98 (intron) Haemoglobin A1c 3 x 10-8 + 

rs11954387 5q14.3 GPR98 GPR98 (intron) Haemoglobin A1c 3 x 10-8 + 

rs1405687 4q24 None Intergenic Hip circumference  5 x 10-8 - 

rs1568679 15q14 MEIS2 MEIS2 (intron) Waist circumference  6 x 10-8 + 

rs13224682 7p22.3 PRKAR2B  PRKAR2B (intron) Triglycerides 6 x 10-8 + 

rs1464500 12p12.1 SOX5 SOX5 (intron) HDL cholesterol 1 x 10-7 + 

rs17651157 18q12.2 FHOD3 FHOD3 (intron) Triglycerides 1 x 10-7 + 

rs6735179 2p25.3 None Intergenic Triglycerides 1 x 10-7 + 

rs518590 13q12.11 None Intergenic HDL cholesterol 2 x 10-7 + 

rs10502661 18q12.2 FHOD3 FHOD3 (intron) Triglycerides 2 x 10-7 + 

rs1187614 14q32.13 CLMN CLMN (intron) Total cholesterol 2 x 10-7 - 

rs6741819 2p25.1 RNF144A RNF144A (intron) Triglycerides 2 x 10-7 + 

rs4838255 9q33.1 ASTN2 ASTN2 (intron) Triglycerides 3 x 10-7 + 

rs2994684 10p11.22 None Intergenic Triglycerides 3 x 10-7 + 

rs977396 8q22.3 None Intergenic Total cholesterol 3 x 10-7 + 

rs7105881 11q23.1 None Intergenic Hip circumference  3 x 10-7 + 

rs1117324 2p24.1 None Intergenic Hip circumference  3 x 10-7 + 

rs4783227 16q23.3 None Intergenic Total cholesterol 4 x 10-7 - 

rs320209 9q31.1 None Intergenic Glucose  4 x 10-7 + 

rs7108821 11q23.1 None Intergenic Hip circumference  4 x 10-7 + 

rs10499504 7p21.1 None Intergenic Total cholesterol 4 x 10-7 - 

rs7119817 11q23.1 None Intergenic Hip circumference  5 x 10-7 + 

rs9658108 6p21.31 PPARD PPARD (intron) Glucose  5 x 10-7 + 

rs17100498 5q31.3 None Intergenic Haemoglobin A1c 5 x 10-7 + 
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Table 3.3: Significant SNPs from antipsychotic pharmacogenomic GWAS identified by HuGE Navigator and the NHGRI GWAS Catalog. 
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STUDY 

SAMPLE SIZE 

VARIANT                          LOCUS 

GENEa                      

RESPONSE MEASUREMENT P-VALUE                      EFFECTb Initial,  
Replication 

Designated Mapped 

Adkins et al., 
2011 

738c rs399885 2p12 None Intergenic Heart rate 5 x 10-7 + 

McClay et al., 
2011a 

738c 

rs286913 11p13 EHF  EHF (intron)  Neurocognition: vigilance 7 x 10-8 - 

rs11240594 1q32.1 SLC26A9 SLC26A9 (intron) Neurocognition: processing speed 1 x 10-7 - 

rs11110077 12q23.1 ANKS1B ANKS1B (intron) Neurocognition: working memory 4 x 10-7 + 

rs7520258 1q42.3 GPR137B GPR137B (intron) Neurocognition: working memory 5 x 10-7 + 

rs12726652 1p13.3 None Intergenic Neurocognition: working memory 5 x 10-7 + 

rs11214606 11q23.2 DRD2 DRD2 (intron) Neurocognition: working memory 5 x 10-7 + 

rs2833556 21q22.11 HUNK HUNK (intron) Neurocognition: reasoning 5 x 10-7 - 

McClay et al., 

2011b 
738c 

rs17390445 4p15.1 None Intergenic Positive symptoms (PANSS) 1 x 10-7 + 

rs888219 9q33.3 None Intergenic Negative symptoms (PANSS) 2 x 10-7 - 

rs7968608 12q23.1 ANKS1B ANKS1B (intron) Negative symptoms (PANSS) 3 x 10-7 - 

rs17727261 2q14.3 CNTNAP5 CNTNAP5 (exon) Negative symptoms (PANSS) 5 x 10-7 - 

rs11722719 4p15.1 None Intergenic Positive symptoms (PANSS) 5 x 10-7 + 

Åberg et al., 
2012 

738c 
rs4959235 6p25.2 SLC22A23 SLC22A23 (intron) 

QTc interval prolongation 
2 x 10-7 + 

rs10458561 1p31.1 None Intergenic 4 x 10-7 + 

Athanasiu et al., 
2012 

594 
rs7838490 8q21.3 None Intergenic BMI  6 x 10-8 + 

rs11615274 12q21.1 None Intergenic HDL cholesterol 9 x 10-8 - 

Liou et al.,  
2012 

522 cases and 
806 controls, 
273 cases 

rs230529  4q24 NFKB1 NFKB1 (intron) 
Treatment-refractory 
schizophrenia 

2 x 10-7 d + 

rs11265461 1q23.3 None Intergenic 2 x 10-7 d + 

rs10218843 1q23.3 None Intergenic 3 x 10-7 d + 

Malhotra et al., 
2012 

139  
73, 40, 92 

rs489693 18q21.32 None Intergenic 
Severe weight gain, several other 
metabolic indices 

6 x 10-12 d + 

Clark et al., 
2013 

738c 

rs8050896 16q22.1 None Intergenic 
Clinical global impression severity 
scale (CGI-S) 

4 x 10-8 - 

rs17382202 5q12.1 PDE4D PDE4D (intron) 
Patient global impression (PGI) 
scale 

4 x 10-8 - 

rs10170310 2q22.1 SPOPL SPOPL (intron) PGI 1 x 10-7 + 

rs6688363 1q23.2 ATP1A2 Intergenic CGI-S 2 x 10-7 + 

rs7395555 11q14.1 None Intergenic CGI-S 2 x 10-7 - 4
0
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STUDY 

SAMPLE SIZE 

VARIANT                          LOCUS 

GENEa                      

RESPONSE MEASUREMENT P-VALUE                      EFFECTb Initial,  
Replication 

Designated Mapped 

Clark et al., 
2013 

738c 

rs17742120 5q12.1 PDE4D PDE4D (intron) PGI 2 x 10-7 - 

rs2164660 5q12.1 PDE4D PDE4D (intron) PGI 2 x 10-7 - 

rs711355 15q13.1 TJP1 Intergenic PGI 2 x 10-7 - 

rs2980976 18q21.3 TNFRSF11A Intergenic CGI-S 3 x 10-7 + 

rs2636697 4q24 PPA2 PPA2 (intron) CGI-S 4 x 10-7 + 

rs2636719 4q24 PPA2 PPA2 (intron) CGI-S 5 x 10-7 + 

rs785423 15q13.1 TJP1 Intergenic PGI 5 x 10-7 - 

rs813676 15q13.1 TJP1 Intergenic PGI 5 x 10-7 - 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Gene designated to the SNP by GWAS authors vs. gene mapped by SeattleSeq Annotation 137 (differences in bold).  
b Direction of effect of minor allele, where “+” denotes minor allele frequency (MAF) associated with poorer response or presence of ADR. 
c Identical cohort from the CATIE study (Lieberman et al., 2005). 
d Joint probability from meta-analysis of initial and replication cohorts. 
Shaded values indicate SNPs with P ≤ 5x10-8. 
SAS = Simpson-Angus Scale; AIMS = Abnormal Involuntary Movement Scale; UTR = untranslated region; Haemoglobin A1c = glycohaemoglobin 
(used to measure plasma glucose levels); HDL = high-density lipoprotein; QTc = interval between ventricular depolarisation (Q wave) and 
repolarisation (T wave) in electrocardiogram, corrected for heart rate.   
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Table 3.4: Ancestry breakdown of the four cohorts studied by relevant GWAS and corresponding 

SNAP populations included for LD analysis (http://www.broadinstitute.org/mpg/snap/). 

Study 
Sample ancestry proportions Included SNAP 

populations Initial Replication 

Åberg et al., 2010 

57%  EA,  
29% AA,  
14% other 

None All 

Adkins et al., 2011 

McClay et al., 2011a 

McClay et al., 2011b 

Åberg et al., 2012 

Clark et al., 2013 

Athanasiu et al., 2012 100% Caucasian None CEU, TSI, CEU+TSI 

Liou et al., 2012 100% Han Chinese 100% Han Chinese 
CHBJPT, CHD, 
JPT+CHB+CHD 

Malhotra et al., 2012 
55% Caucasian,  
23% AA,  
22% other 

70% Caucasian, 
30% AA; and  
100% Caucasian 

All 

EA = European American; AA = African American; CEU = Utah residents with Northern and Western 
European ancestry from the Centre d'Etude du Polymorphisme Humain (CEPH) collection; TSI = 
Toscans in Italy; CHBJPT = Han Chinese in Beijing, China, and Japanese in Tokyo, Japan; CHD = 
Chinese in metropolitan Denver, Colorado; JPT = Japanese in Tokyo, Japan; CHB = Han Chinese in 
Beijing, China. 

3.4.3. RegulomeDB analysis 

The total of 535 variants was analysed with RegulomeDB and each SNP was assigned a 

score based on its regulatory potential. Twenty SNPs scored significantly (≤ 3), and are 

listed in Table 3.5 together with their predicted regulatory effect. The results include two 

original GWAS SNPs, namely rs6741819 (Adkins et al., 2011) and rs10458561 (Åberg et al., 

2012). The remaining 18 SNPs were identified from LD analyses. The top 10 results 

obtained a score of one, meaning that they have shown to act as eQTLs, altering the 

expression of the following genes: mannosidase, beta A, lysosomal (MANBA), collagen, type 

IX, alpha 2 (COL9A2), and DEAD/H box helicase 11 (DDX11). Nine of these SNPs were in 

LD with rs230529 from the Liou et al. (2012) study, and rs10492354 was in LD with a 

significant SNP identified by McClay et al. (2011b). Proteins, such as TFs, that bind in the 

region of the SNP are indicated in Table 3.5. Additionally, their corresponding motifs and 

predicted position weight matrices (PWMs) are shown. All 20 SNPs show evidence for 

changes in chromatin state and histone modifications at their particular locus. A full list of 

these can be obtained for each SNP by entering the rs number into the database 

(http://regulome.stanford.edu/).   

Since 14 of the 20 SNPs occur in the 4q24 region, this locus was further investigated with 

the use of the University of California, Santa Cruz (UCSC) ENCODE browser 

(http://genome.ucsc.edu/ENCODE/). As shown in Figure 3.1, there are several lines of 
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evidence across different cell types that point to regulatory function in this region, including 

TFBS, histone marks and open chromatin, DNase I hypersensitive sites, and the start of 

transcription of the nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 

(NFKB1) gene. 

 

3.4.4. rSNPBase analysis 

Variants were also analysed with rSNPBase. This tool predicted that 222 of the 535 SNPs 

affected regulation, either proximally, distally, or post-transcriptionally. Additionally, it 

identified the predicted affected genes. Table 3.6 shows the 16 SNPs that were deemed 

significant by both rSNPBase and RegulomeDB. Motifs, genes, proteins, affected genes, 

and eQTLs common to both sets of results are highlighted in the table. 

3.4.5. Variants affecting binding motifs 

Changes in motif binding affinity were assessed with tRap and the most significant results 

are shown in Table 3.7. A total of 111 of the 535 variants were predicted by tRap to alter 

binding affinity, with many SNPs affecting more than one motif. This table includes the ten 

SNPs that are predicted to cause the largest decreases and increases in affinity 

respectively, measured by the log ratio. Overlaps with rSNPBase or RegulomeDB results are 

highlighted. The variant rs10492354 was predicted to be an eQTL for DDX11 expression by 

RegulomeDB, and caused the second highest decrease in binding affinity, at the breast 

cancer type I susceptibility protein (BRCA1) motif. Secondly, rs230493 was predicted by 

tRap to increase binding significantly at the GATA binding protein 2 (GATA2) motif, as well 

as show eQTL evidence and distal and post-transcriptional regulatory effects by 

RegulomeDB and rSNPBase. The GATA2 motif is the only motif that overlaps with 

significant bound proteins or motifs predicted by RegulomeDB or rSNPBase. 

The variants implicated in the control traits (response to antidepressants, response to 

hepatitis C treatment, and eye colour) were also analysed with tRap. Extensive overlap of 

motifs between antipsychotic response SNPs and the control SNPs was found. Table S1 

shows that only 12 motifs were unique to antipsychotic response, with a maximum of two 

SNPs significantly predicted to affect binding of each motif. 
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SNP 
Position 
(GRCh37/ hg19) 

Scorea eQTL target(s) Bound protein(s) 

Sequence motif(s) Other evidence 

Name Position weight matrix (PWM)b Chromatin 
changes 

Histone 
modifications 

rs3774959 4:103511113 1b MANBA, COL9A2 RFX3 Lmo2complex 

 

Yes Yes 

rs230505 4:103481350 1d MANBA, COL9A2 BATF 
E12, Six4, Myf6, 

MyoD 

 

Yes Yes 

rs230532 4:103450166 1f MANBA, COL9A2 None Nanog 

 

Yes Yes 

rs230520 4:103465611 1f MANBA, COL9A2 None None  Yes Yes 
rs1599961 4:103443568 1f MANBA, COL9A2 None None 

 
Yes Yes 

rs230504 4:103481560 1f MANBA, COL9A2 None None 
 

Yes Yes 

rs230493 4:103486215 1f MANBA, COL9A2 RFX3 Six-1 

 

Yes Yes 

rs747559 4:103414174 1f MANBA, COL9A2 None Pitx2, Cdc5 

 

Yes Yes 

rs4648055 4:103515312 1f MANBA, COL9A2 FOS None 
 

Yes Yes 

rs10492354 12:31357101 1f DDX11 None FOXP1, Foxk1 

 

Yes Yes 

rs3774933 4:103426338 2a None FOXA1, CEBPB C/EBP 

 

Yes Yes 

rs6741819c 2:7147972 2b None 
EBF1, GATA1, 
CTCF 

CNOT3 

 

Yes Yes 

4
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Table 3.5: Top predicted rSNPs from RegulomeDB with associated regulatory targets and effects (http://regulome.stanford.edu/).  
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SNP 
Position 
(GRCh37/ hg19) 

Scorea eQTL target(s) Bound protein(s) 

Sequence motif(s) Other evidence 

Name Position weight matrix (PWM)b Chromatin 
changes 

Histone 
modifications 

rs230526 4:103458824 2b None AF 

BarhI-1, IsI2, 

Arid3a, BarhI2, 
Dbx2, Lhx1, 
Lhx3, Lhx5, 
Lmx1a, Lmx1b, 
Msx1, Sox17, 
Sox8, TIx2 

 

Yes Yes 

rs17032850 4:103507702 2b None SPI1, EBF1, BATF TCF-4, HNF1 

 

Yes Yes 

rs2272676 4:103423325 2b None 

POLR2A, TCF4, 
ZNF263, CDX2, 
SPI1, TBP, JUNB, 
NFKB1 

BLIMP1, 

EWSR1-FLI1  

 

Yes Yes 

rs1352318 8:89566902 2c None CTCF, RAD21 CTCF 

 

Yes Yes 

rs10458561c 1:70921172 3a None EP300 C/EBPalpha 

 

Yes Yes 

rs230495 4:103487299 3a None MAFK AP-1, Nanog 

 

Yes Yes 

rs17440909 5:58957830 3a None 
HNF4G, SP1, 
EP300, TCF4 

 AML 

 

Yes Yes 

rs66919541 12:73660166 3a None GATA2 Zfp740  

 

Yes Yes 

 
 

 

a Score definitions are listed in Figure 3.1. 
b PWM corresponds to motif in bold. Red box indicates SNP position. 
c SNP from original GWAS study. 
Full list of other evidence such as histone marks and open chromatin for specific cell types can be obtained by entering the rs number into RegulomeDB. 
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Figure 3.1: Magnified view of the 4q24 genomic region on the UCSC Genome Browser with ENCODE data tracks (http://genome.ucsc.edu/ENCODE/). This 

region contains 14 of 20 predicted rSNPs according to RegulomeDB. ENCODE tracks show A) transcription start of NFKB1 gene, B) common SNPs (MAF > 

1%) identified in this region, C) peaks for histone mark H3K27Ac, associated with open chromatin, D) TFBS determined by ChIP-Seq and E) DNaseI 

hypersensitive sites determined by various experiments. Different colours indicate evidence in different cell lines.     
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 Table 3.6: rSNPBase annotations for significant RegulomeDB SNPs, arranged by genomic position (http://rsnp.psych.ac.cn/). 

SNP eQTL target(s) 

Type of regulation 

Affected gene(s) 
Proximal: TF  

Post-transcriptional: 
RNA-binding protein  

Distal  

rs6741819 SOCS3, RNF144A 
 

ELAVL1, IGF2BP1, 
PABPC1, CELF1 

Yes 
RNF144A,  
RNF144-AS1 

rs747559 COL9A2, MANBA, MAPKSP1 
  

Yes NFKB1 

rs2272676 
 

Max, Rad21, BCLAF1, ELF1, 
FOXM1, Pol2-4H8, Pol2, 
NFKB, ZNF263, CTCF, EBF1,  
several others* 

PABPC1 Yes 

NFKB1, FAM173B, CCT5, 
BCL7B, UBE2D3, 
SLC39A8, CISD2, 
SLC9B1, WDR74 

rs3774933 
 

CHD1, MafK, ARID3A, CEBPB PABPC1 
 

NFKB1 

rs1599961 COL9A2, MANBA, MAPKSP1 
 

PABPC1 Yes NFKB1 

rs230532 
CCNG2, COL9A2, MANBA, ADH7, 
BANK1, CISD2  

PABPC1 Yes NFKB1 

rs230526 MAPKSP1, C18orf21 
 

PABPC1 
 

NFKB1 

rs230520 
PLEKHA4, COL9A2, MANBA, ADH7, 
BANK1, CISD2  

PABPC1 Yes NFKB1 

rs230505 TMED2, MANBA, COL9A2 
 

PABPC1 
 

NFKB1 

rs230504 ING2, COL9A2, MANBA, ADH7, CISD2 
 

PABPC1 
 

NFKB1 

rs230493 CACNB1, COL9A2, MANBA 
 

PABPC1 Yes NFKB1 

rs230495 
 

MafF, MafK PABPC1 Yes NFKB1 

rs17032850 
  

PABPC1 Yes NKFB1 

rs3774959 WDR27, MANBA, COL9A2 Pol2-4H8 PABPC1 
 

NFKB1 

rs4648055 
CKAP4, COL9A2, MANBA, ADH7, 
CISD2  

PABPC1 
 

NFKB1 

rs17440909 
  

ELAVL1 
 

PDE4D 

Shaded genes, proteins and motifs indicate commonalities between rSNPBase and RegulomeDB SNPs.  
* Many other TFs are listed on rSNPBase, but all TFs in common with RegulomeDB for rs2272676 are listed in the table. 
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Table 3.7: Top 10 SNPs predicted by TRAP to increase or decrease motif binding affinity significantly. 

Decreases in binding affinity 

SNP log ratio Jaspar motif ID Motif Total SNPsa 

rs2367184 -3.78665 MA0133.1 BRCA1 9 

rs10492354 -3.60905 MA0133.1 BRCA1 9 

rs1585215 -3.27794 MA0084.1 SRY 8 

rs60371688 -2.70746 MA0133.1 BRCA1 9 

rs11613776 -2.48881 MA0036.1 GATA2 4 

rs246430 -2.47982 MA0042.1 FOXI1 1 

rs67609022 -2.09686 MA0098.1 ETS1 9 

rs11214606 -2.09355 MA0098.1 ETS1 9 

rs3113628 -2.0879 MA0098.1 ETS1 9 

rs56293675 -2.08772 MA0098.1 ETS1 9 

Increases in binding affinity 

SNP log ratio Jaspar motif ID Motif Total SNPsa 

rs1020760 3.872955 MA0069.1 Pax6 6 

rs4648052 2.659042 MA0084.1 SRY 8 

rs71526953 2.337937 MA0133.1 BRCA1 9 

rs17742544 2.240923 MA0043.1 HLF 6 

rs230493 1.968377 MA0036.1 GATA2 4 

rs58133638 1.777604 MA0095.1 YY1 2 

rs62328542 1.725868 MA0099.2 JUN::FOSb 2 

rs55999909 1.715268 MA0259.1 HIF1A::ARNTb 1 

rs111577254 1.700943 MA0098.1 ETS1 9 

rs821102 1.656439 MA0258.1 ESR2 1 

a Total number of SNPs predicted to increase or decrease binding affinity significantly for each motif in 
the study. 
b Heterodimer  
Shaded SNPs and motifs were also deemed significant by RegulomeDB and/or rSNPBase. 

 

3.4.6. Nonsynonymous coding SNPs 

PolyPhen-2 was utilised to assess functional implications of the 535 SNPs with regards to 

protein-coding regions. One SNP located in an exon of the CNTNAP5 gene, rs17727261, 

was classified as nonsynonymous. This missense variant, identified as significant in the 

McClay et al. (2011b) GWAS, results in a serine to leucine substitution at codon 452 

(S452L). Polyphen-2 predicted this variant to be benign, with a score of 0.011. Therefore, 

none of the SNPs are expected to have damaging effects on protein products. This is 

expected given that the majority are in noncoding regions. 

3.4.7. Affected genes and pathways 

A list of affected genes was compiled by combining eQTL targets from rSNPBase and 

RegulomeDB, and affected genes predicted by rSNPBase. CNTNAP5 was also included, for 
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a total of 126 genes. After excluding pseudogenes and unprocessed transcripts, the list 

consisted of 118 unique genes, listed in Table S2. This gene set was uploaded to DAVID for 

functional annotation.   Four pathways were identified by DAVID and are ranked by P-value 

in Table 3.8. Terms with larger fold change values (> 1.5) and smaller uncorrected P-values 

(< 0.1) should be considered significant for further investigation (Huang et al., 2009). 

Therefore, all four pathways identified are of interest. NFKB1, affected by a total of 104 

rSNPs, plays a role in three of these pathways, namely HIV-I negative factor (Nef) 

functioning, chronic myeloid leukaemia, and human cytomegalovirus (CMV) and mitogen-

activated protein kinase (MAPK) pathways. The retinoblastoma 1 (RB1) gene also occurs in 

all three of these pathways. The fourth pathway, platelet-derived growth factor (PDGF) 

signalling, contains four genes affected by a total of six rSNPs. 

Table 3.8: Pathways identified by DAVID for affected genes (http://david.abcc.ncifcrf.gov/home.jsp). 

Tool Pathway Fold change P-value Genes Total SNPs* 

BIOCARTA HIV-I Nef 7.4 0.05 

ACTG1 1 

NFKB1 104 

RB1 1 

PANTHER PDGF signalling pathway 3.7 0.08 

RAB25 2 

SHC1 2 

EHF 1 

PKN2 1 

KEGG Chronic myeloid leukaemia 5.8 0.09 

SHC1 2 

NFKB1 104 

RB1 1 

BIOCARTA 
Human CMV and MAPK 
pathways 

18.7 0.09 
NFKB1 104 

RB1 1 

* Total SNPs predicted by RegulomeDB and/ or rSNPBase to affect particular gene. 
Nef = negative factor; PDGF = platelet-derived growth factor; CMV = cytomegalovirus; MAPK = 
mitogen-activated protein kinase.   

 

The genes for each pathway were uploaded to GeneMANIA for further analysis. Networks, 

as well as corrected probability scores for common functions between genes, were 

assessed. Figure 3.2 shows the network for genes involved in the HIV-I Nef pathway. Two of 

the three genes in this pathway, NFKB1 and the actin, gamma 1 (ACTG1) gene, were 

identified by GeneMANIA to play a role in immune response-activating cell surface receptor 

signalling and Fc receptor signalling, with false discovery rate (FDR) values of 0.07 and 0.08 

respectively.  
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Figure 3.2: GeneMANIA network for affected genes in the HIV-I Nef pathway according to DAVID 

(ACTG1, NFKB1 and RB1), with related genes in grey. Red genes are involved in immune response-

activating cell surface receptor signalling and Fc receptor signalling pathways. Red connections 

indicate physical interactions (http://www.genemania.org/). 

Additionally, Figure 3.3 illustrates the affected genes involved in the chronic myeloid 

leukaemia pathway. No functions common to all three genes in this pathway were found, 

however there were several functional overlaps between NFKB1 and the Src homology 2 

domain containing (SHC) transforming protein 1 (SHC1) gene. These include Fc receptor 

signalling (FDR = 0.001) and neurotrophin signalling (FDR = 0.002), as well as the 

previously mentioned functions that are common to NFKB1 and ACTG1. Connections 

between genes involved in the Human CMV and MAPK pathways (NFKB1 and RB1) can 

also be viewed in Figure 3.3 (B). These genes both take part in regulatory region DNA 

binding (FDR = 0.015) as well as the regulation of lipid metabolism (FDR = 0.030). The 

network for PDGF signalling did not show functions common to any of the four genes and 

thus is not shown.  
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Figure 3.3: GeneMANIA networks indicating genes in the chronic myeloid leukaemia pathway, and human CMV and MAPK pathways according to 

DAVID, with related genes in grey. Red genes in A) are involved in Fc receptor signalling and neurotrophin signalling pathways, and red genes in B) play a 

role in DNA binding in regulatory regions. Red connections indicate physical interactions and blue connections indicate pathways 

(http://www.genemania.org/).  
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3.4.8. Tissue-specific gene expression 

Expression patterns of the ten genes affected by the most number of SNPs were analysed 

with FANTOM5. The highest brain- and liver-related expression values, as well as highest 

overall expression value, were measured as shown in Table 3.9. For four of the affected 

genes, indicated in bold, the highest overall expression was in a cell line related to the brain, 

i.e. the pineal gland, globus pallidus, and astrocytes in the cerebellum. A few genes showed 

negligible expression (TPM < 10) in either brain or liver cells, with the alcohol 

dehydrogenase class 4 mu/sigma chain (ADH7) gene showing no expression in either. Of 

the ten genes, the highest liver-related expression was demonstrated by calmin (calponin-

like, transmembrane) (CLMN) in hepatocytes (TPM = 81.6).  

Table 3.9: Brain- and liver-specific expression of ten most affected genes according to FANTOM5 

(http://fantom.gsc.riken.jp/5/sstar). 

Gene 
Total 
SNPs 

Highest brain-related 
expression 

Highest liver-related 
expression 

Highest overall 
expression 

Tissue TPMa Tissue TPMa Tissue TPMa 

NFKB1 104 Dura mater  32.1 
Hepatic 
sinusoidal 
endothelial cells 

33.2 
CD14+ 
monocytes 

1314.2 

PDE4D 25 Parietal lobe 27.9 Foetal liver 6.6 CD19+ B cells 68.3 

MANBA 23 
Brain smooth 
muscle 

44.2 
Hepatic 
mesenchymal 
stem cells 

35.2 Neutrophils 290.5 

GPR98 18 Pineal gland 138.2 None 0.0 Pineal gland 138.2 

COL9A2 18 
Cerebellum 
astrocytes 

191.2 
Hepatic stellate 
cells (lipocytes) 

5.9 
Cerebellum 
astrocytes 

191.2 

CLMN 14 
Globus 
pallidus 

138.6 Hepatocytes 81.6 Globus pallidus 138.6 

DICER1 10 
Globus 
pallidus 

53.5 Hepatocytes 36.8 Globus pallidus 53.5 

CISD2 9 
Meningeal 
cells 

39.7 Adult liver 70.5 Reticulocytes 193.6 

SPOPL 6 
Globus 
pallidus 

21.0 Foetal liver 10.6 Neutrophils 65.8 

ADH7 6 None 0.0 None 0.0 Oesophagus 130.6 

a TPM = tags per million; TPM ≥ 10 represents active gene expression.  
Cases in which relevant tissue expression is also highest overall expression are indicated in bold. 

3.5. Discussion 

This study aimed to assess the functional impact of SNPs implicated in previous 

antipsychotic response GWAS, in order to improve our understanding of the mechanisms 

behind antipsychotics and the genetics of treatment response. The novel and 

comprehensive bioinformatics pipeline provides an approach that includes the analysis of 
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predicted and experimentally validated regulatory regions overlapping the SNPs, and 

assesses the regulatory potential of each variant. Furthermore, functional interpretations can 

be made by exploring the predicted regulated genes, implicated pathways, and expression in 

relevant tissue types. These factors allow for hypothesis-free evaluation of significant 

genomic variants, and thus could uncover novel genes and pathways associated with 

treatment response.   

3.5.1. Antipsychotic response GWAS 

3.5.1.1. GWAS study design 

Firstly, the shortage of studies on antipsychotic treatment response is apparent. For 

example, when the interactive version of the NHGRI GWAS Catalog is consulted 

(http://www.ebi.ac.uk/fgpt/gwas/), one can see the plethora of significant SNPs for other 

traits or disorders, such as those of the immune or digestive systems. Using the Catalog’s 

genome-wide significance cut-off of P ≤ 5x10-8, only seven SNPs in Table 3.3 qualify as 

significant. Even with a more lenient threshold of P ≤ 5x10-7, only 62 SNPs from a total of 

nine studies are deemed important. However, this is not surprising since, to date, only twelve 

GWAS on antipsychotic response have been performed, and they do not match the large-

scale studies like those conducted by the PGC (Ripke et al., 2013; 2014). Additionally, the 

generally weak association signals contrast with those found in schizophrenia susceptibility 

GWAS, for which the strongest association signal has a P-value of 1.47x10-16 (Strange et al., 

2012). The reason for relatively weak associations can be explained by the limited sample 

size of previous treatment response GWAS, as well as the difficulty in obtaining a well-

characterised and clinically homogeneous cohort. 

The CATIE cohort, consisting of 738 genotyped individuals, was tested for associations with 

different response traits for six of the nine studies, as shown in Table 3.3. This cohort is both 

the largest and most thoroughly assessed antipsychotic response trial that has patient DNA 

available (Adkins et al., 2011). Individuals in CATIE began treatment on either one of four 

SGAs (ziprasidone, risperidone, quetiapine or olanzapine), or the FGA perphenazine. If 

treatment was deemed ineffective, patients could either go on to clozapine or a different 

SGA. The main aim of this multiphase, randomised trial was to compare effectiveness of 

different SGAs, and measure the efficacy of SGAs against perphenazine (Stroup et al., 

2003). The comprehensive clinical data obtained in the CATIE trial is useful for assessing 

different aspects of treatment response. The range of outcomes assessed include adverse 

metabolic and cardiovascular measures, EPS, rated with three different scales, general 
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cognitive and psychosocial functioning, and treatment response measured with the PANSS, 

PGI and CGI-S (Lieberman et al., 2005). 

Although differences in treatment efficacy are still under debate (Lewis and Lieberman, 

2008; Meltzer, 2013), these agents have demonstrated significantly different side effect 

profiles, particularly in the case of clozapine (Brandl et al., 2014). Our understanding of the 

mechanisms of antipsychotics is limited, but it is likely that different adverse reactions 

indicate different biological pathways, and thus antipsychotic heterogeneity limits statistical 

power in GWAS (Ni et al., 2013). In order to improve this, five of the CATIE GWAS 

increased clinical homogeneity at the price of decreasing sample size; in other words, the 

authors performed drug-specific GWAS on patient subgroups. For example, the two 

significant SNPs identified by Åberg et al. (2012) mediated the effects of quetiapine and 

risperidone on adverse cardiac events respectively. Additionally, Adkins and colleagues 

(2011) showed that, grouping by medication, risperidone was the antipsychotic with the most 

number of corresponding significant associations. Clozapine and perphenazine were also 

significantly associated with a number of different outcomes in this study. The Clark et al. 

GWAS (2013) and the two McClay et al. studies (2011a; 2011b) only found significant 

associations for the four SGAs ziprasidone, risperidone, quetiapine, and olanzapine. Åberg 

et al. (2010) did not indicate drug-specific results.  

Despite grouping patients by antipsychotic, the multiphase nature of CATIE meant that the 

majority of patients were on more than one type of antipsychotic (including clozapine) for the 

duration of the trial, and patients had not been required to be drug-naïve at the 

commencement of the study. Although there is an abundance of data available, this trial was 

not designed with pharmacogenomic application in mind. Nevertheless, CATIE provides a 

valuable resource of genetic and clinical data, without which the study of antipsychotic 

pharmacogenomics would be extremely limited. Furthermore, even with smaller, drug-

specific GWAS, many SNPs reached genome-wide significance for various treatment 

outcomes (Table 3.3).  

Of the remaining three GWAS cohorts, two stand out as being well-characterised in nature. 

The first study, by Liou et al. (2012), investigated schizophrenia treatment-refractoriness in 

Han Chinese individuals. Working under the hypothesis that refractoriness may be a “distinct 

and homogenous subgroup of schizophrenia”, the authors compared refractory individuals to 

healthy controls. Refractoriness was defined as nonresponse to two antipsychotic trials 

(chlorpromazine or one of six SGAs) or clozapine. This is in line with recommended 

treatment-refractoriness criteria (Suzuki et al., 2012). The homogeneity of the cohort, 
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comparison to controls, and lack of population stratification allowed for greater power to 

detect associations. Furthermore, replication of three associations in an independent cohort 

of 273 individuals provided robustness to the results. To evaluate the hypothesis that 

treatment-refractoriness is a unique endophenotype of schizophrenia, the top SNPs were 

then genotyped in a larger cohort of schizophrenia cases and healthy controls. Interestingly, 

none of the SNPs reached significance, providing credence for this concept. 

The second well-characterised study was conducted by Malhotra and colleagues (2012). 

Impressively, three independent cohorts were genotyped to validate the findings of the initial 

GWAS. This provided a joint P-value of 6 x 10-12 for rs489693, which was consistently 

associated with poor metabolic outcomes. This is the most significant SNP across all nine 

GWAS. The significance of this finding is emphasised by the fact that the discovery cohort 

and one replication cohort were drug-naïve prior to the study. Additionally, the large majority 

of patients received SGAs, with less than a third of one replication cohort (9% of all 

individuals) having been administered with haloperidol. Clinical uniformity was further 

maintained by the use of an exclusively clozapine-administered replication cohort, and 

exclusion of clozapine-treated patients from the discovery cohort (Malhotra et al., 2012). This 

GWAS demonstrates that good clinical characterisation is vital, and allows for robust results 

that provide valuable insight into the genetics of treatment response.   

Lastly, in contrast to the Malhotra et al. (2012) GWAS, the study designed by Athanasiu and 

colleagues (2012) has many flaws. The clinical data was obtained in a naturalistic setting, 

i.e. a hospital. Therefore, antipsychotic type and dose were adjusted when necessary, and 

patients were on different and multiple types of medication. Although this is how treatment 

operates in clinical practice, it is not ideal for a pharmacogenomic study attempting to draw 

statistically sound conclusions about the biology of adverse drug reactions. Patients 

receiving different classes of psychopharmacological agents (FGAs, SGAs, antidepressants 

and/ or mood stabilisers) were analysed together, and medications were grouped based on 

their likelihood of resulting in adverse reactions. This means that different drug types were 

included in the same subgroup. Bearing in mind that these medication types have different 

targets, pathways and side effects, finding true genetic associations would be difficult, if not 

impossible. The authors acknowledge that grouping in such a manner increases 

heterogeneity and subsequently the risk of type II errors (Athanasiu et al., 2012). A more 

suitable design would have been to group patients by medication type. Incidentally, 84% of 

the second group of patients received antipsychotics, and this was the only group for which 

significant associations were found. Therefore, the results were included in this study, but 

analyses were interpreted with caution.              
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3.5.1.2. Significant GWAS findings 

As expected, the majority of significant variants were not in protein-coding regions (Table 

3.3). For the most part, the authors’ annotation and the classification according to 

SeattleSeq were concordant, however differences were noted for the Clark et al. (2013) 

study. The authors clearly state that rs711355, rs785423, and rs813676 are located in the 

tight junction protein 1 (TJP1) gene, and that rs2980976 occurs in the tumour necrosis factor 

receptor superfamily, member 11a, NFKB activator (TNFRFS11A) gene. However, all four of 

these SNPs are in fact intergenic and may not affect the function of the latter genes, even 

though they were interpreted to do so. With regards to regulation, the majority of the GWAS 

acknowledge that the intergenic findings may affect regulatory processes, but this was not 

investigated further. For example, Åberg et al. (2010) state that the intergenic SNPs 

rs17022444 and rs7669317 may impact long-range regulatory effects. Considering the SNPs 

occurring in introns, the GWAS either did not acknowledge that the variant was intronic, or 

did not discuss the implications thereof, such as potential effects on post-transcriptional 

processing. For the most part, the nine GWAS follow the trend of interpreting function in 

terms of the closest gene, and deprioritise genes that have not previously been implicated in 

antipsychotic response, neurological functioning, or schizophrenia. All of the studies 

investigated LD to a limited extent, with some performing haplotype analyses, but once 

again these variants or haplotypes were related back to the closest gene. A more thorough 

and all-inclusive approach to GWAS interpretation could lead to novel pathway associations 

and improve biological hypotheses. 

3.5.2. Predicted rSNPs and their genomic effects 

3.5.2.1. Regions implicated in immunity 

Of all the variants accounted for by GWAS and LD analyses, 20 SNPs were classified by 

RegulomeDB to have regulatory potential (Table 3.5). Interestingly, two of these originate 

from the Adkins et al. (2011) GWAS on metabolic side effects, and the Åberg et al. (2012) 

GWAS on QT interval prolongation, respectively. This reaffirms the importance of accounting 

for LD structures when interpreting associations, as the most significant rSNPs were not 

tagged or assessed by previous GWAS. None of the remaining 18 rSNPs have been 

previously associated with schizophrenia, pharmacogenomics or antipsychotic treatment 

response. The first GWAS SNP, rs6741819 on chromosome two, was predicted to affect the 

binding of the transcription factors EBF1, GATA1 and CTCF, and the motif CNOT3. The 

corresponding PWM for CNOT3 indicates that the position of this SNP is the most conserved 

relative to other bases, suggesting that substitutions at this locus are undesirable. EBF1 is a 
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transcription factor that has been shown to play an important role in B cell differentiation 

within the adaptive immune system (Nechanitzky et al., 2013).  

Interestingly, the results include several other regulatory factors involved in immunity. For 

example, RFX3 is a protein that binds to MHC class II promoters to influence MHC 

expression (Reith et al., 1995). According to rSNPBase, RFX3 is affected by rs3774959 – 

the most significant RegulomeDB SNP – and rs230493, both associated via LD with 

treatment-refractory schizophrenia (Liou et al., 2012). Secondly, CEBPB was predicted to be 

affected by rs3774933 by both RegulomeDB and rSNPBase analyses. This SNP is similarly 

in LD with a significant SNP from Liou et al. (2012). Lending evidence to this finding, a 

matched DNase peak for the corresponding C/EBP motif was identified at this locus by 

RegulomeDB. The CEBPB transcription factor has been shown to play an important role in 

immune suppression (Marigo et al., 2010). There is a long-standing hypothesis that 

schizophrenia development is associated with abnormal immune functioning. In fact, the 

MHC locus is the most replicated genomic region with regards to associations with 

schizophrenia risk (Sullivan et al., 2012). These results suggest that regulation of different 

aspects of the immune system could contribute to variation in schizophrenia treatment 

response, particularly nonresponse. Supporting this idea, a recent meta-analysis of 23 

studies revealed that antipsychotics produce anti-inflammatory effects in schizophrenia 

(Tourjman et al., 2013). Although the exact mechanisms remain unclear, the interplay 

between antipsychotic response and the immune system should be explored further.  

3.5.2.2. Ubiquitous regulatory factors 

In addition to the immune system, there are several implicated regulatory factors that are 

involved in many widespread developmental and regulatory processes. For example, EP300 

is a histone acetyltransferase that plays a role in chromatin remodelling and thus regulates 

gene expression, functioning ubiquitously in processes such as cell growth and proliferation 

(Ogryzko et al., 1996). Furthermore, TCF4 is a widely expressed transcription factor affected 

by the rSNPs rs2272676 (associated via LD with treatment-refractoriness) and rs17440909 

(associated via LD with patient-rated symptom severity; Clark et al., 2013). Interestingly, 

TCF4 has been consistently associated with schizophrenia development in independent 

studies (Stefansson et al., 2009; Wirgenes et al., 2012; Ripke et al., 2013). Other 

widespread regulatory effects are illustrated by the RNA-binding proteins associated with 

post-transcriptional processing (Table 3.6). PABPC1 binds the poly(A)-tail of transcribed 

mRNA, and has demonstrated involvement in nonsense-mediated decay (Behm-Ansmant et 

al., 2007). ELAVL1, on the other hand, binds to the 3’-UTR of mRNA and promotes 

transcript stability (Lebedeva, 2012). SNPs in the regions that bind the latter proteins may 
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affect general functioning in many cell types, suggesting that pathways nonspecific to drug 

response may influence antipsychotic treatment outcomes. This notion is supported by the 

results of the tRap analysis (Tables 3.7 and S1). Considering the three traits used as 

controls, there are only twelve motifs that are unique to antipsychotic response, and none of 

these are the top ten most significantly affected motifs.  

3.5.2.3. The 4q24 locus and NFKB1 

The most notable characteristic of the rSNPs predicted by RegulomeDB and rSNPBase is 

that results are enriched for the q24 region of chromosome four. Of the 20 SNPs predicted to 

be significant by RegulomeDB, 14 occur at this locus. Additionally, nine of these scored 1b-f, 

therefore this region has the most experimental evidence that supports its involvement in 

regulation, in comparison to other SNPs associated with treatment response. All of the 4q24 

rSNPs are in LD with rs230529; one of three SNPs implicated in treatment refractoriness by 

Liou et al. (2012). Interestingly, the original GWAS variant was not predicted by 

RegulomeDB to affect regulatory regions significantly, even though all the SNPs in this 

region were in strong linkage disequilibrium for CHBJPT, CHD and JPT+CHB+CHD 

population groups. This emphasises the importance of analysing each variant within a region 

instead of interpreting the impact of the tag SNP alone. 

As shown in Figure 3.1, the 4q24 region includes the start of transcription of the NFKB1 

gene. The ENCODE tracks in this region show extensive evidence of regulation in different 

cell lines, including ChIP-Seq and DNase peaks, as well as the histone mark H3K27Ac, 

which is associated with open chromatin and active transcription. rSNPBase predicted the 

majority of input SNPs in this region to affect the expression of NFKB1. In fact, this gene was 

predicted to be affected by 104 SNPs – almost half of the rSNPs characterised by 

rSNPBase. NFKB1 encodes a highly conserved transcription factor that regulates over 200 

genes, and plays important roles in cancer and the immune system (Shishodia and 

Aggarwal, 2004; Liou et al., 2012). Once again, this implicates immune dysregulation in 

antipsychotic response. Polymorphisms in NFKB1 have previously been associated with the 

pharmacogenetics of anti-tumor necrosis factor (TNF) treatment response (Bank et al., 

2014) and with schizophrenia susceptibility (Narayan et al., 2008). Interestingly, a 2015 

review identified the most replicated finding in first episode schizophrenia studies to be 

increased TNF-α levels (Fond et al., 2015). This pro-inflammatory cytokine is regulated by 

NFKB1 (Hall et al., 2005), suggesting alterations in this regulatory pathway may be 

responsible for the identified associations with the disorder. 
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The enrichment for SNPs that affect expression of NFKB1 is significant, however one must 

keep in mind that NFKB1 may be overrepresented in the results of this study. All significant 

RegulomeDB SNPs at this locus are proxies for one single SNP. It is possible that the 

results revealing regulatory potential are indicative of a single signal. Furthermore, variation 

within or affecting NFKB1 may not have effects specific to antipsychotic treatment response, 

since this gene has control over hundreds of downstream loci. Having said that, it is 

interesting to note that the 4q24 region came up in three of the other original GWAS, which 

investigated associations with different treatment outcomes (Åberg et al., 2010; Adkins et al., 

2011; Clark et al., 2013). This region could be important for treatment response and should 

be investigated further.  

3.5.3. Genes and pathways relevant to antipsychotic response 

Apart from NFKB1, a number of other affected genes and eQTLs were determined by 

RegulomeDB and rSNPBase. Notably, the most significant of these have all shown 

associations with schizophrenia susceptibility or symptom severity in the past. 

Experimentally, the most significant SNPs are those predicted to act as eQTLs. Overlap 

between RegulomeDB and rSNPBase was seen for the 4q24 rSNPs and eQTL targets 

MANBA and COL9A2. MANBA was the third most affected gene in the study and has been 

linked to schizophrenia (Jungerius et al., 2007). This gene codes for the lysosomal β-

mannosidase protein, and mutations can lead to β-mannosidosis (Huynh et al., 2011). The 

second most affected gene, with a total of 25 rSNPs implicated in its expression (Table 3.9), 

is the cAMP-specific phosphodiesterase 4D (PDE4D) gene, which, like the other two top 

genes, has also shown links to schizophrenia (Tomppo et al., 2009). The PDE4D gene was 

implicated in the Clark et al. (2013) GWAS, and a SNP in one of its introns was significantly 

associated with patient-rated symptom severity. Interestingly, PDE4D inhibition increases 

dopamine receptor signalling, suggesting that this gene could be a potential antipsychotic 

target (Halene and Siegel, 2008; Kuroiwa et al., 2011).  

Upon first inspection, the pathways and networks predicted by DAVID and GeneMANIA do 

not indicate any mechanisms that have been traditionally associated with neuropsychiatric 

disorders or drug response. Relatively few genes were included in each pathway, but mostly 

high fold change values suggest that these findings are significant. Interestingly, NFKB1 is a 

node in three of the four pathways identified by DAVID, demonstrating its diverse and 

widespread function. Analysis of function with GeneMANIA substantiated the potential role of 

immunity in treatment response: NFKB1 and ACTG1 both function in cell receptor signalling 

during an immune response (Figure 3.2). Additionally, pointing to effects on neurological 

functioning, NFKB1 and SHC1 are both involved in neurotrophin signalling (Figure 3.3). 
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Therefore, although these clustered pathways seem unlikely candidates for drug response 

biology, they should be investigated further to search for clues regarding the mechanisms of 

antipsychotic treatment outcomes.  

3.5.4. Study limitations 

The limitations associated with this study concern both the antipsychotic response GWAS 

and the tools used to analyse them. As discussed, there are relatively few GWAS that have 

investigated schizophrenia treatment response, and even fewer that have been well-

designed and are statistically robust. The majority of results are based on information from 

one cohort of less than 1000 individuals, therefore the methods applied in this study must be 

investigated in other samples and population groups. Furthermore, drug-speicific cohorts are 

essential, as mechanisms may differ between FGAs and SGAs, and unique SGAs such as 

clozapine. There is great need for improvement in clinical characterisation of patients, 

clinical and genetic homogeneity, and increased GWAS sample sizes. The difficulties in 

assessing and defining treatment response, as well as obtaining drug-naïve individuals, 

have thus far restricted these developments. 

The range of tools one can use to assess the functional impact of genetic variation is 

growing rapidly. The analysis of genomic regulation is still in its infancy, and there are many 

improvements to be made. Inconsistencies between tools and insufficient data may have 

prevented the discovery of a gene or pathway involved in treatment response. The limited 

consensus between the tools demonstrates the need for improved bioinformatic design and 

database curation, as well as the complexity of genetic regulation. Lastly, ENCODE has 

received criticism for its claim that 80% of the genome is functional (Graur et al., 2013). 

Although it is the only resource of its kind, one must keep in mind that the data may 

overestimate functionality within the genome. For example, almost half of the variants 

analysed were assigned at least one regulatory function by rSNPbase. Although regulation is 

complex and extensive, such results must be interpreted with caution. With time and 

additional studies, the regulatory networks behind complex traits and disorders such as 

antipsychotic response will likely become clearer.   

3.6. Conclusion 

This study has provided a novel approach to the functional analysis of genomic variation. 

With a bioinformatics pipeline that can be applied to other complex traits, regulatory changes 

and downstream effects can elucidate the mechanisms involved in the workings of 

antipsychotics and the development of adverse drug reactions. Given that previous studies 
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have revealed little about the biology of antipsychotics, a hypothesis-free approach such as 

this one provides the best means of understanding the heterogeneity of treatment response.       

Importantly, this study reaffirmed the functionality of noncoding regions of the genome, and 

the widespread impact that rSNPs can have; affecting proximal, long-range and post-

transcriptional processes. The most significant finding of this study was the predicted role of 

NFKB1 in treatment-refractory schizophrenia, which provided further evidence that 

refractoriness is a distinct endophenotype of the disorder. The 4q24 locus may be important 

for immune-mediated response to antipsychotics, and it is essential that this is investigated 

in future. Additionally, this study lends evidence to the hypothesis that there is extensive 

overlap between schizophrenia risk and treatment response pathways, perhaps particularly 

with regards to immune functioning. Much like each symptom domain of schizophrenia, it is 

likely that different treatment outcomes reflect different pathways, and that cumulative 

variants in both coding and noncoding regions contribute to their inception and severity.  

Future research on antipsychotic response should involve large-scale GWAS coupled with 

bioinformatic and functional analyses. Ideally, results should be validated in multiple cohorts, 

and include previously underrepresented populations, since these groups experience the 

majority of the mental health burden. This process begins with better study design and 

clinical assessments and, with the use of bioinformatics, has the potential to conclude with 

improvements in our understanding of complex disorders. This paves the way for better 

treatment response and medication tailored for each individual.   
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CHAPTER 4:  

Associations between predicted regulatory variants and 
antipsychotic treatment outcomes in a South African schizophrenia 
cohort 

4.1. Summary 

Although antipsychotics are effective at reducing the positive symptoms associated with 

schizophrenia, remission is currently not a realistic goal for the majority of patients, and 

relapse is often a reality. Pharmacogenomics has the potential to elucidate the genetic 

factors contributing to this heritable trait, and ultimately guide future drug design and 

treatment improvement. This study attempted to validate the findings of a novel bioinformatic 

pipeline that assessed previous antipsychotic pharmacogenomic GWAS hits for regulatory 

impact on treatment response. TaqMan® OpenArray® was utilised to genotype 31 SNPs in 

a South African cohort, which were subsequently assessed for associations with treatment 

outcomes and ADRs with the use of mixed-effects repeated measures analyses. Significant 

associations were observed for several outcomes, including changes in PANSS scores, 

refractoriness, remission, and metabolic side effects.  

The associations that survived Bonferroni correction were located on chromosome 4q24, 

which was the most significant regulatory locus identified in the bioinformatic portion of the 

study. Furthermore, this region has been previously implicated in schizophrenia. The SNPs 

rs230493 and rs3774959 were both significantly associated with greater post-treatment 

PANSS Negative scores (P < 0.00001). Additionally, a 14-SNP haplotype containing these 

two variants was predicted to elicit a 4.41% higher post-treatment positive symptom score. 

These results validate the importance of the 4q24 region in antipsychotic response, the 

biological overlap of schizophrenia susceptibility and drug response, and the hypothesised 

role of genomic dysregulation in adverse treatment outcomes. Interestingly, nonconcordance 

was observed with regards to dichotomous outcomes of refractoriness and remission, and 

significant variants. This suggests that clinical characterisation of these states should be re-

evaluated with respect to genetic variables. Lastly, the study of a well-characterised South 

African cohort not only contributes to our knowledge of pharmacogenomics, but also 

improves our understanding of this genetically rich and distinct population group. These 

findings have the potential to aid in improving treatment outcome in schizophrenia.       
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4.2. Introduction 

Schizophrenia is a severe, lifelong psychiatric disorder for which treatment is often complex 

and ongoing. Treatment response can be measured by several different scales that assess 

changes in symptom severity. This includes the PANSS, which accounts for different 

symptom domains, including positive and negative symptoms (Kay et al., 1987). Additionally, 

there are a few terms that are important to define when assessing treatment response. 

Firstly, remission has been classified by the Remission in Schizophrenia Working Group as 

a period of at least six months in which symptoms are absent or mild, and do not affect an 

individual’s functioning (Andreasen et al., 2005). In contrast, treatment-refractoriness or 

nonresponse is generally established when a patient’s symptoms do not adequately improve 

after at least two trials of different antipsychotics (Suzuki et al., 2012). It is important to note 

that these states are not absolutes and are difficult to define and predict, due to differences 

between individuals and different response criteria. One reliable predictor of long-term 

outcome is early treatment response. Studies have shown that an individual responding well 

as early as two weeks into treatment is an indicator of later remission, whilst refractoriness 

can be predicted by early nonresponse (Kinon et al., 2008; Chiliza et al., 2015a).   

The complexity and heterogeneity of treatment response is largely brought about by the 

genetic differences between individuals in drug metabolism, neurotransmitter, and other 

pathways (Blanc et al., 2010; Klein and Zanger, 2013; Ni et al., 2013). However, studies to 

date have mostly provided inconsistent results. Much like other complex traits, there are 

likely to be hundreds to thousands of common variants across the genome that cumulatively 

contribute to individual treatment response phenotypes (Arranz and de Leon, 2007). With 

large and well-characterised sample groups, pharmacogenomics enables the discovery of 

these variants. Specifically, GWAS have recently been employed to study antipsychotic 

response. While this approach trumps a priori candidate gene studies by analysing variants 

across the genome, the majority of GWAS lack sufficient biological interpretation. Often, 

variants are considered in isolation and exclusively with regards to the function of their 

neighbouring gene (Åberg et al., 2012; Clark et al., 2013). This restricts the creation of new 

hypotheses and further understanding of treatment response mechanisms.   

Overall, GWAS have neglected individuals of non-European descent. This potentially 

precludes the development of effective treatment for all individuals, since populations vary 

extensively with regards to genetics. Indeed, the allele frequency of a GWAS variant has 

been shown to vary 40-fold between different ethnicities (Adeyemo and Rotimi, 2010). 

Africans have been shown to be the most genetically diverse population group, yet they are 
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underrepresented in genetic studies (Drögemöller et al., 2011). This group’s unique genetic 

make-up could provide invaluable information about variation contributing to complex 

phenotypes such as treatment response. Further motivation to study African populations is 

the fact that they suffer a greater mental health burden due to poor resources and public 

health care (refer to chapter one).  

The current study combines the need to better interpret GWAS results, while also 

considering previously understudied population groups. To improve functional interpretation 

of GWAS, a previous study employed a bioinformatic pipeline to assess all variants 

associated with treatment response by GWAS (chapter two). This included making use of 

several tools and large-scale datasets to assess the noncoding variants’ regulatory potential, 

as well as the impact of significant coding variants. The study found merit in approaching 

GWAS interpretation more comprehensively, as results suggested the novel hypothesis that 

NFKB1 and the immune system may contribute to antipsychotic response. However, the 

complexity of treatment response and the purely bioinformatic nature of this study require 

these results to be validated. Therefore, the current study aimed to perform association 

analyses in a well-characterised South African cohort of FES patients. As a second phase to 

the bioinformatic pipeline, this could provide validation for new treatment response 

hypotheses, as well as decrease the research gap between different population groups. The 

coupling of bioinformatics with specific studies in different ethnicities provides a 

comprehensive method to elucidate common genetic factors contributing to antipsychotic 

treatment outcomes. In the long term, understanding the biological mechanisms of 

antipsychotics provides a platform for better drug design and effective treatment of 

schizophrenia.  

4.3. Materials and methods 

Refer to Electronic Sources (p. 107) for dates of access to online tools. 

4.3.1. Patient samples 

A South African FES cohort of 103 patients (median age 23 ± 7 years; 74% male) was used 

to investigate associations with SNPs previously implicated in treatment response. The 

cohort consisted of 82 SAC, 13 Xhosa and 8 Caucasian individuals. Patients were recruited 

over four years at Stikland Hospital in the Western Cape and assessed with the Structured 

Clinical Interview for the DSM-IV (American Psychiatric Association, 1994). Demographic 

and medical data were obtained at the time of recruitment. Signed written and informed 

consent was provided by all patients or their caregivers prior to the study. Ethical approval 
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was obtained from the Human Research and Ethics Committee (HREC), Faculty of Health 

Sciences, Stellenbosch University (ethics numbers for clinical and genetic aspects: 

N06/08/148 and 1907/005 respectively). 

All patients received treatment with flupenthixol decanoate, an FGA, by injection. Dose was 

gradually increased until remission was achieved – defined according to the Remission in 

Schizophrenia Working Group (Andreasen et al., 2005) – or until the maximum 

recommended dose was reached. Response to treatment was measured by the PANSS 

over a period of 12 months, with measurements taken every two weeks for the first six 

weeks, and every three months thereafter. A decrease of 25% or greater in PANSS scores 

at six weeks was considered indicative of early response to treatment in this study. 

Furthermore, treatment-refractory patients were defined as those who 1) discontinued 

treatment because of poor response, 2) showed a < 25% reduction in total PANSS scores at 

12 months, or 3) had a PANSS score > 70 at 12 months (Chiliza et al., 2015a). The latter 

two categories of patients must have completed treatment for at least three months without 

relapse in order to qualify as treatment-refractory. Lastly, data on metabolic outcomes was 

recorded:  BMI, lipid profiles, and changes in cholesterol were measured for each patient at 

three, six, nine and twelve months (Chiliza et al., 2015b). 

Prior to the current study, genomic DNA (gDNA) was extracted from whole blood samples 

from each patient, using the Miller et al. (1988) protocol.   

4.3.2. SNP prioritisation 

Variants previously predicted to affect regulation were prioritised for genotyping in the cohort 

(refer to chapter three). Regulatory predictions include those from RegulomeDB 

(http://regulome.stanford.edu/), rSNPBase (http://rsnp.psych.ac.cn/) and sTRAP 

(http://trap.molgen.mpg.de/cgi-bin/trap_two_seq_form.cgi).  SNPs were prioritised according 

to the RegulomeDB results. Even though this includes SNPs with a score > 3, these findings 

are the most robust compared to other tools, since they are based on experimentally 

validated data such as ENCODE (Boyle et al., 2012). In contrast, TRAP works only with 

computational predictions (Manke et al., 2010), and, although it deemed 222 SNPs to be 

involved in regulation, rSNPBase does not use a scoring system to rank variants. There is, 

however, extensive overlap between the top RegulomeDB variants and rSNPs predicted by 

rSNPBase. RegulomeDB variants were coupled with their proxy SNPs from antipsychotic 

response GWAS (provided the GWAS SNP was not already classified as an rSNP) for a set 

of 30 variants. Additionally, one exonic SNP (rs17727261) was predicted to be 

nonsynonymous by PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/). This variant was 
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also included for genotyping, creating a total of 31 SNPs for further analysis. The final set of 

genotyped SNPs, along with their associated response traits, is indicated in Table 4.1. In 

cases where a SNP failed assay design (4.3.3 below), the variant and its GWAS partner 

were replaced by the next most significant pair according to RegulomeDB.   

4.3.3. SNP genotyping 

The 31 SNPs in Table 4.1 were genotyped in the South African FES cohort with the use of 

TaqMan® OpenArray® Real-Time Polymerase Chain Reaction (PCR) (Life Technologies™, 

New York, USA). TaqMan® assays were obtained from the SNP Genotyping Assay Search 

Tool (http://www.lifetechnologies.com/za/en/home/life-science/pcr/real-time-pcr/real-time-

pcr-assays/snp-genotyping-taqman-assays.html). In cases where no predesigned assay was 

available, a custom assay was designed by Life Technologies™ in New York. SNPs that 

failed custom assay design or functional testing were excluded and replaced. The 

customised 31-SNP assay was manufactured by Life Technologies™ and shipped directly to 

the University of Utah DNA Sequencing and Genomics Core Facility for genotyping, along 

with genotyping master mix, OpenArray® 384-Well Sample Plates and necessary 

consumables. The SNPs and their corresponding assays are indicated in Table S3.   

Concentrations of previously extracted DNA samples for all 103 patients were measured 

using the NanoDrop spectrophotometer (NanoDrop® ND-100, NanoDrop Technologies Inc., 

Wilmington, Delaware, USA) and diluted to 25 µl at 80 ng/µl per sample. Thereafter, 20 µl of 

each sample was added to two MicroAmp® 96-well plates (Applied Biosystems™, 

California, USA). Duplicate samples were included as positive genotyping controls, and two 

empty wells per plate served as negative controls. The plates were sealed with optical 

adhesive film, frozen, and shipped on dry ice to the University of Utah.  Subsequently, 

genotyping was performed according to the manufacturer’s instructions and analysed with 

the OpenArray® SNP Genotyping Analysis Software version 1.3.1. 
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Position 
(GRCh37/hg19) 

SNP 

Relevancea 

Associated response measurement RegulomeDB 
Score 

rSNPBase TRAP GWAS PP-2 

Chr 1 

70921172 rs10458561 3a 
  

x 
 

QTc interval prolongation Åberg et al., 2012 

160077853 rs6688363 4 x 
 

x 
 

Clinical impression of severity (CGI-S) Clark et al., 2013 

160626060 rs10218843 N/A 
  

x 
 

Treatment-refractory schizophrenia Liou et al., 2012 

160630142 rs11265461 N/A 
  

x 
 

Treatment-refractory schizophrenia Liou et al., 2012 

160634587 rs6427540 4 x 
   

Treatment-refractory schizophrenia Liou et al., 2012 

236313126 rs7520258 N/A x 
 

x 
 

Neurocognition: working memory McClay et al., 2011a 

Chr 2 

7147972 rs6741819 2b x 
 

x 
 

Triglycerides Adkins et al., 2011 

125281909 rs17727261 N/A x 
 

x x Negative symptoms (PANSS) McClay et al., 2011b 

139259221 rs62161711 4 x 
   

Patient global impression (PGI) scale Clark et al., 2013 

139278921 rs10170310 N/A x x x 
 

Patient global impression (PGI) scale Clark et al., 2013 

Chr 4 

103414174 rs747559 1f x 
   

Treatment-refractory schizophrenia Liou et al., 2012 

103426338 rs3774933 1b x 
   

Treatment-refractory schizophrenia Liou et al., 2012 

103443568 rs1599961 1f x 
   

Treatment-refractory schizophrenia Liou et al., 2012 

103449040 rs230534 4 x 
   

Treatment-refractory schizophrenia Liou et al., 2012 

103450166 rs230532 1f x 
   

Treatment-refractory schizophrenia Liou et al., 2012 

103457417 rs230529 N/A x 
 

x 
 

Treatment-refractory schizophrenia Liou et al., 2012 

103458824 rs230526 2b x 
   

Treatment-refractory schizophrenia Liou et al., 2012 

103463006 rs118882 4 x 
   

Treatment-refractory schizophrenia Liou et al., 2012 

103465611 rs230520 1f x 
   

Treatment-refractory schizophrenia Liou et al., 2012 

103481350 rs230505 1d x 
   

Treatment-refractory schizophrenia Liou et al., 2012 

103481560 rs230504 1f x 
   

Treatment-refractory schizophrenia Liou et al., 2012 

103485779 rs230492 4 x 
   

Treatment-refractory schizophrenia Liou et al., 2012 

103486215 rs230493 1f x x 
  

Treatment-refractory schizophrenia Liou et al., 2012 

103487299 rs230495 3a x 
   

Treatment-refractory schizophrenia Liou et al., 2012 

103495531 rs230539 4 x 
   

Treatment-refractory schizophrenia Liou et al., 2012 

103511113 rs3774959 1b x 
   

Treatment-refractory schizophrenia Liou et al., 2012 

103515312 rs4648055 1f x 
   

Treatment-refractory schizophrenia Liou et al., 2012 

Chr 5 
58957830 rs17440909 3a x 

   
Patient impression of severity (PGI) Clark et al., 2013 

58999041 rs17742120 N/A x x x 
 

Patient impression of severity (PGI) Clark et al., 2013 

Chr 8 89566902 rs1352318 2c 
    

BMI Athanasiu et al., 2012 

Chr 12 31357101 rs10492354 1f 
 

x 
  

Negative symptoms (PANSS) McClay et al., 2011b 

a Relevance of SNP with regards to regulatory evidence (RegulomeDB, rSNPBase, TRAP) or protein impact (PolyPhen-2), as well as proxy GWAS SNPs. 
PP-2 = PolyPhen-2; Chr = chromosome; N/A = not applicable. 
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Table 4.1: SNPs genotyped in the South African FES cohort, including predicted rSNPs and corresponding GWAS SNPs. 
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4.3.4. Statistical analyses 

Allele and genotype frequencies for successfully genotyped SNPs were determined, and 

deviations from Hardy-Weinberg equilibrium (HWE) were calculated by means of a 

Pearson’s Chi-square (χ²) test or analogue to Fisher’s Exact Test with SNPStats (Solé et al., 

2006; http://bioinfo.iconcologia.net/snpstats/start.htm). SNPs with P < 0.01 were considered 

to deviate from HWE. SNP frequencies within the cohort were compared to those in HapMap 

(The International HapMap Consortium, 2003) and 1000 Genomes (The 1000 Genomes 

Project Consortium, 2010) population groups. Subsequently, LD between SNPs was 

assessed with Haploview version 4.2 (Barrett et al., 2005). Haploview designated haplotype 

blocks by assessing pairwise LD. SNPs with r2 ≥ 0.8 were considered to be in LD, but D’ 

confidence intervals (D’ > 0.7 - > 0.98) were also assessed for comparison (Gabriel et al., 

2002). The haplotypes were subsequently assessed for associations with treatment 

outcomes, along with all individual SNPs.  

Allelic, genotypic and haplotypic association analyses were performed in the R Linear and 

Nonlinear Mixed Effects Models package (Pinheiro et al., 2014). To determine the presence 

of associations with treatment outcomes (measured by changes in PANSS scores as well as 

several metabolic variables), mixed-effects model repeated measures analyses were 

conducted. Additionally, any associations with dichotomous outcomes, i.e. treatment-

refractoriness, remission, or early response, were determined with logistic regression 

models.  

Since the SAC population is highly admixed, any spurious associations due to population 

stratification were accounted for by correcting for ancestry contributions. This was 

accomplished by utilising ancestry informative markers (AIMs) as covariates to estimate 

ancestry proportions in ADMIXTURE (Alexander et al., 2010; Daya et al., 2013). The 

ancestry proportions of the SAC individuals are indicated in Figure 4.1. In addition to 

proportion ancestry, all analyses were adjusted for age, gender, and ethnic group, and the 

mixed-effects model repeated measures analysis was adjusted for baseline PANSS scores 

when assessing change in PANSS over time.  

Bonferroni was used to correct for multiple testing after association analyses. Modes of 

effect and inheritance were tested for the most significant associations, and estimates of 

effect size with 95% confidence were determined for all models. 
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Figure 4.1: Ancestry contributions from five populations in the SAC FES individuals (Drögemöller, 2013). 

 

 

4.4. Results 

4.4.1. Clinical outcomes 

The FES cohort was assessed for various treatment response outcomes. Firstly, considering 

the PANSS scores and criteria defined by the Remission in Schizophrenia Working Group, 

77 patients (74.8%) achieved early response at six weeks, and 10 individuals (9.7%) were 

classified as being treatment refractory. 58 patients (56.3%) achieved full remission by the 

end of the twelve month treatment period (Chiliza et al., 2015a). With the use of linear mixed 

effect models for continuous repeated measures, Chiliza and colleagues (2015b) observed 

significant weight gain within the cohort (P < 0.0001), with 58.2% of individuals gaining more 

than 7% weight. Additionally, increases in BMI (P < 0.0001) and triglycerides (P = 0.03), and 

a significant decrease in HDL cholesterol (P = 0.005) were observed.  

4.4.2. SNP genotyping 

All 31 SNPs were successfully genotyped, with an average call rate of 97.7%. Sample 

duplicates (FS027, FS095, and FS122) displayed concordant genotypes across all assays, 

except in a few cases where one or both failed to amplify, where the genotype was classed 

as “undetermined”. The allelic discrimination plot for rs6427540 is shown in Figure 4.2. For 

this SNP, all genotypes were determined, and the assay achieved a call rate of 100%. 

All genotyped SNPs demonstrated a MAF ≥ 0.05 in the cohort of 103 patients, and are thus 

considered common variants within this cohort (Iyegbe et al., 2014). Additionally, all SNPs 

were in HWE (P ≥ 0.01). The SNP with the lowest frequency, rs17727261 (MAF = 0.05) has 

similar frequencies in both HapMap and 1000 Genomes CEU samples, but does not occur in 

the other population groups, as shown in Figure 4.3. On the other hand, the SNP with the 

highest MAF (0.49), rs230505, is the major allele in all other HapMap and 1000 Genomes 

populations. Population comparisons for two other SNPs of intermediate frequency in the 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4                                                                                  ASSOCIATION ANALYSES 

71 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

rs17727261 (T) rs1352318 (A) rs10170310 (G) rs230505 (T)

M
in

o
r 

a
ll

e
le

 f
re

q
u

e
n

c
y

FES cohort HapMap CEU 1000 Genomes CEU

HapMap CHB HapMap JPT 1000 Genomes CHB+JPT

HapMap YRI 1000 Genomes YRI

Figure 4.2: Allelic discrimination plot for rs6427540. VIC® and FAM® relative dye intensities indicate 

genotype: VIC/VIC (CC); VIC/FAM (CT); FAM/FAM (TT). NTC = no template control. 

Figure 4.3: Frequency comparisons between the FES cohort and HapMap and 1000 Genomes 

populations.  Allele depicted refers to the minor allele within the FES cohort. 

South African cohort are also shown in Figure 4.3. Overall, the majority of SNPs displayed 

frequencies similar to the combined average of other population frequencies.    
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Figure 4.4: Two haplotype blocks on chromosome four, designated by Haploview version 4.2 (r2 ≥ 

0.8; LOD ≥ 3) (Barrett et al., 2005). Dark red squares indicate significant LD between SNPs; r2 values 

are shown as a percentage in each square. 

4.4.3. Haplotype analyses 

Analysis with Haploview showed that SNPs on chromosome four are in strong LD within the 

FES cohort, similar to the LD observed in previous analysis of a Han Chinese cohort (Liou et 

al., 2012). This region, with LD measured by r2, is indicated in Figure 4.4. The same 

haplotype blocks were designated according to D’ confidence intervals, shown in Figure S1. 

The two designated haplotype blocks for chromosome four were analysed further for 

associations with treatment outcomes. Similarly, haplotypes were identified for variants on 

chromosomes one, two, and five. All haplotypes and their inferred frequencies within the 

FES cohort are indicated in Tables S4a-e. Only those with frequencies greater than 0.01 are 

shown, and haplotypes with lower frequencies were removed from further analyses. 

4.4.4. Association analyses 

In total, there were 23 SNPs and 10 haplotypes that were significantly associated with 

treatment outcomes (P < 0.05), and 97 unique associations, as shown in Table S5. Three 

associations survived Bonferroni correction and are highlighted in the table. Table 4.2 shows 
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Table 4.2: Top significant SNP and haplotype associations with treatment outcomes in the FES cohort, with effect models and sizes indicated. 

Chr Variant/ haplotype 
Associated response 
measurement  

Effect model Comparison P-value Effecta 95% CI 

4 

rs230504 PANSS Negative Dominant TT + CT vs. CC 0.0001 1.47 0.71 2.24 

rs230493 PANSS Negative Genotype TA vs. TT < 0.0001 1.98 1.20 2.76 

rs230493 PANSS Negative Genotype AA vs. TT < 0.0001 0.38 -0.84 1.62 

rs230493 PANSS Total Dominant TA + AA vs. TT 0.0004 1.28 0.58 1.98 

rs230495 PANSS Negative Dominant AA + AG vs. GG 0.0006 1.59 0.68 2.50 

rs3774959 PANSS Negative Genotype  GA vs. GG < 0.0001 1.82 1.01 2.63 

rs3774959 PANSS Negative Genotype  AA vs. GG < 0.0001 0.31 -0.85 1.48 

rs3774959 PANSS General Genotype GA vs. GG 0.0004 1.58 0.78 2.39 

rs3774959 PANSS General Genotype AA vs. GG 0.0004 0.57 -0.59 1.75 

rs3774959 PANSS Total Genotype GA vs. GG 0.0001 1.67 0.91 2.44 

rs3774959 PANSS Total Genotype AA vs. GG 0.0001 0.72 -0.39 1.84 

C.A.T.A.C.A.G.T.G.A.A.A.A.G* PANSS Positive Each additional haplotype   0.0002 4.41 2.10 6.78 

a Effect measured in percentage change in PANSS score per month. Shaded variants/ haplotypes maintained significance after correcting for multiple testing.  
CI = confidence interval. 
* SNPs: rs230534, rs230532, rs230529, rs230526, rs118882, rs230520, rs230505, rs230504, rs230492, rs230493, rs230495, rs230539, rs3774959, 
rs4648055.      
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the top five significant SNPs and haplotypes, including those that survived correction for 

multiple testing, together with their associated outcomes, inheritance models, and predicted 

effect sizes with confidence intervals. As shown in the table, change in PANSS scores – 

particularly PANSS Negative scores – was the most significant treatment outcome within the 

cohort. Surviving associations are limited to regions on chromosome four, with the significant 

haplotype containing the minor alleles of the two individually significant SNPs (rs230493 and 

rs3774959; Table 4.2).  

4.5. Discussion 

This study made use of the results of a novel bioinformatics pipeline designed for more 

comprehensive and biologically relevant interpretations of significant GWAS variants. These 

variants have been previously implicated (either by GWAS or LD and predicted regulatory 

effects) in antipsychotic treatment outcome. The SNPs and relevant haplotypes were tested 

for associations with various schizophrenia treatment outcomes, including improvement or 

decline in symptoms, changes in BMI and other metabolic outcomes, as well as indicators of 

early response or nonresponse to treatment.  

4.5.1. Clinical outcomes 

General treatment outcomes were assessed based on changes in PANSS scores over a 12 

month period. Firstly, 56% of the FES cohort achieved remission, i.e. their symptoms were 

deemed absent to mild for at least six consecutive months (Andreasen et al., 2005; Chiliza et 

al., 2015a). A majority of individuals achieving remission is expected, as first-episode 

patients generally respond well to treatment in comparison to second- or multi-episode 

patients (Kahn and Sommer, 2015). It is well-known that a shorter DUP is linked to an 

improved response (Perkins et al., 2004; Jeppesen et al., 2008).  Secondly, only 10% of 

patients were classified as treatment-refractory, according to the criteria outlined in 4.3.1. 

Again, refractoriness is more common in multi-episode patients, and it has been suggested 

that nonresponsiveness often emerges in individuals that have previously responded to 

medication and subsequently relapsed (Caspi et al., 2004).  Lastly, a high percentage of 

patients achieved early response, i.e. their total PANSS scores decreased by at least 25% 

after six weeks of treatment. Antipsychotics bring about the greatest symptom changes 

within the first few weeks of use (Agid et al., 2003). Since the majority of patients achieved 

remission, and early symptom improvement is an accurate predictor of remission, this high 

percentage is expected (Kinon et al., 2010).  
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Although the majority of the cohort achieved remission, severe adverse metabolic outcomes 

were observed. Over half of the cohort gained > 7% weight, which was accompanied by a 

significant increase in BMI and triglycerides, and a significant decrease in HDL cholesterol – 

all risk factors for metabolic syndrome (Chiliza et al., 2015b). Such metabolic reactions are 

common to SGA-administered patients (Newcomer, 2005; Tandon et al., 2010). The 

distinguishing characteristic of SGAs is that their improved design does not lead to adverse 

motor effects as seen with FGA usage, but can cause undesirable metabolic reactions 

(Brennan, 2014). Nevertheless, FGAs, particularly those of low potency such as flupenthixol, 

have also been associated with metabolic ADRs to a lesser extent (Leucht et al., 2009). The 

severity of metabolic outcomes in the FES cohort can be further explained by the 

observation that treatment-naïve first-episode patients are particularly sensitive to 

antipsychotics (McEvoy et al., 1991; Oosthuizen et al., 2004). In fact, many previous studies 

have shown considerable adipogenic side effects in FES treatment cohorts (Strassnig et al., 

2007; Tarricone et al., 2010; Correll et al., 2011). The clinical data suggests that improving – 

or ideally, preventing – metabolic side effects should be a priority for FES patients, whether 

they are receiving FGAs or SGAs. 

4.5.2. SNP genotyping and frequency comparisons 

All 31 SNPs were informative and could be analysed further for associations with treatment 

outcomes. When compared to HapMap and 1000 Genomes population frequencies, the 

majority of variants displayed frequencies in the cohort that were intermediate between other 

populations groups, for example, rs1352318 and rs10170310, shown in Figure 4.3. This is 

expected, since 80% of the cohort comprises SAC individuals, a population group that is 

highly admixed and contains ancestry contributions from several different populations 

documented on HapMap and 1000 Genomes (Daya et al., 2013). 

4.5.3. Associations with treatment outcomes 

Upon first inspection of the findings from the association analyses, it is clear that there are 

many SNPs significantly correlated with changes in PANSS scores. In fact, all but nine of the 

31 variants are nominally associated (P < 0.05) with at least one treatment outcome (Table 

S5). This is not unexpected, since these SNPs were chosen for genotyping on the basis of 

previous associations with treatment outcomes. The majority of these SNPs occur on 

chromosome four and have previously been associated with treatment-refractoriness (Liou 

et al., 2012), and several SNPs are associated with more than one outcome. For example, 

rs3774959 reached significance for changes in all PANSS symptom domains, and a large 

haplotype containing this SNP was also significantly associated with early treatment 

response and increases in triglyceride levels. These associations suggest that this locus 
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plays an important role in antipsychotic response. Furthermore, the rs3774959 variant was 

the top result in previous regulatory analyses, classified as an eQTL by RegulomeDB and 

rSNPBase (Tables 3.5 and 3.6). Therefore, this variant could contribute to dysregulation of 

one or more gene targets that are involved in drug response. In particular, this variant was 

predicted to affect expression of MANBA – previously implicated in schizophrenia – as well 

as the binding of RFX3, a protein involved in immunity. The region containing rs3774959 and 

other significantly associated variants – particularly those SNPs and haplotypes that 

survived Bonferroni correction – will be discussed further.  

4.5.3.1 The 4q24 region 

The large haplotype on chromosome four that contains the minor alleles for rs230504, 

rs230493, rs230495, and rs3774959 was associated with PANSS Positive, Negative, and 

Total scores, and maintained significance with positive scores after correction for multiple 

testing (Tables 4.2 and S5). Many of the 14 SNPs within this haplotype were also nominally 

associated with at least one PANSS domain, although only the associations of rs230493 and 

rs3774959 with negative symptoms survived Bonferroni correction. These results suggest 

that the four minor alleles of the haplotype produce an additive effect when combined, in 

relation to positive symptom changes over the course of treatment. Although this haplotype 

occurred at a low frequency in the cohort (0.03), its presence is associated with a substantial 

difference in change in PANSS positive scores (4.41% per month higher; Table 4.2). The 

effect size here is notable, given that the two individually significant SNPs demonstrated 

much smaller effects, with the lower and upper confidence intervals for their homozygous 

(AA) genotypes on either side of zero. Therefore, this haplotype should be further studied in 

larger as well as replicative cohorts to validate these findings. 

The 4q24 rSNPs originate from the Liou et al. (2012) study or are in LD with the SNPs 

identified in this GWAS. The authors found that rs230529, the tag SNP of this region, was 

associated with treatment-refractory schizophrenia. Direct comparison between the Han 

Chinese cohort studied by Liou et al. (2012) and the South African cohort is difficult for a 

number of reasons. Firstly, only 10 patients in the FES cohort were classified to be 

treatment-refractory, since the majority of patients achieved remission (Chiliza et al., 2015a). 

This limits the statistical power of the analyses and the ability to identify significant 

associations. In fact, none of the 4q24 SNPs were associated with treatment-refractoriness 

as defined in the cohort. Secondly, the clinical environment was vastly different and 

refractoriness was defined in different ways. Liou et al. (2012) characterised treatment-

refractoriness as two failed antipsychotic trials (chlorpromazine or an SGA) or nonresponse 

to clozapine. The Severity (CGI-S) and Improvement (CGI-I) subscales of the Clinical Global 
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Impression scale were used to determine the extent of treatment response (Conley and 

Kelly, 2001). On the other hand, the FES cohort was only treated with an FGA, and the 

PANSS scale was used to determine response or nonresponse. These differences in 

assessment make direct comparison problematic. Nevertheless, the top associations within 

the FES cohort were all predicted to worsen PANSS score outcomes, with effect sizes 

ranging from 0.31 to 1.98% per month for individual SNPs. This relative lack of improvement 

points to nonresponse for these symptom domains, which is consistent with the association 

observed by Liou et al. (2012), and may contribute to treatment-refractoriness. 

The symptom domain most commonly associated with this region in the FES cohort is the 

PANSS Negative subscale. Two SNPs in the haplotype were highly significant for post-

treatment increases in PANSS Negative scores (P < 0.00001). Interestingly, the region 

significantly associated with worsened negative symptoms within the FES cohort was 

associated with refractoriness by Liou and colleagues (2012). The negative symptoms of 

schizophrenia, i.e. avolition and blunted emotion, are especially complex and difficult to treat 

(Millan et al., 2014). These symptoms tend to linger even when positive symptoms have 

improved, and have been shown to influence the extent of residual cognitive deficits and 

functional outcomes in schizophrenia patients (Lin et al., 2013; Malaspina et al., 2014; 

Woodward et al., 2014). The associations with PANSS Negative scores unveiled in this 

study suggest that i) there is a genetic link between severe, persistent negative symptoms 

and treatment-refractoriness, ii) there are regulatory mechanisms involved in the 

pathophysiology and manifestation of negative symptoms and perhaps cognitive deficits in 

the disorder, and iii) these novel loci could be used as new drug targets to improve negative 

symptoms and prevent treatment-refractoriness in schizophrenia. Lastly, one must keep in 

mind the hypothesis that treatment-refractoriness is a biologically distinct endophenotype of 

schizophrenia (Liou et al., 2012), which is supported by the findings of the bioinformatic 

analyses. The involvement of the 4q24 region may point to a unique mechanism that 

influences the progression of treatment nonresponse.  

This region of variation is found within NFKB1 and was previously predicted to affect its 

regulation (see chapter three). NFKB1, in turn, regulates hundreds of genes, and has been 

linked to immune functioning (Shishodia and Aggarwal, 2004), schizophrenia susceptibility 

(Narayan et al., 2008), and anti-TNF treatment response (Bank et al., 2014). Additionally, the 

highly significant 4q24 SNPs, rs230493 and rs3774959, are eQTLs for several genes, 

including CACNB1 and MANBA (Table 3.5). CACNB1 encodes a neuronal calcium channel 

subunit, and decreased expression of this gene has been implicated in schizophrenia 

(Smolin et al., 2012). As discussed in chapter three, variation in the MANBA gene has also 
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been associated with schizophrenia risk (Jungerius et al., 2007). The significant associations 

within the FES cohort validate the findings of the bioinformatic pipeline, and add weight to 

hypotheses regarding a connection between treatment response and immunity, as well as a 

biological overlap between schizophrenia risk and treatment outcomes.   

4.5.3.2 Refractoriness, remission, and early response 

This study revealed four associations for the dichotomous outcomes, i.e. treatment-

refractoriness, remission, and early treatment response, however none survived correction 

for multiple testing. Firstly, two variants, rs7520258 and rs1352318, were associated with 

treatment-refractoriness in the cohort. Interestingly, neither of these variants were 

associated with any other treatment outcomes, such as changes in PANSS scores. Again, 

this could point to a unique mechanism involved in refractoriness. The rs7520258 variant 

was previously associated with neurocognition outcomes (McClay et al., 2011a), and 

rs1352318 was associated with changes in BMI (Athanasiu et al., 2012). Both variants were 

predicted by bioinformatic analyses to play a regulatory role (Table 4.1), although the 

biological consequences of these rSNPs remain unclear.    

There are no variants in Table 4.2 that were associated with increased or decreased PANSS 

scores, as well as refractoriness or remission, respectively. Since these states of response 

are classified according to PANSS score changes, one would expect commonalities 

between variants for the continuous and dichotomous outcomes. On the contrary, instances 

of nonconcordance were observed. As discussed, rs1352318 was nominally associated with 

refractoriness (P = 0.0338), but unexpectedly showed an association with remission (P = 

0.0083). Furthermore, a chromosome four haplotype containing minor alleles for rs230495 

and rs3774959 was significantly associated with early response at six weeks and worsened 

endpoint response. As discussed, these two SNPs – individually and in combination – 

correlate with poorer PANSS outcomes, which is incongruent with their involvement in early 

response. Since there are no variants that were associated with both early treatment 

response and improved outcome or remission, these loci do not serve as predictive 

biomarkers of treatment outcomes for this cohort, and further study of the genetics of early 

response is warranted.  

Nonconcordance between genetic and clinical data suggests that definitions of refractoriness 

and remission should be more carefully and specifically defined, and take genetic correlates 

into consideration. Having said that, the statistical analyses were somewhat restricted, since 

only 10 patients qualified as treatment-refractory (Chiliza et al., 2015a). Additionally, states 

of remission and refractoriness are notably difficult to define in clinical settings, since there is 
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extensive inter-individual heterogeneity in both schizophrenia symptom severity and 

antipsychotic response. For example, patients with high baseline PANSS scores can 

achieve a greater than 25% reduction with treatment, but still meet other criteria for 

nonresponse, since their endpoint PANSS scores will be high in relation to other individuals 

(Chiliza et al., 2015a). Therefore, these loci should be investigated in a larger group of FES 

patients to i) provide insight into biological definitions of response states, and ii) investigate 

the potentially unique genetic mechanisms of treatment-refractoriness.  

4.5.3.3 Metabolic outcomes 

In comparison to PANSS outcomes, there were few associations with metabolic responses, 

i.e. changes in weight, BMI, HDL, LDL, total cholesterol, and triglycerides. Although none 

survived correction for multiple testing, the most significant association was between 

rs230539 and changes in total cholesterol (P = 0.0096). Furthermore, a 4q24 haplotype 

containing the major allele of this variant was significantly associated with changes in 

triglyceride levels (P = 0.0237; Table S5). Several other SNPs in this haplotype were 

nominally associated with metabolic changes. These results suggest a role for this haplotype 

in metabolic dysregulation, although this has not been previously observed. Another 

haplotype, A.T.C, containing the major alleles of rs10218843, rs11265461, and rs6427540, 

was also nominally associated with change in triglyceride levels (P = 0.0492). Similar to the 

4q24 haplotype, this trio of SNPs also originates from the Liou et al. GWAS (2012), the first 

two minor alleles having been implicated in treatment-refractoriness and the third in LD with 

the pair. One possible link between refractoriness and increased metabolic ADRs is that 

patients who showed no response were consequently administered higher doses of 

flupenthixol; these increased doses may contribute more to adipogenic side effects than 

lower doses of the antipsychotic (Emsley, personal communication). Although the 

mechanisms are as yet undetermined, these regions should be further investigated for 

involvement in regulation of antipsychotic response and metabolic side effects.   

The FES patients demonstrated considerable adverse metabolic changes after treatment. 

Indeed, AIWG and other metabolic side effects are common in antipsychotic-treated 

patients, and can have serious consequences such as metabolic syndrome and 

cardiovascular disease (Brennan, 2014; Chiliza et al., 2015b). The lack of strong 

associations found within this study may be due to several factors. Firstly, only two rSNPs 

investigated were implicated in metabolic outcomes, namely rs6741819 (increase in 

triglycerides; Adkins et al., 2011) and rs1352318 (increase in BMI; Athanasiu et al., 2012). 

These two studies were not particularly well-characterised (refer to 3.5.1.1), making 

replication difficult. Secondly, while the PANSS is a standardised scale with high reliability 
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and validity (Levine et al., 2011), several metabolic indices were measured, and techniques 

may have been inconsistent between measurements and/ or independent studies. Finally, 

this study focused on SNPs implicated in regulation. It may be the case that abnormal 

regulatory processes do not influence metabolic side effects to as great an extent as 

changes in coding regions do. Whatever the case, genome-wide studies accounting for 

coding and noncoding variation should be undertaken in order to identify genetic correlates 

and adequately manage metabolic-related ADRs.  

4.5.4. GWAS comparisons 

The variants originally associated with treatment outcomes in previous GWAS were included 

in the association analyses for two reasons: firstly, to directly compare outcomes in the 

GWAS cohorts with the FES cohort, and secondly, to assess the accuracy of a GWAS 

variant as a proxy for a region, by determining differences in association patterns between 

GWAS SNPs and corresponding LD SNPs. Several GWAS SNPs were significant for 

treatment response. For example, the haplotype on chromosome five contains two variants, 

rs17440909 and rs17742120, which were both previously associated with symptom severity 

as perceived by the patient (Clark et al., 2013). Both SNPs, as well as the C.A and T.G 

haplotypes, were nominally associated with changes in PANSS Negative scores (Table S5). 

Opposite combinations of haplotypes reaching significance is unexpected. This finding 

suggests that the SNPs in the Clark et al. (2013) study served together as a tag for the 

causal region in their cohort. However, European ancestry individuals display much larger 

blocks of LD than Africans (Dalal et al., 2010; Chimusa et al., 2015), therefore this tag may 

be ineffective for the FES cohort, considering the ancestry make-up of the patients. This 

demonstrates the importance of population-specific studies in identifying causal variants. 

Additionally, the SNP previously associated with treatment-refractoriness (rs230529; Liou et 

al., 2012) in the large haplotype block on chromosome four (Figure 4.4), was not significant 

for any treatment outcomes in the FES cohort, despite having a relatively high frequency of 

0.46. This haplotype and several of its individual variants were significantly associated with 

various response traits. Therefore, it is expected that the rs230529 SNP should reach 

significance in the FES cohort too, in order to function as an accurate proxy for the region. 

The r2 values for this haplotype range from 0.22 to 0.96 (Figure 4.4), however when 

assessing D’ confidence intervals, strong pairwise LD (D’ > 0.7) is shown between all the 

SNPs within the haplotype (Figure S1). Differences between D’ and r2 values can be 

explained by their differing properties. D’ is more sensitive to both allele frequency and 

sample size, and is usually inflated with a smaller cohort such as this one (Carlson et al., 

2004; Meadows et al., 2008). There is debate over which measure should be used to define 
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LD between markers, but r2 is generally preferred and accepted to be more applicable for 

association studies (Mueller, 2004; Zhao et al., 2005).  

The lack of associations for rs230529 within the South African cohort illustrates the 

importance of analysing each variant at a locus, since patterns of LD vary extensively 

between different population groups. This has implications for the way in which GWAS are 

currently designed and interpreted. 

4.5.5. Study limitations 

The greatest limitation of this study is the comparison of significant variants between 

different treatment cohorts. There are several factors that restrict direct comparison, and 

thus the results should be interpreted with caution and validated in other cohorts. Firstly, the 

differences in the types of antipsychotics the patients received has an impact on comparison 

of clinical outcomes. Although their equivalence in efficacy is still under debate, FGAs and 

SGAs produce vastly different side effect profiles, and ideally only drugs of the same class 

should be analysed together (Meltzer, 2013). Drug heterogeneity within previous GWAS, for 

example the studies assessing the CATIE cohort (Lieberman et al., 2005), may also distort 

the clinical phenotype and prevent the identification of true associations. Furthermore, 

clinical assessments differ between studies, and clinical scores and classifications – even 

PANSS scores – are dependent on the evaluating psychiatrist to a certain extent. This has 

been illustrated by the lack of standard definitions for treatment refractoriness or remission 

(Chiliza et al., 2015a).   

Another limitation of this study is the small size of the FES cohort compared to the tens of 

thousands of individuals analysed by the PGC (Ripke et al., 2014). However, it is important 

to note that the cohort is extremely well-characterised and homogenised. The patients were 

treatment-naïve at the commencement of the study, and all received the same antipsychotic 

via injection, ensuring adherence. It has been demonstrated that smaller clinical cohorts of 

well-characterised individuals have equivalent power to larger cohorts of less well-

characterised patients (Samuels et al., 2009).  Furthermore, first episode cohorts provide 

increased power in pharmacogenetic studies (Zhang and Malhotra, 2013b). Considering 

these factors, this study minimised confounders and provided increased statistical power to 

detect associations (Reynolds, 2007), demonstrated by the emergence of significant findings 

that survived multiple testing, and the large effect size of 4.41%. The benefits of this cohort 

are particularly apparent when compared to the scarcity of similar cohorts available for the 

study of antipsychotic pharmacogenomics. The only exception is the study by Malhotra and 
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colleagues (2012), which demonstrated the ability to detect and replicate a genome-wide 

signal in a patient group of comparable size (n = 139) to the FES cohort.  

4.6. Conclusion 

This study successfully validated some of the bioinformatic results and demonstrated that 

rSNPs are important in antipsychotic response. There are several novel findings with 

regards to the potential mechanisms of treatment response in schizophrenia. Firstly, 

variation in the 4q24 region and NFKB1 should be considered as novel targets when 

investigating antipsychotic mechanisms and heterogeneous treatment outcomes. Their 

connection to regulation, negative symptom severity, immunity, as well as the treatment-

refractoriness endophenotype suggest that this locus has important and widespread 

implications in schizophrenia.   

 

Additionally, this study demonstrated the importance of well-characterised cohorts and clear, 

standardised definitions of concepts such as remission, treatment-refractoriness, and early 

treatment response. The nonconcordance between genetic correlates and clinical 

classifications necessitates a re-evaluation of treatment outcome criteria. This is particularly 

important with regards to early response as a predictor of later positive outcomes. If accurate 

biomarkers can be uncovered, better first-line treatments can be applied and ADRs can be 

avoided. This, however, relies on extensive clinical characterisation.   

Lastly, the Eurocentric nature of GWAS means that other population groups have been 

understudied. It is important to note that although not all bioinformatic candidates were found 

to be statistically significant in this study cohort, the absence of significance may just be 

representative of insufficient power to detect associations in this study, or that these loci may 

only be relevant in alternative population groups. The analysis of the FES cohort has 

contributed to narrowing the research gap between LMIC and developed countries, although 

the road ahead is long. Improvement in treatment outcomes calls for population-specific 

studies that benefit the individuals carrying the largest burden of disease.  
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CHAPTER 5: Conclusion and future perspectives 

5.1. Conclusion 

This study aimed to improve upon the interpretations of existing research on antipsychotic 

pharmacogenomics in schizophrenia by combining novel bioinformatic tools with validation 

within a previously underrepresented population group. The all-encompassing nature of this 

study – i.e. analysis of LD regions rather than only tag SNPs, inclusion of coding and 

noncoding variants, and evaluation of diverse, well-characterised clinical outcomes – has led 

to the formation of new hypotheses regarding the biology of antipsychotic mechanisms and 

treatment response. Firstly, many previously implicated SNPs were predicted to have roles 

in proximal, distal, and post-transcriptional regulation. Several have evidence for acting as 

eQTLs in the expression of genes previously not associated with treatment response. 

Perhaps the most important finding is that over half of the characterised rSNPs were 

predicted to affect the expression of NFKB1, which is itself a master regulator. This gene, as 

well as several other implicated proteins and motifs, have roles in immune functioning. 

Abnormal immune responses have long been suggested to contribute to the development of 

schizophrenia, and these results suggest that this may extend to the treatment outcomes of 

the disorder too. NFKB1 is one of several examples of potential novel pharmacogenes. 

Interestingly, the region most significant for regulation was previously associated with 

treatment-refractoriness. The results of the bioinformatic analyses support the notion that 

treatment-refractoriness may be a unique endophenotype of schizophrenia, with distinct 

biological pathways leading to its development.  

Importantly, the association analyses supported the hypothesised roles of regulatory regions 

in treatment response, as the majority of SNPs were significantly associated with at least 

one treatment outcome in the FES cohort. The weight of significant associations was found 

to be with the PANSS Negative outcome, which is an exciting avenue to follow since 

negative symptoms are the most chronic and pervasive, yet least understood of the 

symptom domains. The involvement of the 4q24 region in this respect suggests that there is 

a biological link between negative symptoms and treatment-refractoriness.  

Interestingly, lending weight to the LD approach of the bioinformatic pipeline, there were 

instances in which the tag SNP and LD SNPs did not achieve the same or even similar 

patterns of associations within the cohort. This has important repercussions for the design 

and subsequent interpretation of GWAS studies. Furthermore, this study proved the 

importance of thorough clinical characterisation. Treatment response is complex and 
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heterogeneous, and a cohort must be well-characterised and homogenised as far as 

possible in order to arrive at robust conclusions regarding genetic correlates of drug 

response. The FES cohort is an example of such a cohort, particularly in comparison with 

previous GWAS cohorts. It is clear that GWAS patient recruitment and assessment must be 

improved so as not to dilute the phenotype. With this improvement, statistical power is 

increased and associations carry more weight.  

The novel findings of this study suggest new directions for treatment response research in 

schizophrenia. Importantly, results of the association analyses suggest a new approach 

regarding characterisation of response states in schizophrenia. With the help of genetic 

studies, coupled with clinical guidelines such as RDoC (Insel et al., 2010), classifying patient 

subgroups and response states based on biology can guide treatment strategies and 

improve long-term outcomes. Repeatedly following traditional hypotheses and candidate 

genes has been a popular approach, but has had limited success in underpinning the 

biology of drug response. The findings of this study, however, open new avenues for 

research by expanding focus to candidate gene pathways and networks, and have the 

potential to improve on a treatment approach that has been suboptimal for over 60 years. 

5.2. Future perspectives 

It is important to remember that GWAS is only one approach to uncovering the genetics of 

complex traits. GWAS are the hallmark for contributing knowledge to the CDCV hypothesis, 

but it is likely that a combination of rare, common, and de novo variation amalgamate to 

produce complex trait phenotypes such as antipsychotic response (van Dongen and 

Boomsma, 2013). In the future, a combination of studies, including large sample GWAS, 

whole genome sequencing, and subsequent functional validation should be employed. The 

key to uncovering variation of small effect size is a large study sample. Population-specific 

analyses of tens to hundreds of thousands of individuals, with replication, would advance 

pharmacogenomics as it has schizophrenia research (Ripke et al., 2014). 

 

Such large-scale studies generate massive amounts of data, often without including a post-

analysis step of functional validation. This step is problematic, given the lack of a suitable in 

vitro model for schizophrenia or treatment response. An exciting area of research designed 

to address this is the engineering of induced pluripotent stem cell (iPSC)-derived neurons.  

With this approach, in vitro study of brain structures in different states is possible. For 

example, Brennand and colleagues (2011) reprogrammed fibroblasts from schizophrenia 

patients into neurons and found reduced neuronal connectivity and glutamate receptor 

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5                                                CONCLUSIONS AND FUTURE PERSPECTIVES 

85 

  

expression. Although only beginning, this type of research could allow for discovery of 

implicated pathways in action. The structural effects on neurons of regulatory variation can 

be investigated with this functional method and used to confirm results from predictive 

computational tools. Furthermore, a case/ control study in which iPSC-derived neurons are 

incubated with different antipsychotics could provide insight on the mechanisms and 

biological outcomes of FGAs and SGAs. Functional studies are essential for the discovery 

and implementation of accurate, clinically actionable biomarkers of treatment response.   

 

Given the significance of thorough clinical characterisation for association studies, 18 

European institutes recently joined forces to form the Optimization of Treatment and 

Management of Schizophrenia in Europe (OPTiMiSE) programme 

(http://www.optimisetrial.eu/).  This initiative aims to recruit 500 drug-naïve schizophrenia 

patients and perform a closely-monitored six-year trial of SGA treatment. Combined with 

genomic studies, the goal of this project is to optimise current treatment and develop new 

treatment strategies. This could provide unparalleled insight into early treatment response 

and antipsychotic mechanisms, and sets an example for other consortia by emphasising the 

importance of clinical stringency for genomic studies.  

Closer to home, a promising new development in the study of previously underrepresented 

populations is the release of the African Genome Variation Project (Gurdasani et al., 2015). 

The African LD populations included on publically available databases – such as YRI – are 

not necessarily accurate proxies for sub-Saharan African populations such as South 

Africans. Progress in research in LMIC is particularly important since these individuals are 

disproportionately burdened by communicable diseases and psychiatric disorders. 

Understudied and overburdened, research in this field would be immensely beneficial to 

individuals, communities, as well as societies and the economy of LMIC. 

Pharmacogenomics has the power to achieve some of these goals. The results of Gurdasani 

and colleagues’ (2015) research add more variation to the growing pool of genetic 

information on understudied groups, and allow for improvement upon the novel bioinformatic 

pipeline. What is more, this pipeline needs not be restricted to antipsychotic treatment 

response; it is applicable to any complex genetic disorder, and is an agnostic approach with 

the potential to reveal novel dysregulated pathways and ultimately improve disease 

outcomes.  

 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

86 

  

REFERENCES 

The 1000 Genomes Project Consortium. 2010. A map of human genome variation from 

population-scale sequencing. Nature, 468, 1061-73.  

Åberg, K., Adkins, D.E., Bukszár, Webb, B.T., Caroff, S.N., Miller, D.D., et al. 2010. 

Genomewide association study of movement-related adverse antipsychotic effects. 

Biological Psychiatry, 67(3), 279-82. 

Åberg, K., Adkins, D.E., Liu, Y., McClay, J.L., Bukszár, J., Jia, P. 2012. Genome-wide 

association study of antipsychotic induced QTc interval prolongation. 

Pharmacogenomics, 12(2), 165-72. 

Adam, D. 2013. On the spectrum. Nature, 496(7446), 416-18.  

Adeyemo, A., Rotimi, C. 2010. Genetic variants associated with complex human diseases 

show wide variation across multiple populations. Public Health Genomics, 13(2), 72-9. 

Adkins, D.E., Åberg, K., McClay, J.L., Bukszár, J., Zhao, Z., Jia, P., et al. 2011. 

Genomewide pharmacogenomic study of metabolic side effects to antipsychotic drugs. 

Molecular Psychiatry, 16(3), 321-2. 

Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., et al. 

2010. A method and server for predicting damaging missense mutations. Nature 

Methods, 7(4), 248-9. 

Agid, O., Kapur, S., Arenovich, T., Zipursky, R.B. 2003. Delayed-onset hypothesis of 

antipsychotic action: a hypothesis tested and rejected. Archives of General Psychiatry, 

60(12), 1228-35. 

Albus, M. 2012. Clinical courses of schizophrenia. Pharmacopsychiatry, 45(S1), S31-5. 

Alexander, D.H., Novembre, J., Lange, K. 2010. Fast model-based estimation of ancestry in 

unrelated individuals. Genome Research, 19(9), 1655-64. 

Alkelai, A., Greenbaum, L., Rigbi, A., Kanyas, K., Lerer, B. 2009. Genome-wide association 

study of antipsychotic-induced parkinsonism severity among schizophrenia patients. 

Psychopharmacology, 206(3), 491-9.    

Allen, N.C., Bagade, S., McQueen, M.B., Ioannidis, J.P.A., Kavvoura, F.K., Khoury, M.J., et 

al. 2008. Systematic meta-analyses and field synopsis of genetic association studies in 

schizophrenia: the SzGene database. Nature Genetics, 40(7), 827-34. 

Alvarez-Rodriguez, J., Alvarez-Silva, S., Alvarez-Silva, I. 2014. Is the current diagnosis of 

schizophrenia useful or harmful? Open Journal of Medical Psychology, 3, 157-60. 

Alvir, J.M., Lieberman, J.A., Safferman, A.Z., Schwimmer, J.L., Schaaf, J.A. 1993. 

Clozapine-induced agranulocytosis. Incidence and risk factors in the United States. 

New England Journal of Medicine, 329(3), 162-7. 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

87 

  

American Psychiatric Association. 1994. Diagnostic and Statistical Manual of Mental 

Disorders (DSM-I). 1st ed. Washington, DC: American Psychiatric Association. 

American Psychiatric Association. 2013. Diagnostic and Statistical Manual of Mental 

Disorders (DSM-5). 5th ed. Washington, DC: American Psychiatric Association. 

Andreasen, N.C. 1983. Scale for the assessment of negative symptoms (SANS). The 

University of Iowa, Iowa City. 

Andreasen, N.C. 1984. Scale for the assessment of positive symptoms (SAPS). The 

University of Iowa, Iowa City. 

Andreasen, N.C., Carpenter, W.T. Jr., Kane, J.M., Lasser, R.A., Marder, S.R., Weinberger, 

D.R. 2005. Remission in schizophrenia: proposed criteria and rationale for consensus. 

American Journal of Psychiatry, 162, 441–9. 

Arnedo, J., Svrakic, D.M., del Val, C., Romero-Zaliz, R., Hérnandez-Cuervo, H., Molecular 

Genetics of Schizophrenia Consortium, et al. 2014. Uncovering the hidden risk 

architecture of the schizophrenias: confirmation of three independent genome-wide 

association studies. American Journal of Psychiatry, 172(2), 139-53. 

Arranz, M.J., de Leon, J. 2007. Pharmacogenetics and pharmacogenomics of schizophrenia: 

a review of last decade of research. Molecular Psychiatry, 12, 707-47. 

Arranz, M.J., Munro, J.C. 2011. Toward understanding genetic risk for differential 

antipsychotic response in individuals with schizophrenia. Expert Reviews on Clinical 

Pharmacology, 4(3), 389-405. 

Ascher-Svanum, H., Zhu, B., Faries, D.E., Salkever, D., Slade, E.P., Peng, X., Conley, R.R. 

2010. The cost of relapse and the predictors of relapse in the treatment of 

schizophrenia. BMC Psychiatry, 10:2, 1-7.   

Athanasiu, L., Brown, A.A., Birkenaes, A.B., Mattingsdal, M., Agartz, I., Melle, I., et al. 2012. 

Genome-wide association study identifies genetic loci associated with body mass 

index and high density lipoprotein-cholesterol levels during psychopharmacological 

treatment. Psychiatry Research, 197(3), 327-36.  

Auerbach, R.K., Chen, B., Butte, A.J. 2013. Relating genes to function: identifying enriched 

transcription factors using the ENCODE ChIP-Seq significance tool. Bioinformatics, 

29(15), 1922-4. 

Bank, S., Andersen, P.S., Burisch, J., Pedersen, N., Roug, S., Galsgaard, J., et al. 2014 

Associations between functional polymorphisms in the NFκB signaling pathway and 

response to anti-TNF treatment in Danish patients with inflammatory bowel disease. 

The Pharmacogenomics Journal, 14(6), 526-34. 

Barch, D.M., Bustillo, J., Gaebel, W., Gur, R., Heckers, S., Malaspina, D., et al. 2013. Logic 

and justification for dimensional assessment of symptoms and related clinical 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

88 

  

phenomena in psychosis: relevance to DSM-5. Schizophrenia Research, 150(1), 15-

20. 

Barrett, J.C., Fry, B., Maller, J., Daly, M.J. 2005. Haploview: analysis and visualization of LD 

and haplotype maps. Bioinformatics, 21(2), 263–5. 

Behm-Ansmant, I., Gatfield, D., Rehwinkel, J., Hilgers, V., Izaurralde, E. 2007. A conserved 

role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA 

decay. The EMBO Journal, 26(6), 1591–601. 

Bertram, L. 2008. Genetic research in schizophrenia: new tools and future perspectives. 

Schizophrenia Bulletin, 34(5), 806-12. 

Blanc, O., Brousse, G., Meary, A., Leboyer, M., Llorca, P-M. 2010. Pharmacogenetics of 

response efficacy to antipsychotics in schizophrenia: pharmacodynamic aspects. 

Review and implications for clinical research. Fundamental & Clinical Pharmacology, 

24, 139-160.  

Bloom, D.E., Cafiero, E.T., Jané-Llopis, E., Abrahams-Gessel, S., Bloom, L.R., Fathima, S., 

et al. 2011. The Global Economic Burden of Noncommunicable Diseases. Geneva: 

World Economic Forum. 

Bonham, C., Abbott, C., 2008. Are second-generation antipsychotics a distinct class? 

Journal of Psychiatric Practice, 14, 225–37.  

Boyle, A.P., Hong, E.L., Hariharan, M., Cheng, Y., Schaub, M.A., Kasowski, M., et al. 2012. 

Annotation of functional variation in personal genomes using RegulomeDB. Genome 

Research, 22(9), 1790-7. 

Brandl, E.J., Kennedy, J.L., Müller, D.J. 2014. Pharmacogenetics of antipsychotics. 

Canadian Journal of Psychiatry, 59(2), 76-88.  

Brennan, M. 2014. Pharmacogenetics of second-generation antipsychotics. 

Pharmacogenomics, 15(6), 869-84. 

Brennand, K.J., Simone, A., Jou, J., Gelboin-Burkhart, C., Tran, N., Sangar, S., et al. 2011. 

Modelling schizophrenia using human induced pluripotent stem cells. Nature, 

473(7346), 221-5. 

Cacabelos, R., Hashimoto, R., Takeda, M. 2011. Pharmacogenomics of antipsychotics 

efficacy for schizophrenia. Psychiatry and Clinical Neurosciences, 65(1), 3-19. 

Campbell, M.C., Tishkoff, S.A. 2008. African genetic diversity: implications for human 

demographic history, modern human origins, and complex disease mapping. Annual 

Review of Genomics and Human Genetics, 9, 403-33. 

Cantor-Graae, E., Selten, J.P. 2005. Schizophrenia and migration: a meta-analysis and 

review. American Journal of Psychiatry, 162, 12–24. 

Carlson, C.S., Eberle, M.A., Rieder, M.J., Yi, Q., Kruglyak, L., Nickerson, D.A. 2004. 

Selecting a maximally informative set of single-nucleotide polymorphisms for 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

89 

  

association analyses using linkage disequilibrium. American Journal of Human 

Genetics, 74, 106-20.  

Carlsson, A., Lindqvist, M., 1963. Effect of chlorpromazine or haloperidol on formation of 

3methoxytramine and normetanephrine in mouse brain. Acta Pharmacologica et 

Toxicologica, 20 140–4. 

Carpenter, W.T. Jr., Davis, J.M. 2012. Another view of the history of antipsychotic drug 

discovery and development. Molecular Psychiatry, 17(12), 1168-73. 

Carr, D.F., Alfirevic, A., Pirmohamed, M. 2014. Pharmacogenomics: current state-of-the-art. 

Genes, 5(2), 430-43. 

Case, M., Stauffer, V.L., Ascher-Svanum, H., Conley, R., Kapur, S., Kane, J.M., et al. 2011. 

The heterogeneity of antipsychotic response in the treatment of schizophrenia. 

Psychological Medicine, 41(6), 1291-1300. 

Caspi, A., Davidson, M., Tamminga, C.A. 2004. Treatment-refractory schizophrenia. 

Dialogues in Clinical Neuroscience, 6(1), 61-70. 

Chiliza, B., Asmal, L., Kilian, S., Phahladira, L., Emsley, R. 2015a. Rate and predictors of 

non-response to first-line antipsychotic treatment in first-episode schizophrenia. 

Human Psychopharmacology: Clinical & Experimental, 30(3), 173-82. 

Chiliza, B., Asmal, L., Oosthuizen, P., van Niekerk, E., Erasmus, R., Kidd, M., et al. 2015b. 

Changes in body mass and metabolic profiles in patients with first-episode 

schizophrenia treated for 12 months with a first-generation antipsychotic. European 

Psychiatry, 30(2), 277-83. 

Chimusa, E.R., Zaitlen, N., Daya, M., Möller, M., van Helden, P.D., Mulder, N.J., et al. 2014. 

Genome-wide association study of ancestry-specific TB risk in the South African 

Coloured population. Human Molecular Genetics, 23(3), 796-809.  

Chimusa, E.R., Meintjies, A., Tchanga, M., Mulder, N., Seioghe, C., Soodyall, H., Ramesar, 

R. 2015. A genomic portrait of haplotype diversity and signatures of selection in 

indigenous southern African populations. PLoS Genetics, 11(3), e1005052.  

Christoforou, A., Dondrup, M., Mattingsdal, M., Mattheisen, M., Giddaluru, S., Nöthen, M.M., 

et al. 2012. Linkage-disequilibrium-based binning affects the interpretation of GWASs. 

American Journal of Human Genetics, 90(4), 727-33. 

Chowdhury, N., Remington, G., Kennedy, J. 2011. Genetics of antipsychotic-induced side 

effects and agranulocytosis. Current Psychiatry Reports, 13(2), 156-65. 

Chung, C.C., Kanetsky, P.A., Wang, Z., Hildebrandt, M.A.T., Koster, R., Skotheim, R.I., et al. 

2013. Meta-analysis identifies four new loci associated with testicular germ cell tumor. 

Nature Genetics, 45(6), 680-5.  

Clark, S.L., Souza, R.P., Adkins, D.E., Åberg, K., Buksźar, J., McClay, J.L., et al. 2013. 

Genome-wide association study of patient-rated and clinician-rated global impression 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

90 

  

of severity during antipsychotic treatment. Pharmacogenetics and Genomics, 23(2), 

69-77.  

Clarke, M.C., Kelleher, I., Clancy, M., Cannon, M. 2012. Predicting risk and the emergence 

of schizophrenia. Psychiatric Clinics of North America, 35(3), 585-612. 

Collins, P.Y., Patel, V., Joestl, S.S., March, D., Insel, T.R., Daar, A.S. 2011. Grand 

challenges in global mental health. Nature, 475(7354), 27-30. 

Collins, A.L., Kim, Y., Sklar, P., International Schizophrenia Consortium, O’Donovan, M.C., 

Sullivan, P.F. 2012. Hypothesis-driven candidate genes for schizophrenia compared to 

genome-wide association results. Psychological Medicine, 42(3), 607-16. 

Conley, R.R., Kelly, D.L. 2001. Management of treatment resistance in schizophrenia. 

Biological Psychiatry, 50(11), 898-911.   

Cook, J., Hunter, G., Vernon, J. 2009. The future costs, risks, and rewards of drug 

development. Pharmacoeconomics, 27, 355–63. 

Cookson, W., Liang, L., Abecasis, G., Moffatt, M., Lathrop, M. 2009. Mapping complex 

disease traits with global gene expression. Nature Reviews Genetics, 10(3), 184-94. 

Cooper, G., Shendure, J. 2011. Needles in stacks of needles: finding disease-causal 

variants in a wealth of genomic data. Nature Reviews Genetics, 12(9), 628-40. 

Correll, C.U., Lencz, T., Malhotra, A.K. 2011. Antipsychotic drugs and obesity. Trends in 

Molecular Medicine, 17(2), 97-107.  

Curtis, D. 2013. Consideration of plausible genetic architectures for schizophrenia and 

implications for analytic approaches in the era of next generation sequencing. 

Psychiatric Genetics, 23(1), 1-10. 

Dalal, S., Holmes, M.D., Ramesar, R.S. 2010. Advancing public health genomics in Africa 

through prospective cohort studies. Journal of Epidemiology and Community Health, 

64(7), 585-6. 

Daya, M., van der Merwe, L., Galal, U., Möller, M., Salie, M., Chimusa, E.R., et al. 2013. A 

panel of ancestry informative markers for the complex five-way admixed South African 

coloured population. PloS One, 8(12), e82224. 

de Jesus Mari, J., Patel, V., Kieling, C., Anders, M., Jakovljevi, M., Lam, L.C.W., et al. 2009. 

The 5/95 Gap on the dissemination of mental health research: The World Psychiatric 

Association (WPA) task force report on project with editors of low and middle income 

(LAMI) countries. African Journal of Psychiatry, 12(1), 33-9. 

de Leon, J. 2009. The future (or lack of future) of personalized prescription in psychiatry. 

Pharmacological Research, 59(2), 81-9. 

Demyttenaere, K., Bruffaerts, R., Posada-Villa, J., Gasquet, I., Kovess, V., Lepine, J.P., et 

al. 2004. Prevalence, severity and unmet needs for treatment of mental disorders in 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

91 

  

the World Health Organization World Mental Health Surveys. Journal of the American 

Medical Association, 291(21), 2581-90. 

de Wit, E., Delport, W., Rugamika, C.E., Meintjes, A., Möller, M., van Helden, P., et al. 2010. 

Genome-wide analysis of the structure of the South African Coloured population in the 

Western Cape. Human Genetics, 128(2), 145-53.     

Doherty, J.L., Owen, M.J. 2014. Genomic insights into the overlap between psychiatric 

disorders: implications for research and clinical practice. Genomic Medicine, 6(4), 29-

41. 

Dorado, P., Penas-LLedo, E.M., de la Rubia, A. 2009. Relevance of CYP2D6 -1584C>G 

polymorphism for thioridazine:mesoridazine plasma concentration ratio in psychiatric 

patients. Pharmacogenomics, 10(7), 1083–9. 

Drögemöller, B.I., Wright, G.E.B., Niehaus, D.J.H., Emsley, R.A., Warnich, L. 2011.  Whole-

genome resequencing in pharmacogenomics: moving away from past disparities to 

globally representative applications.  Pharmacogenomics, 12(12), 1717-28. 

Drögemöller, B.I. 2013. Investigation of genetic variation contributing to antipsychotic 

treatment response in a South African first episode schizophrenia cohort. Unpublished 

doctoral dissertation. Stellenbosch: Stellenbosch University. Available:  

http://hdl.handle.net/10019.1/95473.   

Drögemöller, B.I., Wright, G.E.B., Warnich, L. 2014a. Considerations for rare variants in drug 

metabolism genes and the clinical implications. Expert Opinion on Drug Metabolism & 

Toxicology, 10(6), 873-84. 

Drögemöller, B.I., Niehaus, D.J.H., Chiliza, B., van der Merwe, L., Asmal, L., Malhotra, A.K., 

et al. 2014b. Patterns of variation influencing antipsychotic treatment outcomes in 

South African first-episode schizophrenia patients. Pharmacogenomics, 15(2), 189-99. 

Ecker, J.R., Bickmore, W.A., Barroso, I., Pritchard, J.K., Gilad, Y., Segai, E. 2012. 

Genomics: ENCODE explained. Nature, 489(7414), 52-5. 

Emsley, R., Chiliza, B., Asmal, L., Lehloenya, K. 2011. The concepts of remission and 

recovery in schizophrenia. Current Opinion in Psychiatry, 24(2), 114-21.  

Emsley, R., Oosthuizen, P., Koen, L., Niehaus, D., Martinez, L. 2013. Comparison of 

treatment response in second-episode versus first-episode schizophrenia. Journal of 

Clinical Psychopharmacology, 33(1), 80-3. 

The ENCODE Project Consortium. 2007. Identification and analysis of functional elements in 

1% of the human genome by the ENCODE pilot project. Nature, 447, 799–816. 

The ENCODE Project Consortium. 2011. A user’s guide to the encyclopedia of DNA 

elements (ENCODE). PLoS Biology, 9(4). Available: 

http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001046#p

bio-1001046-g008. 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

92 

  

The FANTOM Consortium, The RIKEN PMI, CLST (DGT). 2014. A promoter-level 

mammalian expression atlas. Nature, 507(7493), 462-70. 

Flint, J., Munafò, M. 2014. Schizophrenia: genesis of a complex disease. Nature, 511, 412-

13. 

Flockhart, D.A., O’Kane, D., Williams, M.S., Watson, M.S., Gage, B., Gandolfi, R., et al. 

2008. Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin. Genetics 

in Medicine, 10(2), 139–50. 

Fond, G., d’Albis, M.-A., Jamain, S., Tamouza, R., Arango, C., Wolfgang Fleischhacker, W., 

et al. 2015. The promise of biological markers for treatment response in first-episode 

psychosis: a systematic review. Schizophrenia Bulletin, 41(3), 559-73. 

Freedman, M.L., Monteiro, A.N.A., Gayther, S.A., Coetzee, G.A., Risch, A., Plass, C., et al. 

2011. Principles for the post-GWAS functional characterization of cancer risk loci. 

Nature Genetics, 43(6), 513-8. 

Gabriel, S.B., Schaffner, S.F., Nguyen, H., Moore, J.M., Roy, J., Blumenstiel, B., et al. 2002. 

The structure of haplotype blocks in the human genome. Science, 296(5576), 2225-9. 

Gaedigk, A., Coetsee, C. 2008. The CYP2D6 gene locus in South African Coloureds: unique 

allele distributions, novel alleles and gene arrangements. European Journal of Clinical 

Pharmacology, 64, 465-75. 

Georgitsi, M., Zukic, B., Pavlovic, S., Patrinos, G.P. 2011. Transcriptional regulation and 

pharmacogenomics. Pharmacogenomics, 12(5), 655-73. 

Girard, S.L., Gauthier, J., Noreau, A., Xiong, L., Zhou, S., Jouan, L., et al. 2011. Increased 

exonic de novo mutation rate in individuals with schizophrenia. Nature Genetics, 43, 

860–3.  

Girard, S.L., Dion, P.A., Rouleau, G.A. 2012. Schizophrenia genetics: putting all the pieces 

together. Current Neurology and Neuroscience Reports, 12(3), 261-6. 

Global Forum for Health Research. 2000. 10/90 report on health research 2000. Geneva: 

Global Forum for Health Research. Available: 

http://www.globalforumhealth.org/about/1090-gap/. 

Graur, D., Zheng, Y., Price, N., Azevedo, R.B.R., Zufall, R.A., Elhaik, E. 2013. On the 

immortality of television sets: “function” in the human genome according to the 

evolution-free gospel of ENCODE. Genome Biology and Evolution, 5(3), 578-90. 

Guo, L., Du, Y., Chang, S., Zhang, K., Wang, J. 2014. rSNPBase: a database for curated 

regulatory SNPs. Nucleic Acids Research, 42. Available: 

http://nar.oxfordjournals.org/content/early/2013/11/26/nar.gkt1167.full.   

Gupta, S., Venkatesh, A., Ray, S., Srivastava, S. 2014. Challenges and prospects for 

biomarker research: a current perspective from the developing world. Biochimica Et 

Biophysica Acta, 1844(5), 899-908. 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

93 

  

Gurdasani, D., Carstensen, T., Tekola-Ayele, F., Pagani, L., Tachmazidou, I., Hatzikotoulas, 

K., et al. 2015. The African Genome Variation Project shapes medical genetics in 

Africa. Nature, 517(7534), 327-32.  

Halene, T.B., Siegel, S.J. 2008. Antipsychotic-like properties of phosphodiesterase 4 

inhibitors: evaluation of 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (RO-20-1724) 

with auditory event-related potentials and prepulse inhibition of startle. Journal of 

Pharmacology and Experimental Therapeutics, 326, 230-9. 

Hall, G., Singh, I.S., Hester, L., Hasday, J.D., Rogers, T.B. 2005.  Inhibitor-kappaB kinase-

beta regulates LPS-induced TNF-alpha production in cardiac myocytes through 

modulation of NF-kappaB p65 subunit phosphorylation. American Journal of 

Physiology Heart and Circulatory Physiology, 289, 2103-11. 

Hindorff, L.A., Sethupathy, P., Junkins, H.A., Ramos, E.M. Mehta, J.P., Collins, F.S., 

Manolio, T.A. 2009. Potential etiologic and functional implications of genome-wide 

association loci for human diseases and traits. Proceedings of the National Academy 

of Sciences, 106, 9362–7.  

Hinds, D.A., Stuve, L.L., Nilsen, G.B., Halperin, E., Eskin, E., Ballinger, D.G., et al. 2005. 

Whole-genome patterns of common DNA variation in three human populations. 

Science, 307, 1072-9. 

Huang, D.W., Sherman, B.T., Lempicki, R.A. 2009. Systematic and integrative analysis of 

large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44-57. 

Huynh, T., Khan, J.M., Ranganathan, S. 2011. A comparative structural bioinformatics 

analysis of inherited mutations in β-D-mannosidase across multiple species reveals a 

genotype-phenotype correlation. BMC Genomics, 12(S3), 1-13. 

Ikediobi, O., Aouizerat, B., Xiao, Y., Gandhi, M., Gebhardt, S., Warnich, L. 2011. Analysis of 

pharmacogenetic traits in two distinct South African populations. Human Genomics, 5, 

265-82.  

Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D., Quinn, K., et al. 2010. Research 

Domain Criteria (RDoC): toward a new classification framework for research on mental 

disorders. American Journal of Psychiatry, 167(7), 748-51. 

Insel, T.R., Cuthbert, B.N. 2015. Brain disorders? Precisely. Science, 348(6234), 499-500. 

The International HapMap Consortium. 2003. The international HapMap project. Nature, 

426, 789-96. 

International Warfarin Pharmacogenetics Consortium. 2009. Estimation of the warfarin dose 

with clinical and pharmacogenetic data. New England Journal of Medicine, 360(8), 

753–64. 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

94 

  

Iyegbe, C., Campbell, D., Butler, A., Ajnakina, O., Sham, P. 2014. The emerging molecular 

architecture of schizophrenia, polygenic risk scores and the clinical implications for 

GxE research. Social Psychiatry & Psychiatric Epidemiology, 49(2), 169-82. 

Jeppesen, P., Petersen, L., Thorup, A., Abel, M-B., Øhlenschlæger, J., Christensen, T. Ø., et 

al. 2008. The association between pre-morbid adjustment, duration of untreated 

psychosis and outcome in first-episode psychosis. Psychological Medicine, 38(8), 

1157-66. 

Jones, P.B., Barnes, T.R.E., Davies, L., Dunn, G., Lloyd, H., Hayhurst, K.P., et al. 2006. 

Randomized controlled trial of the effect on quality of life of second- vs first-generation 

antipsychotic drugs in schizophrenia: Cost Utility of the Latest Antipsychotic Drugs in 

Schizophrenia Study (CUtLASS 1). Archives of General Psychiatry, 63, 1079- 87. 

Jungerius, B.J., Hoogendoorn, M.L., Bakker, S.C., Van't Slot, R., Bardoel, A.F., Ophoff, R.A., 

et al. 2007. An association screen of myelin-related genes implicates the chromosome 

22q11 PIK4CA gene in schizophrenia. Molecular Psychiatry, 13(11), 1060-8.  

Juraeva, D., Haenisch, B., Zapatka, M., Frank, J., GROUP Investigators, iPSYCH-GEMS 

SCZ working group, et al. 2014. Integrated pathway-based approach identifies 

association between genomic regions at CTCF and CACNB2 and schizophrenia. PLoS 

Genetics, 10(6), e1004345. 

Kadri, N., Sartorius, N. 2005. The global fight against the stigma of schizophrenia. PLoS 

Medicine, 2(7). Available: 

http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.002013

6. 

Kahn, R.S., Sommer, I.E. 2015. The neurobiology and treatment of first-episode 

schizophrenia. Molecular Psychiatry, 20, 84-97. 

Kameyama, Y., Yamashita, K., Kobayashi, K., Hosokawa, M., Chiba, K. 2005. Functional 

characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and 

SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 

cells. Pharmacogenetics and Genomics, 15(7), 513–22. 

Kapur, S., Mamo, D. 2003. Half a century of antipsychotics and still a central role for 

dopamine D2 receptors. Progress In Neuro-Psychopharmacology & Biological 

Psychiatry, 27(7), 1081-90.  

Kay, S.R., Fiszbein, A., Opler, L.A. 1987. The positive and negative syndrome scale 

(PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261-76. 

Kerem, B., Rommens, J.M., Buchanan, J.A., Markiewicz, D., Cox, T.K., Chakravarti, A., et al. 

1989. Identification of the cystic fibrosis gene: genetic analysis. Science, 245(4922), 

1073-80. 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

95 

  

Kim, Y., Zerwas, S., Trace, S.E., Sullivan, P.F. 2011. Schizophrenia genetics: where next? 

Schizophrenia Bulletin, 37(3), 456-63. 

Kim, Y.S., State, M.W. 2014. Recent challenges to the psychiatric diagnostic nosology: a 

focus on the genetics and genomics of neurodevelopmental disorders. International 

Journal of Epidemiology, 43(2), 465-75. 

Kingsmore, S.F., Lindquist, I.E., Mudge, J., Gessler, D.D., Beavis, W.D. 2008. Genome-wide 

association studies: progress and potential for drug discovery and development. 

Nature Reviews Drug Discovery, 7(3), 221-30. 

Kinon, B.J., Chen, L., Ascher-Svanum, H., Stauffer, V.L., Kollack-Walker, S., Sniadecki, J.L., 

et al. 2008. Predicting response to atypical antipsychotics based on early response in 

the treatment of schizophrenia. Schizophrenia Research, 102, 230–40. 

Kinon, B.J., Chen, L., Ascher-Svanum, H., Stauffer, V.L., Kollack-Walker, S., Zhou, W., et al. 

2010. Early response to antipsychotic drug therapy as a clinical marker of subsequent 

response in the treatment of schizophrenia. Neuropsychopharmacology, 35, 581–90. 

Kirkpatrick, B., Fenton, W.S., Carpenter, W.T., Marder, S.R., 2006. The NIMH- MATRICS 

consensus statement on negative symptoms. Schizophrenia Bulletin, 32, 214–19. 

Klein, K., Zanger, U. 2013. Pharmacogenomics of cytochrome P450 3A4: recent progress 

toward the “missing heritability” problem. Frontiers in Genetics, 4(12), 1-15.  

Kodzius, R., Kojima, K., Nishiyori, H., Nakamura, M., Fukuda, S., Tagami, M., et al. 2006. 

CAGE: cap analysis of gene expression. Nature Methods, 3(3), 211-22. 

Krabbendam, L., van Os, J. 2005. Schizophrenia and urbanicity: a major environmental 

influence - conditional on genetic risk. Schizophrenia Bulletin, 31, 795–9. 

Kumar, P., Henikoff, S., Ng, P.C. 2009. Predicting the effects of coding non-synonymous 

variants on protein function using the SIFT algorithm. Nature Protocols, 4(7), 1073-81. 

Kuroiwa, M., Snyder, G.L., Shuto, T., Fukuda, A., Yanagawa, Y., Benavides, D.R., et al. 

2011. Phosphodiesterase 4 inhibition enhances the dopamine D1 receptor/ 

PKA/DARPP-32 signaling cascade in frontal cortex. Psychopharmacology, 219, 1065-

79. 

Lavedan, C., Licamele, L., Volpi, S., Hamilton, J., Heaton, C., Mack, K., et al. 2009. 

Association of the NPAS3 gene and five other loci with response to the antipsychotic 

iloperidone identified in a whole genome association study. Molecular Psychiatry, 

14(8), 804-19. 

Lebedeva, S. 2012. Transcriptome-wide functional analysis of post-transcriptional regulatory 

interactions of the RNA-binding protein HuR/ELAVL1. Unpublished doctoral 

dissertation. Berlin: Freie Universität Berlin. Available: http://www.diss.fu-

berlin.de/diss/receive/FUDISS_thesis_000000038642.  

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

96 

  

León-Cachón, R.B.R., Ascacio-Martínez, J.A., Barrera-Saldaña, H.A. 2012. Individual 

response to drug therapy: bases and study approaches. Revista de Investigación 

Clínica, 64(4), 364-76. 

Leucht, S., Heres, S., Hamann, J., Kane, J.M. 2008. Methodological issues in current 

antipsychotic drug trials. Schizophrenia Bulletin, 34, 275–85. 

Leucht, S., Corves, C., Arbter, D., Engel, R.R., Li, C., Davis, J.M. 2009. Second-generation 

versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. The 

Lancet, 373, 31–41. 

Levine, S.Z., Rabinowitz, J., Rizopoulos, D. 2011. Recommendations to improve the Positive 

and Negative Syndrome Scale (PANSS) based on item response theory. Psychiatry 

Research, 188(3), 446-52. 

Lewis, S., Lieberman, J. 2008. CATIE and CUtLASS: can we handle the truth? British 

Journal of Psychiatry, 192(3), 161-3. 

Li-Wan-Po, A., Girard, T., Farndon, P., Cooley, C., Lithgow, J. 2010. Pharmacogenetics of 

CYP2C19: functional and clinical implications of a new variant CYP2C19*17. British 

Journal of Clinical Pharmacology, 69(3), 222–30. 

Lieberman, J.A., Perkins, D., Belger, A., Chakos, M., Jaskog, F., Boteva, K., Gilmore, J. 

2001. The early stages of schizophrenia: speculations on pathogenesis, 

pathophysiology, and therapeutic approaches. Biological Psychiatry, 50, 884-97. 

Lieberman, J.A., Stroup, S., McEvoy, J., Swartz, M.S., Rosenheck, R.A., Perkins, D.O., et al. 

2005. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. New 

England Journal of Medicine, 353, 1209-23.  

Lin, C-H., Huang, C-L., Chang, Y-C., Chen, P-W., Lin, C-Y., Tsai, G.E., Lane, H-Y. 2013. 

Clinical symptoms, mainly negative symptoms, mediate the influence of neurocognition 

and social cognition on functional outcome of schizophrenia. Schizophrenia Research, 

146, 231-7. 

Liou, Y-J., Wang, H-H., Lee, M-T.M., Wang, S-C., Chiang, H-L., Chen, C-C., et al. 2012. 

Genome-wide association study of treatment refractory schizophrenia in Han Chinese. 

PloS One, 7(3), e33598. 

Lohoff, F.W., Ferraro, T.N. 2010. Pharmacogenetic considerations in the treatment of 

psychiatric disorders. Expert Opinion on Pharmacotherapy, 11(3), 423-39. 

Lopez-Munoz, F., Alamo, C., Cuenca, E., Shen, W.W., Clervoy, P., Rubio, G. 2005. History 

of the discovery and clinical introduction of chlorpromazine. Annals of Clinical 

Psychiatry, 17, 113–35. 

Lund, C., Kleintjes, S., Kakuma, R., Flisher, A.J. 2010. Public sector mental health systems 

in South Africa: inter-provincial comparisons and policy implications. Social Psychiatry 

and Psychiatric Epidemiology, 45(3), 393-404. 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

97 

  

Mah, S., Nelson, M.R., Delisi, L.E., Reneland, R.H., Markward, N., James, M.R., et al. 2006.  

Identification of the semaphorin receptor PLXNA2 as a candidate for susceptibility to 

schizophrenia. Molecular Psychiatry, 11, 471-78. 

Malaspina, D., Walsh-Messinger, J., Gaebel, W., Smith, L.M., Gorun, A., Prudent, V., et al. 

2014. Negative symptoms, past and present: a historical perspective and moving to 

DSM-5. European Neuropsychopharmacology, 24(5), 710-24. 

Malhotra, A.K., Correll, C.U., Chowdhury, N.I., Müller, D.J., Gregersen, P.K., Lee, A.T., et al. 

2012. Association between common variants near the melanocortin 4 receptor gene 

and severe antipsychotic drug-induced weight gain. Archives of General Psychiatry, 

69(9), 904-12. 

Mamdani, F., Martin, M.V., Lencz, T., Rollins, B., Robinson, D.G., Moon, E.A., et al. 2013. 

Coding and noncoding gene expression biomarkers in mood disorders and 

schizophrenia. Disease Markers, 35(1), 11-21. 

Manke, T., Heinig, M., Vingron, M. 2010. Quantifying the effect of sequence variation on 

regulatory interactions. Human Mutation, 31(4), 477-83. 

Marigo, I., Bosio, E., Solito, S., Mesa, C., Fernandez, A., Dolcetti, L., et al. 2010. Tumor-

induced tolerance and immune suppression depend on the C/EBPβ transcription 

factor. Immunity, 32(6), 790-802. 

Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Haugen, E., Wang, H., et al. 2013. 

Systematic localization of common disease-associated variation in regulatory DNA. 

Science, 337, 1190-5. 

McCarthy, S.E., McCombie, W.R., Corvin, A. 2014. Unlocking the treasure trove: from genes 

to schizophrenia biology. Schizophrenia Bulletin, 40(3), 492-6. 

McClay, J.L., Adkins, D.E., Åberg, K., Buksźar, J., Khachane, A.N., Keefe, R.S.E., et al. 

2011a. Genome-wide pharmacogenomics study of neurocognition as an indicator of 

antipsychotic treatment response in schizophrenia. Neuropsychopharmacology, 36(3), 

616-26. 

McClay, J.L., Adkins, D.E., Åberg, K., Stroup, S., Perkins, D.O., Vladimirov, V.I., et al. 

2011b. Genome-wide pharmacogenomic analysis of response to treatment with 

antipsychotics. Molecular Psychiatry, 16, 76-85.  

McEvoy, J.P., Hogarty, G.E., Steingard, S. 1991. Optimal dose of neuroleptic in acute 

schizophrenia. A controlled study of the neuroleptic threshold and higher haloperidol 

use. Archives of General Psychiatry, 48(8), 739-45. 

McEvoy, J.P., Meyer, J.M., Goff, D.C., Nasrallah, H.A., Davis, S.M., Sullivan, L., et al. 2005. 

Prevalence of the metabolic syndrome in patients with schizophrenia: baseline results 

from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

98 

  

schizophrenia trial and comparison with national estimates from NHANES III. 

Schizophrenia Research, 80(1), 19-32. 

McEvoy, J.P., Lieberman, J.A., Stroup, T.S., Davis, S.M., Meltzer, H.Y., Rosenheck, R.A., et 

al. 2006. Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone in 

patients with chronic schizophrenia who did not respond to prior antipsychotic 

treatment. American Journal of Psychiatry, 163, 600–10. 

McKusick, V.A. 1998. Mendelian Inheritance in Man. A Catalog of Human Genes and 

Genetic Disorders, 12th ed. Johns Hopkins University Press, Baltimore, MD. 

Meadows, J.R.S., Chan, E.K.F., Kijas, J.W. 2008. Linkage disequilibrium compared between 

five populations of domestic sheep. BMC Genetics, 9, 61. 

Meltzer, H.Y. 2013. Update on typical and atypical antipsychotics drugs. Annual Review of 

Medicine, 64, 393-406.  

Millan, M.J., Fone, K., Steckler, T., Horan, W.P. 2014. Negative Symptoms of schizophrenia: 

clinical characteristics, pathophysiological substrates, experimental models and 

prospects for improved treatment. European Neuropsychopharmacology, 24(5), 645-

92. 

Miller, S.A., Dykes, D.D., Polesky, H.F. 1988. A simple salting out procedure for extracting 

DNA from human nucleated cells. Nucleic Acids Research, 16(3), 1215. 

Mitchell, C., Gregerson, N., Krause, A. 2011. Novel CYP2C9 and VKORC1 gene variants 

associated with warfarin dosage variability in the South African black population. 

Pharmacogenomics, 12(7), 953-63. 

Mowry, B., Gratten, J. 2013. The emerging spectrum of allelic variation in schizophrenia: 

current evidence and strategies for the identification and functional characterization of 

common and rare variants. Molecular Psychiatry, 18(1), 38-52. 

Mueller, J.C. 2004. Linkage disequilibrium for different scales and applications. Briefings in 

Bioinformatics, 5(4), 355-64. 

Mueser, K.T., McGurk, S.R. 2004. Schizophrenia. The Lancet, 363(9426), 2063-72. 

Muir, W.J., Gosden, C.M., Brookes, A.J., Fantes, J., Evans, K.L., Maguire, S.M., et al. 1995. 

Direct microdissection and microcloning of a translocation breakpoint region, 

t(1;11)(q42.2;q21), associated with schizophrenia. Cytogenetics and Cell Genetics, 70, 

35–40. 

Murali, V., Oyebode, F. 2004. Poverty, social inequality and mental health. Advances in 

Psychiatric Treatment, 10(3), 216-24. 

Murray, C.J.L., Lopez, A.D. 1996. The global burden of disease: a comprehensive 

assessment of mortality and disability from diseases, injuries and risk factors in 1990 

and projected to 2020. Cambridge, Massachusetts. 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

99 

  

Murayama, N., Soyama, A., Saito, Y., Nakajima, Y., Komamura, K., Ueno, K., et al. 2004. 

Six novel nonsynonymous CYP1A2 gene polymorphisms: catalytic activities of the 

naturally occurring variant enzymes. Journal of Pharmacology and Experimental 

Therapeutics, 308(1), 300-6. 

Narayan, S., Tang, B., Head, S.R., Gilmartin, J., Sutcliffe, G., Dean, B., Thomas, E.A. 2008. 

Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain 

Research, 1239, 235-48. 

Nasrallah, H.A. 2007. The case for long-acting antipsychotic agents in the post-CATIE era. 

Acta Psychiatrica Scandinavica, 115, 260–7. 

Nechanitzky, R., Akbas, D., Scherer, S., Györy, I., Hoyler, T., Ramamoorthy, S., et al. 2013. 

Transcription factor EBF1 is essential for the maintenance of B cell identity and 

prevention of alternative fates in committed cells. Nature Immunology, 14, 867-75. 

Need, A., Keefe, R., Ge, D., Grossman, I., Dickson, S., McEvoy, J.P., Goldstein, D.B. 2009. 

Pharmacogenetics of antipsychotic response in the CATIE trial: a candidate gene 

analysis. European Journal of Human Genetics, 17(7), 946-57. 

Newcomer, J.W. 2005. Second-generation (atypical) antipsychotics and metabolic effects: a 

comprehensive literature review. CNS Drugs, 19 (S1), 1–93. 

Ni, X., Zhang, W., Huang, R.S. 2013. Pharmacogenomics discovery and implementation in 

genome-wide association studies era. Wiley Interdisciplinary Reviews Systems Biology 

and Medicine, 5, 1-9. 

Niemi, M., Schaeffeler, E., Lang, T., Fromm, M.F., Neuvonen, M., Kyrklund, C., et al. 2004. 

High plasma pravastatin concentrations are associated with single nucleotide 

polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, 

SLCO1B1). Pharmacogenetics, 14(7), 429–40.  

Nyakutira, C., Röshammar, D., Chigutsa, E., Chonzi, P., Ashton, M., Nhachi, C., 

Masimirembwa, C. 2008. High prevalence of the CYP2B6 516G>T(*6) variant and 

effect on the population pharmacokinetics of efavirenz in HIV/AIDS outpatients in 

Zimbabwe. European Journal of Clinical Pharmacology, 64(4), 357-65. 

Ogryzko, V.V., Schiltz, R.L., Russanova, V., Howard, B.H., Nakatani, Y. 1996. The 

transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell, 87, 

953–9. 

Oosthuizen, P., Emsley, R., Jadri, T.H., Keyter, N. 2004.  A randomized, controlled 

comparison of the efficacy and tolerability of low and high doses of haloperidol in the 

treatment of first-episode psychosis. International Journal of 

Neuropsychopharmacology, 7(2), 125-31.  

Opler, M., Charap, J., Greig, A., Stein, V., Polito, S., Malaspina, D. 2013. Environmental risk 

factors and schizophrenia. International Journal of Mental Health, 42(1), 23-32. 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

100 

  

Overall, J.E., Gorham, D.R. 1962. The brief psychiatric rating scale. Psychological Reports, 

10, 799–812. 

Ozomaro, U., Wahlstedt, C., Nemeroff, C.B. 2013. Personalized medicine in psychiatry: 

problems and promises. BMC Medicine, 11(132), 1-35. 

Pastinen, T. 2010. Genome-wide allele-specific analysis: insights into regulatory variation. 

Nature Reviews Genetics, 11(8), 533-8. 

Patel, V., Sumathipala, A. 2001. International representation in psychiatric literature: survey 

of six leading journals. British Journal of Psychiatry, 178(5), 406-9. 

Patel, V., Kleinman, A. 2003. Poverty and common mental disorders in developing countries. 

Bulletin of the World Health Organization, 81(8), 609-15. 

Patel, V., Belkin, G.S., Chockalingam, A., Cooper, J., Saxena, S., Unützer, J. 2013. Grand 

challenges: integrating mental health services into priority health care platforms.  PLoS 

Medicine, 10(5). Available: 

http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.100144

8. 

Peralta, V., Cuesta, M.J. 2003. The nosology of psychotic disorders: a comparison among 

competing classification systems. Schizophrenia Bulletin, 29, 413–25. 

Perkins, D., Lieberman, J., Gu, H., Tohen, M., McEvoy, J., Green, A., et al. 2004. Predictors 

of antipsychotic treatment response in patients with first-episode schizophrenia, 

schizoaffective and schizophreniform disorders. British Journal of Psychiatry, 185(1), 

18-24. 

Petrovski, S., Fellay, J., Shianna, K.V., Carpenetti, N., Kumwenda, J., Kamanga, G., et al. 

2011. Common human genetic variants and HIV-1 susceptibility: a genome-wide 

survey in a homogeneous African population. AIDS, 25(4), 513–18. 

Pinheiro, J., Bates, D., DebRoy, S., Sarkar D., R Core Team. 2014. nlme: Linear and 

Nonlinear Mixed Effects Models. R package version 3.1-117. Available: http://CRAN.R-

project.org/package=nlme. 

Purcell, S.M., Moran, J.L., Fromer, M., Ruderfer, D., Solovieff, N., Roussos, P., et al. 2014. A 

polygenic burden of rare disruptive mutations in schizophrenia. Nature, 506(7487), 

185-90. 

Qiu, W., Rogers, A.J., Damask, A., Raby, B.A., Klanderman, B.J., Duan, Q.L., et al. 2014. 

Pharmacogenomics: novel loci identification via integrating gene differential analysis 

and eQTL analysis. Human Molecular Genetics. Available: 

http://hmg.oxfordjournals.org/content/early/2014/05/07/hmg.ddu191.short.  

R Development Core Team. 2010. R: a language and environment for statistical computing. 

Vienna, Austria: R Foundation for Statistical Computing. Available: http://www.R-

project.org.  

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

101 

  

Ramsay, M. 2012. Africa: continent of genome contrasts with implications for biomedical 

research and health. FEBS Letters, 586, 2813-9. 

Reith, W., Steimle, V., Mach, B. 1995. Molecular defects in the bare lymphocyte syndrome 

and regulation of MHC class II genes. Immunology Today, 16(11), 539-46. 

Remington, G., Foussias, G., Agid, O. 2010. Progress in defining optimal treatment outcome 

in schizophrenia. CNS Drugs, 24(1), 9-20. 

Reynolds, G.P. 2007. The impact of pharmacogenetics on the development and use of 

antipsychotic drugs. Drug Discovery Today, 12(21-22), 953–9. 

Rieder, M. 2014. Pharmacogenomics in children. In Yan, Q. (ed.). Pharmacogenomics in 

Drug Discovery and Development. 2nd Ed. New York: Humana Press. 687-708. 

Ripke, S., O’Dushlaine, C., Chambert, K., Moran, J.L., Kähler, A.K., Akterin, S., et al. 2013. 

Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature 

Genetics, 45(10), 1150-9. 

Ripke, S., Neale, B.M., Corvin, A., Walters, J.T.R., Farh, K-H., Holmans, P.A., et al. 2014. 

Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421-7. 

Ritchie, G.R.S., Dunham, I., Zeggini, E., Flicek, P. 2014. Functional annotation of noncoding 

sequence variants. Nature Methods, 11, 294-6.  

Robinson, D.G., Woerner, M.G., McMeniman, M., Mendelowitz, A., Bilder, R.M. 2004. 

Symptomatic and functional recovery from a first episode of schizophrenia or 

schizoaffective disorder. American Journal of Psychiatry, 161, 473–9. 

Rodriguez-Murillo, L., Gogos, J., Karayiorgou, M. 2012. The genetic architecture of 

schizophrenia: new mutations and emerging paradigms. Annual Review of Medicine, 

63, 63-80. 

Samuels, D.C., Burn, D.J., Chinnery, P.F. 2009. Detecting new neurodegenerative disease 

genes: does phenotype accuracy limit the horizon? Trends in Genetics, 25(11), 486-8. 

Saxena, S., Skeen, S. 2012. No health without mental health: challenges and opportunities 

in global mental health. African Journal of Psychiatry, 15(6), 397-400. 

Schaub, M.A., Boyle, A.P., Kundaje, A., Batzoglou, S., Snyder, M. 2012. Linking disease 

associations with regulatory information in the human genome. Genome Research, 22, 

1748-59. 

Schmidt, D., Wilson, M.D., Ballester, B., Schwalie, P.C., Brown, G.D., Marshall, A., et al. 

2010. Five-vertebrate ChIP-Seq reveals the evolutionary dynamics of transcription 

factor binding. Science, 328(5981), 1036-40. 

Schmitt, A., Malchow, B., Hasan, A., Fallkai, P. 2014. The impact of environmental factors in 

severe psychiatric disorders. Frontiers in Neuroscience, 8(19), 1-32.  

Sham, P.C., Purcell, S.M. 2014. Statistical power and significance testing in large-scale 

genetic studies. Nature Reviews Genetics, 15(5), 335-46. 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

102 

  

Shishodia, S., Aggarwal, B.B. 2004. Nuclear factor-κB activation mediates cellular 

transformation, proliferation, invasion angiogenesis and metastasis of cancer. Cancer 

Treatment and Research, 119, 139-73. 

Sim, S.C., Risinger, C., Dahl, M.L., Aklillu, E., Christensen, M., Bertilsson, L., Ingelman-

Sundberg, M. 2006. A common novel CYP2C19 gene variant causes ultrarapid drug 

metabolism relevant for the drug response to proton pump inhibitors and 

antidepressants. Clinical Pharmacology & Therapeutics, 79(1), 103–13. 

Singh, S., Kumar, A., Agarwal, S., Phadke, S.R., Jaiswal, Y. 2014. Genetic insight of 

schizophrenia: past and future perspectives. Gene, 535(2), 97-100. 

Smolin, B., Karry, R., Gal-Ben-Ari, S., Ben-Shachar, D. 2012. Differential expression of 

genes encoding neuronal ion-channel subunits in major depression, bipolar disorder 

and schizophrenia: implications for pathophysiology. International Journal of 

Neuropsychopharmacology, 15, 869-82. 

Solé, X., Guinó, E., Valls, J., Iniesta, R., Moreno, V. 2006. SNPStats: a web tool for the 

analysis of association studies. Bioinformatics, 22(15), 1928-9. 

Stefansson, H., Ophoff, R.A., Steinberg, S., Ole, A., Andreassen, A., Cichon, S., et al. 2009. 

Common variants conferring risk of schizophrenia. Nature, 460(7256), 744-7. 

Stenson, P.D., Mort, M., Ball, E.V., Howells, K., Phillips, A.D., Thomas, N.S.T., Cooper, D.N. 

2009. The Human Gene Mutation Database: 2008 update. Genome Medicine, 1(13). 

Available: http://genomemedicine.com/content/1/1/13.  

Strange, A., Riley, B.P., Spencer, C.C.A., Morris, D.W., Pirinen, M., O’Dushlaine, C.T., et al. 

2012. Genome-wide association study implicates HLA-C*01:02 as a risk factor at the 

major histocompatibility complex locus in schizophrenia. Biological Psychiatry, 72(8), 

620-8.  

Strassnig, M., Miewald, J., Keshavan, M., Ganguli, R. 2007. Weight gain in newly diagnosed 

first-episode psychosis patients and healthy comparisons: one-year analysis. 

Schizophrenia Research, 93(1-3), 90–8. 

Stroup, T.S., McEvoy, J.P., Swartz, M.S., Byerly, M.J., Glick, I.D., Canive, J.M., et al. 2003. 

The National Institute of Mental Health Clinical Antipsychotic Trials of Intervention 

Effectiveness (CATIE) project: schizophrenia trial design and protocol development. 

Schizophrenia Bulletin, 29(1), 15-31.  

Sugatani, J., Yamakawa, K., Yoshinari, K., Machida, T., Takagi, H., Mori, M., et al. 2002. 

Identification of a defect in the UGT1A1 gene promoter and its association with 

hyperbilirubinemia. Biochemical and Biophysical Research Communications, 292(2), 

492–7. 

Sullivan, P.F., Kendler, K.S., Neale, M.C. 2003. Schizophrenia as a complex trait: evidence 

from a meta-analysis of twin studies. Archives of General Psychiatry, 60, 1187-92. 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

103 

  

Sullivan, P.F. 2005. The genetics of schizophrenia. PLoS Medicine, 2(7). Available: 

http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.002021

2. 

Sullivan, P.F. 2010. The Psychiatric GWAS Consortium: big science comes to psychiatry. 

Neuron, 68(2), 182-6. 

Sullivan, P.F., Daly, M., O’Donovan, M. 2012. Genetic architectures of psychiatric disorders: 

the emerging picture and its implications. Nature Reviews Genetics, 13(8), 537-51. 

Sun, J., Xu, H., Zhao, Z. 2012. Network-assisted investigation of antipsychotic drugs and 

their targets. Chemistry & Biodiversity, 9, 900-10. 

Suzuki, T., Remington, G., Mulsant, B.H., Uchida, H., Rajji, T.K., Graff-Guerrero, A., et al. 

2012. Defining treatment-resistant schizophrenia and response to antipsychotics: a 

review and recommendation. Psychiatry Research, 197(1-2), 1-6. 

Tandon, R., Keshavan, M., Nasrallah, H. 2008. Schizophrenia, “just the facts” what we know 

in 2008. 2. Epidemiology and etiology. Schizophrenia Research, 102(1-3), 1-18. 

Tandon, R., Keshavan, M., Nasrallah, H. 2010. Schizophrenia, “just the facts” 5. Treatment 

and prevention. Past, present, and future. Schizophrenia Research, 122(1-3), 1-23. 

Tandon, R., Nasrallah, H., Keshavan, M. 2009. Schizophrenia, “just the facts” 4. Clinical 

features and conceptualization. Schizophrenia Research, 110(1-3), 1-23. 

Tandon, R. 2012. The nosology of schizophrenia: toward DSM-5 and ICD-11. Psychiatric 

Clinics of North America, 35(3), 557-69. 

Tandon, R. 2014. Schizophrenia and other psychotic disorders in diagnostic and statistical 

manual of mental disorders (DSM)-5: clinical implications of revisions from DSM-

IV. Indian Journal of Psychological Medicine, 36(3), 223-5. 

Tarricone, I., Ferrari Gozzi, B., Serretti, A., Grieco, D., Berardi, D. 2010. Weight gain in 

antipsychotic-naïve patients: a review and meta-analysis. Psychological Medicine, 

40(2), 187–200. 

Thorn, C.F., Klein, T.E., Altman, R.B. 2010. Pharmacogenomics and bioinformatics: 

PharmGKB. Pharmacogenomics, 11(4), 501–5. 

Tomlinson, M., Rudan, I., Saxena, S., Swartz, L., Tsai, A.C., Patel, V. 2009. Setting priorities 

for global mental health research. Bulletin of the World Health Organization, 87(6), 

438-46. 

Tomppo, L., Hennah, W., Lahermo, P., Loukola, A., Tuulio-Henriksson, A., Suvisaari, J., et 

al. 2009 Association between genes of disrupted in schizophrenia 1 (DISC1) 

interactors and schizophrenia supports the role of the DISC1 pathway in the etiology of 

major mental illness. Biological Psychiatry, 65(12), 1055-62. 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

104 

  

Tourjman, V., Kouassi, É., Koué, M-É., Rocchetti, M., Fortin-Fournier, S., Fusar-Poli, P., 

Potvin, S. 2013. Antipsychotics’ effects on blood levels of cytokines in schizophrenia: a 

meta-analysis. Schizophrenia Research, 151(1-3), 43-7. 

Tsuang, M.T., Bar, J.L., Stone, W.S., Faraone, S.V. 2004. Gene-environment interactions in 

mental disorders. World Psychiatry, 3, 73–83. 

van Dongen, J., Boomsma, D.I. 2013. The evolutionary paradox and the missing heritability 

of schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric 

Genetics, 162B(2), 122-36. 

van Os, J., Kapur, S. 2009. Schizophrenia. The Lancet, 374(9690), 635-45. 

van Os, J., Kenis, G., Rutten, B.P. 2010. The environment and schizophrenia. Nature,  

468(7321), 203-12.  

Vogel, F. 1959. Moderne Probleme der Humangenetik. In Heilmeyer, L., Schoen, R., de 

Rudder, B. (Eds.). Ergebnisse der Inneren Medizin und Kinderheilkunde. Springer 

Berlin Heidelberg, 52-125. 

Wang, P.S., Lane, M., Olfson, M., Pincus, H.A., Wells, K.B., Kessler, R.C. 2005. Twelve-

month use of mental health services in the United States: results from the National 

Comorbidity Survey Replication. Archives of General Psychiatry, 62, 629–40. 

Wang, D., Guo, Y., Wrighton, S.A., Cooke, G.E., Sadee, W. 2010. Intronic polymorphism in 

CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics, 

11(4), 274-86. 

Warde-Farley, D., Donaldson, S.L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., et al. 

2010. The GeneMANIA prediction server: biological network integration for gene 

prioritization and predicting gene function. Nucleic Acids Research, 38. Available: 

http://nar.oxfordjournals.org/content/38/suppl_2/W214.full.  

Warnich, L., Drögemöller, B.I., Pepper, M.S., Dandara, C., Wright, G.E.B. 2011. 

Pharmacogenomic research in South Africa: lessons learned and future opportunities 

in the Rainbow Nation. Current Pharmacogenomics and Personalized Medicine, 9(3), 

191-207. 

Welter, D., MacArthur, J., Morales, J., Burdett, T., Hall, P., Junkins, H., et al. 2013. The 

NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids 

Research, 42. Available: http://nar.oxfordjournals.org/content/42/D1/D1001.full. 

Whiteford, H.A., Degenhardt, L., Rehm, J., Baxter, A.J., Ferrari, A.J., Erskine, H.E. 2013. 

Global burden of disease attributable to mental and substance use disorders: findings 

from the Global Burden of Disease Study 2010. The Lancet, 382, 1575-86. 

Wirgenes, K.V., Sønderby, I.E., Haukvik, U.K., Mattingsdal, M., Tesli, M., Athanasiu, L., et al. 

2012. TCF4 sequence variants and mRNA levels are associated with 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

105 

  

neurodevelopmental characteristics in psychotic disorders. Translational Psychiatry, 2. 

Available: http://www.nature.com/tp/journal/v2/n5/full/tp201239a.html.  

Woodward, T.S., Jung, K., Smith, G.N., Hwang, H., Barr, A.M., Procyshyn, R.M., et al. 2014. 

Symptom changes in five dimensions of the Positive and Negative Syndrome Scale in 

refractory psychosis. European Archives of Psychiatry and Clinical Neuroscience, 

264(8), 673-82. 

World Health Organization. 2008. The global burden of disease: 2004 update. Geneva: 

World Health Organization. 

World Health Organization. 2011a. Mental Health Atlas 2011. Geneva: World Health 

Organization. 

World Health Organization. 2011b. Global status report on noncommunicable diseases 

2010. Geneva: World Health Organization. 

World Health Organization. 2015. The International Statistical Classification of Diseases and 

Related Health Problems, Tenth Revision (ICD-10) Version:2015. Geneva: World 

Health Organization. 

Wright, J. 2014. Genetics: unravelling complexity. Nature, 508, S6-7.   

Xu, B., Roos, J.L., Dexheimer, P., Boone, B., Plummer, B., Levy, S., et al. 2011. Exome 

sequencing supports a de novo mutational paradigm for schizophrenia. Nature 

Genetics, 43, 864–8. 

Yu, W., Gwinn, M., Clyne, M., Yesupriya, A., Khoury, M.J. 2008. A navigator for human 

genome epidemiology. Nature Genetics, 40(2), 124-5. 

Yuan, H.Y., Chen, J.J., Lee, M.T., Wung, J.C., Chen, Y.F., Charng, M.J., et al. 2005. A novel 

functional VKORC1 promoter polymorphism is associated with inter-individual and 

inter-ethnic differences in warfarin sensitivity. Human Molecular Genetics, 14(13), 

1745–51. 

Zandi, P.P., Judy, J.T. 2010. The promise and reality of pharmacogenetics in psychiatry. 

Psychiatric Clinics of North America, 33, 181-224. 

Zanger, U.M., Fischer, J., Raimundo, S., Stüven, T., Evert, B.O., Schwab, M., Eichelbaum, 

M. 2001. Comprehensive analysis of the genetic factors determining expression and 

function of hepatic CYP2D6. Pharmacogenetics, 11(7), 573–85. 

Zanger, U.M., Raimundo, S., Eichelbaum, M. 2004. Cytochrome P450 2D6: overview and 

update on pharmacology, genetics, biochemistry. Naunyn-Schmiedeberg’s Archives of 

Pharmacology, 369, 23-37. 

Zhang, J-P., Malhotra, A.K. 2013a. Genetics of schizophrenia: what do we know? Current 

Psychiatry, 12(3), 24-33. 

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 

106 

  

Zhang, J-P., Malhotra, A.K. 2013b. Pharmacogenetics of antipsychotics: recent progress 

and methodological issues. Expert Opinion on Drug Metabolism & Toxicology, 9(2), 

183-91. 

Zhao, H., Nettleton, D., Soller, M., Dekkers, J.C.M. 2005. Evaluation of linkage 

disequilibrium measures between multi-allelic markers as predictors of linkage 

disequilibrium between markers and QTL. Genetical Research, 86, 77-87.   

 

Stellenbosch University  https://scholar.sun.ac.za



ELECTRONIC SOURCES 

107 

  

ELECTRONIC SOURCES 

DAVID version 6.7 

http://david.abcc.ncifcrf.gov/home.jsp 

Accessed September 2014 

 

ENCODE: UCSC Genome Browser 

http://genome.ucsc.edu/ENCODE/  

Accessed October 2013 

 

Ensembl Genome Browser release 73 

http://www.ensembl.org/index.html 

Accessed October 2013 

 

FANTOM5  

http://fantom.gsc.riken.jp/5/sstar 

Accessed September 2014 

 

FDA Table of Pharmacogenomic Biomarkers in Drug Labeling 

http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.ht

m 

Accessed January 2015 

 

GeneMANIA  

http://www.genemania.org/ 

Accessed September 2014 

 

HGNC  

http://www.genenames.org/ 

Accessed February 2014 

 

HuGE Navigator GWAS Integrator version 2.0 

http://hugenavigator.net/HuGENavigator/home.do 

Accessed January 2014  

 

  

Stellenbosch University  https://scholar.sun.ac.za



ELECTRONIC SOURCES 

108 

  

Jaspar version 5.0_ALPHA  

http://jaspar.genereg.net/ 

Accessed January 2014 

 

NHGRI GWAS Catalog 

http://www.genome.gov/gwastudies/ 

Accessed January 2014 

 

Interactive NHGRI GWAS Catalog 

http://www.ebi.ac.uk/fgpt/gwas/ 

Accessed January 2014 

 

OPTiMiSE 

http://www.optimisetrial.eu/ 

Accessed April 2015 

 

PharmGKB 

http://www.pharmgkb.org/ 

Accessed July 2013 

 

PolyPhen-2  

http://genetics.bwh.harvard.edu/pph2/ 

Accessed July 2013 

 

PubMed 

http://www.ncbi.nlm.nih.gov/pubmed 

Accessed May 2013 

 

RegulomeDB 

http://regulome.stanford.edu/ 

Accessed October 2013 

 

rSNPBase  

http://rsnp.psych.ac.cn/ 

Accessed January 2014 

 

  

Stellenbosch University  https://scholar.sun.ac.za



ELECTRONIC SOURCES 

109 

  

SeattleSeq Annotation 137 version 8.07 

http://snp.gs.washington.edu/SeattleSeqAnnotation137/ 

Accessed February 2014 

 

SNAP version 2.2 

http://www.broadinstitute.org/mpg/snap/ 

Accessed June 2013 

 

SNP Genotyping Assay Search Tool  

http://www.lifetechnologies.com/za/en/home/life-science/pcr/real-time-pcr/real-time-pcr-

assays/snp-genotyping-taqman-assays.html 

Accessed April 2014 

 

SNPStats 

http://bioinfo.iconcologia.net/snpstats/start.htm 

Accessed November 2014 

 

sTRAP 

http://trap.molgen.mpg.de/cgi-bin/trap_two_seq_form.cgi 

Accessed December 2013 

 

tRap download 

http://trap.molgen.mpg.de/cgi-bin/download.cgi 

Accessed December 2013 

 

 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A                                                   BIOINFORMATICS SUPPLEMENTARY DATA 

110 

  

APPENDIX A: Bioinformatics supplementary data 

Script S1: Unix shell commands for TRAP workflow, including tRap (http://trap.molgen.mpg.de/cgi-

bin/download.cgi), written by Dr N. Ishaque of the German Cancer Research Center (Heidelberg, 

Germany)*.  

tr '\n' '|' < AllSNPs.txt > AllSNPs2.txt 
 
egrep -w 'rsID1|rsID2|rsID3|rsIDn-1|rsIDn' 00-All.SNV.bed > All_results.txt 
 
awk '{print $1"\t"$2"\t"($3+1)"\t"$4"\t"$5"\t"$6}' All_results.txt > All_results.bed 
 
bedtools getfasta -fi GRCh37_FINAL.fa -bed All_results.bed -fo Allfasta 
 
awk '{print $1"\t"($2-16)"\t"($3-1)"\t"$4}' All_results.bed > All_pre15.bed 
 
awk '{print $1"\t"($2)"\t"($3+15)"\t"$4}' All_results.bed > All_post15.bed 
 
bedtools getfasta -fi GRCh37_FINAL.fa -bed All_pre15.bed -fo All_pre15.fa 
 
bedtools getfasta -fi GRCh37_FINAL.fa -bed All_post15.bed -fo All_post15.fa 
 
perl weave_fasta_for_sTRAP.pl All_results.txt All_pre15.fa All_post15.fa > 
All_results_weaved_for_sTRAP.fa 
 
grep WT All_results_weaved_for_sTRAP.fa > AllpairsWT.txt 
 
grep MUT All_results_weaved_for_sTRAP.fa > AllpairsMUT.txt 
 
paste AllpairsWT.txt AllpairsMUT.txt > Allpairs.txt 
 
sed 's/>//g' Allpairs.txt > Allpairs.pairs 
 
R 
 
library(tRap) 
data(jaspar) 
library(Biostrings) 
sequences = readFASTA("All_results_weaved_for_sTRAP.fa") 
names(sequences) = gsub(">", "", sapply(sequences, "[[", "desc")) 
pairs = read.csv("Allpairs.pairs", sep="\t", header=F, stringsAsFactors=F) 
strap = rank.factors.for.pairs(jaspar, sequences, pairs) 
filtered = strap[which(strap[,"min.p"] < 0.01 & abs(strap[,"log.ratio"]) > log(1.2)),] 
save.image(file="strap_try1.RData") 
write.table(filtered, file="All_strap_results_for_pairs.txt", sep="\t", quote=F, row.names=F) 
 
q() 
 
cut -f 3 All_strap_results_for_pairs.txt | sed 's|, |\n|g' | sort | uniq -c | sort -rg > 
All_strap_results_for_pairs_u.txt 
 

- Manually search for motifs on Jaspar database ("All_strap_results_for_pairs_u_hs.txt") 
- Create .txt file with list of Jaspar IDs for motifs only in humans 

 
grep -f All_strap_results_for_pairs_u_hs.txt All_strap_results_for_pairs.txt > 
All_strap_results_for_pairs_onlyhs.txt 
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* Input SNPs were obtained from HuGE Navigator, the NHGRI Catalog, and subsequent LD analysis, 

and saved as “AllSNPs.txt” prior to analysis. The “control” traits were each analysed in the same way, 

with input files “Control1SNPs.txt” for response to antidepressants, “Control2SNPs.txt” for response to 

hepatitis C treatment, and “Control3SNPs.txt” for eye colour. Italicised text represents commands of 

tRap script. Editable fields are indicated in bold. Instructions are indicated in grey.   

Script S2: Perl script “weave_fasta_for_sTRAP.pl” written by Dr N. Ishaque (German Cancer 

Research Center, Heidelberg, Germany). 

# use strict; 
 
my $usage = "This program weaves fasta files for sTRAP\n\n\t$0 [dbSNP bed file, 4th col = ref, 5th 
col = alt] [PRE FASTA] [POST FASTA]\n\n"; 
my $nex  = shift or die "Please provide SNP CSV file\n\n$usage"; 
my $pre  = shift or die "Please provide PRE FASTA file\n\n$usage"; 
my $post = shift or die "Please provide POST FASTA file\n\n$usage"; 
open (NEX_F, "$nex") or die "Cannot open NEXUS FILE '$nex'\n\n$usage"; 
open (PRE_F, "$pre") or die "Cannot open PRE FASTA FILE '$nex'\n\n$usage"; 
open (POST_F, "$post") or die "Cannot open POST FASTA FILE '$nex'\n\n$usage"; 
 
my %iupac=("B" => ["C","G","T"], "D" => ["A","G","T"], "K" => ["G","T"], "M" => ["A","C"], "R" => 
["A","G"], "S" => ["C","G"], "V" => ["A","C","G"], "W" => ["A","T"], "Y" => ["C","T"]); 
 
while (<NEX_F>){ if (/^(.*?)\t(.*?)\t(.*?)\t(.*?)\t(.*?)\t(.*?)$/){my ($snp, $ref, $alt) = ($4,$5,$6); 
my $pre_f_line= <PRE_F>; 
$pre_f_line= <PRE_F>;    
my $post_f_line= <POST_F>; 
$post_f_line= <POST_F>; 
chomp ($pre_f_line); 
chomp ($post_f_line); 
if ($alt =~ m/A/ || $alt =~ m/C/ ||$alt =~ m/G/ ||$alt =~ m/T/ )  
{ 
print ">$snp"."_WT\n$pre_f_line$ref$post_f_line\n"; 
print ">$snp"."_MUT\n$pre_f_line$alt$post_f_line\n"; 
    } 
    else { 
      #my @bases=$iupac{$alt}; 
      foreach my $base (@{$iupac{$alt}}){ 
# warn "$snp $alt $base\n"; 
print ">$snp"."_$alt$base"."_WT\n$pre_f_line$ref$post_f_line\n"; 
print ">$snp"."_$alt$base"."_MUT\n$pre_f_line$base$post_f_line\n"; 
      } 
    } 
  } 
  else { 
    die "invalid line in SNP NEXUS file: $_\n"; 
  } 
} 
close (NEX_F); close (PRE_F); close (POST_F); 
 
 
 
  

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A                                                   BIOINFORMATICS SUPPLEMENTARY DATA 

112 

  

Box S1: FANTOM5 cell lines for brain and liver tissue, used to assess gene expression levels 

(http://fantom.gsc.riken.jp/5/sstar).  

 

 

  

 

 

Brain tissue 

- amygdala - adult, donor10196.CNhs13793.10167-103B5 
- amygdala, adult, donor10252.CNhs12311.10151-102I7 
- Astrocyte - cerebellum, donor1.CNhs11321.11500-119F6 
- Astrocyte - cerebellum, donor3.CNhs12117.11661-122F5 
- Astrocyte - cerebellum, donor2.CNhs12081.11580-120F5 
- Astrocyte - cerebral cortex, donor1.CNhs10864.11235-116D2 
- Astrocyte - cerebral cortex, donor2.CNhs11960.11316-117D2 
- Astrocyte - cerebral cortex, donor3.CNhs12005.11392-118C6 
- brain, fetal, pool1.CNhs11797.10085-102B4 
- brain, adult, pool1.CNhs10617.10012-101C3 
- brain, adult, donor1.CNhs11796.10084-102B3 
- cerebellum - adult, donor10196.CNhs13799.10173-103C2 
- cerebellum, adult, donor10252.CNhs12323.10166-103B4 
- cerebellum, adult, pool1.CNhs11795.10083-102B2 
- cerebral meninges, adult.CNhs12840.10188-103D8 
- corpus callosum, adult, pool1.CNhs10649.10042-101F6 
- diencephalon, adult.CNhs12610.10193-103E4 
- dura mater, adult, donor1.CNhs10648.10041-101F5 
- frontal lobe, adult, pool1.CNhs10647.10040-101F4 
- globus pallidus - adult, donor10196.CNhs13801.10175-103C4 
- globus pallidus, adult, donor10252.CNhs12319.10161-103A8 
- hippocampus - adult, donor10196.CNhs13795.10169-103B7 
- hippocampus, adult, donor10252.CNhs12312.10153-102I9 
- locus coeruleus, adult, donor10252.CNhs12322.10165-103B3 
- locus coeruleus - adult, donor10196.CNhs13808.10182-103D2 
- medial frontal gyrus - adult, donor10196.CNhs13796.10170-103B8 
- medial temporal gyrus - adult, donor10196.CNhs13809.10183-103D3 
- medial temporal gyrus, adult, donor10252.CNhs12310.10150-102I6 
- medulla oblongata, adult, donor10252.CNhs12315.10155-103A2 
- medulla oblongata, adult, pool1.CNhs10645.10038-101F2 
- medulla oblongata - adult, donor10196.CNhs13800.10174-103C3 
- Meningeal Cells, donor1.CNhs11320.11493-119E8 
- Meningeal Cells, donor2.CNhs12080.11573-120E7 
- Meningeal Cells, donor3.CNhs12731.11654-122E7 
- middle temporal gyrus, donor10252.CNhs12316.10156-103A3 
- nucleus accumbens, adult, pool1.CNhs10644.10037-101F1 
- occipital cortex, adult, donor10252.CNhs12320.10163-103B1 
- occipital cortex - adult, donor10196.CNhs13798.10172-103C1 
- occipital lobe, adult, donor1.CNhs11787.10076-102A4 
- occipital lobe, fetal, donor1.CNhs11784.10073-102A1 
- paracentral gyrus, adult, pool1.CNhs10642.10035-101E8 
- parietal lobe, adult, pool1.CNhs10641.10034-101E7 
- parietal lobe, adult, donor10252.CNhs12317.10157-103A4 
- parietal lobe, fetal, donor1.CNhs11782.10072-101I9 
- parietal lobe - adult, donor10196.CNhs13797.10171-103B9 
- pineal gland - adult, donor10196.CNhs13804.10179-103C8 
- pineal gland, adult, donor10252.CNhs12228.10160-103A7 
- pituitary gland - adult, donor10196.CNhs13805.10180-103C9 
- pons, adult, pool1.CNhs10640.10033-101E6 
- postcentral gyrus, adult, pool1.CNhs10638.10032-101E5 
- putamen, adult, donor10196.CNhs12324.10176-103C5 
- Smooth Muscle Cells - Brain Vascular, donor1.CNhs10863.11234-116D1 
- Smooth Muscle Cells - Brain Vascular, donor2.CNhs11900.11315-117D1 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A                                                   BIOINFORMATICS SUPPLEMENTARY DATA 

113 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Brain tissue (continued)  

- Smooth Muscle Cells - Brain Vascular, donor3.CNhs12004.11391-118C5 
- substantia nigra, adult, donor10252.CNhs12318.10158-103A5 
- temporal lobe, adult, pool1.CNhs10637.10031-101E4 
- temporal lobe, fetal, donor1, tech_rep2.CNhs12996.10063-101H9 
- temporal lobe, fetal, donor1, tech_rep1.CNhs11772.10063-101H9 
- thalamus, adult, donor10252.CNhs12314.10154-103A1 
- thalamus - adult, donor10196.CNhs13794.10168-103B6 

 
Liver tissue 

- Hepatic Sinusoidal Endothelial Cells, donor1.CNhs12075.11521-119H9 
- Hepatic Sinusoidal Endothelial Cells, donor2.CNhs12092.11601-120H8 
- Hepatic Stellate Cells (lipocyte), donor1.CNhs11335.11524-119I3 
- Hepatic Stellate Cells (lipocyte), donor2.CNhs12093.11604-120I2 
- Hepatocyte, donor1.CNhs12340.11523-119I2 
- Hepatocyte, donor2.CNhs12349.11603-120I1 
- Hepatocyte, donor3.CNhs12626.11684-122I1 
- liver, fetal, pool1.CNhs11798.10086-102B5 
- liver, adult, pool1.CNhs10624.10018-101C9 
- Mesenchymal stem cells - hepatic, donor0.CNhs10845.11218-116B3 
- Mesenchymal Stem Cells - hepatic, donor2.CNhs12730.11618-122A7 
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Table S1: Unique tRap motifs and number of associated SNPs for antipsychotic response and three 

control traits.  

Antipsychotic response 
Control 1:                    

Antidepressant 
response 

Control 2:                          
Hepatitis C 
response 

Control 3:                                  
Eye colour 

Jaspar ID SNPs Motif name Jaspar ID SNPs Jaspar ID SNPs Jaspar ID SNPs 

MA0156.1 2 FEV MA0197.1 6 MA0393.1 1 MA0268.1 2 

MA0107.1 2 RELA MA0151.1 6 MA0389.1 1 MA0446.1 1 

MA0101.1 2 REL MA0398.1 5 MA0321.1 1 MA0441.1 1 

MA0080.2 2 SPI1 MA0387.1 5 MA0302.1 1 MA0434.1 1 

MA0059.1 2 MYC::MAX MA0346.1 5 
  

MA0431.1 1 

MA0259.1 1 HIF1A::ARNT MA0231.1 5 
  

MA0429.1 1 

MA0160.1 1 NR4A2 MA0038.1 5 
  

MA0428.1 1 

MA0112.2 1 ESR1 MA0243.1 4 
  

MA0425.1 1 

MA0091.1 1 TAL1::TCF3 MA0200.1 4 
  

MA0424.1 1 

MA0076.1 1 ELK4 MA0125.1 4 
  

MA0381.1 1 

MA0037.1 1 GATA3 MA0102.2 4 
  

MA0380.1 1 

MA0031.1 1 FOXD1 MA0032.1 4 
  

MA0367.1 1 

   
MA0457.1 3 

  
MA0361.1 1 

   
MA0455.1 3 

  
MA0358.1 1 

   
MA0413.1 3 

  
MA0353.1 1 

   
MA0407.1 3 

  
MA0339.1 1 

   
MA0284.1 3 

  
MA0338.1 1 

   
MA0257.1 3 

  
MA0337.1 1 

   
MA0254.1 3 

  
MA0326.1 1 

   
MA0251.1 3 

  
MA0292.1 1 

   
MA0248.1 3 

  
MA0285.1 1 

   
MA0241.1 3 

  
MA0280.1 1 

   
MA0237.1 3 

  
MA0277.1 1 

   
MA0236.1 3 

  
MA0270.1 1 

   
MA0235.1 3 

  
MA0262.1 1 

   
MA0230.1 3 

  
MA0233.1 1 

   
MA0229.1 3 

  
MA0090.1 1 

   
MA0225.1 3 

  
MA0078.1 1 

   
MA0224.1 3 

  
MA0041.1 1 

   
MA0223.1 3 

    

   
MA0220.1 3 

    

   
MA0206.1 3 

    

   
MA0202.1 3 

    

   
MA0198.1 3 

    

   
MA0195.1 3 

    

   
MA0187.1 3 

    

   
MA0184.1 3 

    

   
MA0183.1 3 

    

   
MA0181.1 3 

    

   
MA0179.1 3 

    

   
MA0178.1 3 

    

   
MA0177.1 3 

    

   
MA0175.1 3 

    

   
MA0172.1 3 

    

   
MA0167.1 3 

    

   
MA0132.1 3 

    

   
83 more 
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Table S2: 118 affected genes uploaded to DAVID and GeneMANIA for further analyses.  

Gene symbol Gene name 

ACTG1 actin, gamma 1 

ADH7 alcohol dehydrogenase 7 (class IV), mu/sigma polypeptide 

AK7 adenylate kinase 7 

ALPK2 alpha-kinase 2 

ANKS1B ankyrin repeat and sterile alpha motif domain containing 1B 

APOA1BP apolipoprotein A-I binding protein 

ARFGEF2 ADP-ribosylation factor guanine nucleotide-exchange factor 2  

ARRDC3 arrestin domain containing 3 

ASTN2 astrotactin 2 

ATP1A2 ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide 

AVL9 AVL9 homolog (S. cerevisiase) 

BANK1 B-cell scaffold protein with ankyrin repeats 1 

BCL7B B-cell CLL/lymphoma 7B 

C18orf21 chromosome 18 open reading frame 21 

C19Orf12 chromosome 19 open reading frame 12 

C1orf194 chromosome 1 open reading frame 194 

C2orf34 chromosome 2 open reading frame 34 

C6orf25 chromosome 6 open reading frame 25 

C8orf56 chromosome 8 open reading frame 56 

C9orf37 chromosome 9 open reading frame 37 

CACNB1 calcium channel, voltage-dependent, beta 1 subunit 

CASQ1 calsequestrin 1 (fast-twitch, skeletal muscle) 

CCBE1 collagen and calcium binding EGF domains 1 

CCDC114 coiled-coil domain containing 114 

CCNG2 cyclin G2 

CCT5 chaperonin containing TCP1, subunit 5 (epsilon) 

CD74 CD74 molecule, major histocompatibility complex, class II invariant chain 

CISD2 CDGSH iron sulfur domain 2 

CKAP4 cytoskeleton-associated protein 4 

CKS2 CDC28 protein kinase regulatory subunit 2 

CLMN calmin (calponin-like, transmembrane) 

CNTNAP5 contactin associated protein-like 5 

COL9A2 collagen, type IX, alpha 2 

CRLS1 cardiolipin synthase 1 

CUL5 cullin 5 

DALRD3 DALR anticodon binding domain containing 3 

DCAF8 WD repeat domain 42A 

DDX11 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 

DICER1 dicer 1, ribonuclease type III 

DRD2 dopamine receptor D2 

EFHB EF-hand domain family, member B 

EFNA4 ephrin-A4 

EFR3B EFR3 homolog B 
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Gene symbol Gene name 

EHF ets homologous factor 

EIF4E2 eukaryotic translation initiation factor 4E family member 2 

EMP3 epithelial membrane protein 3 

ENPP6 ectonucleotide pyrophosphatase/phosphodiesterase 6 

FAM173B family with sequence similarity 173, member B 

FAM55B family with sequence similarity 55, member B 

FHOD3 formin homology 2 domain containing 3 

GABRA5 gamma-aminobutyric acid (GABA) A receptor, alpha 5 

GLS2 glutaminase 2 (liver, mitochondrial) 

GPR137B G protein-coupled receptor 137B 

GPR98 G protein-coupled receptor 98 

HBD hemoglobin, delta 

HEATR4 HEAT repeat containing 4 

HSD11B1L hydroxysteroid (11-beta) dehydrogenase 1-like 

ING2 inhibitor of growth family, member 2 

KIAA1549 KIAA1549 

LAMP3 lysosomal-associated membrane protein 3 

LAYN layilin 

LRRN4CL LRRN4 C-terminal like 

LSM5 LSM5 homolog, U6 small nuclear RNA associated 

MANBA mannosidase, beta A, lysosomal 

MAPKSP1 MAPK scaffold protein 1 

MEIS2 Meis homeobox 2 

MIR582 microRNA 582 

MYOG myogenin (myogenic factor 4) 

NDUFS2 NADH dehydrogenase (ubiquinone) Fe-S protein 2 

NFKB1 nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 

NHEDC1 similar to Na+/H+ exchanger domain containing 1 

NHEDC2 Na+/H+ exchanger domain containing 2 

OSBPL10 oxysterol binding protein-like 10 

PANK3 pantothenate kinase 3 

PCP4L1 Purkinje cell protein 4 like 1 

PDE4D cAMP-specific phosphodiesterase 4D 

PEG10 paternally expressed 10 

PIGK phosphatidylinositol glycan anchor biosynthesis, class K 

PKIG protein kinase (cAMP-dependent, catalytic) inhibitor gamma 

PKN2 protein kinase N2 

PLEKHA4 pleckstrin homology domain containing, family A, member 4 

PPA2 pyrophosphatase (inorganic) 2 

PPARD peroxisome proliferator-activated receptor delta 

PPP1R9B protein phosphatase 1, regulatory (inhibitor) subunit 9B 

PSG6 pregnancy specific beta-1-glycoprotein 6 

PTS 6-pyruvoyltetrahydropterin synthase 

PXDN peroxidasin homolog 

RAB25 RAB25, member RAS oncogene family 
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Gene symbol Gene name 

RB1 retinoblastoma 1 

RBM7 RNA binding motif protein 7 

RNF144A ring finger protein 144A 

SFRS5 splicing factor, arginine/serine-rich 5 

SFTPC surfactant protein C 

SH2D3C SH2 domain containing 3C 

SHC1 SHC (Src homology 2 domain containing) transforming protein 1 

SLAMF1 signaling lymphocytic activation molecule family member 1 

SLC22A23 solute carrier family 22, member 23 

SLC26A9 solute carrier family 26, member 9 

SLC39A8 solute carrier family 39 (zinc transporter), member 8 

SMTNL2 smoothelin-like 2 

SNORD116-27 small nucleolar RNA, C/D box 116-27 

SOCS3 suppressor of cytokine signaling 3 

SPOPL speckle-type POZ protein-like 

TC2N tandem C2 domains, nuclear 

THRA thyroid hormone receptor, alpha 

TJP1 tight junction protein 1 (zona occludens 1) 

TMED2 transmembrane emp24 domain trafficking protein 2 

TOMM40L translocase of outer mitochondrial membrane 40 homolog 

VILL villin-like 

WDR27 WD repeat domain 27 

WDR74 WD repeat domain 74 

ZBTB7B zinc finger and BTB domain containing 7B 

ZFAND3 zinc finger, AN1-type domain 3 

ZFYVE26 zinc finger, FYVE domain containing 26 

ZNF202 zinc finger protein 202 

ZNF276 zinc finger protein 276 

ZNF74 zinc finger protein 74 

ZNF860 zinc finger protein 860 
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APPENDIX B: Association analyses supplementary data 

Table S3: SNPs genotyped by TaqMan® OpenArray® in the FES cohort. 

SNP 
Alleles 

Assay ID 
Majora Minora 

rs10458561 G A C___3184113_10 

rs6688363 C T C___9406882_10 

rs10218843 A G C___2823177_10 

rs11265461 T C C___2823180_10 

rs6427540 C T C__29332596_10 

rs7520258 T C C__27150348_10 

rs6741819 C T C__29310709_10 

rs17727261 C T C__25927585_20 

rs62161711 G A AHWSJXV 

rs10170310 A G C__30363993_10 

rs747559 G A C____804250_10 

rs3774933 T C C__27479814_10 

rs1599961 A G C___8935034_10 

rs230534 C T C___3066477_10 

rs230532 A T C___3066475_10 

rs230529 T C C____804246_10 

rs230526 A G C____804243_10 

rs118882 C T C_176056349_10 

rs230520 A G C___3066470_10 

rs230505 G T C___3066462_10 

rs230504 C T C____804227_10 

rs230492 G A C___3066459_10 

rs230493 T A C___3066458_10 

rs230495 G A C___3066455_10 

rs230539 A G C____804223_10 

rs3774959 G A C__26458339_10 

rs4648055 G A C___3066440_10 

rs17440909 C T C__34264764_10 

rs17742120 A G C__34264798_10 

rs1352318 G A C___8339393_10 

rs10492354 G A C__30433133_20 

a According to frequencies within the FES cohort. 
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Figure S1: Two haplotype blocks on chromosome four, designated by Haploview version 4.2 (D’ > 0.7 

- > 0.98) (Barrett et al., 2005). Dark squares indicate significant LD between SNPs; numbers within 

squares represent D’ values as percentages. 
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S4d: Chromosome 4 block 2 

Tables S4a – e: Haplotypes in the FES cohort from Haploview with frequencies ≥ 0.01.  
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Table S5: Significant associations (P < 0.05) with treatment outcomes in the FES cohort. Highlighted 

associations survived Bonferroni correction. 

Response measurement Variant/ haplotype Association P-value 

PANSS Positive rs230504 Allelic 0.0344 

PANSS Positive rs230493 Allelic 0.0249 

PANSS Positive rs230495 Allelic 0.0399 

PANSS Positive rs3774959 Genotypic 0.0207 

PANSS Positive 
 

Allelic 0.0112 

PANSS Positive C.A.T.A.C.A.G.T.G.A.A.A.A.G Haplotypic 0.0002 

PANSS Positive C.T.T.A.T.A.T.C.G.T.G.A.G.G Haplotypic 0.0337 

PANSS Positive rs10492354 Genotypic 0.0417 

PANSS Positive 
 

Allelic 0.0141 

PANSS Negative rs6427540 Genotypic 0.0251 

PANSS Negative 
 

Allelic 0.0380 

PANSS Negative G.C.T Haplotypic 0.0380 

PANSS Negative G.C.C Haplotypic 0.0046 

PANSS Negative rs6741819 Allelic 0.0361 

PANSS Negative T.A Haplotypic 0.0469 

PANSS Negative rs230532 Genotypic 0.0130 

PANSS Negative rs230526 Genotypic 0.0245 

PANSS Negative 
 

Allelic 0.0232 

PANSS Negative rs118882 Genotypic 0.0192 

PANSS Negative rs230505 Genotypic 0.0101 

PANSS Negative 
 

Allelic 0.0025 

PANSS Negative rs230504 Genotypic 0.0001 

PANSS Negative 
 

Allelic 0.0121 

PANSS Negative rs230492 Genotypic 0.0246 

PANSS Negative rs230493 Genotypic 0.0000 

PANSS Negative 
 

Allelic 0.0069 

PANSS Negative rs230495 Genotypic 0.0016 

PANSS Negative 
 

Allelic 0.0007 

PANSS Negative rs3774959 Genotypic 0.0000 

PANSS Negative C.A.T.A.C.A.G.T.G.A.A.A.A.G Haplotypic 0.0479 

PANSS Negative C.T.T.A.T.A.G.C.G.T.A.A.G.G Haplotypic 0.0015 

PANSS Negative rs17440909 Genotypic 0.0068 

PANSS Negative 
 

Allelic 0.0084 

PANSS Negative rs17742120 Genotypic 0.0078 

PANSS Negative 
 

Allelic 0.0302 

PANSS Negative C.A Haplotypic 0.0246 

PANSS Negative T.G Haplotypic 0.0246 

PANSS General rs230532 Genotypic 0.0105 

PANSS General rs118882 Genotypic 0.0461 

PANSS General rs230504 Genotypic 0.0185 

PANSS General 
 

Allelic 0.0456 

PANSS General rs230493 Genotypic 0.0083 

PANSS General 
 

Allelic 0.0388 
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Response measurement Variant/ haplotype Association P-value 

PANSS General rs230495 Allelic 0.0312 

PANSS General rs3774959 Genotypic 0.0004 

PANSS General 
 

Allelic 0.0375 

PANSS General rs10492354 Genotypic 0.0458 

PANSS General 
 

Allelic 0.0164 

PANSS Total G.C.C Haplotypic 0.0416 

PANSS Total rs230532 Genotypic 0.0083 

PANSS Total rs118882 Genotypic 0.0288 

PANSS Total rs230505 Allelic 0.0168 

PANSS Total rs230504 Genotypic 0.0028 

PANSS Total 
 

Allelic 0.0157 

PANSS Total rs230493 Genotypic 0.0007 

PANSS Total 
 

Allelic 0.0110 

PANSS Total rs230495 Genotypic 0.0138 

PANSS Total 
 

Allelic 0.0047 

PANSS Total rs3774959 Genotypic 0.0001 

PANSS Total 
 

Allelic 0.0133 

PANSS Total C.A.T.A.C.A.G.T.G.A.A.A.A.G Haplotypic 0.0123 

PANSS Total rs10492354 Allelic 0.0361 

Treatment-refractoriness rs7520258 Genotypic 0.0380 

Treatment-refractoriness rs1352318 Allelic 0.0338 

Remission rs1352318 Genotypic 0.0083 

Early treatment response C.A.T.A.C.A.G.C.G.T.A.A.A.G Haplotypic 0.0243 

Weight rs230532 Genotypic 0.0425 

Weight rs118882 Genotypic 0.0210 

BMI rs118882 Genotypic 0.0304 

HDL rs17727261 Allelic 0.0445 

LDL rs230534 Genotypic 0.0123 

LDL rs230532 Genotypic 0.0222 

LDL rs118882 Genotypic 0.0082 

LDL rs230520 Genotypic 0.0150 

LDL rs230504 Genotypic 0.0207 

LDL 
 

Allelic 0.0391 

LDL rs230492 Genotypic 0.0116 

LDL 
 

Allelic 0.0361 

LDL rs230539 Genotypic 0.0148 

Total cholesterol rs230534 Genotypic 0.0128 

Total cholesterol rs230532 Genotypic 0.0413 

Total cholesterol rs118882 Genotypic 0.0255 

Total cholesterol rs230520 Genotypic 0.0124 

Total cholesterol rs230492 Genotypic 0.0203 

Total cholesterol rs230539 Genotypic 0.0096 

Total cholesterol rs4648055 Genotypic 0.0459 

Triglycerides rs10218843 Genotypic 0.0398 

Triglycerides 
 

Allelic 0.0360 
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Response measurement Variant/ haplotype Association P-value 

Triglycerides A.T.C Haplotypic 0.0492 

Triglycerides rs230532 Allelic 0.0237 

Triglycerides rs118882 Allelic 0.0209 

Triglycerides rs230504 Allelic 0.0288 

Triglycerides rs230493 Allelic 0.0271 

Triglycerides rs230539 Allelic 0.0412 

Triglycerides rs4648055 Allelic 0.0442 

Triglycerides C.A.T.A.C.A.G.C.G.T.A.A.A.G Haplotypic 0.0237 

Triglycerides rs10492354 Allelic 0.0389 
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APPENDIX C: Conference outputs 

Poster presentations 

Ovenden, E.S., Drögemöller, B.I., Emsley, R.A., Warnich, L. 2015. Investigating the 

functional significance of genome-wide variants associated with treatment response in 

schizophrenia. The XXIIIrd World Congress of Psychiatric Genetics (WCPG). 16-20 October. 

Toronto, Canada. 

Awarded Early Career Investigator Program (ECIP) Travel Award. 

Ovenden, E.S., Drögemöller, B.I., Roetz, N.J., Emsley, R.A., Warnich, L. 2013. Investigating 

the functional significance of GWAS associations with antipsychotic treatment response in 

schizophrenia. The 15th Biennial Conference of the Southern African Society for Human 

Genetics (SASHG). 6-9 October. Johannesburg, South Africa. 

Oral presentations 

Ovenden, E.S., Drögemöller, B.I., Emsley, R.A., Warnich, L. 2015. Investigating the 

functional significance of genome-wide variants associated with treatment response in 

schizophrenia. Pharmacogenetics in Psychiatry (PIP). 15 October. Toronto, Canada.  

Awarded Young Investigator Travel Award. 

Ovenden, E.S., Drögemöller, B.I., Emsley, R.A., Warnich, L. 2015. Investigating the 

functional significance of genome-wide variants associated with treatment response in 

schizophrenia. The 16th Biennial Congress of the Southern African Society for Human 

Genetics (SASHG). 16-19 August. Pretoria, South Africa.  

Ovenden, E.S., Drögemöller, B.I., Emsley, R.A., Warnich, L. 2014. Investigating the 

functional significance of genome-wide variants associated with antipsychotic treatment 

response. Joint South African Society for Bioinformatics and South African Genetics Society 

(SASBi-SAGS) Congress 2014. 23-26 September. Pretoria, South Africa.  

Awarded best SASBi MSc oral presentation.  

Ovenden, E.S., Drögemöller, B.I., Ishaque, N., Emsley, R.A., Warnich, L. 2014. Investigating 

the functional significance of genome-wide variants associated with antipsychotic treatment 

response. The 17th World Congress of Basic and Clinical Pharmacology (WCP). 13-18 July. 

Cape Town, South Africa. 
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