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Abstract 
 Abstract 

The emission spectrum measured in the middle infrared (IR) band from the 

plume of a rocket can be used to identify rockets and track inbound missiles.  It 

is useful to test the stealth properties of the IR fingerprint of a rocket during its 

design phase without needing to spend excessive amounts of money on field 

trials.  The modelled predictions of the IR spectra from selected rocket motor 

design parameters therefore bear significant benefits in reducing the 

development costs. 

 

In a recent doctorate study it was found that a fundamental approach including 

quantum-mechanical and computational fluid dynamics (CFD) models was not 

feasible. This is first of all due to the complexity of the systems and secondly 

due to the inadequate calculation speeds of even the most sophisticated 

modern computers.  A solution was subsequently investigated by use of the 

‘black-box’ model of a multi-layer perceptron feed-forward neural network with a 

single hidden layer consisting of 146 nodes.  The input layer of the neural 

network consists of 18 rocket motor design parameters and the output layer 

consists of 146 IR absorbance variables in the range from 2 to 5 µm 

wavelengths.  The results appeared promising for future investigations.   

 

The available data consist of only 18 different types of rocket motors due to the 

high costs of generating the data.  The 18 rocket motor types fall into two 

different design classes, the double base (DB) and composite (C) propellant 

types.  The sparseness of the data is a constraint in building adequate models 

of such a multivariate nature.  The IR irradiance spectra data set consists of 

numerous repeat measurements made per rocket motor type.  The repeat 

measurements form the pure error component of the data, which adds stability 

to training and provides lack-of-fit ANOVA capabilities. 
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The emphasis in this dissertation is on comparing the feed-forward neural 

network model to the linear and neural network partial least squares (PLS) 

modelling techniques.  The objective is to find a possibly more intuitive and 

more accurate model that effectively generalises the input-output relationships 

of the data.  PLS models are known to be robust due to the exclusion of 

redundant information from projections made to primary latent variables, 

similarly to principal components (PCA) regression.  The neural network PLS 

techniques include feed-forward sigmoidal neural network PLS (NNPLS) and 

radial-basis functions PLS (RBFPLS).  The NNPLS and RBFPLS algorithms 

make use of neural networks to find non-linear functional relationships for the 

inner PLS models of the NIPALS algorithm.  Error-based neural network PLS 

(EBNNPLS) and radial-basis function network PLS (EBRBFPLS) are also 

briefly investigated, as these techniques make use of non-linear projections to 

latent variables. 

 

A modification to the orthogonal least squares (OLS) training algorithm of 

radial-basis functions is developed and applied. The adaptive spread OLS 

algorithm (ASOLS) allows for the iterative adaptation of the Gaussian spread 

parameters found in the radial-basis transfer functions. 

 

Over-fitting from over-parameterisation is controlled by making use of leave-

one-out cross-validation and the calculation of pseudo-degrees of freedom.  

After cross-validation the overall model is built by training on the entire data set. 

This is done by making use of the optimum parameterisation obtained from 

cross-validation.  Cross-validation also gives an indication of how well a model 

can predict data unseen during training. 

 

The reverse problem of modelling the rocket propellant chemical compositions 

and the rocket physical design parameters from the IR irradiance spectra is 

also investigated.  This problem bears familiarity to the field of spectral 

multivariate calibration.  The applications in this field readily make use of PLS 

and neural network modelling.  The reverse problem is investigated with the 

same modelling techniques applied to the forward modelling problem.  
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The forward modelling results (IR spectrum predictions) show that the feed-

forward neural network complexity can be reduced to two hidden nodes in a 

single hidden layer.  The NNPLS model with eleven latent dimensions 

outperforms all the other models with a maximum average R2-value of 0.75 

across all output variables for unseen data from cross-validation.  The 

explained variance for the output data of the overall model is 94.34%.  The 

corresponding explained variance of the input data is 99.8%.  The RBFPLS 

models built using the ASOLS training algorithm for the training of the radial-

basis function inner models outperforms those using K-means and OLS training 

algorithms.  

 

The lack-of-fit ANOVA tests show that there is reason to doubt the adequacy of 

the NNPLS model.  The modelling results however show promise for future 

development on larger, more representative data sets. 

 

The reverse modelling results show that the feed-forward neural network 

model, NNPLS and RBFPLS models produce similar results superior to the 

linear PLS model.  The RBFPLS model with ASOLS inner model training and 5 

latent dimensions stands out slightly as the best model.  It is found that it is 

feasible to separately find the optimum model complexity (number of latent 

dimensions) for each output variable.  The average R2-value across all output 

variables for unseen data is 0.43.  The average R2-value for the overall model 

is 0.68.  There are output variables with R2-values of over 0.8. 

 

The forward and reverse modelling results further show that dimensional 

reduction in the case of PLS does produce the best models.  It is found that the 

input-output relationships are not highly non-linear.  The non-linearities are 

largely responsible for the compensation of both the DB- and C-class rocket 

motor designs predictions within the overall model predictions.  For this reason 

it is suggested that future models can be developed by making use of a 

simpler, more linear model for each rocket class after a class identification step.  

This approach however requires additional data that must be acquired. 
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Opsomming 
 Opsomming 

Die emissiespektra van die uitlaatpluime van vuurpyle in die middel-infrarooi 

(IR) band kan gebruik word om die vuurpyle te herken en om inkomende 

vuurpyle op te spoor.  Dit is nuttig om die uitstralingseienskappe van ‘n vuurpyl 

se IR afdruk te toets, sonder om groot bedrae geld op veldtoetse te spandeer.  

Die gemodelleerde IR spektrale voorspellings vir ‘n bepaalde stel vuurpylmotor 

ontwerpsparameters kan dus grootliks bydra om motorontwikkelingskostes te 

bemoei. 

 

In ‘n onlangse doktorale studie is gevind dat ‘n fundamentele benadering van 

kwantum-meganiese en vloeidinamika-modelle nie lewensvatbaar is nie.  Dit is 

hoofsaaklik as gevolg van die onvoldoende vermoë van selfs die mees 

gesofistikeerde moderne rekenaars.  ‘n Moontlike oplossing tot die probleem is 

ondersoek deur gebruik te maak van ‘n multilaag perseptron voorwaartse 

neurale netwerk met 146 nodes in ‘n enkele versteekte laag.  Die laag van 

invoer veranderlikes bestaan uit agtien vuurpylmotor ontwerpsparameters en 

die uitvoerlaag bestaan uit 146 IR-absorbansie veranderlikes in die reeks 

golflengtes vanaf 2 tot 5 µm.  Dit het voorgekom dat die resultate belowend lyk 

vir toekomstige ondersoeke. 

 

Weens die hoë kostes om die data te genereer bestaan die beskikbare data uit 

slegs agtien verskillende tipes vuurpylmotors.  Die agtien vuurpyl tipes val 

verder binne twee ontwerpsklasse, naamlik die dubbelbasis (DB) en 

saamgestelde (C) dryfmiddeltipes.  Die yl data bemoeilik die bou van 

doeltreffende multiveranderlike modelle.  Die datastel van IR uitstralingspektra 

bestaan uit herhaalde metings per vuurpyltipe.  Die herhaalde metings vorm die 

suiwer fout komponent van die data.  Dit verskaf stabilitieit tot die opleiding op 

die data en verder die vermoë om ‘n analise van variansie (ANOVA) op die 

data uit te voer. 
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In hierdie tesis lê die klem op die vergelyking tussen die voorwaartse neurale 

netwerk en die lineêre en neurale netwerk parsiële kleinste kwadrate (PLS) 

modelleringstegnieke.  Die doel is om ‘n moontlik meer insiggewende en 

akkurate model te vind wat effektief die in- en uitvoer verhoudings kan 

veralgemeen.  Dit is bekend dat PLS modelle meer robuus kan wees weens die 

weglating van oortollige inligting deur projeksies op hoof latente veranderlikes.  

Dit is analoog aan hoofkomponente (PCA) regressie.  Die neurale netwerk 

PLS-tegnieke sluit in voorwaartse sigmoïdale neurale netwerk PLS (NNPLS) en 

radiale-basis funksies PLS (RBFPLS).  Die NNPLS en RBFPLS algoritmes 

maak gebruik van die neurale netwerke om nie-lineêre funksionele verbande te 

kry vir die binne PLS-modelle van die nie-lineêre iteratiewe parsiële kleinste 

kwadrate (NIPALS) algoritme.  Die fout-gebaseerde neurale netwerk PLS 

(EBNNPLS) en radiale-basis funksies PLS (EBRBFPLS) is ook weens hulle 

nie-lineêre projeksies na latente veranderlikes kortiliks ondersoek. 

 

‘n Aanpassing tot die ortogonale kleinste kwadrate (OLS) opleidingsalgoritme 

vir radiale-basis funksies is ontwikkel en toegepas.  Die aangepaste algoritme 

(ASOLS) behels die iteratiewe aanpassing van die verspreidingsparameters 

binne die Gauss-funksies van die radiale-basis transformasie funksies. 

 

Die oormatige parameterisering van ‘n model word beheer deur kruisvalidering 

met enkele weglatings en die berekening van pseudo-vryheidsgrade.  Na 

kruisvalidering word die algehele model gebou deur opleiding op die volledige 

datastel.  Dit word gedoen deur van die optimale parameterisering gebruik te 

maak wat deur kruisvalidering bepaal is.  Kruisvalidering gee ook ‘n goeie 

aanduiding van hoe goed ‘n model ongesiende data kan voorspel. 

 

Die modellering van die vuurpyle se chemiese en fisiese ontwerpsparameters 

(omgekeerde probleem) is ook ondersoek.  Hierdie probleem is verwant aan 

die veld van spektrale multiveranderlike kalibrasie.  Die toepassings in die veld 

maak gebruik van PLS en neurale netwerk modelle.  Die omgekeerde probleem 

word dus ondersoek met dieselfde modelleringstegnieke wat gebruik is vir die 

voorwaartse probleem. 
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Die voorwaartse modelleringsresultate (IR voorspellings) toon dat die 

kompleksiteit van die voorwaartse neurale netwerk tot twee versteekte nodes in 

‘n enkele versteekte laag gereduseer kan word.  Die NNPLS model met elf 

latente dimensies vaar die beste van alle modelle, met ‘n maksimum R2-waarde 

van 0.75 oor alle uitvoer veranderlikes vir die ongesiende data (kruisvalidering).  

Die verklaarde variansie vir die uitvoer data vanaf die algehele model is 

94.34%.  Die verklaarde variansie van die ooreenstemmende invoer data is 

99.8%.  Die RBFPLS modelle wat gebou is deur van die ASOLS algoritme 

gebruik te maak om die PLS binne modelle op te lei, vaar beter in vergelyking 

met die K-gemiddeldes en OLS opleidingsalgoritmes. 

 

Die toetse wat ‘n ‘tekort-aan-passing’ ANOVA behels, toon dat daar rede is om 

die geskiktheid van die NNPLS model te wantrou.  Die modelleringsresultate 

lyk egter belowend vir die toekomstige ontwikkeling van modelle op groter, 

meer verteenwoordigde datastelle. 

 

Die omgekeerde modellering toon dat die voorwaartse neurale netwerk, 

NNPLS en RBFPLS modelle soortgelyke resultate produseer wat die lineêre 

PLS model s’n oortref.  Die RBFPLS model met ASOLS opleiding van die PLS 

binne modelle word beskou as die beste model. Dit is lewensvatbaar om die 

optimale modelkompleksiteite van elke uitvoerveranderlike individueel te 

bepaal. Die gemiddelde R2-waarde oor alle uitvoerveranderlikes vir ongesiende 

data is 0.43.  Die gemiddelde R2-waarde vir die algehele model is 0.68. Daar is 

van die uitvoer veranderlikes wat R2-waardes van 0.8 oortref. 

 

Die voor- en terugwaartse modelleringsresultate toon verder dat dimensionele 

reduksie in die geval van PLS die beste modelle lewer.  Daar is ook gevind dat 

die nie-lineêriteite grootliks vergoed vir die voorspellings van beide DB- en C-

tipe vuurpylmotors binne die algehele model.  Om die rede word voorgestel dat  

toekomstige modelle ontwikkel kan word deur gebruik te maak van 

eenvoudiger, meer lineêre modelle vir elke vuurpylklas nadat ‘n klas-

identifikasiestap uitgevoer is.  Die benadering benodig egter addisionele 

praktiese data wat verkry moet word.  
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Chapter 1  
 Introduction 

 

The prediction of the infrared (IR) emission spectrum from the exhaust gases 

making up a rocket plume finds numerous applications in the strategic 

identification of rockets.  These rocket fingerprints can be classified, thus 

allowing for the distinction between friend and foe.  The plume radiation 

intensity can be reduced for stealth purposes.  The lower the intensity the more 

difficult it becomes to track an incoming rocket.  It is useful to be able to identify 

if a rocket has the required stealth characteristics during its design phase 

already, thus cutting down on the high manufacturing and live testing costs 

involved.   

 Chapter 1 - Introduction 

The challenge of predicting the plume radiance is one of describing the 

thermodynamic combustion process within the rocket chamber, the plume 

structure and the rocket plume composition.  The factors guiding these 

processes are the physical rocket motor design parameters as well as the 

rocket motor fuel chemistry.  In addition, environmental conditions have a 

significant impact on the plume structure and the plume chemical composition.  

The speed at which the rocket is travelling influences the plume shape and 

surface temperature profile.  The atmospheric temperature, density and 

humidity will affect the plume chemistry and the optical scatter, which in turn 

affects the recording of the IR emission.  These inter-relationships are 

illustrated in Fig. 1-1. 

 

An attempt can now be made to model the processes in Fig. 1-1 by using the 

rocket motor design parameters and the rocket chemistry as inputs.   The 

environmental conditions must also be considered in order to obtain consistent 

results.  A robust model can therefore be used to develop rockets with the 

desired IR emission spectrum required for stealth purposes by iteratively 

changing the solid rocket design parameters and chemistry.  
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 Fig. 1-1 A flow diagram illustrating the various contributions to the rocket 

plume radiance (rocket fingerprint).  

 

In the work done by Roodt [1998] it is mentioned that the point of departure is 

to use computational fluid dynamics (CFD) to model the two- or three-

dimensional plume structure.  The unsteady Navier-Stokes equations must then 

be solved in order to incorporate the effects of highly turbulent, local conditions 

within the rocket plume.  Finite rate chemical reactions can be incorporated in 

order to obtain the chemistry of a limited number of plume species.  From these 

models a blackbody temperature profile can be generated on a two or three-

dimensional plume structure.  This enables the calculation of the emission 

spectrum in a pre-defined IR band from quantum-mechanical principles. 

 

At the time Roodt [1998] reported that it took a four–processor SGI Power 

Challenge four weeks to obtain a solution to a 600 000 grid-point model.  It was 

further found that the results were not consistent with experimental IR 

measurements. The CFD approach is therefore too computationally intensive to 

justify its practical application, especially as it is critical that predictions can be 

made within short  periods of time. 
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The use of classical statistical regression techniques becomes a daunting task, 

as there are numerous input variable interactions and external influences that 

cannot always be taken into consideration.  In addition to this the available data 

is too sparse for this type of model. 

 

Roodt [1998] proceeded to model the plume irradiances from the rocket motor 

physical design parameters and chemistry by making use of a feed-forward 

neural network with a single hidden layer.  This ‘black-box’ method finds a 

functional mapping between the motor design parameters and chemistry and 

the output plume radiance.  The advantages of this approach are the reduction 

in computational intensity, the high-speed predictions that can be made and the 

fact that no prior form of the functional relationship between the in- and outputs 

is required. 

 

Roodt [1998] made use of eighteen inputs to the neural network model:  

fourteen elemental chemical species and four solid rocket motor design 

parameters.  The output variables consisted of 146 spectral absorbance units 

at wavelengths in the middle IR band (2–5 µm wavelength). He built the neural 

network model on data from sixteen different rockets and tested the model on 

data from two unseen rockets.  Repeated IR radiance measurements were 

obtained for each rocket and were subsequently included for building the 

model.  The model predictions agreed well with experimental measurements for 

both the training and testing data. 

 

In this work the emphasis is on comparing the neural network model to linear 

and neural network partial least squares (PLS) modelling techniques.  The 

objective is to find a possibly more accurate model capable of generalising the 

in- and output relationships in a simpler manner.   Qualitative information on the 

relationship between the input and output variables can often be extracted from 

simpler, more intuitive models.  This can be seen as adding to the value of a 

‘black-box’ model.  Furthermore, if an improved functional relationship can be 

obtained from a more intuitive model compared to a neural network what is the 

reasoning supporting the result? 
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In this work more emphasis is also put on the validation of the models used.  

The validation of a non-linear model is important, as there is always the 

problem of over-fitting a function on the given data and subsequently unseen 

data may be poorly predicted.  The same data used by Roodt [1998] is used for 

building the neural network and PLS models in this work.  It is evident that the 

data is sparse and the validation of the models becomes a more complex 

problem.  The validation technique used in this work leads to a more critical 

evaluation of the performances of the models and subsequently the feasibility 

of any further applications of the models can be considered. 

 

Another useful application is the prediction of the rocket motor design 

parameters and chemistry from the measured IR emission spectra.  This is the 

inverse of the original problem.  The 146 input wavelengths may contain 

numerous interactions and redundant information and therefore much room 

may be left for model simplification.  The modelling of spectral data structures is 

extensively researched with numerical methods such as principal components 

analysis (PCA) and PLS being at the forefront of modern applications.  The 

reverse modelling of the data is applied in this work and the use of PLS model 

building is derived from the backdrop of its applications in the field of 

chemometrics. 

 

This work starts off with the descriptions of various numerical methods in 

exploratory data analysis used in the data processing and modelling applied 

later on. Afterwards, the detection of possible outliers is considered in a chapter 

where the available data is analysed and scrutinised.   The two chapters 

following the data analysis then discuss the methodologies applied and the 

results obtained for the forward and reverse models built.  

 

 

 

 

Chapter 1 - Introduction       4 



 

Chapter 2  
 Methods of  Exploratory Data Analysis 

 Chapter 2 - Methods of Exploratory Data Analysis 

The statistical and mathematical tools used for the processing and modelling of 

the solid rocket fuel data in this study are described in this chapter.  The aim of 

this chapter is to introduce the reader to some of the most basic statistical 

concepts before moving on to the more advanced topics in order to provide a 

logical build up in understanding the concepts applied and the link in notation.  

The aim is to provide a better understanding as the statistical concepts are 

blended with mathematical formulations.   The notation used in this text is 

explained as the various concepts are introduced.  

2.1 Basic Statistical Concepts 

One of the most fundamental statistical concepts is that of a population and its 

probability distribution.  Without this concept it becomes impossible to plan, 

assess or understand statistical modelling. 

 

Consider a variable, y (e.g. a measured temperature) collected over its entire 

population, i.e. all the possible values y can take on.  There will be varying 

numbers of recordings of certain y-values with a subsequent clustering around 

maximum probability values.  The histogram in Fig. 2-1 shows how the x-axis is 

divided up into equal intervals, ∆y, and the number of y-values in each interval 

is counted.  The frequency is then obtained by dividing the number of counts by 

the total number of objects in the population.  As the population becomes larger 

and larger, ∆y will approach zero and the histogram approaches a smooth 

continuous curve as in Fig. 2-1. The probability that a certain y will fall within an 

interval is the area of the interval underneath the smooth curve hence the curve 

is known as the probability density function (Hogg [1992] and Martens [1989]).  
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The concept of a population is, however idealised and must be estimated by a 

random sample of measurements of say n sample points for yi, where i 

=1,2,…,n.  The larger this random sample of n points becomes, the better the 

sample approaches a population estimate. 
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Fig. 2-1 The bar graph represents a histogram while the smooth curve 

represents the probability density function of the variable (y) frequencies. 

 

2.1.1 Expectation 

The expected value of y can be defined as the weighted sum of all the possible 

values of y as 

E(y) = ∑
i=1

n

 p(yi) yi          (2-1) 

where p(yi) is the probability of yi occurring.  From the section above, it can be 

seen that as ∆y tends towards zero the population mean becomes: 

E(y) = ⌡⌠
-∞

∞

 y F(y) dy          (2-2) 
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Here F represents the probability density function.  In practice, E(y) cannot be 

calculated but it can be estimated form a random sample set of n points by the 

sample mean, 

y
_
 = 1n ∑

i=1

n

 yi           (2-3) 

2.1.2 Variance 

The expectation is a measure of location, i.e. where in the data the expected 

value or ‘centre of gravity’ can be expected.  Variance is a measure of the 

spread in the data.  The population variance is defined as the expected 

quadratic difference between the actual value and its expectation,  

σyy  = E [ ]( )y - E(y) 2          (2-4) 

The sample variance is the estimation of the population variance and is 

calculated as:  

syy = 1
n-1 ∑

i=1

n

 (yi  - y−)2          (2-5) 

Here n-1 degrees of freedom are used because the mean has been used in the 

calculation of syy.  If one subtracts the mean from each yi to obtain a new set 

with each element now, y'i , then 

∑
i=1

n

 (yi - y
−) =  ∑

i=1

n

 y'i = 0         (2-6) 

From this result it is evident that the nth point can be determined from the n-1 

other points and therefore syy is estimated from n-1 random points in 

probability.  However, for large data sets n degrees of freedom (df) are often 

used due to the insignificant change in value from n-1.  

 

The standard deviation is the square root of the variance ( σ or s) and has 

the advantage of bearing the same units as the measured variable, y.  

However, variance is additive and for this reason it is often the preferred 

measure of spread for evaluating models.  Usually the standard deviation is 
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denoted by s or σ and the corresponding variance is simply the square thereof.  

This nomenclature has not been adopted in order to compensate for the 

symbolic definition of covariance (see section 2.1.3 below) and because 

variance plays a greater role in this text. 

2.1.3 Covariance and Correlation 

This concept refers to the inter-relationship between variables, such as y and x 

for example. The definition for the population covariance is: 

σyx = E [ ]( )y - E(y) ( )x - E(x)        (2-7) 

The sample covariance can be estimated by: 

syx = 1
n-1 ∑

i=1

n

 (yi  - y−)(xi  - x−)        (2-8) 

The inter-relationship between x and y can be explained as follows: if an 

increase in y is accompanied by an increase in x the covariance is positive.  If 

an increase in y is generally associated with a small or decreasing value of x 

the covariance is negative.  No covariance is obtained when there is no 

associative trend between two variables, i.e. they are independent and the 

value of σyx is zero. 

 

The covariance is, however dependent on the scale of the variables of x and y.  

The correlation coefficient compensates for this and can be estimated from: 

rxy = 
syx

sy sx
          (2-9) 

The correlation coefficient can take on values between –1 and +1.  A perfect 

positive linear correlation relates to ryx = 1 and for a perfect negative correlation 

ryx = -1. 

2.1.4 Multivariate Statistics 

The statistics of expectation and variance defined above are applicable to 

single variables measured over random measured sample sets.  It becomes 

tedious to deal with each variable separately when working with multiple 
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variables.  Multivariate spaces also have inter-relationships that together may 

contribute to the overall results as in linear regression modelling, for example. 

For these reasons multivariate statistics are defined using standard vector and 

matrix notation in order to be able to mathematically deal with the complexities 

and challenges posed by multivariate spaces. 

 

The notation adopted in this text makes use of bold font lower case letters to 

represent vectors and bold face upper case letters to represent matrices.  A 

scalar value can be regarded as a 1×1 vector.   

 

The multivariate statistics definitions for theoretical populations will not be 

shown here. Only their estimates will be defined, as the population statistics are 

only of theoretical value.  Their definitions are analogous to the single variable 

definitions given above and their multivariate sample estimates. 

 

In this text a set of data consisting of n data sample points and m variables will 

be written as an n×m matrix of data elements.  The columns of such a matrix 

thus contain the sample data of the individual variables,  

X = [ ]x1…xk…xm           (2-10) 

For the data set, X, the multivariate sample mean is simply a vector of the 

sample means of the individual variables and is defined as (Johnson [1988] and 

Tabachnick [1983]):  

x−T  =  x−1 … x−k … x−m        (2-11) 

Here the superscript, T, refers to the transpose of a vector or matrix.  This is 

because in this text vectors are defined as column vectors with dimensions 

n×1, where n can represent any value.  

 

In multivariate statistics the variances and covariances of the variables are 

captured within the so-called covariance matrix.   The sample variance-

covariance matrix is defined as (Johnson [1988]): 
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S = 






s11 s12 … s1m
s21 s22 … s2m
⋅ ⋅ … ⋅

sm1 sm2 … smm

       (2-12) 

In multivariate statistics n degrees of freedom instead of n-1 are often used as 

large amounts of data (>30 samples) are usually processed.  The difference of 

1 therefore becomes insignificant. 

 

It is usually more desirable to use a single value as a measure of a generalised 

variance for all m variables.  According to Johnson [1988] and Tabachnick 

[1983] a generalised measure of variance can be the determinant of S or simply 

the sum of the diagonal elements more commonly known as the trace of S.  

The latter is more commonly used and is known as the total sample variance or 

generalised variance: 

tr(S) = s11 + s22 + … + smm        (2-13) 

 

2.2 Linear and Non-linear Models 

Consider an example where a dependent or output variable, y has to be 

predicted from an independent variable, x by some optimised function, f(x), 

representing the model.  The function, f, can belong to a certain class of 

functions F, where f ⊆  F.  The class, F dictates the form of the possible 

functions, f, by a fixed set of parameters, P, with parameters, θr ∈  ℜ .  In the 

case of linear and non-linear models, f can be estimated from a set of n sample 

measurements of corresponding pairs (xi,yi) by minimising some cost function, 

ε(θ).  A popular cost function is the sum-squared error (Hogg [1992], Draper 

[1981], Haykin [1999]), 

ε(θ) = ∑
i=1

n

 ( )yi - f(xi,θ) 2        (2-14) 

where the parameters obtained from the minimisation are referred to as the 

least-square estimates. 
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The dependent or output variable, y can now be predicted using some 

estimated function, f, from the expression, 

yi = f(xi,θ) + ei          (2-15) 

where the residual is defined as: 

ei = yi - f(xi,θ)         (2-16) 

The residuals, ei, are regarded as mutually independent random variables that 

create the scatter around the relationship, f(xi,θ) for i = 1,2,…,n, respectively.  It 

is also assumed that they are normally distributed, with E(ei) = 0  and variance, 

ε (E[(ei – E(ei))2]). 

 

From the assumptions above, it is evident that the response in (2-15) consists 

of the sum of two components:  the non-random component, f(xi,θ), and the 

random  component ei.  Hence, yi is also a random variable and has a normal 

distribution with the expected mean, 

E(yi) = f(xi,θ)          (2-17) 

and variance ε  (E[(ei – E(ei))2]). 

 

2.2.1 Linear Models 

A model is regarded as linear when it is linear in its parameters, b, for example 

for (xi,yi): 

yi = xib + ei           (2-18) 

Here the residual becomes, 

ei = yi - yi
^           (2-19) 

where the predicted value of y is 

yi
^  = xib          (2-20) 

There is no restriction on the linearity of the independent variable.  It can, for 

example, be raised to some power or its logarithm can be taken.  The following 

is therefore also regarded as a linear model:  
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yi
^  = x2

i b         (2-21) 

The entire data set of n measured samples from which a model is estimated 

using the minimisation of the cost function can be related as:  







y1

⋅
yi

⋅
yn

 = 







x1

⋅
xi

⋅
xn

 [ ]b  + 







e1

⋅
ei

⋅
en

         (2-22) 

The minimisation of the sum-square error can be shown to be equivalent to 

obtaining ŷ by projecting y onto x (Wise [2000] and Draper [1981]).  According 

to vector algebra the projection onto x will be some scalar multiple, b of x.  The 

shortest distance from x to y is the vector, y – xb, which is perpendicular to x, 

thus, 

xT( )y - xb  = 0         (2-23) 

b = x
Ty

xTx          (2-24) 

and the projection of  y onto x becomes: 

ŷ = x
Ty

xTx x          (2-25) 

The linear model illustrated above can only work for data in x and y that has 

zero mean as the bias or offset has not been taken into account.  In order to 

compensate for the bias, x now becomes the matrix, 

X = 







1 x1

⋅ ⋅
1 xi

⋅ ⋅
1 xn

 = [1  x]        (2-26) 

By definition in this text the bold face, 1, represents an nx1 vector of ones as 

elements.   

 

The minimisation of the sum-square error can now be generalised for matrix 

notation as (Draper [1981], Johnson [1988] and Wise [2000]): 
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b = 






b0

b1
 = ( )XTX -1XTy        (2-27) 

It can be seen that this matrix notation bears an analogy to (2-24).  The 

parameter, b0 is the bias and it becomes clear that at least two sample 

measurements are required to find a solution to (2-27).  In matrix notation:  

y = Xb + e          (2-28) 

2.2.1.1 Multiple Linear Regression 

In the situation where more than one linear independent or input variable is 

required the linear model can be expanded for m variables as follows (Hogg 

[1992]): 

yi = b0 +  xi1b1 + … + xikbr + … + xim bm + ei      (2-29) 

Once again there is no restriction on the linearity of xk and an input variable can 

even take on the form of an interaction variable, xkxk’, where k ≠ k’.  For large 

values of m it can be quite challenging to find all the interactions in the data that 

have a significant impact on the model performance. 

 

The entire data set of n measured samples from which the model is estimated 

for multiple linear input variables is related by: 







y1

⋅
yi

⋅
yn

 = 









1 x11 … x1k … x1m

⋅ ⋅  ⋅  ⋅
1 xi1 … xik … xim

⋅ ⋅  ⋅  ⋅
1 xn1 … xnk … xnm

 







b0

⋅
br

⋅
bm

 + 







e1

⋅
ei

⋅
en

     (2-30) 

Here the least-square estimates are determined in the same manner as in 

equation (2-27). 

2.2.1.2 Multivariate Linear regression 

Multivariate linear regression is essentially a generalisation of linear and 

multiple linear regressions where it is possible to model more than one 

dependent variable.   In this case the parameter matrix is extended to j = 1,…,l 

columns, each column containing the m+1 parameters per dependent variable.  
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The entire data set of n measured samples from which the model is estimated 

is related by (Johnson [1988]): 









y11…y1j…y1l

⋅  ⋅  ⋅
yi1…yij…yil

⋅  ⋅  ⋅
yn1…ynj…ynl

 = 









1  x11…x1k…x1m

⋅ ⋅  ⋅  ⋅
1  xi1 … xik … xim

⋅ ⋅  ⋅  ⋅
1  xn1…xnk…xnm

 









b01…b0j…b0l

⋅  ⋅  ⋅
br1 … brj … brl

⋅  ⋅  ⋅
bm1…bmj…bml

 + 









e11…e1j…e1l

⋅  ⋅  ⋅
ei1…eij…eil

⋅  ⋅  ⋅
en1…enj…enl

  

          (2-31) 

In matrix notation this expression becomes: 

Y = XB + E          (2-32) 

It is evident that each dependent variable can be modelled separately by using 

a single column from matrix, B: 

yj = Xbj + ej         (2-33) 

The least-square estimates can be obtained in similar fashion as described in 

equation (2-27) by:  

B = ( )XTX -1XTY         (2-34) 

2.2.2 Non-linear Models 

Non-linear models are no longer linear in their parameters.  The implication of 

this is that there is no single solution to minimising the least squares criterion in 

equation (2-14).  An example of a non-linear model is shown here (Draper 

[1981]): 

yi = θ1
θ1-θ2

 ( )e-θ2xi - e-θ1xi  + ei      (2-35) 

The minimisation of the sum-square error involves taking the first partial 

derivative of each parameter in equation (2-14).  In linear models these 

derivatives become constants that are independent of the parameters 

themselves.  Clearly, this is not the case here and an iterative procedure is 

required to approach some sum-square minimum along an error surface (where 

the sum-square error is a function of the model parameters). There can be 

multiple local minima and a single global minimum is not guaranteed. 
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Some of the iterative optimisation procedures include the linearisation 

technique (Taylor series expansion), the gradient descent method and 

Marquardt’s compromise (Draper [1981] and Bates [1988]).  Feed-forward 

neural networks used for non-linear regression make use of some of these 

optimisation techniques and will be discussed in more detail in section 2.11 

below. 

 

2.3 Singular Value Decomposition (SVD) 

Any full rank n×n matrix, say X can be inverted by using Gaussian elimination in 

the row-echelon form.  Non-symmetric matrices with dimensions n×m for 

example cannot be explicitly inverted, but a more implicit workaround can be 

obtained. 

 

From equation (2-27) it is seen that b is obtained by projecting y onto the row 

space of X and the matrix that solves this is known as the pseudo-inverse of X 

(Wise [2000] and Martens [1989]): 

X+ = ( )XTX -1XT        (2-36) 

If however X is highly correlated in its row space the regression or projection 

may become ill conditioned in the sense that small changes in values in X can 

cause large variations in the obtained values for b.  In order to counteract this 

occurrence X can be decomposed as follows (Haykin [1999],Wise [2000] and 

Martens [1989]): 

X = ΛΣ∆T          (2-37) 

This is known as the singular value decomposition of X where Λ is n×n 

orthonormal and ∆ is m×m orthonormal.  The matrix Σ is an n×m diagonal 

matrix and with its diagonal elements arranged in descending order these are 

known as singular values.  If there are (a) singular values in Σ that are zero or 

close to zero only the first (m-a) singular values are retained. This means that 

(m-a) rows and columns of Σ, and (m-a) columns in Λ and ∆ are retained.  

Because both Λ and ∆ are orthonormal the pseudo-inverse by SVD becomes: 
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X+ = ∆m-a Σm-a
-1  Λm-a

T         (2-38) 

SVD can be implemented in regression training algorithms where linear 

projections are used in order to avoid ill-conditioned results.  This is especially 

useful for training RBF neural networks as explained in section 2.12 below.  A 

computer can be programmed to disregard all those singular values below a 

predefined threshold level. 

 

2.4 Data Pre- and Post-processing 

Data is usually processed prior to further processing whether it is for filtering, 

feature extraction, regression or classification.  In cases where variables of 

different dimensions are used it becomes crucial.  It may also be necessary to 

pre-process the data so that it suits the architecture of the model being fitted. 

 

Once data has been modelled after pre-processing it, any unseen data used for 

prediction must be pre-processed using the same values prior to inserting the 

values into the model.  In order to compare model outputs with their target 

values the predicted values must be post-processed by using the inverse 

procedure of pre-processing. 

2.4.1 Mean Centred Data 

It may be useful to mean centre the data in order to remove the bias.  This 

means that the new data set has mean vector,  x = 0.  Here 0 is an m-

dimensional vector with zeros as elements.  The processing of the data can 

thus be given by : 

X' = (X - 1x−T)         (2-39) 

Here 1 is an n×1 vector of ones. 

2.4.2 Standardised Data 

After data has been mean-centred it may be scaled by dividing each variable, 

xik, by its standard deviation.  This ensures that each variable in X has a 

standard deviation of 1.  For data sets with variables of varying dimensions this 
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is crucial so that a model fitted to the data is not biased towards the variables 

with the largest values.  Each dimension or variable then exerts the same 

leverage on data fitting.  Standardisation thus tends to make a data set more 

spherical in shape.  In mathematical form standardisation becomes 

X' = (X - 1x−T) SD
-1/2        (2-40) 

Here SD is the m×m covariance matrix of X with all the off-diagonal elements 

set to zero.   

 

The standardisation and mean centring of data is extensively published in all 

introductory and advanced statistics literary sources such as Hogg [1992], 

Johnson [1988] or Draper [1981]. 

2.4.3 Normalised Scaling of Data 

Data fitting models such as neural networks sometimes make use of non-linear 

transfer functions with threshold minimum and maximum values.  These 

thresholds are usually 0 and 1 or –1 and 1.  Neural networks can comfortably 

deal with bias in the data set and it is therefore not necessary to mean-centre 

the data.  This type of data scaling also deals with data sets consisting of 

variables with varying dimensions. Mathematically, for each variable n×1 vector 

the following scales all the values for xk between –1 and 1: 

x'k = 2 
( )xk - min(xk)

( )max(xk)-min(xk)
  - 1      (2-41) 

 

2.5 Variance and Discrepancy 

The question now is how well does a model fit the data it was trained or 

estimated from?  In order to answer this question a measure of discrepancy 

between the desired output/dependent variable and the modelled variable is 

required.  Once this has been done a further question is how well does the 

model generalise the system being modelled?  An answer to the second 

question is only possible by first of all defining a measure of discrepancy.  

Measures of discrepancy are dealt with in this section.  The second question is 
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more tedious to deal with and comes down to finding a methodology for 

validating a model.  This is discussed in section 2.6 below. 

 

Equation (2-5) explains the total variance in a set of n random samples of the 

dependent variable, yj.  If the degrees of freedom are omitted the total 

variability can be referred to as the sum-square total (SST).  In similar fashion 

the variability in the estimated variables can be explained by (Hogg [1992] and 

Draper [1981]) as, 

SSM = ∑
i=1

n

( )ŷi  - y 2          (2-42) 

The model does not explain all the variation in the original set of n random 

samples.  The part of the variation that is left unexplained is expressed by the 

residuals, ei , and becomes a measure of discrepancy (sum-square error): 

SSE = ∑
i=1

n
ei

2          (2-43) 

It was mentioned previously that variance is additive and from the discussion 

above it follows that for linear models and n sample points used as estimation 

data (Hogg [1992] and Draper [1981]): 

∑
i=1

n

 ( )yi  - y 2 = ∑
i=1

n

 ( )ŷi - y 2 + ∑
 i=1

n

 ei
2     (2-44) 

This expression holds, as for linear models y− = y
−̂
 . In vector notation equation 

(2-44) becomes (Johnson [1988]): 

yT y - ny−2  =  ŷT ŷ - ny−2 + eTe       (2-45) 

Here ny−2 is the model bias.  This is the offset by which the model is corrected 

so that any data correlation is effectively obtained from data with zero means. 

 

The coefficient of determination can now be defined as (Draper [1981] and 

Hogg [1992]): 
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R2   =  

∑
i=1

n

( )ŷi - y 2

 ∑
i=1

n

( )yi  - y 2
  =  SSM

SST  =  1 - SSE
SST      (2-46) 

The coefficient of determination can therefore be seen as a measure of 

explaining the fraction of the total variation explained by the model for a 

particular dependent variable and it follows that 0 ≤ R2 ≤ 1.  R2 is a summary 

statistic that measures how well the model fits the data.  For linear models the 

R2-value is equal to the square of the correlation coefficient, ryŷ  in equation 

(2-9). 

 

In analogy to (2-45) the total variance for multivariate statistics can be 

summated as (Johnson [1988]): 

YTY - ny− y− T  =  ŶT Ŷ - ny− y− T + ETE      (2-47) 

The term on the left side of the equation is the same as the variance-

covariance matrix, S, in (2-12) except that the degrees of freedom have been 

omitted.  The diagonal elements represent the sum-square totals (SST) of the 

individual dependent variables, thus 

nST = nSM + ETE        (2-48) 

The off-diagonal elements in ETE represent the error covariances, i.e. a positive 

value means that over- or under-fitting the one variable will lead to over- or 

under-fitting the other variable.   From the additive property of the trace 

operator (Anton [1994]) defined in (2-13) it follows that,  

tr( )nST  = tr( )nSM  + tr( )ETE         (2-49) 

The total multivariate explained variance is therefore related to the definition of 

R2 given by (2-46) and can be calculated as (Wise [2000]), 

η2 = 1 - 
tr( )ETE
 tr( )nST

         (2-50) 

It is evident that (2-50) is a generalisation of R2 in (2-46) because in the case 

where there is only a single dependent variable, η2 becomes R2.  However, it 
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may be required to evaluate each dependent variable individually and therefore 

it is convenient to distinguish between multivariate and individual variable 

explained variance.  Here η2 denotes the explained variance in the so-called y-

block variables. 

2.5.1 Mean-square Error 

In the section above it was shown that the sum-square error is related to the 

total variability in a dependent variable, yi and in section 2.2 it was shown that 

because the residual, ei, is regarded as a random variable the same can be 

said about yi.   For this reason the mean-square error is the residual variance 

and its population estimation becomes (Martens [1989]): 

ε = E [ ]( )y - ŷ  2          (2-51) 

The mean-square error is estimated from its training/estimation sample set, 

using (n-df) degrees of freedom, by (Hogg [1992] and Van der Voet [1999]): 

MSE = 1
n-df ∑i=1

n

( )yi - ŷi
2        (2-52) 

Here df is the number of degrees of freedom of the predicted values, ŷ 

determined by the number of parameters (m+1) of the linear model plus the 

bias.  The square root of MSE known as the root mean-square error (RMSE) is 

often favoured because its units are the same as yi.  This makes it a useful 

measure of the standard deviation of the error. 

 

It can further be shown that ε is the sum of the variance of the residual, e, and 

the squared bias (Draper [1981] and Martens [1989]): 

ε  =  E 



{ } ( )y - ŷ   - E ( )y -  ŷ

2
  +  



E 



y  - ŷ

  2
=  σe + bias2   (2-53) 

The bias represents the offset between the actual model function and the 

model function obtained by regression.  If this offset (systematic error) is zero 

the regression model used is correct, otherwise it has a value that depends on 

some true model.  The residual variance, σe, is based on the random residuals 

(random noise) and is therefore a measure of the random error variance. For 
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the case where the bias is zero the mean-square error thus becomes an 

estimate of the residual variance and ε = σe. 

 

2.5.2 Pure Error  

In data sets where some dependent variable measurements are repeated the 

data set is said to contain replicates.  It must be noted that a replicate is a 

repeat on identical or very similar independent variables using measurements 

on different objects.  For example, if the blood pressures of humans are to be 

modelled from their body masses, replicates would be obtained by measuring 

the weights of numerous individuals bearing the same body mass.  The 

repeated measurement of the weight of the same individual cannot be regarded 

as a replicate as it supplies information on the variation of the testing method 

and not on the variation of blood pressure. 

 

Replicates provide information on the variation of the individual independent 

variables.  In equation (2-17) it is shown that the distribution about an 

independent prediction is assumed to be normal.  In order to define this 

variation numerically, the following notation is defined for a data set of n total 

measured sample points, m independent variables and a single dependent 

variable, y for g = 1,2,…,nh and h = 1,2,…,k: 

 

y11, y12, … ,y1g, … ,y1n1  are n1 replicates at x1
T  

y21, y22, … ,y2g, … ,y2n2  are n2 replicates at x2
T  

yh1, yh2, … ,yhg, … ,yhnh  are nh replicates at xh
T  

yk1, yk2, … ,ykg, … ,yknk  are nk replicates at xk
T  

 

The total number of measurement samples can therefore be calculated as: 

n = ∑
h=1

k 

  ∑
g=1

n h

 1 = ∑
h=1

k 

 nh        (2-54) 

The contributions of internal variations or sum of squares for nh sample 

measurements at xh are summed up to form the overall sum-square pure error: 
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SSP = ∑
h=1

k 

  ∑
g=1

nh

  yhg - y
−

h

2
        (2-55) 

The pure error variance, sP is obtained by dividing SSP by the number of 

replicates (degrees of freedom), nR = n–k. 

 

The pure error is therefore a measure of random variation because it 

represents the variation between multiple measurements on identical values of 

xh
T .  For this reason it is accepted that sP is another reliable estimator of ε 

(Draper [1981]). 

 

The variation described by the pure error is built into the model and total 

variation.  The sum-square error, SSE can be adjusted by subtracting the pure 

error, SSP, from it.  This yields the lack-of-fit sum of squares, SSL.  The mean-

square lack-of-fit error, MSEL, is obtained by dividing SSL by the degrees of 

freedom nL = n-nR-df.  It can further be shown that SSP and SSL are additive by 

(Brereton [1990] and Draper [1981]): 

SSE = ∑
i=1

n

 ( )yi - ŷi

2
 = ∑

h=1

k 

  ∑
g=1

nh

 ( )yhg - y−h

2
+ ∑

h=1

k

 nh( )ŷh - y−h

2
 = SSP + SSL   

2-56) ( 

The pure error can now be introduced into an analysis of variance.  The 

procedure is to compare the ratio F = MSEL/sP with the Fcrit–value at an α-

significance level of the F-distribution with nL and nR degrees of freedom.  If the 

ratio is significant, i.e. F>Fcrit the regression model appears to be inadequate.  If 

the ratio is not significant, i.e. F<Fcrit there appears to be no reason to discard 

the model (Draper [1981]). 

 

Due to the fact that the pure error is built into the model and therefore into the 

total data variance, a data set containing replicates can never achieve an R2-

value of 1 unless sP = 0.  The maximum value of R2 can therefore be obtained 

by making use of the minimum SSE and SST values calculated as follows: 
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SSEmin = ∑
h=1

k

 ( )y−h - ŷh
2
       (2-57) 

SSTmin = ∑
h=1

k

  
y−h - y−

−
h

2
       (2-58) 

R2
max = 1 - SSEmin

SSTmin
        (2-59) 

Here the residuals are redefined and by using these residuals the maximum 

explained variance (η2
max ) can be calculated using equation (2-50).  The value 

of R2
max can also be obtained from the square of the correlation (ryŷ ) between 

the model predictions and the mean target values.  The minimum mean-square 

error is calculated by dividing SSEmin  by nL=n-nR-df degrees of freedom. 

 

By inspection it is evident that the first summation in equation (2-55) is simply a 

sum of squares or variance multiplied by its degrees of freedom.  For this 

reason and by the definition in equation (2-12) the multivariate sum-square 

pure error can be defined as: 

SP= ∑
h=1

k

 nhSh         (2-60) 

Here Sh is the variance-covariance matrix for each set of dependent replicates 

measured on xh
T .   

 

2.6 Model Validation 

The validation and testing of a model is paramount when it comes to evaluating 

the integrity of a proposed model.  It is therefore important to see how well the 

model behaves when fitting unseen data from the same system that is being 

modelled.  Ideally there should be enough available data to be able to validate 

and finally test the model.  The validation step of modelling determines the 

complexity (e.g. number of regression parameters) of the model within which 
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the model can best generalise the trend of the available data.  Data validation 

should therefore provide information as to whether the model is under-fitting or 

over-fitting the data and to give an indication of how well the model performs.  

The best way of judging the performance of a model is by testing it on newly 

generated, unseen data.  

2.6.1 Internal Model Validation 

Linear models can be validated internally (by the training/estimation data only) 

using classical techniques of inference to obtain confidence limits on the 

predicted values and the regression coefficients (Martens [1989], Draper [1981] 

and Hogg [1992]).  The assumption that the regression parameters of a non-

linear model are normally distributed no longer holds when it is assumed that 

the prediction error or residual, ei, is normally distributed (Draper [1981]).  For 

this reason the validation of non-linear models can be done using a Bayesian 

approach (Beale [2000]) or by making use of validation data sets (Geisser 

[1975]).  

 

The mean-square error of estimation can be estimated when the predicted 

output variables are tested on the actual training/estimation data set for output 

variable j as in equation (2-52): 

MSEj = 1
n-df ( )eT

j ej          (2-61) 

2.6.2 External Validation 

In situations where the data sets are large enough, the data can be split up into 

two subsets of n’ and n samples each: the training data and the validation data.  

The model parameters are estimated using the training data and the obtained 

model is subsequently tested on the validation data.  The (integrated) mean-

square error of prediction is calculated for n validation sample points as (Van 

der Voet [1999] and Martens [1989]): 

 MSEPj = 1n ( )eT
j ej          (2-62) 

The parameter estimation or training can be repeated, each time increasing the 

number of parameters.  Initially the value of MSEP will decrease and at the 

Chapter 2 - Methods of Exploratory Data Analysis       24 



 

point where over-training starts taking place the MSEP will start to increase 

(see section 2.6.4 below).  The MSE-value based on the training/estimation 

data will continue to decrease as it starts fitting noise in the data. 

 

 In an example presented by Baffi [1999b] the entire data set consisted of 998 

samples.  The data describes the process of a tank where a strong acid stream 

(HNO3) is neutralised by a strong base stream (NaOH) in the presence of a 

buffer stream (NaHCO3).  The level of the tank is controlled by adjustment of 

the neutralised outflow stream.  The pH of the tank is the modelled dependent 

variable and the four streams are the input variables.  This data set was 

subsequently split into a training set of 699 samples and a validation set of 299 

samples.  Care was taken to ensure that the validation set is a good 

representative of the entire data set. This can be done by, for example, making 

use of the DUPLEX data splitting algorithm as described in Snee [1977].   

 

It is interesting to point out that Snee [1977] simply refers to the data splitting 

method mentioned above as “data splitting” or cross-validation.  Martens [1989] 

refers to the method as external validation.  Further examples are given by 

Hadjiiski [1999] and Bertran [1999].  Haykin [1999] describes cross-validation 

as being a split of the data into a training set and a test set.  The training set is 

then split into a validation and an estimation subset.  The training is done on 

the estimation set and the validation set is used to find the model parameters 

for good generalisation.  The test set is then used to verify the generalisation 

ability determined by the entire training set.  Examples of this method can be 

found in Blanco [1999] and Blanco [2000].   

 

In order to avoid confusion the data splitting method illustrated in the examples 

above will be referred to as external validation in this text.   The data splitting 

method described by Haykin [1999] above can be referred to as external 

validation with testing. 

2.6.3 Model Cross-validation 

It becomes difficult to validate sparse data sets, as the omission of sample 

points can lead to a loss of valuable information about the variable space.  This 
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is often the case when experimental procedures are extremely expensive.   The 

problem can be dealt with by an effective design of experiments (DOE).  

However, the need for cross-validation, as discussed shortly, becomes 

inevitable for extremely sparse data sets and no applied DOE. 

 

The method of ‘leave-one-out’ cross-validation is described by Stone [1974] 

and Urban Hjorth [1994].  It is simply illustrated in Fig. 2-2.  Here an entire data 

set of n samples is split into n subsets where each subset consists of n-1 

estimation/training samples and an nth point is left out for validation.  Ultimately, 

all the samples have been treated as predicted validation samples and the 

mean-square error of cross-validation is calculated for the entire data set of 

validated samples as (Urban Hjorth [1994] and Martens [1989]): 

MSECVj = 1n ( )eT
j ej          (2-63) 

The value of MSECV is thus calculated using the data in the far-right column of 

Fig. 2-2.  Many texts use the so-called PRESS value (predicted residual 

estimate sum of squares), which is simply the MSECV value, multiplied by n: 

PRESSj = ( )eT
j ej          (2-64) 

This is convenient for multivariate dependent variables as:  

PRESS = tr( )ETE          (2-65) 

 

An alternative is to leave out more than one data point for each split (Geisser 

[1975]).  This can be done by splitting the training set into k (k < n) subsets and 

then training only k times, each time testing about  (1/k)th part  of the entire 

training set.  This is again done in such a way that each sample point has been 

left out for validation prediction after full cross-validation has been completed.  

The advantages of leaving out more than one sample at a time include saving 

computational processing time and allowing for more flexibility when 

handpicking specific combinations of predictions when there are different 

classes within the data. 

 

Generally, a distinction is made between cross-validation as seen in the context 

explained in section 2.6.2 above and ‘leave out more than one’ (Geisser [1975]) 
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or ‘leave-one-out’ cross-validation (Draper [1981]).  Martens [1989], Urban 

Hjorth [1994] and Wold [1978] refer to the ‘leave out’ methods simply as cross-

validation.  Thus, in order to avoid confusion, the definitions as proposed by 

Martens [1989] will be adopted in this text and a distinction is made between 

cross-validation and external validation. 

 

Training data Validation data

Training session 1

Training session 2

Training session 3

Training session 4

Training data Validation data

Training session 1

Training session 2

Training session 3

Training session 4
 

Fig. 2-2 An illustration of leave-one-out cross-validation.  The far right column 

resembles the full set of n data sample points. 

 

2.6.4 Over-fitting and Under-fitting 

In theory the prediction error (MSEP or MSECV) is composed of two major 

contributions: systematic error and random measurement error (Martens 

[1989]).  Systematic error (bias) is the result of un-modelled interference, i.e. 

influences from variables not yet modelled adequately due to a lack of model 

complexity.  The random error is noise that cannot be controlled and must 

therefore not become part of the model.  The modelling of this noise will lead to 

over-training. 

 

The two contributions to the prediction error have contradicting trends as the 

complexity of the model increases.  This is illustrated in Fig. 2-3.  In practice, 

the systematic error will only decrease with a further increase in complexity (or 

number of regression parameters) if the training data is sufficiently 

representative of the new validation data. 
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Fig. 2-3 The validation concept illustrated.  The optimum point marks the trade-

off between over-training and under-training. 

 

2.7 K-means Clustering 

Clustering is regarded as unsupervised learning where the aim is to group data 

points into classes that are more closely related by some measure than objects 

from other classes.  This is done without prior knowledge of class membership. 

Numerous algorithms exist that attempt to cluster data points according to 

some rule based on a measure of similarity and a method involving the 

implementation of an algorithm. 

 

The K-means clustering algorithm uses the method of optimal partitioning 

where the individual data points are partitioned into K clusters in order to 

optimise some criterion.  For h = 1,2,…,K clusters the algorithm seeks K 

means, x−h, that represent the centres of each class. For g = 1,2,…,nh 

representing the number of data points on m variables in each class the 

criterion to be optimised is the sum of squares (Bishop [1995]), 
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SSK = ∑
h=1

K

 ∑
g=1

nh

 (xhg - x−h)T(xhg - x−h)      (2-66) 

This expression has a similar form to the pure error in equation (2-55).  In fact, 

it is the trace of SSP in (2-60) for k = K.  The batch version of K-means (Bishop 

[1995]) begins by assigning each point in X to one of K clusters and then 

calculating the mean of each initial cluster.  Each point is then re-assigned to a 

cluster depending on which mean is closest to the particular point.  This is 

repeated and the convergence point is reached when there is no further 

modification in the class memberships of the data points.  After each iteration, 

SSK is calculated and convergence is signified by an unchanged or 

approximated percentage change of SSK from one iteration to the next. 

 

2.8 Principal Components Analysis (PCA) 

Due to the ever-increasing advances in computational power and capacity of 

computers increased amounts of data are being recorded more frequently and 

processed in chemical processes.  This may cause a data overload, i.e. no 

useful information may be extracted from the data.  It may become necessary 

to compress the data or extract only the relevant information.  In IR spectrum 

analysis, for example, there is usually redundant information in the many 

wavelengths recorded.  The application of principal components analysis 

therefore addresses the following three requirements: 

 

• The data must be compressed such that the essential information is 

retained and can be more easily displayed or represented than the 

individual variables. 

• The essential information often lies in the way variables co-vary 

(correlate) than in an individual variable. 

• In the presence of large amounts of noise it may be necessary to make 

use of some sort of signal averaging. 
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PCA relies upon an eigenvector decomposition of the covariance matrix of the 

process variables.  If the data in X has been standardised or mean centred 

then,  

S = 1n XTX          (2-67) 

For eigenvectors, p and eigenvalues, λ there are k = 1,2,…,m decompositions: 

Spk = λkpk         (2-68) 

In PCA the eigenvectors, pk are known as loading vectors and they are 

orthonormal (i.e. pk’
Tpk = 0 for k’ ≠ k and pk

Tpk =1).  The loadings can now be 

used to obtain the score vectors, 

tk = Xpk          (2-69) 

where tk’
Ttk = 0 for k’ ≠ k.  This allows for the decomposition of X into the sum of 

the outer products of tk and pk and the residual matrix, F as: 

X = t1p1
T + t2p2

T + … + tkpk
T + F      (2-70) 

Here the residual, f is defined as in equation (2-19) for the x-variables: 

fik = xik - xik
^           (2-71) 

It is therefore possible to approximate X by : 

X̂ = t1p1
T + t2p2

T + … + tkpk
T       (2-72) 

Here k must be smaller than or equal to the smallest dimension, i.e. k ≤ 

min(n,m). The score vector, tk is thus the linear combination of the original X 
data defined by pk. Another way of looking at this is that tk are the projections of 

X onto pk.  The tk, pk pairs are then arranged according to λk such that λ1 > λ2 > 

… > λk > 0.  This is because each pk represents a set of co-ordinates rotated 

relative to the original co-ordinates of xk and the λk values are the measures of 

variance in the directions of pk. PCA ensures that the t1, p1 pair captures the 

greatest amount of variation in the data that is possible to capture with a linear 

factor. Each subsequent pair captures the greatest possible amount of variance 

remaining after subtracting tkpk
T from X. The value, λk is therefore a measure of 
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information explained by each principal component (PC) and defines the 

fraction of variance captured by 

η2 = λk
λ1 + λ2 +…+ λk + …λm

       (2-73) 

 

The data can therefore possibly be adequately described by using far fewer 

components or factors than original variables. The data overload often 

experienced can be solved by retaining fewer scores (weighted sums of the 

original variables) than original variables. This can be done with no significant 

loss of information.  It is also often found that PCA turns up combinations of 

variables that are useful descriptions of particular events or phenomena. 

 

The theory of PCA is extensively published and the approach adopted in this 

text is well illustrated in Johnson [1988] and Diamantaris [1996].  An alternative 

approach is the so-called non-linear iterative partial least squares (NIPALS) 

algorithm described in Martens [1989].   Here each PC is extracted iteratively 

by projection pursuit.  The advantage of this algorithm is that the PC’s are 

extracted in chronological order starting at the primary PC. 

 

The scores calculated by PCA have zero mean if the original data has initially 

been mean-centred.  These scores can therefore be used together with the 

eigenvalues (variances) to calculate the t-statistics.  The sum of normalised 

squared scores, known as the Hotelling T2-statistic, is a measure of the 

multivariate t-statistic over a multivariate normal distribution and is defined here 

as (Johnson [1988] and Wise [2000]): 

T i
2 = tT

i Λ-1ti         (2-74) 

Here Λ is the k×k diagonal matrix with the eigenvalues corresponding to the k 

principal components on the diagonal.  The vector, ti is the k-dimensional 

vector of scores corresponding to data points, i=1,2,…,n.  The confidence limits 

for the values of T2 are calculated by using the F-distribution for degrees of 

freedom k and n-k and for the confidence interval of 1-α as follows: 
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T2
k, n-k, α = (n-1)k

n-k  F k, n-k, α       (2-75) 

The multivariate residual or Q-statistic for data point, i is simply the sum of 

squares over the ith data sample vector (Wise [2000]): 

Q-stat = fT
i fi          (2-76) 

The confidence limits for the Q-statistic for confidence interval 1-α can be 

calculated from the following equation (Wise [2000]): 

Q-stat(α) = Θ1






ξα (2Θ2)

1/2 ζ
Θ1

 + 1+ Θ2ζ(ζ-1)
Θ1

2

1/ζ
      (2-77) 

where 

Θb = ∑
c = k+1

m

 λb
c   for  b = 1,2,3       (2-78) 

ζ = 1 - 2Θ1Θ3
3Θ2

2          (2-79) 

Here ξα is the standard normal deviate corresponding to the upper 1-α 

percentile.  The test statistics above are defined for normally distributed data, 

which means that an assumption has to be made that this is the case for the 

scores obtained.  This assumption can be justified by the central limit theorem, 

which states that sums of several different groups will tend to be normally 

distributed, regardless of the probability distribution of the individual groups 

(Wise [2000]). 

 

2.9 Class-based Principal Components Analysis 

PCA removes correlations within a data set by finding primary axes or principal 

components in the directions of maximum variance perpendicular to each other 

and then transforming the original space to the new de-correlated space.  

Second order statistical moments can be introduced by considering class 

membership within the data set and by finding the principal axes in the direction 

of maximum variance between the classes (Fukunaga [1972]). 
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Class-based PCA can be divided into two separate transformations.  The first 

transformation aims to ‘whiten’ the individual clusters.  This transformation 

removes correlations within the clusters and in so doing effectively groups the 

class members within a class closer together.  In order to achieve this the intra-

class variance-covariance matrix is defined for Xh, the nh×m centred data 

belonging to a predefined class: 

Sh = 1
nh

 Xh
TXh   for h = 1,2,…,k      (2-80) 

The average over all intra-class variance-covariance matrices can now be 

calculated as: 

SG = ∑
h=1

k

  p(Xh) Sh         (2-81) 

Here p(Xh) is the probability of class h occurring.  The matrix, SG is known as 

the intra-class spread matrix. 

 

If SG can now be transformed to an identity matrix it would mean that the 

features in the new space, SG’ are not correlated.  In order to achieve this it is 

necessary to find some m×m transformation matrix, A such that: 

I = ATSGA           (2-82) 

Here I is the m×m identity matrix. It can be shown that equation (2-82) is 

possible by equating A as follows (Fukunaga [1972]): 

A = PΛ-1/2          (2-83) 

Here P is the m×m matrix of eigenvectors of SG and Λ is the m×m diagonal 

matrix of eigenvalues of SG.  The transformation in equation (2-82) has the 

effect of obtaining equal variances, on average, in all dimensions in the new 

space. 

 

In similar fashion the inter-class variance-covariance matrix, SH can be defined: 

Chapter 2 - Methods of Exploratory Data Analysis       33 



 

SH = ∑
h=1

k

  p(Xh) (x−h - x−)(x−h - x−)T       (2-84) 

Here x− is the mean over the entire data set, X.  It must be noted here that for 

classes having equal probability of occurring, p(Xh) is simply equal to 1/k.  The 

matrix, SH can then simply be calculated from: 

SH = 1k X−T X−          (2-85) 

Here X− is the k×m centred data of the k class means.  SH therefore gives an 

indication of how the class centres vary relative to one another.  It is therefore 

used to obtain the second transformation where the principal component lies in 

the direction of maximum variation between the clusters.   

 

Just like the intra-class spread matrix, SG is transformed the inter-class 

variance-covariance matrix is transformed as: 

SH'  = ATSHA          (2-86) 

Now, in order to obtain the principal axes in the directions of maximum variation 

between the transformed class/cluster centres, the eigenvector-eigenvalue 

decomposition of SH’ leads to the matrix of eigenvectors, V and the m×m 

diagonal matrix of eigenvalues, Γ.  The complete transformation for class-

based PCA to a set of transformed scores is thus given by: 

T = X A V = X PΛ-1/2 V        (2-87) 

The transformation vectors of AV are commonly known as canonical variates 

and represent the transformed axes just as is the case in PCA.  The 

eigenvalues in Γ can now be used to obtain the hierarchy of maximum 

variances between classes, similar to PCA.   

 

If a class-based PCA transformation is successful in separating the classes in 

such a way that clear boundaries are visible/obtainable between classes, the 

classes can be classified successfully using some classification model.  The 

classes can be completely separated using k dimensions of the transformed 
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space. However, analogous to PCA, it may be possible to choose the primary 

number of dimensions h ≤ k required to obtain a clear distinction between the 

classes. 

 

2.10 Non-linear Optimisation Techniques 

In section 2.2.2 it was mentioned that in the case of non-linear regression the 

minimisation of the cost function could only be approximated using optimisation 

algorithms that approach the minimum.  It seldom happens that a global 

minimum can be reached, especially with increasing complexity (large number 

of parameters) of the model. 

 

Consider the functional form of some non-linear model as introduced in section 

2.2: 

y = f(X,θ) + e         (2-88) 

The problem now becomes one of differentiating the error surface represented 

by the least squares cost function in equation (2-14).  The solution for r = 

1,2,…,M parameters and M differential equations is non-linear and various 

strategies as discussed below can be deployed to solve the problem. 

2.10.1 The Linearisation or Taylor Series Method 

If the functional form of the model in equation (2-88) is smooth and 

differentiable with respect to θ it can be approximated by a Taylor series 

(Draper [1981] and Baffi [1999a]): 

f(xi,θ)  =  f(xi,θ0) +∑
r=1

M

 ∂f(xi,θr0)
∂θr

 ( )θr - θr0   =  yi
^ |0 + ∑

r=1

M

 


∂f

∂θr 0
∆θr0    (2-89) 

and thus for all i = 1,2,…,n, 

y - ŷ|0 = [J ∆θ]0        (2-90) 

where for the Jacobian matrix, J0,  

jir|0 = ∂f(xi,θr0)
∂θr

          (2-91) 
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Equation (2-90) is in linear form and by linear regression using equation (2-27) 

the pseudo inverse of J can be calculated to obtain 

∆θ0 = [ ](JTJ)-1JT e
0
         (2-92) 

Here the pseudo-inverse of J is better evaluated using SVD described in 

section 2.3 above, as some of the derivatives in function f may be correlated. 

 

An iterative procedure can now be introduced by evaluating equation (2-92) at 

iteration t = 1,2,… as: 

θt = θt-1 + ∆θt-1  =  θt-1 + [ ](JTJ)-1JT e  t-1     (2-93) 

Convergence occurs when for an arbitrarily small δ, 

(θt - θt)T(θt-1 - θt-1)
θt

Tθt
 ≤ δ        (2-94) 

The disadvantage of this algorithm is that divergence may occur because of 

“over-shooting” caused by ∆θ.  Marquardt [1963] mentions that this problem 

can be addressed by multiplying ∆θ by a fraction, ϕ.  The choice of a value for ϕ 

may be cumbersome and in this text the “bold driver” method in Bulsari [1995] 

is used to adapt ϕ after each iteration: 

• Increase ϕ by γ if the error, [eTe]t is decreasing, ϕt = γϕt-1.  Choose γ close 

to 1, e.g. 1.05. 

• Decrease ϕ more drastically by ι  if the error is increasing, ϕt = ιϕ t-1.  

Choose ι  ≈ 0.5 

 

This method is usually used for updating the learning rate used by the gradient 

descent method discussed shortly.  It has been applied here with great 

success, as the form of equation (2-93) is similar to that of the gradient descent 

method. 

2.10.2 The Gradient Descent Method 

This is one of the simplest gradient-based optimisation algorithms used for 

minimising the cost function (Bishop [1995], Haykin [1999] and Draper [1981]).  

If a non-linear function such as a sigmoidal function is used (see section 2.11) 
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the derivative of the cost function, ε(θ) with respect to the parameters in θ can 

easily be determined if it is assumed that ε (θ) is smooth and differentiable for 

all θ. 

 

The iterative procedure is initialised by guessing an initial θ.  This set of 

parameters is then updated by moving a small increment in θ-space in the 

direction that decreases ε(θ) most rapidly, i.e. -∇ θ.  This iterative process thus 

generates a sequence of θ values whose components are updated by: 

θr|t = θ|t-1 + ϕ


∂ε(θ)

∂θr θt-1
        (2-95) 

The choice of the learning rate ϕ is crucial as a value too small will make the 

reduction in the error too slow and a value too large will cause divergent 

oscillations.  The prime weakness of the gradient descent method is its slow 

convergence and the fact that the exclusion of divergences is not guaranteed. 

2.10.3 The Marquardt Method 

The highly efficient Marquardt algorithm (Marquardt [1963]) addresses the 

weaknesses of the Taylor series and gradient descent methods.  It does this by 

finding a compromise between the Taylor series method and the gradient 

descent method.  It shares with the gradient descent methods the ability to 

converge from an initial guess outside the region of convergence.  It shares 

with the Taylor series method the ability to rapidly close in on the converged 

values after the vicinity of the converged values has been reached. 

 

The Marquardt algorithm makes use of a parameter, µ to modify the Taylor 

series method to: 

∆θ0 = [ ]( )JTJ + µI -1JT e
0
        (2-96) 

For the n×M Jacobian matrix, J the matrix, I is the r×r identity matrix. 

 

From a series of proofs presented in Marquardt [1963] it is shown that µ allows 

for prompt convergence using finite arithmetic.  This is achieved without the 

prerequisite condition that f is a smooth, well-behaved function as is the case 
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for the gradient descent method.  It is further shown that ∆θ of the Taylor and 

gradient descent methods are at almost 90 degrees to each other.  The ∆θ term 

in the Marquardt algorithm rotates to close the angle between itself and the ∆θ 

of the gradient descent method for each iteration as µ→∞. 

 

The disadvantage of the Marquardt algorithm is that it requires high and 

intensive memory usage.  The application of this algorithm is limited to 

optimisation problems with relatively few parameters on personal computers 

with low memory resources. 

 

2.11 Feed-forward Multi-layer Perceptron Neural Networks 

Neural networks have been extensively studied and applied in practice as non-

linear function approximaters.  The power of neural networks lies in their 

architecture derived from the biological functionality of the neurons, dendrite 

trees and synapses of the human brain (Haykin [1999] and Zupan [1993]).  This 

architecture can assume almost any functional form, which in turn can be used 

in pattern recognition and regression. 

 

The simplest neural networks consist of two layers, the input layer and the 

output layer.  The input layer consists of the input variables in X.  The output 

layer consists of l nodes for the l predicted output variables in Y.  A node 

consists of the weighted summation of inputs, which is in turn put through a 

transfer function, φ to obtain the node outputs.  The functional form of a node 

for a two-layer network is thus: 

ŷij = φ j








∑
k=r=1

m
 ( )ωjrxik  + βj         (2-97) 

Here each node receives all its inputs from the previous layer without feeding 

any information back to it.  This is known as a feed-forward neural network.  A 

neural network can have a number of so-called hidden layers sandwiched in-

between the input and output layers, each layer consisting of a number of 

nodes.  Such a neural network becomes a so-called multi-perceptron neural 
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network.  In this text the input layer is numbered as zero with all subsequent 

layers numbered from 1 downwards. 

 

Numerous different types of transfer functions can be used for φ.  There are 

three generic types of transfer functions, the threshold function, the piece-wise 

linear function and the non–linear sigmoid functions (Haykin [1999]).  In this text 

the tan-sigmoidal function is used as non-linear transfer function: 

φ(x) = tanh(x) = 1 - exp(-2x)
1 + exp(-2x)       (2-98) 

The advantage of using this function is that its derivative can be written as a 

function of φ itself: 

φ'(x) = 1 - φ 2(x)         (2-99) 

The tan-sigmoidal function has the property that its outputs are limited to the 

range, -1 ≤ φ(x) ≤ 1. 

 

In this text a neural network architecture using a single hidden layer of tan-

sigmoidal transfer functions is used.  A special case of a piece-wise linear 

transfer function, the linear combiner, is used for the output nodes.  This 

transfer resembles non other than a simple linear transformation to the output 

variables.  The functional form of such a single layered neural network, with 

superscripts in brackets denoting the layer number, is given here in explicit 

form as 

ŷij = ∑
r=1

H

 ωjr
(2)φ r









∑
k=1

m

 ( )ωrk
(1) xik  + βr

(1)  + βj
(2)      (2-100) 

This functional form will be referred to as a sigmoidal neural network in this text.  

Schematically, the sigmoidal neural network is illustrated in Fig. 2-4. 

 

The parameters of a neural network function are obtained using various training 

algorithms.  The most common algorithm used for training feed-forward neural 

networks is the back-propagation algorithm. 
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Fig. 2-4 The architecture of a feed-forward multi-perceptron neural network for 

multiple inputs and outputs. 

 

2.11.1 The Back-propagation Algorithm 

Most training algorithms involve the minimisation of a cost function such as the 

sum-square error in equation (2-14).  These algorithms can be split into two 

distinct stages.  In the first stage the derivatives of the cost function with 

respect to each parameter must be calculated.  It is at this stage that the back-

propagation algorithm, given by Rumelhart [1986], provides a computationally 

efficient means of calculating the derivatives by propagating the function error 

backwards through the neural network layers.  In the second stage (discussed 

in 2.11.2 below) the derivatives are used to calculate the adjustments made to 

the parameters by some non-linear optimisation algorithm (see section 2.10). 

 

In general each node computes a weighted sum of its inputs as discussed 

above: 

gq = ∑
p

 

ωqpzp          (2-101) 
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Here zp is the activation from node p in the preceding layer and ωpq is the 

weight from the qth node in the current layer associated with zp.  A bias can be 

included by introducing z0 = 1.  The summation in (2-101) is put through the 

non-linear activation function, φ  to give: 

zq = φ(gq)          (2-102) 

It must be noted that zp is the same as zk = xk if it represents the input layer and 

zq is the same as zj = yj if it represents the output layer.  For each sample, i, 

back-propagation is initialised by a forward pass of xi through the network.  The 

set of all weights ω is initialised and the predicted outputs for yi are calculated.  

The initialisation of the weights can be done using a random initialiser.  

 

From the definition of a cost function in equation (2-14) the error, Ei for each 

data point, i over l output variables can now be defined as: 

Ei = ∑
j=1

l
εj(xi,ω)         (2-103) 

The object is to find the derivative of Ei with respect to the weights, ω in order to 

be able to proceed with an optimisation algorithm to minimise Ei.  It can be 

recognised that Ei depends on ωqp via gq and by the chain rule: 

∂Ei
∂ωqp

 = ∂Ei
∂gq

 ∂gq
∂ωqp

 = δq zp        (2-104) 

A useful notation has been introduced here where the nodal error is defined as 

δq = ∂Ei
∂gq

           (2-105) 

Equation (2-101) has been used to obtain: 

zp = ∂gq
∂ωqp

          (2-106) 

Thus, in order to calculate the derivatives in (2-104) all that is needed is to 

obtain the value of δq for each hidden and output node.  From the definition in 

(2-104) and from (2-102) with j substituted for q the calculation of δj at the 

output layer becomes: 
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δj = ∂Ei
∂gj

 = φ'(gj) 
∂Ei
∂yj

          (2-107) 

The chain rule can be used in order to calculate δq for the hidden node: 

δq = ∂Ei
∂gq

 = ∑
j
  ∂Ei

∂gj
 ∂gj
∂gq

       (2-108) 

Here the implication is that any change in gq gives rise to a change in Ei 

through a change occurring in gj.  It should be noted that gj could be from an 

output node or any other hidden node.  Equation (2-105) can now be 

substituted into (2-108) and by using (2-101) and (2-102) the back-propagation 

formula is obtained as: 

δq = φ'(gq) ∑
j
 ωjqδj          (2-109) 

A back-propagation pass is thus summarised as: 

• Forward propagate an input vector, xi through the network using (2-101) 

and (2-102). 

• Evaluate δj for all output nodes using (2-107). 

• Back-propagate all of δj using (2-109) and obtain δq for each hidden node. 

• Calculate the error function derivatives using (2-104). 

 

The derivatives of the total error function are then obtained by repeating the 

steps above for each data point pair xi,yi and then summing over all the data 

points: 

∂E
∂ωqp

 = ∑
i=1

n

 ∂Ei
∂ωqp

        (2-110) 

The back-propagation pass described above is repeated, each repeat known 

as an epoch.   

2.11.2 Updating the Weights 

During each epoch the weights are updated using a non-linear optimisation 

algorithm, the simplest one being that of the gradient descent method 
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described in section 2.10.2.  For batch training the weight updates are therefore 

obtained by: 

ωqp|t = ωqp|t-1 + ∆ωt-1 = ωqp|t-1 - η∑
i=1

n
δiqzip       (2-111) 

This learning rule is known as the Widrow-Hoff rule. 

 

The partial derivatives calculated from the back-propagation algorithm can also 

be used directly to form the Jacobian matrix, J.  The Levenberg-Marquardt 

algorithm (Hagan [1994]), which is the Marquardt algorithm adapted for training 

neural networks can then be used for adapting the weights (see section 2.10.3).  

This is much more efficient than the Widrow-Hoff rule.  However, the 

Levenberg-Marquardt method is highly memory intensive and is subsequently 

better suited for the training of smaller data sets.  Convergence of the 

Levenberg-Marquardt algorithm is extremely quick and accurate. 

 

2.12 Radial-Basis Functions (RBF) 

Radial basis functions (RBF) represent another major class of the neural 

network model.  Here the distance between the input vector and a prototype 

vector known as a node centre determines the activation function.  Radial basis 

functions have their origins in the exact interpolation problem where every input 

vector is to be mapped exactly onto the corresponding target vector. 

 

For exact interpolation, n basis functions of the form φ(||x – xi||) are used for the 

mapping from an m-dimensional space in X onto a 1-dimensional space in y.  

Here  ||x – xi|| is usually the Euclidean distance between any input vector, xT 

and a data point, xi
T from a set of n data points in X.  The form of the non-linear 

function φ will be discussed below. The following mapping therefore represents 

exact interpolation (Bishop [1995]): 

f(x) = ∑
i=1

n
ωiφ(||x – xi||)        (2-112) 
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Here the ωi for i = 1,2,…,n are the weights and can be obtained by the 

projection, 

ω = Φ-1y          (2-113) 

where Φ is an invertible n×n matrix of elements φ(||x – xi||).  For this problem it 

has been shown that the interpolation is relatively insensitive to the form of the 

non-linear function φ (Bishop [1995]).  Several forms of the basis function have 

been suggested, the most common one being that of the Gaussian, 

φ(x) = exp






-(x - µ)2

2σ          (2-114) 

Here σ is the parameter that controls the smoothness of the interpolation 

function f and µ is some centre.  The Gaussian is a localised function with the 

properties, φ → 0 as |x| → ∞.  Another commonly used function is the thin-plate 

spline function, 

φ(x) = (x - µ)2 ln(x - µ)        (2-115) 

 

A number of modifications to the exact interpolation problem have been 

introduced in order to obtain the neural network model.  These modifications 

introduce an interpolation function in which the number of basis functions is 

determined by the complexity of the function rather than the number of data 

points present.  These modifications include: 

• The number of basis functions, H need not equal n, i.e. H ≤ n.  Each basis 

function effectively becomes a hidden node with a Gaussian transfer 

function. 

• The centres of the basis functions are no longer restricted to the input 

data vectors and may be determined during the training process. 

• The width/spread parameter, σ of each Gaussian transfer function can be 

unique. 

• A bias term is included in each output node in order to compensate for 

differences in the data means of the target y-data and the outputs of the 

transfer functions or nodes. 
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In this text the Gaussian transfer function is used as basis function due to its 

popularity in literature and, in general, it was found to produce slightly better 

results on dummy data sets.  The Gaussian can now be simplified into a form 

where the 2 in equation (2-114) is omitted due to the fact that the smoothness 

parameter is adjusted uniquely for each transfer function in the network and the 

presence of a constant is thus trivial.  The Gaussian function is thus: 

φ ir(xi) = exp






-||xi - cr||2

ρ2
r

        (2-116) 

Here ρ is known as the spread parameter and cr is an m×1 centre. For output 

variable, j and data point, i the general form for RBF neural networks can now 

be written as: 

yij = ∑
r=1

H
ωjrφ r(xi) + βj + ei        (2-117) 

The linear parameters, ω and β are known as weights and biases respectively 

in order to maintain neural network conventions.  For multivariate y variables 

and for φ ir(xi) the elements of Φ the general form can now be written as 

Y  =  ΦΩ   +   1βT  +   E       (2-118) 

n×l    n×H×H×l    n×1×1×l    n×l  
 

The RBF neural network only has a single hidden layer.  This architecture is 

graphically illustrated in Fig. 2-5.  Hartman [1990] gives a formal proof that RBF 

neural networks using Gaussian transfer functions and this architecture can be 

used for universal approximation. 

 

A two-stage training process usually deals with the training of RBF neural 

networks.  The first stage can be implemented using an unsupervised or a 

supervised RBF centre selection algorithm. The second stage is a supervised 

linear regression from the hidden node outputs using singular value 

decomposition (SVD) in order to avoid ill-conditioned or singular matrices.  In 

this text the orthogonal least squares (Bishop [1995]) and K-means (Haykin 
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[1999] and Bishop [1995]) algorithms are considered as supervised and 

unsupervised first stage selectors of RBF centres, respectively. 
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Fig. 2-5 Architecture of the RBF neural network.  Each line from a hidden node 

to the output node represents a weight. 

 

2.12.1 Training by K-means 

The selection of suitable centres for a RBF being trained on a set of data can 

be done by random selection.  An improvement on this is to use the K cluster 

means obtained from clustering the input data, X as described in section 2.7 

above.  This method is very fast and not very memory intensive, however no 

output data, Y is ever seen for the selection process.  The disadvantage of this 

is that the result of the training is highly sensitive to the initialisation of K-means 

algorithm.  In order to maintain consistent results a fixed method of initialisation 

is suggested in this text.  An initialisation algorithm that aims to find the first K 

furthest points within X is used.  The results from this method were found to be 

superior to a random initialisation of the K-centres. 

 

Once the K centres (note: K = H) have been chosen the spread parameters, ρ 

need to be determined in such a way that they do not overlap too severely and 
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that they are not too pointy or too flat.  A discussion of this problem influencing 

a RBF network is given in Bishop [1995]. The N-nearest neighbours heuristic 

can be used to find a suitable solution: 

ρr = 






1

N ∑
n=1

N

 ||cr - crn||2
1/2

        (2-119) 

The hidden node outputs can now be calculated using equation (2-116).  The 

pseudo inverse of Φ can now be obtained by making use of SVD on the matrix 

as described in section 2.3 above. 

2.12.2 Training by Orthogonal Least Squares (OLS) 

This method can be regarded as a more principled approach due to its 

supervised method of choosing RBF centres.  The OLS algorithm developed by 

Chen [1991] chooses the RBF centres one-by-one in an iterative manner.  This 

is done so that during each step the chosen centre maximises the increment to 

the explained variance of the desired output.  An added advantage of this 

method is that the second stage of the training does not suffer from any ill-

conditioned numerical problems.  The chosen RBF centres do however come 

from the original data used for training and it may therefore be expected that 

large amounts of data are needed for this training algorithm.   

 

Equation (2-117) can be reduced to a special case linear regression model for 

one output variable where the hidden node outputs are regarded as the 

regression model inputs, hence φr(xi) = vir: 

yi = ∑
r=1

H
virωr + ei          (2-120) 

This is best written in matrix notation as: 

y = Vω + e          (2-121) 

From linear regression analysis in section 2.2.1 above and section 2.5 it is clear 

that the sum-square of Vω explains part of the output energy that is contributed 

by the regressors stemming from the chosen RBF centres.  However, some of 
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these regressors are generally correlated and it is not clear which regressor 

contributes to this energy.  OLS now involves the transformation of V into a set 

of orthogonal vectors.  This makes it possible to calculate the individual 

contribution by each regressor and hence the contribution by each RBF centre 

to the desired output energy.  The objective is therefore to obtain the 

orthogonal set of regressors, Ψ in the same original space, V such that: 

y = Ψθ + e          (2-122) 

where 

θ = ( )ΨTΨ -1ΨTy         (2-123) 

The Gram-Schmidt method can be used to orthogonalise V.  The objective here 

is to select H candidate regressors out of a possible total of n.  A criterion for 

choosing the candidates can be obtained by first of all investigating the sum-

square of y, 

yTy = ∑
r=1

H
θ2

rψr
Tψr + eTe        (2-124) 

If the data in y and Ψ is mean-centred this equation explains the model and 

total variance as in equation (2-45).  From the expression it is therefore clear 

that θr
2ψr

Tψr explains the increment to the explained output variance influenced 

by ψr.  The error reduction ratio (ERR) due to the introduction of ψr is now 

defined as 

ERRr = 
θ2

rψ r
Tψr

yTy          (2-125) 

This ratio can now be used to find a subset of significant regressors and thus 

RBF centres in a forward regression manner.  The regression selection 

procedure is now explained in the following algorithm: 

• Step 1  (r = 1,2,…,H) 
Gram-Schmidt orthogonalisation: 

ψ 1
 (r) = vr  

Calculate ERR: 
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θ 1
 (r) = 

( )ψ 1
 (r) Ty

( )ψ 1
 (r) T ψ 1

 (r) 

ERR(r)
1  = 

( )θ 1
 (r) 2 ( )ψ 1

 (r) T ψ 1
 (r)

yTy    

Find: 

ERR(r1)
1  = max{ } ERR(r)

1   

Select 

ψ 1 = ψ 1
 (r1) = vr1

  and thus c 1 = c 1
 (r1)  

 

• Step t  (t = 2,3,…,H and r = 1,2,…,H where r ≠ r1,…,r ≠ rt-1) 
Gram-Schmidt orthogonalisation: 

α lt
 (r) = 

ψ l
Tvr

ψ l
Tψl

   (for 1 ≤ l < t) 

ψ t
 (r) = vr - ∑

l=1

t-1
 α lt

 (r)ψl   

Calculate ERR: 

θ t
 (r) = 

( )ψ t
 (r) Ty

( )ψ t
 (r) T ψ t

 (r) 

ERR(r)
t  = 

( )θ t
 (r) 2 ( )ψ t

 (r) T ψ t
 (r)

yTy    

Find: 

ERR(rt)
t  = max{ } ERR(r)

t   

Select 

ψ t = ψ t
 (rt) and thus c t = c t

 (rt)  

• The procedure is terminated at the Hth step when the desired number of 

hidden nodes is obtained or the model sum-square error has reached a 

threshold value. 

 

In summary, firstly a pool of all n data points is considered as potential RBF 

centres.  Secondly, a value for each spread parameter is calculated as will be 

discussed below.  Thirdly, a predefined number of hidden nodes or RBF 
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centres, H is extracted from the training data points step by step according to 

the OLS algorithm.  Finally, a linear regression step (using SVD) mapping the 

training data outputs onto the hidden node outputs, including bias, completes 

the training.  SVD may be omitted here due to the parsimonious selection of 

centres by the OLS algorithm. 

 

In practice there is no need to mean-centre y or ψ in order to obtain the 

explained variance in ERR as this does not influence the maximisation process.  

From the OLS algorithm above it becomes clear that the H most parsimonious 

RBF centres to the outputs can be selected.  However, much can still be said 

about the calculation of the Gaussian spread values. 

 

OLS training of radial basis function networks is usually applied to smooth 

function interpolations where the inputs are equally incremented (e.g. time 

series) and a single spread value for all centres can then be calculated using 

equation (2-119).  For better results Beale [2000] suggest a formula that 

ensures overlap between the RBF centres in such a way that good interpolation 

results can be obtained: 

ρr = 1
-ln(0.5)






1

N ∑
n=1

N

 ||cr - crn||        (2-126) 

This equation ensures that the rth RBF ‘fires’ a value of 0.5 and above for any 

points within the average distance that cr is to its N nearest neighbours.  The 

spread values influence the outcome of the hidden nodes and therefore the 

regressors in (2-120) as well.  Because these spread values are predefined 

before the OLS decision algorithm is applied it is suggested in Beale [2000] that 

the spread values should be varied and the network retrained until a good 

result is obtained.  This works well for input values incremented at constant 

intervals but what happens when this is not the case?  If equation (2-126) is 

used to calculate the spread values of input data, which is erratically 

distributed, it may be found that after a certain number of hidden neurons have 

been chosen the spread values do not efficiently cover the input space.  This is 

where the K-means method has an advantage.  It therefore seems that for 
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erratically spaced input data there is a trade-off between the K-means and OLS 

methods as far as RBF centre choice and spread value calculation are 

concerned. 

 

In this text an algorithm is therefore suggested whereby the spread values can 

be adjusted iteratively until the input space is more evenly and therefore more 

efficiently covered by the Gaussian functions.  The algorithm is given here for 

modelling the n×m input data, X on a single output variable, y: 

 

• Step1  
1. Consider all n data points of X as potential RBF centres and calculate the 

n×n matrix, D, of mutual distances between the data points with 

dkk' = ||xk - xk'||    (for k = 1,2,…,n and k’ = 1,2, ,…,n) 

2. Use equations (2-119) or (2-126) with N predefined nearest neighbours to 

calculate the n×1 vector, ρ1 of Gaussian spread parameters for each of the 

RBF centres. 

3. Calculate the n×n matrix of hidden node outputs, Φ1 using equation 

(2-116). 

4. Use V1 = Φ1 as inputs for the OLS algorithm and obtain the H candidate 

centres by maximum contributions towards explained variance. The value 

of H is pre-determined.  C1 now becomes the H×m matrix of H RBF 

centres. 

5. Use C1 to calculate the new n×H matrix, V1 and regress y on V1 with bias.  

This is done using equation (2-27) to obtain the weights, ωrl in the H×l 

matrix, Ω1 and the l×1 bias vector, β1. 

6. Calculate SSE1 using equations (2-19) and (2-43). 

7. Calculate H new, adapted spread parameters with equations (2-119) or 

(2-126) by using the RBF centres obtained in 4.  In H×1 vector, χ1 store the 

indices of the H centres chosen from the original n×m data. 

8. For H < n substitute the spread parameters indexed in χ1 into ρ1 to obtain 

ρ2. 

• Step t ≥ 2  
9. Consider all n data points of X as potential RBF centres as in 1. 
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10. Calculate the n×n matrix of hidden node outputs, Φt using equation (2-116) 

together with ρt. 

11. Use Vt = Φt as inputs for the OLS algorithm and obtain the H candidate 

centres of maximum contributions towards explained variance.  Ct now 

becomes the H×m matrix of H RBF centres. 

12. Use Ct to calculate the new n×H matrix, Vt and regress y on Vt with bias.  

This is done using equation (2-27) to obtain the weights,ωrl in the H×l 

matrix, Ωt and the l×1 bias vector, βt 

13. Calculate SSEt using equations (2-19) and (2-43). Break the loop if  

|SSEt -SSEt-1|
SSEt

 = 0    

14. In Ct find the νt centres that were not present in Ct-1 and add their data 

point indices to complete the (H+ν1+…+νt-1+νt)×1 vector, χt. 

15. Calculate νt new, adapted spread parameters with equations (2-119) or 

(2-126) (using N predefined nearest neighbours) by considering the 

(H+ν1+…+νt-1) candidate centres from the t-1 previous iterations as the 

possible nearest neighbours. 

16. For νt < n substitute the spread parameters into ρt to obtain ρt+1.  

17. Go to 9 

 

Originally, step 7 in the algorithm was used for t ≥ 2 in the place of steps 14 

and 15.  This however led to oscillating SSE values.  The adaptations in steps 

14 and 15 ensure that SSE converges to a constant value.  This convergence 

is due to the constant adaptation of the spread parameters from a set of 

candidate values.  These values are returned in the full set in n×1 vector, ρ at 

the indices corresponding to the data points used as candidate centres.  This 

ensures that even though changes are made to some of the spread values 

belonging to the candidate centres the algorithm can still see if it can do better 

and converge from a candidate set larger than H centres.   

 

The algorithm above can thus be regarded as an adaptive spread OLS 

algorithm (ASOLS).  The algorithm still requires predefined nearest neighbour 

values that can vary from one training session to another.  These values, 
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however need to be varied for K-means training as well and are much more 

intuitive to choose than the actual spread parameter values.  Results from a 

small data set have shown that this algorithm fairs better than the K-means 

training method and the simple OLS method.  The application of this model to 

the data in this text can be observed in Chapter 4 and Chapter 5. 

 

2.13 Partial Least Squares (PLS) 

In the discipline of chemometrics chemists make use of statistical methods to 

help them make quantitative measurements of chemical samples by use of 

near-infrared (NIR) spectroscopy.  If it is known what the exact chemical 

composition of a sample is the varying percentage composition of each species 

can be modelled using Beer’s law.  Beer’s law simply states that the 

absorbance at a specific wavelength in the NIR band is a linear function of the 

chemical concentration of a pure species. This application requires that pure 

reference samples first be scanned by NIR at varying wavelengths and that the 

absorptivity-path length coefficients be obtained from the measurements.  For 

mixtures of different chemical species the peaks of the NIR spectra are 

influenced additively with the addition of any new chemicals. 

 

For large amounts of data the application above can be tedious and can be 

dealt with in a multivariate manner by simply applying classical least squares 

(CLS) as described in equation (2-32) (Haaland [1988] and Lorber [1987]).  

Here Y contains the n absorbance values at l wavelengths and X contains the n 

concentrations for m chemical species.  The absorptivity-path length 

coefficients are then obtained by projecting Y onto X.  The problem with this 

approach is that it is assumed that the errors lie in the measurement of the 

spectra and not in the measurement of the concentrations.  This leads to the 

problem that all the chemical species in Y must be known.  The advantages, 

however, are that CLS is a full spectrum method (no wavelengths are left out) 

and qualitative information can be obtained by examining the influences of the 

individual parameters. 
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Another approach is that of inverse least squares (ILS) (Haaland [1988] and 

Lorber [1987]).  Here Y contains the n concentration values for l chemical 

species and X contains the n absorbance values for the m wavelengths.  The 

assumption here is that the measurement error lies in the concentrations.  This 

has the advantage over CLS in that not all the chemical species need to be 

known in order to infer on the species of interest.  The problem of ILS is that not 

all frequencies can be used (not a full spectrum method) as there need to be 

more data samples than input variables (n>m).  Another problem is that there 

may be a large amount of correlation in the absorbance data that needs to be 

dealt with. 

 

In order to combine the advantages of both the CLS and ILS methods and at 

the same time avoid some of their disadvantages principal components 

regression (PCR) was applied (Haaland [1988] and Martens [1989]).  In the 

application of predicting the chemical compositions from the NIR absorbance 

values the primary dimensions of the input data are first of all retained in the 

scores matrix, T.  The chemical composition data in Y is then projected onto the 

low dimensional data in T.  PCR is thus a full spectrum method like CLS with 

the added advantage of ILS that not all chemical species in Y need to be 

known.  PCR thus compensates for noise in both input and output data.  The 

potential problem of PCR is that the primary dimensions best representing the 

spectral data may not be optimal for the concentration prediction (Haaland 

[1988]).  It is therefore desirable to be able to obtain loadings so that more 

predictive information is contained within the primary dimensions.  In order to 

achieve this the PCA NIPALS algorithm as mentioned in section 2.8 can be 

modified to form the linear PLS algorithm. 

2.13.1 The Linear PLS Algorithm 

In 1966 Herman Wold (Wold [1966]) pioneered the NIPALS algorithm for partial 

least squares (PLS).  The NIPALS algorithm, which is thoroughly explained and 

illustrated in Geladi [1986], is considered as the most intuitive algorithm.  This 

becomes evident when considering non-linear modifications to the algorithm.  

Numerous variations on the linear PLS algorithm exist.  The so-called PLS1 

algorithm for single dependent variable modelling is given in Lorber [1987], 
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Martens [1989] and Haaland [1988].  For multivariate model outputs the PLS2 

(Martens [1989]) algorithm is closely related to the NIPALS algorithm.  A 

computationally more efficient PLS algorithm is given by Lorber [1987]. 

 

The objective of the NIPALS algorithm is to project in- and output matrices X 

and Y onto a subset of latent variables (with dimension h), T and U, which are 

referred to as the in- and output scores, respectively.  The output scores can 

now be fitted to the input scores by linear least-squares regression in order to 

obtain the so-called inner linear relationship coefficients, ba for a = 1,2,…,h: 

ua = taba + ea          (2-127) 

Here the h primary latent dimensions explaining the majority of the model 

variance are retained in a similar manner to PCA.  The decompositions of X 

and Y can be defined, as in PCA, using the loading vectors p and q such that: 

X = ∑
a=1

h

 tapa
T + F         (2-128) 

Y = ∑
a=1

h

 ûaqa
T + E         (2-129) 

Here û denotes the predicted scores of u in (2-127). The matrices, F and E are 

the resulting residual matrices when a model with h ≤ min(n,m) latent 

dimensions is used for the approximation of X and the prediction of Y.  Usually 

the remaining latent dimensions explain the random noise in the data (see 

discussion in section 2.6).  The NIPALS algorithm lies at the heart of PLS.  It 

iteratively extracts a latent variable pair as a linear combination of the input and 

output variables. In the following step the inner relationship of scores is 

obtained and the remaining information in X and Y is used to extract the next 

latent dimension.  The complete algorithm is thus: 

 

0. Mean centre or standardise the inputs and outputs, X and Y. Initialise the 

algorithm by setting the output scores, u equal to a column of Y.  For each 

latent dimension, a = 1,2,…h follow steps 1 to 12 below: 
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1. Calculate the input weights, w, by regressing X on u: 

wT = u
TX

uTu  

2. Normalise w to unit length: 

w = w
||w||  

3. Calculate the input scores: 

t = X w
wTw  

4. Calculate output loadings by regressing Y on t: 

qT = t
T Y
tT t   

5. Normalise q to unit length: 

q = q
||q||  

6. Calculate new output scores u: 

u = Y q
qTq  

7. Check for convergence on w for some δ arbitrarily small: 

| |||wt-1|| - ||wt||
||wt||  ≤ δ  

If yes go to the next step, else start iteration t+1 at step 1. 

8. Calculate the input loadings, p by regressing X on t: 

pT = t
TX

tT t  

9. Calculate the inner linear regression coefficient b: 

b = t
T u
tT t   

10. Calculate the input residual matrix: 

F = X - t pT  

11. Calculate the output residual matrix: 

E = Y - û qT  

12. If additional PLS latent dimensions are required replace X and Y with F 

and E respectively and return to step 1 for calculation of latent dimension 

a+1. 
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In Baffi [1999a] it is further shown that the n×h scores matrix, T can be related 

to the input matrix, X by 

T = XW'          (2-130) 

where W’ is obtained from:  

W' = W(PTW)-1          (2-131) 

The practicality of this expression lies in the fact that T can be expressed in 

terms of W without having to breakdown X into its residuals for each latent 

dimension.  Equation (2-130) can now be used to obtain the overall regression 

coefficients for PLS by 

Ŷ = ÛQT = XW'BQT = XBPLS       (2-132) 

where 

BPLS =  W(PTW) -1BQT       (2-133) 

It can be shown further that by retaining all latent dimensions, h=k, the linear 

PLS regression model converges towards the multiple/multivariate linear 

regression model where 

B =  (XTX) -1XTY         (2-134) 

 

The overall PLS procedure can thus be seen as being two linear outer 

mappings between the in- and output variables and their corresponding scores, 

and a linear inner mapping between each subsequent pair of latent variables.  

The relationship between the outer and inner mappings is illustrated in Fig. 2-6. 

 

In the past, PLS has shown to be a powerful regression technique for problems 

where the data is noisy, highly correlated and where there are only a limited 

number of observations.  The power of PLS lies in its decomposition of a 

multivariate regression problem into a number of uncorrelated univariate 

regression analyses. 

 

Each pair of input-output latent variables accounts for a certain amount of 

variability in both the input and output data sets, X and Y and as mentioned 

Chapter 2 - Methods of Exploratory Data Analysis       57 



 

earlier the higher order latent dimensions are usually associated with random 

noise.  An appropriate number of latent dimensions can therefore be identified 

from cross-validation as described in section 2.6.  Here the addition of each 

latent dimension adds to the overall model complexity. 
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Fig. 2-6 A schematic representation of the PLS model.  It illustrates the 

relationship between the outer and inner models. 

 

2.13.2 The Non-linear Neural Network PLS Approach 

The application of linear PLS to inherent non-linear data relationships may lead 

to problems regarding the omission of the higher order (or minor) latent 

dimensions.  These minor latent dimensions may contain significant information 

about the non-linear nature of the problem.  Non-linear structures may be 

modelled using a combination of latent variables, which include information 

from both higher and lower order latent dimensions calculated from linear PLS.  

It therefore becomes important to be able to retain the maximum amount of 

relevant information during each latent extraction in order to optimise the choice 

of latent dimensions to be used in the final model. 
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A number of non-linear PLS algorithms have been proposed but the seminal 

work by Wold [1989], which led to the development of the algorithm by Baffi 

[1999a], is the more conducive approach.  Wold [1989] proposed that a 

quadratic polynomial be used to fit the functional relation between each pair of 

latent variables (QPLS).  The NIPALS algorithm in section 2.13.1 can thus be 

modified by replacing equation (2-127) with:  

ua = ba0 + taba1 +  ta
2ba2  + ea       (2-135) 

Step 9 in the NIPALS algorithm now becomes the multiple regression projection 

as explained in section 2.2.1.1.   

 

The main drawback of merging non-linear inner regression models within the 

linear PLS outer framework is that the use of a non-linear function influences 

both the inner and outer mappings of the PLS algorithm.  If the inner mapping is 

highly non-linear this approach may no longer be acceptable.  This problem 

was addressed by Wold [1989] by updating the weights in w using a 

complicated, non-intuitive Taylor series linearisation technique.  Wold [1978] 

did however conclude that weight updating could be omitted if the inner 

relationship is slightly non-linear. 

 

A drawback with using a quadratic function for the inner mapping is that a non-

linear functional form is assumed for the inner relationship.  Qin [1992] 

suggested a generic non-linear PLS approach (NNPLS) using a feed-forward 

neural network with a single sigmoidal hidden layer for the inner relationship of 

each pair of latent variables.  The advantage of the neural network is that it is a 

universal approximater and does not require prior knowledge of a functional 

form.  For a sigmoidal neural network the functional relationship, for ta set equal 

to Xawa, in its explicit form becomes (see equation (2-100)): 

ûia = f(xiaw) = ∑
r=1

H

 ω2rφ r( )ω1rxia
Twa + β1r  + β2      (2-136) 

Here the first index number on the left of the neural network weights indicates 

the layer number.  This simplified notation is made possible because there are 

only single input and output variables involved.  The latent dimension index, a= 
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1,2,…h can be omitted because it can be recognised that this equation, within 

the weight updating algorithm, applies to one latent dimension at a time.  Step 9 

of the NIPALS algorithm in section 2.13.1 now becomes a neural network-

training step to obtain the neural network weights, ω.  Qin [1992] did not use 

weight updating of w, which may be a drawback when dealing with highly non-

linear inner mappings. 

 

Two other neural network PLS approaches are those of Holcomb [1992] and 

Malthouse [1997].  Their approaches, however only compare qualitatively with 

the generic PLS algorithm and essentially assume an overall neural network 

structure. 

 

Baffi [1999a] proposed an error-based input weights updating procedure using 

a Taylor series expansion, which is an improvement on the weight updating 

procedure originally suggested by Wold [1989].  In Baffi [1999b] this weight 

updating procedure was then later also applied using the neural network 

(EBNNPLS) of Qin [1992] as inner mapping function.  The error-based 

procedure assumes that the non-linear function used to fit the inner model is 

smooth and differentiable with respect to the input weights, w.  The algorithm 

will be developed here with an inner mapping using a sigmoidal neural network 

with r nodes in a single hidden layer as in equation (2-136). 

 

Equations (2-89) to (2-91), in conjunction with equation (2-99) can be applied to 

equation (2-136) in order to obtain the derivatives (Baffi [1999b]):  

jik = 
∂f(xi

Tw)
∂wk

 = ∑
r=1

H

  ω2rω1r [ ]1 - φ 2( )ω1rti + β1r  xik     (2-137) 

Equation (2-92) is used to obtain the error-based weight updating equation: 

∆w = (JTJ)-1JT e         (2-138) 

 

The NIPALS algorithm can now be modified in such a way that the input 

weights are updated at each iteration within the algorithm: 
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0. Mean centre or standardise the inputs and outputs, X and Y. Initialise the 

algorithm by setting the output scores, u equal to a column of Y.  For each 

latent dimension, a = 1,2,…h follow steps 1 to 19 below: 

1. Calculate the input weights, w, by regressing X on u: 

wT = u
TX

uTu  

2. Normalise w to unit length: 

w = w
||w||  

3. Calculate the input scores: 

t = X w
wTw  

4. Train the sigmoidal neural network on t and u to obtain the neural network 

weights: 

(ω1r,ω2r,β1r,β2)  for r = 1,2,…H 

5. Calculate the non-linear prediction of u: 

ûi = ∑
r=1

H

 ω2rφ r( )ω1rxi
Tw + β1r  + β2   

6. Calculate output loadings by regressing Y on û : 

qT = û
T Y

ûTû
  

7. Normalise q to unit length: 

q = q
||q||  

8. Calculate new output scores, u: 

u = Y q
qTq  

9. Calculate the Jacobian, J and the weight updates, ∆w in equations 

(2-137) and (2-138): 

10. Calculate the updated weights: 

wt = wt-1 + ∆w  

11. Normalise w = wt to unit length: 
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w = w
||w||  

12. Calculate the new input scores, t: 

t = X w
wTw  

13. Check for convergence on w for some δ arbitrarily small: 

| |||wt-1|| - ||wt||
||wt||  ≤ δ  

If yes go to next step, else start iteration t+1 at step 4. 

14. Calculate the input loadings, p by regressing X on t: 

pT = t
TX

tT t  

15. Train the sigmoidal neural network on t and u to obtain the neural network 

weights: 

(ω1r,ω2r,β1r,β2)  for r = 1,2,…H 

16. Calculate the non-linear prediction of u: 

ûi = ∑
r=1

H

 ω2rφ r( )ω1rxi
Tw + β1r  + β2   

17. Calculate the input residual matrix: 

F = X - t pT  

18. Calculate the output residual matrix: 

E = Y - u ̂qT  

19. If additional PLS latent dimensions are required replace X and Y with F 

and E respectively and return to step 1 for calculation of latent dimension 

a+1. 

 

In this text two small modifications are made that enhance the speed of 

convergence of the error-based weight-updating algorithm by Baffi [1999b].  

The first modification is to replace steps 0 to 3 by steps 0 to 7 of the linear 

NIPALS algorithm for the specific latent dimension.  In most cases this method 

produced a slightly better estimate for the initial set of in- and output scores, t 
and u.  This modification is feasible as the linear PLS algorithm is not 

computationally intensive.  The second modification is to include the learning 

rate, ϕ in equation (2-138) as is described in section 2.10.1.   
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The NNPLS and EBNNPLS algorithms are illustrated in Fig. 2-7.  The two 

algorithms differ in their outer model mappings as seen in the algorithms above. 
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Fig. 2-7 The inner and outer mappings of the NNPLS and EBNNPLS 

algorithms illustrated. 

 

The choice of training algorithm for the sigmoidal neural network is the 

Levenberg-Marquardt algorithm (see section 2.11.2).  The training data sets are 

very small due to the single in- and output variables being trained on.  

Convergence is therefore quick and accurate.   

 

Baffi [1999b] also applied a radial basis function network to the inner PLS 

mapping (RBFPLS or EBRBFPLS).  For a RBF equation (2-136) becomes, 

ûia = f(xiaw) = ∑
r=1

H

 ωr exp






-||xia

Twa - cr||2

ρ2
r

 + β     (2-139) 

The derivatives for latent dimension, a=1,2,…,h of this function become: 
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jik = 
∂f(xi

Tw)
∂wk

 = ∑
r=1

H

  ωr exp






-||ti - cr||2

ρ2
r

 








-2 
||ti - cr||2

ρ2
r

 ( )± xik    (2-140) 

for which the following conditions apply: 

+xik  if (ti – cr) > 0 

-xik if (ti – cr) < 0 

 

Steps 4 and 15 in the error-based weight-updating algorithm above can now be 

replaced by obtaining (cr,ρr,ωr,β) from training a RBF on t and u. 

 

The drawback of building NNPLS or RBFPLS models is that of selecting the 

number of hidden nodes to be used in the neural network architecture.  Baffi 

[1999b] suggests using an exhaustive search over the number of hidden nodes.  

Akaike’s final prediction error (FPE) can be used to identify the best network 

architecture (Ljung [1987]): 

FPE = 1 + M/n
1 - M/n  MSEP        (2-141) 

 

Here the total number of neural network parameters, M can be set equal to 

3H+1.  The total number of data points, n is chosen from the training data.  The 

mean-square error of the validation data set, MSEP is calculated from the 

actual and predicted output scores, û and u respectively.  The neural network 

model with the number of hidden neurons, H corresponding to the minimum 

FPE-value is used to model the inner relationship of the particular latent 

dimension. Akaike’s FPE penalises models with increased complexity.  This 

provides a conservative, more robust measure of determining the adequate 

model complexity so as to avoid over-training the model. 

 

In order to be able to make predictions on unseen data the in- and output 

scores need to be evaluated for the validation data.  The scores for the 

validation set can be calculated as follows: 

ta
val  = Fa-1

val  wa         (2-142) 
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ua
val  = Ea-1

val  qa         (2-143) 

Here the values of F and E are calculated from: 

Fval
a  = Fval

a-1 - t
val
a   p

T
a        (2-144) 

Eval
a  = Eval

a-1 - û
val
a   q

T
a        (2-145) 

 

Qin [1992] went on to prove that the NNPLS (and therefore also EBNNPLS) 

algorithm is equivalent to a multi-perceptron feed-forward neural network but is 

specifically trained by the NNPLS (or EBNNPLS) algorithm.  He showed that 

the NNPLS algorithm using single hidden-layered sigmoidal feed-forward 

neural networks as inner models could be transformed into the global functional 

form a single hidden-layered sigmoidal neural network.  The number of hidden 

nodes of this model subsequently equals the total number of hidden nodes 

added up over all inner models of the latent dimensions obtained from NNPLS-

training.  An analogous relationship cannot be obtained for RBFPLS (or 

EBRBFPLS) and a RBF neural network. 

 

2.13.3 The Advantages of Building PLS Models 

Feed-forward multi-layer perceptron neural networks are extensively applied in 

practice due to their ability to approximate almost any non-linear relationship. 

Furthermore, it may be perceived that because an iterative gradient–related 

training algorithm is usually used to optimise the cost function the neural 

network is unaffected by correlations in the input data.  Baffi [1999b] explains 

that in practice neural networks are affected by correlations in the input data 

and may fail to provide a robust solution.  The failure of the network to provide 

an optimal solution is due to the fact that correlated variables lead to numerous 

combinations of network weights that can minimise the cost function and still 

give virtually the same answer.  In these circumstances neural networks 

therefore have the tendency to enlarge the noise in predictions.  In chemical 

processes it is often the case that some variables are simply different 

reflections of the same event. 
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A solution to the problem of dealing with highly correlated input data is to make 

use of PCA in order to reduce the input data to a lower dimensional set of 

uncorrelated scores.  These features are then used as inputs for building a 

neural network model.  The problem with PCA is that the directions of greatest 

variability within the input data are identified and applied as independent 

dimensions without considering the correlations that exist between the input 

and output variables.  In practice, some variables may show large variability 

within the input data but are weakly correlated with the output variables.  As a 

consequence some variables that are highly correlated with the output 

variables may be more significant in the lower order principal components, 

which may then be discarded.  PLS focuses on extracting principal components 

or latent dimensions by maximising the correlations between in- and output 

data.  In this way it is certain that the bulk of the information will be retained in 

the primary latent dimensions. 

 

The use of neural networks within the PLS framework bears numerous benefits 

over the direct neural network approach.  A multiple input-multiple output 

(MIMO) network regression is reduced to numerous single input–single output 

(SISO) regressions.  This means that each neural network model within the 

PLS framework makes use of much fewer weights and subsequently the error 

surface consists of fewer local minima.  These two factors avoid the over-

parameterisation problem that can affect neural network models built from 

multiple in- and outputs.  The NNPLS and EBNNPLS methods are thus less 

sensitive to dealing with small or scarce data sets.   

 

The overall effect of NNPLS is therefore increased robustness and smaller 

prediction variance as a result of reduced sensitivity to correlations in the input 

data and the SISO regressions used in the inner mapping of the PLS 

framework. 

 

2.14 Pseudo-degrees of Freedom 

In section 2.5.1 it was shown how the sample mean-square error can be 

calculated by dividing the SSE by the degrees of freedom, n-df.  Here df is the 
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number of degrees of freedom of the regression model.  For the case of linear 

models this is simply the number of regression parameters (the bias included) 

or alternatively the number of input variables to the model (m+1). 

 

In the case of non-linear models the total number of parameters is commonly 

used as an estimate for the model degrees of freedom.  It is an estimate as the 

SSE of the training data is not a global minimum (see section 3.1.3) and the 

regression parameters are obtained by an iterative procedure as opposed to 

Gaussian elimination.  For sparse data sets and complex models this estimate 

may not be accurate or feasible for that matter as n-df approaches zero. 

 

For h latent dimensions in PLS modelling the choice of df has most commonly 

been (Martens [1989]): 

df = h + 1         (2-146) 

This approach is quoted from the work done by Van der Voet [1999] as being 

‘naïve.’  Van der Voet [1999] subsequently went about finding an expression for 

calculating the pseudo degrees of freedom by first deriving some useful 

relationships under linear modelling conditions.  He makes use of the definition 

of leverage, where the leverages are the diagonal elements of the following 

expression: 

O = X(XTX)-1XT         (2-147) 

The mean leverage is denoted by: 

o− = mn            (2-148) 

Van der Voet [1999] then derived an expression whereby the mean leverage 

can be approximated by: 

o− ≈ 1 - MSEPrs
MSECV          (2-149) 

The value for MSEPrs is defined as the mean-square error of re-substitution per 

output variable.  This is simply equation (2-62) applied to the training data set of 

n independent observed measurements.  It is recommended that MSECV be 
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calculated from a leave-one-out cross-validation on all n data points (Van der 

Voet [1999]).  

 

For linear models df = m and by making use of equation (2-148) the pseudo-

degrees of freedom per output variable, yj are therefore defined as: 

pdf = n




1 - 




MSEPrs

MSECV          (2-150) 

This generalisation is intended for all models that assume identically and 

normally distributed errors as pointed out in section 2.2 for general regression. 

 

2.15 Confidence Intervals 

Any model of a physical system has error associated with its predictions due to 

the uncontrollable or unobservable influences on the system’s outputs.  For any 

regression technique a measure for assessing the reliability of the prediction is 

required.  A popular measure of this reliability is obtained by calculating 

prediction intervals.  These intervals consist of the upper and lower confidence 

limits of the predicted values.  The larger the magnitude of the intervals the less 

precise the prediction becomes.   

 

Several methods for calculating confidence intervals for linear and non-linear 

exist.  The mathematically more precise methods include the likelihood, the 

lack-of-fit, jack-knife and bootstrap approaches (Donaldson [1987]).  

Chryssolouris [1996] developed an approach for calculating intervals for 

predictions from multi-perceptron feed-forward neural networks.  The approach 

is based on the Taylor series approximation and the Jacobian matrix of the 

functional mapping between the in- and output variables.  This approach is less 

accurate, but it has shown to give acceptable results with minimal 

computational effort.  Baffi [2002] used this approach and extended it to the 

linear PLS and the non-linear PLS algorithms.  In this text all confidence 

intervals are calculated using this method pursued by Chryssolouris [1996] and 

Baffi [2002] and a brief description of the mathematical procedure follows 

below. 
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For a general mapping function, f between a set of input variables in X and an 

output variable in y, the prediction output variable is written as: 

y− = f(X,θ)         (2-151) 

The Jacobian matrix, J is defined, as in section 2.10.1, as the collection of 

partial derivatives: 

jir = ∂f(xi,θ)
∂θr

           (2-152) 

The matrix, J, calculated using the training data, therefore consists of n rows 

and a number of columns equal to the total number of model parameters, M.  

The confidence interval is now calculated, given a new input sample, x* 

corresponding to output y*, as follows: 

PI(ŷ*,α) = ŷ* ±  tn-df,1-α/2 MSE ( )1 + j*T (JT J)-1 j*  - sP    (2-153) 

Here tn-df,1-α/2 is the critical value for the student’s t-distribution at the α-

significance level and n-df degrees of freedom.   Chryssolouris [1996] included 

the term, sP as an estimate of variance of the measurement noise, which is the 

difference between the measured observation and it’s true value.  For noiseless 

measurements this term is omitted.   The vector, j* is calculated using equation 

(2-152) for input sample point, x*.  The model degrees of freedom, df can be 

replaced by the pseudo degrees of freedom, pdf, as discussed in section 2.14. 

 

For output variable, yj the functional mapping of a feed-forward neural network 

with a single hidden layer, using the hyperbolic tan-sigmoidal transfer function 

in the hidden layer and a simple linear weighting function in the output layer, 

can be written as: 

ŷj = ∑
r=1

H

 ωjrtanh








∑
k=1

m

 ωrkxk + βr   + βj     (2-154) 

For each data point and output variable, yj the partial derivatives with respect to 

the hidden layer weights can be calculated as follows: 
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∂ ŷj
∂ωrk

 = ωjr









1 + tanh2









∑
k=1

m

 ωrkxk + βr  xk     (2-155) 

The hidden layer weights will therefore contribute m×H columns (number of 

parameters) to J.  The partial derivatives with respect to hidden layer bias 

parameters will contribute H columns to J as follows: 

∂ ŷj
∂βr

 = ωjr









1 + tanh2









∑
k=1

m

 ωrkxk+ βr       (2-156) 

The output layer weights and bias parameters will contribute H columns and 

one column to J, respectively: 

∂ ŷj
∂ωjr

 = tanh








∑
k=1

m

 ωrkxk + βr        (2-157) 

∂ ŷj
∂βj

 = 1          (2-158) 

 

For PLS models Baffi [2002] shows how the Jacobian matrix can be expanded 

into three sets of partial derivatives: 

J = [ ]JP Jθ JQ          (2-159) 

Here each set can be decomposed into simpler subsets of partial derivatives 

computed for each latent dimension and each data sample point of the PLS 

model: 

JP:  ∂ ŷj
∂pka

 = ∂ ŷj
∂ua

  ∂ ua
∂ta

  ∂ ta
∂pka

        (2-160) 

Jθ:  
∂ ŷj
∂θa

 = 






∂ ŷj

∂ua
  ∂ ua

∂θa
         (2-161) 

JQ:  ∂ ŷj
∂qaj

          (2-162) 

The sets, JP and JQ thus comprise the derivatives relative to the input and 

output loadings of the outer PLS model.  The partial derivatives of set, Jθ are 
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written with θ in vector notation, as these parameters have varying 

architectures depending on the PLS inner model used per latent dimension.  

The matrix, J  comprises a number of columns equal to h×m.  The matrix, Jθ 

comprises the summed Ma columns for each latent dimension where a = 

1,2,…,h.  For sigmoidal neural networks and radial-basis functions (see section 

2.13.2), M = 3H + 1 and for linear PLS models, M = 1.  Finally, JQ comprises h 

columns.  The partial derivatives for a single data point and the jth output 

variable using a linear PLS model are therefore calculated as follows: 

P

JP:  ∂ ŷj
∂pka

 = qaj ba xk         (2-163) 

Jθ:  
∂ ŷj
∂ba

 = qaj ta         (2-164) 

JQ:  ∂ ŷj
∂qaj

 = ua          (2-165) 

 

The exploratory data analysis techniques presented in this chapter can now be 

applied in the following chapters.  In Chapter 3 the data is first analysed for 

dimensionality, degrees of freedom, correlations, outliers and classifications.  

PCA and classed-based PCA become important tools for dealing with these 

analyses.  In the chapters following Chapter 3 the modelling techniques of feed-

forward multi-layer perceptron neural networks, RBF networks and PLS are 

applied and their results are discussed.  In the modelling applications important 

statistical concepts such as degrees of freedom, model complexity and model 

validation are addressed.  These are common to all the models applied and are 

important in order to maintain statistical integrity regarding the performances of 

the candidate models. 
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Chapter 3  
 Data Analysis and Outlier Detection 

 

In this chapter the origins and structures of the data used are initially described 

and analysed.  This is followed by an investigation into the correlations and 

similarities within the data structure.  These two investigations lead up to the 

detection of potential outliers, investigating the expected clustering of the data 

and developing a modus operandi for building ‘black-box’ models. 

3.1 Defining the Origin and Structure of the Data 

The data, which is divided into two parts, has been adopted from the work done 

by Roodt [1998].  The independent part with no measurement noise contains 

the rocket design parameters and chemistry known as the rocket design 

features.  The IR emission spectra data is the dependent part containing the 

measurement noise.  

3.1.1 The Rocket Motor Design Feature Data 

In Chapter 1 the data structure to be modelled was introduced.  Two different 

classes of solid propellants were used in the preparation of the 18 different 

rockets fired for data sample collection.  The double-base (DB) propellants are 

the first production propellants to be implemented.  The development of 

polymers as binders made it possible for the production of composite (C) 

propellants.  Emission spectra were measured using 6 different DB rocket 

motors and 12 different C rocket motors. 

 Chapter 3 - Data Analysis and Outlier Detection 

The DB propellants form a homogeneous propellant grain consisting of 

nitrocellulose dissolved in nitroglycerine with small amounts of additives 

sometimes added.  Both nitro-ingredients contain carbon and hydrogen as fuels 

and oxygen as oxidiser. This means they both act as combined fuels and 

oxidisers. 
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The C propellants form a heterogeneous grain where the oxidiser and 

powdered fuel are held together in a matrix of synthetic rubber or some other 

plastic material.  The conventional oxidiser and fuel are ammonium perchlorate 

(NH4ClO4) and aluminium powder respectively.  The binder is usually a natural 

rubber such as polybutadiene.  Solid oxidisers such as ammonium nitrate 

(NH4NO3) and potassium perchlorate (KClO4) can also be used. 

 

In general, elements in groups 1 to 4 on the periodic table, such as C, H, Li, 

etc., act as fuels.  The elements in groups 6 and 7, such as Cl, O, F, S, etc., act 

as oxidisers.  A more detailed discussion is given in Roodt [1998]. 

 

There are a large variety of different chemical ingredients and propellant 

formulations that have been synthesised and tested in experimental rocket 

motors.  A typical propellant may have 5 to 15 different ingredients.  These 

have a significant influence on the propellant characteristics and are prepared 

specifically for each rocket motor.  The rocket must be designed in such a way 

that the desired burn rate, physical and thermal properties, IR emission spectra 

and overall performance characteristics are obtained.  The rocket propellant 

must also be safe to manufacture and must have a reasonable shelf life. 

 

One of the primary challenges when it comes to using ‘black-box’ modelling 

techniques is to find appropriate input variables for building the model to predict 

the IR emission spectra.  It is mentioned in Roodt [1998] that past studies have 

shown that the spectra are best modelled using the thermodynamic properties, 

propellant chemical composition, the conical rocket nozzle dimensions and the 

gas mass flow rate through the nozzle.  It was found that the thermodynamic 

properties are all governed by the rocket chamber temperature (TC) and 

pressure (PC).  The expansion ratio (EC) through the nozzle and the rocket 

throat diameter (DT) were subsequently chosen for the nozzle dimensions (see 

Fig. 3-1).  The gas flow rate was left out.  Table 3-1 shows how the rocket 

motor design parameters have been scaled and in what dimensions they are 

presented by Roodt [1998].  The same values have been adopted here, as it 
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was found that the scaling has no effect on the model predictions if the data 

processing methods as described in section 2.4 are applied. 

 

Nozzle
Throat

Nozzle
 Exit

Chamber
Pressure

& Temperature

 

Fig. 3-1 A schematic representation of the rocket chamber and the nozzle 

dimensions. 

 

Table 3-1 The physical rocket motor design parameters as they are used for 

building the models.  

Rocket Motor Design  
Parameter 

Symbol Unit 

Chamber Pressure PC [MPa] 
Chamber Temperature TC [K]/1000 
Conic Expansion Ratio EC [-]/10 
Throat Diameter DT [mm] 

 

Initially, the idea was to use a thermo-chemical computer program to compute 

the equilibrium chemical composition after combustion by making use of Gibbs 

free energy minimisation.  These compositions would then be used as part of 

the input vector.  However, the model predictions did not correspond well with 

the IR measurements made.  The computer program has a composition cut-off 

value below which it discards all chemical species when doing calculations.  It 

is difficult to determine the optimum molar fraction below which the program 

should not consider the corresponding molecular species.  Different rocket 

motors will produce different combustion products leading to a data set 

containing many zeros.  The next step was to use the propellant molecular 

composition as part of the input vector.  This ensured that there would be no 

loss in chemical information.  However, once again it was found that there are 
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too many zeros in the data due to the fact that different propellants consist of 

different ingredients. 

 

A large contribution to the insight presented by Roodt [1998] included 

‘collapsing’ the propellant molecular chemical compositions into their elemental 

compositions.  This was done by summation of a selected elemental 

composition over all the molecular species.  These calculations were done on a 

100kg basis of propellant.  For example, for the chemical compound ‘NC25’ 

(C6H7.579O9.833N2.416) used in the rocket motor propellant DB1 the carbon 

contribution can be calculated from (Roodt [1998]): 

Ckmol = NC25 % × nC
nC×Mr(C) + nH×Mr(H) + nO×Mr(O) + nN×Mr(N)     (3-1) 

= 42.8 × 6
(6 ×12.011) + (7.579×1.008) + (9.833×15.999) + (2.416×14.007)  

= 0.948 kmol  

The advantages here are that there is no loss in chemical information and 

because the elements are common to most molecular species the data set 

contains relatively few zeros.  This denser data set was found to be better 

suited for building a neural network model and the predictions compared well 

with IR measurements.  

 

The final rocket feature set is shown in Table 3-2 for both DB and C rocket 

motors.  The first 14 variables are the elemental compositions and the last 4 

are the rocket motor design parameters.  This data also contains a fair amount 

of zeros.  This is because F only has a single entry and S and Fe have two and 

three entries respectively.  These form three dimensions, which may not 

contribute significantly to the overall models that will be built.  It is, however, 

interesting to see if these elements have a significant effect on the model 

predictions, as the maximum information possible needs to be used to find the 

required stealth characteristics. 
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Table 3-2 The rocket design features consisting of 18 variables (14 variables 

form the rocket fuel elemental chemistry and the last 4 variables are the 

physical motor design parameters). 
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3.1.2 The IR Emission Spectra Data 

The IR emission data consists of numerous repeat radiometer absorbance 

observations made for each of the eighteen different types of rockets 

considered.  These repeat observations or data sample points are recorded at 

146 wavelengths in the middle IR band (2 to 5.5 µm wavelength).  Furthermore, 

it is assumed at this stage that the repeat measurements are true replicates as 

described in section 2.5.2.  The number of measurements made per rocket 

range from 4 to 44 (see Table 3-3).  The recorded IR emission spectra are 

shown for all 18 rockets in Fig. 3-2 to Fig. 3-4.  The tabulated values of the data 

are given in Roodt [1998].  The exact incremented wavelength values are not 

given and therefore the wavelength numbers are numbered using unit integers 

from 1 to 146. 
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Fig. 3-2 The measured IR emission spectra for the six different rockets with 

double base solid propellants at 146 wavelengths from 2 to 5.5 µm. 
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Table 3-3 The numbers of IR emission measurements for each rocket motor. 

DB1 DB2 DB3 DB4 DB5 DB6 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

39 4 31 20 20 22 15 24 24 17 18 26 44 15 25 14 23 22 
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Fig. 3-3 The measured IR emission spectra for the first six different rockets with 

composite solid propellants at 146 wavelengths from 2 to 5.5 µm. 

 

The emission data was recorded by Roodt [1998] over a six-year period 

between 1992 and 1998.  The spectra were recorded using a spectral 

radiometer at varying distances from the rockets that were fired.  These 

distances were 500m, 350m, 250m and 200m.  For this reason the data had to 

be pre-processed by using a scaling factor in order to compensate for the 

varying absorbance pathlengths. 
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Due to the varying atmospheric conditions such as humidity, temperature, 

atmospheric pressure, line of sight range and aerosol concentrations some 

form of atmospheric correction was required.  This was achieved by making 

use of Bouguer’s law as described in Roodt [1998].  The two data pre-

treatments mentioned above were thus used to compensate, as far as possible, 

for environmental influences as illustrated in Fig. 1-1. 
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Fig. 3-4 The measured IR emission spectra for the last six different rockets with 

composite solid propellants at 146 wavelengths from 2 to 5.5 µm. 

 

3.1.3 Nature of the Data Structure and the Modelling Thereof 

At this stage it is evident that the data set available is sparse and the rocket 

features and the emission spectra are multivariate.  There are a total of 403 
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measurements made over all 18 rocket motors tested.  However, there are only 

18 predictions to be made.  Hence there are h = 1,2,…,18 rocket features and 

mean IR emission spectra for which there are nh emission spectra replicates for 

each rocket motor (see section 2.5.2).  From statistical theory presented in 

section 2.2 each prediction made by a regression model is the expected value 

over a normal probability distribution of possible predictions for an independent 

data point.  If a linear regression model were to be used on this data, care 

would have to be taken that there are more independent data points than there 

are model parameters.  In the case where the simplest possible linear model is 

used, where the input variables are in linear form, there would be 19 required 

model parameters (including bias).  Clearly, the data set is not large enough for 

the simplest linear regression model. 

 

The fact that there is a varying number of repeat spectral measurements for 

each rocket motor does not imply that predictability is biased towards those 

rocket motors with the most repeat measurements.  This is due to the geometry 

of projecting the output space onto the input space (see section 2.2.1 and 

Bates [1988]) and the fact that the cost function is minimised over the entire 

data set.  The model predictabilities for all independent data points are 

influenced by the residual variance, ε, which is also the variance of the normal 

distributions around the expected values, f(xi,θ).  This variance is the same for 

all data points (see section 2.2) and is calculated using the entire sample set.  

The model results in section 4.2 support these arguments. 

 

The repeat measurements form the pure error component of the data set, 

which becomes an estimate of the population residual variance, ε.  The more 

data points there are to form the pure error component the better the population 

estimate.  Certain repeat measurements could be omitted for the purpose of 

obtaining more accurate predictions.  This can be achieved by a reduction in 

residual variance, which would reduce the confidence interval around a 

prediction.  This can be misleading to believe a model is more accurate than it 

really is.  However, if it is determined that some of the data points are outliers it 

is essential that the data sample points be removed (see section 3.3). 
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The emission spectra to be predicted consist of n = 403 data points in total of 

which there are 385 replicates.  According to statistical theory (Brereton [1990] 

and Draper [1981]) it is recommended to have 3 to 5 lack-of-fit (residual) 

degrees of freedom (nL) left in order to build a linear model that is built from an 

over-determined system.  The appropriate number of model inputs can thus be 

calculated from m = n–nR–nL-1.  It is clear that the number of linear model 

inputs should thus be 14 or smaller (see Table 3-4). 

 

Table 3-4 The degrees of freedom involved in building a linear model for the 

prediction of the IR emission spectra. 

Total number of sample measurements n 403 

Bias 1 1 

Total number of replicates nR 385 

Lack-of-fit degrees of freedom nL 3 

Number of linear model inputs m 14 

 

From the previous discussion it is shown that the simplest multivariate linear 

regression model is not an option for building a model here.  For neural 

networks the pseudo-dimension is limited to m+1 per node where m is the 

number of inputs to the node.  This means that at least m+1 independent data 

points are needed in order to ‘shatter’ the data set for a radial-basis function 

(Schmitt [2001]) or a sigmoidal node (Sontag [1998]).  The pseudo dimension is 

the Vapnik-Chervonenkis (VC) dimension (Haykin [1999]) for continuous 

function approximation by neural networks.  Unless a significant dimensional 

reduction could be obtained it would therefore also seem futile at this stage to 

use a feed-forward neural network to build an adequate model on the data.   

 

Lawrence [1997] showed that for data consisting of 200 independent data 

sample points the optimum number of hidden nodes in the single hidden layer 

was between 30 and 40 for a network with 20 input variables and a single 

output variable.  At 30 nodes in the hidden layer there are therefore 661 

parameters in the network as a whole, which is significantly higher than the 200 

data points available.   A total of 5×105 epochs and no regularisation such as 
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early stopping during training were used and yet the oversized neural network 

managed to provide generalisation. 

 

Lawrence [1997] further showed that the rules defined by the degrees of 

freedom discussed above are unreliable for neural networks, as there are other 

factors that came into play such as the quality of the solution found, the amount 

of noise, any bias in the algorithm and the nature of the function being 

approximated.  The quality of the solution refers to the fact that no global 

optimum is obtained.  It is further stated that if the global optimum were to be 

found the rules of the degrees of freedom would be relevant.  Lawrence [1997] 

did however state that it is desirable to find solutions with the smallest number 

of parameters.  He also emphasised the importance of the number of epochs 

used during training, as the larger the number of epochs used the closer the 

algorithm gets to a global minimum.  From the discussion above he also 

claimed the VC dimension to be somewhat conservative in estimating the lower 

bound for the number of data points. 

 

A further implication from the discussions above is therefore that by over-

training a feed-forward neural network, as far as the number of epochs is 

concerned, the model complexities can be controlled almost entirely by the 

number of model parameters (network weights).  This means it would be 

possible to obtain similar predictabilities from two different network 

architectures built using the same data set.  However the one network may 

have relatively few hidden nodes with over-trained epochs and the other one 

may have more hidden nodes but a regularisation technique is used to avoid 

using too many epochs during training.  Lawrence [1997] shows how the larger 

neural network architectures contain more weights that do not significantly 

contribute towards the final approximation. 

 

There appears to be enough reason to proceed with the building of models 

using neural networks.  The neural network built by Roodt [1998] may seem 

extremely oversized with 146 nodes used in the hidden layer.  This amounts to 

a total of 24236 parameters for the 16 independent data sample points used to 
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build the network.  However, he only used approximately 200 training epochs in 

an attempt to avoid over-training the network. 

 

The limit on the data available is determined by economic implications.  The 

firing of each rocket is extremely expensive and the use of an efficient design of 

experiment is not possible when at the time the work by Roodt [1998] was 

published there were only 12 rocket motor designs in common use.  As 

mentioned previously safety is an important criterion when applying a new 

rocket motor design and not just any design will be acceptable.  The large 

number of repeat measurements may not have been necessary but the original 

point of departure was to use a more fundamental approach combining CFD 

and quantum-mechanical principles. 

 

The fact that the data is so sparse makes it very difficult to validate any model, 

as the loss of just one independent data point has a significant effect on the 

degrees of freedom available.  In the case of linear modelling, internal 

validation could be used but as discussed previously linear modelling is not 

possible here.  For non-linear models the use of validation data is essential in 

order to measure up the generalisation ability of the model.  The omission of 

just one or two rocket motors for testing is the only option left.  However, a 

neural network could be retrained until both the training set and the omitted 

validation data are approximated well.  For this reason ‘leave-out’ cross-

validation as described in section 2.6.3 is the best option for obtaining a more 

reliable method of validating the ability of the model to approximate the 

functionality between the rocket features and the IR emission spectra. 

 

All the repeat measurements can be included for the forward mapping from the 

independent rocket motor features to the measured IR emission spectra.  The 

reverse problem of predicting the rocket features from the spectral 

measurements forms part of an extensively researched field in chemometrics.  

Here Beer’s law and the data dimensionality reduction methods using PCA and 

PLS can be used as discussed in section 2.13.  However, the means of the 

emission spectra have to be used as independent input data.  This reduces the 
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data set to 18 input and output measurement samples.  This is necessary in 

order to keep within statistical modelling theory as discussed in section 2.2. 

 

3.2 Exploring Data Proximities and Correlations 

In the previous section it was shown that the available data is far from ideal for 

the purpose of ‘black-box’ modelling, however there is no justification to 

completely disregard it at this stage.  It may be possible to deal with the 

apparent lack of information in the data by examining it more closely as far as 

correlations and dimensionality are concerned.  Any information obtained from 

this scrutiny would aid in obtaining qualitative information required to make 

decisions on the ‘black-box’ model type and structure. 
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Fig. 3-5 A map of Euclidean distances between the data sample points of the 

rocket design feature set. 

 

A look at the Euclidean distances between data sample points can give an idea 

as to whether there are distinguishable classes within a data set.  The 

Chapter 3 - Data Analysis and Outlier Detection       84 



 

Euclidean distances between the normalised rocket features mapped in Fig. 

3-5 show that a great deal of similarity is evident and that there are two 

distinguishable classes.  The existence of two classes within the data was 

already known but this result shows that the distinction is picked up in the data 

and therefore provides greater confidence in the choice of the rocket feature 

variables chosen.  
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Fig. 3-6  A map of Euclidean distances between the data sample points of the  

eighteen mean IR emission spectra. 

 

The Euclidean distances map for the mean emission spectra in Fig. 3-6 

contains no pattern indicating possible class memberships.  This shows that the 

problem of modelling the data may be complex.  The information that can be 

extracted from the map is that there are strong similarities in irradiance spectra 

between rockets DB3, DB4, DB5, and DB6 and also between C10, C11 and 

C12.  There also seems to be a crossover between classes where DB2 has 

similar irradiance spectra to C10, C11 and C12.  This information becomes 

useful when evaluating the model results in later chapters. 
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A correlation map (see section 2.1.3) has been drawn up, initially, in order to 

see if there are any linear correlations between the rocket design feature 

variables.  The variables have been normalised to values between 0 and 1 in 

order to compare all variable on the same scale.  Fig. 3-7 shows that there are 

no prominent patterns, which is expected as the mixing of ingredients and the 

rocket motor design parameters for a particular rocket are not necessarily 

obtained by some underlying common process.   
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Fig. 3-7  A correlation map of the rocket motor design parameters and 

chemistry to investigate the possibility of redundant information being present. 

 

The PLS modelling techniques make use of latent dimensions similar to PCA 

(see section 2.13) and therefore it can be expected that some redundant 

information, usually found in highly correlated data can be excluded for the final 

input-output mapping.  For this reason it is useful to investigate if any 

dimensional reduction can be expected, if the rocket features are used as input 
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data set.  At this stage it seems like there is a fairly even spread of high and low 

correlations between the variables as seen in Fig. 3-7.  A radical reduction in 

input space dimensionality is therefore not expected. 
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Fig. 3-8  A correlation map of the IR emission spectral absorbance values to 

investigate the possibility of redundant information being present. 

 

Fig. 3-8 reveals a different picture to that of the rocket feature data.  It is clear 

that there is a great deal of correlation in the regions spanning from wavelength 

numbers 1 to 10, 20 to approximately 95 and then from approximately 110 to 

140.  The regions of no or very little correlation appear to be those bearing the 

large CO2 peaks between wavelength numbers 100 and 120 (at approximately 

4.4 µm wavelength) and the smaller, prominent H2O peaks between 

wavelength numbers 20 to 40 (at approximately 2.7 µm).  The fringe to the far 

right of the spectrum also seems to bear very little correlation.  The relevance 

of this region is not clear at this stage.  Roodt [1998] mentions that the region 

from approximately wavelength number 20 to 95 is extremely important for 

pattern recognition and the identification of stealth characteristics.  However, 
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this region may be adequately represented by only a few latent dimensions or 

within other prominent latent dimensions due to its large degree of correlation 

between variables. 

 

3.3 Outlier Detection 

In the previous section it was shown that a class distinction between DB and C 

rocket motor designs could be observed by inspection of the rocket motor 

feature data set.  However, this distinction is not so easily observed when 

analysing the emission spectra data.  This may be a result of the high degree of 

correlations and therefore possibly redundant information within the spectral 

data.  It is useful to be able to investigate if there really is redundant information 

and if it is possible to extract features of lower dimensionality from the spectral 

data. 

 

PCA becomes a useful tool for analysing data if the first two to three principal 

components explain a large amount of the total variance within the data (see 

section 2.8).  The principal scores can then easily be plotted and provide a 

visual means of investigating the data.  They contain the relevant information 

about the distinguishing characteristics of the data, enhancing the ability to 

observe patterns within the data without being polluted by noise or redundant 

information.   

 

In section 3.1 it was shown that there are only 4 measured sample points for 

the spectral data of DB2.  Seventeen additional points have been generated 

randomly around the mean in such a way that the original mean and standard 

deviation have been maintained.  This will clearly not have an effect on the 

regression results, as a regression model seeks the expected value of a data 

point within an assumed normal probability distribution (see section 2.2).  The 

additional data has thus been generated in order to aid with the visualisation of 

the data during data analysis.  The spectral data set now has a total of 420 data 

points. 
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The explained variances of a principal components analysis on the full spectral 

data set are shown in Table 3-5.  Here the spectral data has been standardised 

(see section 2.4.2) prior to the analysis in order to centre the data and therefore 

obtain unit standard deviation for each variable.  It is shown that the bulk of the 

explained variance (86.7%) is captured within the first two principal 

components.  This is ideal for the visualisation of the data and supports the 

notion in the previous section that there may be redundant information in the 

data. 

 

The scores from the first two principal components have been plotted against 

each other in Fig. 3-9.  It is evident that the DB class rocket data is clustered 

towards one side of the plot.  This is a promising result as this means that just 

two principal components are required to start visualising class distinctions.  

This is also positive for the building of models, as PCA is not a pattern 

recognition technique but merely a feature extractor.  The use of such features 

can make the models more robust, especially because no prior knowledge of 

class membership is required to extract the features.  The PLS models are 

related to PCA and are regarded as more parsimonious (as discussed in 

section 2.13.3). 

 

Table 3-5  The variance explained by each of the first 12 principal components 

(PCA) out of 146 possible dimensions of the standardised spectral data. 

principal  
component 

explained 
variance 

cumulative 
variance 

1 80.55% 80.55% 
2 6.16% 86.71% 
3 4.10% 90.81% 
4 3.25% 94.06% 
5 2.32% 96.38% 
6 1.34% 97.72% 
7 0.50% 98.22% 
8 0.34% 98.56% 
9 0.23% 98.79% 

10 0.17% 98.96% 
11 0.12% 99.08% 
12 0.10% 99.18% 
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Fig. 3-9  A plot of the two primary principle component (PCA) scores from the 

standardised  spectral data. 

 

It is useful to make use of PLS model building and then to use the input scores 

to calculate leverage and residual values, which are used to infer potential 

outliers on some significant statistical α-level.  However, neural networks will be 

compared to the PLS models, which makes it desirable to detect potential 

outliers prior to data modelling.  For this reason the PCA scores will be used to 

investigate the presence of outliers here. 

 

In Fig. 3-9 three points can be seen isolated at the bottom far-right corner of the 

plot.  These three points have been marked and identified in Fig. 3-10 as being 

data points 160, 161 and 162.  These points belong to data of rocket motor C1.  

Every bit of information is important in an already sparse data set and therefore 

potential outliers must be carefully scrutinised before leaving them out.  The 3-

dimensional plot in Fig. 3-11 provides supporting evidence that data points 160 

to 162 are possible outliers by noting that their irradiance levels are very high in 

comparison to the rest of the data.   
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Fig. 3-10 The primary principal components plotted to identify any distinct 

groupings of data.  Data points 160 to 162 are labelled to mark them as 

potential outliers. 

 

Table 3-2 shows that the rocket chemistries of C1 and C8 are identical but their 

motor design parameters differ.  Fig. 3-6 shows that the Euclidean distances of 

the mean spectral data are similar between these two rocket motors.  For this 

reason it is useful to plot all the spectra of C1 and C8 together and investigate if 

there are possible irregularities.  Fig. 3-12 shows that data points 7 to 9 of C1 

corresponding to points 160 to 162 of the whole data set are much larger than 

the rest of the measured data and do not follow the same tendencies, 

especially at the trailing end of the CO2 absorbance peak. 
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Fig. 3-11 A 3D plot of the spectral data arranged from DB1 to C12 over all 420 

data sample points and all wavelength numbers. 

 

At this stage a statistical test is in order to investigate any further justification to 

leave out the three data points under suspicion.  This is done using Hotelling’s 

T2-statistic and the Q-statistic as described in section 2.8.  The plot in Fig. 3-13 

is obtained using the first two principal components to calculate the statistics.  

The figure shows that the sample data points 160 to 162 have extremely large 

leverage (T2-statistic) on the outcome of the PCA model, although their 

discrepancy (Q-statistic) value is low.  This shows that the low discrepancy 

could be as a result of the PCA model loadings being so largely influenced by 

these points that they are well compensated for within the model.   
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Fig. 3-12 The IR emission spectra of C1 and C8 plotted together.  The potential 

outliers correspond to data points 7,8 and 9 of C1. 

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200



 154

 155

 156

 157

 158

 159
 160 161 162


 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

Hotelling T2

Q
-s

ta
tis

tic

95% confidence limits

 

Fig. 3-13 The discrepancy and leverage of the IR emission spectra data points 

calculated using two principal components (86.7% variance). 
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Strictly speaking the sample data points 154 to 157 (data points 1 to 4 of C1) 

should also be regarded as outliers, as they lie outside the confidence limits 

(Fig. 3-13).  Their leverages are not as extreme and thus have a lesser effect 

on the model parameters.  From analysis of the spectra in Fig. 3-12 and 

because the statistics used here are based on normal distributions (which may 

not be the case here) it may be sensible to keep the data sample points outside 

the confidence limits for modelling purposes.  The idea is also to keep as much 

information as possible for building the model in order to enhance robustness.  
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Fig. 3-14 The confidence interval calculated using the first two principal 

component scores of rocket motor C1. 

 

Fig. 3-14 shows that only data sample point 7 (data point 160 of total data set) 

of rocket motor C1 is outside the 95% confidence interval.  The confidence 

interval is calculated using Hotelling’s T2-statistic on the principal component 

scores (see section 2.8).  Because a normal distribution is assumed and 

because there are only 15 spectral measurement samples the parameters of 

the multivariate normal probability distribution are influenced by the presence of 
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the potential outliers.  Data points 8 and 9 are close to the limits and will 

therefore still be regarded as outliers.  

 

3.4 A Final Word on the Spectral Data Structure 

It can now be concluded, after extensively analysing the data, that the three 

data sample points, 7,8 and 9 of rocket motor C1 can be omitted for further 

modelling purposes.  This reduces the total set of IR emission spectral data 

considered for modelling to 417 data points.  A principal components analysis is 

done on this data set and Fig. 3-15 shows that the two rocket motor classes are 

now better distinguishable using a plot of the first two principal components.  

Table 3-6 shows that the first two principal components capture 85.25% of the 

total variance in the data.   
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Fig. 3-15  The principal component scores plotted for the spectral data set 

where the outliers are removed shows a clearer distinction between classes.  
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Fig. 3-16 has been included here to illustrate the proximity of the spectral data 

of rocket motors DB3 to DB6 and the relative separation of DB1 and DB2.  The 

same results are found in section 3.2 above where the total Euclidean 

distances are mapped in Fig. 3-6.  The principle scores have been calculated 

here by excluding the C spectral data. 

 

Table 3-6 The variance explained by each of the first 12 principal components 

for the data where the potential outliers are removed. 

principal  
component 

explained  
variance 

cumulative
variance 

1 79.82% 79.82%
2 5.43% 85.25%
3 4.80% 90.05%
4 3.29% 93.34%
5 2.70% 96.04%
6 1.42% 97.46%
7 0.55% 98.01%
8 0.32% 98.33%
9 0.24% 98.57%
10 0.18% 98.75%
11 0.14% 98.89%
12 0.13% 99.02%

 

A second PCA was done on the C spectral data only and the results are shown 

in Fig. 3-17.  It can be seen that similar to the results observed in Fig. 3-6 the 

rocket motors C1 and C8 are in proximity, as are the rocket motors C4, C5, C6, 

C7, C10, C11 and C12.  The rocket motors C2, C3 and C9 also appear in close 

proximity to each other. 

 

The results above further testify to the fact that the full spectral data contains 

redundant data.  This is due to the possibility of obtaining the same results from 

the dimensionally reduced spectral data.  The significance of these analyses is 

that these results can be compared to model predictions and if a test data point 

is predicted within its proximity family the model can be regarded as being 

reliable for interpolation and to some degree generalisation.  
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Fig. 3-16 The principal component scores calculated on the standardised DB 

spectral data show the proximity of the rocket motors to one another. 
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Fig. 3-17 The principal component scores calculated on the standardised C 

spectral data show the proximity of the rocket motors to one another. 
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3.5 The Explicit Clustering of the Spectral Data 

The data analysis on the spectral data, using PCA, thus far shows that the 

reduced dimensional features produce data structures in which class 

memberships have a tendency to cluster together.  In Fig. 3-10 it can be seen 

that the spectral data is slightly clustered, but there is some overlap between 

the rocket motor types.  In higher dimensions these clusters will be better 

defined, however for the purpose of classification PCA is not efficient enough. 
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Fig. 3-18  The spectral data projected onto the canonical variates using class-

based PCA. 

 

Class-based PCA (see section 2.9) uses prior knowledge of class memberships 

to build features that separate the classes more efficiently.  The canonical 

variates lie in the direction of maximum variance between the cluster centres.  

This is evident in Fig. 3-18 where only a single canonical variate (x-axis) is 

needed to be able to completely separate members into each class.  Class-
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based PCA could therefore be used to classify a rocket motor type from its 

measured IR emission spectrum prior to predicting its rocket motor design 

parameters and chemistry. 

 

In Chapter 1 it is mentioned that the objective of modelling the rocket IR 

emission spectra from the rocket design features is to be able to design rocket 

motors that emit the required IR spectrum for stealth characteristics.  Fig. 3-19 

and Fig. 3-20 show how these rocket motors can be designed to produce a 

spectrum that falls within one of the clusters after transformation of the 

standardised data by class-based PCA.  The use of 2 or 3 canonical variates 

show good separation but it may be necessary to use more.  It should therefore 

be possible to classify the IR emission spectra using a simple classification 

model or even by visual inspection.  It seems the best results will be obtained 

by first recognising which class of fuel (C or DB) is obtained. 
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Fig. 3-19  The standardised IR spectra for the DB-class rocket motors clustered 

using class-based PCA. 
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Fig. 3-20  The standardised IR spectra for the C-class rocket motors clustered 

using class-based PCA. 
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Chapter 4  
 Predictions of  Emission Spectra 

 Chapter 4 - Predictions of Emission Spectra 

The prediction of the solid rocket motor emission spectra from their design 

parameters as independent predictors is known as the ‘forward’ modelling 

problem in this text.  The reason for this is that the forward problem represents 

a true data set for regression purposes in the sense that the independent 

variables are fixed without errors and the dependent variables are 

measurements that are subject to random noise.  For this data set the forward 

problem proves to be the more complex problem compared to its reverse 

mapping. 

4.1 Methods of Model-building and Validation 

The aim of this section is to motivate a methodology for the modelling and 

validation of the forward problem.  It stands to reason that different model-fitting 

techniques can best be compared when they are validated on test data.  This is 

especially the case where more complex non-linear models are involved and 

statistical inference techniques become more difficult to apply.  Validation is 

also important to make sure that over-fitting is avoided.  It is further important to 

consider the objectives of the modelling, the structure of the data and the 

possible limitations of the data.  

 

The objectives of the modelling are stated in more detail in Chapter 1.  

Structurally, each rocket motor has 18 rocket motor design and chemical 

parameters as input variables and the 146 IR-absorbance values as output 

variables.  In summary, the most parsimonious functional relationship needs to 

be established between the multivariate input and output variables in such a 

manner that the IR irradiance spectrum of a rocket motor can be predicted by 

simply feeding the function with the 18-dimensional feature vector of a rocket 

motor.  The data available consists of data points from only 18 different rocket 
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motor designs as described in section 3.1.3, which is a major limitation on the 

degrees of freedom that can be used to model the data.  Together with the 

replicates in the data there are 417 data points in total.  It is found that greater 

stability and accuracy in the predictions can be obtained when including the 

replicates during model building. 

 

In this work the algorithms are programmed using the software package, 

MATLAB® Release 12 by Mathworks, Inc.  In the applications where multi-

perceptron feed-forward neural networks are trained the Mathworks Neural 

Network Toolbox is used. 

4.1.1 Data-fitting Techniques 

The aim here is to explore viable data-fitting techniques by beginning with a 

more simplistic approach.  For this a linear regression technique is a popular 

choice.  From such an initial investigation non-linear regression approaches 

can be explored in order to see if an improved model can be obtained, thus 

pointing to the presence of a non-linear correlation structure between the in- 

and output data.  Due to the multivariate nature of the data and the lack of 

knowledge about the system used here, “black-box” data-fitting techniques 

seem a viable choice to find the input-output relationships. 

 

In Chapter 2 the basic principles and algorithms are described for building 

models using linear PLS.  Linear PLS reduces to straightforward multiple or 

multivariate linear regression when the number of latent dimensions equals the 

input variable space.  Linear PLS could therefore give an indication as to 

whether there is dimensional redundancy present in the input space.  

Dimensional redundancy is desired, as there is not enough data to build an 

adequate model from just 18 independent predictors.  If cross-validation were 

to produce the best validation predictions using a linear model it would point to 

the fact that there is an inherent linear correlation between the in- and output 

spaces.  These models are usually more robust and therefore it is more 

desirable to obtain such a model.   

 

Chapter 4 - Predictions of Emission Spectra       102 



 

A popular and practical choice for non-linear regression is the feed-forward 

multi-perceptron neural network with back-propagation (see section 2.11).  

Neural networks are universal approximaters and therefore do not require prior 

knowledge of functional relationships.  This is proven by the universal 

approximation theorem (Haykin [1999]).  The back-propagation algorithm 

provides a computationally efficient means of converging towards a minimum 

value for the cost function, in this case the residual sum of squares.  The 

‘traditional’ optimisation-training algorithm used is the gradient descent method, 

however the resilient propagation (RPROP) algorithm (Riedmiller [1993]) will be 

used here.  This method proved to be more efficient regarding computational 

time and validation results.  The neural networks are trained using a single 

hidden layer, as this was found to produce the best results in the work done by 

Roodt [1998].  The hyperbolic tan-function is used as transfer function in the 

hidden layer and the output layer (146 nodes) is linear (section 2.11). 

 

In section 2.13.3 it was mentioned that PLS reduces the overall regression 

problem to a series of SISO (single input-single output) regressions.  This 

makes PLS conducive to the problem of building a model on effectively 18 or 

fewer data points (or degrees of freedom).  An improvement on linear PLS may 

be obtained by introducing feed-forward multi-layer perceptron neural networks 

into the PLS inner model as described in section 2.13.2.  Here the NNPLS or 

the EBNNPLS algorithms may be useful and both methods will be applied here.  

The feed-forward neural network is trained using the Levenberg-Marquardt 

optimisation algorithm, which is ideal for the small data sets and less 

complicated architectures of the inner models (see section 2.10.3). 

 

The sigmoidal neural networks are initialised using the Nguyen-Widrow 

initialisation algorithm (Nguyen [1990]).  This method generates initial weight 

and bias values for each layer so that the active regions of the layer's neurons 

will be distributed as evenly as possible over the input space.  The advantages 

of this method over generating random weights and biases are that few 

neurons are wasted since all the neurons are in the input space and training 

works faster as each area of the input space has neurons.   
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In addition to NNPLS and EBNNPLS, the radial-basis function network as 

described in section 2.12 are applied within the PLS inner model (RBFPLS and 

EBRBFPLS).  The RBFPLS and EBRBFPLS models can then be compared to 

the NNPLS and EBNNPLS algorithms for efficiency.  The advantage of working 

with RBF networks is that the modelling results are reproducible.  This is 

because there is no random initialisation of the weights involved, as is the case 

for the sigmoidal neural networks.  A brief, additional comparison will be made 

between using the K-means and adaptive spread OLS (ASOLS) methods of 

training a RBF.  The ASOLS algorithm is a novel modification to the OLS 

algorithm and its application must therefore be justified. 

 

It must be mentioned that from the analysis made in section 3.2 it can be 

expected that most latent dimensions extracted from the 18-dimensional input 

space are expected to be relevant to the PLS model.  This is due to the lack of 

correlations observed in the data (see Fig. 3-7). 

4.1.2 Validation of a Model 

The aim here is to explore and evaluate how well the solid rocket motor data 

can be modelled using the different model-building techniques.  In order to 

obtain legitimate comparisons of the different techniques it is important to 

obtain the optimum number of parameters for each model by adequate model 

validation.  In section 3.1.3 it was discussed that due to the shortage of degrees 

of freedom available for building a model it is evident that the most appropriate 

method of validation is that of model cross-validation as explained in section 

2.6.3.  It must be said that the emphasis here is on finding the best of the 

candidate models, even if the predictions on unseen data are not always 

accurate.  After cross-validation a single, overall model can be built by training 

on the entire data available and by using the optimum number of parameters 

determined from cross-validation. 

 

The complete data set of all eighteen rockets includes 417 spectral data 

samples (see section 3.3), which may create the misconception that there is 

enough data to be split into a large training subset and a large test set.  The 

data set, however, consists of 399 replicates (see section 3.1.3) and according 
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to Snee [1977] these replicates should be removed for model validation.  This is 

motivated by the fact that splitting the data along replicates does not change 

the correlation structure between the target values and the prediction values.  A 

prediction data set selected in this way would be a poor check on the model.  

The entire block including all spectral replicates corresponding to a specific 

rocket motor must be regarded as an independent ‘data point’.  A validation 

data set must therefore consist of one or more blocks of spectral data 

corresponding to one or more rocket motor features. 

 

How should the data be split for cross-validation?  From the discussion above 

there are 18 independent samples to be considered.  The leave-one-out cross-

validation discussed in section 2.6.3 would require eighteen separate training 

sessions.  In the case of ‘leave-out-more-than-one’ cross-validation a heuristic 

is to divide the complete data set into 10 subsets of training and validation data 

(Brereton [1990]).  For the rocket data a close approximation to this heuristic 

would be to split the data into 9 subsets, each subset containing 16 training 

rockets and 2 validation rockets.  In comparison to the leave-one-out method 

this allows for a reduction in the computation time required to complete a 

complete cross-validation run.  The ‘leave-out-two’ cross-validation also 

provides a good idea of the model complexity required for a model required to 

make predictions over two different classes of rockets.  This is only possible if 

for many of the two rockets left out for validation each of the two rockets 

represents a different class of rockets. 

 

For the leave-out-two cross-validation procedure there are numerous methods 

for choosing the combination of data points to be selected for each training and 

validation step.  Three of the methods described in Wise [2000] have been 

considered here, the contiguous block method, the Venetian blinds method and 

random selection until each point has been removed once for validation.  The 

contiguous block method implies leaving out the first two samples for the first 

training step, the next two for the next training step and so forth.  For training 

session τ the Venetian blinds method uses sample points, τ and τ + 9 for 

validation.  The random method speaks for itself.  See Table 4-1 for a detailed 
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illustration of how the entire rocket data set is split into nine training-validation 

pairs. 

 

From Table 4-1 it is evident that the contiguous block method will include three 

training steps consisting of validation on the DB class rockets and six training 

steps on C class rockets only.  This may cause greater bias towards a certain 

class within the training sets and because there are only 6 rockets within the 

DB class leaving out two of them at a time may lead to an unacceptable loss in 

information for the training set.  The Venetian blinds method guarantees the 

most distributive profile relative to the two classes of DB and C rocket motors. 

 

Table 4-1  The 18 rockets split up into their 9 training-validation sets for leave-

out-two cross-validation (each rocket is assigned to a set number as shown). 

Rocket 
type

Contiguous 
Blocks

Venetian 
Blinds

DB1 1 1
DB2 1 2
DB3 2 3
DB4 2 4
DB5 3 5
DB6 3 6
C1 4 7
C2 4 8
C3 5 9
C4 5 1
C5 6 2
C6 6 3
C7 7 4
C8 7 5
C9 8 6

C10 8 7
C11 9 8
C12 9 9  

 

In section 2.6.4 it is shown how the PRESS (or MSECV) values must be plotted 

against the model complexity values in order to find the optimum number of 

model parameters required to find the most generalised functional relationship.  

In the case of linear PLS each latent dimension contains a single linear 

regression parameter between the input and output scores.  An increase in 
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model complexity thus represents an increase in the number of latent 

dimensions applied and for this reason it is appropriate to plot PRESS-values 

against monotonically increasing latent dimension values.  In the case of 

building a sigmoidal feed-forward neural network with a single hidden layer 

each consecutive addition of a hidden node represents a uniform increase in 

complexity.  The PRESS-values can subsequently be plotted against the 

number of hidden nodes.   

 

The first attempts at modelling with cross-validation were done using the leave-

two-out Venetian blinds method.  The results were compared to the leave-one-

out method and it was found that leave-one-out cross-validation produced the 

lower PRESS-values (see section 2.6.3) when plotted against model 

complexity.  This implies that leave-one-out cross-validation produced the 

better-predicted IR spectra on unseen data.  A reason for this is that more 

information is lost per training session due to the 16 independent sample points 

(rocket motor features) used as opposed to the seventeen used for leave-one-

out cross-validation.  This supports the view in section 3.1.3 that the available 

data is sparse and therefore it is essential that training be done on the 

maximum number of independent data points possible during each session of 

cross-validation.  Leave-one-out cross-validation is subsequently chosen as the 

method of cross-validation to be considered. 

 

In the discussion above the method of cross-validation has been determined.  

In addition the methods of evaluating cross-validation by plotting PRESS vs. 

model complexity for linear PLS and feed-forward neural networks have been 

described.  In the case of the NNPLS and RBFPLS related algorithms the 

evaluation is more complex.  This is due to the fact that varying numbers of 

hidden nodes are obtained for the inner model of each extracted latent 

dimension.  The implication is therefore that the PRESS-value can be plotted 

against increasing latent dimension or the total number of hidden nodes used 

counted over all the latent dimensions extracted.  This is due to the fact that a 

single hidden-layered sigmoidal feed-forward neural network can be obtained 

from the transformation of a NNPLS (or EBNNPLS) model (see section 2.13.2). 
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A further complication when using the NNPLS (or EBNNPLS) and RBFPLS (or 

EBRBFPLS) algorithms arises when finding the optimum number of hidden 

nodes required for each inner model of a latent dimension.  This issue is 

discussed in section 2.13.2 whereby Akaike’s final prediction error (FPE) is 

calculated for a validation data set for each latent dimension.  Each training 

session within leave-one-out cross-validation has only a single independent 

data set (rocket feature from one rocket type) available for validation.  Each one 

of the 18 rocket features covers a unique but important part of the input space 

to be modelled.  During a particular training session the optimum number of 

nodes per latent dimension is decided upon based on the minimum FPE-value 

corresponding to the single validation point.  Subsequently, the result of leave-

one-out cross-validation is that this method leads to a varying number of nodes 

obtained for the same corresponding latent dimension across the numerous 

modelling sessions.  It therefore becomes difficult to determine a single 

optimum number of hidden nodes for a latent dimension. 

 

It can be argued that leave-one-out cross-validation gives an idea of how many 

hidden nodes are required per latent dimension.  This implies that the average 

number of hidden nodes obtained over all training sessions for a specific latent 

dimension could be used to determine a final overall optimum model.  The 

average may however not be an accurate measure of the overall performance. 

 

The fact that the decision, as to how many hidden nodes are retained per inner 

model of a latent dimension, is based on the minimum FPE-value of a particular 

validation set leads to a fair amount of bias towards that validation set.  This 

means that by the time all 18 latent dimensions have been built up during one 

of the training sessions the final sum-square error of the validation point is at its 

minimum since the training has taken place in the direction that favours the 

prediction of the single point.  After all 18 sessions have been completed the 

overall PRESS-value will therefore be at an overall minimum due to the 

individual bias during each training session.  The result is that there is no 

characteristic ‘dip’ where the PRESS value goes through a minimum at some 

latent dimension, a ≤ 18.  This phenomenon will be illustrated later in this 

chapter.  Furthermore it becomes evident that each training session is 
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customised for its single validation point (see section 4.2.3).  This type of cross-

validation using NNPLS or RBFPLS can therefore strictly–speaking not be used 

to compare PRESS values to those obtained for the linear PLS and feed-

forward neural network models.  

 

A solution to the problem is to cross-validate each latent dimension one at a 

time.  This means that all 18 training-validation sets are trained together up to 

latent dimension, a, in which an MSECV-value for each number of hidden 

nodes used is calculated.  These MSECV-values are based on the output 

scores of the particular latent dimension.  The number of hidden nodes to be 

used for the inner model of the particular latent dimension then corresponds to 

the minimum MSECV-value for that latent dimension.  The algorithm for each 

latent dimension using NNPLS is thus as follows: 

 

0. Begin the algorithm by setting indices a=1, b=1, c=1.  Here index a is the 

number of the current latent dimension, index b is the current number of 

hidden nodes and index c is the current training-validation session 

number. 

1. Obtain the in- and output scores, tab
(c) and uab

(c) as well as the inner model 

neural network parameters, ω1b
(c), ω2b

(c), β1b
(c), β2b

(c), for a=1 by using the 

NNPLS or EBNNPLS algorithms described in section 2.13.2.   

2. Calculate the corresponding in- and output scores for a and b, tval
(c) and 

uval
(c) of the validation data by using equations (2-142) to (2-145). 

3. Calculate the sum square error calculated on the validation predicted 

output scores: SSEab
(c) = ( )û val

(c) - uval
(c) T

 ( )û val
(c) - uval

(c)  

4. Go to step 5 if τ = c otherwise repeat steps 1 to 3 for training-validation 

set c+1.   

5. Calculate MSECVab = 1n ∑
c=1

τ

 SSEab
(c))  
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6. Go to step 7 if ϖ = b for some predefined number of hidden nodes, ϖ, 

otherwise repeat steps 1 to 5 for b+1 hidden nodes in the NNPLS inner 

model. 

7. Find the number of hidden nodes where MSECV is a minimum, i.e.: 

H = b where MSECV = min {MSECVab, b = 1,2,…,ϖ}  

8. Stop training when h = a, otherwise repeat steps 1 to 7 for latent 

dimension a+1. 

 

It should be noted that the value of n in step 5 of the algorithm is equal to 417.  

This is not correct but the choice of the value of n is of no consequence, as 

qualitatively a PRESS-value could be used instead of the MSECV-value.   

 

The value of ϖ in the algorithm can be determined according to some criterion 

within the programmed algorithm.  In this work further training with increased 

numbers of hidden nodes is stopped once the MSECV-value for a latent 

dimension is at a maximum for the last four iterations of increasing number of 

hidden nodes. 

 

4.2 Results and Discussion of Candidate Models 

The cross-validation results for the various model-building techniques are 

evaluated first.  The results from the cross-validation are used to build a model 

on the entire data set (all 417 data points).  This is done by using the optimum 

number of parameters as determined by the cross-validation.  This model can 

be referred to as the ‘overall’ or ‘training data’ model. 

 

The dependent and independent data sets of each training data set within 

cross-validation is standardised as described in section 2.4.2.  The 

corresponding validation data is then centred and scaled using the means and 

standard deviations of the training set.  All statistics scores, unless stipulated 

otherwise, are calculated on target and predicted values after they have been 

post-processed back to their original scale. 
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In the work done by Roodt [1998] it was found that the neural network model 

predicted spectral responses inversely proportional to the chamber pressure, 

PC.  This is in contrast to expectation since an increase in chamber pressure is 

expected to lead to a rise in chamber temperature for a fixed fuel composition 

and rocket shell design.  The chamber pressure values were thus inverted for 

model-building in order to obtain a directly proportional response in the spectral 

predictions.  All the models built here include this amendment made to the 

chamber pressure. 

 

The values of SSEP in this text are defined by the following equation: 

SSEP = tr(ETE)         (4-1) 

SSEP is therefore the trace of the diagonal of ETE. Here E is the n×l matrix of 

residuals calculated using the predictions made by the overall model after 

cross-validation has been completed.  The dimensions of E are thus n=417 and 

l=146.  It is also evident that SSEP is the summation over all the SSE-values 

corresponding to each of the 146 output variables.  From section 2.5.2 SSEPmin 

is therefore the summation over all SSEmin-values for each output variable as 

defined by equation (2-57).  In this case n=18 for Emin. 

 

The PRESS-values are defined by equation (2-65) in section 2.6.3.  Here the 

replicates are built into E and therefore n=417.  However, in order to calculate 

the MSECVj-value for each output variable in equation (2-63) the value of n 

must be 18.  This is in agreement with the statement made by Snee [1977] (see 

section 4.1.2) and also due to the fact that a leave-one-out cross-validation for 

the 18 rocket motor designs allows for 18 degrees of freedom.  This justifies the 

definition of PRESSmin for which the residuals are calculated using the mean 

irradiance spectra for each rocket motor (n=18) and each of the 18 predictions 

made during cross-validation.   

 

The MSEPrs,j-value defined in section 2.14 is therefore calculated using the 

SSEmin,j-value divided by n=18 for each output variable.  This makes it possible 

to legitimately use equation (2-150) for n=18 and therefore calculating the pdf-

value for each output variable. 
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Due to the fact that all the output variables consist of the same units it is 

sensible to evaluate the various model complexities by using the SSE-values 

summed over all the output variables, as described for PRESS and SSEP.  It is 

further found that due to the high degree of correlations in the output data (see 

Fig. 3-8) a change in model complexity qualitatively affects all output variables 

in a similar manner.  It is also not feasible to separately find the optimum model 

complexity for each of 146 output variables. 

4.2.1 Linear PLS 

The linear PLS model is evaluated over all 18 latent dimensions, however in 

Fig. 4-1 the PRESS-values for latent dimensions 14 to 18 have been left out in 

order to maintain the scale of the graph.  In Appendix A the omitted PRESS-

values are shown in Table A-2.   From Fig. 4-1 it is evident that the minimum 

PRESS-value lies at latent dimension 2 (LD 2).  However, another very low 

PRESS-value occurs at LD 11.   The graph therefore does not have the 

customary dipping shape as discussed in section 2.6.4.  The SSEP-values 

show the expected continuous decline due to the increase in model complexity. 

 

Fig. A-1 has been included in order to illustrate the similarity in structure as far 

as the PRESS-values are concerned.   The SSEPmin-values for LD 17 and LD 

18 are zero (see Table A-2).  As far as LD 18 is concerned this result is 

expected, as there are 18 data points (all 18 rocket motors) and 18 input 

variables.  The regression problem reduces to a unique solution of 18 variables 

in 18 equations as would be the case if multiple linear regression were applied.  

This result supports the discussion in section 3.1.3 on the sparseness of the 

data and the need to find dimensional redundancy in order to obtain lack-of-fit 

degrees-of-freedom.  The result for LD 17 is not expected unless the last latent 

dimension contributes negligibly towards the overall model variance.  This is 

very likely, especially as the seventh input variable, Fluorine (F) only contains a 

single data entry. 
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From the results in Fig. 4-1 and Fig. A-1 it is evident that further analysis is 

required in order to decide how many latent dimensions are required to build 

the most feasible model.  The uncharacteristic shape of the PRESS-curve can 

be attributed to the fact that the latent variables (in- and output scores) are 

possibly non-linearly related.  The hyper-planes picking up the primary 

dimensions after LD 2 seem to miss valuable information and then pick it up 

again at LD 11.  After LD 11 there is no more valuable information.  At this 

stage it could therefore be argued that although PRESS at LD 11 is slightly 

higher than at LD 2 there may still be too much information missing at LD 2 and 

that LD 2 merely averages out the PRESS-value much better.  The PRESS-

value used here is after all the summation over all 146 output variables. 
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Fig. 4-1  The sum-squared residuals obtained from building a linear PLS 

model. 

 

An Inspection of Fig. 4-2 shows the expected incremental increases in 

explained variances for both the input and output data.  This is typical for PLS 

regression as opposed to PCA regression where it may be possible for 
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incremental decreases to occur.  Table A-1 shows the explained variance 

increments for the standardised data on which the models are built. 
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Fig. 4-2  The characteristic curves of increasing explained variances for the 

overall linear PLS model (built on all 18 rocket motors). 

 

At LD 2 only 50.76% (see Table A-2) of the X-block data variance is explained 

by the model.  It is not impossible for such a model to be feasible, but it is not 

very likely.  The explained variance of the Y-block is fairly low at 60.86%.  From 

the above observations it seems that LD 10 or LD 11 (99.7% and 90.5% X-

block and Y-block η2) are the more feasible choices for a model.  A very low 

dimension is not expected when considering the low degree of correlation 

found in the X-block data (see Fig. 3-7).  The maximum explained variance 

(max η2) for the Y-block shows that 100% is achieved at LD 17 and LD18.  This 

is expected, as the SSEP-values are zero here.  The ‘normal’ explained 

variance for the Y-block cannot reach 100% due to the replicates built into the 

calculation (see section 2.5.2).   
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In sections 2.6.3 and 4.1.2 it was explained how all the validation sets during 

cross-validation are re-combined to form a 417×146 cross-validation data set 

(CV) of predicted outputs.  In Fig. 4-3 the squared correlations (R2
 = (ryŷ )

2) 

between the predicted cross-validation model outputs and the target output 

variables are plotted.  The region of the spectrum resulting from IR absorbance 

due to water lies approximately between wavelength numbers 20 and 45 (2.7 to 

3.3 µm).  Fig. 4-3 shows that the predicted variables from unseen data are best 

correlated to the target values in this region.  The dip just before the ‘water’-

peak does not feature in any of the model complexities because these 

absorbance values are zero for all rocket motors.  The CO2-peak between 

wavelength numbers 100 and 140 (4.3 to 5µm) appears to be predicted less 

accurately.  It is evident that LD 11 produces most of the highest R2- values in 

the CO2-peak region. 
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Fig. 4-3  The squared correlations between the 146 predicted cross-validation 

irradiance absorbance values and their targets for linear PLS. 
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Fig. A-2 has been included to illustrate that the R2
cv(max) –values show the same 

trends and that the maximum obtainable squared correlations exceed 0.6. 

 

From the discussions above it appears that a linear PLS model using 10 to 12 

latent dimensions is feasible.  In particular, the model with 11 latent dimensions 

performs the best on cross-validation data.  If it were possible to obtain a larger 

data set approaching the population representation a slightly different number 

of latent dimensions may have been optimal.  For the purpose of this study the 

best results for each model are required to find the maximum potential of the 

models given the sparse data.  From Table A-2 it becomes evident that the best 

predictions on cross-validation data and good predictions on the overall model 

are generally obtained at LD 11.  Further, it can be seen that the average R2
cv –

value for LD 2 (0.431) is slightly lower than that of LD 11 (0.461).  

 

In Fig. 4-4 the R2-values for all 146 output variables are plotted using the 

overall model with 11 latent dimensions.  Similar tendencies to the cross-

validation data results can be observed.  There are lower correlations in the 

CO2 absorbance region and (as expected) almost no correlations in the dip 

before the water-peak. 

 

The pseudo degrees of freedom (see section 2.14) have been calculated for 

each of the 146 output variables using 11 latent dimensions for the overall 

model.  For any model the model degrees of freedom (df) are independent of 

the output variables.  Van der Voet [1999] shows that his method of calculating 

pseudo degrees of freedom (pdf) also exhibits this independence.  However, as 

the pdf is an approximation there are deviations among output variables.  Fig. 

4-5 shows how the pdf-values vary for the different output variables.  The 

largest deviations occur at the CO2 absorbance region and the region before 

the water absorbance peak. 

 

The average pdf-values for each LD have been plotted together with the df-

values of an equivalent multiple linear regression model with increasing number 

of input variables in Fig. 4-6.  From this figure it is evident that linear PLS 
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generally includes more model degrees of freedom with increasing number of 

LD’s than the multiple regression equivalent.  This can be attributed to the outer 

model projections made in the algorithm and the subsequent increased amount 

of information captured by each latent dimension.  The pdf-value for LD 17 is 

18, but it remains at 18 for LD 18.  This is due to the lack of information carried 

by LD 18 as discussed above. 
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Fig. 4-4  The squared correlations between the 146 overall model output 

irradiance absorbance values and their targets for 11 latent dimensions. 

 

Table 4-2 shows the total number of linear PLS parameters cumulating with 

increasing number of latent dimensions.  These parameters include the in- and 

output loadings, which are customarily not included in the determination of the 

model degrees of freedom, as was shown by the naïve formula in equation 

(2-146).  From the calculations of the pseudo-degrees of freedom it is obvious 

that by using the total number of parameters to calculate the model degrees of 

freedom would be a grossly over-valued estimate. 
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Fig. 4-5  The number of pseudo-degrees of freedom (pdf) for each of the 146 

output variables using the overall linear PLS model with 11 latent dimensions. 

 

 

The performance scores thus far have no bearing on how well the model 

managed to predict the individual irradiance spectra.  In Fig. 4-8 to Fig. 4-10 the 

individual unseen validation set predictions from leave-one-out cross-validation 

for each rocket motor type are shown.  The predictions are presented together 

with the mean target spectrum and the band of two standard deviations for the 

repeat measurements of the particular rocket motor.  Confidence intervals were 

not calculated, as they require model pseudo-degrees of freedom to be 

calculated.  This requires that the training sets of each cross-validation session 

must be cross-validated themselves in order to satisfy equation (2-150).  This is 

an extensive exercise requiring large amounts of computational time, especially 

for the non-linear models, which require repeat cross-validation runs in order to 

validate the results (see next section). 
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Fig. 4-6  The average pdf over all output variables for linear PLS built with 

increasing number of latent dimensions compared to multiple regression df. 

 

Table 4-2 The total number of parameters per output variable using linear PLS. 

LD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Parameters Per 
Output Variable 

Cumulated
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

 
 

The graphs (Fig. 4-8 to Fig. 4-10) show that, in general, the linear PLS models 

are able to predict the C-class rocket motors fairly well with the exception of C5.  

The predictions of DB3 to DB6 and C5 are failures, especially as these 

predictions, except DB6, predict negative spectra.  Realistically this means that 

the model effectively predicts zero transmittance, as a negative spectrum is not 

possible.  The inaccurate prediction for C5 may be due to the fact that C5 

contains potassium (K) and no aluminium (Al).  The linear model is upset by the 

apparent similarity the rocket motor design parameters has with the majority of 

the DB-class predictions.  The prediction for the emission spectrum of DB1 is 
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too low.  This could be attributed to the model ‘seeing’ the DB1 as a DB-class 

rocket motor, whose irradiance spectra are generally lower than the C-class 

motor designs.  This distinction is especially possible as the DB-class rockets 

contain Cu and Pb, which are not present in the C-class designs.  The above 

results therefore show that 12 out of the 18 (66.7%) unseen predictions are 

successfully predicted. 

 

In Fig. 4-11 to Fig. 4-13 the overall model (see definition in section 4.1.2) 

predictions are presented together with their 95% confidence intervals (see 

section 2.15).  Negative values for prediction intervals are rounded to zero, as 

negative values are not realistic predictions.   The predictions look more 

promising, especially for motor designs DB3, DB5 and DB6.  Although these 

predictions appear highly accurate the confidence intervals are extremely large.  

This lack of precision is confirmed by the poor cross-validation predictions.  The 

predictions for C5 and DB4 remain poor.  The predictions for the remaining 

rockets are highly accurate.  If one considers all predictions with accurate 

predictions as well as realistic confidence intervals the prediction efficiency is 

13 out of 18 (72.2%).  The significant difference in prediction performances 

between the overall model and the unseen data points towards the fact that the 

linear PLS model up to LD 11 may be slightly over-trained.  This is because the 

redundant, noisy components of the input space may be included in the higher 

dimensions, producing the poorer unseen predictions (see section 2.6.4). 

 

It is interesting to observe the linear relationships between the in- and output 

scores (latent variables) as shown in Fig. A-3 and Fig. A-4 for LD 1 to 12.  The 

orders of magnitude of the in- and output scores remain constant up to LD 10 

after which there is a slight decline.  From these graphs it is also evident how 

large the variation is in repeat measurements on some of the motor designs.  

The first 6 data points for the graph of LD 1 are from the 6 motor designs of the 

DB-class.  The data points lying far off the prediction lines are therefore not 

necessarily of the DB-class.  The shape of the prediction line and the 

relationship of the in- and output scores are dependent on prior latent 

dimensions.  The overall effects of the predictions are the combined effects 

over all the latent dimensions.  See section 4.3 for further discussion. 
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Fig. 4-7  A plot of the linear regression coefficients of the linear PLS model for 

all 146 output variables. 

 

A convenient feature of linear PLS is that once a model has been built the 

functional relationship to the output variables can be expressed in terms of 

linear regression coefficients.  The derivation leading to equation (2-133) is 

given in section 2.13.1.  A plot of the regression coefficients is shown in Fig. 4-7 

where the effect of the coefficient of each input variable can be seen.  

Aluminium (Al) and potassium (K) clearly have strong influences on the 

predictions.  The range from wavelength numbers 46 to 85 has been 

highlighted as this region shows the same effect on the predictions across all 

variables where the R2-values are high.  Furthermore the Al-coefficient has a 

strong influence in this band, whereas the K-coefficient has a lesser influence.  

The variables Si, Fe, TC, and DT also have significant influences on the model 

predictions for most output variables.  From these results it seems that the 

strategic addition of additives can ‘mould’ the emission spectra in 

predetermined regions as required. 
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Fig. 4-8  The plume irradiance predictions for unseen rocket motors DB1 to 

DB6 obtained during leave-one-out cross-validation of linear PLS. 
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Fig. 4-9  The plume irradiance predictions for unseen rocket motors C1 to C6 

obtained during leave-one-out cross-validation of linear PLS. 
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Fig. 4-10  The plume irradiance predictions for unseen rocket motors C7 to C12 

obtained during leave-one-out cross-validation of linear PLS. 
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Fig. 4-11  The plume irradiance predictions for rocket motors DB1 to DB6 

obtained for the overall linear PLS model. 
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Fig. 4-12  The plume irradiance predictions for rocket motors C1 to C6 obtained 

for the overall linear PLS model. 
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Fig. 4-13  The plume irradiance predictions for rocket motors C7 to C12 

obtained for the overall linear PLS model. 
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4.2.2  Feed-forward Neural Network 

A varying number of hidden nodes from 1 to 146, as illustrated in Fig. 4-14, 

have been used to find the optimum neural network architecture.  Each cross-

validation session was repeated ten times for each network complexity level in 

order to obtain an overall performance as shown in Fig. 4-14.  Here a box-and-

whisker plot diagram indicates the range of PRESS-values between the first 

and last quartile, including the median.  The whiskers show the extent to which 

the rest of the data varies.  The exact values of the repeated runs are shown in 

Table A-3.  The SSEP-values for the overall model are presented in Table A-4 

for 5 repeated runs.  It is evident that the repeat runs produce very similar 

results and a box-and-whisker plot has therefore not been included here. 
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Fig. 4-14  A box-and-whisker plot of PRESS-values obtained from 10 cross-

validation repetitions with increasing neural network complexity. 
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From Table A-3 the best run is chosen according to the lowest PRESS-value 

obtained in order to process further results from cross-validation.  The best run 

for the overall model is chosen from Table A-4.  The various neural network 

architectures were deliberately over-trained as shown in Fig. 4-15 for run 1 of 

the overall model.  This was done to ensure that the performances of the 

various model complexities are based on the number of parameters and not so 

much on the extent of training.  It also ensures that the sum-square error is 

minimised as far as possible.  This method is addressed in the work done by 

Lawrence [1997] as discussed in section 3.1.3.  

 

From the discussion above, by inspection of Fig. 4-14 and the average values 

in Table A-3 it is evident that two nodes in the hidden layer is the optimum 

neural network architecture.  The best run corresponding to this result is run 2 

for the PRESS-values and run1 for the SSEP-values.  The statistics scores 

calculated for Table A-5 are thus obtained from these runs. 
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Fig. 4-15  An illustration of how the various neural network models have been 

over-trained by observing results from training run 1 of the overall model 

(evaluated on standardised values). 
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The explained Y-block variances for the chosen overall model are shown in 

Table A-5.  There is a sharper increase (79.8% to 93.4%) in η2 from a single 

node to double node model complexity (88.9% to 98.3% max η2).  From there 

the explained variance tapers out (94.8% to 95.1%) and points towards over-

parameterisation.  The neural network with 2 hidden nodes achieves higher η2-

values for the outputs of the overall model than the linear PLS model with 11 

latent dimensions.  It would therefore appear at this stage that the neural 

network is the better model, especially as it addresses the potential problem of 

non-linearities being present (discussed in section 4.2.1).   

 

In Fig. 4-16 the squared correlations (RCV
2  = (ryŷ )

2) between the predicted cross-

validation model outputs and the target output variables are plotted.  The region 

just before the spectrum resulting from IR absorbance due to water 

(wavelength numbers 20 and 45) shows the same expected zero correlations 

as in the case for the linear PLS model (Fig. 4-3).  Here it is evident that the 

gradient from the region of zero correlation to the maximum at approximately 

wavelength number 40 is less steep than is the case for linear PLS.  It therefore 

appears that linear PLS better predicts this region of the spectrum.  The CO2 

absorbance region (wavelength numbers 100 and 140) also generally seems to 

be better predicted by the linear PLS model.   

 

In Fig. 4-16 the highly irregular and ‘noisy’ RCV
2  –values for 10 hidden nodes 

and more can be attributed to over-parameterisation.  In the work done by 

Roodt [1998] similar irregular, noisy predictions were obtained for the neural 

network consisting of 146 nodes in the hidden layer.  The predictions were 

subsequently smoothened by using a 5-point moving average filter. 

 

A comparison of the PLS model with 11 latent dimensions and the neural 

network with 2 hidden nodes shows that the linear PLS model appears to better 

predict unseen data.  This is evident from the plots in Fig. 4-3 and Fig. 4-16, as 

well as the average RCV
2  –value of 0.417 for the neural network and that of 

0.461 for linear PLS.  This tendency is, however not reflected by the lower 
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PRESS-value obtained for the neural network.  In linear regression the sum-

square error is minimised to a global minimum and this corresponds to 

maximising the correlation between target and predicted outputs.  In non-linear 

regression the SSE is not usually a global minimum and therefore may not 

correspond to a maximum correlation.   
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Fig. 4-16  The squared correlations between the 146 predicted cross-validation 

irradiance absorbance values and their targets. 

 

From the correlation results above it therefore seems that, overall, a neural 

network with a single hidden node best predicts unseen data.  The model with 2 

hidden nodes however better predicts the CO2-region of the spectrum.  This 

would explain the lower PRESS-values for 2 hidden neurons compared to the 

single hidden node. 

 

Fig. A-5 has also been included to illustrate that the R2
cv(max) –values show the 

same trends and that the maximum obtainable squared correlations exceed 

0.6. 
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In Fig. 4-17 the R2-values for all 146 output variables are plotted using the 

overall neural network model with 2 hidden nodes.  Similar tendencies to the 

cross-validation data results can be observed.  There are lower correlations in 

the CO2 absorbance region and almost no correlations in the dip before the 

water-peak.  These results are similar to those obtained for the linear PLS 

model, except for the reduced correlations obtained for the tail end of the 

spectrum. 
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Fig. 4-17  The squared correlations between the 146 overall model output 

irradiance absorbance values and their targets for the neural network with 2 

hidden nodes. 

 

The pseudo degrees of freedom (see section 2.14) have been calculated for 

each of the 146 output variables using 2 hidden neurons for the overall model.  

As was discussed and shown in section 4.2.1 the pdf-values calculated and 

presented in Fig. 4-18 show deviations among output variables.  The largest 

deviations occur at the CO2-peak region, the region before the water-peak and 
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at the tail end of the spectrum.  Table A-5 shows that the average pdf-value for 

all 146 output variables is 12.91.  This is slightly higher compared to the value 

obtained for linear PLS (12.42). 
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Fig. 4-18  The number of pseudo degrees of freedom (pdf) for each of the 146 

output variables using a neural network model with 2 hidden nodes. 

 

Table 4-3 shows the total number of neural network parameters cumulating 

with increasing number of hidden nodes per output variable.  During training a 

neural network seeks to minimise the SSE summed over all output variables 

(SSEP).  For this reason the total number of parameters over all output 

variables have been included in the table.  This is a better reflection on the total 

complexity the training algorithm has to deal with and could indicate a possible 

model weakness. 

 

In Fig. 4-19 to Fig. 4-20 the individual unseen validation set predictions from 

leave-one-out cross-validation for each rocket motor type are shown.  The 

predictions are presented together with the mean target spectrum and the band 
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of two standard deviations for the repeat measurements of the particular rocket 

motor.  Confidence intervals were not calculated, as discussed in section 4.2.1. 

 

Table 4-3  The total number of parameters cumulating with increased feed-

forward neural network complexity. 

No. of hidden
nodes 1 2 10 15 20 30 40 50 100 146

Parameters per
output variable 
cumulated

21 41 201 301 401 601 801 1001 2001 2921

Parameters for
all output 
variables 
cumulated

311 476 1796 2621 3446 5096 6746 8396 16646 24236

 
 

The graphs (Fig. 4-19 to Fig. 4-20) show that the predictions for the irradiance 

spectra of the C-class rocket motors are fair.  The predictions for C6, C7 and 

C11 are not desirable as their predictions fall slightly outside the 2 standard 

deviations band.  The predictions for C5, C9, DB3, DB4, DB5 and DB1 are 

failures, as these predictions generally differ by more than 50% from the target 

values in most absorbance values across the spectral bands.  The irradiance 

prediction for DB6 is not desirable, but is not necessarily a failure as it portrays 

the desired trend.  It is especially encouraging to note that DB4 and DB6 tend 

to pick up the correct, lower order of magnitude in the irradiance of the DB-

class.  Rocket motor C5 again (see section 4.2.1) shows negative predictions, 

not shown here as realistically this means that the model effectively predicts 

zero transmittance.  The prediction for the emission spectrum of DB1 is again 

too low which could be attributed to the model ‘seeing’ DB1 as a DB-class 

rocket motor.  The above results show that 12 out of the 18 (66.7%) unseen 

predictions are predicted with a fair amount of accuracy. 

 

In Fig. 4-22 to Fig. 4-23 the overall model predictions are presented together 

with their 95% confidence intervals (see section 2.15).  In contrast to the linear 

PLS model the predictions look more promising for the DB-class rocket motor 

designs.  The confidence intervals also appear much smaller, which points 
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towards an increase in accuracy of the predictions made for the DB-class of 

rocket motor designs.  This increase in precision confirms the tendency of the 

unseen DB-rocket motors to be predicted with an improved order of magnitude.  

Rocket motor C5 is better predicted using the neural network model.   

 

If the predictions of C5 and DB3 are regarded as failures the prediction 

efficiency is 16 out of 18 (88.9%).  This is much higher than that obtained for 

the unseen data.  This supports the fact that there is not really enough data to 

build an adequate neural network model and that the data does not necessarily 

cover a comprehensively large input space obtainable from a design of 

experiments (DOE).  The neural network model appears to be able to 

compensate for the DB-class rocket motor designs through its non-linearity.   

 

In comparison to the predictions presented in the work by Roodt [1998] the 

predictions using 2 hidden nodes here are smooth.  They show no definite 

signs of over-parameterisation and therefore do not require any post-

processing by a moving average filter.  An improvement in accuracy for the 

prediction of the DB-class rocket motor designs appears to go hand-in-hand 

with a loss in accuracy for the predictions of the C-class rocket motors.  This is 

in agreement with the findings made by Roodt [1998].  Neural networks can 

predict training data well, but usually require large amounts of available data in 

order to build a reliable model.  For this reason it may be necessary to further 

explore possible more robust non-linear methods for building a model. 
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Fig. 4-19  The plume irradiance predictions for unseen rocket motors DB1 to 

DB6 obtained during leave-one-out cross-validation of a neural network with 2 

hidden nodes. 
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Fig. 4-20  The plume irradiance predictions for unseen rocket motors C1 to C6 

obtained during leave-one-out cross-validation of a neural network with 2 

hidden nodes. 

Chapter 4 - Predictions of Emission Spectra       137 



 

25 50 75 100 125
0

0.1

0.2

0.3

0.4

0.5

0.6
A

bs
or

ba
nc

e 
U

ni
ts

C7 

25 50 75 100 125
0

0.5

1

1.5

2

A
bs

or
ba

nc
e 

U
ni

ts

C8 

25 50 75 100 125
0

0.2

0.4

0.6

0.8

1

1.2

A
bs

or
ba

nc
e 

U
ni

ts

C9 

25 50 75 100 125
0

0.2

0.4

0.6

A
bs

or
ba

nc
e 

U
ni

ts

C10

25 50 75 100 125
0

0.2

0.4

0.6

Wavelength Number

A
bs

or
ba

nc
e 

U
ni

ts

C11

25 50 75 100 125
0

0.1

0.2

0.3

0.4

0.5

Wavelength Number

A
bs

or
ba

nc
e 

U
ni

ts

C12

Mean target values
Predicted variables
2 standard deviations band for measured data  

Fig. 4-21  The plume irradiance predictions for unseen rocket motors C7 to C12 

obtained during leave-one-out cross-validation of a neural network with 2 

hidden nodes. 
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Fig. 4-22  The plume irradiance predictions for rocket motors DB1 to DB6 

obtained for the overall neural network model (2 hidden nodes). 
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Fig. 4-23  The plume irradiance predictions for rocket motors C1 to C6 obtained 

for the overall neural network model (2 hidden nodes). 
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Fig. 4-24  The plume irradiance predictions for rocket motors C7 to C12 

obtained for the overall neural network model (2 hidden nodes). 
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4.2.3 Neural Network PLS 

The first attempts at building a neural network PLS model were done using the 

error-based sigmoidal neural network (EBNNPLS) algorithm (see section 

2.13.2).  The inner neural network models were trained using 80 epochs for the 

Levenberg-Marquardt algorithm, which has the ability to converge quickly.  For 

the single input and single output (SISO) models this is sufficient to ensure 

over-training.  The performances of the models are therefore again dependent 

on parameterisation and not so much on the extent of the iterative training of 

the models.   

 

Following the discussion in section 4.1.2 and the subsequent modification to 

the PLS cross-validation algorithm the results of the original cross-validation 

algorithm are included in Table A-6.  It is evident that there is no characteristic 

‘dip’ in the PRESS-value.  Although the lowest PRESS-value at LD 18 is 

impressive it simply points to fact that the model has been optimised to 

compensate for the left out data point.  This no longer renders the left out point 

as unseen.  The number of hidden nodes per inner model for each latent 

dimension cannot be shown in the table, as there are different sets of varying 

numbers of hidden nodes per LD for each cross-validation session. 

 

Table 4-4 shows the modified cross-validation (PRESS) and overall model 

(SSEP) results for single runs using the EBNNPLS algorithm.  The PRESS-

value does go through the characteristic ‘dip’ as expected and a set of hidden 

nodes used per inner model is obtained to train the overall model.  From the 

large PRESS-values compared to those obtained for linear PLS and the feed-

forward neural network models it is clear that there is no reason to further 

evaluate the EBNNPLS results.  The minimum PRESS-value for EBNNPLS is 

achieved at LD 2 already and the SSEP-value drops sharply for the first three 

latent dimensions.  This shows how efficient the algorithm is at finding a global 

optimum.  However, due to the high degree of non-linearity in extracting latent 

dimensions the EBNNPLS model seems to over-train and the predictions for 

unseen data are poor. 
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Table 4-4  Modified cross-validation and overall model-building results for 

single runs using EBNNPLS. 

LD PRESS SSEP
Hidden 

nodes per 
inner model

1 2047.8 160.33 6
2 1597.6 52.69 4
3 1762.8 46.90 5
4 1988.0 44.99 4
5 1905.5 44.01 6
6 2272.2 42.89 3
7 2265.4 42.01 2
8 2189.4 41.58 4
9 2239.7 41.35 3

10 2233.9 40.61 4
11 2257.5 40.39 10
12 2282.0 40.28 1
13 2289.4 40.18 3
14 2292.1 40.09 5
15 2221.1 39.99 5
16 2207.8 39.98 13
17 2230.5 39.87 7
18 2223.5 39.38 14  

 

Each modified cross-validation session was repeated ten times for each latent 

dimension using the NNPLS algorithm in order to obtain the box-and-whisker 

plot in Fig. 4-25.  For each run a certain number of hidden nodes per latent 

dimension inner model are obtained and presented in Table A-9.  The average 

PRESS-values in Table A-8 and Fig. 4-25 show that the optimum predictions 

are achieved at LD 11.  From Table A-8 it can further be seen that the best 

results are obtained from runs 3, 4 and 10 and that the minimum PRESS-value 

here is lower than the linear PLS and feed-forward neural network optimums.  It 

is interesting to note that these three runs have the exact same set of PRESS-

values and therefore the same set of hidden nodes for each latent dimension.  

It appears that if the initial conditions for the neural network training of LD 1 are 

the same or similar, such that 6 hidden nodes are chosen, the rest of the 

algorithm follows the same path. 

 

The hidden node configuration corresponding to runs 3, 4 and 10 is chosen to 

build the overall NNPLS model.  The training of the overall model was repeated 

five times and the box-and-whisker results in Fig. 4-26 show that there is little 
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variation in the SSEP-values for the higher latent dimensions.  From Table A-7 

run 3 is chosen as the best overall model for further evaluation. 
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Fig. 4-25  A box-and-whisker plot of PRESS-values obtained for NNPLS from 

10 cross-validation repetitions. 

 

Inspection of Fig. 4-27 shows the expected incremental increases in explained 

variances for both the input and output data .  In comparison to the linear PLS 

model (Fig. 4-2) the curves appear smoother and the explained variance of the 

Y-block is much higher at LD 1.  The first latent dimension already captures 

75.6% (maximum 83.3%) of the Y-block data (see Table A-10).  The explained 

variance of the X-block follows a similar trend compared to that of linear PLS.  

This shows that the X-block latent structure may be close to that of linear PLS. 

The non-linearity of the inner model allows for more information to be extracted 

in the earlier latent dimensions.  The maximum explained Y-block variance 

does not quite reach 100% at LD 18 due to the non-linear nature of the training 

algorithm. 
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Fig. 4-26  A box-and-whisker plot of SSEP-values obtained for the overall 

NNPLS model from 5 repetitions. 

 

Due to the expected ‘dipping’ shape of the PRESS-curve there are no 

discrepancies as to where the optimum latent dimension lies.  From Fig. 4-27 a 

NNPLS model with 11 latent dimensions or even less seems feasible. 

 

In Fig. 4-28 the squared correlations (RCV
2  = (ryŷ )

2) between the predicted cross-

validation model outputs and the target output variables are plotted.  The same 

tendencies for prediction accuracies in the H2O and CO2 absorbance regions 

are obtained as for linear PLS and the feed-forward neural network.  The 

obvious differences, however are the significantly higher RCV
2  –values achieved 

by NNPLS modelling.  A few of the RCV
2  –values are even above 0.8 in the H2O 

absorbance region and RCV(max)
2  exceeds 0.9 at places (see Fig. A-6).  The 

predictions for LD 10 appear to be better than those of LD 11 in the region 

between 20 and 95 wavelength numbers.  LD 11 has the better correlations in 

the CO2 absorbance region.  This would explain the lower PRESS-values for 
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LD 11, as the absorbance units in the CO2-region are large compared to the 

rest of the spectrum.  Due to the dominant feature of the CO2-peak it is 

therefore better to build a model using 11 latent dimensions. 
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Fig. 4-27  The characteristic curves of increasing explained variances for the 

overall NNPLS model (built on all 18 rocket motors). 

 

The average squared correlation for cross-validation using 11 latent dimensions 

is significantly higher at 0.63 (0.75 maximum) as seen in Table A-10.  The 

highest average values however lie at LD 9 and LD 10.  This can only be 

attributed to the fact that the broad band from the H2O absorbance region to 

before the CO2 absorbance region has high RCV
2  –values, which influence the 

averages. 

 

In Fig. 4-29 the R2-values for all 146 output variables are plotted using the 

overall model with 11 latent dimensions.  The shapes of the curves are similar 

to those of the previous models and bear similar, less dramatic tendencies as 

observed for cross-validation.  In comparison to linear PLS (Fig. 4-4) the 
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correlations in the pre-H2O and CO2 absorbance regions are lower.  The 

average R2-value at LD 11 is 0.83 (maximum 0.95), which is lower than the 

value of 0.88 (maximum 0.96) obtained for linear PLS. 
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Fig. 4-28  The squared correlations between the 146 predicted cross-validation 

irradiance absorbance values and their targets for NNPLS. 

 

The pseudo degrees of freedom (see section 2.14) have been calculated for 

each of the 146 output variables using 11 latent dimensions for the overall 

NNPLS model.  Fig. 4-30 shows how the pdf-values vary for the different output 

variables.  The deviations appear to be more random and not mainly at the 

absorbance regions for CO2 and before H2O as is the case for linear PLS.  The 

average pdf value of 12.33 for LD 11 compares well with the averages obtained 

for optimum overall linear PLS (12.42) and feed-forward neural network (12.91) 

models.  

 

The average pdf-values (see Table A-10) for each latent dimension are plotted 

together with the df-values of an equivalent multiple linear regression model 
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with increasing number of input variables in Fig. 4-31.  In comparison to linear 

PLS (Fig. 4-6) the model degrees of freedom appear higher at the earlier latent 

dimensions.  This corresponds to the larger explained variance achieved at the 

lower latent dimensions.  A similar ‘dipping’ trend towards LD 12 is observed as 

in linear PLS.  This is an indication that the increase in model complexity no 

longer contributes significantly to the overall input space leverage.  The higher 

latent dimensions in fact decrease the overall input space leverage, which is 

indicative of over-parameterisation. 
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Fig. 4-29  The squared correlations between the 146 overall model output 

irradiance absorbance values and their targets for NNPLS up to LD 11. 

 

Table 4-5 shows the total number of NNPLS parameters per output variable 

cumulating with increasing number of latent dimensions.  These parameters 

include the in- and output loadings as discussed in section 4.2.1.  The 

cumulated numbers of inner model parameters are also presented here.  This 

is to distinguish the inner model parameters from the in- and output loadings, 

which are also counted as parameters.  For LD 11 the 98 inner model 
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parameters are significantly more than the 11 for the linear PLS model.  Yet the 

statistics scores generally appear to be better for the NNPLS model.  In 

comparison to the feed-forward neural network model with 2 hidden nodes (41 

parameters) the overall NNPLS model with LD 11 (307 parameters) appears to 

have many more parameters per output variable.  However, if one compares 

the total number of parameters used for training the whole neural network (476 

parameters) to those used to train the NNPLS model the NNPLS model has 

fewer parameters.  Due to the nature of the different training algorithms it is 

difficult to compare the different models on a parameter basis.  For this reason 

the calculation of the pseudo degrees of freedom to determine the input space 

leverage is a better choice. 
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Fig. 4-30  The number of pseudo degrees of freedom (pdf) for each of the 146 

output variables using the overall NNPLS model with 11 latent dimensions. 

 

In Fig. 4-32 to Fig. 4-34 the individual unseen validation set predictions from 

leave-one-out cross-validation for each rocket motor type are shown.  The 

predictions are presented together with the mean target spectrum and the band 
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of two standard deviations for the repeat measurements of the particular rocket 

motor.  Confidence intervals are not calculated, as discussed in section 4.2.1. 
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Fig. 4-31   The average pdf over all output variables for the overall NNPLS 

model with increasing number of latent dimensions compared to multiple 

regression df. 

 

The graphs (Fig. 4-32 to Fig. 4-34) show good predictions for the C-class rocket 

motors.  The predictions for DB1 and DB3 to DB6 can be regarded as failures 

although the tendency for the models to predict the correct order of magnitude 

for the DB-class rocket motors is there.  A vast improvement is that rocket 

motor C5 is correctly predicted.  The prediction for the emission spectrum of 

DB1 is again too low.  The above results show that 13 out of the 18 (72.2%) 

unseen predictions are predicted with a fair amount of accuracy. 

 

In Fig. 4-35 to Fig. 4-37 the overall model predictions are presented together 

with their 95% confidence intervals (see section 2.15).  The NNPLS model is 

able to better predict the DB-class rocket motor spectra than the feed-forward 
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neural network.  The confidence intervals are smaller compared to the optimum 

linear PLS model, which supports the idea that there is an increase in accuracy 

of the spectral predictions made for the DB-class of rocket motor designs.  This 

increase in precision confirms the tendency of the unseen DB-rocket motors to 

be predicted with an improved order of magnitude. 

 

Table 4-5  The total number of parameters per inner model and output variable 

for the optimum NNPLS model. 

LD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Total
 number of 
inner model 
paramters

19 32 45 58 62 66 76 83 90 94 98 102 139 167 204 235 266 270

Total 
number of 
parameters 
per output 
variable*

38 70 102 134 157 180 209 235 261 284 307 330 386 433 489 539 589 612

 
 

If the prediction for DB4 is regarded as a failure the prediction efficiency is 17 

out of 18 (94.4%).  The overall NNPLS model is able to compensate for the DB-

class rocket motor designs through its non-linearity but the unseen predictions 

remain poor.  This can be attributed to the lack of data and the fact that the 

data does not necessarily cover a comprehensively large input space 

obtainable from a design of experiments (DOE).  The spectral predictive ability 

of the C-class rocket motor designs does not appear to be significantly 

compensated for by an increase in predictive ability for the DB-class.  This is 

the case for the feed-forward neural network. 

 

The fact that the NNPLS model performs much better than the EBNNPLS can 

only be attributed to the fact that the latent dimensions are more linear in 

nature.  In section 2.13.2 it is mentioned and referenced to external sources 

that the NNPLS algorithm is better suited for building models on data with slight 

non-linear tendencies.  The fact that the linear PLS models achieves such 

accurate predictions on unseen data for the C-class rocket motors is indicative 

of linearities in the input-output relationships.   
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The target and predicted output scores versus the input scores for each inner 

NNPLS overall model up to LD 12 have been plotted in Fig. A-7 and Fig. A-8.  

The target in- and output scores of the first latent dimension are, as expected, 

identical to those of the overall linear PLS model.  From Fig. A-7 it is evident 

that the functional relationship is the most non-linear in LD 1.  This non-linearity 

manages to capture 46.3% more explained variance of the outputs compared 

to linear PLS.  From LD 2 the scores calculated for NNPLS differ from using 

linear PLS due to the systematic subtraction of the latent variable space from 

the overall data during PLS training.  This explains why the initial conditions in 

the first latent dimension are important in determining the structures for the rest 

of the latent dimensions.  It also explains why it is possible for 3 repeat training 

runs to be identical.  It appears that the inner models for each latent become 

more linear in nature with increasing latent dimension.   

 

In section 2.13.2 it is shown that there are 3H+1 parameters per neural network 

inner model.  This means that if there are more than 5 hidden nodes in the 

inner model there are more parameters than the 18 independent data points.  

In Table A-9 it is shown that for run 10 only LD 1 uses more than 5 hidden 

nodes in the inner model.  It is discussed in section 3.1.3 that it is not 

necessarily crucial for non-linear models to have more data points than 

parameters, however it is desired.  This may be a contributing factor to why the 

NNPLS model performs better than the feed-forward neural network. 

 

The reductions in input dimension achieved by linear PLS and NNPLS make it 

possible to build more robust models.  The dimensional problem as discussed 

in section 3.1.3 can be overcome.  Alternatively stated, if the data size is fixed 

the only remaining option is to manage the dimensions of the input space. 
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Fig. 4-32  The plume irradiance predictions for unseen rocket motors DB1 to 

DB6 obtained during leave-one-out cross-validation of NNPLS with 11 latent 

dimensions. 
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Fig. 4-33  The plume irradiance predictions for unseen rocket motors C1 to C6 

obtained during leave-one-out cross-validation of NNPLS with 11 latent 

dimensions. 
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Fig. 4-34  The plume irradiance predictions for unseen rocket motors C7 to C12 

obtained during leave-one-out cross-validation of NNPLS with 11 latent 

dimensions. 
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Fig. 4-35  The plume irradiance predictions for rocket motors DB1 to DB6 

obtained for the overall NNPLS model using 11 latent dimensions. 
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Fig. 4-36  The plume irradiance predictions for rocket motors C1 to C6 obtained 

for the overall NNPLS model using 11 latent dimensions. 
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Fig. 4-37  The plume irradiance predictions for rocket motors C7 to C12 

obtained for the overall NNPLS model using 11 latent dimensions. 
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4.2.4 Radial-basis Function PLS 

The use of RBFPLS as an alternative to NNPLS is discussed in section 2.13.2.  

A motivation for applying this algorithm is that the RBF training algorithms 

discussed in section 2.12 allow for repeatable training results.  The RBF neural 

networks form a part of a unique class of neural networks as far as model 

training and functional relationships are concerned.  The characteristic feature 

is that the hidden node outputs are based on the proximities of the input data to 

pre-selected centres.  For some data sets this philosophy may produce good 

results, depending on the nature of the input-output relationship.  The training 

of a RBF network by K-means clustering is achieved much more quickly than 

an equivalently sized sigmoidal feed-forward neural network.  Due to the results 

obtained in section 4.2.3 the EBRBFPLS algorithm is not considered here. 

 

In Table A-11 the modified cross-validation and overall model results are shown 

for the RBPLS models built using the K-means RBF training method (see 

sections 2.7 and sections 2.12.1).  The initialisation of the K-means algorithm 

has a significant effect on the model performance.  The K-means method is 

applied using two different initialisation methods.  The first is that of finding the 

first K furthest points within the RBF model inputs.  The second method makes 

use of the primary principal component scores of the input space.  The data is 

then split into two clusters along the centre of the principal component axis.  

The principal components of each of these clusters are then again used to 

further split each cluster into two.  This is repeated until there are K-clusters.  

The centroids (means) of each cluster are used as the K initial centres.  This is 

the so-called PCA binary split method.  The splitting is stopped once there are 

K-clusters, else it would only be possible to have 2n clusters, for n = 1,2,…,etc. 

 

The OLS method for training the RBF within the RBFPLS model requires that 

the spread parameter be calculated according to some heuristic (see section 

2.12).  The use of equation (2-126) generally produces the lower residuals 

compared to equation (2-119).  These results are shown for 80 and 120 nearest 

neighbours in Table A-12. 
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A comparison of the RBFPLS models built using the RBF algorithms discussed 

above reveals similar results.  The PRESS-values obtained from the K-means 

methods appear to go through the characteristic minimum at lower model 

complexities.  It is interesting to note that the number of hidden nodes for each 

inner model do not exceed the value of 5.  This shows that there are no more 

than 16 parameters per inner model (see discussion in section 4.2.3).  The 

PRESS-values obtained from the OLS methods do not appear to go through 

distinct, characteristic minima at lower model complexities.  Many of the inner 

model radial-basis functions do consist of more than 5 hidden nodes. 

 

The RBFPLS PRESS-values using the proposed ASOLS training algorithm for 

each inner model are shown in Table A-14 for 5 runs.  Each run uses 80, 120, 

160, 110 and 130 nearest neighbours, respectively for each inner model to 

initialise the ASOLS algorithm (see steps 1 and 2 of the ASOLS algorithm in 

section 2.12.2).  The ASOLS algorithm further uses 2 nearest neighbours in 

steps 7 and 15 of the algorithm.  This is due to the single input-single output 

architecture of the inner models and no more than 2 nearest neighbours are 

therefore required.  A few of the inner model training results are shown in Table 

A-13 to illustrate how the ASOLS algorithm converges using a tolerance of zero 

in step 13 of the algorithm.  There are reductions in SSE for dimensions 1, 4 

and 6, which indicate an improvement on the OLS algorithm without 

modification. 

 

The corresponding SSEP-values (from ASOLS training) obtained from training 

on the overall model are shown in Table A-15.  The second run, using 120 

nearest neighbours by far produces the lowest PRESS-values.  This is evident 

in Fig. 4-38 where the PRESS-values are compared to the average PRESS-

values over all 5 runs.  The minimum PRESS-value for run 2 lies at latent 

dimension 10.  From the average PRESS-values it is evident that, generally, 

there is no optimum minim value for model complexities at latent dimensions 

below 18.  The minimum at LD 10 for run 2 is quantitatively not as convincing 

as the minimum value obtained at LD 11 for NNPLS.  Inner models with 6 and 

10 hidden nodes are however present (see Table A-16). 
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It seems safe to assume that the optimum model therefore lies somewhere 

from LD 10 to LD 18 for the RBFPLS model with ASOLS training.  Low model 

complexities are always desirable and for this reason it appears reasonable to 

accept 10 latent dimensions as the optimum model.  In Fig. 4-39 it can be seen 

how the Y-block explained variance already tapers out by LD 10 and upwards. 
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Fig. 4-38  A plot of PRESS-values using the ASOLS training algorithm for each 

inner model within RBFPLS (see Table A-14). 

 

In comparison to the previous models an elaborate discussion is not included 

here due to the similarity in structure and patterns of results to the NNPLS 

model.  The squared correlations between the predicted and mean target 

spectra for all output variables are plotted in Fig. A-9.  The basic trends are 

similar to those of the previous models.  The predictions across the entire 

spectrum band for the RBFPLS model fairs worse in comparison to the NNPLS 

model.  The RBFPLS model is able to better predict the CO2 absorption band 

compared to the linear PLS and feed-forward neural network models, however 
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the band between the H2O and CO2 absorption regions is predicted more 

poorly with RCV(max)
2  –values between 0.5 and 0.6.   
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Fig. 4-39  The increasing explained variance of the overall RBFPLS model with 

ASOLS training of the inner models. 

 

In comparison to the other PLS models a similar tapering trend towards LD 11 

and 12 for the average pseudo degrees of freedom is shown in Fig. 4-40.  This 

supports the idea that the optimum model complexity lies somewhere in the 

region of 10 to 12 latent dimensions.  Beyond LD 13 there seem to be no 

significant increases in model degrees of freedom.  This strongly suggests 

significant over-parameterisation in the higher model complexities.   

 

The cumulated total number of parameters per output variable and the number 

of parameters per inner model are tabulated in Table 4-6.  At LD 10 there are 

more model parameters cumulated in comparison to the NNPLS model.  The 

NNPLS model is thus more efficient in extracting the equivalent input-output 

relationships in the data.  The RBFPLS model contains more inner models with 
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over 5 hidden nodes per inner model neural network, which might make the 

model less desirable than the NNPLS model. 
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Fig. 4-40  The average pdf over all output variables for the overall RBFPLS 

model with increasing number of latent dimensions compared to multiple 

regression df. 

 

The predictions of the unseen irradiance spectra as shown in Fig. 4-41 to Fig. 

4-43 indicate that most of the rocket motor predictions are not accurate to 

within two standard deviations of the measurement variances for each rocket 

motor design.  Negative predictions are again given default values of zeros, as 

negative absorbances are not practically tangible.  Except for DB1 and DB2, 

the model seems to have no affinity for the DB-class rocket motor spectral 

predictions.  The C-class rocket motor spectral predictions are generally not 

predicted so accurately compared to the other models.  The orders of 

magnitude of the spectra are however predicted accurately.  The region 

between the CO2 and H2O absorption peaks is generally poorly predicted.  This 

explains the lower RCV(max)
2  –values obtained in this region. 
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The fair predictions made on the unseen data support the fact that the average 

RCV
2  –value at LD 10 (see Table A-17) matches the value of 0.417 obtained for 

the feed-forward neural network using two hidden nodes.  The lower optimum 

PRESS-value for RBFPLS compared to that of the linear PLS and feed-forward 

neural network models is indicative of the fact that there are no completely 

negative spectral predictions made.  This is the case for the predictions made 

for C5 for example.   

 

Table 4-6  The total number of parameters per inner model and output variable 

for the optimum RBFPLS model with ASOLS training. 

LD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Total number
 of inner model 
paramters

16 20 27 46 56 87 106 119 123 130 137 150 172 176 189 208 212 228

Total number 
of parameters 
per output 
variable*

35 58 84 122 151 201 239 271 294 320 346 378 419 442 474 512 535 570

 
 

The rocket motor spectral predictions together with their 95% confidence 

intervals are shown in Fig. 4-44 to Fig. 4-46.  Except for DB3 to DB6 the 

predictions are accurate.  The orders of magnitude of the predictions for DB3 to 

DB6 are correct, which is encouraging.  The confidence interval bands are 

larger compared to the NNPLS model. 

 

The target and predicted output scores versus the input scores for each inner 

RBFPLS overall model up to LD 6 have been plotted in Fig. A-10.  The 

functional relationship is the most non-linear in LD 1.  This non-linearity 

manages to capture 39.5% more explained variance of the outputs compared 

to linear PLS.  Shapes of the prediction curves for LD 1 and LD 2 appear 

similar to those obtained for the overall NNPLS model.  The inner models for 

each latent become seem to become more linear in nature with increasing 

latent dimension.   
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From the results for the RBFPLS model with ASOLS training it is evident that 

the model performs slightly better overall compared to the linear PLS and feed-

forward neural network models.  However, there are certain areas where its 

performance is weaker, such as the predictions in the absorption band between 

the CO2 and H2O absorption peaks.  The NNPLS model performs better than 

the RBFPLS model overall. 
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Fig. 4-41  The plume irradiance predictions for unseen rocket motors DB1 to 

DB6 obtained during leave-one-out cross-validation of RBFPLS (ASOLS 

training) with 11 latent dimensions. 
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Fig. 4-42  The plume irradiance predictions for unseen rocket motors C1 to C6 

obtained during leave-one-out cross-validation of RBFPLS (ASOLS training) 

with 11 latent dimensions. 
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Fig. 4-43  The plume irradiance predictions for unseen rocket motors C7 to C12 

obtained during leave-one-out cross-validation of RBFPLS (ASOLS training) 

with 11 latent dimensions. 
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Fig. 4-44  The plume irradiance predictions for rocket motors DB1 to DB6 

obtained for the overall RBFPLS (ASOLS training) model using 11 latent 

dimensions. 
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Fig. 4-45  The plume irradiance predictions for rocket motors C1 to C6 obtained 

for the overall RBFPLS (ASOLS training) model using 11 latent dimensions 
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Fig. 4-46  The plume irradiance predictions for rocket motors C7 to C12 

obtained for the overall RBFPLS (ASOLS training) model using 11 latent 

dimensions 
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4.3 Discussion of the Candidate Models 

At this stage it is necessary to consolidate the detailed discussion presented in 

section 4.2.  A comparison summary is presented in Table 4-7.  The aim here is 

not only to draw final conclusions on the comparative model performances but 

also to find a generalisation on the modelling ability and structure of the data.  

The EBNNPLS and EBRBFPLS results have not been included due to poor 

performances on the unseen cross-validated data, as discussed in section 4.2. 

 

The results from section 4.2 and in Table 4-7 show that the most efficient model 

is that built by the NNPLS model.  Only the linear PLS model is able to perform 

better on the R2 - and Rmax
2  –values calculated for the overall model.  The 

reason for this is the fact that most of the C-class rocket motor irradiance 

spectra, except for C5 are accurately predicted using the linear PLS model.  

The 95% confidence intervals calculated using the higher MSE- and therefore 

SSEP-values are however extremely large and the calculation of the R2 –

values does not take this into account.  If it were not for the failure to predict C5 

the overall linear PLS model may even be a promising candidate model.  The 

NNPLS model maintains the linear latent projections and therefore introduces a 

subtle non-linearity in the inner models to compensate for the shortcomings of 

the linear PLS algorithm.   

 

In section 2.13.2 it is mentioned that Qin [1992] showed how the NNPLS model 

could be transformed into a feed-forward neural network architecture.  It is 

therefore possible to represent the predictive function in the form of a single 

layer neural network with 29 hidden nodes using tan-sigmoidal transfer 

functions and an output layer of 146 nodes with purely linear functions.  This 

result shows that the back-propagation algorithms are not necessarily the best 

methods for training a feed-forward neural network when dealing with 

multivariate outputs.  The result further supports the idea by Lawrence [1997] 

that it is possible to over-parameterise a neural network and still achieve the 

desired results. 
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It is interesting to note that the optimum models for all four candidate models 

produce similar average pseudo degrees of freedom.  The three PLS models 

also produce their optimum models at similar numbers of latent dimensions.  

The implication of these results shows that the optimum results are obtained at 

a certain MSECV/MSEPrs-ratio.  This further implies that the PRESS to SSEP 

ratio is of importance and that the different PLS models satisfy this ratio at 

similar model complexities.  Other non-linear model complexities like the feed-

forward neural network can now be compared to the PLS models by virtue of 

the pseudo degrees of freedom. 

 

Table 4-7  A summary of performance scores for each optimum model.  The Y-

block variances are calculated on the overall optimised models. 

linear
 PLS

Feed-
forward

NN
NNPLS RBFPLS

 (ASOLS)

Complexity 11 LD 2 H 11 LD 10 LD
PRESS 688.50 613.23 258.10 367.56
SSEP 76.28 52.74 45.41 53.06
Y-block %η2 90.52 93.43 94.34 93.39
Y-block max %η2 94.98 98.31 98.98 98.09
Ave R2

cv 0.461 0.417 0.626 0.417
Ave R2

cv(max) 0.541 0.548 0.746 0.527
Ave R2 0.876 0.803 0.825 0.818
Ave R2

max 0.957 0.907 0.954 0.946
Ave pdf 12.42 12.91 12.33 13.21
Parameters 220 476 307 346  

 

The model optima of the candidate models have therefore been determined by 

the trade-offs between cross-validation and the overall model training.  The 

optimum predictive ability for the data is further validated by the comparison of 

the optima from the different model architectures and algorithms.  It may be 

possible to find an improved model architecture and algorithm, but the 

expectation would therefore be to find the optimum at comparable model 

complexities.  This optimum is therefore limited by the amount and nature of the 

available data. 

 

It is desirable to obtain PRESS-values comparable to the SSEP-values.  In all 

the models applied the PRESS-values seem high relative to the corresponding 
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SSEP-values.  The best way of testing the equivalence between the cross-

validation residual variance and that of the overall model is by comparing the 

mean-square errors, MSECV and MSE (overall model). A more detailed 

discussion on residual variances follows in section 4.4.   

 

4.4 Analysis of the Residual Variances 

An analysis of model residuals is standard practice when evaluating the 

legitimacy of a model.  From the results obtained thus far it is shown that the 

NNPLS model appears to be the more promising candidate model.  For this 

reason the analysis of residuals and variance is limited to the NNPLS model 

only.  

 

It is a daunting task to plot the residuals for all 146 output variables against 

their data sample point number.  For this reason the Euclidean distances 

between the predicted and mean target irradiance spectra are plotted using the 

overall NNPLS model in Fig. 4-47.  The Euclidean distances for the 

standardised data and the re-scaled data are plotted here as a check on the 

results of the re-scaled data.   

 

The Euclidean distances for C1, C2 and C8 are high due to the fact that their 

spectral absorbance values are the highest compared to the other rocket motor 

irradiance spectra.  The values of the Euclidean distances are spread out 

randomly.  This is expected, as the NNPLS model is essentially approximated 

using a universal approximation function.  This means that the function will not 

suffer from inherent functional mismatch, as can be the case for linear models.  

In such a case it would be possible to identify a trend in the residual plots due 

to the fact that the wrong functional form for the mapping function is chosen. 

 

Due to the presence of repeat measurements in the output data set it is 

possible to do a lack-of-fit test described in section 2.5.2.  Draper [1981] 

maintains that the usual analysis of variance (ANOVA) F-test for regression and 

the lack-of-fit F-test are generally not valid for non-linear models.  This is due to 

the fact that the assumption of normally distributed model parameters no longer 
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holds when it is assumed that the model residuals are normally distributed.  

However Bates [1988] readily uses the lack-of-fit statistic to evaluate the 

adequacy of a non-linear model.  The motivation for using the right-tailed lack-

of-fit F-test is that the F-ratio for ANOVA is calculated using the pure error and 

lack-of-fit mean-square error.  The two variables can therefore be regarded as 

independent and each follows its own χ2(chi-squared)-distribution.   
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Fig. 4-47  The Euclidean distances between the target and predicted spectra 

from the overall NNPLS model (LD 11) plotted against their data points. 

 

The multivariate analysis of variance (MANOVA) was attempted for the 146 

outputs but it was found that the determinants for calculating Wilks’ lambda of 

the residual matrix could not be calculated due to an ill-conditioned matrix.  For 

this reason the lack-of-ANOVA is done for each individual output variable, j and 

the results are plotted in Fig. 4-48.  The lack-of-fit mean-square error uses 18-

pdf degrees of freedom and the pure error uses 399 degrees of freedom. The 

pdf-values vary as shown in Fig. 4-30.  The maximum critical F-statistic of all 

the output variables and all the model complexities shown at a 1% α-level is 

indicated.   
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Fig. 4-48  The lack-of-fit ANOVA results for the overall NNPLS model at various 

model complexities.  The maximum critical F-statistic equals 10.45. 

 

The plot in Fig. 4-48 shows that the majority of the predictions across the 

spectral band indicate significant lack-of-fit, i.e. their lack-of-fit F-ratios are 

higher than the maximum critical value of 10.45.  Only at the higher model 

complexities do the F-ratios start dipping below the maximum critical value for 

most of the spectrum.  The NNPLS models from LD 13 to 18 are however 

shown to be over-parameterised in section 4.2.3.  The CO2-absorbance region 

of the spectrum (wavelength numbers 100 to 140) shows the most lack-of-fit. 

 

In practice the sum-square pure error and lack-of-fit sum-square error are 

pooled together to calculate the overall MSE (per variable, j) if insignificant lack-

of-fit is found.  The assumption was made in section 4.2 that the model is 

adequate and for this reason the MSE is used to calculate the confidence 

intervals of the output predictions.  A plot of the mean-square residuals, MSE, 

MSEL, MSEmin and sP is shown in Fig. 4-49.  These are the estimates of the 
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residual variance, ε and it is evident that MSEL does not compare well with the 

other estimates.   
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Fig. 4-49  A comparison of the various estimates of the residual variance 

calculated using the overall NNPLS model with 11 latent dimensions. 

 

The F-statistics in Fig. 4-50 are calculated in order to test for the null hypothesis 

that the mean-square error (MSE for overall model) and the pure error (sP) are 

equivalent.  The critical F-statistics are therefore evaluated at 417-pdf and 399 

degrees of freedom, respectively. A small region in the band between the H2O 

(wavelength numbers 20 to 45) and CO2 absorption peaks, and a larger band in 

the CO2 absorption peak fall outside the critical 99% confidence band.  The null 

hypothesis is therefore rejected for these regions, however on average the F-

statistic remains within the confidence band. 
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Fig. 4-50  The ratio, F =  MSE/sP is compared to the critical F-statistics at n−pdf 

and nR = 399 degrees of freedom for all 146 output variables using the overall 

NNPLS model with 11 latent dimensions. 

 

The mean-square error (MSE for overall model) is further tested for the null 

hypothesis of equivalence with the minimum mean-square error (MSEmin) as 

shown in Fig. 4-51.  The critical F-statistics are therefore calculated using 417-

pdf and 18-pdf degrees of freedom, respectively.  The irregular upper bound of 

the critical 99% confidence band can be attributed to the large difference 

between the degrees of freedom used by each estimate of residual variance.  

The plot shows that the null hypothesis can be accepted across virtually the 

entire spectrum.  This result is significant as it motivates the use of MSEmin as 

an estimate of MSE and hence the residual variance, ε. 
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Fig. 4-51  The ratio, F =  MSE/MSEmin is compared to the critical F-statistics at 

417−pdf and 18-pdf degrees of freedom for all 146 output variables using the 

overall NNPLS model with 11 latent dimensions. 

 

From the predominantly significant lack-of-fit obtained for the best candidate 

model in Fig. 4-48 there appears to be reason to doubt the adequacy of the 

overall models to fit the data.  In Fig. 4-52 the F-statistics are plotted for the null 

hypothesis that MSECV and MSE (overall model) are equivalent.  The mean-

square error of cross-validation is calculated using the PRESSmin,j-values for 

each individual output variable (see sections 2.6.3 and 4.2).  The critical F-

statistics are evaluated at 18 and 417-pdf degrees of freedom, respectively.  

Most of the F-statistics are outside the critical 99% confidence bands, thus the 

null hypothesis can be rejected for most of the output variables.  This result 

places doubt on the ability to be able to build a model on the given data that 

can make accurate unseen predictions. 
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Fig. 4-52  The ratio, F =  MSECV/MSE is compared to the critical F-statistics at 

18 and 417-pdf degrees of freedom for all 146 output variables using the overall 

NNPLS model with 11 latent dimensions. 

 

4.5 Sensitivity Analysis 

From the statistical tests even the best candidate model, the overall NNPLS 

model, may not be ideal.  A sensitivity analysis is required in order to see if the 

model is able to qualitatively predict the expected behaviour from perturbations 

made on the input variables.  The sensitivity analysis done here has been 

adopted from the work done by Roodt [1998].  The reason for this is that the 

NNPLS model can be compared to the feed-forward model in the referenced 

work.  The sensitivity analysis for this data requires careful planning, as a 

change in rocket chemistry represents simultaneous changes to multiple 

elements such as carbon (C), hydrogen (H) and oxygen (O) for example.   
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Initially, the model responses are tested on changes made to the following key 

inputs as suggested by Roodt [1998]: 

 

• The chamber pressure (PC) and temperature (TC): These changes go 

hand-in-hand and an increase in spectral irradiance is expected. 

• The throat diameter (DT):  An increase allows more gas to flow per unit 

time and the amount of cooling is reduced (temperature increases).  The 

optical depth also increases and an increase in irradiance is expected. 

• The expansion ratio (EC):  A drop in spectral irradiance is expected due 

to a drop in temperature when the ratio is increased. 

• The amount of aluminium:  An increase in Al causes an increase in the 

solids in the plume and therefore an increase in optical density, which 

increases the irradiance. 

• The amount of flame suppressant:  Potassium (K) acts as a flame 

suppressant and therefore decreases the spectral irradiance. 

 

The changes made to rockets DB1, C1, C9 and C10 corresponding to the list 

above are shown in Table A-18.  The original model predictions are shown 

relative to the predictions after the modifications have been made in Fig. 4-53.  

Except for the changes made to the expansion ratio and the throat diameter the 

modified predictions are as expected.  It must be added that Al has a high heat 

of combustion and therefore this may be a contributing factor towards the 

model picking up an increase in irradiance.  The decrease in expansion ratio 

leaves the prediction for DB1 virtually unchanged.  This result is not impossible, 

as a change in expansion ratio may not have a significant as expected effect on 

the plume temperature (and therefore irradiance intensity).  It is encouraging to 

see the clear decrease in irradiance prediction by the addition of potassium to 

C10.  This prediction is more pronounced compared to that made by Roodt 

[1998]. 

 

It is interesting to note in Fig. 3-7 that the expansion ratio is directly correlated 

with the chamber pressure and inversely correlated with the throat diameter.  

The throat diameter is also inversely correlated to the chamber pressure.  It is 

therefore difficult to draw conclusions based on the individual perturbations and 
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their combined effects have to be considered.  This is especially the case for 

the throat diameter, as a decrease in the throat diameter increases the 

chamber pressure for fixed rocket motor chemistries.  This could explain why 

the spectral irradiance for C9 increases with a throat diameter increase, which 

is contrary to expectation.  These interactions further motivate the use of 

dimensional reduction of the data to latent structures. 

 

A further analysis is made by making global changes to the rocket, C11.  This 

analysis is more appropriate following the preceding discussion.  The 

modifications here include doubling (C11-A) and the halving (C11-B) the 

aluminium content whilst maintaining the chemical balance and by re-

calculating a chamber temperature and pressure using the same thermo-

chemical program mentioned in section 3.1.1.  Further changes include 

changing the rocket motor binder, HTPB/Isophoron to CTPB/Isophoron (C11-C) 

and finally to polyester (C11-D).  These modifications and the effects on the re-

calculated temperatures and pressures are shown in Table A-19.  The overall 

changes to the input features are shown in Table 4-8. 

 

The results from the global changes made to the input feature of C11 are 

shown in Fig. 4-54.  In C11-A the increase in Al causes an increase in 

calculated chamber temperature to 2980K as expected.  The spectral 

irradiance is therefore expected to increase, as predicted.  In C11-B the halving 

of the aluminium composition leads to a decrease in chamber temperature of 

2820K.  This is a small decrease of 40K and a less dramatic decrease in 

spectral radiance is expected and also predicted by the model. 

 

The binder changes in C11-C and C11-D effectively change ratios of the 

elements relative to each other and therefore the combustion products in the 

plume.  The use of binder CTPB does not bring about large changes in 

expected chamber temperature and compositions.  The spectral irradiance is 

therefore not expected to change significantly.  The prediction matches this 

expectation.  This is an improvement on the result achieved by the feed-forward 

neural network model built by Roodt [1998].  The use of polyester (C11-D) has 

a greater effect on the elemental ratios and an even greater effect on the 
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temperature, which increases to 3050K (see Table 4-8).  The amount of Al is 

only slightly increased.  The expectation is a slight increase in spectral 

irradiance.  The prediction matches the expectation, which is also an 

improvement on the result achieved by Roodt [1998] where a decrease is 

predicted. 

 

Table 4-8  The overall changes to the input feature of rocket C11 after making 

global changes to the motor design. 

C11 C11-A C11-B C11-C C11-D
C 1.047 1.0474 1.0474 1.0528 0.8551
H 4.382 4.382 4.4505 4.3833 3.9587
O 2.796 2.66 2.8642 2.792 2.9775
N 0.701 0.6672 0.7183 0.7013 0.6894
Al 0.148 0.2965 0.0741 0.1482 0.1482
K 0 0 0 0 0
F 0 0 0 0 0
Cu 0 0 0 0 0
Pb 0 0 0 0 0
S 0 0 0 0 0
Cl 0.689 0.6553 0.7064 0.6894 0.6894
Si 0 0 0 0 0
Ti 0 0 0 0 0
Fe 0 0 0 0 0
Tc 2.86 2.98 2.82 2.87 3.05
Pc 1 1.23 1.23 1.23 1.23
Ec 4.5 4.5 4.5 4.5 4.5
DT 15 15 15 15 15  
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Fig. 4-53   The resulting predictions from the overall NNPLS model after the 

indicated modifications have been made to the input features. 
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Fig. 4-54  The predictions made from making global changes to C11 using the 

overall NNPLS model. 
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Chapter 5  
 Predictions of  the Rocket Motor Design 

Parameters 

 Chapter 5 - Predictions of the Rocket Motor Design Parameters 

The prediction of the design parameters from the rocket irradiance emission 

spectra as independent predictors has already been defined as the ‘reverse’ 

modelling problem in this text.  The reverse problem poses the problem that the 

measurement noise is contained within the input data set.  This makes it 

difficult to identify the correct representative of an independent data point as 

model input.  The application of dimensional reduction, using PLS and PCA 

regression, has been extensively applied for such related problems.  These 

techniques are especially applied in various spectrometric fields, such as near 

infrared (NIR: 500 nm to 2000 nm) spectrometry, in order to enhance 

robustness for calibrating the measuring equipment. 

 

5.1 Methods of Model-building and Validation 

The developments of the applications of principal components regression and 

partial least squares (PLS) from classical least squares are described in section 

2.13.1.  From the myriad of modelling applications these techniques are 

especially suited for calibrating measured spectra in the NIR absorption band of 

a solution for specie identification.  The applications of these techniques to NIR 

modelling, as well as neural networks and PCA neural networks have been 

published in the works done by Blanco [1999], Blanco [2000], Martens [1989] 

and Brereton [1990].  The use of the modelling techniques used for the forward 

modelling problem can therefore justifiably be extended to the reverse problem. 

 

In the NIR absorption band there are a large number of correlations between 

the absorbances for the various wavelengths.  In addition, there is a significant 

amount of measurement noise in the data.  The data analysis in Chapter 3 
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shows that these effects are also found for the emission spectra measured in 

the middle IR band for the fired rocket motors.  The high degree of correlations 

between the spectral measurements is well illustrated in Fig. 3-8. 

 

It is therefore expected that there is a significant amount of dimensional 

reduction in the input space.  This is an important motivation to proceed with 

the application of the above modelling techniques.  The reason is that the data, 

which is to be modelled using 146 input variables and only 18 independent data 

points, would otherwise be grossly sparse and insignificant.  The models above 

allow for the possibility of reducing the dimension of the input space 

significantly enough in order to be able to build a model with adequate 

remaining degrees of freedom for lack-of-fit (see section 3.1.3). 

 

In the reverse problem the actual dependent variables become the independent 

variables.  The repeat spectral measurements do not add any significant 

meaning to the input space from a modelling point of view.  This is because for 

each spectrum from a certain rocket motor type the corresponding output is 

identical to the others.  This is more synonymous to a pattern recognition 

problem.  The pure error component of the residual variance is zero, thus there 

is no difference in the residual variance and model predictive ability.  The value 

predicted for data point, yi is the expected value (E(yi)) for the point (see section 

2.2).  The multiple predictions made for such a point if the repeat 

measurements are included in the input set do not satisfy this.  The repeat 

measurements can be used to observe the deviations in the predictions made, 

which is a form of model validation. 

 

The repeat measurements of the emission spectra are therefore removed and a 

single representative spectrum for each rocket motor is used in the input space 

for building a model.  The eighteen representative spectra are chosen to be the 

mean absorption values over all repeat measurements for a specific rocket 

motor type for all wavelengths in the IR band.   

 

The linear PLS model, neural network PLS and radial-basis function PLS 

techniques are applied to the reverse modelling of the data.  The discussion in 

Chapter 5 - Predictions of the Rocket Motor Design Parameters       187 



 

section 4.1.1 motivates the applications of these data-fitting techniques, as well 

as the methods of implementation.  All PLS models are built using 20 latent 

dimensions.  The inner neural network training algorithms are the same as 

discussed in section 4.1.1.  The discussion in section 2.13 explains the 

superiority of the PLS methodology over the PCA regression methodology.  

The PCA regression technique is therefore not investigated here. 

 

The feed-forward neural network is trained using the same resilient propagation 

algorithm (RPROP) discussed in section 4.1.1.  The Levenberg-Marquardt 

algorithm is often the preferred back-propagation training algorithm.  However, 

it is too memory intensive for the standard personal computer of today when 

training such a largely multivariate data set.  The transfer functions are the 

hyperbolic-tan and purely linear functions for the hidden and output layers 

respectively. 

 

The discussion in section 4.1.2 motivates a method of cross-validation.  Leave-

one-out cross-validation is also applied to the reverse modelling problem.  The 

disadvantage of cross-validation is that most of the data points left out during a 

training session may have one or more variables outside the range of values 

used for training.  If the values outside the training ranges do not greatly differ 

from the closest value in the training range the ability of the model to predict the 

variable(s) is not too significantly affected.   

 

The modified cross-validation algorithm motivated and proposed in section 

4.1.2 for the neural network PLS algorithm is applied to the reverse modelling 

problem.  From the modelling results in section 4.2.3 it is sensible not to 

compare the modified method to the original cross-validation. 

 

5.2 Results and Discussion of Candidate Models 

The statistics scores of PRESS and SSEP are evaluated in the same manner 

for the 18 unseen rockets from 18 cross-validation sessions and the overall 

model, as for the forward modelling problem in Chapter 4 .  There are only 

n=18 total number of training data points for cross-validation and the overall 
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model.  There are therefore no repeat measurements to calculate PRESSmin (or 

SSEPmin) and Rmax
2  .  Due to the varying nature and dimensions of the output 

variables it becomes sensible to separately evaluate the optimum model 

complexity for each variable. 

 

The root mean-square error (RMSE) and the square root of MSECV (RMSECV) 

are calculated for each individual output variable in order to obtain a measure 

of the standard deviation of the error of prediction. 

 

In the forward problem the chamber pressure is inverted in order to obtain the 

correct qualitative tendencies in the spectral responses.  The reverse modelling 

problem is evaluated without this manipulation. 

5.2.1 Linear PLS 

The input and output variables are standardised prior to training.  The statistics 

scores are all calculated using the re-scaled output and input variables.  It is 

found that it is not feasible to test the PLS model beyond 20 latent dimensions. 

 

The PRESS-values up to latent dimension 15 are plotted in Fig. 5-1.  The 

PRESS-values become exceedingly high at higher latent dimensions.  Fig. 5-1 

and Table B-1 show that 18 latent dimensions is the maximum achievable 

dimension, even though the input space consists of 146 dimensions.  This can 

be attributed to the fact that the data row space only consists of 18 dimensions 

(or 17 dimensions in the case of each cross-validation session). 

 

Fig. 5-1 further shows that overall the optimum model complexity lies at 1 or 2 

latent dimensions.  This represents a large dimensional reduction in the input 

space, which is expected when considering the high degree of correlation in the 

input space (see Fig. 3-8).  The low dimension is the desired result, as this 

usually leads to a lower model degree of freedom and therefore a more credible 

model for the sparse data set.  The average pdf-value for 2 latent dimensions is 

3.75 (see Table B-1).  This value is encouraging, as in theory it means there 

are about 14 lack-of-fit degrees of freedom left to check the validity of the 

model.   
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The average correlation coefficient between the unseen predicted outputs from 

cross-validation and the target values (Rcv
2  ) for 2 latent dimensions is low at 

0.183.  There appears to be no relationship between the PRESS-values and 

the average Rcv
2  –values with increasing LD.  A trend of decreasing Rcv

2  –value 

with increasing PRESS-value is expected, as is the case for the forward 

problem.  A reason for this is that the optimum complexities for the different 

output variables lie at different latent dimensions.  
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Fig. 5-1  The sum-squared residuals obtained from building a linear PLS model 

for the reverse modelling problem. 

 

The X-block explained variance for the overall model is high at 95.25% for 2 

latent dimensions, however the Y-block variance is poor at 26.85% (see Table 

B-1).  A large amount of information is captured by the model in the input 

space, however it appears the model is not able to adequately capture the 

overall output variance. 
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The PRESS- and SSEP-values shown thus far represent the pooled 

performances across all 18 output variables.  In contrast to the forward problem 

in Chapter 4 the output variables here are not all of the same units and there is 

not such a high degree of correlations between them (see Fig. 3-7). A 

significant degree of variability in optimum model complexity is therefore 

expected for each output variable.  For this reason the optimum set (OPT) of 

statistics scores and predictions is obtained for each output variable.  The 

optimum model complexity for each output variable, yj is determined by 

evaluating at which LD its minimum PRESSj-value lies.  These optima are 

further chosen in such a way that the minimum PRESSj-values be obtained at 

latent dimensions where the pdf-values do not exceed 15.  The summary of 

these results for the overall models is shown in Table B-2.  The results show 

that the optimum latent dimensions for the output variables vary greatly.  The 

average values for the number of parameters, pdf, latent dimensions and 

correlations are comparable to an overall model of 3 to 4 latent dimensions (if it 

were possible). 

 

In Fig. 5-2 the Rcv
2  –values are plotted for the optimum set and the models using 

1 to 3 latent dimensions output variables pooled together.  The optimum set 

shows a general improvement in the correlation scores, however the low values 

for most of the output variables are not desirable.  The model does not seem to 

be able to capture the variances in the hydrogen (H), silicone (Si), chamber 

pressure (PC) and the throat diameter (DT) at all. 

 

The R2 -values for the overall models are plotted in Fig. 5-3.  An interesting 

result is that the overall model does not seem to be able to capture the variance 

of sulphur (S) at all, but that the correlation for the unseen data (cross-

validation) is high.  This can be attributed to the model not being able to capture 

the relationship between the inputs and S and that at low LD the model predicts 

the overall mean (bias) value for S.   

 

The predictions for fluorine (F), titanium (Ti), iron (Fe), Si and S are expected to 

be inconsistent due to the large amounts of zero-entries.  These 
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inconsistencies may be the reason for the lack of correlation between 

increasing PRESS and decreasing Rcv
2  –values.  The lack of predictability for PC 

and DT is not surprising, as these are physical properties, which may not 

necessarily significantly influence the emission spectra.  The lack of 

predictability for H is however not expected, as it is contained within the 

combustion product, H2O for which there is a defined peak in the spectrum.  

The fair degree of predictability for potassium (K) is encouraging, as this is the 

important element responsible for depressing the irradiance intensity.  This 

characteristic is important for determining the stealth characteristics of the 

rocket. 
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Fig. 5-2  The squared correlations between the unseen predicted rocket motor 

design parameters from cross-validation and their targets for linear PLS. 

 

The pseudo degrees of freedom plotted for each output variable in Fig. 5-4 vary 

somewhat for a certain number of latent dimensions (all output variables 

pooled).  The increase in predictability for oxygen (O), aluminium (Al), Ti and Fe 

using the optimum set with higher LD explains the sharp rise in pdf-values.   
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Fig. 5-3  The squared correlation coefficients between the predicted rocket 

motor design parameters for the overall model and their targets for linear PLS. 

 

In Fig. 5-5 to Fig. 5-7 the unseen data point predictions are plotted for each 

rocket motor design together with the RMSECV band for each output variable.  

These predictions are plotted using the optimum set.  Confidence intervals 

were not calculated, as they require model pseudo-degrees of freedom to be 

calculated.  This requires that the training sets of each cross-validation session 

must be further cross-validated in order to satisfy equation (2-150).   

 

The results show that the model predictions favour the C-class rocket motor 

designs.  This is evident from the fact that there are predictions made for 

chlorine (Cl), where the DB-class rocket motors do not contain any Cl.  The 

predictions for H are generally poor relative to the neighbouring variables.  The 

EC-value for DB1 is extremely poorly predicted.  The RMSECV band for the last 

three output variables, i.e. the physical properties (PC, EC, DT), is much broader 

compared to the other variables.  This is due to the fact that the variables’ 
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ranges consist of higher values.  Except for the chamber temperature (TC), the 

other physical parameters are expected to be poorly predicted by the model 

following the R2 –results obtained.  For C10 and C11 the PC-predictions are 

failures. 
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Fig. 5-4  The pseudo degrees of freedom of the linear PLS model calculated for 

each output variable. 

 

The predictions as well as the 95% confidence intervals for the optimum set 

overall models are shown in Fig. 5-8 to Fig. 5-10.  The broad confidence 

intervals for the last three physical design parameters and H coincide with the 

results obtained for the unseen predictions from cross-validation.  The DB-class 

rocket motor design parameters are predicted more poorly compared to the C-

class rocket motors.  There is also the unwanted prediction of Cl for the DB-

class rocket motors. 

 

The predictions in Fig. 5-5 to Fig. 5-10 appear to be fairly good.  However it 

must be noted that most of the output variables, especially from nitrogen (N) to 
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Fe have very low ranges and there are many zero entries.  What appears to be 

a small deviation from the target value is in fact large and therefore the R2 -

values are low and the Y-block explained variance is unacceptably low. 

 

The output scores (latent variables) for the first 6 latent dimensions are plotted 

against the input scores in Fig. B-1.  Due to the linear relationships there are 

numerous target points that are far from the prediction line.  Non-linear inner 

models could therefore possibly improve on this. 

 

From the results above it is clear that it is difficult to decide on a definite model 

complexity as a representative model.  From the average scores obtained for 

the optimum set it appears that a model with 3 or 4 latent dimensions for all 

output variables would be a reasonable generalisation.  The optimum set can 

be used.  Inconsistencies, however, may occur as observed in the case where 

the R2 –values for the overall model and cross-validation are compared for S 

above.  In this text the optimum set is used to make the comparisons, as it is 

difficult to make an obvious choice to decide on the best number of latent 

dimensions overall. 

 

The plots of the linear PLS regression coefficients as described by equation 

(2-133) in section 2.13.1 are shown in Fig. B-2 and Fig. B-3.  The plots show 

that the weightings at the various wavelengths are virtually mirror images for 

the various output variables.  For example, the coefficients for Al and H show 

positive weightings in the band for wavelength numbers 46 to 85 in contrast to 

the negative weightings for C, N and O.  The strongest influences on 

predictions appear to come from the tail end of the spectral region and the 

region just before the water absorbance peak (wavelength numbers 20 to 45).  

Ironically the forward models poorly predict these two regions.  The CO2-

absorption band (wavelength numbers 100 to 140) and the intermediate band 

(wavelength numbers 46 to 85) bear significant weight on the predictions. 
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Fig. 5-5  The rocket motor parameter predictions for unseen rocket motors DB1 

to DB6 obtained during leave-one-out cross-validation of linear PLS. 
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Fig. 5-6  The rocket motor parameter predictions for unseen rocket motors C1 

to C6 obtained during leave-one-out cross-validation of linear PLS. 
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Fig. 5-7  The rocket motor parameter predictions for unseen rocket motors C7 

to C12 obtained during leave-one-out cross-validation of linear PLS. 
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Fig. 5-8  The rocket motor parameter predictions for rocket motors DB1 to DB6 

obtained for the overall linear PLS model. 
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Fig. 5-9  The rocket motor parameter predictions for rocket motors C1 to C6 

obtained for the overall linear PLS model. 
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Fig. 5-10  The rocket motor parameter predictions for rocket motors C7 to C12 

obtained for the overall linear PLS model. 
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5.2.2 Feed-forward Neural Network 

The neural network was trained using a single hidden layer with 1, 2, 4, 6, 8, 

10, 15, 20, 30 and 40 hidden nodes for cross-validation and the overall models.  

It is found that no scaling of the inputs and normalised scaling of the outputs 

(as in section 2.4.3) produce the best results for training the data.  The box-

and-whisker plot in Fig. 5-11 is plotted using the results from 10 repeat runs as 

shown in Table B-4.  The plot shows that the optimum model complexity for all 

eighteen output variables overall is a single node or two nodes in the hidden 

layer.  The PRESS-values here therefore show that, as is the case for linear 

PLS, the feed-forward neural network favours very low model complexities. 
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Fig. 5-11  A box-and-whisker plot of PRESS-values obtained from 10 cross-

validation repetitions with increasing neural network complexity. 

 

The first cross-validation run is chosen to be the best run on which further 

statistics scores are calculated.  The aim here is to compare the various models 

by their best performances in order to extract the maximum potentials of each 
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modelling technique for considering further modelling applications on this data.  

In section 4.2.2 it is mentioned that the aim is also to compare model 

complexities and therefore the feed-forward neural networks are over-trained in 

order to compare complexities based on the parameterisation. 

 

It is found that there is a significant difference in over-training limits (flattening 

of the sum-square error vs. epochs plot) as the model complexities increase.  

For example, for 1 hidden node over-training already occurs after 500 epochs 

and for 10 to 40 hidden nodes over-training can occur anywhere between 5000 

and 10000 epochs.  For this reason each training session for cross-validation 

and the overall models is trained using 15000 epochs to ensure over-training.  

The training of the overall models for all 10 candidate model complexities were 

repeated five times (see Table B-5).  Run 3 is chosen to be the best run and 

the training plots for this run are shown in Fig. 5-12.  The plots for 15 to 40 

hidden nodes are omitted, as they are not distinguishable from the plot for 10 

hidden nodes. 

 

The summary of pooled results for all output variables is shown in Table B-6 

using the results form the best runs.  The minimum PRESS-value at 2 hidden 

nodes corresponds to the maximum average Rcv
2  –value of 0.351.  The Y-block 

explained variance is higher at 41.49% compared to the linear PLS model with 

2 or 3 latent dimensions. The average pdf-value of 7.07 for all output variables 

is also higher.  It is interesting to note that the feed-forward neural network now 

performs considerably better compared to the linear PLS model.  This was not 

the case for the forward model.  A reason for this is that there are considerably 

fewer output variables to deal with during training of the reverse model.  This is 

reflected by the relatively smaller difference in total number of parameters per 

neural network complexity and the total number of parameters per output 

variable per network (see Table B-6). 

 

The optimum set (OPT) is obtained in similar fashion to that obtained for linear 

PLS.  The minimum PRESSj-value for each individual output variable is used to 

determine the optimum model complexity for the particular variable.  The 

results are presented in Table B-7.  The results show that the optimum 
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numbers of hidden nodes for most of the output variables are 1, 2 and 6.  The 

total PRESS-, SSEP-, average Rcv
2  – and average R2 –values show little 

improvement over the model with 2 hidden nodes pooled.  The average number 

of hidden nodes of 2.11 verifies that there is little improvement in finding the 

best model complexity for each individual variable as opposed to the overall 

analysis of 2 hidden nodes per output variable. 
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Fig. 5-12  An illustration of how the various neural network models have been 

over-trained by observing results from training run 3 of the overall model 

(evaluated on scaled values). 

 

The fact that the model with 2 hidden nodes best predicts most of the unseen 

output variables can be seen in Fig. 5-13.  The predictabilities of S, Fe and F 

are still virtually zero.  This can be expected due to the large number of zero 

entries for the different rocket motors.  It is encouraging to see that H and Cl 

are now much better predicted with Rcv
2  –values above 0.5.  These results prove 

that there are definite non-linearities in the functional relationships between the 

input and output data sets.  The predictabilities for Si, PC, EC, and DT also show 
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significant improvements.  There are 7 out of the 18 variables with Rcv
2  –values 

above 0.5 as opposed to the 3 for linear PLS. 
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Fig. 5-13  The squared correlations between the unseen predicted rocket motor 

design parameters from cross-validation and their targets for feed-forward 

neural networks. 

 

The overall model R2 –values are plotted in Fig. 5-14.  The predictabilities for 

the various output variables follow the same pattern as for the unseen data 

from cross-validation (Rcv
2  ).  The results for C, H, O, N, Al, Pb, Cl and Si are 

desired with R2 –values above 0.8.  It is also encouraging to see that the 

physical properties, PC, EC, and DT are better predicted with EC reaching the R2 

–value of 0.5.  The improved predictabilities for Pb, Cu and Cl make it possible 

for the model to better compensate for both the DB- and C-class rocket motors, 

as Pb and Cu are limited to the DB-class rockets only.  The extremely low R2 –

values for S, F and Fe have a large effect on the average R2 –values and it is 
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therefore more useful to judge the performance of the models by the individual 

output variables. 
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Fig. 5-14  The squared correlation coefficients between the predicted rocket 

motor design parameters for the overall model and their targets for feed-

forward neural networks. 

 

There is greater variability in the pdf-values (all below the value of 15) among 

the output variables when compared to linear PLS.  In Fig. 5-15 it can be seen 

how pdf can vary between zero and 14 for a certain neural network 

architecture.  The high pdf-values explain the increased predictabilities 

obtained for H, O, Al, Pb and Cl.  The high degree of variability can be 

attributed to the non-linearity of the model capturing different functional 

relationships for the various output variables.  In Table B-6 it can be seen that 

the maximum average pdf-value of 18 is achieved with between 20 and 30 

hidden nodes in the neural network model. 
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In Fig. 5-16 to Fig. 5-18 the unseen data point predictions are plotted for each 

rocket motor design together with the RMSECV band for each output variable.  

These predictions are plotted using the optimum set (OPT).  The predictions do 

not appear as biased towards the C-class rocket motors as is the case for 

linear PLS.  It can be observed that except for DB1 the predictions for Cl in the 

DB-class rocket motors are virtually zero.  The improvements in predictions for 

the DB-class rocket motors are expected following the discussion for the Rcv
2  –

values regarding Pb, Cu and Cl above.  The predictions for H and the physical 

properties, PC, EC, and DT also appear to be improved. 
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Fig. 5-15  The pseudo degrees of freedom of the feed-forward neural network 

models calculated for each output variable. 

 

The predictions as well as the 95% confidence intervals for the optimum set 

overall models are shown in Fig. 5-19 to Fig. 5-21.  The fact that the models 

predict almost zero Cl in the DB-class and the narrower confidence intervals 

prior to PC, EC, and DT is encouraging.  The non-linearity in the neural network 

model clearly introduces an improvement over the linear PLS model. 
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Fig. 5-16  The rocket motor parameter predictions for unseen rocket motors 

DB1 to DB6 obtained during leave-one-out cross-validation of the optimum set 

feed-forward neural networks. 
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Fig. 5-17  The rocket motor parameter predictions for unseen rocket motors C1 

to C6 obtained during leave-one-out cross-validation of the optimum set feed-

forward neural networks. 
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Fig. 5-18  The rocket motor parameter predictions for unseen rocket motors C7 

to C12 obtained during leave-one-out cross-validation of the optimum set feed-

forward neural networks. 
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Fig. 5-19  The rocket motor parameter predictions for rocket motors DB1 to 

DB6 obtained for the overall optimum set feed-forward neural network models. 
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Fig. 5-20  The rocket motor parameter predictions for rocket motors C1 to C6 

obtained for the overall optimum set feed-forward neural network models. 
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Fig. 5-21  The rocket motor parameter predictions for rocket motors C7 to C12 

obtained for the overall optimum set feed-forward neural network models. 
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5.2.3 Neural Network PLS 

The same approach used for the forward model was used to build the reverse 

NNPLS model.  The first attempts at building a neural network PLS model were 

done using the error-based sigmoidal neural network (EBNNPLS) algorithm 

(see section 2.13.2).  The inner neural network models were trained using 80 

epochs for the Levenberg-Marquardt algorithm.  This ensured sufficient over-

training for the SISO (single input-single output) system.  The best results are 

obtained by centring the input data and the standardising the output data. 

 

The original cross-validation is not applied here following the undesired results 

illustrated in section 4.2.3.  Only the modified cross-validation algorithm 

described in section 4.1.2 is therefore applied here. 

 

Table 5-1 shows the modified cross-validation (PRESS) and overall model 

(SSEP) results for single runs using the EBNNPLS algorithm.  The minimum 

PRESS-value at LD 1 is considerably high and is therefore not expected to 

perform better than the linear PLS model.  For this reason the model is not 

evaluated any further.  At this stage it therefore seems that the latent variables 

are better described using linear projections for both the forward and the 

reverse problems.  The reason for this can also be attributed to the fact that the 

data is sparse and, as seen thus far, the models with lower complexities 

perform the best on unseen data. 

 

Each modified cross-validation session was repeated ten times for each latent 

dimension using the NNPLS algorithm in order to obtain the box-and-whisker 

plot in Fig. 5-22.  For each run a certain number of hidden nodes per latent 

dimension inner model are obtained and presented in Table B-9.  The average 

PRESS-values in Table B-8 and Fig. 5-22 show that the optimum model for all 

eighteen output variables pooled lies at 3 latent dimensions.  Run 8 is chosen 

as the best run from which further statistics are evaluated.  The number of 

hidden nodes per latent dimension corresponding to run 8 is used to train the 

overall model.  The training of the overall model is repeated 5 times and run 3 

in Table B-10 is chosen as the best run for further evaluation. 

Chapter 5 - Predictions of the Rocket Motor Design Parameters       214 



 

 

Table 5-1  Modified cross-validation and overall model-building results for 

single runs using EBNNPLS. 

LD PRESS SSEP
Hidden 

nodes per 
inner model

1 649.5 231.20 2
2 690.9 218.48 1
3 904.8 206.23 1
4 1035.3 202.39 1
5 1420.5 180.73 5
6 6358.8 180.18 2
7 7043.2 173.82 8
8 8132.3 65.01 10  
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Fig. 5-22  A box-and-whisker plot of PRESS-values obtained for the reverse 

model using NNPLS from 10 cross-validation repetitions. 

 

The average Rcv
2  –value for 3 and 4 latent dimensions in Table B-11 is at a 

maximum corresponding to the minimum PRESS-values.  The average Rcv
2  –
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value of 0.322 is slightly lower compared to the feed-forward neural network 

with 2 hidden nodes.  The Y-block explained variance for the overall model is 

however significantly higher at 59.22%.  The model is therefore capable of 

making more accurate predictions across all output variables or that certain key 

output variables are considerably better predicted.  The average pdf-value is 

lower at 6.19 compared to the feed-forward neural network model with 2 hidden 

nodes.  The PRESS- and SSEP- values at LD 3 are also significantly lower.   

 

From the lower average pdf-value at LD 3 it appears the NNPLS model is less 

complex overall compared to the neural network model with 2 hidden nodes.  

The NNPLS model uses more parameters (462) per output variable compared 

to the neural network (297).  However, the cumulative number of inner model 

parameters of 21 is relatively low.  This means that 441 parameters are derived 

from the latent projections using NNPLS.  From these criteria it is evident that it 

is difficult to compare model complexities by the number of total parameters.  

The pdf-values are therefore more useful for comparing model complexities. 

 

The optimum set (OPT) of results for each individual output variable is shown in 

Table B-12.  The overall results show slight improvements.  The average 

number of latent dimensions can be rounded to 4.  The number of latent 

dimensions for the various output variables varies greatly between 1 and 9. 

 

The individual Rcv
2  –values for the output variables are plotted in Fig. 5-23.  The 

results are similar to those obtained for the feed-forward neural network.  The 

predictabilities for F, S and Fe show the same low values when comparing the 

optimum (OPT) sets.  The predictabilities for H, K, Cu, Si, Ti and PC are lower.  

The predictabilities for Pb and Cl are higher and therefore the ability to 

compensate for both C-class and DB-class rocket motors can be expected.  

The predictabilities for DT and C are also higher compared to the neural 

network optimum set.  There are 7 output variables in the optimum set with Rcv
2  

–values above 0.5.  The NNPLS model generally seems to better predict the 

output variables with values above zero for all 18 rocket motor types and poorer 

predictabilities can be expected for the variables with many zero entries. 
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Fig. 5-23  The squared correlations between the unseen predicted rocket motor 

design parameters from cross-validation and their targets for NNPLS. 

 

The optimum set (OPT) R2 –values for the overall model in Fig. 5-24 appear 

better compared to the feed-forward neural network model.  The predictabilities 

for S, EC and DT are all significantly higher, which explains the overall increase 

in Y-block explained variance (η2). 

 

There is great variability in the pdf-values (all below the value of 15) among the 

output variables.  In Fig. 5-25 it can be seen how pdf can vary between 2 and 

13 for LD 2.  The high degree of variability can be attributed to the non-linearity 

of the model capturing different functional relationships for the various output 

variables.  In Table B-11 it can be seen that the maximum average pdf-value of 

18 is not completely achieved and yet 100% of the X-block variance is achieved 

up to LD 7. 
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Fig. 5-24  The squared correlation coefficients between the predicted rocket 

motor design parameters for the overall model and their targets for NNPLS. 

 

In Fig. 5-26 to Fig. 5-28 the unseen data point predictions are plotted for each 

rocket motor design together with the RMSECV band for each output variable.  

These predictions are plotted using the optimum set (OPT).  The predictions do 

not appear as biased towards the C-class rocket motors as is the case for 

linear PLS.  Except for DB1 and DB2 the predictions for Cl in the DB-class are 

virtually zero.  Overall, the predictions are comparable to those of the feed-

forward neural network.  The predictions for PC, EC and DT are especially poor 

for rocket motors DB3, DB4, C9, C10 and C11. 

 

The predictions as well as the 95% confidence intervals for the optimum set 

overall models are shown in Fig. 5-29 to Fig. 5-31.  The Cl predictions for all 

DB-class rocket motors are virtually zero as is the case for the feed-forward 

neural network.  The predictions for EC and DT are slightly improved compared 

to the neural network models.  The worst predictions for PC, EC and DT are 

again found for rocket motors DB3, DB4, C9, C10 and C11. 
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Fig. 5-25  The pseudo degrees of freedom of the NNPLS models calculated for 

each output variable. 

 

The results from the discussion around the R2 –values and the prediction plots 

above show that the feed-forward neural network and NNPLS models produce 

comparable predictions on the unseen data from cross-validation.  However, 

the overall NNPLS models appear to perform slightly better.   

 

The output scores (latent variables) for the first 6 latent dimensions are plotted 

against the input scores in Fig. B-4.  The curved prediction lines are more 

sensible generalisations of the data, which explains the improvement in 

predictions by non-linear models.  The curve for LD 2 has an interesting ‘dip’, 

which is characteristic of the trend in the data.  This illustrates the strength of 

using a neural network as inner model in PLS.  If it were not for the dip in the 

curve for LD 2, the prediction curves for LD 2 to LD 4 all have near sigmoidal-

shapes. 
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Fig. 5-26  The rocket motor parameter predictions for unseen rocket motors 

DB1 to DB6 obtained during leave-one-out cross-validation of the optimum set 

NNPLS models. 
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Fig. 5-27  The rocket motor parameter predictions for unseen rocket motors C1 

to C6 obtained during leave-one-out cross-validation of the optimum set 

NNPLS models. 
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Fig. 5-28  The rocket motor parameter predictions for unseen rocket motors C7 

to C12 obtained during leave-one-out cross-validation of the optimum set 

NNPLS models. 
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Fig. 5-29  The rocket motor parameter predictions for rocket motors DB1 to 

DB6 obtained for the overall optimum set NNPLS models. 
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Fig. 5-30  The rocket motor parameter predictions for rocket motors C1 to C6 

obtained for the overall optimum set NNPLS models. 
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Fig. 5-31  The rocket motor parameter predictions for rocket motors C7 to C12 

obtained for the overall optimum set NNPLS models. 
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5.2.4 Radial-basis Function PLS 

The use of RBFPLS as an alternative to NNPLS is discussed in section 2.13.2 

and 4.2.4.  A motivation for applying this algorithm is that the RBF training 

algorithms discussed in section 2.12 allow for repeatable training results.  Due 

to the undesired results obtained in sections 4.2.3 and 5.2.3 the EBRBFPLS 

algorithm is not considered here.  The best results are obtained by centring the 

input data and the standardising the output data. 

 

In Table B-13 the modified cross-validation and overall model results are shown 

for the RBPLS models built using the K-means RBF training method (see 

sections 2.7 and sections 2.12.1).  The same two initialisation methods as 

discussed in section 4.2.4 are used here.  The initialisation of the K-means 

algorithm has a significant effect on the model performance. 

 

The OLS method for training the RBF within the RBFPLS model requires that 

the spread parameter be calculated according to some heuristic (see section 

2.12).   The nearest neighbours heuristic of equation (2-126) is applied here, as 

it performs better compared to equation (2-119).  The results are shown for 3 

and 4 nearest neighbours in Table B-14. 

 

The ASOLS training algorithm is used for training the inner RBFPLS models 

and the PRESS-values from cross-validation are shown for three repeat runs in 

Fig. 5-32.  The repeat runs represent different initialisations using 2, 3 and 4 

nearest neighbours for runs 1,2 and 3 respectively (see steps 1 and 2 of the 

ASOLS algorithm in section 2.12.2).  The ASOLS algorithm uses 2 nearest 

neighbours in steps 7 and 15 of the algorithm. 

 

The PRESS-values in Fig. 5-32 show similar irregular trends as obtained for the 

forward problem (no of characteristic ‘dipping’ shape).  This appears to be due 

to the nature of the training algorithm, as it is also observed for RBFPLS with 

OLS inner model training.  The third run produces the lowest PRESS-values of 

all the RBFPLS models.  An overall minimum occurs at LD 5 making it easier to 

determine the best model complexity for all 18 output variables pooled.  The 
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SSEP-values for each run are shown in Table B-17.  In Table B-16 it can be 

seen that LD 2 uses 10 hidden nodes.  This is a significantly large number of 

hidden nodes and may explain the improved performance of the model relative 

to the other runs.   
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Fig. 5-32  A plot of PRESS-values using the ASOLS training algorithm for each 

inner model within RBFPLS (see Table B-15). 

 

The PRESS- and, SSEP-values of 276 and 178 respectively for LD 5 in Table 

B-18 compare well with the values obtained by the NNPLS model for LD 3.  

The average pdf-value of 6.82 for the overall model shows that the model 

complexity is similar to that of the NNPLS model with an average pdf-value of 

6.19.  The Y-block explained variance of 57.55 % for the overall RBFPLS 

model with 5 latent dimensions is also similar to that of the NNPLS model 

(59.22% at LD 3).  The average Rcv
2  – and R2 –values are slightly higher at 

0.383 and 0.669.  The RBFPLS model however requires 71 inner model 

parameters compared to the 21 required by the NNPLS model to obtain the 

similar overall model complexity. 
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The optimum set (OPT) of results for each individual output variable is shown in 

Table B-19.  The overall results show significant improvements compared to 

the NNPLS and the feed-forward neural network.  The average number of 

latent dimensions is 6.  The average number of latent dimensions for NNPLS 

did not differ much from the best model for all output variables pooled.  

Similarly the feed-forward neural network had an average of 2.11 hidden nodes 

for the optimum set and 2 nodes for the best model for all outputs pooled.  The 

number of latent dimensions for the various output variables varies even more 

greatly compared to NNPLS between 1 and 14.  This is coupled with a slight 

increase in the average pdf-value of 7.27, which means that the slight 

increases in model complexities require larger amounts of model parameters.  

The average Rcv
2  –value of 0.427 is higher compared to the NNPLS and feed-

forward neural network models. 

 

The individual Rcv
2  –values for the output variables are plotted in Fig. 5-33.  The 

predictabilities for F, Ti and Fe show the same low values as NNPLS when 

comparing the optimum (OPT) sets.  Only the predictabilities for TC and Pb are 

significantly lower compared to NNPLS.  The Rcv
2  –value for S shows the same 

high value as for linear PLS with its optimum at only 2 latent dimensions.  There 

are 9 output variables in the optimum set with Rcv
2  –values above 0.5.  The high 

Rcv
2  –values for H, N and Cl between 0.7 and 0.8 are encouraging results.  The 

predictabilities for Cu and Cl are higher compared to NNPLS and the feed-

forward neural networks and therefore the ability to distinguish between C-class 

and DB-class rocket motors can be expected.  The predictability for K is higher 

compared to NNPLS but lower than the neural network optimum. 

 

The optimum set R2 –values for the overall model in Fig. 5-34 appear similar 

compared to NNPLS.  The predictabilities for DT are EC are significantly higher 

with R2 –values around 0.9.  The overall RBFPLS model also better predicts Si.  

The predictions for F, Fe and S are as expected to remain inaccurate.  The 

predictability for K remains fairly poor, which is not desired as K is an important 

component for suppressing the flame temperature of a fired rocket motor. 
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Fig. 5-33 The squared correlations between the unseen predicted rocket motor 

design parameters from cross-validation and their targets for RBFPLS. 

 

In Fig. 5-35 it can be seen how pdf can vary between 1 and 15 for the RBFPLS 

overall models.  The high degree of variability is more extreme for the RBFPLS 

models and can be attributed to the large variability in optimum latent 

dimensions (model complexities) for the different output variables.  In Table B-

18 it can be seen that a maximum average pdf-value of 15.51 is achieved and 

yet 100% of the X-block variance is achieved up to LD 7.  Higher latent 

dimensions are not considered as any pdf above 15 is not considered viable 

from the discussion in section 3.1.3. 

 

In Fig. 5-36 to Fig. 5-38 the unseen data point predictions are plotted for each 

rocket motor design together with the RMSECV band for each output variable.  

These predictions are plotted using the optimum set (OPT).  The predictions do 

not appear as biased towards the C-class rocket motors as is the case for 

linear PLS.  Only DB3 shows a significant deviation from zero for the Cl-
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prediction.  The predictions for EC and DT appear slightly better compared to 

NNPLS.  The predictions for PC, EC and DT are especially poor for rocket 

motors C9, C10 and C11. 
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Fig. 5-34  The squared correlation coefficients between the predicted rocket 

motor design parameters for the overall model and their targets for RBFPLS. 

 

The predictions as well as the 95% confidence intervals for the optimum set 

overall models are shown in Fig. 5-39 to Fig. 5-41.  The Cl predictions for all 

DB-class rocket motors are virtually zero as is the case for the NNPLS and 

feed-forward neural network models.  The predictions for EC and DT are slightly 

improved compared to the neural network models.  The worst predictions for 

PC, EC and DT are again found for rocket motors C9, C10 and C11.  These 

predictions however appear slightly improved compared to the NNPLS and 

feed-forward neural network optimum predictions.  The 95% confidence 

intervals remain high for PC, EC and DT and therefore the precision of 

predictions in this region is not desirable.  The predictions as well as the 
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confidence intervals for C, H, O, N and Al remain satisfactory and comparable 

to the NNPLS and feed-forward neural network predictions. 
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Fig. 5-35  The pseudo degrees of freedom of the NNPLS models calculated for 

each output variable. 

 

The output scores (latent variables) for the first 6 latent dimensions are plotted 

against the input scores in Fig. B-5.  The curved prediction lines are again more 

sensible generalisations of the data.  The shapes of the prediction curves for 

the first 4 latent dimensions are similar to those obtained for the NNPLS overall 

model.  The curve for LD 1 has a small spike, which is the major deviation form 

the NNPLS curve for LD 1.  The near sigmoidal-shaped curves for LD 3 and LD 

4 are especially similar to their NNPLS counterparts. 
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Fig. 5-36  The rocket motor parameter predictions for unseen rocket motors 

DB1 to DB6 obtained during leave-one-out cross-validation of the optimum set 

RBFPLS models. 
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Fig. 5-37  The rocket motor parameter predictions for unseen rocket motors C1 

to C6 obtained during leave-one-out cross-validation of the optimum set 

RBFPLS models. 
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Fig. 5-38  The rocket motor parameter predictions for unseen rocket motors C7 

to C12 obtained during leave-one-out cross-validation of the optimum set 

RBFPLS models. 
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Fig. 5-39  The rocket motor parameter predictions for rocket motors DB1 to 

DB6 obtained for the overall optimum set RBFPLS models. 
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Fig. 5-40  The rocket motor parameter predictions for rocket motors C1 to C6 

obtained for the overall optimum set RBFPLS models. 
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Fig. 5-41  The rocket motor parameter predictions for rocket motors C7 to C12 

obtained for the overall optimum set RBFPLS models. 
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5.3 Discussion of the Candidate Models 

A consolidation of the results in the more detailed discussion of section 5.2 is 

also included here for the reverse problem.  The comparison summary for the 

results of all output variables pooled is shown in Table 5-2.  The summary for 

the optimum sets as discussed in section 5.2 is presented in Table 5-3.  

 

The summary for the pooled results shows that there is very little difference in 

the results between the NNPLS and RBFPLS models.  If only the average R2 –

values are considered it can even be concluded that the feed-forward neural 

network model compares well to the NNPLS ad RBFPLS models. 

 

Table 5-2  A summary of performance scores of each optimum model for the 

output variables pooled together.  The Y-block variances are calculated on the 

overall optimum models. 

linear
 PLS

Feed-
forward

NN
NNPLS RBFPLS

 (ASOLS)

Complexity 2 LD 2 H 3 LD 5 LD
PRESS 475.6 329.1 273.8 276.1
SSEP 307.08 245.61 171.18 178.18
Y-block %η2 26.85 41.49 59.22 57.55
Ave R2

cv 0.183 0.351 0.322 0.383
Ave R2 0.351 0.615 0.615 0.669
Ave pdf 3.75 7.07 6.19 6.82
Parameters 296 297 462 806  

 

There are significant differences between the models concerning the 

predictabilities of the individual output variables.  The best that each model can 

perform on unseen data is therefore reflected in the optimum set.  Here the 

RBFPLS model with the ASOLS training algorithm for the inner PLS mappings 

stands out slightly.  The feed-forward neural network best predicts the unseen 

data of output variables, K, Ti and PC.  This suggests that the optimum results 

may therefore be attainable using the best modelling technique for each 

individual output variable.  This is a tedious task, but the desired predictabilities 

may be best achieved in this way. 
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In section 5.2 it is observed that the predictions for unseen as well as training 

data appear fairly good for the output variables, C, H, O, N, Al and TC.  The 

relatively tight 95% confidence intervals indicate that the predictions in this 

region can be made with a fair degree of precision.  It must be noted that the 

ranges for these output variables are very small in magnitude.  This implies that 

even when a value appears to be closely predicted the margin may not be 

small enough for it to be an accurate prediction. 

 

The predictions for EC are observed to be fairly accurate, however the 95% 

confidence interval indicates a lack of expected precision.  The predictions for 

PC and DT are not accurate and this is reflected in the broad confidence interval 

band.   

 

Table 5-3  A summary of performance scores of the optimum sets (OPT). 

linear
 PLS

Feed-
forward

NN
NNPLS RBFPLS

 (ASOLS)

Complexity 3.61 LD 2.11 H 3.78 LD 6 LD
PRESS 451.7 327.8 271.9 254.9
SSEP 279.0 245.7 168.3 73.9
Ave R2

cv 0.244 0.379 0.358 0.427
Ave R2 0.424 0.610 0.662 0.679
Ave pdf 5.09 6.57 6.95 7.27
Parameters 534.4 313.4 588.6 958.8  

 

Due to the low magnitudes of the variables from K to Fe it is difficult to observe 

the confidence intervals in the prediction plots.  The predictabilities of these 

variables are better determined by the R2-values.  From these values it is 

evident that Cu, Pb and Cl are fairly accurately predicted and that mostly due to 

a lack of data the other variables, F, S, Si, Ti and Fe are not worth evaluating.  

The predictabilities for K are generally not as desired but there is a small 

amount of explained variance due the fact that there is more data compared to 

F, S, Si, Ti and Fe.  

 

It is interesting to note from Table 5-2 that the three neural network based 

candidate models produce similar average pseudo degrees of freedom.  This 
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tendency is also observed for the forward problem.  The result confirms the 

notion that the optimum results are obtained at a certain MSECV/MSEPrs-ratio 

and that the different models complexities can be compared by virtue of the 

pseudo degrees of freedom.  

 

It is difficult to determine exactly where the optimum model for linear PLS lies 

(see discussion in section 5.2.1).  From the optimum set results the conclusion 

is that the pooled optimum might even be at 3 or 4 latent dimensions.  This 

corresponds to 4.91 and 7.45 average pseudo degrees of freedom, which is 

closer to the average pdf-values obtained for the neural network based models. 

 

It is desirable to obtain PRESS-values comparable to the SSEP-values.  An 

analysis is done in section 5.4 on the MSECV- and MSE-values of the 

individual output variables in order to test for equivalence.  

 

5.4 Analysis of the Residual Variances 

The results thus far do not indicate a candidate model that can be regarded as 

irrefutably the best model.  The RBFPLS model with ASOLS inner model 

training does slightly outshine the other models as far as the overall pooled and 

optimum set results are concerned.  For this reason the analyses in this section 

are limited to the results from this model. 

 

The Euclidean distances between the predicted and target rocket motor design 

parameters for the overall RBFPLS model with 5 latent dimensions are plotted 

in Fig. 5-42.  The plot shows that rocket motor C9 has the largest deviation 

between predicted and target values altogether.  The reason for this is that the 

value for DT is significantly larger compared to the other values.   

 

The values of the Euclidean distances are spread out randomly.  This means 

that the function will not suffer from inherent functional mismatch, as can be the 

case for linear models. 
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There are no replicate measurements available for a lack-of-fit F-test and from 

the discussion in section 4.4 the regression F-test is not feasible.  However, the 

MSECVj- and MSEj-values can be tested for the null hypothesis of equivalence.  

Equivalence indicates that the overall model is adequate in making predictions 

of the quality analysed for the model on unseen data within the range used for 

training. 
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Fig. 5-42  The Euclidean distances between the target and predicted spectra 

from the overall RBFPLS model (LD 5) plotted against their data points. 

 

In Fig. 5-43 the null hypotheses of equivalence for MSECVj and MSEj at an α-

level of 1 % are tested for each output variable using the RBFPLS model with 5 

latent dimensions.  In Fig. 5-44 the same null hypotheses of equivalence are 

tested using the results from the optimum set models for RBFPLS.  In both 

cases it is evident that the models can be trusted, as the F-statistics for all 

output variables are within the minimum and maximum ranges of the two-tailed 

99% confidence bands.  The minimum-maximum ranges for the optimum set 

are generally larger compared to those for the pooled results set.  This result is 

expected due to the optimisation for each individual output variable. 
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Fig. 5-43  The ratio, F =  MSECV/MSE is compared to the critical F-statistics at 

18 and 18-pdf degrees of freedom for all 18 output variables using the overall 

RBFPLS model with 5 latent dimensions. 
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Fig. 5-44  The ratio, F =  MSECV/MSE is compared to the critical F-statistics at 

18 and 18-pdf degrees of freedom for all 18 output variables using the overall 

optimum set of RBFPLS models. 
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5.5 Sensitivity Analysis 

A sensitivity analysis for the reverse modelling problem is not an obvious 

procedure.  It is not feasible to manipulate each of the 146 input absorbance 

values.  All the input variables are recorded in the same units.  It is difficult to 

exactly define an area of significant influence.  Even if it were possible it is 

difficult to determine by how much each variable within that spectrum must be 

manipulated in order to have a realistic influence on the output variables. 

 

The sensitivity analysis in section 4.5 consists of two parts, the first part tested 

the model responses to individual perturbations in the input set and the second 

is a to test qualitatively the responses to global changes in the input set.  The 

model predictions from the latter analysis can be used as inputs to the reverse 

model.  The desired result is that the outputs qualitatively move in the direction 

of the original global changes made to rocket design parameters. 

 

In section 4.5 the global changes are made to rocket motor C11, where the 

aluminium content is halved and doubled and the rocket motor binder is 

replaced with a different material.  The newly calculated chamber temperatures 

and pressures are included as global changes.  The set of global changes 

comprise C11-A to C11-D (see Table 4-8).  The model outputs in Fig. 4-54 can 

now be used as inputs to the NNPLS overall model with 3 latent dimensions.  

Fig. 5-45 shows that the chamber pressure (PC) and the conic expansion ratio 

(EC) are not successfully predicted at all.  These variables are unchanged in the 

original changes made to obtain C11-A to C11-D.  The predicted values are 

shown in Table B-20 and should be compared to the target values in Table 4-8.  

The predictions for Cl, TC and DT compared to the target values remain stable 

and satisfactory.  An interesting result is that the presence of Fe is predicted for 

C11-A to C11-C.  The predictions for Al are quantitatively inaccurate although 

the qualitative trend from the original C11 composition is correct.  The 

qualitative trends for C, H, O and N are somewhat erratic, although 

quantitatively the predictions appear stable. 
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Fig. 5-45  The predictions made from making global changes to C11 using the 

reverse overall NNPLS model with 3 latent dimensions. 

 

In Fig. 5-46 the principal input loadings of the overall NNPLS model with 3 

latent dimensions are plotted to highlight the leverage provided by each input 

variable towards their latent variables (scores, tk).  For all three latent 

dimensions the CO2 absorption region has the largest and most complex 

influence on the latent variables.  The H2O absorption region of the spectrum 

makes a smaller contribution, mainly for the first and third latent dimensions.  

Significant leverage from the region between the H2O and CO2 peaks is only 

observed for the second latent dimension.  The results therefore show that 

significant leverages comes from all 3 regions as discussed, including the small 

area in the front end from wavelength numbers 1 to approximately 10. 
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The best results for NNPLS were obtained by only centring the input data.  The 

fact that there is no scaling accentuates the magnitude of the larger 

absorbance values relative the lower values.  The implication of this and the 

higher loadings seen in the CO2 region is that the influence of the CO2 

absorbance region is the most important for carrying across information to 

make accurate predictions.   
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Fig. 5-46  The principal input loadings for the overall NNPLS model with 3 

latent dimensions. 

 

The graphs in Fig. 5-47 to Fig. 5-49 are included to show the range of 

predictions made from the original repeat measurements for each rocket motor 

type for the optimum set of overall RBFPLS models.  The predictions appear 

well within the 95% confidence intervals when compared to Fig. 5-39 to Fig. 

5-41.  The precisions of the predictions are comparable to the RMSECV band 

of the unseen predictions.  It must be noted that the RMSECV- and RMSE-

values obtained for each model can be seen to have similar values.  This is 

supported by the equivalence of the variances, MSE and MSECV as tested in 

section 5.4. 
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Fig. 5-47  Predictions made from the repeat measurements of input spectra 

using the optimum set of the overall RBFPLS models for rocket motors DB1 to 

DB6. 
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Fig. 5-48  Predictions made from the repeat measurements of input spectra 

using the optimum set of the overall RBFPLS models for rocket motors C1 to 

C6. 
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Fig. 5-49  Predictions made from the repeat measurements of input spectra 

using the optimum set of the overall RBFPLS models for rocket motors C7 to 

C12. 
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 Chapter 6 – Conclusions and Recommendations 

The objective of finding a possibly simpler, more intuitive model compared to 

the feed-forward neural network with 146 nodes in a single hidden layer 

(forward model by Roodt [1998]) has come with constraints.  The first and 

foremost constraint is that the available data is sparse with only 18 available 

rocket motor designs (independent data points).  In addition the in- and output 

data are highly multivariate with 18 rocket motor design parameters and 146 

spectral wavelengths in the middle IR band.  One advantage is that the IR 

spectral measurements are repeated a number of times (4 to 44 repeats per 

rocket motor).  For pattern recognition problems the data may be sufficient, but 

for modelling purposes there is a fairly severe lack of dimensional 

proportionality in the data. Due to these constraints a snowball effect is 

obtained whereby it becomes increasingly important to statistically keep a 

check on the model integrity whilst the statistics become more complex to deal 

with for ill-conditioned data.  

 

The approach of building a model is one of basic statistical linear or non-linear 

regression theory.  The convenience of non-linear black-box modelling often 

sets the trap of model over-parameterisation.  It is found that there are basically 

18 lack-of-fit degrees of freedom to work with from the 18 different rocket motor 

types when building a model.  In order to make a prediction the model uses a 

certain number of these degrees of freedom, at least 3 to 5 lack-of-fit degrees 

of freedom should then be available as a check on the generalisation ability of 

the model. 

 

The general perception is that there must be more independent data points 

than model parameters in order to avoid over-parameterisation.  This train of 

thought is rooted in basic linear modelling theory.  With reference to the highly 

credible research by Lawrence [1997] and from the results in this dissertation it 
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is found that this is not necessarily true for non-linear modelling.  Over-

parameterisation can lead to optimum model complexities (see section 2.6.4) 

for making predictions on unseen data due to the nature of the iterative 

optimisation algorithms.  The problem is therefore one of finding a suitable 

measure of model degrees of freedom for these non-linear models.  This has 

been addressed by the pseudo-degrees of freedom calculated by making use 

of model cross-validation and overall model training. 

 

Outlier detection shows that three of the repeated IR spectral measurements 

from rocket motor C8 can be removed.  This is due to their significant 

deviations from the sample and their large leverages on the input space. 

 

It is found that there is a significant degree of correlation between the IR 

absorbance values in the irradiance spectra.  Linear PCA shows that just 3 

principal components are required to explain 90% of the standardised spectral 

data variance (η2).  By contrast the rocket motor design parameters show little 

correlation with each other.  From correlations and class-based PCA it is also 

shown that there is a clear class distinction between the DB- and C-class rocket 

motor designs. 

 

Leave-one-out cross-validation is found to be the best method of getting an 

idea as to what the overall model performance is on predictions made for 

unseen data.  In addition to this, cross-validation gives an indication of what the 

optimal model complexity is in order to achieve a model capable of effectively 

generalising the input-output data relationships.  Over-parameterisation is 

therefore avoided in this way and the pseudo-degrees of freedom are used to 

check on the overall model complexity and lack-of-fit. 

 

Leave-one-out cross-validation for the neural network PLS modelling 

techniques is not so straight-forward.  This stems from the fact that a number of 

hidden nodes need to be decided upon for the inner model of each latent 

dimension.  Each latent dimension inner model within PLS has to be fully cross-

validated to avoid the situation where training occurs in the direction that 

favours the minimisation of the sum-squared error for the particular data point 
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left out of a particular training session within cross-validation.  This leads to the 

false conclusion that generalisation can be achieved at high model 

complexities.  An analogy to this would be to train a feed-forward neural 

network on 17 data points and stopping the training epochs when the 18th, left 

out data point is best predicted.  The resulting model could be over-

parameterised and it says nothing about the specific model’s generalising 

ability.  The ‘modified’ cross-validation for neural network PLS is successfully 

applied in this work with PRESS-values going through the characteristic ‘dip’ 

indicating the best model complexity for generalisation. 

 

A methodology of validating and building models with generalising abilities has 

thus been developed to test the candidate models, linear PLS, the feed-forward 

neural network, NNPLS (or EBNNPLS) and RBFPLS (or EBRBFPLS).  In the 

process of applying these modelling techniques the OLS method of training 

radial-basis function neural networks has been modified to allow for the 

Gaussian spread parameters to be updated.  This is done using an adaptive 

technique known here as the adaptive spread OLS algorithm (ASOLS).   

 

The feed-forward neural network with the best generalisation ability for the 

forward model makes use of just two nodes in the single hidden layer.  A similar 

approach taken by Lawrence [1997] to over-train the models as far as the 

number of epochs is concerned is taken here.  This approach is essential in 

cross-validation so that the generalisation ability of a model is based on the 

parameterisation and not the extent of the training procedure.  This neural 

network is markedly less complex compared to that obtained by Roodt [1998]. 

 

In the work done by Roodt [1998] the predictions for the two validation rocket 

motors, DB2 and C10 are fairly good.  The predictions for the same two unseen 

data points from cross-validation produce similar results and are achieved with 

the simpler neural network architecture and no moving-average post-

processing is required to remove any noise.  The noiseless predictions show 

that the model is not over-parameterised.  Care is taken not to train with too 

many epochs, yet the network built by Roodt [1998] still shows signs of over-

parameterisation. 
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The forward RBFPLS models with ASOLS training of the inner PLS radial-

basis-basis functions perform better compared to the K-means and OLS 

training algorithms. 

 

A summary of the forward modelling results is shown in Table 4-7 in section 

4.3.  The NNPLS algorithm appears to be the most promising model.  The 

average Rcv
2  -value of 0.626 (0.746 for maximum Rcv

2  ) for all 146 output 

variables is satisfactory when considering the lack of data available.  Some of 

the individual Rcv
2  –values are even in excess of 0.8 in the H2O absorption 

region.  The IR absorbance region between the H2O and CO2 absorbance 

regions also produces relatively high Rcv
2  –values.  However, the predictability of 

the dominant CO2 absorbance region is not as desired with Rcv
2  –values as low 

as 0.3.  These predictability trends for the absorbance regions discussed are 

found for all the models tested.  This NNPLS model is simpler (307 parameters 

per output variable) compared to the feed-forward neural network proposed by 

Roodt [1998] (2921 parameters per output variable). 

 

The average pseudo-dimension for the NNPLS model with 11 latent 

dimensions is 12.33.  This leaves approximately 5 lack-of-fit degrees of 

freedom as a check for the model complexity.  The feed-forward neural network 

with 146 hidden nodes has an average of 17.77 pseudo degrees of freedom.  

This indicates saturation and for a linear model it would represent a near spline 

fit to the training data. 

 

The results from PCA and PLS modelling show that dimensional reduction is 

possible and does improve the modelling performances.  This is also proven by 

the fact that the overall NNPLS model with 11 latent dimensions explains 

99.8% of the X-block variance.  The redundancy in the input space could be 

attributed to the lack of data for variables such as F, S, Si, Ti and Fe.  NNPLS 

performs better compared to linear PLS, mainly because it better predicts the 

DB-class rocket motor spectra (although the unseen predictions for DB3 to DB6 

remain poor).  This shows that non-linearities in the model are required to 
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compensate for both classes of rocket motor designs.  The fact that NNPLS 

performs better than EBNNPLS shows that the dimensional reduction is best 

achieved by linear projections.  After the fourth latent dimension in the overall 

NNPLS model the in- and output latent variables (scores) are best related by 

near linear prediction curves.  From this discussion and the results from the 

simpler feed-forward neural network model it is evident that the nature of the 

forward modelling problem does not appear to be highly non-linear. 

 

The sensitivity analysis done on the overall NNPLS model is based on making 

global changes to the input space.  This analysis is identical to the one 

presented by Roodt [1998] and qualitatively outperforms the feed-forward 

neural network of that work.  This is especially the case where polyester is used 

to replace HTPB/Isophoron as binder (C11-D) and the expected increase in 

irradiance is predicted. 

 

The lack-of-fit F-statistic tests show that there is reason to doubt the adequacy 

of the model.  This is not surprising when considering the limited available data.  

The result implies that the model is not adequate for application, but the 

NNPLS model appears to hold promise for development on larger, more 

representative data. 

 

A summary of the reverse modelling results for all output variables pooled is 

shown in Table 5-2 in section 5.3.  Due to the significantly smaller number of 

output variables used for the reverse modelling problem and the varying units 

of the variables, it is feasible to evaluate the optimum model complexities for 

each individual output variable.  The summary of results for the optimum set of 

each individual output variable is shown in Table 5-3.  The feed-forward neural 

network, NNPLS and RBFPLS models achieve similar results superior to those 

of linear PLS. 

 

The reverse RBFPLS model with ASOLS training of the radial basis-functions 

for the inner PLS models produces results slightly superior to those of the other 

models.  The optimal complexity for all the output variables pooled together is 5 

latent dimensions.  In the optimal set the complexities vary between 1 and 14 
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latent dimensions.  The average number of latent dimensions and pseudo-

degrees of freedom are relatively low for all the models.  This proves that there 

is a fair amount of redundant information in the spectral data and that there are 

numerous lack-of-fit degrees of freedom.  Over 90% X-block explained variance 

is achieved by the first latent dimension for all PLS models. 

 

Even though the relatively low Rcv
2  –value of 0.427 for the optimum set of the 

RBFPLS models is a poor result, it does not reflect on their true performance.  

This is due to the data of output variables K, F, S, Si, Ti and Fe consisting of 

numerous zero-entries and the inability of the model to handle these 

irregularities.  The Rcv
2  –values for C, H, O, N, Al, Cu, Pb, Cl and EC range 

between 0.6 and 0.8.  The R2 –values calculated from the overall models range 

between 0.8 and 1.0 for C, H, O, N, Al, Cu, Pb, Cl, Si, EC and DT.  The 

variables C, H, O, N, Al, Cu, Pb and Cl are predicted with reasonable precision 

as opposed to PC, EC and DT, for which the confidence intervals are very broad.   

 

There appears to be no bias in prediction ability towards any one of the rocket 

motor design classes (DB- or C-class) for the feed-forward neural network, 

NNPLS and RBFPLS models.  This can be attributed to the non-linearities in 

the models.  The linear PLS model tends to better predict the C-class rocket 

motor design parameters compared to those of the DB-class rocket motors.  

The NNPLS model performs better compared to the EBNNPLS model.  

Similarly to the forward problem the reverse problem is therefore not all that 

non-linear in nature. 

 

In sections 4.2.1 and 5.2.1 it is shown how the linear PLS regression 

coefficients can be used to indicate the weighting of each input variable.  This 

qualitative information from the linear model adds value to the analysis.  In the 

case of the forward model it is evident that the strategic addition of additives 

can ‘mould’ the IR emission spectra in predetermined bands.  

 

The F-statistics for testing the null hypothesis of equivalence for MSECVj and 

MSEj show that measures of residual variances can be used to estimate the 
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model residual variances, σe,j.  Similar levels of accuracy can also be expected 

from predictions made on unseen data points as for the overall model 

predictions. 

 

The loadings of the first three primary latent dimensions of the overall reverse 

NNPLS model provide information on the influential regions of the input 

spectra.  The H2O and CO2 absorbance regions exert the most leverage on the 

first and third latent dimensions.  The absorbance region between the H2O and 

CO2 absorbance exerts the most leverage for the second latent dimension.  

One of the advantages of PLS modelling is that this qualitative information is 

easily obtained by analysing the loading values. 

 

The repeat measurements for the IR irradiance spectra are used to validate the 

accuracy of the overall reverse RBFPLS model predictions.  It is found that the 

predictions are within the confidence limits and the RMSE bands. 

 

The predictabilities for the reverse model are not ideal, but the results hold 

promise for further development with a larger data set.  One or two of the 

insignificant variables such as F and S could be omitted, if necessary.  The 

alternative is to ensure that the additional data contains enough information 

regarding these variables.   

 

In both the forward and reverse modelling problems the dimensional reduction 

using PLS helps to work around the dimensional imbalance in the data and 

therefore obtain models with a fair amount of predictive ability.  All the PLS 

models for both the reverse and forward modelling problems work with X-block 

explained variances of over 90%.  This means that in the case of the reverse 

PLS models with 5 latent dimensions, 141 input dimensions contain redundant 

information.  The feed-forward neural networks effectively also reduce 

dimensionality in the hidden layer, however redundant information is not 

excluded.  The feed-forward neural networks thus work with 100% of the input 

space variance and this may explain why the neural network PLS models 

perform slightly better in comparison.   
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In the work by Roodt [1998] it is reported at the time that a single field trial costs 

in the vicinity of $50 000.  Data acquisition is therefore extremely costly and the 

motivation of further acquiring data is not justified unless the possibility of 

building a model seems promising.  The work done by Roodt [1998] shows 

promise and that the modelling may be possible.  However, the approach 

developed is more one of finding a function that fits the data set and not one of 

developing a parametrically optimised model.  The approach developed in this 

work shows that the development of a model capable of generalisation may be 

possible even if the models developed here are not recommended for 

application.  This study may therefore be justified in providing a framework from 

which to motivate funding for the development of a more robust model. 

 

It is recommended that the way forward is to collect data from field trials where 

more different types of rocket motor formulations are prepared and tested.  This 

will expand the information covering the input spaces and therefore also the 

available degrees of freedom.  Repeat measurements are essential, but only 

three to ten repeats are sufficient, depending on the available budget.  It is 

further recommended to develop a design of experiments in order to make sure 

the input space is covered by as few experiments as possible.   

 

More robust models can be developed for data with inherent linear input-output 

relationships such as linear PLS.  The results from this work show that it may 

be possible to build two separate linear models, one for each class of rocket 

motor design (DB- and C-classes).  This is due to the improvements in 

predictions made from the non-linear models being primarily attributed to the 

improved compensation for the DB-class rocket motors.  It has further been 

shown that a technique such as class-based PCA can be used to effectively 

cluster the data into the two classes.  A classifier can then be used to 

distinguish between the two classes and choose which of the two linear models 

is applicable.  A data set with approximately equal and adequate numbers of 

data points for the different rocket motor design classes is recommended.  
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Appendix A  
 Processed Results of Forward Modelling 

 Appendix A - Processed Results of Forward Modelling 

A.1 Linear PLS 

 

Table A-1 Explained variances calculated on the standardised data with 

increasing latent dimension (LD) on the overall linear PLS model. 

LD
% η2 Cumulative 

% η2 % η2 Cumulative 
% η2

1 46.447 46.447 38.605 38.605
2 15.144 61.592 22.433 61.038
3 7.815 69.407 4.963 66.001
4 7.501 76.908 3.038 69.039
5 6.640 83.548 2.850 71.889
6 4.017 87.566 2.890 74.779
7 5.718 93.283 0.948 75.726
8 2.644 95.927 1.484 77.211
9 1.908 97.835 1.069 78.279

10 1.530 99.365 0.434 78.713
11 0.467 99.832 0.481 79.194
12 0.079 99.911 0.171 79.365
13 0.086 99.997 0.075 79.440
14 0.002 99.999 0.561 80.001
15 0.001 100.000 0.500 80.501
16 0.000 100.000 2.916 83.417
17 0.000 100.000 1.025 84.443
18 0.000 100.000 0.000 84.443

X-Block (input) Y-block (outputs)

 
 

 

 

Appendix A - Processed Results of Forward Modelling       262 



 

Table A-2  Summary of results for the linear PLS model evaluated on the 

rescaled data. 
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Fig. A-1 The minimum sum-squared residuals obtained from building a linear 

PLS model. 
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Fig. A-2 The squared correlations between the 146 predicted cross-validation 

irradiance absorbance values and their mean targets for linear PLS. 
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Fig. A-3 The target data and inner model relationships of the in- and output 

scores calculated for the first 6 latent dimensions using the overall linear PLS 

model. 
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Fig. A-4  The target data and inner model relationships of the in- and output 

scores calculated for latent dimensions 7 to 12 using the overall linear PLS 

model. 
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A.2 Feed-forward Neural Network 

 

Table A-3  Leave-one-out cross-validation was repeated 10 times for each 

single hidden layer neural network. 
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Table A-4  The overall model training was repeated 5 times for each single 

hidden layer neural network. 

No. of 
hidden 
nodes

SSEP
Run 1*

SSEP
Run 2

SSEP
Run 3

SSEP
Run 4

SSEP
Run 5

SSEP
Average

1 161.99 161.67 162.02 162.05 161.74 161.89
2 52.74 53.80 81.44 93.00 56.84 67.56

10 41.50 41.99 42.41 41.33 40.62 41.57
15 42.15 40.82 40.77 41.09 41.76 41.32
20 41.35 40.80 40.76 40.60 41.23 40.95
30 40.51 40.84 41.34 41.61 40.75 41.01
40 41.81 40.86 40.24 40.66 40.47 40.81
50 40.36 40.07 40.23 41.38 40.40 40.49

100 40.59 39.95 39.65 39.76 40.89 40.17
146 39.56 39.69 39.66 39.51 39.97 39.68

* The best run chosen for further evaluation  
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Fig. A-5 The squared correlations between the 146 predicted cross-validation 

irradiance absorbance values and their mean targets for the neural network 

models. 
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Table A-5   Summary of results using feed-forward networks.  Results are 

evaluated on the rescaled data from the best of the repeated runs. 
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A.3 Neural Network PLS 

 

Table A-6   Original cross-validation and overall model-building results for 

single runs using EBNNPLS (see discussion in section 4.1.2). 

LD PRESS SSEP

1 521.05 131.20
2 494.51 50.97
3 406.18 46.74
4 386.93 46.19
5 362.92 43.94
6 324.66 43.04
7 325.67 41.89
8 307.36 41.88
9 303.46 40.34

10 276.22 40.24
11 226.96 40.15
12 218.29 40.10
13 209.15 40.05
14 212.36 40.00
15 199.22 39.85
16 190.02 39.65
17 165.18 39.58
18 152.29 39.55  

 

Table A-7   The overall model training was repeated 5 times for each LD using 

the NNPLS algorithm. 

LD SSEP
Run 1

SSEP
Run 2

SSEP
Run 3*

SSEP
Run 4

SSEP
Run 5

SSEP
Average

1 212.7 259.5 195.9 244.2 261.6 234.8
2 107.5 199.6 88.3 133.1 188.9 143.5
3 68.8 75.1 58.0 71.3 93.1 73.3
4 63.4 65.7 53.8 67.3 59.0 61.8
5 55.5 60.0 48.5 56.2 54.9 55.0
6 53.7 58.1 47.9 56.0 52.7 53.7
7 52.7 50.5 46.6 51.7 51.4 50.6
8 51.6 48.6 46.5 46.8 49.2 48.6
9 49.9 48.5 46.6 46.6 48.7 48.1

10 48.5 46.9 45.6 46.5 48.0 47.1
11 48.4 46.3 45.4 45.5 47.9 46.7
12 47.7 45.9 43.9 45.5 47.1 46.0
13 46.9 45.3 43.9 43.4 46.1 45.1
14 43.7 43.6 41.7 42.9 42.2 42.8
15 43.0 41.9 41.0 42.1 41.8 41.9
16 41.2 41.4 39.9 40.0 41.6 40.8
17 41.1 41.3 39.6 39.9 41.2 40.6
18 40.5 39.7 39.6 39.8 41.1 40.1

* The best run chosen for further evaluation  
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Table A-8  Leave-one-out cross-validation was repeated 10 times for each LD 

using NNPLS. 
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Table A-9  The number of hidden nodes for each latent dimension inner model 

obtained for each mo t ru ing N PLS. 
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Table A-10  Summary of results using NNPLS.  Results are evaluated on the 

rescaled data from the best of the repeated runs. 
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Fig. A-6   The squared correlations between the 146 predicted cross-validation 

irradiance absorbance values and their mean targets for the NNPLS models. 
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Fig. A-7   The target data and inner model relationships of the in- and output 

scores calculated for the first 6 latent dimensions of the overall NNPLS model. 
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Fig. A-8   The target data and inner model relationships of the in- and output 

scores calculated for latent dimensions 7 to 12 of the overall NNPLS model. 
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A.4 Radial-basis Function PLS  

 

Table A-11  The sum-square residuals for the RBFPLS models using different 

initialisation methods for the K-means method of training. 

Maximum spread initialisation PCA binary split initialisation

LD PRESS SSEP nodes per 
LD PRESS SSEP nodes per 

LD
1 834.03 563.33 2 834.03 563.33 2
2 810.98 344.20 1 844.23 243.77 5
3 723.99 207.06 1 837.94 246.49 1
4 755.61 203.25 1 841.34 240.24 1
5 817.71 120.47 1 771.28 236.39 2
6 876.67 95.87 1 632.97 230.88 4
7 761.91 89.22 3 575.94 191.08 2
8 668.55 78.16 1 579.51 143.58 4
9 620.08 74.02 2 605.31 143.16 1

10 601.27 72.53 1 571.27 132.22 2
11 563.76 71.68 1 586.47 129.00 2
12 566.05 68.32 1 581.82 126.83 2
13 572.44 66.94 1 573.01 125.97 1
14 574.49 64.05 1 549.75 119.56 2
15 577.21 57.15 2 570.83 114.77 1
16 646.36 50.31 1 580.72 111.72 1
17 653.41 50.17 2 566.98 111.19 1
18 623.22 49.32 2 596.95 110.87 1  

 

Table A-12  The sum-square residuals for the RBFPLS models using differently 

calculated spread values for the OLS method of training. 

80 nearest neighbours 120 nearest neighbours

LD PRESS SSEP nodes per 
LD PRESS SSEP nodes per 

LD
1 628.94 377.31 3 707.69 344.48 5
2 663.78 149.16 5 872.09 176.71 1
3 602.76 103.63 3 742.25 135.19 3
4 621.92 82.78 1 749.83 130.23 3
5 588.77 77.30 5 696.29 63.51 7
6 573.13 73.82 1 644.22 57.36 3
7 561.26 59.86 4 632.81 57.03 2
8 553.02 55.94 8 649.85 53.05 2
9 553.03 55.26 2 621.26 52.83 6

10 547.40 55.55 4 616.01 51.01 2
11 552.71 51.33 3 596.47 49.88 5
12 551.53 47.95 10 590.98 47.57 1
13 550.66 47.02 10 589.73 47.61 9
14 546.17 46.47 15 586.42 46.17 1
15 544.28 46.28 10 574.70 45.14 1
16 546.30 45.55 6 577.56 43.86 3
17 546.55 42.01 4 576.54 42.70 4
18 546.23 41.37 1 574.12 42.27 1  
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Table A-13 The SSE-values recorded during the inner model training of the 

overall RBFPLS model when using the ASOLS algorithm (see section 2.12.2). 

 

Extracting DIM 1...
Iteration   1, sse= 10269.9, time(s)= 0.481
Iteration   2, sse= 10511.5, time(s)= 0.481
Iteration   3, sse= 7319.05, time(s)= 0.481
Iteration   4, sse= 7319.05, time(s)= 0.54
Iteration   1, sse= 10269.9, time(s)= 0.56
Iteration   2, sse= 10511.5, time(s)= 0.56
Iteration   3, sse= 7319.05, time(s)= 0.561
Iteration   4, sse= 7319.05, time(s)= 0.561
Extracting DIM 2...
Iteration   1, sse= 1756.78, time(s)= 0.19
Iteration   2, sse= 1756.78, time(s)= 0.19
Iteration   1, sse= 1756.78, time(s)= 0.191
Iteration   2, sse= 1756.78, time(s)= 0.19

Extracting DIM 4...
Iteration   1, sse= 2297.68, time(s)= 0.651
Iteration   2, sse= 2279.38, time(s)= 0.651
Iteration   3, sse= 2236.66, time(s)= 0.651
Iteration   4, sse= 2239.05, time(s)= 0.641
Iteration   5, sse= 2239.05, time(s)= 0.651
Iteration   1, sse= 2297.68, time(s)= 0.641
Iteration   2, sse= 2279.38, time(s)= 0.651
Iteration   3, sse= 2236.66, time(s)= 0.661
Iteration   4, sse= 2239.05, time(s)= 0.661
Iteration   5, sse= 2239.05, time(s)= 0.661

Extracting DIM 6...
Iteration   1, sse= 845.944, time(s)= 1.011
Iteration   2, sse= 827.692, time(s)= 1.022
Iteration   3, sse= 790.241, time(s)= 1.011
Iteration   4, sse= 783.577, time(s)= 1.022
Iteration   5, sse= 783.577, time(s)= 1.021
Iteration   6, sse= 783.577, time(s)= 1.012
Iteration   1, sse= 845.944, time(s)= 1.021
Iteration   2, sse= 827.692, time(s)= 1.022
Iteration   3, sse= 790.241, time(s)= 1.012
Iteration   4, sse= 783.577, time(s)= 1.011
Iteration   5, sse= 783.577, time(s)= 1.022
Iteration   6, sse= 783.577, time(s)= 1.021  
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Table A-14  Leave-one-out cross-validation for 5 runs with 80, 120, 160, 110 

and 130 nearest neighbours respectively to initialise the ASOLS training 

algorithm in each inner model. 

LD  PRESS
Run 1

 PRESS
Run 2*

 PRESS
Run 3

 PRESS
Run 4

 PRESS
Run 5 Average

1 709.87 716.95 725.42 612.46 738.78 700.70
2 737.69 691.65 749.60 586.57 813.12 715.73
3 610.37 646.31 703.86 566.79 804.55 666.38
4 566.27 442.60 641.43 577.87 797.56 605.15
5 552.77 442.25 653.97 537.66 775.59 592.45
6 529.40 381.20 583.88 528.09 749.65 554.44
7 518.39 369.13 584.57 521.85 744.83 547.75
8 557.37 381.97 582.13 516.69 747.68 557.17
9 570.18 377.55 573.76 506.25 759.74 557.50

10 574.22 367.56 573.66 506.09 712.81 546.87
11 572.40 368.75 563.28 491.75 692.10 537.66
12 576.13 369.74 564.70 498.98 694.57 540.82
13 570.41 368.64 555.38 495.04 687.39 535.37
14 572.42 376.28 547.23 502.88 686.96 537.15
15 568.85 376.37 548.35 496.64 679.99 534.04
16 573.22 377.30 430.32 432.19 634.03 489.41
17 568.53 372.19 427.94 428.89 632.13 485.94
18 567.61 371.08 427.74 422.73 630.25 483.88

* The best run chosen for further evaluation  
 

Table A-15  The overall model training results for each of the 5 runs using the 

RBFPLS algorithm with ASOLS training of the inner models. 

LD SSEP
Run 1

SSEP
Run 2*

SSEP
Run 3

SSEP
Run 4

SSEP
Run 5

SSEP
Average

1 426.19 250.85 476.51 175.55 392.00 344.22
2 141.77 149.19 195.84 75.56 171.77 146.82
3 80.74 132.91 181.89 68.88 125.35 117.96
4 56.34 129.30 68.66 61.39 108.19 84.78
5 50.56 84.54 65.37 54.85 94.57 69.98
6 46.97 77.22 52.36 53.68 64.79 59.00
7 47.47 53.82 51.45 55.53 55.28 52.71
8 46.57 54.04 51.37 54.11 55.00 52.22
9 45.05 53.46 50.12 53.28 54.30 51.24

10 44.90 53.06 49.96 47.15 49.86 48.99
11 44.78 50.71 49.73 46.10 49.13 48.09
12 44.33 46.92 46.93 47.52 48.87 46.91
13 44.16 47.41 46.66 47.47 48.39 46.82
14 42.20 44.10 46.02 44.86 47.72 44.98
15 41.89 43.45 45.58 44.16 44.13 43.84
16 41.47 41.35 45.02 43.92 44.21 43.19
17 40.88 41.06 43.38 43.50 41.93 42.15
18 40.53 40.77 42.39 41.44 40.97 41.22

* The best run chosen for further evaluation  
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Table A-16  The number of hidden nodes for each inner model (LD) obtained 

for each modified cross-validation run using RBFPLS with ASOLS. 

LD  Run 1  Run 2  Run 3  Run 4  Run 5 Rounded 
Average

1 3 5 1 8 3
2 3 1 4 3 7
3 6 2 1 2 8
4 7 6 5 3 1
5 3 3 5 1 2
6 6 10 10 2 2 6
7 3 6 2 2 4
8 6 4 5 1 1
9 8 1 2 1 1

10 1 2 1 1 4
11 1 2 4 4 1
12 1 4 4 1 5
13 1 7 1 9 4
14 1 1 1 1 5
15 6 4 6 6 6
16 6 6 2 3 3
17 2 1 7 1 2
18 6 5 3 3 4

4
4
4
4
3

3
3
3
2
2
3
4
2
6
4
3
4  
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Fig. A-9  The squared correlations between the 146 predicted cross-validation 

irradiance absorbance values and their mean targets for the RBFPLS models 

using ASOLS (run 2). 
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Table A-17  Summary of results using RBFPLS with ASOLS.  Results are 

evaluated on the rescaled data from the best of the repeated runs. 
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Fig. A-10   The target data and inner model relationships of the in- and output 

scores calculated for the first 6 latent dimensions of the overall RBFPLS model. 
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A.5 Sensitivity Analysis 

 

Table A-18  The perturbations made to the input variables (indicated in bold 

italic font) to test the qualitative behaviour of the overall NNPLS model. 

C 1.115 1.115 1.115 1.869 1.869 0.894 0.894 0.894 0.997 0.997
H 4.399 4.399 4.399 2.658 2.658 4.203 4.203 4.203 3.908 3.908
O 2.769 2.769 2.769 3.362 3.362 2.855 2.855 2.855 2.407 2.407
N 0.695 0.695 0.695 1.335 1.335 0.708 0.708 0.708 0.604 0.604
Al 0.148 0.148 0.148 0 0 0.148 0.148 0.148 0.593 0
K 0 0 0.05 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0
Cu 0 0 0 0.007 0.007 0 0 0 0 0
Pb 0 0 0 0.008 0.008 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 0
Cl 0.681 0.681 0.681 0 0 0.702 0.702 0.702 0.596 0.596
Si 0 0 0 0 0 0 0 0 0 0
Ti 0 0 0 0.008 0.008 0 0 0 0 0
Fe 0 0 0 0 0 0.009 0.009 0.009 0 0
Tc 2.81 2.81 2.81 2.92 2.92 2.98 2.98 3.15 3.27 3.27
Pc 1.29 3 1.29 4.9 4.9 1.06 1.06 1.06 2.7 2.7
Ec 4.5 4.5 4.5 6.2 3 1.7 1.7 1.7 6.2 6.2
DT 15 15 15 13 13 25 15 25 13 13

C10 DB1 C9 C1

 
 

Table A-19  The global modifications made to the rocket propellant, C11 to 

investigate the effect on the spectral irradiance. 

C11 C11-A C11-B C11-C C11-D
AP 81% 77% 83% 81% 81%
Al 4% 8% 2% 4% 4%
DOA 2% 2% 2% 2% 2%
Isophoron 1.32% 1.32% 1.32% 1.32% -
Polyester - - - - 13
CTPB - - - 12% -
HTPB 12% 12% 12% - -
TC (K) 2860 2980 2820 2870 3050
PC (MPa) 1 1.23 1.23 1.23 1.2

%

3  
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Appendix B  
 Processed Results of Reverse Modelling 

 Appendix B – Processed Results of Reverse Modelling 

B.1 Linear PLS 

 

Table B-1   Summary of results obtained from the reverse linear PLS model 

evaluated on the rescaled data. 

LD X-block 
(inputs)

Y-block 
(outputs)

Average
 pdf

Parameters 
Per Output 

Variable 
Cumulated

Average 
R2

cv

Average
 R2 PRESS SSEP

1 92.44 13.57 1.87 148 0.173 0.217 466.1 362.83
2 95.25 26.85 3.75 296 0.183 0.351 475.6 307.08
3 98.63 32.61 4.91 444 0.172 0.390 551.1 282.89
4 99.60 43.81 7.45 592 0.144 0.442 664.3 235.89
5 99.85 60.05 8.66 740 0.168 0.558 632.3 167.72
6 99.91 67.20 10.30 888 0.221 0.662 622.3 137.69
7 99.93 69.50 11.16 1036 0.214 0.708 630.9 128.03
8 99.95 73.51 12.79 1184 0.192 0.771 849.6 111.18
9 99.96 75.05 13.29 1332 0.203 0.806 964.3 104.75

10 99.97 77.21 13.88 1480 0.239 0.845 1867.7 95.69
11 99.98 84.17 14.81 1628 0.196 0.867 1893.4 66.46
12 99.99 88.47 15.35 1776 0.205 0.912 1971.9 48.42
13 100.0 89.24 15.66 1924 0.213 0.939 2411 45.19
14 100.0 91.59 16.18 2072 0.215 0.955 3053.6 35.29
15 100.0 94.53 16.57 2220 0.217 0.971 2914.7 22.95
16 100.0 95.74 17.18 2368 0.212 0.982 5408.9 17.88
17 100.0 100.00 18.00 2516 0.266 1.000 3.59E+21 0.00
18 100.0 100.00 18.00 2664 0.265 1.000 1.02E+22 0.00
19 100.0 100.00 18.00 2812 0.264 1.000 1.31E+22 0.00
20 100.0 100.00 18.00 2960 0.270 1.000 1.29E+22 0.00

Cumulative % η2
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Table B-2   The summary of results for each output variable evaluated at its 

optimum model complexity using linear PLS. 

PRESSj SSEPj RMSECV RMSE LD
Parameters
 Per Output 

Variable
pdf R2

cv R2

C 4.058 2.132 0.475 0.404 2 296 4.95 0.163 0.502
H 9.265 7.714 0.717 0.685 1 148 1.58 0.001 0.071
O 0.856 0.045 0.218 0.104 13 1924 13.88 0.737 0.979
N 1.097 0.599 0.247 0.212 2 296 4.69 0.228 0.538
Al 0.246 0.014 0.117 0.057 12 1776 13.67 0.769 0.986
K 0.0142 0.006 0.028 0.022 7 1036 6.57 0.301 0.666
F 0.0043 0.003 0.016 0.015 1 148 1.92 0.037 0.053

Cu 0.0003 0.000 0.004 0.003 2 296 3.75 0.114 0.392
Pb 0.0002 0.000 0.003 0.003 1 148 1.66 0.099 0.223
S 0.0003 0.000 0.004 0.004 1 148 1.46 0.826 0.000
Cl 1.891 1.566 0.324 0.309 1 148 1.62 0.033 0.147
Si 0.0021 0.002 0.011 0.010 1 148 1.35 0.000 0.067
Ti 0.0002 0.000 0.003 0.002 7 1036 8.13 0.181 0.691
Fe 0.0008 0.000 0.007 0.004 4 592 10.28 0.057 0.781
TC 1.1827 0.805 0.256 0.233 2 296 3.15 0.456 0.604
PC 57.35 46.600 1.785 1.695 1 148 1.77 0.008 0.062
EC 137.29 33.384 2.762 1.939 6 888 9.12 0.390 0.764
DT 238.46 186.118 3.640 3.421 1 148 2.10 0.002 0.103

Σ 451.7 279.0 Ave 3.61 534.44 5.09 0.244 0.424  
 

Table B-3  Explained variances calculated on the standardised data with 

increasing latent dimension (LD) on the overall linear PLS model. 

LD
% η2 Cumulative 

% η2 % η2 Cumulative 
% η2

1 88.56 88.56 21.68 21.68
2 2.38 90.94 13.45 35.13
3 3.91 94.85 3.82 38.95
4 2.15 97.00 5.29 44.24
5 1.46 98.46 11.55 55.79
6 1.07 99.53 10.40 66.19
7 0.130 99.66 4.60 70.79
8 0.072 99.73 6.30 77.09
9 0.118 99.85 3.45 80.55

10 0.070 99.92 3.90 84.45
11 0.031 99.95 2.28 86.73
12 0.012 99.96 4.45 91.18
13 0.011 99.97 2.70 93.88
14 0.013 99.99 1.66 95.54
15 0.008 99.99 1.58 97.13
16 0.005 100.00 1.06 98.19
17 0.002 100.00 1.81 100.00
18 0.000 100.00 0.00 100.00
19 0.000 100.00 0.00 100.00
20 0.000 100.00 0.00 100.00

X-Block (input) Y-block (outputs)
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Fig. B-1   The target data and predicted inner model relationships of the in- and 

output scores calculated for the first 6 latent dimensions using the overall linear 

PLS model. 
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Fig. B-2 A plot of the linear regression coefficients of the linear PLS model. 

0 25 50 75 100 125 150
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Wavelength Number

O
ve

ra
ll 

Li
ne

ar
 R

eg
re

ss
io

n 
C

oe
ffi

ci
en

t, 
B  P

LS

C
H
O
N
Al

 
Fig. B-3 A plot of the linear regression coefficients of the reverse linear PLS 

model for the selected output variables. 
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B.2 Feed-forward Neural Network 

 

Table B-4   Leave-one-out cross-validation was repeated 10 times for each 

single hidden layer neural network. 
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Table B-5  The overall model training was repeated 5 times for each single 

hidden layer neural network. 

No. of 
hidden 
nodes

SSEP
Run 1

SSEP
Run 2

SSEP
Run 3*

SSEP
Run 4

SSEP
Run 5

SSEP
Average

1 249.76 249.86 249.82 249.69 249.90 249.81
2 246.65 247.23 245.61 249.07 245.80 246.87
4 150.27 143.59 117.63 158.47 101.05 134.20
6 48.98 108.78 63.26 53.72 87.31 72.41
8 34.95 38.05 32.43 32.56 35.92 34.78

10 8.10 6.85 5.21 12.05 15.91 9.62
15 0.34 0.12 0.64 0.27 0.17 0.31
20 0.02 0.01 0.05 0.00 0.00 0.02
30 0.00 0.00 0.00 0.00 0.00 0.00
40 0.00 0.00 0.00 0.00 0.00 0.00

* The best run chosen for further evaluation  
 

 

 

Table B-6  Summary of results obtained from the reverse feed-forward neural 

network model evaluated on the rescaled data. 

No. of 
hidden 
nodes

Y-block 
Cumulative 

% η2

Average
 pdf

Parameters 
Per Output 

Variable 

Parameters for 
All Output 
Variables 

Average 
R2

cv

Average
 R2 PRESS SSEP

1 40.49 5.40 149 183 0.224 0.501 363.3 249.82
2 41.49 7.07 297 348 0.351 0.615 329.1 245.61
4 71.98 12.49 593 678 0.265 0.786 809.2 117.63
6 84.93 14.49 889 1008 0.206 0.876 1585.7 63.26
8 92.27 15.96 1185 1338 0.164 0.961 1433.3 32.43

10 98.76 17.02 1481 1668 0.161 0.992 720.6 5.21
15 99.85 17.72 2221 2493 0.211 1.000 1238.6 0.64
20 100.0 17.94 2961 3318 0.166 1.000 1863.3 0.05
30 100.0 18.00 4441 4968 0.246 1.000 1497.7 0.00
40 100.0 18.00 5921 6618 0.217 1.000 1590.3 0.00  
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Table B-7  The summary of results for each output variable evaluated at its 

optimum model complexity using feed-forward neural networks. 

PRESSj SSEPj RMSECV RMSE
No. of 

Hidden 
Nodes

Parameters
 Per Output 

Variable
pdf R2

cv R2

C 2.605 0.773 0.380 0.281 2 297 8.19 0.467 0.819
H 5.192 0.353 0.537 0.274 2 297 13.30 0.539 0.958
O 0.836 0.054 0.216 0.109 6 889 13.41 0.716 0.975
N 0.506 0.152 0.168 0.124 2 297 8.14 0.641 0.883
Al 0.582 0.030 0.180 0.086 6 889 13.92 0.694 0.970
K 0.012 0.011 0.025 0.025 1 149 0.24 0.440 0.345
F 0.004 0.003 0.016 0.014 1 149 2.99 0.005 0.172

Cu 0.000 0.000 0.003 0.002 2 297 4.26 0.576 0.738
Pb 0.000 0.000 0.003 0.002 2 297 12.06 0.514 0.933
S 0.000 0.000 0.004 0.004 1 149 2.00 0.065 0.069
Cl 0.984 0.065 0.234 0.119 2 297 13.37 0.571 0.965
Si 0.002 0.000 0.011 0.007 2 297 10.59 0.219 0.817
Ti 0.000 0.000 0.003 0.002 1 149 4.36 0.225 0.528
Fe 0.001 0.001 0.006 0.006 1 149 1.82 0.033 0.075
TC 1.360 1.003 0.275 0.255 2 297 2.54 0.344 0.507
PC 39.94 29.06 1.490 1.376 1 149 2.65 0.232 0.415
EC 93.72 69.82 2.282 2.120 2 297 2.46 0.374 0.507
DT 182.11 144.37 3.181 3.001 2 297 1.97 0.168 0.305

Σ 327.8 245.7 Ave 2.11 313 6.57 0.379 0.610  
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B.3 Neural Network PLS 

 

Table B-8  Leave-one-out cross-validation was repeated 10 times for each 

NNPLS latent dimension. 

LD
 P

R
ES

S
R

un
 1

 P
R

ES
S

R
un

 2
 P

R
ES

S
R

un
 3

 P
R

ES
S

R
un

 4
 P

R
ES

S
R

un
 5

 P
R

ES
S

R
un

 6
 P

R
ES

S
R

un
 7

 P
R

ES
S

R
un

 8
*

 P
R

ES
S

R
un

 9
 P

R
ES

S
R

un
 1

0
PR

ES
S

Av
er

ag
e

1
34

7.
7

34
7.

7
34

7.
7

34
7.

7
34

7.
7

34
7.

7
37

3.
5

34
7.

7
34

7.
7

34
7.

7
35

0.
3

2
32

7.
7

33
8.

5
33

0.
6

33
8.

8
33

9.
2

34
9.

2
37

4.
1

34
6.

5
33

4.
4

33
4.

6
34

1.
4

3
29

0.
8

31
9.

0
28

7.
3

27
8.

5
33

0.
5

30
4.

5
36

1.
1

27
3.

8
29

5.
6

29
9.

3
30

4.
0

4
31

1.
5

34
6.

1
32

3.
7

32
0.

1
37

5.
8

31
7.

6
38

6.
9

31
0.

5
31

9.
8

33
9.

3
33

5.
1

5
63

7.
3

61
1.

7
86

5.
0

39
5.

4
48

3.
0

81
6.

0
77

9.
9

58
3.

2
43

7.
8

40
4.

0
60

1.
3

6
70

3.
1

66
7.

7
90

6.
9

44
6.

5
55

5.
8

84
4.

4
79

9.
7

65
1.

7
48

2.
9

44
7.

6
65

0.
6

7
75

9.
3

65
8.

0
11

07
.1

76
9.

9
64

3.
9

11
03

.5
96

2.
9

15
83

.0
57

2.
9

13
32

.8
94

9.
3

8
76

4.
0

68
5.

3
10

10
.1

71
9.

2
78

4.
7

98
0.

2
10

31
.3

16
44

.5
53

5.
4

14
24

.8
95

8.
0

9
97

8.
2

74
8.

1
11

33
.1

80
8.

4
78

1.
6

10
78

.8
10

87
.2

17
60

.6
10

58
.7

17
15

.7
11

15
.0

10
10

91
.6

81
0.

5
12

62
.8

86
1.

5
75

8.
2

12
11

.5
12

69
.8

18
29

.4
11

15
.5

17
13

.9
11

92
.5

11
11

15
.5

76
7.

9
11

83
.2

79
1.

3
12

84
.7

10
99

.1
11

98
.3

18
47

.6
10

68
.3

16
39

.5
11

99
.5

12
11

04
.7

78
1.

4
12

17
.7

91
5.

1
13

29
.8

11
02

.8
12

17
.5

18
32

.4
10

36
.3

16
85

.3
12

22
.3

13
10

59
.3

71
7.

2
11

21
.4

84
2.

7
13

60
.0

10
10

.9
11

08
.7

15
91

.5
10

88
.3

15
73

.7
11

47
.4

14
10

55
.7

69
1.

0
10

72
.2

76
7.

9
13

44
.1

10
04

.3
10

41
.0

15
81

.6
10

86
.1

14
80

.3
11

12
.4

15
10

26
.5

72
5.

2
13

05
.5

74
1.

5
13

53
.5

96
7.

7
10

09
.0

18
69

.4
11

27
.9

15
43

.8
11

67
.0

16
98

6.
7

65
8.

4
12

12
.0

68
7.

9
13

20
.3

95
3.

0
66

0.
1

18
72

.9
10

59
.3

15
17

.0
10

92
.8

17
40

04
.6

26
73

.4
12

50
.0

19
84

.6
17

51
.8

19
48

.3
76

0.
7

19
84

.9
13

95
.9

49
08

.7
22

66
.3

18
39

42
.5

26
30

.3
16

93
.0

20
55

.6
17

54
.3

19
33

.3
71

4.
8

19
87

.0
14

08
.1

65
45

.6
24

66
.5

19
50

64
.2

26
25

.8
16

84
.0

29
72

.3
42

45
.1

21
57

.3
17

10
.5

20
36

.3
13

87
.0

67
97

.7
30

68
.0

20
51

94
.2

29
56

.0
16

98
.1

30
15

.6
24

93
.7

40
16

.6
22

74
.2

22
99

.9
46

83
.5

68
77

.7
35

51
.0

* T
he

 b
es

t r
un

 c
ho

se
n 

fo
r f

ur
th

er
 e

va
lu

at
io

n

 
 

Appendix B – Processed Results of Reverse Modelling       291 



 

Table B-9  The number of hidden nodes for each latent dimension inner model 

obtained for each m  ru PLS. odified cross-validation repeat n using NN
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Table B-10  The overall model training was repeated 5 times for each NNPLS 

latent dimension. 

LD SSEP
Run 1

SSEP
Run 2

SSEP
Run 3*

SSEP
Run 4

SSEP
Run 5

SSEP
Average

1 265.8 265.8 265.8 265.8 265.8 265.8
2 239.2 245.7 239.3 253.2 252.8 246.0
3 239.2 176.3 171.2 175.6 186.5 189.8
4 201.2 173.4 168.1 170.7 180.7 178.8
5 122.9 152.5 150.0 150.6 149.1 145.0
6 108.2 114.4 123.1 127.1 122.7 119.1
7 107.9 115.7 118.4 119.2 118.8 116.0
8 82.6 92.1 99.7 94.1 89.8 91.7
9 61.7 78.6 63.5 66.8 72.3 68.6

10 40.2 58.6 45.8 46.0 53.3 48.8
11 31.3 26.3 21.5 19.2 23.6 24.4
12 27.0 22.2 20.1 17.2 21.5 21.6
13 23.2 21.0 16.1 14.1 17.1 18.3
14 23.3 13.0 14.3 12.2 14.4 15.4
15 19.1 10.8 11.8 10.2 12.5 12.9
16 15.7 8.7 10.2 8.0 10.5 10.6
17 14.8 6.9 6.4 6.6 7.0 8.3
18 11.1 6.7 4.5 5.6 6.2 6.8
19 8.8 5.4 2.9 4.5 5.6 5.4
20 4.6 3.4 2.1 3.6 5.4 3.8

* The best run chosen for further evaluation  
 

Table B-11  Summary of results obtained from the reverse NNPLS model 

evaluated on the rescaled data. 

LD X-block 
(inputs)

Y-block 
(outputs)

Average
 pdf

 Number of 
Inner Model 
Paramters

Parameters 
Per Output 

Variable 

Average 
R2

cv

Average
 R2 PRESS SSEP

1 97.82 36.68 2.35 4 151 0.166 0.287 347.7 265.79
2 99.21 43.00 4.89 14 308 0.227 0.521 346.5 239.27
3 99.84 59.22 6.19 21 462 0.322 0.615 273.8 171.18
4 99.93 59.94 7.34 25 613 0.322 0.659 310.5 168.15
5 99.98 64.28 8.66 62 797 0.316 0.690 583.2 149.97
6 99.99 70.68 9.75 66 948 0.298 0.722 651.7 123.08
7 100.00 71.81 11.44 79 1108 0.229 0.756 1583.0 118.35
8 100.00 76.24 12.11 92 1268 0.236 0.794 1644.5 99.75
9 100.00 84.87 13.12 99 1422 0.220 0.837 1760.6 63.49

10 100.00 89.10 13.74 103 1573 0.221 0.878 1829.4 45.78
11 100.00 94.87 14.38 119 1736 0.207 0.894 1847.6 21.55
12 100.00 95.22 14.78 138 1902 0.201 0.920 1832.4 20.08
13 100.00 96.18 15.50 160 2071 0.176 0.956 1591.5 16.05
14 100.00 96.59 16.07 197 2255 0.161 0.969 1581.6 14.29
15 100.00 97.19 16.53 201 2406 0.133 0.979 1869.4 11.79
16 100.00 97.57 16.85 205 2557 0.136 0.988 1872.9 10.20
17 100.00 98.47 17.15 221 2720 0.114 0.991 1984.9 6.41
18 100.00 98.92 17.26 252 2898 0.110 0.993 1987.0 4.53
19 100.00 99.32 17.35 256 3049 0.111 0.995 2036.3 2.86
20 100.00 99.49 17.43 290 3230 0.104 0.996 2299.9 2.14

Cumulative % η2
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Table B-12  The summary of results for each output variable evaluated at its 

optimum model complexity using NNPLS. 

PRESSj SSEPj RMSECV RMSE LD
Parameters
 Per Output 

Variable
pdf R2

cv R2

C 2.18 0.522 0.348 0.244 5 797 9.20 0.609 0.879
H 5.06 0.548 0.530 0.304 4 613 12.08 0.452 0.937
O 0.776 0.160 0.208 0.140 3 462 9.82 0.646 0.937
N 0.514 0.0757 0.169 0.105 5 797 11.09 0.698 0.942
Al 0.450 0.135 0.158 0.117 3 462 8.16 0.565 0.902
K 0.015 0.0107 0.029 0.027 1 151 2.81 0.144 0.389
F 0.004 0.0031 0.015 0.014 2 308 2.17 0.000 0.151

Cu 0.0002 0.0001 0.003 0.002 3 462 7.25 0.399 0.785
Pb 0.0001 0.0000 0.002 0.001 6 948 11.04 0.671 0.936
S 0.0002 0.0001 0.004 0.003 9 1422 8.21 0.078 0.692
Cl 0.843 0.0411 0.216 0.102 7 1108 14.03 0.706 0.978
Si 0.002 0.0011 0.011 0.009 4 613 4.92 0.097 0.444
Ti 0.0002 0.0001 0.003 0.002 4 613 7.07 0.028 0.600
Fe 0.0008 0.0006 0.007 0.006 1 151 2.33 0.002 0.096
TC 1.35 0.940 0.274 0.250 1 151 3.00 0.379 0.546
PC 47.82 28.00 1.630 1.426 4 613 4.23 0.100 0.438
EC 58.49 31.85 1.803 1.549 3 462 4.72 0.599 0.778
DT 154.39 105.99 2.929 2.666 3 462 3.09 0.272 0.494

Σ 271.90 168.28 Ave 3.78 589 6.95 0.358 0.662  
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Fig. B-4   The target data and inner model relationships of the in- and output 

scores calculated for the first 6 latent dimensions using NNPLS. 
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B.4 Radial-basis function PLS 

 

Table B-13  The sum-square residuals for the RBFPLS reverse models using 

different initialisation methods for the K-means method of training. 

Maximum spread initialisation PCA binary split initialisation

LD PRESS SSEP nodes per 
LD PRESS SSEP nodes per 

LD
1 361.2 281.3 3 379.7 279.5 4
2 380.3 271.7 2 404.2 267.6 3
3 341.4 200.3 4 324.1 192.3 2
4 346.6 194.3 3 370.0 182.7 4
5 344.2 181.6 1 378.2 173.8 1
6 364.0 160.3 1 400.2 175.1 1
7 378.5 158.4 1 437.3 171.7 2
8 443.5 114.0 2 434.0 172.3 1
9 450.1 94.8 2 426.4 172.4 1

10 480.8 84.7 2 447.2 166.2 2
11 437.7 34.9 1 480.9 157.3 1
12 458.0 28.3 2 485.8 157.4 1
13 499.1 26.3 2 488.7 157.6 1
14 500.3 22.6 2 489.9 157.8 1
15 495.2 21.8 1 488.2 157.9 1
16 473.5 16.7 2 496.2 156.2 1
17 484.2 15.3 2 492.8 155.6 1
18 494.3 13.1 2 485.7 156.3 1  

 

Table B-14  The sum-square residuals for the reverse RBFPLS models using 

different spread values for the OLS method of training the inner models. 

4 nearest neighbours 3 nearest neighbours

LD PRESS SSEP nodes per 
LD PRESS SSEP nodes per 

LD
1 346.90 280.38 1 360.39 316.08 1
2 350.47 258.67 9 347.01 294.35 4
3 322.47 224.47 4 311.21 262.14 4
4 356.58 219.62 6 337.18 254.90 4
5 330.14 148.52 3 309.81 193.83 7
6 371.04 146.00 1 351.96 187.92 1
7 398.42 108.48 7 362.74 143.34 3
8 379.85 99.02 3 374.91 131.72 7
9 369.39 65.70 1 375.64 63.54 11

10 379.37 63.22 1 385.96 68.40 1
11 360.06 53.90 1 421.57 62.30 1
12 370.82 49.80 3 433.46 49.23 1
13 365.59 43.05 1 434.02 43.20 1
14 355.89 42.11 1 434.53 42.29 1
15 351.38 40.33 6 434.41 40.30 1
16 349.90 35.48 1 425.77 35.81 1
17 344.50 35.26 1 426.61 31.91 6
18 353.79 27.37 1 421.43 24.28 6  

Appendix B – Processed Results of Reverse Modelling       296 



 

Table B-15  Leave-one-out cross-validation for 3 runs with 2,3 and 4 

initialisation nearest neighbours respectively (for ASOLS inner model training). 

LD  PRESS
Run 1

 PRESS
Run 2

 PRESS
Run 3* Average

1 397.98 422.17 365.72 395.29
2 427.68 427.84 349.40 401.64
3 376.69 335.86 299.09 337.21
4 374.02 349.21 298.99 340.74
5 330.57 323.71 276.07 310.12
6 366.02 390.94 320.22 359.06
7 390.58 393.95 309.61 364.72
8 412.44 379.01 309.88 367.11
9 407.16 371.57 303.27 360.67

10 418.73 376.99 294.77 363.50
11 404.91 350.86 284.89 346.89
12 424.62 358.61 282.19 355.14
13 418.36 363.37 337.68 373.14
14 412.75 369.24 329.78 370.59
15 394.26 350.75 369.15 371.39
16 376.61 341.69 365.55 361.28
17 378.72 348.79 371.26 366.26
18 329.80 351.77 372.35 351.31
19 319.94 363.17 374.02 352.38
20 318.96 364.79 371.93 351.89

* The best run chosen for further evaluation  
 

Table B-16  The number of hidden nodes for each inner model (LD) obtained 

from each modified cross-validation run using RBFPLS with ASOLS. 

LD  Run 1  Run 2  Run 3 Rounded 
Average

1 3 2 3 3
2 1 1 10
3 2 8 3 4
4 4 1 1 2
5 6 1 5 4
6 3 2 2 2
7 11 2 5 6
8 1 4 1 2
9 4 1 2 2

10 3 6 7 5
11 1 11 2 5
12 2 2 2 2
13 13 8 1 7
14 3 1 3 2
15 6 1 3 3
16 7 1 2 3
17 13 6 2 7
18 4 9 1 5
19 4 1 3 3
20 8 5 7 7

4
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Table B-17  The overall reverse model training results for each of the 3 runs 

using the RBFPLS algorithm with ASOLS training of the inner models. 

LD SSEP
Run 1

SSEP
Run 2

SSEP
Run 3*

SSEP
Average

1 281.97 274.45 262.11 272.84
2 274.04 267.22 240.94 260.73
3 217.36 226.02 182.76 208.71
4 213.24 223.50 178.41 205.05
5 155.25 209.84 178.18 181.09
6 122.19 180.60 101.12 134.64
7 114.12 181.39 99.34 131.62
8 97.28 120.16 78.42 98.62
9 78.80 92.47 62.65 77.97

10 57.01 77.22 47.22 60.48
11 34.98 47.91 50.61 44.50
12 32.41 41.05 46.56 40.01
13 24.51 39.30 36.17 33.33
14 23.53 35.74 34.25 31.17
15 18.44 30.75 26.40 25.20
16 16.24 27.21 19.76 21.07
17 14.55 24.46 19.62 19.55
18 9.81 14.68 18.62 14.37
19 6.73 11.02 16.66 11.47
20 5.02 4.97 15.28 8.42

* The best run chosen for further evaluation  
 

Table B-18  Summary of results obtained from the reverse RBFPLS model with 

ASOLS inner model training evaluated on the rescaled data. 

LD X-block 
(inputs)

Y-block 
(outputs)

Average
 pdf

Number of 
inner model 
paramters

Parameters 
Per Output 

Variable 

Average 
R2

cv

Average
 R2 PRESS SSEP

1 97.82 37.56 2.97 10 157 0.136 0.312 365.72 262.11
2 99.21 42.60 5.01 41 335 0.219 0.518 349.40 240.94
3 99.84 56.46 6.07 51 492 0.320 0.607 299.09 182.76
4 99.93 57.50 7.22 55 643 0.300 0.646 298.99 178.41
5 99.98 57.55 6.82 71 806 0.383 0.669 276.07 178.18
6 99.99 75.91 7.69 78 960 0.355 0.701 320.22 101.12
7 100.00 76.33 8.16 94 1123 0.350 0.738 309.61 99.34
8 100.00 81.32 9.25 98 1274 0.363 0.780 309.88 78.42
9 100.00 85.08 10.67 105 1428 0.359 0.825 303.27 62.65

10 100.00 88.75 11.50 127 1597 0.368 0.873 294.77 47.22
11 100.00 87.94 11.78 134 1751 0.368 0.891 284.89 50.61
12 100.00 88.91 12.06 141 1905 0.360 0.905 282.19 46.56
13 100.0 91.38 12.68 145 2056 0.338 0.917 337.68 36.17
14 100.0 91.84 13.45 155 2213 0.341 0.940 329.78 34.25
15 100.0 93.71 14.24 165 2370 0.329 0.955 369.15 26.40
16 100.0 95.29 14.48 172 2524 0.333 0.962 365.55 19.76
17 100.0 95.33 14.72 179 2678 0.339 0.969 371.26 19.62
18 100.0 95.56 14.94 183 2829 0.349 0.972 372.35 18.62
19 100.0 96.03 15.34 193 2986 0.355 0.977 374.02 16.66
20 100.0 96.36 15.51 215 3155 0.357 0.980 371.93 15.28

Cumulative % η2
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Table B-19  The summary of results for each output variable evaluated at its 

optimum model complexity using RBFPLS. 

PRESSj SSEPj RMSECV RMSE LD
Parameters
 Per Output 

Variable
pdf R2

cv R2

C 1.747 0.41 0.312 0.217 5 806 9.26 0.597 0.904
H 2.114 0.75 0.343 0.264 5 806 7.31 0.748 0.910
O 0.894 0.13 0.223 0.139 5 806 11.03 0.598 0.941
N 0.310 0.03 0.131 0.076 12 1905 12.03 0.781 0.974
Al 0.424 0.08 0.153 0.100 5 806 10.41 0.617 0.937
K 0.0137 0.01 0.028 0.026 1 157 2.30 0.200 0.402
F 0.0040 0.00 0.015 0.014 1 157 2.09 0.000 0.151

Cu 0.0001 0.00 0.002 0.002 6 960 0.79 0.679 0.706
Pb 0.0001 0.00 0.003 0.002 5 806 10.92 0.516 0.923
S 0.0003 0.00 0.004 0.004 2 335 1.92 0.398 0.069
Cl 0.3810 0.01 0.146 0.062 14 2213 14.78 0.795 0.993
Si 0.0012 0.00 0.008 0.005 14 2213 11.21 0.447 0.917
Ti 0.0002 0.00 0.003 0.003 2 335 6.19 0.004 0.486
Fe 0.0008 0.00 0.007 0.006 1 157 2.35 0.004 0.099
TC 1.59 0.83 0.297 0.253 5 806 4.99 0.269 0.594
PC 45.31 32.84 1.587 1.464 2 335 2.67 0.089 0.390
EC 51.57 8.23 1.693 1.070 11 1751 10.81 0.646 0.942
DT 150.56 30.58 2.892 1.942 12 1905 9.89 0.300 0.888

Σ 254.91 73.92 Ave 6.00 959 7.27 0.427 0.679  
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Fig. B-5  The target data and inner model relationships of the in- and output 

scores calculated for the first 6 latent dimensions using RBFPLS. 
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B.5 Sensitivity Analysis 

 

Table B-20  The global modifications made to rocket motor C11 re-modelled by 

the reverse overall NNPLS model with 3 latent dimensions to investigate the 

effect of the forward modelled spectral irradiance. 

C11 C11-A C11-B C11-C C11-D
C 1.047 0.806 1.103 0.994 1.266
H 4.382 4.249 3.997 4.220 3.847
O 2.796 2.416 2.772 2.856 3.142
N 0.701 0.523 0.716 0.729 0.965
Al 0.148 0.497 0.233 0.108 -0.062
K 0 0.00 0.01 0.00 0.0
F 0 0.00 0.00 0.00 0.0
Cu 0 0.00 0.00 0.00 0.0
Pb 0 0.00 0.00 0.00 0.0
S 0 0.00 0.00 0.00 0.0
Cl 0.689 0.747 0.585 0.678 0.492
Si 0 0.00 0.01 0.01 0.0
Ti 0 0.00 0.00 0.00 0.0
Fe 0 0.01 0.01 0.01 0.0
Tc 2.86 3.24 2.95 2.93 2.83
Pc 1.00 2.47 3.01 2.68 3.22
Ec 4.50 4.88 6.31 4.91 5.04
DT 15.00 15.09 13.81 15.15 14.98

0
0
0
0
0

1
0
0
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