
Elliptic curve cryptography

by

Gerard Jacques Louw

Thesis presented in partial fulfilment of the requirements for
the degree of Master of Science in Mathematics in the

Faculty of Science at Stellenbosch University

The financial assistance of the National Research Foundation (NRF) towards
this research is hereby acknowledged. Opinions expressed and conclusions

arrived at, are those of the author and are not necessarily to be attributed to
the NRF.

Supervisor: Prof. F. Breuer

December 2016

Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof
(save to the extent explicitly otherwise stated), that reproduction and pub-
lication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it for
obtaining any qualification.

Date: .

Copyright c© 2016 Stellenbosch University
All rights reserved.

i

Stellenbosch University https://scholar.sun.ac.za

Abstract

Elliptic curve cryptography

G.J. Louw

Department of Mathematical Sciences,
Stellenbosch University,

Private Bag X1, 7602 Matieland, South Africa.

Thesis: MSc (Mathematics)

October 2016

In this thesis we present a selection of Diffie-Hellman cryptosystems, which
were classically formulated using the multiplicative group of a finite field, but
which may be generalised to use other group varieties such as elliptic curves.
We also describe known attacks on special cases of such cryptosystems, which
manifest as solutions to the discrete logarithm problem for group varieties,
and the elliptic curve discrete logarithm problem in particular. We pursue
a computational approach throughout, with a focus on the development of
practical algorithms.

ii

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

I would like to thank my wife, Andrea, and my parents, Nelmarie and Jacques,
for their interest in my research, as well as their support, which was unwavering
during the most challenging times of my studies. I also wish to thank my
supervisor, Florian, for his suggestion of such a fascinating research topic, and
for his invaluable advice and guidance, which kept me focused on my goals.

I acknowledge the financial contributions of the National Research Founda-
tion, the Harry Crossley Foundation and the MIH Media Lab to my research.
I also thank the MIH Media Lab for providing me with a stimulating environ-
ment in which much of my research was conducted.

iii

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vii

List of Algorithms viii

Notation ix

1 Introduction 1

2 Elliptic curves 2
2.1 Weierstrass equations . 2

2.1.1 Weierstrass equations and elliptic curves 2
2.1.2 Discriminant . 3

2.2 Group structure . 3
2.3 Functions and morphisms . 5

2.3.1 Regular functions . 5
2.3.2 Rational functions . 6
2.3.3 Morphisms . 6
2.3.4 Isogenies . 6

2.4 Torsion . 8
2.4.1 Multiplication-by-m endomorphisms 8
2.4.2 Division polynomials . 8

iv

Stellenbosch University https://scholar.sun.ac.za

CONTENTS v

2.4.3 Structure of m-torsion subgroups 10
2.5 The dual isogeny . 10
2.6 The Frobenius endomorphism 12
2.7 Hasse’s theorem . 13

3 Pairings 14
3.1 Miller’s algorithm . 14
3.2 The Weil pairing . 17
3.3 The Tate pairing . 18

4 Point counting 21
4.1 Naive methods . 21
4.2 Schoof’s algorithm . 21

4.2.1 Computing the trace of Frobenius modulo 2 22
4.2.2 Characteristic equation of Frobenius modulo ` 23
4.2.3 Computing in the endomorphism ring modulo ` 24
4.2.4 Time complexity analysis 26

5 Discrete logarithms 28
5.1 The discrete logarithm and Diffie-Hellman problems 28
5.2 The baby-step giant-step algorithm 29
5.3 The Pohlig-Hellman reduction 31
5.4 Pollard’s algorithms . 33

5.4.1 Pollard’s ρ algorithm . 33
5.4.2 Pollard’s λ algorithm . 34

5.5 Pairing-based reductions . 36
5.5.1 The MOV reduction . 37
5.5.2 The Frey-Rück reduction 40

5.6 Anomalous curve reduction . 42

6 Elliptic curve cryptography 45
6.1 Diffie-Hellman key generation 46
6.2 Diffie-Hellman key-agreement scheme 47
6.3 ElGamal encryption scheme . 48

6.3.1 First variant . 48
6.3.2 Second variant . 50

6.4 Schnorr signature scheme . 52

Stellenbosch University https://scholar.sun.ac.za

CONTENTS vi

7 Conclusion 55

A Computing in the endomorphism ring modulo ` 56

Bibliography 60

Stellenbosch University https://scholar.sun.ac.za

List of Figures

2.1 Addition on elliptic curves over Q 5

vii

Stellenbosch University https://scholar.sun.ac.za

List of Algorithms

2.1 Random elliptic curve . 3
3.1 Miller . 16
3.2 Weil pairing . 18
3.3 Tate pairing . 20
4.1 Schoof . 22
4.2 Trace of Frobenius modulo 2 . 23
4.3 Trace of Frobenius modulo ` . 26
5.1 Baby-step giant-step . 30
5.2 Pohlig-Hellman reduction . 33
5.3 Pollard’s ρ . 35
5.4 Pollard’s λ . 37
5.5 MOV reduction . 39
5.6 Frey-Rück reduction . 42
5.7 Anomalous curve reduction . 44
6.1 Diffie-Hellman key generation 47
6.2 Diffie-Hellman key-agreement 48
6.3 ElGamal encryption (first variant) 49
6.4 ElGamal decryption (first variant) 49
6.5 ElGamal encryption (second variant) 51
6.6 ElGamal decryption (second variant) 52
6.7 Schnorr signing . 53
6.8 Schnorr verification . 53

viii

Stellenbosch University https://scholar.sun.ac.za

Notation

Objects

K a perfect field of characteristic not 2 or 3

L an algebraic extension of K

K̄ a fixed algebraic closure of K

p a prime number greater than 3

q a positive power of p

Fq a fixed finite field of order q

O(f(n)) the set of functions
{
g(n) : lim inf

n→∞
g(n)
f(n)
≥ 0 and lim sup

n→∞

g(n)
f(n)

<∞
}

o(f(n)) the set of functions
{
g(n) : lim

n→∞
g(n)
f(n)

= 0
}

Θ(f(n)) the set of functions
{
g(n) : lim inf

n→∞
g(n)
f(n)

> 0 and lim sup
n→∞

g(n)
f(n)

<∞
}

Õ(f(n)) the set of functions
∞⋃
k=0

O(f(n)(log f(n))k)

Ln[α, c] the set of functions
{
e(c+g(n))(logn)

α(log logn)1−α : g(n) ∈ o(1)
}

ix

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

Elliptic curves are among the simplest examples of group varieties – algebro-
geometric objects which may be adorned with a group structure. Their theory
has been fruitfully applied to important problems in number theory, and they
have fairly recently found a practical application in the field of cryptography.

The first cryptosystem based on the so-called Diffie-Hellman problem on
group varieties was introduced in (Diffie and Hellman, 1976). Many other
authors were subsequently inspired to propose cryptosystems based on the
same problem, thereby solving a variety of problems in public-key cryptogra-
phy. These cryptosystems were classically formulated using the multiplicative
group F×q , which may be viewed as the affine plane curve xy = 1 over Fq.
Replacing this group variety with an elliptic curve yields cryptosystems which
are more secure than their classic counterparts, thus making this choice very
popular in recent years.

In this thesis we present the background on elliptic curves needed to discuss
elliptic curve cryptography, and we formulate the Diffie-Hellman problem on
elliptic curves, as well as the related discrete logarithm problem. We then give
an exposition of known solutions to the discrete logarithm problem, of which
some work for general group varieties, while others are specific to special classes
of elliptic curves. Finally, we describe a selection of public-key cryptosystems
based on the Diffie-Hellman and discrete logarithm problems on elliptic curves.

For the discussion on elliptic curves, we assume a familiarity of basic alge-
braic geometry. In the analysis of various algorithms throughout the thesis, a
knowledge of the time and space complexities of finite field arithmetic is also
assumed.

1

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Elliptic curves

In this chapter, we cover the background on elliptic curves needed throughout
the rest of the thesis. Our exposition borrows heavily from the books (Sil-
verman, 2009; Washington, 2008), as well as the lecture notes (Sutherland,
2015).

2.1 Weierstrass equations

2.1.1 Weierstrass equations and elliptic curves

Definition 2.1. A Weierstrass equation over K is an equation of the form

y2 = x3 + a4x+ a6,

where a4, a6 ∈ K. Sometimes we will abbreviate f(x) := x3 + a4x + a6. An
elliptic curve (in Weierstrass form) overK is the projective closure of a smooth
affine plane curve cut out by a Weierstrass equation.

It is clear that the projective point O := (0 : 1 : 0) is the only point
at infinity on an elliptic curve, and it is therefore referred to as the point
at infinity. This fact allows us to deal with elliptic curves as affine curves,
treating the point at infinity separately. Checking on the affine patch where
x = 0 easily shows that the point at infinity is always smooth, so that elliptic
curves are smooth projective curves.

2

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. ELLIPTIC CURVES 3

2.1.2 Discriminant

Definition 2.2. The discriminant of a Weierstrass equation is the quantity

∆ := −16(4a34 + 27a26)

The following theorem gives us a simple criterion for determining whether
an arbitrary Weierstrass equation defines an elliptic curve.

Theorem 2.1. The affine plane curve cut out by a Weierstrass equation is
smooth if and only if ∆ 6= 0.

This immediately suggests a probabilistic algorithm of Las Vegas type for
randomly sampling from the elliptic curves over a finite field Fq: select each of
the coefficients in a Weierstrass equation uniformly at random from Fq, until
a combination of coefficients is found which results in a non-zero discriminant.
Sage code implementing this approach is given in Algorithm 2.1.

Algorithm 2.1 Random elliptic curve

1 def random_elliptic_curve(K):
2 """
3 K: a field
4 """
5 while true:
6 a_4, a_6 = random_vector(K, 2)
7 if -16 * (4 * a_4^3 + 27 * a_6^2) != 0:
8 return EllipticCurve([a_4, a_6])

2.2 Group structure

Central to the utility of elliptic curves in cryptography is the fact that the
L-points on an elliptic curve may be endowed with an abelian group structure
which allows efficient computation. The following theorem describes this group
structure.

Theorem 2.2. Let E be an elliptic curve over K in Weierstrass form. The
points in E(L) form an abelian group with O as its identity element, negation

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. ELLIPTIC CURVES 4

of an affine point P ∈ E(L) defined by

−P := (xP ,−yP)

and addition of two affine points P,Q ∈ E(L) such that P 6= −Q defined by

P +Q := (m2
P,Q − xP − xQ,−mP,QxP+Q − cP,Q),

where

mP,Q :=

(3x2P + a4)/2yP if P = Q

(yQ − yP)/(xQ − xP) if P 6= Q

and

cP,Q :=

(−x3P + a4xP + 2a6)/2yP if P = Q

(xQyP − xPyQ)/(xQ − xP) if P 6= Q.

It is clear from the formulae in Theorem 2.2 that addition in E(L) is
commutative, and it is straightforward to verify that E(L) is closed under
negation and addition by plugging the respective formulae into the elliptic
curve’s Weierstrass equation. However, it is somewhat tedious to demonstrate
that addition in E(L) is associative. We refer the reader to Section 2.4 of
(Washington, 2008) for a proof of associativity.

It can also be shown that the maps − : E → E and + : E ×K E → E

are K-morphisms, so that elliptic curves are in fact abelian varieties since O
is furthermore a K-point.

The group structure of an elliptic curve has a useful geometric interpreta-
tion. By Bézout’s theorem, the line passing through two L-points of a cubic
projective plane curve will meet the curve in exactly one other L-point, when
counting with multiplicity. Thus, the line passing through a point P ∈ E(L)

and O meets E at a unique L-point, which is the point −P . The quantities
mP,Q and cP,Q in Theorem 2.2 are respectively the slope and the intercept of
the line passing through the points P and Q, which meets E at the point
−(P + Q), so that the sum P + Q is the third intersection point of E and
the line passing through −(P + Q) and O. Figure 2.1 depicts the geometric
interpretation of group addition on elliptic curves over Q for both the cases
P = Q and P 6= Q.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. ELLIPTIC CURVES 5

-2 -1 1 2 3

-3

-2

-1

1

2

3

P

Q

−(P+Q)

P+Q

(a) E : y2 = x3 − 2x, P = (−1,−1),
Q = (0, 0)

-2 -1 1 2

-3

-2

-1

1

2

3

P

−[2]P

[2]P

(b) E : y2 = x3−x+1, P = (1, 1)

Figure 2.1: Addition on elliptic curves over Q

There is another important interpretation of the group structure on an
elliptic curve. It can be shown that there is an isomorphism of abelian varieties

E → JE, P 7→ (P)− (O),

where JE := Div0(E)/Prin(E) denotes the Jacobian variety of E.

2.3 Functions and morphisms

2.3.1 Regular functions

Any regular function α in the coordinate ring L[E] := L[x, y]/(y2 − f) over
L of an elliptic curve E may be put into a simple canonical form. Given a
polynomial representative in L[x, y] of α, we may substitute the factor y2k,
where k ∈ N0 is maximal, with fk in every term which contains such a factor,
yielding a polynomial of the form α1 + α2y, where α1, α2 ∈ L[x]. Such a
polynomial must be the unique representative for α of this form, since any

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. ELLIPTIC CURVES 6

further substitutions using the Weierstrass equation will introduce a factor y2

in some term.
For any α ∈ L[E], its conjugate ᾱ(x, y) := α(x,−y) is also a regular func-

tion, and the canonical form of its norm N(α) := αᾱ is a polynomial in x only,
since

(α1 + α2y)(α1 − α2y) = α2
1 − α2

2y
2 = α2

1 − α2
2f.

2.3.2 Rational functions

A rational function α in the function field L(E) := Frac(L[E]) of E may also
be put into a canonical form. If α = β/γ, where β, γ ∈ L[E] are in canonical
form, then α = βγ̄/N(γ), which can be written in the general form α1 + α2y,
where α1, α2 ∈ L(x).

The conjugate ᾱ and norm N(α) of a rational function are defined similarly
to the regular function case, and by the same line of reasoning we may see that
the canonical representation of N(α) is an element of L(x).

2.3.3 Morphisms

Let E ′ : y2 = x3 + a′4x + a′6 be another elliptic curve over K. A non-zero
morphism of group varieties φ := (α, β) ∈ Mor(E,E ′), where α, β ∈ K̄(E),
may also be put into a canonical form as follows. Note that by the definition
of negation −φ = (α,−β), but since φ is a morphism of groups, we also have
−φ = (ᾱ, β̄). It follows that α = ᾱ, so that α ∈ K̄(x) and −γ = γ̄, so that
γ ∈ K̄(x)y. The canonical form of φ is then (φx, φyy), where φx, φy ∈ K̄(x).

Lemma 2.1. Let φ := (φx, φyy) ∈ Mor(E,E ′) be a morphism in canonical
form. Then the equation φ2

yf = φ3
x + a′4φx + a′6 in K̄(x) is satisfied.

Proof. Substituting (φx, φyy) into the Weierstrass equation for E ′ and replac-
ing y2 with f yields the result.

2.3.4 Isogenies

Definition 2.3. An isogeny is an epimorphism of group varieties with a finite
kernel. The degree of an isogeny φ : E → E ′ is defined as deg φ := [K̄(E) :

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. ELLIPTIC CURVES 7

φ∗K̄(E ′)], where φ∗α := αφ for α ∈ K̄(E ′), and φ is said to be separable if and
only if the extension K̄(E)/φ∗K̄(E ′) is separable.

From the well known fact every morphism of projective curves is either an
epimorphism or constant, it follows that the zero morphism (0 : 1 : 0) is the
only morphism of elliptic curves as group varieties which is not an isogeny.
For convenience, one may sometimes wish to consider the zero morphism as
an isogeny of degree zero.

Theorem 2.3. If φ : E → E ′ is an isogeny, then # kerφ | deg φ, with
kerφ = deg φ if and only if φ is separable.

Proof. See Theorem III.4.10 of (Silverman, 2009).

The following theorem gives some useful properties for isogenies which have
been put into canonical form.

Theorem 2.4. Let φ := (φx, φyy) ∈ Mor(E,E ′) be an isogeny in canonical
form, where φx := φx;1/φx;2 for some relatively prime φx;1, φx;2 ∈ K̄[x]. Then

(a) (x, y) ∈ kerφ if and only if φx;2(x) = 0;

(b) deg φ = max(deg φx;1, deg φx;2); and

(c) φ is inseparable if and only if p := char(K) is prime and φx ∈ K̄(xp).

Proof. (a) See Corollary 5.23 of (Sutherland, 2015).

(b) See Lemma 9.6.13 of (Galbraith, 2012).

(c) See Corollary II.2.12 of (Silverman, 2009), which along with Lemma 2.1
implies the result.

Theorem 2.5. Let φ, χ ∈ Mor(E,E ′) be isogenies with φ inseparable. Then
φ+ χ is separable if and only if χ is separable.

Proof. If χ is inseparable, then φx, χx ∈ K̄(xp) by Theorem 2.4, and so
φ2
yf, χ

2
yf ∈ K̄(xp) by Lemma 2.1. Then (φ+ χ)x = m2

φ,χ − φx − χx, where

mφ,χ =

(3φ2
x + a4)/2φyy if φ = χ

(χy − φy)y/(χx − φx) if φ 6= χ,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. ELLIPTIC CURVES 8

so that m2
φ,χ ∈ K̄(xp) in either case, and thus φ + χ is inseparable by Theo-

rem 2.4.
If φ + χ is inseparable, then χ = (φ + χ) − φ is inseperable by the result

we have just demonstrated, since −φ is trivially also inseparable.

2.4 Torsion

2.4.1 Multiplication-by-m endomorphisms

Definition 2.4. For m ∈ Z, the multiplication-by-m endomorphism of E is
defined recursively as

[m] :=



(0 : 1 : 0) if m = 0

(x, y) if m = 1

[m− 1] + [1] if m > 1

−[−m] if m < 0

Note that ker[m] = E[m], the m-torsion subgroup of E. For a point P ∈
E(L), the point multiplication [m]P may be calculated with a time complexity
of Θ(logm) operations in L using a double-and-add algorithm.

2.4.2 Division polynomials

Definition 2.5. For m ∈ Z the m-th division polynomial of E is the regular
function ψm ∈ K[E] defined recursively as (Washington, 2008)

ψ0 := 0

ψ1 := 1

ψ2 := 2y

ψ3 := 3x4 + 6a4x
2 + 12a6x− a24

ψ4 := 4y(x6 + 5a4x
5 + 20a6x

3 − 5a24x
2 − 4a4a6x− a34 − 8a26)

ψ2m−1 := ψ3
m−1ψm+1 − ψm−2ψ3

m for m ≥ 3

ψ2m :=
ψm
2y

(ψ2
m−1ψm+2 − ψm−2ψ2

m+1) for m ≥ 3

ψm := −ψ−m for m < 0.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. ELLIPTIC CURVES 9

Putting ψm in canonical form, a straightforward inductive argument shows
that if m is odd then ψm ∈ K[x] has the leading term mx(m

2−1)/2, and if m is
even then ψm/y ∈ K[x] has the leading term mx(m

2−4)/2.
The division polynomials satisfy the following essential property.

Theorem 2.6. For m 6= 0, the multiplication-by-m endomorphism has the
form

[m] =

(
xψ2

m − ψm−1ψm+1

ψ2
m

,
ψ2
m−1ψm+2 − ψm−2ψ2

m+1

4ψ3
my

)
.

There exist completely elementary inductive proofs of this statement in-
volving messy calculations. A neater proof is given in Theorem 9.33 of (Wash-
ington, 2008), which involves first demonstrating the result in characteristic
zero using complex analytic techniques, then extending it to arbitrary fields
by showing that it is preserved by reduction to characteristic p.

Furthermore, one may show that xψ2
m − ψm−1ψm+1 and ψ2

m are relatively
prime when reduced to their canonical representations in K[x]. This allows us
to apply the criteria in Theorem 2.4 to this representation of [m], immediately
yielding the following corollary.

Corollary 2.1. If char(K) - m, then ψm(x, y) = 0 if and only if (x, y) ∈ E[m].

Furthermore, using the representation in Theorem 2.6 allows us to de-
termine the degree of [m], and under certain conditions decide whether it is
separable.

Theorem 2.7. The multiplication-by-m endomorphism has degree m2, and if
char(K) - m then [m] is separable.

Proof. This follows easily from Theorem 2.4. Each term of the numerator
xψ2

m − ψm−1ψm+1 of [m]x is of degree m2, with leading coefficients m2 and
m2− 1 respectively, so that the numerator is monic of degree m2. The leading
term of the denominator ψ2

m of [m]x is m2xm
2−1, and hence deg[m] = m2. If

char(K) = p and p - m, then clearly [m]x /∈ K(xp), since the leading term of
its numerator is xm2 , so that [m] is separable.

Remark 2.1. The converse of the separability criterion in Theorem 2.7 is also
true, but we will not need this result.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. ELLIPTIC CURVES 10

2.4.3 Structure of m-torsion subgroups

Theorem 2.8. If char(K) - m then the m-torsion subgroup E[m] of E is a
free Z/mZ-module of rank two.

Proof. We give a distilled version of the proof to Theorem 3.2 of (Washington,
2008). Since E[m] = ker[m] is a finite abelian group of order deg[m] = m2,
there is an isomorphism

E[m] ∼= Z/m1Z× · · · × Z/mkZ

for some m1, . . . ,mk ∈ N0 such that m1 6= 1, m1 | · · · | mk and m1 · · ·mk =

m2. Since m1 | mi for i = 1, . . . , k, E[m] contains a subgroup isomorphic to
(Z/m1Z)k, which forces k ≤ 2, since #E[m1] = m2

1. Furthermore mk | m since
E[m] comprises elements of order dividing m. It follows that m1 = m2 = m,
so that E[m] ∼= Z/mZ× Z/mZ.

At this point, counting roots shows that canonical representation of ψm is
in fact the polynomial in K[x, y] of minimal degree with the property that its
zeros are the affine m-torsion points, since each root of ψm (when m is even)
or ψm/y (when m is odd) must be the x-coordinate of a pair of points in E[m],
while the factor y accounts for the three points of order two when m is even.

Corollary 2.2. If K = Fq is a finite field of characteristic not dividing
#E(Fq), then E(Fq) = 〈P,Q〉 for some P,Q ∈ E(Fq).

Proof. Let n := #E(Fq). Note that E(Fq) ≤ E[n], so that the result fol-
lows immediately from Theorem 2.8, since E(Fq) ∼= Z/n1Z× Z/n2Z for some
positive integers n1 and n2 such that n1n2 = n.

2.5 The dual isogeny

The following theorem establishes the existence of a special isogeny related to
any isogeny of elliptic curves, and holds more generally for abelian varieties.

Theorem 2.9. Let φ : E → E ′ be an isogeny, then there is a unique isogeny
φ̂ : E ′ → E, called the dual isogeny of φ, such that φ̂φ = [deg φ].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. ELLIPTIC CURVES 11

If φ : E → E ′ is an isogeny, then we say that E and E ′ are isogenous. The
existence of the dual isogeny shows that the property of being isogenous is an
equivalence relation on elliptic curves, which may be viewed as a generalisation
of isomorphism, since isomorphisms are isogenies of degree one.

Theorem 2.10. Let φ, χ ∈ Mor(E,E ′) and ψ : E ′ → E ′′ be isogenies, and let
m ∈ Z. Dual isogenies satisfy the following properties:

(a) [̂m] = [m];

(b) ψ̂φ = φ̂ψ̂;

(c) φ̂+ χ = φ̂+ χ̂;

(d) deg φ̂ = deg φ;

(e) ˆ̂
φ = φ; and

(f) φφ̂ = [deg φ].

Proof. We present the proof given to Theorem III.6.2 of (Silverman, 2009).

(a) Clearly [m][m] = [m2] = [degm], so that the statement follows by unique-
ness of the dual isogeny.

(b) φ̂ψ̂ψφ = φ̂[degψ]φ = [degψ]φ̂φ = [degψ][deg φ] = [deg(ψφ)], from which
the statement follows by uniqueness.

(c) Refer to Theorem III.6.2(b) of (Silverman, 2009) for a proof.

(d) deg φ̂ deg φ = deg(φ̂φ) = deg([deg φ]) = (deg φ)2, so that deg φ̂ = deg φ.

(e) φφ̂φ = φ[deg φ] = [deg φ]φ, so that φφ̂ = [deg φ] = [deg φ̂], where right
cancellation is possible because φ is an epimorphism. By uniqueness of
the dual isogeny, it follows that ˆ̂

φ = φ.

(f) Using (e) and (d), φφ̂ =
ˆ̂
φφ̂ = [deg φ̂] = [deg φ].

Definition 2.6. The trace of an isogeny φ ∈ End(E) is the integer

trφ := 1 + deg φ− deg([1]− φ).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. ELLIPTIC CURVES 12

It is easy to show that tr φ̂ = trφ using the properties of the dual isogeny.

Lemma 2.2. Let φ ∈ End(E) be a non-zero endomorphism. Then

φ̂+ φ = [trφ].

Proof.

[deg([1]− φ)] = ̂([1]− φ)([1]− φ)

= ([1]− φ̂)([1]− φ)

= [1]− (φ̂+ φ) + [deg φ].

Theorem 2.11. Let φ ∈ End(E) be a non-zero endomorphism. Then φ sat-
isfies the characteristic equation

φ2 − [trφ]φ+ [deg φ] = [0].

Proof. [trφ]φ = φ̂φ+ φ2 = [deg φ] + φ2.

2.6 The Frobenius endomorphism

Definition 2.7. The Frobenius endomorphism of an elliptic curve E/Fq is
defined as

φq := (xq, yq),

which has the canonical form (xq, f
q−1
2 y).

To see that φq is indeed an endomorphism, note that φq(−P) = −φq(P)

for all P ∈ E since q is odd, and furthermore

φq(P +Q) = (m2q
P,Q − x

q
P − x

q
Q,−m

q
P,Qx

q
P+Q − c

q
P,Q)

= (m2
φqP,φqQ − xφqP − xφqQ,−mφqP,φqQxφq(P+Q) − cφqP,φqQ)

= φqP + φqQ,

where mq
P,Q = mφP,φQ and cqP,Q = cφP,φQ since these are expressions involving

only the coordinates of P and Q, and elements of Fq which are fixed under
exponentiation by q.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. ELLIPTIC CURVES 13

Theorem 2.12. The Frobenius endomorphism φq is an inseparable isogeny of
degree q.

Proof. Since φq;x = xq ∈ Fq(xp), this follows from Theorem 2.4.

Theorem 2.13. [1]− φq is a separable isogeny of degree #E(Fq).

Proof. Since [1] is separable by Theorem 2.7 and φq is inseparable by Theo-
rem 2.12, the separability of [1]− φq follows from Theorem 2.5. Furthermore,
([1] − φq)(x, y) = O if and only if x = xq and y = yq, which is equivalent to
x, y ∈ Fq, so that ker([1]−φq) = E(Fq). It then follows from Theorem 2.3 that
deg([1]− φq) = #E(Fq).

2.7 Hasse’s theorem

Theorem 2.14. Let E/Fq be an elliptic curve, then

#E(Fq) = q + 1− trφq.

Proof. From Definition 2.6 we have

trφq := 1 + deg φq − deg([1]− φq) = 1 + q −#E(Fq),

since deg([1]− φq) = #E(Fq) by Theorem 2.13.

Theorem 2.15 (Hasse). Let E/Fq be an elliptic curve, then

|trφq| ≤ 2
√
q.

Proof. Let t := trφq and recall deg φq = q from Theorem 2.12. Then

([t]φ̂q − [2q])([t]φq − [2q]) = [t]2φ̂qφq − [t][2q](φ̂q + φq) + [2q]2

= [t]2[q]− [t]2[2q] + [2q]2,

so that deg([t]φq−[2q]) = 4q2−t2q = q(4q−t2). Since degrees are non-negative,
this means 4q − t2 ≥ 0, or equivalently |t| ≤

√
2q.

As an immediate consequence of Hasse’s theorem, we have the asymptotic
relationship #E(Fq) ∼ q. This will be useful when studying the time com-
plexity of certain algorithms for elliptic curves.

It can be shown that the bound given by Hasse’s theorem is tight. In fact,
for each t ∈ Z such that |t| ≤ 2

√
q, there exists an elliptic curve E/Fq with

#E(Fq) = q + 1− t.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Pairings

In this chapter, we introduce pairings – that is, maps which are bilinear and
non-degenerate – on certain groups related to elliptic curve groups, as well as
presenting algorithms for computing these pairings. Our exposition is based
on those of (Galbraith, 2012; Washington, 2008).

3.1 Miller’s algorithm

Definition 3.1. Let P ∈ E(L)[m] where char(K) - m. The i-th Miller
function at P is the rational function fP ;i ∈ L(E) defined recursively by
fP ;0 := fP ;1 := 1 and

fP ;i := fP ;jfP ;i−j
`[j]P,[i−j]P
`[i]P,O

for 1 < i ≤ m and 1 ≤ j < i, where `P,Q is the rational function in L(E)

corresponding to the line passing through P and Q ∈ E(L)[m] defined as

`P,Q :=



1 if P = Q = O

x− xQ if P = O and Q 6= O

x− xP if P 6= O and Q ∈ {O,−Q}

y − (mP,Qx+ cP,Q) otherwise,

where mP,Q and cP,Q are respectively the slope and the tangent of this line as
in Theorem 2.2.

It remains to be shown that fP ;i is a well-defined rational function, since
j may take on multiple values in the recursive definition. Since the rational

14

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. PAIRINGS 15

function with a given divisor is unique up to multiplication by a constant, this
can be seen from the following theorem by checking inductively that(

(x/y)− ordO(fP ;i)fP ;i

)
(O) = 1

for i = 0, . . . ,m, independant of the choices for j.

Theorem 3.1. The i-th Miller function at a point P ∈ E(L)[m] has the divisor
div fP ;i = i(P)−([i]P)−(i−1)(O), and in particular div fP ;m = m(P)−m(O).

Proof. The result clearly holds for fP ;0 and fP ;1. Let Q ∈ E(L)[m] and observe
that

div `P,Q = (P) + (Q) + (−(P +Q))− 3(O),

and in particular
div `P,O = (P) + (−P)− 2(O),

so that
div

`P,Q
`P+Q,O

= (P) + (Q)− (P +Q)− (O).

Assuming that the result holds for fP ;j and fP ;i−j where 1 ≤ j < i, we have

div fP ;i = (j + (i− j))(P)− ([j]P)− ([i− j]P)− (j + (i− j)− 2)(O)

+ ([j]P) + ([i− j]P)− ([j + (i− j)]P)− (O),

so that
div fP ;i = i(P)− ([i]P)− (i− 1)(O)

as required. The result follows by induction, where div fP ;m = m(P)−m(O)

since [m]P = O.

We now turn the problem of computing them-th Miller function fP ;m. One
can give a heuristic argument that the maximum degree of the polynomials in
the canonical representation of fP ;i is linear in i, so that directly computing
the function fP ;m would have at least linear time complexity in m. In practice,
when working with an elliptic curve E/Fq, the m-torsion subgroups we are
interested in will havem roughly as large as q, thus yielding such a computation
infeasible for large q.

However, we may evaluate fP ;m(Q) for a given Q ∈ E(L)[m] more effi-
ciently, by simply computing

fP ;i(Q) = fP ;j(Q)fP ;i−j(Q)
`[j]P,[i−j]P (Q)

`[i]P,O(Q)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. PAIRINGS 16

iteratively for some 1 ≤ j < i. Since j may be chosen arbitrarily, this allows
us to use a modified square-and-multiply algorithm, which yields a time com-
plexity of Θ(logm) operations in E(L). This is known as Miller’s algorithm,
due to the unpublished manuscript (Miller, 1986a). Sage code implementing
Miller’s algorithm is given in Algorithm 3.1.

Algorithm 3.1 Miller

1 def line(E, P, Q, R):
2 """
3 E: an elliptic curve
4 (P, Q, R): points on E
5 """
6 if P == 0:
7 if Q == 0:
8 return 1
9 else:

10 return R[0] - Q[0]
11 elif Q == 0 or P == -Q:
12 return R[0] - P[0]
13 elif P == Q:
14 m = (3 * P[0]^2 + E.a4()) / (2 * P[1])
15 c = (-P[0]^3 + E.a4() * P[0] + 2 * E.a6()) / (2 * P[1])
16 else:
17 m = (P[1] - Q[1]) / (P[0] - Q[0])
18 c = (Q[0] * P[1] - P[0] * Q[1]) / (Q[0] - P[0])
19 return R[1] - (m * R[0] + c)
20

21 def miller(E, m, P, Q):
22 """
23 E: an elliptic curve
24 m: a positive integer
25 (P, Q): m-torsion points on E
26 """
27 fPi, iP = 1, 0
28 fPj, jP = 1, P
29 while m > 0:
30 if m % 2 == 1:
31 fPi *= fPj * line(E, iP, jP, Q) / line(E, iP + jP, 0, Q)
32 iP += jP
33 fPj *= fPj * line(E, kP, kP, Q) / line(E, 2 * jP, 0, Q)
34 jP += jP
35 m //= 2
36 return fPi

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. PAIRINGS 17

Remark 3.1. Miller’s algorithm may fail to compute fP ;m(Q) at a point Q ∈
E(L)[m] if a denominator `[k]P,O(Q) = 0 is encountered during the computation
for some intermediate 1 ≤ k < m. In this case, we gain the knowledge that
Q ∈ 〈P 〉, which will in fact help us to handle the situation in our applications.

3.2 The Weil pairing

Definition 3.2. For m ∈ Z such that char(K) - m, the m-th Weil pairing on
E[m] is the mapping

em : E[m]× E[m]→ K̄×[m]

defined by em(P, P) := em(P,O) := em(O, P) := 1 for all P ∈ E[m] and

em(P,Q) := (−1)m
fP ;m(Q)

fQ;m(P)

for all P,Q ∈ E[m] \ {O} such that P 6= Q (Weil, 1940).

Note that in the above definition K̄× is considered as a group variety, so
that K̄×[m] denotes the group of m-th roots of unity in K̄. It remains to be
established that em(P,Q) ∈ K̄×[m] as claimed. This is a trivial consequence
of the following theorem, which justifies the chain of equalities em(P,Q)m =

em([m]P,Q) = em(O, Q) = 1.

Theorem 3.2. Let P, P ′, Q ∈ E[m], φ : E → E ′ an isogeny, and Q′ ∈ E ′[m].
Then, the Weil pairings em and e′m on E[m] and E ′[m] respectively satisfy the
following properties:

(a) (Alternating) em(P,Q) = em(Q,P)−1;

(b) (Bilinear) em(P+P ′, Q) = em(P,Q)em(P ′, Q) and em(Q,P+P ′) = em(Q,P)em(Q,P ′);

(c) (Non-degenerate) if em(P,R) = 1 for all R ∈ E[m] or em(R,P) = 1 for
all R ∈ E[m] then P = O; and

(d) (Compatable) em(P, φ̂Q′) = e′m(φP,Q′).

Proof. The alternating property is immediate from the definition, and implies
that bilinearity and non-degeneracy only need to be shown in the first argu-
ment. For a proof of the other properties, it is useful to consider an alternative

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. PAIRINGS 18

construction of the Weil pairing, as given in Section 11.2 of (Washington, 2008).
See Theorem 11.7 of the same text for a proof of the remaining properties us-
ing this construction, and Theorem 11.12 for a proof that these definitions of
the Weil pairing are equivalent.

Since the point P and the function fP ;m are defined over the same extension
L/K by the construction in Definition 3.1, and thus fP ;m(Q) ∈ L if Q ∈ E(L),
it is easy to see that if E[m] ≤ E(L), then the m-th Weil pairing on E has the
form

em : E(L)[m]× E(L)[m]→ L×[m].

As we pointed out in Remark 3.1, Miller’s algorithm may fail to com-
pute fP ;m(Q), but in this case [k]P = Q for some k = 1, . . . ,m − 1, so that
em(P,Q) = em(P, [k]P) = em(P, P)k = 1. With this observation, a Sage im-
plementation of an algorithm for computing the m-th Weil pairing on E is
given in Algorithm 3.2. This algorithm has a time complexity of Θ(logm) op-
erations in some extension L over K such that E[m] ≤ E(L), since it merely
involves two executions of Miller’s algorithm.

Algorithm 3.2 Weil pairing

1 def weil_pairing(E, m, P, Q):
2 """
3 E: an elliptic curve
4 m: a positive integer
5 (P, Q): m-torsion points on E
6 """
7 if P == Q or P == 0 or Q == 0:
8 return 1
9 try:

10 return (-1)^m * miller(E, m, P, Q) / miller(E, m, Q, P)
11 except ZeroDivisionError:
12 return 1

3.3 The Tate pairing

Definition 3.3. The m-torsion embedding field of K× is the extension Km :=

K(K×[m]) of K obtained by adjoining the elements of K̄×[m]. The m-torsion

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. PAIRINGS 19

embedding degree of K× is the degree dK×;m := [Km : K] of this extension.

Definition 3.4. For m ∈ Z such that char(K) - m, the m-th Tate pairing on
E is the mapping

tm : E(Km)[m]× E(Km)/[m]E(Km)→ K×m/(K
×
m)m

defined by

tm(P, [O]) := 1;

tm(P, [P]) := tm(P, [P] + [Q])/tm(P, [Q]); and

tm(P, [Q]) := fP ;m(Q)

for all P ∈ E(Fqd)[m] and Q ∈ E(Fqd) \ {O, P} (Tate, 1958; Lichtenbaum,
1969).

Note that in the above definition, tm(P, [P]) is multiply defined for P ∈
E(Km)[m]. However, the following theorem guarantees that these definitions
coincide.

Theorem 3.3. Let P ∈ E(Km)[m] and [Q] ∈ E(Km)/[m]E(Km). Then the
Tate pairing tm satisfies the following properties:

(a) (Bilinear) if P ′ ∈ E(Km)[m] then tm(P + P ′, [Q]) = tm(P, [Q])tm(P ′, [Q])

and if [Q′] ∈ E(FKm)/[m]E(FKm) then tm(P, [Q]+[Q′]) = tm(P, [Q])tm(P, [Q′]);
and

(b) (Non-degenerate) if tm(P, [Q′]) = 1 for all [Q′] ∈ E(Km)/[m]E(Km) then
P = O, and if tm(P ′, [Q]) = 1 for all P ′ ∈ E(Km)[m] then [Q] = [O].

Proof. See Theorem 3.17 of (Washington, 2008) for a proof of bilinearity and
Section 11.7 of the same text for a proof of non-degeneracy.

As with the Weil pairing, Miller’s algorithm may fail to compute fP ;m(Q)

if [k]P = Q for some k = 1, . . . ,m − 1. Unlike the Weil pairing, this does
not tell us the value of fP ;m(Q), so we deal with the problem by selecting a
random R ∈ E(Km) and computing fP ;m(Q+ R)/fP ;m(R) instead. On closer
inspection of Miller’s algorithm, one sees that there are only Θ(logm) points
Q ∈ E(Km) for which the computation of fP ;m(Q) will fail for a fixed P ,
so the expected number of evaluations of Miller’s algorithm is Θ(1), for an
overall expected time complexity of Θ(logm) operations in Km. Sage code for
computing the m-th Tate pairing on E is given in Algorithm 3.3.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. PAIRINGS 20

Algorithm 3.3 Tate pairing

1 def tate_pairing(E, m, P, Q):
2 """
3 E: an elliptic curve
4 m: a positive integer
5 (P, Q): m-torsion points on E
6 """
7 if Q == 0:
8 return 1
9 if P == Q:

10 R = E.random_point()
11 return tate_pairing(E, m, P, P + R) / tate_pairing(E, m, P, R)
12 try:
13 return miller(E, m, P, Q)
14 except ZeroDivisionError:
15 R = E.random_point()
16 return tate_pairing(E, m, P, Q + R) / tate_pairing(E, m, P, R)

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Point counting

4.1 Naive methods

The most naive approach for counting the number of points #E(Fq) on an
elliptic curve involves simply enumerating all pairs (x, y) ∈ Fq × Fq, counting
those which satisfy the Weierstrass equation y2 = f(x) of E, and adding one
to the tally for the point at infinity. This approach has a time complexity of
O(q2) field operations.

We may do slightly better by only enumerating values x ∈ Fq, computing
f(x), then counting one point if it is zero or two points if it is a quadratic
residue modulo Fq. Testing whether or not f(x) is a quadratic residue involves
computing the Legendre symbol

(
f(x)
Fq

)
, which may be done with O(log q) field

operations. Thus, the total time complexity of this approach is O(q log q) field
operations.

4.2 Schoof’s algorithm

The first algorithm for computing #E(Fq) with time complexity polynomial
in log q was published in (Schoof, 1985). Its discovery was the theoretical
breakthrough which allowed (Miller, 1986b) and (Koblitz, 1987) to suggest
the use of elliptic curves in cryptography soon thereafter. In this section, we
describe this algorithm, known as Schoof’s algorithm, closely following the
exposition of (Sutherland, 2015).

The algorithm works by computing the trace of Frobenius trφq modulo `
for many distinct small primes `, then using the Chinese remainder theorem to

21

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. POINT COUNTING 22

compute trφq modulo the product of these primes. Since by Hasse’s theorem
trφq can only take values in an interval of width 4

√
q, we may fully specify its

value by taking the product of primes to be larger than this interval.
The technique we will present for computing trφq mod ` works for any

prime ` 6= p. Therefore we may simply use the k smallest primes `1, . . . , `k
such that the product

Nk :=
k∏
i=1

`i

satisfies Nk > 4
√
q. It is possible that `i = p for some i ≤ k, but we ignore this

possibility since it does not occur in large characteristic and we could simply
substitute `i with `k+1. Sage code for the main loop of Schoof’s algorithm is
given in Algorithm 4.1

Algorithm 4.1 Schoof

1 def schoof(E):
2 """
3 E: an elliptic curve
4 """
5 q = E.base_field().order()
6 residues = [trace_of_frobenius_mod_2(E)]
7 moduli = [2]
8 l = 3
9 while prod(moduli) <= 4 * sqrt(q):

10 if q % l == 0:
11 l = next_prime(l)
12 residues.append(trace_of_frobenius_mod(E, l))
13 moduli.append(l)
14 l = next_prime(l)
15 t = crt(residues, moduli)
16 if t > 2 * sqrt(q):
17 return t - prod(moduli)
18 else:
19 return t

4.2.1 Computing the trace of Frobenius modulo 2

In order to compute trφq mod ` for some prime `, we proceed as follows. The
case ` = 2 is dealt with separately by checking whether (f(x), xq − x) is a

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. POINT COUNTING 23

constant. We know that the roots of f(x) are the x-coordinates of the points
of order 2 of E, while the roots of xq − x contain the x-coordinates of all
of its Fq-rational points. Therefore, (f(x), xq − x) is a constant if and only
if E(Fq) has no points of order 2 so that #E(Fq) = q + 1 − trφq is odd,
or equivalently trφq is odd since p is assumed to be an odd prime, so that
trφq mod 2 is determined. Note that reducting xq − x modulo f(x) will not
affect which divisors it has in common with f(x). Therefore, we should rather
compute (f(x), xq − x mod f(x)), using the square-and-multiply algorithm to
first calculate the modular exponent xq mod f(x) (Washington, 2008). Sage
code for computing the trace of Frobenius modulo 2 is given in Algorithm 4.2

Algorithm 4.2 Trace of Frobenius modulo 2

1 def trace_of_frobenius_mod_2(E):
2 """
3 E: an elliptic curve
4 """
5 F = E.base_field()
6 _.<x> = F[]
7 f = x^3 + E.a4() * x + E.a6()
8 q = F.order()
9 if gcd(f, power_mod(x, q, f) - x).is_constant():

10 return 1
11 else:
12 return 0

4.2.2 Characteristic equation of Frobenius modulo `

Suppose now that ` is an odd prime. Let t` denote the unique integer of min-
imum absolute value satisfying trφq ≡ t` mod ` so that the multiplication
endomorphisms [trφq] and [t`] are equal when restricted to E[`]. Furthermore,
note that since φq is a monomorphism, its restriction φq;` to E[`] is a monomor-
phism. By Theorems 2.11 and 2.12 we have that the characteristic equation
of the Frobenius endomorphism is

φ2
q + [q] = [trφq]φq,

from which we derive the equation

φ2
q;` + [q mod `] = [t`]φq;` (4.1)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. POINT COUNTING 24

which is satisfied for all `-torsion points of E.
Choosing an affine point (x, y) ∈ E[`], we may now test each of the values

t` = 0,±1, . . . ,± `−1
2
, terminating when we find a value of t` for which the

equation is satisfied at (x, y). Such a value will necessarily be unique, since
φq;`(x, y) has order `. However, there may be no appropriate point (x, y)

lying in E(Fq), thus requiring that we work over a potentially large algebraic
extension of Fq.

4.2.3 Computing in the endomorphism ring modulo `

The issue of choosing an appropriate `-torsion point may be addressed by
avoiding the choice altogether, instead operating directly with the endomor-
phisms in (4.1), performing all necessary computations in the endomorphism
ring End(E[`]).

To this end, we will describe how to canonically represent elements of this
endomorphism ring, thus allowing us to easily verify whether (4.1) holds for
a particular test value of t`. We also describe how to perform operations on
elements of the endomorphism ring which are represented in this way.

Let

α := (αx, αyy) ∈ End(E)

be an endomorphism of E in canonical form, where αx, αy ∈ Fq(x). A canonical
representation for the restriction α` of α to E[`] is obtained by using the `-
th division polynomial ψ` ∈ Fq[x]. Recall that this polynomial has degree
(`2 − 1)/2, and its roots are the x-coordinates of the points of order ` of E.
Thus, assuming the denominators of αx and αy are relatively prime to ψ`, we
may reduce these rational functions modulo ψ` to obtain the representation

α` = (αx mod ψ`, (αy mod ψ`)y).

If the denominator of either αx or αy has some non-constant greatest divisor
ψ′` in common with ψ`, then we fail to represent α` in this form. However, this
means that there are points of degree ` in the kernel of α, and hence the kernel
of α` is a non-trivial subgroup E[`]′ of E[`]. Since E[`] has order `2, this
subgroup is either the whole of E[`], in which case ψ′` = ψ`, or it has order `
and ψ′` has degree (`− 1)/2, with roots corresponding to the x-coordinates of
affine points in E[`]′.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. POINT COUNTING 25

In the former case, α` is the zero endomorphism on E[`], for which we
may choose some unique representation. In the latter case, we may perform
all subsequent computations in End(E[`]′), since these endomorphisms still
satisfy the characteristic equation (4.1). Canonical representations for the
restrictions of endomorphisms to E[`]′ are obtained by reducing modulo ψ′`
instead.

Note that all endomorphisms will be representable in this form, since the
only endomorphisms for which non-invertible denominators will occur are those
restricting to the zero endomorphism on E[`]′. Henceforth we will only refer
to ψ` and E[`], with the understanding that they are to be replaced by some
ψ′` and E[`]′ if necessary.

Given two non-zero endomorphisms α` and β` of E[`] in canonical form,
we may compute their sum and product as usual, respectively by applying the
group law of the elliptic curve and by composition of endomorphisms.

Composition yields the endomorphism with canonical form

α`β` = (αx ◦ βx mod ψ`, ((αy ◦ βx)βy mod ψ`)y).

Note that since α` and β` are in canonical form, their kernels must be triv-
ial, and so the kernel of α`β` is trivial, thus ensuring that no non-invertible
denominators occur.

Computing γ` := α` + β` by applying the group law of E yields

γx = m2 − αx − βx mod ψ`

γy =
m

y
(αx − γx)− αy mod ψ`,

where

m =


αy−βy
αx−βxy if αx 6= βx
3α2
x+A

2αyy
if α` = β`

.

Note that γx and γy are functions in x only, since both contain only square
factors of y. Furthermore, note that in the case α` = β`, no non-invertible
denominators will occur, since α` has a trivial kernel and ` is odd, so that
[2]α` has a trivial kernel. Therefore, the only case where we need to check for
non-invertible denominators is the case αx 6= βx.

Algorithm 4.3 gives Sage code for computing the trace of Frobenius modulo
`. Since Sage does not have a full implementation of elliptic curve endomor-
phism rings, with endomorphism rings of torsion subgroups entirely lacking,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. POINT COUNTING 26

code has been written to fill this gap. The interested reader may refer to
Appendix A for the relevant code – its complexity has been abstracted away
intentionally in the present section, since it would distract from the essence
of the algorithm. We only point out the detail that the last two lines of Al-
gorithm 4.3 are responsible for replacing ψ` with a divisor if a non-invertible
denominator is encountered.

Algorithm 4.3 Trace of Frobenius modulo `

1 def trace_of_frobenius_mod(E, l):
2 """
3 E: an elliptic curve
4 l: a prime number
5 """
6 psi_l = E.division_polynomial(l)
7 q_l = E.base_field().order() % l
8 t_l = 0
9 while true:

10 try:
11 phi = FrobeniusEndomorphismMod(E, psi_l)
12 lhs = phi^2 + q_l
13 rhs = t_l * phi
14 while t_l <= (l - 1) // 2:
15 if lhs == rhs:
16 return t_l
17 elif lhs == -rhs:
18 return -t_l
19 t_l += 1
20 rhs += phi
21 except ZeroDivisionError as e:
22 psi_l = e[0]

4.2.4 Time complexity analysis

Now that we have made the rules for computing in the endomorphism ring of
E[`] explicit, we can analyse the time complexity of Schoof’s algorithm. In the
worst case, we perform all computations in the full endomorphism ring of E[`],
never finding a factor of ψ`. The computation of φq;`, φ2

q;` and [q mod `] are
done upfront, and can be made efficient by computing the components of φq;`

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. POINT COUNTING 27

and φ2
q;` using a square-and-multiply algorithm, and by computing [q mod `] =

(q mod `)[1] using a double-and-add algorithm.
For each prime `, we need to test at most ` values for t`, requiring a total

of O(`) additions in the endomorphism ring. For each addition, we perform a
constant number of operations using polynomials of degree O(`2) in the poly-
nomial ring Fq[x], the most expensive of which is computing the multiplicative
inverse modulo ψ`. Under the assumption that log ` ∈ O(log q), which it clearly
is, this requires O(M(`2 log q) log `) operations using the extended Euclidean
algorithm, where Θ(M(n)) is the time complexity of the algorithm used for
multiplying two n-bit integers (Sutherland, 2015).

The last ingredient in the time complexity analysis is to obtain asymp-
totic estimates for the number of primes k and the largest prime `k used in
the algorithm. Recall the prime number theorem, which gives the asymptotic
formula π(x) ∼ x

log x
for the prime-counting function π. An equivalent form of

the prime number theorem is that the Chevyshev function

ϑ(x) :=
∑
p≤x

log p,

has the asymptotic formula ϑ(x) ∼ x (Apostol, 1976). Since we have chosen
the product of primes Nk so that logNk = ϑ(`k), we have `k ∼ logNk ∼ 1

2
log q,

and furthermore we then have k = π(`k) ∼ log q
2 log log q

.
Substituting these asymptotic formulae for `k and k yields a total time

complexity of
O(M((log q)3)(log q)2)

for Schoof’s algorithm. Using schoolbook multiplication gives a time complex-
ity of O((log q)8), but this can be brought down to Õ((log q)5) if the Schönhage-
Strassen algorithm, with time complexity M(n) ∈ O(n log n log log n), is used
instead. However, the constants in the latter multiplication algorithm are very
large, so that other multiplication algorithms are typically more efficient for
the values of q currently used in cryptographic applications (Sutherland, 2015).

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Discrete logarithms

In this chapter, we introduce the notion of discrete logarithms on a cyclic
subgroup of a group variety. We then discuss various approaches for computing
discrete logarithms, in general as well as for certain special classes of elliptic
curves. As we will see in Chapter 6, elliptic curve cryptography is based on the
assumption that it is difficult to compute these discrete logarithms for elliptic
curves over finite fields. The books (Galbraith, 2012; Washington, 2008) are
extensively used as references throughout this chapter.

5.1 The discrete logarithm and Diffie-Hellman

problems

Let V/Fq be a group variety with a fixed base point G ∈ V (Fq) of order n such
that the addition and negation of points in 〈G〉 may be computed with time
complexity polynomial in log n. Some familiar examples of groups varieties
which always have a base point with this property are the additive group F+

q ,
the multiplicative group F×q , and an elliptic curve group E/Fq.

Note that the map expG : k 7→ [k]G is an isomorphism from Z/nZ to 〈G〉
and may be evaluated at any element of Z/nZ with time complexity polynomial
in log n using a double-and-add algorithm. The problem of evaluating the
inverse function logG := exp−1G at some point in 〈G〉 is known as the discrete
logarithm problem – in the literature, this name often refers to the special case
for the group F×q , while the case of an elliptic curve E/Fq is referred to as the
elliptic curve discrete logarithm problem.

28

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISCRETE LOGARITHMS 29

It is clear that a brute force solution to the discrete logarithm problem
exists, where one computes [0]G, [1]G, . . . until the desired point is found. This
will require n

2
point additions on average, which leads to an average-case time

complexity exponential in log n. However, for the group variety F+
q , we may

evaluate logG P with time complexity polynomial in log n by performing the
computation G−1P in Fq. So-called index calculus algorithms are a well-known
family of algorithms which solve the discrete logarithm problem in F×q with
a time complexity of Ln[1/3, c], which is subexponential in log n (Galbraith,
2012).

The question arises for which groups varieties we may solve the discrete
logarithm problem efficiently, say with a time complexity polynomial in log n,
and for which group varieties the discrete logarithm problem is hard, say only
solvable with an expected time complexity exponential in log n (Cohen and
Frey, 2015).

In the present chapter, we first describe some algorithms for solving the dis-
crete logarithm problem for general group varieties. These algorithms all have
time complexity exponential in log n – Θ(

√
n) to be precise. We then describe

algorithms for solving the elliptic curve discrete logarithm problem efficiently
for special classes of elliptic curves, which are to be avoided in cryptographic
applications. In the next chapter, we proceed to define some cryptosystems
whose security rely on the difficulty of the discrete logarithm problem.

There is a common variant of the discrete logarithm problem known as the
Diffie-Hellman problem, which is the problem of computing expG(logG P logGQ)

for two points P,Q ∈ 〈G〉. Clearly an efficient solution to the discrete loga-
rithm problem also gives an efficient solution to the Diffie-Hellman problem,
but it is not known whether the converse is true for any group varieties. How-
ever, the general consensus is that the two problems are roughly equally diffi-
cult for the group varieties F×q and E(Fq).

5.2 The baby-step giant-step algorithm

In the present section we describe a simple algorithm known as the baby-step
giant-step algorithm, due to (Shanks, 1971), for solving the discrete logarithm
problem for a general group variety with a more favourable time complexity
than that of a brute force solution.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISCRETE LOGARITHMS 30

Letm ∈ [0, n) be an integer. Using the Euclidean division of k bym we may
uniquely rewrite a point P := [k]G as P = [mq + r]G, where 0 ≤ q ≤ bn/mc
and 0 ≤ r < m. We now precompute the restriction of logG to the values
[0]G, [1]G, . . . , [m− 1]G and store it efficiently in a lookup table, i.e. we store
the key-value pairs ([j]G, j) for j = 0, . . . ,m − 1. Iterating over the values
i = 0, . . . , bn/mc, we compute P − [mi]G = [m(q − i) + r]G, and test for its
membership in the lookup table. Clearly, if a pair ([j]G, j) is found, then q = i,
and r = j, thus fully determining the discrete logarithm.

The time complexity of the algorithm crucially depends on the parameter
m, since the precomputation step requires about m point additions, and the
iteration step requires about n/m point additions on average, for a total of
m + n/m point additions. Thus, the number of point additions is minimised
when m ≈

√
n, thus yielding an algorithm with a time complexity of Θ(

√
m)

point additions. Sage code implementing the baby-step giant-step algorithm
is given in Algorithm 5.1.

Algorithm 5.1 Baby-step giant-step

1 def baby_step_giant_step(G, P, n):
2 """
3 G: a point
4 P: a multiple of G
5 n: the order of G
6 """
7 m = round(sqrt(n))
8 log_G = {}
9 jG = 0 * G

10 for j in (0..m-1):
11 log_G[jG] = j
12 jG += G
13 mG = m * G
14 miG = 0 * G
15 for i in (0..floor(n/m)):
16 if P - miG in log_G:
17 return m * i + log_G[P - miG]
18 miG += mG

Note that the space complexity of the algorithm also depends on m –
indeed, exactly m points are stored in the lookup table, or Θ(

√
n) when opti-

mising for the time complexity.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISCRETE LOGARITHMS 31

It is worth noting that the precomputation step only needs to be performed
once for a given base point G, while the iteration step needs to be executed for
each evaluation of logG at a point in 〈G〉. For this reason, one may wish to set
m to a larger value than

√
n if one wishes to solve many discrete logarithms

for the same base point G.
Using modern computer hardware, the space complexity of the baby-step

giant-step algorithm may prove to be more of a hurdle than its time complexity
when solving large instances of the discrete logarithm problem. In Section 5.4,
we present two probabilistic algorithms with the same time complexity as the
baby-step giant-step algorithm, but with significantly better space complexi-
ties.

5.3 The Pohlig-Hellman reduction

In the present section we describe a procedure known as the Pohlig-Hellman
reduction, first published in (Pohlig and Hellman, 1978), which allows one to
reduce the problem of solving a base-G discrete logarithm to solving discrete
logarithms in the prime-order subgroups of 〈G〉.

If q1 . . . qk is the prime factorization of n, where the qi := `eii are powers
of distinct primes, we proceed to solve the discrete logarithm logG P for some
P ∈ 〈G〉 as follows.

We proceed by computing the discrete logarithm log[n/qi]G
[n/qi]P in the

subgroup 〈[n/qi]G〉 of order qi of 〈G〉 for each i = 1, . . . , k. Since this yields
logG P modulo qi, the original discrete logarithm may then be reconstructed
using the Chinese remainder theorem.

However, for some fixed factor q = `e in the prime factorization of n, the
computation of the discrete logarithm d := log[n/q]G[n/q]P may be further re-
duced to computing a sequence of e discrete logarithms in the p-order subgroup
〈[n/`]G〉 of 〈G〉.

First we represent the discrete logarithm d in base ` as

d = d0`
0 + · · ·+ de−1`

e−1.

Note that using this representation, we have

d ≡
k∑
j=0

dj`
j (mod `k+1)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISCRETE LOGARITHMS 32

for k = 0, . . . , e− 1, so that

log[n/`k+1]G[n/`k+1]P =
k∑
j=0

dj`
j.

Thus to find d0, we simply compute log[n/`]G[n/`]P . Assuming that d0, . . . , dk−1
are already known, we may find dk by computing the discrete logarithm

log[n/`]G

(
[n/`k+1]P −

[
k−1∑
j=0

dj`
j

]
[n/`k+1]G

)
,

which yields dk since

[n/`k+1]P −

[
k−1∑
j=0

dj`
j

]
[n/`k+1]G =

[
k∑
j=0

dj`
j −

k−1∑
j=0

dj`
j

]
[n/`k+1]G

= [dk`
k][n/`k+1]G = [dk][n/`]G.

Sage code for the Pohlig-Hellman reduction is given in Algorithm 5.2. Note
that to compute discrete logarithms in the prime-order subgroups of 〈G〉, this
code uses the baby-step giant-step algorithm described in the previous section.
Any other algorithm for solving discrete logarithms may be used in its place,
including those which we will describe later in this chapter.

If ` is the largest prime factor of n, then the time complexity of the Pohlig-
Hellman reduction is O(log n

√
`) point additions, assuming that the baby-step

giant-step algorithm is used for computing discrete logarithms in the prime-
order subgroups of 〈G〉. To see this, note that

k∑
i=1

ei ≤ log2 n,

and the largest discrete logarithm problem solved will be in a subgroup of
order `.

Of course, this analysis assumes that the prime factorisation of n is already
known. In practice, this is a reasonable assumption, since the groups which are
used for cryptography are typically proposed as standards, which do not change
frequently. Furthermore, the general number field sieve algorithm can factorise
arbitrary integers with time complexity Ln[1/3, c], which is subexponential in
log n and thus significantly more favourable than general techniques for discrete
logarithms such as the baby-step giant-step algorithm (Galbraith, 2012).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISCRETE LOGARITHMS 33

Algorithm 5.2 Pohlig-Hellman reduction

1 def pohlig_hellman_reduction(G, P, n, n_factors):
2 """
3 G: a point
4 P: a multiple of G
5 n: the order of G
6 n_factors: the prime factorisation of n
7 """
8 residues = []
9 moduli = [l^e for l, e in n_factors]

10 for l, e in n_factors:
11 d = 0
12 G_prime = (n // l) * G
13 for j in (0..e-1):
14 P_prime = (n // l^(j + 1)) * (P - d * G)
15 d += l^j * baby_step_giant_step(G_prime, P_prime, l)
16 residues.append(d)
17 return crt(residues, moduli)

Remark 5.1. The existence of the Pohlig-Hellman reduction severely restricts
which group varieties can be used for cryptographic purposes, since it means
that solving the discrete logarithm problem in 〈G〉 is roughly as difficult as
solving the discrete logarithm problem in its largest subgroup of prime order.
For this reason, we will henceforth assume that the order of G is a prime
number `.

5.4 Pollard’s algorithms

5.4.1 Pollard’s ρ algorithm

Pollard’s ρ algorithm is a probabilistic algorithm of Las Vegas type due to (Pol-
lard, 1978) for solving general discrete logarithm problems, with a favourable
expected time complexity, and constant space complexity. The algorithm relies
on finding collisions of the form [a]G+ [b]P = [a′]G+ [b′]P , so that [a−a′]G =

[b′−b]P . If b 6≡ b′ (mod `), we may then determine logG P = (a−a′)(b′−b)−1,
where arithmetic is performed in F`.

In order to find collisions, we would like to repeatedly sample elements of
the form [a]G + [b]P randomly from 〈G〉. A standard statistical argument in

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISCRETE LOGARITHMS 34

the style of the birthday paradox shows that the expected number of samples
needed before finding a collision is asymptotically equal to

√
π
2
` (Galbraith,

2012). However, if we store all of the sample elements while searching for
a collision, this approach has no better space complexity than the baby-step
giant-step algorithm.

To avoid storing the sample elements, we wish to find a deterministic
function fG,P : 〈G〉 → 〈G〉 which behaves sufficiently randomly. That is,
such that if Q0 ∈ 〈G〉 is randomly selected, then the sequence defined by
Qi+1 := fG,P (Qi) will enter a cycle after an expected number of approximately√

π
2
` steps. Furthermore, we would like fG,P to have the property that if ai, bi

are known such that Qi = [ai]G+ [bi]P , then it is easy to determine ai+1, bi+1

such that Qi+1 = [ai+1]G+ [bi+1]P .
Using Floyd’s cycle-finding algorithm, a collision can then be detected after

an expected number of approximately 3
√

π
2
` function evaluations as follows

(Floyd, 1967). We initially select a0, b0 ∈ Z/nZ at random and compute
Q0 = [a0]G + [b0]P . For i = 1, 2, . . ., we then compute Qi and Q2i from Qi−1

and Q2(i−1) by applying fG,P and fG,P ◦ fG,P respectively.
It is possible that, after finding a collision Qi = Q2i, we in fact have bi ≡ b2i

(mod `). However, this is an unlikely event, with a probability of 1/` if the bi’s
are assumed to be uniformly distributed. In this case, we may simply restart
the computation with a different choice of a0 and b0. Pollard’s ρ algorithm
thus has an expected time complexity of Θ(

√
`) point additions. Furthermore,

it is clear that it has a space complexity of Θ(1) points.
In practice, the following choice for the function fG,P is popular, due to

its good heuristic properties. Let m be a fixed positive integer, and randomly
select two vectors A and B over F` of length m. Let H : 〈G〉 → {0, . . . ,m− 1}
be a hash function. We then set fG,P (Qi) := Qi + [AH(Qi)]G + [BH(Qi)]P , so
that ai+1 = ai +AH(Qi) and bi+1 = bi +BH(Qi) may be easily determined. Sage
code implementing Pollard’s ρ algorithm with this choice of fG,P is given in
Algorithm 5.3.

5.4.2 Pollard’s λ algorithm

We now describe a variant of Pollard’s ρ algorithm due to (van Oorschot and
Wiener, 1996), which is referred to as Pollard’s λ algorithm, parallel Pollard’s ρ
algorithm, and Pollard’s ρ algorithm with distinguished points in the literature.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISCRETE LOGARITHMS 35

Algorithm 5.3 Pollard’s ρ

1 def pollard_rho(G, P, l, m=20):
2 """
3 G: a point of prime order
4 P: a multiple of G
5 l: the order of G
6 """
7 A, B = random_matrix(GF(l), 2, m)
8 def f(Q, a, b):
9 h = hash(Q) % m

10 return Q + ZZ(A[h]) * G + ZZ(B[h]) * P, a + A[h], b + B[h]
11 a_i, b_i = a_2i, b_2i = random_vector(GF(l), 2)
12 Q_i = Q_2i = ZZ(a_i) * G + ZZ(b_i) * P
13 for i in (1..):
14 Q_i, a_i, b_i = f(Q_i, a_i, b_i)
15 Q_2i, a_2i, b_2i = f(*f(Q_2i, a_2i, b_2i))
16 if Q_i == Q_2i:
17 if b_i != b_2i:
18 return ZZ((a_i - a_2i) / (b_2i - b_i))
19 else:
20 return pollard_rho(G, P, l)

A distinguished point is a point Q ∈ 〈G〉 which satisfies some chosen property
D that can be checked efficiently. We denote θ := # {Q ∈ 〈G〉 : D(Q)} /`, so
that θ is the probability that an element selected uniformly at random from
〈G〉 satisfies D.

Reusing notation from the previous subsection, the algorithm performs
pseudorandom walks in 〈G〉 by repeated application of fG,P . However, rather
than performing a single pseudorandom walk which terminates when it enters
a cycle, the present algorithm performs multiple pseudorandom walks, each of
which terminates when it reaches a distinguished point.

Once a distinguished point Qi is found, it is stored in a lookup table,
along with ai and bi. However, if the lookup table already contains an entry
(Q′j, a

′
j, b
′
j) such that Q′j = Qi, then we have found a collision with high proba-

bility. As in the previous algorithm, this will be the case if and only if bi 6≡ b′j

(mod `), which then gives us the solution logG P = (ai − a′j)(b′j − bi)−1 to the
discrete logarithm problem.

The key to the efficiency of Pollard’s λ algorithm is choosing a property
D which yields a favourable value of θ. As in the analysis of Pollard’s ρ algo-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISCRETE LOGARITHMS 36

rithm, the expected number of iterations of fG,P needed to obtain a collision
is about

√
π
2
`. However, the collision will only be detected once the current

pseudorandom walk reaches a distinguished point. Since the expected length
of a pseudorandom walk before reaching a distinguished point is 1/θ, the total
number of iterations of fG,P needed, and thus the number of point additions
performed, will be roughly √

π

2
`+

1

θ

The total number of distinguished points found among all of the walks is
expected to be a fraction θ of all iterations of fG,P , so that roughly θ

√
π
2
`

group elements will need to be stored.
Selecting some function g ∈ o(1) and letting θ := 1

g(`)
√
`
thus yields an

algorithm which computes an expected number of
√

π
2
` point additions, while

storing
√

π
2
/g(`) points. For example, choosing g(`) := 1

log `
yields a mod-

est space complexity of Θ(log `) points, while maintaining a favourable time
complexity of Θ(

√
`).

A choice of property which may yield a particular value of θ in practice is
to let D(Q) be the property that H(Q) = 0, where H : 〈G〉 → Z/b1/θcZ is a
hash function. Sage code implementing Pollard’s λ algorithm with this choice
of property is given in Algorithm 5.4.

A significant practical advantage of Pollard’s λ algorithm over Pollard’s ρ
algorithm and the baby-step giant-step algorithm, is that it is trivial to convert
into a parallel algorithm which runs across multiple processing units. All pro-
cessing units may perform random walks simultaneously, only communicating
with each other when distinguished points are found.

5.5 Pairing-based reductions

In this section we focus specifically on the elliptic curve discrete logarithm
problem. We describe two pairing-based approaches for solving the discrete
logarithm problem on a subgroup 〈G〉 of order ` of an elliptic curve group
E(Fq) – one using the `-th Weil pairing on E, and one using the `-th Tate
pairing.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISCRETE LOGARITHMS 37

Algorithm 5.4 Pollard’s λ

1 def pollard_lambda(G, P, l, m=20):
2 """
3 G: a point of prime order
4 P: a multiple of G
5 l: the order of G
6 """
7 A, B = random_matrix(GF(l), 2, m)
8 def f(Q, a, b):
9 h = hash(Q) % m

10 return Q + ZZ(A[h]) * G + ZZ(B[h]) * P, a + A[h], b + B[h]
11 T = {}
12 theta_inv = floor(sqrt(l) / log(l))
13 while true:
14 a_i, b_i = random_vector(GF(l), 2)
15 Q_i = ZZ(a_i) * G + ZZ(b_i) * P
16 for i in (1..):
17 Q_i, a_i, b_i = f(Q_i, a_i, b_i)
18 if hash(Q_i) % theta_inv == 0:
19 if Q_i in T:
20 a_j, b_j = T[Q_i]
21 if b_i != b_j:
22 return ZZ((a_i - a_j) / (b_j - b_i))
23 else:
24 T[Q_i] = a_i, b_i
25 break

5.5.1 The MOV reduction

The approach using the Weil pairing was first published in (Menezes et al.,
1993), and it has come to be known as the MOV reduction after its authors.

To use the `-th Weil pairing, it will be necessary that ` 6= p. However, in
the case ` = p, we will usually be able to use the reduction described in the
next section, which solves the discrete logarithm problem with time complexity
polynomial in log q.

Lemma 5.1. Let P,Q ∈ E[`] be points of order ` such that E[`] = 〈P,Q〉.
Then

〈P 〉 → F̄×q [`], R 7→ e`(R,Q)

is an isomorphism of groups.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISCRETE LOGARITHMS 38

Proof. The map in question is clearly a morphism of groups by bilinearity of
the Weil pairing. To see that it is an epimorphism, observe that if e`(R,Q) =

e`(S,Q) then e`(R − S,Q) = 1. Furthermore, since R − S ∈ 〈P 〉, it follows
that e`(R−S, P) = e`(P, P) = 1 so that R = S by non-degeneracy of the Weil
pairing. The result follows since the domain 〈P 〉 and codomain F̄×q [`] of the
morphism both have order `.

Let Q ∈ E[`] be a point of order ` such that Q /∈ 〈G〉. Using the isomor-
phism from Lemma 5.1, we may transfer the discrete logarithm problem on
〈G〉 to a discrete logarithm problem on F̄×q [`]. Concretely, for P ∈ 〈G〉, we
compute logG P = loge`(G,Q) e`(P,Q).

To analyse the time complexity of this reduction, we first need to determine
the smallest integer d such that E[`] ≤ E(Fqd). We state the following partial
solution due to (Balasubramanian and Koblitz, 1998).

Theorem 5.1. If ` | #E(Fq) and ` - q − 1, then E[`] ≤ E(Fqd) if and only if
` | (qd − 1).

This result assures us that if `-torsion embedding degree d := dF×q ;` of Fq is
not equal to one, then E[`] ≤ E(Fqd), where d is the smallest integer with this
property. In the remainder of this section, we assume ` - q− 1. The reduction
presented in the next section will deal with the ` | q − 1 case.

In order to compute the reduction, we must first find a Fqd-point Q of
order ` such that e`(G,Q) 6= 1. This can be done by repeatedly selecting
Q ∈ E(Fqd)[`] at random and computing e`(G,Q) to test the condition. Since
E(Fqd)[`] is a Z/`Z-module of rank two, e`(G,Q) 6= 1 for any Q /∈ 〈G〉, so that
the probability of selecting an appropriate Q is 1 − 1/` and we only need to
sample Θ(1) points on average.

Assuming that #E(Fqd) is known, we may sample from E(Fqd)[`] by first
randomly selecting R ∈ E(Fqd), then multiplying R by an appropriate con-
stant to obtain Q ∈ E(Fqd)[`]. To this end, we first determine the largest m |
#E(Fqd) such that ` - m by repeated division. We then compute [m`0]R, [m`1]R, . . .

until an element Q ∈ E(Fqd)[`] is encountered. Thus, we can sample a point
Q ∈ E(Fqd)[`] with a time complexity of Θ(d log q) operations in Fqd , which
then also gives the expected time complexity of finding a point such that
e`(G,Q) 6= 1.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISCRETE LOGARITHMS 39

Using an index calculus algorithm, one may solve the discrete logarithm
problem in F×

qd
[`] with a time complexity of Lqd [1/3, c], clearly dominating

the time complexity of the reduction. Thus, the MOV reduction will yield
an algorithm with time complexity subexponential in log q if and only if d ∈
o((log q/ log log q)2). In particular, if d ∈ O(1), this yields a Lq[1/3, c] algo-
rithm for the elliptic curve discrete logarithm problem.

A Sage implementation of the MOV reduction is given in Algorithm 5.5.
Note that at the time of writing, Sage does not include an implementation of
an index calculus algorithm for solving discrete logarithms in finite fields, so
this code will not be efficient in large cases until such an implementation is
included.

Algorithm 5.5 MOV reduction

1 def mov_reduction(G, P, l, E, n):
2 """
3 G: a point on E of prime order
4 P: a multiple of G
5 l: the order of G
6 E: an elliptic curve
7 n: the order of E
8 """
9 m = n

10 while m % l == 0:
11 m //= l
12 g = 1
13 while g == 1:
14 Q = E.random_point() * m
15 while Q * l != 0:
16 Q *= l
17 g = weil_pairing(E, l, G, Q)
18 p = weil_pairing(E, l, P, Q)
19 return p.log(g)

It is worth mentioning two important results from the literature regarding
the MOV reduction.

It was shown in (Menezes et al., 1993) that if E/Fq is a supersingular
elliptic curve, then for every ` | #E(Fq), E[`] ≤ E(Fqd) for some d = 1, . . . , 6,
so that the discrete logarithm problem on E(Fq) is at least as easy as the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISCRETE LOGARITHMS 40

discrete logarithm problem on Fq6 . This rendered an entire class of elliptic
curves unsuitable for use in discrete logarithm cryptosystems.

However, (Balasubramanian and Koblitz, 1998) showed that it is excep-
tionally rare for a randomly selected pair of prime numbers p and ` such
that ` ∈ [p + 1 − 2

√
p, p + 1 + 2

√
p] and dF×p ;` 6= 1 to satisfy the condition

dF×p ;` ∈ o((log `/ log log `)2). Thus, the MOV reduction is necessarily inefficient
for an elliptic curve with #E(Fp) = ` using present state-of-the-art techniques
for solving discrete logarithms in multiplicative groups of finite fields.

5.5.2 The Frey-Rück reduction

Using the Tate pairing, we may perform another reduction similar to the MOV
reduction of the previous section. This reduction was first published in (Frey
and Rück, 1994) and is known as the Frey-Rück reduction after its authors.
As with the MOV reduction, we require that that ` 6= p, but unlike the MOV
reduction, we can find an isomorphism using the `-th Tate pairing without the
assumption ` - q − 1. For the remainder of the section, let d := dF×q ,`.

Definition 5.1. For a prime number ` such that ` 6= p, the modified `-th Tate
pairing on E is the mapping

τm : E(Fqd)[`]× E(Fqd)/[`]E(Fqd)→ F×
qd

[`]

defined by τ`(P, [Q]) := t`(P, [Q])(q
d−1)/` for all P ∈ E(Fqd)[`] and Q ∈ E(Fqd).

Note that the map

F×
qd
/[`]F×

qd
→ F×

qd
[`], [t] 7→ t(q

d−1)/`

is a well-defined isomorphism of groups, since its kernel is exactly the coset
[`]F×

qd
, while its domain and codomain are both groups of order `. Therefore,

the modified Tate pairing enjoys all of the same properties as the usual Tate
pairing, with the practical advantage that evaluations of the modified Tate
pairing can easily be checked for equality. However, the exponentiation step
requires Θ(d log q) operations in Fqd , thus dominating the time complexity of
computing the modified Tate pairing, since the usual Tate pairing has a time
complexity of Θ(log `) and clearly ` ∈ O(qd).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISCRETE LOGARITHMS 41

Lemma 5.2. Let P ∈ E(Fqd)[`] be a point of order `. Then there exists a
point Q ∈ E(Fqd) such that

〈P 〉 → F×
qd

[`], R 7→ τ`(R, [Q])(q
d−1)/`

is an isomorphism of groups.

Proof. By bilinearity of the modified Tate pairing, the map is clearly a mor-
phism of groups. Since P 6= O, there exists a point Q ∈ E(Fqd) such that
τ`(P, [Q]) 6= 1 by non-degeneracy of the modified Tate pairing. Then F×

qd
[`] is

generated by τ`(P, [Q]) since it is a group of prime order, from which it follows
that the morphism is an epimorphism, and hence an isomorphism since its
domain and codomain both have order `.

Let Q ∈ E(Fqd) be a point such that τ`(G,Q) 6= 1. Similarly to the MOV
reduction, we may reduce the computation of the discrete logarithm logG P

for P ∈ 〈G〉 to the discrete logarithm logτ`(G,Q) τ`(P,Q) in F×
qd

[`].
While Lemma 5.2 guarantees the existence of an isomorphism, it does not

give an indication of how many points Q ∈ E(Fqd) will yield such an isomor-
phism. However, by observing that E(Fqd)/[`]E(Fqd) is a Z/`Z-module of rank
either one or two due to the structure of E(Fqd) described in Corollary 2.2,
we see that such points are always common. Indeed, in the first case any
point Q ∈ E(Fqd) \ {O} will suffice, while in the second case the probabilistic
approach used for the MOV reduction may be applied.

Repeatedly sampling Q ∈ E(Fqd) and computing τ`(G,Q) to test the con-
dition τ`(G,Q) 6= 1 yields a desired point with an expected time complexity of
Θ(q log d) operations in Fqd . Once again, an index calculus algorithm may be
used to solve the discrete logarithm in F×

qd
[`], for a time complexity dominated

by Lqd [1/3, c]. Sage code implementing the Frey-Rück reduction is given in
Algorithm 5.6.

It is worth drawing a comparison between the Frey-Rück reduction and
the MOV reduction. Firstly, practical implementations of the modified Tate
pairing are often faster than those for the Weil pairing when the embedding
degree d is small, since they usually only require one evaluation of Miller’s
algorithm, whereas the Weil pairing always requires two. However, when d is
large, the exponentiation by (qd−1)/` in computing the modified Tate pairing
may result in it actually being outperformed by the Weil pairing. Another

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISCRETE LOGARITHMS 42

Algorithm 5.6 Frey-Rück reduction

1 def frey_ruck_reduction(G, P, l, E):
2 """
3 G: a point on E of prime order
4 P: a multiple of G
5 l: the order of G
6 E: an elliptic curve
7 """
8 q = E.base_field().order()
9 g = 1

10 while g == 1:
11 Q = E.random_point()
12 g = tate_pairing(E, l, G, Q)^((q - 1) // l)
13 p = tate_pairing(E, l, P, Q)^((q - 1) // l)
14 return p.log(g)

advantage of the Frey-Rück reduction is that when searching for a point Q
that yields an isomorphism, we may directly use a point sampled from E(Fqd)
to compute the modified Tate pairing, whereas the MOV reduction requires
first multiplying such a point by some constant in O(qd) to transform it into
a point in E(Fqd)[`], which usually exceeds the cost of exponentiation in the
modified Tate pairing. A situation where the Frey-Rück reduction is always
more appropriate is when d = 1, since the Weil pairing may require working
over a much larger extension field of Fq in this case.

5.6 Anomalous curve reduction

Definition 5.2. E/Fq is said to be an anomalous elliptic curve if and only if
#E(Fq) = q.

In the present section, we discuss an approach due to (Smart, 1999) for
reducing the discrete logarithm problem on a subgroup 〈G〉 of order p of an
anomalous elliptic curve E/Fq to the discrete logarithm problem on the ad-
ditive group F+

p , which may be solved with time complexity polynomial in
log p.

In our discussion, we focus on the case of an elliptic curve E/Fp, but similar
results may be derived for the more general case of E/Fq (Washington, 2008).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISCRETE LOGARITHMS 43

To apply the reduction, we first find a p-adic lift Ẽ/Qp of our elliptic
curve. That is, we choose ã4, ã6 ∈ Qp such that ã4 ≡ a4 (mod p) and ã6 ≡ a6

(mod p), yielding the elliptic curve Ẽ : y2 = x3 + ã4x + ã6. We similarly
compute p-adic lifts G̃, P̃ ∈ Ẽ(Qp) whose coordinates reduce to the respective
coordinates ofG and P modulo p, which can be achieved using Hensel’s lemma.

The following theorem gives an explicit isomorphism from E(Fp) to F+
p by

passing through the p-adic lift Ẽ(Qp).

Theorem 5.2. There exists a function ϑp : [p]Ẽ(Qp)→ Qp, called the p-adic
elliptic logarithm, with the properties

(a) ϑp([p]P̃) ≡ 0 (mod p)

(b) ϑp([p]P̃) ≡ − ([p]P̃)x
([p]P̃)y

(mod p2)

(c) The map

E(Fp)→ F+
p , P 7→ ϑp([p]P̃)

p
mod p,

where P̃ is a p-adic lift of P , is an isomorphism.

Proof. See Section V.3 of (Blake et al., 1999).

The isomorphism in Theorem 5.2 is efficiently computable since we only
need to store the results of calculations up to two p-adic digits. The reduction
of the discrete logarithm to F+

p may then be solved by computing logG P =

a/g in Fp, where a and g are the images of P and G respectively under the
isomorphism.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DISCRETE LOGARITHMS 44

Algorithm 5.7 Anomalous curve reduction

1 def elliptic_log(E, P):
2 """
3 E: an elliptic curve over GF(p)
4 P: a point on E
5 """
6 p = E.base_field().order()
7 Ep = E.base_extend(QQ).base_extend(Qp(p, 2))
8 P_tilde = Ep.lift_x(ZZ(P[0]) + p * randint(0, p - 1))
9 if P_tilde[1].residue() != P[1]:

10 P_tilde *= -1
11 return -(p * P_tilde)[0] / (p * P_tilde)[1]
12

13 def anomalous_curve_reduction(G, P, E):
14 """
15 G: a point on E of order p
16 P: a multiple of G
17 E: an elliptic curve over GF(p)
18 """
19 p = E.base_field().order()
20 a = (elliptic_log(E, P) // p).residue()
21 g = (elliptic_log(E, G) // p).residue()
22 return ZZ(a / g)

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Elliptic curve cryptography

Suppose two parties, Alice and Bob, wish to communicate with each other
securely over a public network. This is the type of problem which is solved by
algorithms in the realm of public-key cryptography, where each party selects
both a secret key, which they don’t publish, as well as a corresponding public
key, which they send to the other party over the public network.

In this chapter we describe a number of public-key cryptosystems based on
group varieties for which the Diffie-Hellman problem is assumed to be hard,
and hence the discrete logarithm problem is also assumed to be hard. In
particular, the reader should keep in mind the case of an elliptic curve over
a finite field. Multiplicative groups of finite fields are also still widely used in
practice.

Henceforth we will assume that Alice and Bob have publicly agreed on a
tuple of values (V,G, `,H), where V/Fq is a group variety, G is an Fq-point of
order ` of V , and

H : {0, 1}∗ × V → F`

is a cryptographic hash function. The contents of this tuple are sometimes
referred to as the system parameters, whereas Alice and Bob’s public keys are
known as the user parameters.

When V is an elliptic curve, the system parameters G and ` may be chosen
efficiently using repeated sampling if the number of Fq-points on the curve is
known. As described in Section 4.2, Schoof’s algorithm may be used to count
the number of Fq-points efficiently in this case.

In practice, the hash functionH is often constructed from a general-purpose
cryptographic hash function {0, 1}∗ → {0, 1}k, where k > log2 `. We then

45

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. ELLIPTIC CURVE CRYPTOGRAPHY 46

simply define H(m,P) as the result of applying this hash function to the
concatenation of m and the bit-string representation of P , reduced modulo `.

Note that the default hash function in Sage only has a codomain of 64 bits,
and is not designed to be cryptographically secure. Furthermore, the default
random number generator is also not cryptographically secure. The following
code replaces the default functions hash and randint with cryptographically
secure versions. The hash function has a codomain of 512 bits, which is more
than sufficient for values of ` currently used in applications.

1 from Crypto.Hash import SHA512

2 from Crypto.Random import random

3

4 def hash(m):

5 return ZZ(SHA512.new(str(m)).hexdigest(), 16)

6

7 def randint(a, b):

8 return ZZ(random.randint(int(a), int(b)))

6.1 Diffie-Hellman key generation

All of the cryptosystems introduced in this chapter will use the same approach
for generating a pair of secret and public keys, which we call Diffie-Hellman
key generation.

For this approach, each party selects a random element s ∈ F` to use as
their secret key. They then calculate the point multiplicationK := [s]G, which
they use as their public key. We will use (sA, KA) and (sB, KB) to denote Alice
and Bob’s key pairs respectively. Algorithm 6.1 gives Sage code for generating
a key pair from the system parameters in this way.

Note that given knowledge of the system parameters and a public key K,
the problem of deriving the matching secret key s is an instance of the discrete
logarithm problem, which we have assumed to be difficult. This is clearly a
desirable property for a key pair to have.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. ELLIPTIC CURVE CRYPTOGRAPHY 47

Algorithm 6.1 Diffie-Hellman key generation

1 def diffie_hellman_key_generation(G, l):
2 """
3 M: the base point
4 l: the order of G
5 """
6 s = randint(0, l - 1)
7 K = s * G
8 return s, K

6.2 Diffie-Hellman key-agreement scheme

Suppose that Alice and Bob wish to establish a common secret which is only
known to them, while communicating only over a public network. A cryp-
tosystem which allows one to do this is known as a key-agreement scheme.
A typical use case of key-agreement schemes is to establish a common secret
which can be used as the symmetric key for encrypting and decrypting subse-
quent communication using a symmetric cryptosystem such as the Advanced
Encryption Standard (AES). This is commonplace in practical applications,
since the encryption and decryption procedures for symmetric cryptosystems
are typically very fast to compute.

TheDiffie-Hellman key-agreement scheme was originally proposed by (Diffie
and Hellman, 1976), using group varieties of the form F×p . It was the first
cryptosystem to be based on the Diffie-Hellman problem, hence the name of
the problem. More generally, it was the first successful implementation of a
public-key cryptosystem to be published.

To establish a common secret using this scheme, Alice simply computes the
point multiplication [sA]KB using her secret key and Bob’s public key, and Bob
similarly computes [sB]KA. These computation reduce to [sA]KB = [sAsB]G

and [sB]KA = [sBsA]G, which are clearly equal. Sage code for this procedure
is given in Algorithm 6.2.

Assuming knowledge of the system parameters and Alice and Bob’s public
keys KA and KB, computing the shared secret [sAsB]G is clearly equivalent to
solving the Diffie-Hellman problem.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. ELLIPTIC CURVE CRYPTOGRAPHY 48

Algorithm 6.2 Diffie-Hellman key-agreement

1 def diffie_hellman_key_agreement(s_A, K_B):
2 """
3 s_A: Alice’s secret key
4 K_B: Bob’s public key
5 """
6 return s_A * K_B

6.3 ElGamal encryption scheme

Suppose that Alice wishes to send Bob a message m ∈ {0, 1}∗ over a public
network, in such a way that the contents can only be read by Bob. An en-
cryption scheme is a cryptosystem which consists of both an encryption and
a decryption algorithm. The encryption algorithm allows one to use Bob’s
public key KA to transform the message m into a cyphertext c, from which
someone can extract the original message m using the decryption algorithm if
and only if they have knowledge of Bob’s secret key sB.

Since messages may be arbitrarily long, we will break m up into a sequence
of messages of some specified maximum length, each of which is then to be
encrypted individually. Thus, we assume without loss of generality that m ∈
{0, 1}k for some appropriately chosen k.

We now describe two common variants of an encryption scheme known as
ElGamal encryption, first published in (ElGamal, 1985).

6.3.1 First variant

In the first variant, we restrict the message m to have length at most log2 `

and then encode it as an element m′ ∈ F` by interpreting it as the binary rep-
resentation of m′. A random element e ∈ F×` is then selected as an ephemeral
key – a key which is used only for a single encryption procedure and then dis-
carded. We compute the first part of the ciphertext as the point multiplication
C1 := [e]G.

The second part of the ciphertext is computed by additively perturbing the
message m′ by the hash of the point multiplication [e]KB. To this end, we use
the empty message for the first argument of H to turn it into a hash function
on V only. Concretely, we set c2 := m′ + H(∅, [e]KB) for the second part of

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. ELLIPTIC CURVE CRYPTOGRAPHY 49

the ciphertext, yielding the full ciphertext C := (C1, c2). Sage code for the
encryption procedure is given in Algorithm 6.3.

Algorithm 6.3 ElGamal encryption (first variant)

1 def elgamal_encrypt(m, K_B, G, l):
2 """
3 m: the message (encoded as an element of GF(l))
4 K_B: Bob’s public key
5 G: the base point
6 l: the order of G
7 """
8 e = randint(1, l - 1)
9 C_1 = e * G

10 c_2 = (m + hash(e * K_B)) % l
11 return C_1, c_2

The decryption procedure for this variant proceeds by simply computing
c2 − H(∅, [sB]C1). This clearly yields m′, since [sB]C1 = [sBe]G = [e]KB.
Algorithm 6.4 gives the Sage code for the decryption procedure.

Algorithm 6.4 ElGamal decryption (first variant)

1 def elgamal_decrypt((C_1, c_2), s_B, l):
2 """
3 (C_1, c_2): the ciphertext
4 s_B: Bob’s secret key
5 l: the order of the base point
6 """
7 return (c_2 - hash(s_B * C_1)) % l

Note that given knowledge of the system parameters, [e]G andKB, comput-
ing [sBe]G without knowing sB requires solving the Diffie-Hellman problem.
Thus, without [sB], we cannot compute H(∅, [e]KB) efficiently. Thus, assum-
ing that H yields a value which is indistinguishable from an element selected
uniformly at random from F` when the input is uniformly distributed, c2 is
also indistinguishable from a uniformly distributed element of F`, and thus m′

cannot be recovered.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. ELLIPTIC CURVE CRYPTOGRAPHY 50

Remark 6.1. The importance of not reusing the ephemeral key e should
be emphasised. If Alice uses the same value of e to encrypt two messages
m and m̄ to Bob, then their respective representations m′ and m̄′ will be
perturbed by the same hash, namely H(∅, [e]KB). Computing C1 − C̄1 then
yields m′− m̄′, which is certainly no longer guaranteed to be indistinguishable
from a uniformly distributed element of F`. Furthermore, if someone discovers
the contents of at least one message, all other messages which were encrypted
using the same value of e become fully known. An attacker may even ask Alice
to encrypt a specific message using Bob’s public key, in what is known as a
chosen-message attack, thereby rendering all other messages encrypted with
the same ephemeral key known.

6.3.2 Second variant

The second variant of the ElGamal encryption scheme avoids using a hash
function by encoding m as an Fq-point on the group variety V . The approach
followed for representing m as an element of V depends on the type of group.

Elements of the group variety F×q may be encoding using a straightforward
process. We restrict m to have length at most log2 q, which we interpret as
the binary representation of an integer. The encoding of m is then taken to be
the element of F×q whose polynomial representation has the p-ary digits of this
integer as its coefficients. This does not yield an element of F×q for the message
whose bits are all zero, but we may encode this message as the element of F×q
whose polynomial representation has p − 1 as all of its coefficients, since no
other message will be encoded to this element as long as p is odd.

For an elliptic curve E/Fq, we suggest a probabilistic approach for encoding
messages. This approach fails to encode a given message with a probability of
about 2−k, where k is a parameter of the encoding scheme. Here we restrict m
to have length at most log2 q−k, which we use as the least significant bits in a
binary sequence with blog2 qc bits in total. The k most significant bits of this
binary sequence are then chosen randomly, with the resulting sequence being
interpreted as an element x ∈ Fq as described for the group F×q , but without
interpreting the sequence of zero bits specially. The k randomly chosen bits
are simply ignored during the decoding procedure.

The element of Fq selected in this way may either fail to be the x-coordinate
of a point on the elliptic curve or such a point may not be in the subgroup

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. ELLIPTIC CURVE CRYPTOGRAPHY 51

〈G〉 of E(Fq), in which case we repeat the procedure. The former happens
exactly when

(
f(x)
Fq

)
= −1, which has a probability of about 1/2. The latter

has a probability of exactly `/#E(Fq). Thus, we expect to have to randomly
select k bits about 2#E(Fq)/` times, which is in Θ(1) under the assumption
` ∈ Θ(#E(Fq)). As previously mentioned, there is a probability of about 2−k

that no point in 〈G〉 will havem as the least significant bits of its x-coordinate,
in which case we fail to encode m.

Once the x-coordinate of a point in 〈G〉 has been found, we may compute
the square roots of f(x) and randomly select one of them as its y-coordinate,
thus obtaining a point M to use as the encoding of m. Alternatively, we may
encode messages which are one bit longer by using the extra bit to decide
which of the square roots of f(x) to use as the encoding of the message.

The encryption algorithm proceeds in a similar fashion to the first variant.
An ephemeral key e ∈ F×` is selected at random, the point multiplications
C1 := [e]G and [e]KB are calculated, and the message is additively perturbed
to C2 := M + [e]KB. The pair (C1, C2) then serves as the ciphertext. Sage
code for this procedure is given in Algorithm 6.5.

Algorithm 6.5 ElGamal encryption (second variant)

1 def elgamal_encrypt(M, K_B, G, l):
2 """
3 M: the message (encoded as a multiple of G)
4 K_B: Bob’s public key
5 G: the base point
6 l: the order of G
7 """
8 e = randint(1, l - 1)
9 C_1 = e * G

10 C_2 = M + e * K_B
11 return C_1, C_2

The decryption procedure then simply computes C2− [sB]C1, which yields
the message M since [sB]C1 = [sBe]G = [e]KB. The Sage code for decryption
is given in Algorithm 6.6.

The second variant once again relies on the Diffie-Hellman problem so that
it is difficult to compute [e]KB from C1 and KB. Its security also relies on
the assumption that given C1, the point [e]KB is indistinguishable from a

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. ELLIPTIC CURVE CRYPTOGRAPHY 52

Algorithm 6.6 ElGamal decryption (second variant)

1 def elgamal_decrypt((C_1, C_2), s_B):
2 """
3 (C_1, C_2): the ciphertext
4 s_B: Bob’s secret key
5 """
6 return C_2 - s_B * C_1

uniformly distributed point in 〈G〉 without knowledge of sB, so thatM+[e]KB

is therefore indistinguishable from a uniformly distributed point.

6.4 Schnorr signature scheme

Suppose Alice would like to send a message m ∈ {0, 1}∗ to Bob over a pub-
lic network, along with a signature which proves that the message has not
been tampered with during transit. This is the problem solved by a signature
scheme, which provides a signing algorithm which Alice may use to generate a
signature for some message, and a verification algorithm which Bob may use
to ensure that the message which he receives is the same as the message sent
by Alice. For this to be possible, it must be difficult for a third party to forge
Alice’s signature for some message given examples of her signatures for other
messages.

We describe a cryptosystem known as the Schnorr signature scheme due
to (Schnorr, 1990). For Alice to sign a message m that she wishes to send
to Bob, she randomly selects an emphemeral key e ∈ F`, computes the point
multiplication [e]G, and sets the first part of her signature to the hash s1 :=

H(m, [e]G). The second part of her signature is simply computed as s2 :=

e− sAs1. Finally, the signature is appended to the message, yielding the tuple
(m, s1, s2). Sage code for this procedure is given in Algorithm 6.7.

Assuming that the hash function H is secure against inversion, it is not
possible to gain knowledge of e from s1. Furthermore, assuming s1 is indis-
tinguishable from a randomly selected element of F` without knowledge of e,
it is impossible to learn sA from s2. Someone who does not have knowledge
of Alice’s private key sA can construct a valid value for s1 corresponding to
m by choosing their own ephemeral key e′. However, they will not be able

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. ELLIPTIC CURVE CRYPTOGRAPHY 53

Algorithm 6.7 Schnorr signing

1 def schnorr_sign(m, s_A, G, l):
2 """
3 m: the message
4 s_A: Alice’s secret key
5 G: the base point
6 l: the order of G
7 """
8 e = randint(0, l - 1)
9 s_1 = hash((m, e * G)) % l

10 s_2 = (e - s_A * s_1) % l
11 return m, s_1, s_2

to construct a matching value for s2 without knowledge of sA, so that Alice’s
signatures cannot be forged.

To verify that the signature (s1, s2) corresponds to the message m that was
sent by Alice, Bob may do the following. He computes the point multiplications
[s1]KA and [s2]G, then evaluates the hash H(m, [s1]KA+[s2]G). If this is equal
to s1, then he accepts that the message has been verified. Otherwise, he rejects
it. This verification algorithm is given as Sage code in Algorithm 6.8.

Algorithm 6.8 Schnorr verification

1 def schnorr_verify((m, s_1, s_2), K_A, G, l):
2 """
3 m: the message
4 (s_1, s_2): the signature
5 K_A: Alice’s public key
6 G: the base point
7 l: the order of G
8 """
9 return s_1 == hash((m, s_1 * K_A + s_2 * G)) % l

Since [s2]G = [e]G−[sAs1]G = [e]G−[s1]KA, we have that [s1]KA+[s2]G =

[e]G, showing that the verification procedure works for signatures generated by
Algorithm 6.7. Furthermore, assuming that the hash function H is resistant
against collisions, it is not possible to pick a different message m′ such that
H(m′, [s1]KA + [s2]G) will evaluate to s1.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. ELLIPTIC CURVE CRYPTOGRAPHY 54

Note that the Schnorr signature scheme does not rely on the Diffie-Hellman
problem, although it does implicitly rely on the discrete logarithm problem due
to the nature of Diffie-Hellman key pairs.

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Conclusion

In this thesis, we surveyed the mathematics underlying elliptic curve cryptog-
raphy. In particular, we discussed the algorithmic aspects of computations
involving elliptic curves over finite fields, thereby demonstrating that they are
feasible objects to work with in a cryptographic setting, where the finite fields
used are typically of a very large order.

By describing Schoof’s algorithm, we showed that it is also possible to
compute the number of points on an elliptic curve over a finite field in an
efficient manner, allowing us to learn enough about the elliptic curve’s group
structure to enable its use in cryptographic algorithms.

After formulating the discrete logarithm and Diffie-Hellman problems on
elliptic curves, we gave an overview of solutions to these problems. We saw that
the known algorithms for solving the discrete logarithm problem on a general
group variety are all infeasible when the number of points on the variety is a
small multiple of a very large prime number, in which case the Pohlig-Hellman
reduction cannot be used effectively, and computations using the baby-step
giant-step algorithm or Pollard’s algorithms are too cumbersome.

Furthermore, we discussed some reductions of the discrete logarithm prob-
lem to the additive or multiplicate group of a finite field which may only be
applied to special types of elliptic curves. However, we saw that such elliptic
curves are extremely rare, so that the reductions are not an obstacle to finding
curves suitable for cryptographic use.

Finally, we presented a selection of cryptosystems based on the difficulty of
solving the discrete logarithm and Diffie-Hellman problems on group varieties,
for which elliptic curves are a suitable candidate.

55

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Computing in the endomorphism
ring modulo `

In this appendix, we give Sage code for performing computations in the endo-
morphism ring of an elliptic curve E/Fq modulo the division polynomial ψ`,
which is used in Schoof’s algorithm.

1 class EndomorphismMod:

2 def __init__(self, E, fx, fy, psi):

3 R.<x> = E.base_field()[’x’].quotient(psi)

4 self.E = E

5 self.fx = R(fx)

6 self.fy = R(fy)

7 self.psi = psi

8 self.f = x^3 + E.a4() * x + E.a6()

9 self.A = E.a4()

10

11 def __add__(self, other):

12 if isinstance(other, Integer):

13 other *= IdentityEndomorphismMod(self.E, self.psi)

14 if isinstance(other, ZeroEndomorphismMod):

15 return self

16 if self.fx == other.fx:

17 if self.fy == other.fy:

18 m = (3 * self.fx^2 + self.A) / (2 * self.fy * self.f)

19 else:

20 return ZeroEndomorphismMod(self.E, self.psi)

56

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. COMPUTING IN THE ENDOMORPHISM RING MODULO 5̀7

21 else:

22 div, inv, _ = xgcd((self.fx - other.fx).lift(), self.psi)

23 if div.is_constant():

24 m = (self.fy - other.fy) * inv

25 else:

26 raise ZeroDivisionError(div)

27 fx = m^2 * self.f - self.fx - other.fx

28 fy = m * (self.fx - fx) - self.fy

29 return EndomorphismMod(self.E, fx, fy, self.psi)

30

31 def __radd__(self, other):

32 return self + other

33

34 def __neg__(self):

35 return EndomorphismMod(self.E, self.fx, -self.fy, self.psi)

36

37 def __sub__(self, other):

38 return self + -other

39

40 def __rsub__(self, other):

41 return -(self + -other)

42

43 def __mul__(self, other):

44 if isinstance(other, Integer):

45 if other < 0:

46 return -self * -other

47 alpha = ZeroEndomorphismMod(self.E, self.psi)

48 while other > 0:

49 if other % 2 == 1:

50 alpha += self

51 self += self

52 other //= 2

53 return alpha

54 fx = self.fx.lift()(other.fx)

55 fy = self.fy.lift()(other.fx) * other.fy

56 return EndomorphismMod(self.E, fx, fy, self.psi)

57

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. COMPUTING IN THE ENDOMORPHISM RING MODULO 5̀8

58 def __rmul__(self, other):

59 return self * other

60

61 def __pow__(self, n):

62 alpha = IdentityEndomorphismMod(self.E, self.psi)

63 while n > 0:

64 if n % 2 == 1:

65 alpha *= self

66 self *= self

67 n //= 2

68 return alpha

69

70 def __eq__(self, other):

71 if isinstance(other, Integer):

72 other *= IdentityEndomorphismMod(self.E, self.psi)

73 if isinstance(other, ZeroEndomorphismMod):

74 return False

75 return self.fx == other.fx and self.fy == other.fy

1 class ZeroEndomorphismMod(EndomorphismMod):

2 def __init__(self, E, psi):

3 self.E = E

4 self.psi = psi

5

6 def __neg__(self):

7 return self

8

9 def __add__(self, other):

10 return other

11

12 def __mul__(self, other):

13 return self

14

15 def __eq__(self, other):

16 if isinstance(other, Integer):

17 other *= EndomorphismMod(self.E, x, 1, self.psi)

18 return isinstance(other, ZeroEndomorphismMod)

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. COMPUTING IN THE ENDOMORPHISM RING MODULO 5̀9

1 class IdentityEndomorphismMod(EndomorphismMod):

2 def __init__(self, E, psi):

3 _.<x> = E.base_field()[’x’].quotient(psi)

4 EndomorphismMod.__init__(self, E, x, 1, psi)

1 class FrobeniusEndomorphismMod(EndomorphismMod):

2 def __init__(self, E, psi):

3 q = E.base_field().order()

4 _.<x> = E.base_field()[’x’].quotient(psi)

5 f = x^3 + E.a4()*x + E.a6()

6 EndomorphismMod.__init__(self, E, x^q, f^((q - 1) // 2), psi)

Stellenbosch University https://scholar.sun.ac.za

Bibliography

Apostol, T.M. (1976). Introduction to Analytic Number Theory. No. 8 in
Undergraduate Texts in Mathematics. Springer.

Balasubramanian, R. and Koblitz, N.J. (1998). The Improbability That an
Elliptic Curve Has Subexponential Discrete Log Problem under the Menezes-
Okamoto-Vanstone Algorithm. Journal of Cryptology, vol. 11, no. 141, pp.
141–145.

Blake, I.F., Seroussi, G. and Smart, N.P. (1999). Elliptic Curves in Cryptogra-
phy. No. 265 in London Mathematical Society Lecture Note Series, 1st edn.
Cambridge University Press.

Cohen, H. and Frey, G. (2015). Handbook of Elliptic and Hyperelliptic Curve
Cryptography. Discrete Mathematics and Its Applications, 2nd edn. Chap-
man and Hall/CRC.

Diffie, W. and Hellman, M. (1976). New Directions in Cryptography. IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654.

ElGamal, T. (1985). A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. IEEE Transactions on Information Theory,
vol. 31, no. 4, pp. 469–472.

Floyd, R.W. (1967). Nondeterministic Algorithms. Journal of the ACM,
vol. 14, no. 4, pp. 636–644.

Frey, G. and Rück, H.-G. (1994). A Remark Concerning m-Divisibility and
the Discrete Logarithm in the Divisor Class Group of Curves. Mathematics
of Computation, vol. 62, no. 206, pp. 865–874.

Galbraith, S.D. (2012). Mathematics of Public Key Cryptography. 1st edn.
Cambridge University Press.

60

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY 61

Koblitz, N.J. (1987). Elliptic Curve Cryptosystems. Mathematics of Compu-
tation, vol. 48, no. 177, pp. 203–209.

Lichtenbaum, S. (1969). Duality Theorems for Curves over p-Adic Fields.
Inventiones Mathematicae, vol. 7, pp. 120–136.

Menezes, A.J., Okamoto, T. and Vanstone, S.A. (1993). Reducing Elliptic
Curve Logarithms in a Finite Field. IEEE Transactions on Information
Theory, vol. 39, no. 5, pp. 1639–1646.

Miller, V.S. (1986a). Short Programs for Functions on Curves. Available:
https://crypto.stanford.edu/miller.

Miller, V.S. (1986b). Use of Elliptic Curves in Cryptography. In: Williams,
H.C. (ed.), Advances in Cryptology – CRYPTO ’85 Proceedings, vol. 218 of
Lecture Notes in Computer Science, pp. 417–426. Springer.

Pohlig, S. and Hellman, M. (1978). An Improved Algorithm for Computing
Logarithms over GF (p) and its Cryptographic Significance. IEEE Transac-
tions on Information Theory, vol. 24, no. 1, pp. 106–110.

Pollard, J.M. (1978). Monte Carlo Methods for Index Computation (mod p).
Mathematics of Computation, vol. 32, no. 143, pp. 918–924.

Schnorr, C.P. (1990). Efficient Identification and Signatures for Smart Cards.
In: Brassard, G. (ed.), Advances in Cryptology – CRYPTO ’89 Proceedings,
vol. 435 of Lecture Notes in Computer Science, pp. 239–252. Springer.

Schoof, R. (1985). Elliptic Curves over Finite Fields and the Computation of
Square Roots mod p. Mathematics of Computation, vol. 44, no. 170, pp.
483–494.

Shanks, D. (1971). Class Number, a Theory of Factorization and Genera.
Proceedings of Symposium of Pure Mathematics, vol. 20, pp. 415–440.

Silverman, J.H. (2009). The Arithmetic of Elliptic Curves. No. 106 in Graduate
Texts in Mathematics, 2nd edn. Springer.

Smart, N.P. (1999). The Discrete Logarithm Problem on Elliptic Curves of
Trace One. Journal of Cryptology, vol. 12, no. 3, pp. 193–196.

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY 62

Sutherland, A. (2015). 18.783 Elliptic Curves. Available: http://ocw.mit.edu/.

Tate, J. (1958). WC-Groups over p-Adic Fields. Séminaire Bourbaki, vol. 4,
pp. 265–277.

van Oorschot, P.C. and Wiener, M.J. (1996). Parallel Collision Search with
Cryptanalytic Applications. Journal of Cryptology, vol. 12, no. 1, pp. 1–28.

Washington, L.C. (2008). Elliptic Curves: Number Theory and Cryptogra-
phy. Discrete Mathematics and Its Applications, 2nd edn. Chapman and
Hall/CRC.

Weil, A. (1940). Sur les Fonctions Algébriques á Corps de Constantes Fini.
Les Comptes rendus de l’Académie des Sciences, vol. 210, pp. 592–594.

Stellenbosch University https://scholar.sun.ac.za

	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Algorithms
	Notation
	Introduction
	Elliptic curves
	Weierstrass equations
	Weierstrass equations and elliptic curves
	Discriminant

	Group structure
	Functions and morphisms
	Regular functions
	Rational functions
	Morphisms
	Isogenies

	Torsion
	Multiplication-by-m endomorphisms
	Division polynomials
	Structure of m-torsion subgroups

	The dual isogeny
	The Frobenius endomorphism
	Hasse's theorem

	Pairings
	Miller's algorithm
	The Weil pairing
	The Tate pairing

	Point counting
	Naive methods
	Schoof's algorithm
	Computing the trace of Frobenius modulo 2
	Characteristic equation of Frobenius modulo
	Computing in the endomorphism ring modulo
	Time complexity analysis

	Discrete logarithms
	The discrete logarithm and Diffie-Hellman problems
	The baby-step giant-step algorithm
	The Pohlig-Hellman reduction
	Pollard's algorithms
	Pollard's algorithm
	Pollard's algorithm

	Pairing-based reductions
	The MOV reduction
	The Frey-Rück reduction

	Anomalous curve reduction

	Elliptic curve cryptography
	Diffie-Hellman key generation
	Diffie-Hellman key-agreement scheme
	ElGamal encryption scheme
	First variant
	Second variant

	Schnorr signature scheme

	Conclusion
	Computing in the endomorphism ring modulo
	Bibliography

