Implementation of a Proton Therapy
Supervisory System for iThemba LABS

by

Sehlabaka Qhobosheane

Thesis presented in partial fulfilment of the requirements for
the degree of Master of Science in Engineering at
Stellenbosch University

Supervisors:

Dr. Mike Blanckenberg Dr. Neil Muller
Department of Electrical and Electronic Engineering iThemba LABS

December 2012

Stellenbosch University http://scholar.sun.ac.za

Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof
(save to the extent explicitly otherwise stated), that reproduction and pub-
lication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it for
obtaining any qualification.

December 2012

Copyright (C) 2012 Stellenbosch University
All rights reserved.

Stellenbosch University http://scholar.sun.ac.za

Abstract

The Proton Therapy facility at iThemba LABS employs the passive double
scattering method to modify the narrow proton beam from the accelerator
into a broad treatment beam. The facility uses various safety and control
systems to ensure that the beam is correctly configured and functional, that
the patient is correctly positioned for treatment, that the treatment room is
cleared and armed for treatment, and that the treatment is terminated when
the required dose is administered to the patient. These systems collectively
form the Proton Therapy Control System. Omne such control system is the
Supervisory System which coordinates all other subsystems by supplying them
with beam parameters and other treatment information needed to configure the
entire treatment therapy unit for the correct irradiation of a patient. It allows
for management of other control systems and is the primary user-interface to
the proton therapy system.

This control system was developed on Scientific Linux 5.5 operating system
with Kernel 2.6.18 using Qt/C+-+ widgets set for the user interface. The
Supervisory System also uses the Eagle technology EDRE driver in order to
use the Eagle Technology 848C PCI DAQ card to interface to the Therapy
Safety Bus so as to access various safety and fail-safety lines.

The treatment parameters are parsed from the treatment planning files lo-
cated on the Radiotherapy Database server using Boost.Spirit template meta-
programming techniques. These beam parameters and treatment information
are then send to other control systems using the Open Network Computing
Remote Procedure Calls (ONC-RPC).

ii

Stellenbosch University http://scholar.sun.ac.za

Opsomming

Die Protonterapie behandeling fasiliteit by iThemba LABS maak gebruik van
die passiewe dubbel verstrooiings metode om 'n dun proton bundel komende
van die versneller te transformeer na 'n breé proton bundel wat geskik is vir
behandeling. Verskeie beheer-en veiligheidsstelsels werk saam om te verseker
dat die pasiént reg geposisioneer is en dat die behandelings stelsel korrek
gekonfigureer en funksioneel is. Die stelsels verseker ook dat die behandel-
ingskamer voorbery en ontruim is voor behandeling en dat die behandeling
getermineer word wanneer die verlangde dosis bestraling toegedien is. Die
beheer-en veiligheidsstelsels staan gesamentlik bekend as die protonterapie be-
heerstel. Een van die substelsels van die protonterapie beheerstelsel is die
behandelings bestuurstelsel. Die behandelings bestuurstelsel koordieneer al
die ander substelsels deur hulle te voorsien van bundel parameters en ander
informasie wat nodig is vir die konfigurasie van die hele behandelings eenheid
om sodoende te verseker dat 'n pasiént reg bestraal word.

Die behandelings bestuurtelsel is die primie gebruikers koppelvlak van die pro-
tonterapie stelsel en dit verskaf ook 'n koppelvlak met die ander beheerstelsels
in die protonterapie fasiliteit. Scientific Linux 5.5 asook Qt/C-+-+ widgets vir
die gebruikers koppelvlak is gebruik vir die ontwikkeling van die behandelings
bestuurstelsel sagteware. Die beheerstelsel sagteware maak ook gebruik van
die “Eagle Technology” EDRE sagteware drywer om die “Eagle Technology”
848C PCI DAQ data-versamel bord aan te spreek. Die bord word gebruik vir
die monitor en beheer van die Terapie Veiligheid Bus wat bestaan uit verskeie
beheer en status lyne.

Die behandelings parameters word verkry vanaf die beplannings léer op die ra-
dioterapie databasis bediener met behulp van “Boost.Spirit” meta-programmerings
tegnieke. Die bundel parameters en behandelings informasie word dan ges-
tuur na ander beheerstelsels met behulp van “Remote Procedure Calls” (ONC-
RPC).

iii

Stellenbosch University http://scholar.sun.ac.za

Acknowledgements

[would like to express my sincere gratitude to the following people and organ-
isations who have contributed to this work;

My supervisors Dr. Neil Muller and Dr. Mike Blanckenberg for their
guidance, ideas, motivation, knowledge and patience

iThemba LABS and the University of Stellenbosch for giving me the
opportunity to do research at their facilities and for providing me with
the funding for my studies

Mr Lebina Ts’epe for believing in me and for providing me with the
initial funding through his company CalCommunications

Mr. Evan de kock, Mr. Christo van Tubbergh, Mr. Jan van der Merwe,
Mr. Nolan Klaasen and Mr. Casey Callaghan for their help, knowledge
and support

Mr. Mike Hogan, Mr. Lebelo Serutla, Dr. John Pilcher and Dr. Gillian
Arendse for believing in me and for their support

The Open Source community for their philosophies and excellent free
software

All my friends and family for their support and motivation

My wife "Makatleho Qhobosheane (Ngoanez) for her love, support and
inspiration

Chess.com for providing the excellent pastime and for keeping me sane

And finally, mother Nature for Life and the Universe to explore.

iv

Stellenbosch University http://scholar.sun.ac.za

Contents

Declaration
Abstract
Opsomming
Acknowledgements
Contents

List of Figures
List of Tables
Nomenclature

1 Introduction
1.1 Organization of the Thesis

2 Proton Therapy at iThemba LABS
2.1 The Current Therapy Control System
2.2 Other Radiation Therapy Supervisory Systems

3 The New Proton Therapy Control System
3.1 Console System (CS)
3.2 Therapy Safety Control System (TSCS).
3.3 Range Control system(RCS)
3.4 Beam Steering Controller
3.5 Dose Monitor Controller (DMC)
3.6 Patient Positioning Systemo L

4 Therapy Safety Bus Simulation Rig
4.1 Designo
4.2 Operational Specifications
4.3 Description

ii

iii

iv

vii

ix

10
15
16
17
18

Stellenbosch University http://scholar.sun.ac.za

CONTENTS

5 Supervisory System Design and Implementation

5.1 Requirements Analysis
5.2 Supervisory System Design
5.3 Supervisory System Implementation

6 Experimental Results
7 Conclusion
Bibliography

Addendum A

vi

27
27
35
25

62

69

71

74

Stellenbosch University http://scholar.sun.ac.za

List of Figures

2.1 Patient Positioning Systemo
2.2 MPRI Treatment Room Manager

3.1 Schematic layout of the proton therapy control system
3.2 Therapy Console
3.3 Physics Console
3.4 Console Switchover Unit
3.5 Therapy Control System Interfaces
3.6 Therapy Safety Control System - Layout
3.7 Therapy Safety Control System - Crates
3.8 Signal Conversion Unit Input Channel
3.9 Double-Wedge System with scattering lead plate
3.10 Range-Modulator wheel
3.11 Bite-block Vacuum control system

4.1 'Therapy Safety Bus Simulation Rig

5.1 UML Use-case Diagram - Supervisory System
5.2 Fault tree Diagram - Supervisory System
5.3 Architectural Design
5.4 Supervisory System Top-Level Program Flow
5.5 Supervisory System Admin Block
5.6 Supervisory System Treatment Block
5.7 Supervisory System Field Delivery Loop
5.8 Supervisory System Irradiation Block 000
5.9 Supervisory System - Systems Configuration and Patient Position-
ing Loop
5.10 Supervisory System - Systems Configuration Block
5.11 Supervisory System - Check for Hardware Failures Block
5.12 Supervisory System - Treatment Simulation Block
5.13 Software Development Methodology
5.14 Kleene Star
5.15 Plus operator
5.16 Alternatives - Ordered Choice

vii

Stellenbosch University http://scholar.sun.ac.za

LIST OF FIGURES viii
6.1 Simple Test setup 63
6.2 Systems Configuration data 64
6.3 File Transfer Algorithm 65
1 Functional diagram of a SABUS card indicating common as well as

specialized features L 104
2 Functional diagram of the SABUS-interface card 105
3 Functional diagram of the multipurpose PCI card 107
4 Communication between the PCI card and the computer 108
5

Functional diagram of the ETX computer module 110

Stellenbosch University http://scholar.sun.ac.za

List of Tables

3.1 Hardware Interlock Unit

5.1 Non-functional Requirements

6.1 'TSB Lines controlled by the supervisory system

ix

Stellenbosch University http://scholar.sun.ac.za

Nomenclature

Subscripts

i The i-th field.
J The j-th fraction.

Acronyms and Abbreviations

BSC
CCD
CT
DMC
DRR
EBNF
EDC
FC
FCC
FPGA
HIU
HV
HV-PSU
I/L
LED
MCIS
NIC
N/C

Beam steering controller

Charged-coupled device

Computed tomography

Dose monitor controller

Digitally reconstructed radiograph

Extended Backus-Naur Form

Energy degrader controller

Faraday cup

Faraday-cups controller

Field-programmable gate array device

Hardware interlock unit (subunit of the safety interlock system)
High voltage

High-voltage power supply unit

Interlock (with specific reference to the safety interlock system)
Light emitting diode

Main cyclotron interlock system

Network Interface Card

A switch or relay whose contacts are normally closed

Stellenbosch University http://scholar.sun.ac.za

NOMENCLATURE xi
N/O - A switch or relay whose contacts are normally open
pPC - Personal Computer
PCI - Peripheral Component Interconnect Local Bus
PT - Proton therapy
PT1 - The existing proton therapy facility that utilizes the treatment vault BG1
PPS - Patient positioning system
PSU - Power supply unit
RCS - Range control system
RMP - Range modulator propeller
RMD - Range monitoring detector
RMU - Range monitoring unit
RT - Radiotherapy
SABUS - South African (communication) bus
SIS - Safety interlock system (subsystem of the TSCS)
SOBP - Spread-out Bragg peak
SPC - Solid-pole cyclotron
SPG - Stereophotogrammetric
SCU - Signal conversion unit (subunit of the TSCS)

SIC - Safety interlock computer (subunit of the SIS)
SIU - Signal interface unit (subunit of the HIU)

SS - Supervisory system

SSC - Separated-sector cyclotron

TCS - Therapy control system

TSCS - Therapy safety control system

TSB - Therapy safety bus

TTL - Transistor-transistor logic

USB - Universal Serial Bus

VLU - Voting logic unit (subunit of the HIU)

Stellenbosch University http://scholar.sun.ac.za

Chapter 1

Introduction

iThemba Laboratories for Accelerator-Based Sciences (iThemba LABS) is a
multidisciplinary research and educational center focusing on accelerator physics,
radiotherapy, and production of radio-isotopes for research and medical use.
It is administered by the National Research Foundation (NRF) and has two
operational sites; one in Gauteng Province, and another in the Western Cape.

The Medical Radiation Group is situated in the Western Cape site where
it offers both Neutron and Proton therapy for treatment of lesions. Both types
of therapy make use of the variable-energy k-200 Separated Sector Cyclotron,
and while the Neutron Therapy Unit was designed abroad, the Proton Ther-
apy Unit was designed locally. The proton therapy facility makes use of a
combination of various devices to modify the characteristics of the 200 MeV
proton beam from the accelerator into a broad treatment beam. It also uses
various safety and control systems collectively called the Proton Therapy Con-
trol System to ensure the correct and safe irradiation of the patient, and to
ensure safety of the personnel during treatment.

The existing proton therapy control system consists of old and difficult-
to-maintain subsystems, thus a number of projects aimed at expanding the
facility and upgrading the hardware and software used in the proton therapy
unit are ongoing. One such system is the Supervisory System which is the
subject of the work done in this thesis.

The aim of this thesis is to implement the Supervisory System for the
proton therapy facility at iThemba LABS, which configures and coordinates
all other subsystems of the Proton Therapy Control System for the correct
and safe irradiation of the patient during treatment.

1.1 Organization of the Thesis

The remainder of this thesis is laid out as follows: Chapter 2 gives a brief
overview of the proton therapy facility at iThemba LABS and the current
supervisory system. Chapter 3 covers the new Proton Therapy Control System

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

and shows how the supervisory system maps all other subsystems together.
Chapter 4 gives an indepth coverage of the Therapy Safety Bus simulation rig
which simulates safety lines monitored and triggered by the supervisory system
during treatment. Chapter 5 provides the detailed functional specification
of the supervisory system, its top-level design and how it was implemented.
Chapters 6 and 7 conclude the thesis with a discussion of how the supervisory
system was tested, the results obtained, and with recommendations for future
work on the system.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2
Proton Therapy at iThemba LABS

Proton therapy at iThemba first started in September 1993 using the 200
MeV beam. Proton therapy treatment offers a number of advantages over
alternative radiation modalities. One of the most significant advantages is
that higher doses of radiation can be used to control and manage lesions while
significantly reducing damage to healthy tissue and vital organs [1].

In practice, it is relatively easy to modulate the physical properties of a pro-
ton beam than it is to change the beam direction with respect to the patient,
which normally requires a complex and expensive gantry system. Instead it
is more cost effective to position the patient correctly with respect to a fixed
proton beam |2; 3; 4]. The proton therapy facility at iThemba LABS follows
this simpler approach (of localized treatment) and uses a fixed horizontal beam
delivery system that implements the passive double scattering method to pro-
duce a uniform dose, while an assembly of cylindrical block collimators shape
the beam to match the target volume [5]. A collection of range modulator pro-
pellers (wheels) is used to vary the beam’s energy thus producing a dose distri-
bution with the required Spread out Bragg Peak (SOBP). Patient positioning
is achieved by an intricate system consisting of a custom-made marker-carrier,
stereophotogrametry (SPG) system and a motorized chair. The marker-carrier
is fitted with diopaque and retro-reflexive markers which are detected by the
SPG system through a number of charged coupled device (CCD) cameras in or-
der to compute their respective positions in a 3D coordinate system |5; 6; 7; 8|.
The motorized chair, on which the patient is placed, has an immobilization
device which is used to fix (move) the marker-carrier, and thus the patient to
the position required for treatment. Figure 2.1 shows the current patient po-
sitioning system highlighting the SPG system with its array of CCD cameras
as well as the treatment chair with its immobilization device.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. PROTON THERAPY AT ITHEMBA LABS 4

Camera

Camera

Proton Nozzle

SPG Computer

Figure 2.1: Patient Positioning System

2.1 The Current Therapy Control System

Together with the hardwired interlock system, the existing therapy control
system consists of a distributed computer control system running on OS/2
operating system, and which has been in operation since 1990 [9].

Proton therapy at iThemba consists of five distinct phases [10]:

e Daily calibration of the SPG System: for accurate patient positioning.
e Dosimetry: which calculates proper radiation dose for treatment.

e Treatment planning and preparation of the patient: which is done once-
off before patient treatment.

e Treatment simulation: done before actual treatment to test if all sys-
tems are ready for treatment, and to prepare the patient for the actual
treatment.

e Treatment delivery to the patient.

The current Supervisory System provides an inteface to radiation therapists
and radiographers for carrying-out basic treatment planning and preparation.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. PROTON THERAPY AT ITHEMBA LABS 5

During actual treatment, it provides an interface for cross-checking beam pa-
rameters and patient information with the SPG computer and the treatment
simulation form (sheet). It also provides instructions to signal when it is the
right time to activate the barcode tracker for verifying patient-specific beam
components. It is worth noting that the current supervisory system is not
electronically interlocked and/or networked with the barcode tracker, SPG,
DMC, and double-wedge systems, which all require independent checks during
treatment delivery [10].

2.2 Other Radiation Therapy Supervisory
Systems

Apart from the control system currently operational at iThemba LABS, there is
a handful of other proton therapy facilities that have implemented supervisory
systems to achieve similar functionalities.

The Indiana University’s Proton Therapy Center, formerly Midwest Proton
Therapy Institute (MPRI) has implemented a similar control system running
on a Linux platform [11]. This system, called the Treatment Room Controller,
employs KDE/Qt widgets for its user-interface, allows for management of other
control systems, and is the primary user interface to the proton therapy system.
Eventhough the system has changed significantly over the past years since its
initial version in 2003, its overall design and purpose remains unchanged. It
allows users to [11]:

e select patient treatment plans;

e download treatment and beam parameters of the selected field to other
subsystems of the Therapy System;

e check and verify that all systems are ready for treatment;

e stay informed of the status of other subsystems;

e start and stop treatment;

e record and store treatment results in the Treatment Planning database;

Figure 2.2 depicts the software achitecture of the former MPRI Treatment
Room Control System (TRCS). It is divided into five different groups; the
patient data group which deals with patient and treatment information, the
communications group for handling treatment requests to and from other Pro-
ton Therapy Systems (PTS), X-Ray System, Beam Delivery System (BDS) and
Dose Deliver System (DDS) using TCP/IP sockets, the treatment management
group for dealing with therapy treatment commands from the Radiotherapy
Technologist (RTT), the maintenance group for testing and configuring the

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. PROTON THERAPY AT ITHEMBA LABS 6

system, and the data acquisition (DAQ) group for handling analog and digital
input/output signals to and from the Kicker Enable System (KES) and the
MPRI Interlock and Radiation System (MIRS) together with other control
logic |11].

Clinic . T'f’“““mx
Information
istory Plarming Patient Data Group '\>
package FILE TRANSFER l/
PTS
RIPVS
Treatment Treatment o 1 J\ X-Ray System
Management Group Commands Communications N—/ DOS
Treatment Group BDS
RTT Control
Maintenance
Information SYSTEM Maintenance Group TEST COM
(used by an TESTING (Not used by RTT) DAQ Communications KES
Engineer)
MIRS

TRM

Figure 2.2: MPRI Treatment Room Manager

The TRIUMF Proton Therapy facility, through its Treatment Control Sys-
tem, has also achieved the same functionality. This system provides for mon-
itoring of patient safety, controlling patient dose, and operator control [12].
The Treatment Control System is based on a VAX computer, Mitsubishi PLC,
CAMAC PROM-based controller, standard NIM and CAMAC modules, and

numerous custom-made devices.

Just like proton therapy at iThemba, TRIUMF has two operating modes
for the controls: the ‘Normal Mode’ (almost analogous to Physics Mode at
iThemba) which is responsible for development, calibration, and testing, and
the ‘Patient Mode’ (analogous to iThemba’s Clinic Mode) used for treatment.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3

The New Proton Therapy Control
System

The Proton Therapy Control System consists of a number of subsystems which
collectively ensure that the beam delivery system is properly configured and
functional, that the patient is well positioned for treatment that the treat-
ment room is cleared and armed for treatment and that the beam is properly
terminated after treatment.

This chapter briefly discusses all the subsystems which form the Proton
Therapy Control System (as illustrated in Figure 3.1) and outlines how each
is configured by the supervisory system.

BEAM
ACCELERATORS AND HIGH-ENERGY BEAM BEAM DELIVERY SYSTEM
BEAM TRANSPORT > STOPPING DEVICES —)> —)
TREATMENT
t ¢ F y A F CHAR
MAIN
CYCLOTRON > Fégﬁ?ééﬁlégs
INTERLOCK
4 A
I I v v A 4 v
ROOM v VvV Vv
CLEARANCE >
4 EDC |« RMU BSC DMC PPS
DEVICES I— SIGNAL CONVERSION UNIT (€
1|
ENTRANCE [4 —‘ BES BITEBLOCK
WARNING L | {SMALL MOVEMENT
LARGE MOVEMENT
LIGHTS HARDWARE TR |
INTERLOCK UNIT [TSB
CONSOLE [¢— t
SWITCHOVER
UNIT [SAFETY INTERLOCK | PT1 SUBNET
COMPUTER A 4
¢ SAFETY INTERLOCK SYSTEM THERAPY (g SUPERVISORY
CONSOLE SYSTEM
PHYSICS
CONSOLE uEes
T RADIOTHERAPY NETWORK

Figure 3.1: Schematic layout of the proton therapy control system

Section 3.1 covers the console system and shows how the supervisory sys-
tem is interfaced to the Therapy Safety Bus. Section 3.2 discusses how safety
is enforced in the Proton Therapy Control System through the Therapy Safety

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. THE NEW PROTON THERAPY CONTROL SYSTEM 8

Control System. The Range Control System follows in section 3 followed by
the Beam steering controller in section 4. Section 5 discusses the Dose Mon-
itor Controller and the chapter ends with section 6 which covers the Patient
Positioning System.

3.1 Console System (CS)

22 e =22 B =e

ENABLE PHYSICS TEST START STOP EMERGENCY BLEEPER ROOM ROOM
MODE MODE STOP ARM DISARM
— INTERFACE WITH PRESET PRESET PRESET SOBP
J1i| SWITCHOVER DOSE TIME RANGE WIDTH
— UNIT
1 ELAPSED MEASURED U
~ RESEL TIME RANGE SYMMETRY
DOSE COUNT (of/2]
—] POEE RATE RATE SYMMETRY
J2 =
— DISPLAY DRIVERS
TSB/SS
INTERFACE
— DMC RCS BSC
Bl = INTERFACE INTERFACE INTERFACE
leeo0o0@@0@0@00@0@®O@
] TSB STATUS LEDS
Ja J5 J6 J7

Figure 3.2: Therapy Console

228 25 B ==

ENABLE PHYSICS TEST START STOP EMERGENCY BLEEPER ROOM ROOM
MODE MODE STOP ARM DISARM

INTERFACE WITH == | J1
SWITCHOVER UNIT —_

Figure 3.3: Physics Console

This system consists of the Therapy and Physics Consoles (Figures 3.2
and 3.3) which are used to manually start and stop treatment. Both consoles

present an interface for inputs from the operator through a number of switches
described below [5; 13]:

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. THE NEW PROTON THERAPY CONTROL SYSTEM 9
K1 J
D25 K3 CONSOLE < > m
BG4 """ SWITCHOVER | K2 J2 THERAPY |&
TERMINAL UNIT < " CONSOLE
BOX
“ A r' s A
J7 |36 135 7
J1 TSBTO @
CONTACT PAIR PHYSICS SPG =
INPUTS & OUTPUTS CONSOLE 5
3
z
(@]
TSB m
DISPLAY
scu “ INTERFACES
|| L |
DMC RCS BSC /O CARD
HIU TSB | —
ETHERNET ||
INTERFACE 33
0
=3
SIU ETHERNET 33
INTERFACE Qe
PT1 SUBNET 2
SUPERVISORY
THERAPY SAFETY ity

CONTROL SYSTEM

Figure 3.4: Console Switchover Unit

1. Console enable which activates the console (makes it the active console
driving the TSB lines). This is an ON/OFF switch which is mutually
exclusive between the Therapy and Physics consoles i.e. only one console
can be switched ON at any given time, not both. To accomplish this both
consoles have an identical lock for the console enable switch and only one
key is used, which can only be removed when in the off position [13].

2. Emergency stop for switching off the irradiation and enforcing a complete
shutdown of the acceleration of the beam. It causes an abrupt halt of the
beam thus providing a more drastic method of stopping the beam and
should only be used for emergencies. It is a red mushroom-type, latching
push-button which is normally closed until the button is pressed. The
switch mechanically latches in the open state once the button is pressed.

3. Physics mode for toggling the therapy control system between physics
and clinical modes of operation. It is selectable from both the Therapy
and Physics consoles and only one key is used between both consoles.

4. Room disarm for disarming the vault.

5. Room arm for arming the vault. This button switches on the BEAM
ON warning light at the vault entrance to indicate that treatment is in
process and no unauthorised entry.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. THE NEW PROTON THERAPY CONTROL SYSTEM 10

6. Start which switches the irradiation on (if permissible). It is a non-
latching push button which is illuminated as long as the beam is switched
on.

7. Stop for switching off the irradiation. Just like the Start button, it is
also a non-latching push button. The Stop button causes a gradual stop
of the beam by inserting the Faraday cups and beam shutter into the
beam.

The outputs of the switches of the consoles are connected to the therapy
safety control system through the console switch-over unit. The purpose of
the switch-over unit is to ensure that the outputs of the consoles are mutu-
ally exclusive, viz. only one console may be activated at a time [5]. Besides
providing a means to start and stop treatments, the therapy console is also
capable of displaying real-time information about the dose delivery and beam
characteristics to the operator.

Most importantly, the therapy console provides an interface between the
supervisory system and the therapy safety bus.

3.2 Therapy Safety Control System (TSCS)

This is arguably the most important subsystem of the Proton Therapy Control
System. Its primary objective is to ensure the radiation safety of the patients
and personnel and to switch the beam on and off. This system consists of
the Safety Interlock System(SIS) and the Signal Conversion Unit(SCU). The
Signal Conversion Unit links the SIS to a number of external devices (Figure
3.5) |5; 13];

e Interlock and safety devices such as numerous interlock switches in the
beam delivery system and elsewhere in the treatment vault, as well as
room clearance, arm and disarm switches and many other devices in the
proton therapy facility.

e Consoles through the console Switch-over Unit.

e Faraday-cups controller which is an electronic crate controlling the high-
energy beam stopping devices in the last section of the beam line to the
treatment vault.

e Main cyclotron interlock system which is the interlock system for the
accelerator equipment and beam transport lines.

e Other subsystems of the therapy control system which are mostly con-
nected to the TSCS via the Therapy Safety Bus (TSB), while others are
connected through hardware interfaces.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. THE NEW PROTON THERAPY CONTROL SYSTEM 11

ACCELERATORS & BEAM
LOW-ENERGY BEAM
STOPPING DEVICES

HIGH-ENERGY BEAM BEAM DELIVERY
STOPPING DEVICES |™=| SYSTEM & PPS

A Iy
A 4 A 4
MAIN CYCLOTRON SAFETY OK FARADAY-CUPS
INTERLOCK SYSTEM > CONTROLLER
.
THERAPY OK CUPS CONTROL BUS
FC19 REQ FCLIN
TEST MODE FC10UT
NAC SAFETY OK FC2 IN
FC19 IN FC2 OUT
FC19 OUT > SICIAS %?“';‘_IYERS'ON | shuttErR N
SHUTTER OUT
ROOM CLEARANCE DEVICES | INTERLOGK INPUTS

ENTRANCE WARNING LIGHTS -

A A

CONSOLE SWITCHOVER UNIT

A

THERAPY SAFETY BUS

SAFETY INTERLOCK
SYSTEM PT1 SUBNET

THERAPY SAFETY CONTROL SYSTEM

Figure 3.5: Therapy Control System Interfaces

Figure 3.7 illustrates the physical implementation of the TSCS. Both the
SCU and SIU consist of 19 inch rack-mountable crates that house the spe-
cialised electronic components for these units. The SIS is implemented as a
19 inch rack-mountable SABUS system (). The hardware components of these
units may briefly be summarized as follows:

e The SCU is equipped with nine line driver cards that are used to convert
contact-pair signals to TTL signals, or vice versa. Six of these cards
are ‘input’ cards, while the other three are ‘output’ cards. Each card
provides eight line drivers, or signal conversion channels.

e The SIU is equipped with a 5V and 24V power supply unit, and a printed
circuit board that implements the TSB current source unit, the voting
logic unit and the cups control unit.

e The SIS is equipped with an ETX computer module and four SABUS
I/O cards. Three of these I/O cards are configured as input cards, while
the fourth is used as an output card. Each I/O card provides 24 digital
input or output channels that are grouped into three ports of eight bits
each.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. THE NEW PROTON THERAPY CONTROL SYSTEM

As the name suggests, the Signal Conversion Unit provides signal converters
that convert the contact-pair inputs from the external devices to single-ended
TTL input signals for the safety interlock system and vice-versa as shown in
Figures 3.5, 3.6, 3.7 and 3.8.

The safety interlock system consists of the Safety interlock computer at-
tached to the hardware interlock unit. The safety interlock computer is an
embedded computer module connected to the PT1 subnet whereas the HIU is

connected to both the SCU and TSB.

INTERLOCK INPUTS

ROOM CLEARANCE DEVICES BG4

ENTRANCE WARNING LIGHTS

TERMINAL

CONSOLE SWITCHOVER UNIT

BOX

NAC SAFETY OK

THERAPY OK

FC19 REQ MCIS

FC19 STATUSES

CUPS CONTROL BUS
FC1/2 & SHUTTER STATUSES }FCC

CONTACT PAIR
INPUTS & OUTPUTS

SIGNAL CONVERSION UNIT (SCU) ‘

I ' TTL SIGNALS

vy 1

‘ HARDWARE INTERLOCK UNIT (HIU) }——

L

‘ SAFETY INTERLOCK COMPUTER (SIC) }——

NETWORK

SAFETY INTERLOCK SYSTEM (SIS)

Figure 3.6: Therapy Safety Control System - Layout

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. THE NEW PROTON THERAPY CONTROL SYSTEM 13

CONTACT PAIR
MCIS, FCC &
INPUTS & OUTPUTS BG4 REST OF
TEF;’\SL’(\‘AL THERAPY
SYSTEM
BSW
g TSB
&) KEYBOARD
o MONITOR &
MOUSE |
K3
. =] ~ SAFETY]J
@ HIU OUT - |&| INTERLOCK
o K 3 COMPUTER (SIC) [I—F— >
HIU IN 1 w g g
832 S
HIU IN2 S 2
©™ |x| TSB INTERFACE B < =
2Z ¥ UNIT(TSB-U) c
Y 4 P
] Cl =
g 5 e
2 R
o
B0
SIGNAL CONVERSION UNIT (SCU) 1
L3
POWER SUPPLY UNIT c
K10 5V & 24V |
THERAPY SAFETY CONTROL SYSTEM ?
SAFETY INTERLOCK SYSTEM (SIS)

Figure 3.7: Therapy Safety Control System - Crates

sv 2av
SCU OUTPUT (TTL)
—_— EXTERNAL
W DEVICE
LED STATUS @
INDICATOR
BG4 NPT b
TERMINAL CONTACT
BOX PAIR
fin
INPUT CHANNEL =

Figure 3.8: Signal Conversion Unit Input Channel

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. THE NEW PROTON THERAPY CONTROL SYSTEM 14

Table 3.1 depicts the hardware interlock unit with a description of its sub-
units.

‘ Sub Unit ‘ Description ‘

Signal Interface Unit An I/O interface device equipped with a
number of TTL compatible I/O ports that
are addressable by the safety interlock com-
puter. The I/O ports are connected to some
of the other subunits of the hardware inter-
lock unit and most of the TTL data lines of
the SCU thus allowing the safety interlock
computer to interface to these subunits and
the SCU.

TSB Current Source Unit | Provides the current sources that drive differ-
ent lines of the TSB. Each of these circuits
drives an LED that indicates the status of
the line. This unit also converts the status
of the TSB lines into TTL input signals to
the safety interlock computer.

Voting Logic Unit Its primary objective is to generate the
output signals that cause the beam to be
switched on and to ensure that the beam
is automatically stopped when any interlock,
functional or hardware failure is indicated by
the TSB, the cyclotron interlock system or
the safety interlock computer. It consists
of the logical circuits that combine certain
signals from the cyclotron interlock system
and the faraday cups controller to determine
whether the beam should be switched on and
whether it is safe to do so.

Cups Control Unit Is a microcontroller responsible for extrac-
tion or insertion of the high-energy beam
stopping devices based on a single request
signal from the voting logic unit thus simpli-
fying the communication between the safety
interlock computer and the faraday cups con-
troller.

Table 3.1: Hardware Interlock Unit

The safety interlock computer uses software to process and draw logical
conclusions from the input signals and to derive the necessary output signals

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. THE NEW PROTON THERAPY CONTROL SYSTEM 15

from these conclusions. Through the PT1 subnet, the safety interlock com-
puter may at any time be prompted by the supervisory system to provide
an instantaneous copy of its state (as determined by the input and output
signals).

3.3 Range Control system(RCS)

This system consists of the energy degrader controller, double-wedge system
and range monitoring unit which operate together to ensure that the beam
has the required range during treatment.

3.3.1 Energy Degrader Controller (EDC)

This system consists of two synthetic graphite wedges mounted back-to-back
on a drive mechanism (Figure 3.9). The wedges are driven in or out of the
beam by a stepper-motor controlled by the EDC. The EDC uses input from
the different sensors on the drive mechanism of the wedges to determine the
relative position of the wedges, and through the use of a calibration curve, it
relates the Ry range of the beam to the position of the wedges |5]. Through
the use of the EDC sofware an operator can create or renew the calibration
curve by entering the measured Rs ranges corresponding to different wedge
positions.

The EDC obtains the required beam type, SOBP width and beam range for
a particular treatment field from the supervisory system through the RPC
network interface. Connection to the range monitoring unit is accomplished
through a serial interface which is used to send the required beam type, SOBP
width and beam range to the range monitoring unit before treatment starts.
After treatment has started, the EDC uses the serial interface to receive real-
time measurements of the beam range, which enables it to adjust the wedges
so that the measured range continually matches the required range. Thus,
the energy degrader controller, double-wedge system and range monitoring
unit operate together as a closed-loop range control system to ensure that the
beam has the required range during treatment (Figure 3.9).

3.3.2 Range Monitoring Unit (RMU)

The range monitoring unit is connected to the multi-layer Faraday cup (MLFC)
of the new range monitoring detector and also to the rotation sensing unit of
the range modulator assembly [5]. The MLFC is a measuring device consisting
of a series of copper plates alternating with insulating layers of Lexan, which
are concentric to the optical axis of the beam and have a small circular aperture
in the middle. The MLFC is part of a cylindrical vacuum chamber located in
the new range monitoring detector, and its copper plates are connected by

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. THE NEW PROTON THERAPY CONTROL SYSTEM 16

Lead plate

Lead plate
Lead plate Aluminium
\ ./ backing plate
Beam
L el S

Wedge drive
/ mechanism
Wedges

(a) Shoot-through configuration (b) SOBP configuration (c) Beam’s-eye-view of lead plate

Figure 3.9: Double-Wedge System with scattering lead plate

thin insulated wires to a vacuum-tight multi-pin feedthrough connector that
is mounted on the side of the vacuum chamber thus allowing the charges
collecting on these copper plates to be conducted by low-noise signal cables to
the multi-channel integrator circuits of the range monitoring unit. The range
monitoring unit uses these signals from the MLFC to determine or measure the
Rs5q range of the beam. The range monitoring unit uses the serial interface with
the energy degrader controller to receive the required beam type, SOBP width
and beam range before treatment is started, and to transmit the measured
beam range during treatment. For SOBP beams it samples the beam range
for each revolution of the range modulator wheel (see Figure 3.10). It uses the
signals from the rotation sensing unit to determine when each revolution starts
and stops. For shoot-through beams it uses an internal clock to determine the
rate at which to sample the beam range.

Beam

Aluminium collar

Stepped surface
of Perspex blade

.

Flat surface
of blade

Figure 3.10: Range-Modulator wheel

3.4 Beam Steering Controller

This system has a network interface to the accelerator control network which
allows it to keep the beam aligned with the optical axis of the beam delivery
system. It achieves the beam alignment by using signals from the segmented

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. THE NEW PROTON THERAPY CONTROL SYSTEM 17

ionization chambers to determine the position and symmetry of the beam and
then using that information to regulate the current through the coils of the
two steering magnets and hence keeping the beam in place.

It is equipped with a power supply unit that provides the required high
voltage to the segmented ionization chambers. The power supply uses a feed-
back circuit and a voltage comparator to verify the continuity of the circuit
that supplies high voltage to the chambers. If the continuity of this circuit is
interrupted, the beam steering controller uses the TSB to stop or prohibit the
treatment.

This system uses multiplicative calibration factors to adjust the gain of each
segment of the ionization chambers. These factors are used in the software of
the system to increase or decrease the measured reading of each segment and
new calibration factors can be entered by the operator through the software
while the beam is turned on [5|. The beam steering controller provides a real-
time graphical display of the beam symmetries and detector count rate, and
uses the TSB to stop the treatment if any of the symmetry ratios deviates
from unity by more than the allowed tolerance value. It obtains the required
beam type, SOBP width and beam range for a particular treatment field from
the supervisory system through its network interface to the PT1 subnet.

3.5 Dose Monitor Controller (DMC)

The primary objective of the DMC is to monitor the dose rate as well as
the total dose delivered to the patient using signals from the two ionization
chambers. It consists of two dose monitoring modules, one per chamber, which
have internal clocks to measure elapsed irradiation time, and it has non-volatile
recorders for displaying integral dose delivered should there be a power failure
[5]. Each module has a power supply unit providing the required high voltage
to the chambers. To verify the continuity of the circuit that supplies the high
voltage to the chamber, the power supply unit uses a feedback circuit and a
voltage comparator. If the continuity is interrupted, the DMC uses the TSB
to stop or prevent treatment.

The operational parameters of the DMC may be set using either of two
methods; through the PT1 network interface by the supervisory system or
through the local keyboard by an operator. The parameters include the re-
quired treatment dose, maximum allowed dose rate and treatment time, and
the calibration factors that should be used for the dose monitoring chambers
[5].

This system uses the TSB to stop treatment should the preset dose or
treatment time be reached, or if the dose rate exceeds the preset value for the
maximum allowed dose rate. To display some operational parameters such as
the preset treatment time and dose measurements, the DMC uses a display
interface module.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. THE NEW PROTON THERAPY CONTROL SYSTEM 18

3.6 Patient Positioning System

Patient positioning at iThemba LABS makes use of a motorised treatment
chair to which the patient is fixed to an immobilization device. A multicamera-
stereophotogrammetry (SPG) system is then used to position the treatment
chair (hence the patient) so as to align the treatment beam with the tumour.
The SPG system makes use of a custom-made marker-carrier fitted with ra-
diopaque and retro-reflexive markers which is worn by the patient during treat-
ment planning and irradiation so as to acquire the position of the tumour with
respect to the markers and hence be able to align the tumour to the treatment
beam by moving the chair. The marker-carrier is securely attached to the
patient with the help of the bite-block vacuum system |[8].

The following subsections briefly discuss all the units of the patient posi-
tioning system.

3.6.1 Bite-block Vacuum System

This system is responsible for securely attaching the marker-carrier to the
patient. It achieves this by evacuating the air between the patient palate and
the bite-block into a vacuum pump. This effectively causes the marker-carrier
(affixed to the bite-block system) to attach to the patient and hence respond
to any of the patient’s movements.

It comnsists of a gauge, pressure regulator, a three-way valve, and an elec-
trical control unit [5]. The control unit connects to a solenoid which actuates
the valve. When the solenoid is activated, the three-way valve connects the
bite-block to the vacuum-pump thus causing the bite-block to attach to the
patient’s palate.

The control unit operates the system using a number of switches as illus-
trated below.

The pump on switch turns the power to the vacuum pump on or off while
the vacuum on switch latches two relays in the control unit. The first relay
(labelled 6 in Figure 3.11) activates the solenoid of the three-way valve thereby
connecting the air line from the bite-block to the vacuum pump. The other
relay closes a contact pair in the control unit which provides a bite-block inter-
lock signal to the safety interlock system indicating the successful connection of
the bite-block to the vacuum pump. The vacuum release is a hand-held switch
with which the patient releases the relays so that the solenoid of the three-
way valve is deactivated causing the bite-block to detach. The last switch,
interlock override, suspends the input to the safety interlock system thereby
permitting treatments to proceed even when the vacuum system is not oper-
ational. When the supervisory system and the therapy safety bus have been
fully implemented, the interlock override switch will be permanently removed.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. THE NEW PROTON THERAPY CONTROL SYSTEM 19

VACUUM PUMP

PRESSURE
%’ GAUGE
3-WAY VALVE

| b
> ! [SALIVA
i EZE TRAP

REGULATOR

POWER TO

PUMP TOBITE-

BLOCK

POWER TO
SOLENOID
\,71 6
PUMPON [°>—————————— CONTROL
POWER) UNIT s
SUPPLY VACUUM ON b F——————9 o3 INTERLOCK OVERRIDE
UNIT 24V 3
e 4
- VACUUM RELEASE
‘ QUICK
BITE-BLOCK RELEASE
INTERLOCK CONNECTOR
CONTACTS
EQUIPMENT IN BASEMENT COMPONENTS ON CHAIR

Figure 3.11: Bite-block Vacuum control system

3.6.2 Chair Control System

As the name suggests, this system controls the motorised treatment chair on
which the patient is placed for treatment. It controls the five motors of the
chair with stepper-motor control modules, one for each motor. The motors
allow the chair to make translations in three orthogonal directions, a rotation
about the vertical support pillar of the chair, and a backrest rotation, all
totalling five degrees of freedom.

The chair control system is also equipped with a sixth stepper-motor control
module which controls the motor that is responsible for the rotation of the
treatment collimator. Each of these control modules is used to transmit low-
voltage control signals to a translator driver, which translates these signals into
the high-voltage pulses needed to drive the stepper-motor that is connected
to it. The various limit switches of the chair are connected to the five chair
control modules. These switches are used to determine the travel range of each
axis of motion and to calibrate the chair [5; 7; 14; 15|. The angular position
sensors of the treatment collimator assembly are connected to the collimator
control module. These sensors are used to determine the angular position of
the collimator and to calibrate the collimator rotations [5; 14].

The chair control system is also equipped with a hand-pendant that allows the
operator to select between the different modes of operation of the system and
to manually control the movements of the chair. When the system is switched
to the manual mode, the hand-pendant may be used to issue specific chair
movement commands to the system. When the system is switched to the SPG
mode, it operates under the control of the SPG system through the network
interface. The hand-pendant may also be used to align the chair, to lower it

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. THE NEW PROTON THERAPY CONTROL SYSTEM 20

beneath the floor of the treatment vault, or to raise it above the floor. The
chair alignment procedure enables the system to locate the reference position
for each axis of the chair (using the limit switches).

Furthermore, the chair control system provides an emergency stop function
that may be used to stop the motions of the chair and collimator at any time,
irrespective of the mode in which the system is operating. This function is
immediately executed when any one of the two emergency stop switches on
the chair, or the emergency stop button of the hand-pendant, is pressed [14].
It provides two main functions while operating in the SPG mode, namely
the patient alignment function and the chair talk function [14]|. In brief, the
purpose of the patient alignment function is to use the input from the SPG
system to calculate the chair motions and collimator rotation that will result in
the correct treatment setup of the patient, and then to execute these motions
when instructed to do so by the SPG system. The purpose of the chair talk
function is to execute arbitrary chair and/or collimator motions as specified
by the SPG system.

3.6.3 Stereophotogrammetric (SPG) System

It is a calibrated multi-camera system capable of acquiring and processing syn-
chronized video images from any three of its nine CCD cameras. The cameras
are calibrated by means of a special calibration cube that can be accurately
positioned at the treatment isocenter. The SPG program allows the operator
to select three suitable cameras to be used during treatment. The suitabil-
ity of the cameras depends on the required direction of the treatment beam
relative to the patient. The program uses the selected cameras to acquire
video images of the marker carrier that is attached to the patient so as to use
image processing and stereophotogrammetry techniques to derive the treat-
ment room coordinates of those markers that are visible in the video images.
These coordinates are then used to calculate the transformation matrix be-
tween the patient coordinate system and the beam coordinate system [16]. It
then transmits this transformation (consisting of a translation matrix and a
rotation matrix), as well as the basic parameters of the treatment beam, to the
chair control system as part of the instruction to execute the patient alignment
function using RPC communication [5; 14].

Through RPC network communication the SPG program can also instruct
the portal radiographic system to acquire radiographs of the patient and to
determine the possible errors in the treatment setup from these images. These
errors are send back to the SPG program so that it may apply the necessary
corrections to the treatment setup |5; 14|. During irradiation it uses video
streams from the selected cameras to monitor the patient, and if the patient
moves out of treatment position it stops the beam by sending the necessary
signal to the safety interlock system using one of two relay contacts (small

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. THE NEW PROTON THERAPY CONTROL SYSTEM 21

movement and large movement relays). For the beam to be switched on both
relays must be closed, and when a small patient movement occurs, the SPG
program stops the beam by opening the small movement relay, whereas both
the small movement and large movement relays are opened when a large move-
ment occurs [5].

3.6.4 Portal Radiographic (PR) System

It consists of an x-ray imaging unit and an image registration system. The
x-ray imaging unit is used to acquire portal radiographs of the patient, while
the image registration system uses these images to estimate the errors in the
patient treatment setup and hence to verify the correctness thereof [5; 16].
The major components of the x-ray imaging unit and their respective functions
may be briefly summarized as follows:

e X-ray tube: provides the exposures needed for x-ray imaging. It is a
component of the beam delivery system and can be driven pneumatically
in and out of the beam path.

e X-ray generator: it is the high-voltage switching power supply for the
x-ray tube. It is equipped with a control desk that allows the operator
to set the required exposure parameters and to initiate the exposure
sequence by pressing the button of a hand-held switch that is connected
to the desk.

e Flat-panel detector: serves as the electronic portal imaging device (EPID).

e Image acquisition computer: accepts the raw image data from the EPID
and applies various corrections to the raw images to produce the portal
radiographs.

e Synchronization interface module: it is a special module of the x-ray
generator that allows the operation of the EPID to be synchronized with
the exposure sequence of the generator so that the image accumulation
period properly overlaps with the x-ray exposure period.

e X-ray hoist mechanism: allows the EPID to be inserted into the beam
path downstream from the patient or to be retracted from this position.

e X-ray control unit: drives the stepper-motor of the hoist mechanism. It
also serves as an interlock for the x-ray imaging unit to prohibit any
x-ray exposures when the EPID and the x-ray tube are not correctly
positioned for the acquistion of the portal radiographs.

The image acquisition computer is equipped with the following software
and hardware [5]:

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. THE NEW PROTON THERAPY CONTROL SYSTEM 22

e [mage acquisition software that provides the functions needed to acquire
the raw images and to apply corrections to the raw images to compensate
for line noise, detector pixel defects, and variations in the bias offsets
and gains of the detector pixels. It also allows for the acquisition of the
calibration images and defect maps that are needed for this purpose, and
to save this calibration data on the system.

e Software support for an application programming interface (API) that al-
lows a remote computer to call, via a network link, the image acquisition
and calibration functions and to transfer the corrected images (i.e.,the
portal radiographs) to the remote computer.

e A data acquisition card that provides the data interface with the EPID.
This card sends the necessary control signals to the EPID and allows the
image data to be downloaded to the image acquisition computer.

e An I/O card that provides the input and output channels needed to
synchronize the operation of the EPID with the exposure sequence of
the x-ray generator. The synchronization interface module provides the
hardware interface between the x-ray generator and the I1/O card, while
the image acquisition software provides a software interface between the
[/O card and the data aquisition card to which the EPID is connected.
The link between the synchronization module and the I/O module passes
through the x-ray control unit to provide the necessary interlock function
as described above.

The image registration system is a multi-processor computer equipped with
specialized software to perform the following tasks [5|:

e Communicate with the image acquisition computer and the SPG system
via the network interface.

e Calibrate the x-ray imaging unit. These calibration functions are used
to determine the transformation matrix between the coordinate system
of the fudicials (special calibration shapes on the calibration cube) of the
x-ray imaging unit and the coordinate system of the beam line, which is
needed for the proper and accurate positioning of a patient.

e Construct pre-operatively the ‘light slab’ data that are used during treat-
ment to efficiently generate digitally reconstructed radiographs (DDRs)
of the patient in slightly different treatment positions. The light slabs
are constructed from the CT data of the patient. A separate light slab
is created for each field in the treatment plan.

e Upon instruction by the SPG system, acquire portal radiographs of the
patient via calls to the image acquisition computer.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. THE NEW PROTON THERAPY CONTROL SYSTEM 23

e Estimate the errors in the treatment setup for the given treatment field
and communicate these errors to the SPG system. The errors in the
treatment position of the patient are estimated by registering DRRs for
different positions of the patient against the portal radiograph showing
the observed position and searching for the DRR (and hence the posi-
tion) that gives the optimal match. The differences between this optimal
position and the required position express the errors in the treatment
position of the patient. The errors in the orientation of the treatment
collimator are estimated by using a contour matching algorithm to cal-
culate the difference between the observed and required orientations of
the collimator aperture [5].

Stellenbosch University http://scholar.sun.ac.za

Chapter 4

Therapy Safety Bus Simulation
Rig

TSB Simulation Rig is a proof-of-concept prototype for the actual therapy
safety bus, which has been implemented so as to simulate all interlock lines for
the proton therapy system in order to test the TSB configuration functionality
of the supervisory system. It is a custom-made ‘box’ equipped with control
switches, connectors and status LEDs as will be described in the following
sections. Section 4.2 describes the operational specifications of the rig followed
by section 4.3 which describes all the rig’s physical components.

4.1 Design

Figure 4.1 depicts the schematic layout of the TSB rig showing how all the
connectors, switches and status LEDs are connected together, and how the
entire box is interfaced to a PC. An Eagle Technology PCI 848 1/O card is
used to exchange information between the PC and the rig thus enabling the
PC (supervisory system) to sense and control interlock lines. With regard to
the supervisory system, the SHV and BNC connectors are irrelevant hence will
not be mentioned in this discussion.

24

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. THERAPY SAFETY BUS SIMULATION RIG
PERSONAL COMPUTER
/0 CARD
OUTPLTS INPUTS
.'—A'—\ I_A_\
SHV B2 () 1
TRy t‘ nw ‘ i
(o)l o |
' = Bypass/
SHV A2 (B}— = MANUAL
Q i CONTROL
SHV AL (31— T— UNIT
BNCE (i—"— cpamBer | ‘
BNCA {5S* | SOURCES | cu
ot g
c13 c1 013 o1
DBISF il
Ty
DB15F Tl ©T13
] (
~
1 POWER LEDs TSB SIMULATION RIG

Figure 4.1: Therapy Safety Bus Simulation Rig

25

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. THERAPY SAFETY BUS SIMULATION RIG 26

4.2 Operational Specifications

The TSB simulation rig consists of thirteen (13) current source lines of 15mA
each, two (2) chamber current source lines of 200nA each whose current can
also double to 400nA, chamber leakage current of 100pA per chamber, a PC
I/O interface, and a High Voltage (HV) feed-through.

4.3 Description

The box consists of four panels; front, rear, left and right panels. The front
panel, which is the most populated panel, hosts 13 switches for the 13 current
sources for each of the TSB lines (CS 1—13). It also has 13 red LEDs to indicate
the status of each CS line, whereby an On state of the LED denotes that the
line is active. Also present on the front panel are 13 switches which control
each TSB line [CON 1 — 13| and 13 green LEDs to indicate the status of each
control line. There are also 3 switches for the chamber current sources [CHAM,
A _EN, B_EN] together with 3 green LEDs to indicate their status. 3 switches
for the chamber current x2 Control [x2 EN, Ax2, Bx2| with 3 accompanying
green LEDs to indicate their status can also be found on the front panel. The
chamber current x2 control switches are for doubling the current of either
chamber current source or both to 400nA. Sensing of the TSB lines [SENSE
1 — 13] is indicated by yet 13 more green LEDs, and lastly 1 amber LED
indicates whether the front panel is selected |BP|, whereby On means front
panel is selected while Off denotes PC selection (for I/O operations).

The rear panel only consists of 1 power connector including a switch and
fuse, and 1 PC interface connector (DB25).

The left panel is dedicated to treatment simulations and consists of 1 TSB
line CS output connector conl for simulation purposes, 1 TSB line input con-
nector con2 from simulation current sources, or from system, and 1 function
select switch to select between front panel or PC simulation. When front panel
simulation is selected, the BP LED on the front panel lights up.

Lastly, the right panel hosts 1 TSB CS output connector CON3 to System,
2 BNC connectors for chamber simulation, and 4 SHV connectors for HV
simulation.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5

Supervisory System Design and
Implementation

This chapter is about the design and implementation of the new supervisory
system for the proton therapy facility at iThemba LABS. It starts off with
section 5.1 which outlines functional and non-functional requirements of the
supervisory system followed by section 5.2 which discusses the design of the
system. The chapter ends with a discussion of how the first version of the
supervisory system was implemented.

5.1 Requirements Analysis

5.1.1 User Requirements

The Supervisory System is the central system of the proton therapy treatment
unit that coordinates and configures all other systems with beam parameters
and treatment information needed to ensure a correct and safe irradiation
of a patient during treatment. It also collects, records and verifies all the
necessary treatment information after any successful or otherwise irradiation
session. Furthermore, it acts as a gateway/proxy between all other subsystems
of the proton therapy control system and the radiotherapy data-store server
connected to the central switch of the radiotherapy network [5; 17|. Any system
which requires patient-specific information from the data-store server does so
by issuing a request to the supervisory system which in turn authenticates
the system and retrieves the data from the server on the requesting system’s
behalf. This way, access to shared data is well managed, there is a high
immunity against deadlocks and there is a reduced possibility of ending up
with incorrect data in the database [18|.

27

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION28

5.1.2 System Requirements

The functional requirements of the new supervisory system are outlined be-
low [19];

User and attribute-based access control: each and every user of the sys-
tem (medical physicists, radiation therapists and treatment planning en-
gineers) will be authenticated and granted access to only the functionality
they are authorised to use.

Use of a bar-code scanner to identify treatment components in order to
minimize the possibility of human error during the treatment process.

Communication with the patient data-store to retrieve treatment files
and records so as to load patient treatment information. Also to retrieve
patient-specific files on behalf of other subsystems of the proton therapy
control system. With the exception of the treatment record, all files are
generated externally from the supervisory system (i.e. are created by
other systems such as the treatment planning software), thus no editing
of patient data will be allowed by the supervisory system except for
updates on treatment records.

Communication with the DMC to send configuration information such
as CVolt factors, and temperature and pressure readings.

Communication with the SPG system to send configuration information
and act as a proxy between the SPG and data-store.

Communication with the PR (X-ray) system to send configuration infor-
mation and act as a proxy between the PR system and data-store.

Communication with the EDC to send configuration information.
Communication with the BSC to send configuration information.

Configure the Therapy Safety Bus so as to signal whether it is safe to
administer treatment and whether other systems have been configured
successfully.

Communication with the SIS so as to act as its slave monitor thus dis-
playing statii of interlock lines.

Figure 5.1 illustrates interaction of the supervisory system with its major
actors through a UML use-case diagram.

The non-functional requirements of the supervisory system are the organi-
zational requirements .vis those requirements specific to iThemba LABS Med-
ical Radiation and constraints on its software projects. These requirements
involve implementation-specific issues as well as interoperability issues with

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION29

Supervisory System

L

*

>

Delete User

Administhatsr

>iay§)system
%
EDC

Medical Physicist

Radiation Thi N
* Read Delivered Dose

Select Treatment
Field to Administer

Validate Treatment
Equipment

Search for file Y i
N
\/
Retrieve File
[

«Nses»

Data-store

View status of
Interlock lines

Update Treatment "/
Record

TSB

Figure 5.1: UML Use-case Diagram - Supervisory System

existing software [20; 21]. Table 5.1 outlines the major non-functional require-
ments of the supervisory system [20].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION30

Non-functional Requirements ‘

The GUI of the supervisory system shall be implemented using Qt/C-++
widgets set. This is because Qt provides signal/slot mechanism which
allows for simple inter-process and event-driven communications. All
functionality of the system will be through menu items and user-centric
forms. Also, Qt/C++ is the prefered developement environment because
it provides open source application building tools and can easily be inte-
grated into the entire proton therapy control system.

The network communication with other subsystems shall be through
ONC-RPC method calls. This allows for a well distributed system using
TCP/IP socket programming as well as a robust client-server architec-
ture.

Configuration of the Therapy Safety Bus shall be via a PCI interface on
the supervisory system computer connected to an ETX-SABUS system.
The plug-in board of the PCI interface should have opto-isolated outputs
to allow for interfacing capability with the TSB.

Table 5.1: Non-functional Requirements

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION31

Incorrect Dose
Administered

Incorrect Preset
Dose send to
DMC

Incorrect value
read from
Treatment File

Preset Dose
Computation Error

rong Prese
Dose recorded
in Treatment
File

Correct value
read but for
different Field

Algorithm Arithmetic
Error Error

Figure 5.2: Fault tree Diagram - Supervisory System

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION32

Fig 5.2 highlights some of the unwanted hazards/risks pertaining to the
supervisory system in the form of a fault tree analysis. Proton underdose and
overdose represent a single hazard, namely, ‘incorrect dose administered’, and
a single fault tree follows. States that can lead to the ‘incorrect dose’ hazard
are then linked with ‘or’ symbols to denote that any combination of the risks
can lead to the hazard.

5.1.3 Domain Requirements

These requirements are derived from the application domain of the supervisory
system, namely, proton therapy. In proton therapy control systems, dosimetry,
or the exact measure (and control thereof) of the amount of radiation admin-
istered to a patient is of paramount importance. If the dosimetric quantities
are defined as follows [1; 17; 22; 23; 24|;

N, = The number of a treatment plan. A given patient can have more than
one treatment plan. Thus, the numbers N, are needed to differentiate
between these plans. The plan numbers always lies in the interval N, €
[101,999].

N = Total number of treatment fields for a given treatment plan, with N <
99.

N, = Number of treatment fields from a given treatment plan that should be
delivered by a specific treatment unit. Thus, N =" N, and N, < 99.

M, = Number of treatment fractions for all those fields from a given treat-
ment plan that should be delivered by a specific treatment unit, with
M, <99.

a = The field index a € [1, N,] that sequentially enumerates the treatment
fields as they appear in a treatment file.

B, = The beam number of a treatment field having the field index « in a
treatment file, with B, € [1,99]. The numbers B, do not necessarily
start at one and do not necessarily form a contiguous or even ordered
sequence as a function of the field index . The beam number for a
specific field in the treatment plan is unique, thus no two fields in the
treatment plan can have the same beam number. Thus, for a particu-
lar treatment file, the relationship between B, and « is one-to-one and
therefore unique.

r = The index that specifies the treatment fraction under consideration for
a particular treatment unit. This number is always restricted to the
interval x € [0, M,]. The index x = 0 always represents the patient sim-
ulation fraction during which no real treatment is done (i.e., no doses are
administered). The real treatment fractions have indices Kk = 1,..., M,.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION33

D, = Total prescribed dose to be administered by the treatment field with
beam number B, and field index a € [1, N,].

d, = Prescribed dose per fraction for the field «, with d, = D, /M, given in
Monitor Units (MU).

At, = Prescribed treatment time per fraction for the field «. This is the
maximum time, measured in minutes, that the beam is allowed to be
switched on in order to deliver the dose d,,.

df, . = Preset dose for the field o during an irradiation session of the treat-
ment fraction x, with x € [1, M,]. It is the number of MU sent by the
supervisory system to the DMC, via the IN SETDOSE command, to
set the dose that should be delivered by the field o during a particular
irradiation session of the treatment fraction .

Ath = Preset treatment time for the field o during an irradiation session of
the treatment fraction x, with x € [1, M,]. It is the time, in minutes,
that is sent by the supervisory system to the DMC, via the IN SETTIME
command, to set the time that the beam is allowed to be switched on to
dilver the dose df, .. It is calculated as At} = Max((db, . /da) Ata, Atwin),
where the constant At;, is defined below. The function Max(z,y) re-
turns the largest value of its two arguments x and y.

Atmin = The smallest value for the treatment time, given in minutes, that
may be sent via the IN SETTIME command to the DMC.

dy . = Actual dose delivered by the field o during the irradiation session for
which the preset dose was given by df .. It is the dose measured by
the DMC immediately after the irradiation session is terminated. This
termination may occur long before the preset dose db, , is reached, where-

upon d,, , < d .. Upon normal termination of the irradiation session,
dp o = .+ Adg, x, with Ad, . 2 0.

d,'. = Approximate value for d; , as given by the mechanical counters of the
DMC.

ds . = The cumulative value of the actual doses delivered over all the irra-

diation sessions needed to complete the administering of field « for the
treatment fraction k.

Ad,, , = Dose overrun during the normal termination of an irradiation session
for which the preset dose was given by d_ ..

Adéh = A theoretical estimate for the dose overrun Ad, ,. This estimate is
the same for all treatment fractions ~ € [1, M,] and only depends on
nominal dose-rate that is required for the field a.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION34

I' = A predefined fraction that is used to specify whether the dose difference
db . —dg . > 0 should be eliminated by resuming the current fraction
k, or by distributing this difference evenly over the remaining fractions

k+1,...,M,. Upon a premature termination of the beam, the dose
difference db, , — d . should only be allowed to be evenly distributed

over the remaining fractions when df, — d; . < I'd,, otherwise this
difference should be eliminated by completing the the fraction k.

Drom — Nominal dose rate for the reference field, given in MU /minute. The
reference field is that field that is used for absolute dosimetry measure-
ments. The nominal dose rate D ;™ expresses the ideal beam current in

terms of a dose-rate measurement.

Dmax — Maximum dose rate allowed for the reference field, given in MU /minute.

O, = Output factor for the field . This is the ratio of the dose rate for
the field o to the dose rate for the reference field under identical beam
current conditions.

[7°™ = Ideal beam current required for the field o during any irradiation
session, given in units of nA.

Dgom = Ideal dose rate required for the field o during any irradiation session,

given in MU /minute. It can be calculated as D™ = O, D;leofm.

D;“ax = Maximum dose rate required for the field o during any irradiation
session, given in MU /minute. It can be calculated as D™ = O, Dmex,
The value of D™ defines the maximum dose rate that will be tolerated
by the DMC before it will terminate the beam. This value is sent by the

supervisory system to the DMC via the IN MAXRATE command.

%Aas = The maximum allowed dose difference, expressed as percentage, that
the DMC will between the readings from the dose monitors A and B
before it will terminate the beam.

Aap = The maximum allowed dose difference, expressed in terms of MU, that
the DMC will tolerate between the readings from the dose monitors A
and B before it will terminate the beam. This dose difference, calculated
as Axp = Max(%Axp df, /100, AR s sent by the supervisory system
to the DMC via the IN DOSD command. The constant AT is defined
below.

Ad™i® = The smallest value for the maximum allowed dose difference, given
in MU, that may be sent via the IN DOSD command to the DMC.

C'Vy This is the CVOLT factor that adjusts the gain of the dose monitor A to
compensate for the daily air-density changes in the monitor ionization

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION35

chambers that is caused by variations in temperate and pressure. It sent
by the supervisory system to the DMC via the IN CVOLT command.

CVy Same as for C'Vy, but for dose monitor B. It is sent by the supervisory
system to the DMC via the IN CVOLT2 command.

Atsys = The time taken by the beam delivery system to stop the beam when
the preset dose is reached. It is given in minutes and includes the re-
sponse time of the DMC to transmit the beam stop request after the
preset dose is reached, as well as the time needed by the the Faraday-
cup control system to accomplish this request. It is safe to assume that
Atgys is independent of the beam current. See Addendum A for the
measurement of Atgy.

Then the supervisory system’s dose algorithm should aim to achieve the
following two goals for each treatment field a [17; 19]:

e Minimize the differences |d;; — d,| separately for each fraction i =
1,..., N, but allowing for the dose difference d{;i —dg ; > 0 to be dis-
tributed over the remaining fractions when df, ; —d/ ; < f d..

a, i

N
e Minimize the difference |D, — Z dy il
i=1

5.2 Supervisory System Design

This section outlines the design of the new proton supervisory system high-
lighting the execution flow the program will follow when performing its tasks.
It is organized as follows; the section begins with a discussion of the architec-
tural design of the system in section 5.2.1. The top-level flow of the proton
supervisory system is illustrated in Figure 5.4 and explained in section 5.2.2
showing the role played by the supervisory system in the processes followed
for the proton treatment of a patient.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION36

Supervisory System
Shared Data
T T
r ! |
N A Ve y ' N g N
el Request Main nle
t Handler Program s |t
wl p Thread Thread p| W
o o
o o
r r r r
K e |k
P —
Application Process \
PCI
Users &
Groups

Figure 5.3: Architectural Design

CHAPTER 5.

Stellenbosch University http://scholar.sun.ac.za

1
Login (Start)

2)
Load Config.sup

I

3)
Load Dosimetry.sup

SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION37

5) No 4)
Disable Treatment
Loaded?
Block
6)
Main Menu
() Exit l
16) End Program
/ K \
Menu
\ Selection /

|

12)
SIS Slave
Screen Block

13)
Admin Block

8)
Physics
Menu.

)

9)
Park Supervisory

10)
Enter/Update
Dosimetry.sup

11)
Manual
Configuration

14) 15)
Simulation Treatment
Block Block

Y.

Figure 5.4: Supervisory System Top-Level Program Flow

CHAPTER 5.

Stellenbosch University http://scholar.sun.ac.za

SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION38

Start Admin Block

!

)

View Treatment Records

2)
Search for user
(User)

3
Confirm
Delete?

Delete User

4
Delete User

/o
\ Admin Menu

Add User

5)
Enter User Details

7
Add User

Edit User

8)
Search for user
(User)

9
Edit User Details

10)
Commit?

No

11)
Update User

Edit Dosimetry.sup

Edit Config.sup

12) 16)
Load/Create Load/Create
Dosimetry.sup Config.sup
13) 17)
EditEnter DMC EdivEnter
Calibration Data configuration data

Yes Yes
15) 19)
Update

Dosimetry.sup

Update Config.sup

20)
Search Record
files with
Patient ID

l

21)
Load selected
Treatment Record

22) No

Exit?

¢ Return to Main Menu
<

< 23) Exit ’

Figure 5.5: Supervisory System Admin Block

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION39

Start Treatment Block

1)
No 2 9 Reload
Continue? Notify User Dosimetry.sup

last constancy check
done > 8hrs ago

) 9 2
Aproved? Require Physicist's Basic Checks
approval.

Return to /_
Main Menu N\ n
26) Exit

Patient

Exit Menu
9) 8)
Load Treatment Select Patient
Record and Plan

Return to
b Notif lz.J)ser to Main fenu
Record Exists? y
Start with Simulation
12)
Unhandled 13)
Failure event Handle Failure before
Starting another Field.
No
No
15)
Determine
Fraction
17)
16)
Aval\a)b\e N Notify User.
Fraction? TREATMENT
) COMPLETED
18)
Select Field
19) -
Barcodin
’ Avazl\Aa)b\e o Notify User
Field? FRACTION
l ' COMPLETED
20)
Field Delivery
Loop

23)
More Fields?

No

22)
Notify User.
Handle Failure.

Figure 5.6: Supervisory System Treatment Block

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION40

Start Field Delivery Loop

Delivered dose >= Preset dose.

)
Compare Preset Dose,
Prescribed Dose per Fraction,
and Delivered Dose.

Delivered dose = 0

Default case.

(Delivered dose < Preset dose) Delivered dose << Preset dose.

!

18)
Update and Record

Goto Block 18,

No-
Delivered Dose = Preset Dose, 2)
Overrun?

Difference >
Gyl1007

Decrement Preset dose.
with Dose Overrun.

with Delivered Dose,
Clear Delivered Dose.

13) 14)
9 Noty User. Prompt User fo determine
Increment Cumulative Dose. Update Cumalative ‘whether to continue with
Dose. field or o distributed difference
‘over remaining Fractions.)
Declare Field INCOMPLETE.

Imadiation Block
Increment Cumulative Dose

)
Prompt User to determine.
ifto distribute overrun evenly

Continue?

Field Delivery Loop

Ko Continue?
over remaining fractions or
just the next fraction.

No

7
Reduce Preset Dose for
same fields in next fractions.
with overrun,

jpdate Cumulative
Dose. Distribute difference
over remaining fractions.

6)
carry over to
next fraction?

Declare Field COMPLETED,

10) Reduce Preset Dose for
Declare Field COMPLETED, same field in next fraction

with overrun.

Exit to Treatment Block

Figure 5.7: Supervisory System Field Delivery Loop

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION41

Start Irradiation Block

1)
Set Failure
bit ON.

l

2)
Systems Configuration
and Patient Positioning
Loop

|

3)
Notify User that
all systems are READY
TO START TREATMENT.

5) No 2
Pat watch-dog. BEAM ON?
Yes

6)

Pat watch-dog.

7
BEAM OFF?

8)
Check for
hardware failures.

I

9)
Read Delivered Dose
from DMC.

11)
Prompt User to provide
approximate value of
Delivered Dose as
read from DMC

13)
Inform User that monitor B overrun
Monitor A and ask which reading to take.

!

14)
Note User choice for Delivered Dose

12)
Monitor B > A?

No

15)
Record Delivered Dose.

!

16)
Write to disk
and flush buffers.

I

17)
Clear Failure Bit

Exit to Field Delivery Block

Figure 5.8: Supervisory System Irradiation Block

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION42

Start Systems Configuration and Patient Positioning Loop

L

1
Configure
SPG.

!

2)
Configure
X-ray..

l

3)
Wait till
patient is positioned
or timeout occurs.

No - Exit with Patient Positioning
FAILURE to Treatment Block

4)
Patient
positioned?

No 5)
K i Reposition?

6)
Retrieve and Record x-ray
image files from
X-Ray System.

!

7
CONFIGURE SYSTEMS.

|

8)
Pat watch-dog.

}

9)
Check for
hardware failures.

Patient still in position -

Exit to Irradiation Block 10)

Patient out
of position?

11)
Stop watch-dog.

Figure 5.9: Supervisory System - Systems Configuration and Patient Positioning
Loop

CHAPTER 5

Stellenbosch University http://scholar.sun.ac.za

SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION43

Start Configure Systems Block

1)
Configure BSC.

3

To Treatment Block

- Exit with BSC Configuration FAILURE

Reconfigure?
% Yes
4) 5) Yes 6) No - Exit with EDC Configuration FAILURE
Configure EDC. Failure? Reconfigure? 74
No
I Yes
7) 8) Yes 9) No - Exit with DMC Configuration FAILURE
Configure DMC. Failure? Reconfigure?
No
I‘ Yes
10) 11) Yes 12) No - Exit with TSB Configuration FAILURE
i N,
Configure Therapy Failure? Reconfigure? Y
Safety Bus.
No
13)
Start Watch-dog.

Exit to Irradiation Block

Figure 5.10: Supervisory System - Systems Configuration Block

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION44

Start Check for Hardware Failures Block

1
Check SABUS OK
line.
Return to calling environment No
<
N A
Yes
3) No 5)
Poke DMC. Add DMC Failure
) to Failure Object.
Yes
¢ Ok
6) No 8)
Poke EDC. Add EDC Failure
) to Failure Object.
Yes l
¢ 1%
9) 11)
Poke BSC. Add BSC Failure
' to Failure Object.
12) Yes - Exit with FAILURE object to Treatment Block
Before >
Irradiation?
d¢ 13)
Notify User.

Figure 5.11: Supervisory System - Check for Hardware Failures Block

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION45

Start Simulation Block

Return to
Main Menu I \ Exit / 1)
2) Exit
\) Exi ’ \ Patient Menu
4) 3)
Load Treatment file Select Patient and Plan
5)
Load Treatment Record

6)
Record Exists?

7
Create Treatment Record

9)
Notify User -
SIMULATION COMPLETE

8)
Simulation
Completed?

Yes

10)
Resimulate?

11)
Set current Fraction to zero.

l

12)
Configure SPG

|

13)
Wait till User signals
that Simulation is Complete.

v

14)
Retrieve and Record x-ray
image files from
X-Ray System.

|

15) Return to Patient Menu

SIMULATION COMPLETE.

Figure 5.12: Supervisory System - Treatment Simulation Block

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION46

5.2.1 Architectural Design

Figure 5.3 demonstrates the proposed architectural design of the system. The
supervisory system application process consists of two loosely coupled main
threads; the main program thread and the request handler thread. The main
program thread allows the intended users to interact with the system through
the GUI, thus it provides most of the functionality of the supervisory system.
Configuration of the Therapy Safety Bus is accomplished through the PCI
interface and is handled by the main program thread. The system will also
consist of a MySQL database into which the system users and their associ-
ated groups will be stored in order to provide user-based access control of the
system. The proxy functionality of the system will be handled by the request
handler thread which will publish RPC services/methods that other systems
can access remotely (e.g. file transfer requests by SPG or PR systems). Con-
figuration of other systems will be handled by the main program thread using
RPC through the network and transport layers. Lastly, to achieve inter-thread
communication, the system will employ global variables which could contain
shared data between the two main threads.

5.2.2 Top Level Program Flow

As previously discussed in Chapter 2, proton therapy at iThemba LABS con-
sists of five distinct steps; calibration of the patient positioning system, dosime-
try, treatment planning and preparation of the patient, treatment simulation,
and treatment delivery to the patient. The following subsections describe the
proton therapy treatment process highlighting the proposed solution for the
new proton supervisory system in each step.

5.2.2.1 System Calibration

The 200MeV beam is only available for proton therapy on Mondays and Fridays
from 08h00 to 17h00 and from 08h00 to 15h00 respectively. Thus Mondays
and Fridays constitute treatment days for proton therapy. Every treatment
day, the CCD cameras of the SPG system are calibrated using a small calibra-
tion cube on which sides radiopaque and retroreflective markers are attached.
Calibrating the SPG entails using this cube to determine the transformation
matrix between the coordinate system of the markers and that of the beam line.
It is this transformation matrix that the X-Ray Imaging system (Portal Radio-
graphic system) uses to check whether the patient has moved out of position
so as to signal the SPG to stop the beam and/or position the patient correctly.

This step of the proton therapy process does not require any input from
the supervisory system.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATIONA4T7

5.2.2.2 Dosimetry

This step involves daily constancy checks on the absolute calibration of the dose
monitors. The dose constancy should be 4= 2%, and the calibration equipment
should be positioned at the isocenter when the check is performed. The data
from the constancy check includes the temperature and pressure conditions
during the check, as well as the CVolt factors CV1 and CV2 | together with
the date and time when the constancy check was performed, and the name and
HPCSA registration number of the medical physicist who performed the check.

All these data is entered using either the Physics form/screen (in Figure
5.4 block 10) or the Admin form (in Figure 5.5 blocks 12 to 15). The output
of the dosimetry step/process is the dosimetry.sup file which is loaded by the
supervisory program after successful login by a user (refer to Figure 5.4 block
3). No patient treatments are allowed if the dosimetry file does not exist or
fails to load or if the time elapsed since the last constancy check, as specified
by the date and time in the dosimetry file, is more than eight hours. This
restriction does not apply to treatment simulations.

5.2.2.3 Treatment planning and preparation of patient

Treatment planning and preparation starts when a patient has been accepted
for proton therapy at iThemba LABS. A patient-specific marker carrier is man-
ufactured and fitted with radiopaque and retroreflective markers. A scanning
and planning schedule is agreed on and the patient undergoes CT scans. The
SPG-CT Scanner system identifies the location of the tumour with respect
to the reflective markers and ensures that the patient does not move out of
position when the scans are being taken. The scans are then used by the treat-
ment planning software to construct cubes (Hounsfield units) which aid the
oncologist in delineating sensitive structures as well as the target volume on
the images. After the radiation oncologist has prescribed the dose and frac-
tionation, the planning radiographer plans treatment conforming the dose to
the target volume while limiting it to critical structures [10; 25].

Once the plan has been approved by the radiographer, medical physicist
and oncologist, collimators are manufactured by in-house mechanical engi-
neers. These collimators are cylindrical blocks with the required aperture
needed to shape the beam for each field in the treatment plan. Planning ra-
diographer then goes on to create light-slabs from the CT data using treatment
planning software, which will then be used to generate digitally reconstructed
radiographs (DRRs) by the X-Ray Imaging system during patient positioning.

Also, administrative functions and some of physics-related functions of
the supervisory system could be included in this step since they are part

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION48

of treatment preparation. As seen from Figure 5.4, after a successful login
by the user the program loads all initialization information from the files
config.sup and dosimetry.sup and then exposes the user with the Main
Menu where the user can choose to view slave screen for the Safety
Interlock System (SIS) (block 12), perform administrative functions
(block 13), perform physics functions (blocks 8 to 11), simulate patient
treatment (block 14), or to deliver actual treatment to the patient
(block 15). Config.sup file contains all the data needed for the initialization
of the supervisory system, namely the IP addresses of the SPG system and
the x-ray imaging system, the treatment unit controlled by the supervisory
system, and a list of strings that specify the radiation types and treatment
techniques that are supported by the treatment unit. It also includes the dosi-
metric constants: T'; Atpin, Atgys, %Aap, AR, ;‘6‘)}” and ng;x for every
radiation type [5]. To perform administrative functions the user will select
block 13. Access to this option is only granted to users who belong to the ad-
min group. These admin functions include user administration tasks such as
add, delete or edit users, updating or creating configuration files Config.sup
and Dosimetry.sup, as well as viewing treatment records of existing patients
(refer to Figure 5.5).

Physics related functions are only available to users in the physics or ad-
ministrator groups. The following are available options;

e Park Supervisory;
e Enter or Update
e Manual Configuration.

Under Park Supervisory, the user is allowed to configure TSB lines with-

out going though the ‘normal’ beam-on initialization steps followed during pa-
tient treatment. Thus enabling this functionality will cause the supervisory
system to drop FC19 and Beam-On HOLD lines on the TSB as well as ‘pause’
its monitoring function.
Enter or Update Dosimetry.sup allows the physics user to input calibra-
tion data for the DMC during the daily constancy check. The name of the
medical physicist inputting the data, as well as the date and time when the con-
stancy check is being made, are recorded in the dosimetry.sup file together with
the calibration data. This function is usually performed during the dosime-
try step of the proton therapy process (refer to section 5.2.2.2). In Manual
Configuration, the medical physicist is given control to set beam parameters
so as to carry out physics experiments.

It is in this step that medical physicists conduct scheduled checks of the
proton therapy equipment to ensure that everything still functions correctly.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION49

5.2.2.4 Treatment Simulation

During treatment simulation radiation therapists simulate treatment to decide
upon the optimal order of the treatment fields, optimal choice of camera com-
binations for the SPG system, as well as optimal positions for the patient and
treatment chair associated with each field. Treatment simulation also helps
uncover any potential problems with the treatment plan which will result in
the radiographer drawing up a new plan. This step also familiarizes the pa-
tient with the treatment procedure and prepares them for actual treatment.

When simulating treatment, the radiation therapist selects block 14 from
the Main Menu (Figure 5.4) of the supervisory system and is presented with
the simulation form (Figure 5.12). This screen allows the user to enter a
patient ID and plan number search string which prompts the program to load
relevant patient plan and treatment record files. If the current simulation is the
first for that patient the program creates the record file and initializes it with
data from the plan file (Figure 5.12 blocks 3 to 7). However, if the record file
already exists, the supervisory program checks whether simulation has been
completed for that patient. Simulation will have been completed if all fields
under fraction 0 (the simulation fraction) have been marked off as complete.
The supervisory system then configures the SPG and X-Ray imaging systems
and then waits until the user indicates that simulation has been completed.
The signal from the user causes the program to query the X-Ray imaging
system for x-ray image files that were used in positioning the patient. The
names of the files are recorded in the treatment record file, and the files are
send to the Radiotherapy Database Server. The program returns to the start of
the simulation block to allow the user to simulate another patient’s treatment
or to return to the Main Menu.

5.2.2.5 Treatment Delivery

Before actual treatment commenses, medical physicists perform scheduled
checks of proton therapy equipment (bite block, collimators, double-wedges,
treatment chair, dose monitors, entire beam-line, and SPG’s CCD cameras) to-
gether with their control software. They also monitor the beam profile (range,
flatness and symmetry) and liase with accelerator engineers to adjust the beam
until it is acceptable for treatment. The patient is then placed onto the treat-
ment chair and correctly positioned with respect to the isocenter with the aid
of the SPG system. The therapist then selects the treatment block in the Main
Menu of the supervisory program (Figure 5.4 block 15) to be presented with
the treatment screen (Figure 5.6). The system reloads the Dosimetry.sup file
parsing it to check when the last constancy check was done on the file. If more
than 8 hours have elapsed since the last check, the user is notified and asked
whether they wish to continue with treatment regardless of the failed check

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION50

on the dosimetry file. If the user wishes to continue, the system prompts for
authorization from a physicist by requiring a physicist’s username and pass-
word. If the credentials are approved, the incident is logged to the patient
record file detailing the failed constancy check and the physicist’s approval to
still continue with treatment (name and staff ID will be logged next to the
incident). Program execusion then proceeds to Figure 5.6 block 7, same as if
the last constancy check was performed not more than 8 hours ago (i.e. the
check succeeded). The user is then allowed to select and administer a specific
treatment field from the patient treatment plan. This step is reached if there
is an incomplete fraction available, and the user is only allowed to select a field
a for which F,; = 0 (refer to Addendum A). When a field has been selected
the program displays all its parameters to the user and then proceeds to the
barcoding section where it allows the user to verify that all equipment needed
for that particular field are available and are the correct ones being used for
treatment. This is done by displaying names of all required equipment with
unmarked check-boxes next to them. The user is then prompted to scan-in
barcodes of each equipment. A check mark is made on a check-box next to
every successfully scanned equipment. The program waits until all required
equipment have been scanned before proceeding to the field delivery loop. The
field delivery loop implements the core functinality of the proton supervisory
system. It implements the dose algorithm which guarantees that only the
planned dose as indicated in the treatment plan file is administered to the
patient by properly handling dose overruns that may occur during sessions,
as well as recording each and every dose that is delivered to the patient, even
during treatment failures.

After the barcoding block (Figure 5.6 block 19), the program loads the
following dosimetric quantities from the treatment record and/or treatment
plan files: preset dose, prescribed dose per fraction, delivered dose
and cumulative dose (if they are not already loaded). On entering the field
delivery loop, these quantities are compared against each other to determine
the appropriate execusion flow that the program needs to take. The following
options are available [20]: If,

e (DeliveredDose > PresetDose and currentfraction = last fraction)
OR DeliveredDose = PresetDose: The program increments the cumu-
lative dose with delivered dose, declares the field complete and exits to
treatment block so that user can select another field or can return to the
main menu.

e (DeliveredDose > PresetDose and current fraction # lastfraction):
The program increments the cumulative dose with delivered dose. It
then prompts the user to determine if to distribute overrun evenly over
remaining fractions or just the next fraction. If user wishes to ‘carry
over’ the difference to the next fraction, then the program reduces the

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATIONS1

preset dose for same field in next fraction with overrun, and declares field
completed. Otherwise, it divides the overrun by the number of remaining
fractions and reduces that number from the preset doses of each of the
remaining fractions.

o (DeliveredDose < PresetDose): The program increments the cumu-
lative dose with delivered dose, decrements preset dose with delivered
dose, sets delivered dose to zero, and declares the field incomplete. It
then prompts the user whether to readminister the field.

e (DeliveredDose < PresetDose and current fraction = last fraction):
If difference between delivered dose and preset dose is greater than
Gy/100 (i.e. 100th of a Gray), then it is handled similar to the delivered Dose
< presetDose condition, otherwise if the difference is less than 100th
of a Gray then the program increments cumulative dose with delivered
dose, notifies the user about the negligible difference, declares the field
complete, and exits to treatment block.

e (DeliveredDose < PresetDose) and (current fraction # last fraction):
The program asks the user whether to continue with the field or to
distribute the difference over ramaining fractions. If the user wishes
to continue with field then it is handled same as the delivereddose <
presetdose condition above, otherwise if user wishes to distribute the dif-
ference, then program increments cumulative dose and increases preset
doses of the same field in remaining fractions with the difference (under-
run) divided by number of remaining fractions. It then declares the field
complete and exits to the treatment block.

e DeliveredDose = 0: If expected dose overrun (due to delay taken by the
beam-stopping devices to stop the beam after beam stop signal has been
issued) was not taken into account in the treatment plan, then program
first reduces the preset dose with the expected overrun before entering
the Irradiation Block (Figure 5.7 block 22 and Figure 5.8), otherwise it
simply enters the irradiation block and administers treatment.

The irradiation block (Figure 5.8) is where the actual irradiation of the
patient occurs. The program only gets to execute this block if and only if
the delivered dose parameter in the program memory is set to zero (for that
particular treatment session). Being a critical section of the program, the first
thing that the program does when entering this block is initialize the failure
BIT/OBJECT and keep updating it whenever the program performs a distinc-
tive task so that when a failure occurs it is easy to recover from, as it will be
known exactly what the program was doing before it failed. After initializing
the failure object, the program then configures other subsystems of the Pro-
ton Therapy Control System and confirms that the patient has been correctly

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATIONS2

positioned by the Patient Positioning System (refer to System Configuration
and Patient Positioning Loop Figure 5.8 block 2 and Figure 5.9). If the con-
figuration was successful, the user is notified that all systems are READY to
START TREATMENT. The program then enters into an active BUSY WAIT-
ING stage of continuously checking if the Beam ON condition has occurred or
not, at the same time patting the watchdog (which is initialized in the Sys-
tems Configuration and Patient Positioning Loop) so that it doesn’t time out.
When the Beam ON condition has been met (i.e. Beam OFF signal low) then
the program keeps on patting the watchdog while busy polling the Beam OFF
signal to see if it has been raised or not.

When the Beam OFF condition is met (i.e. Beam OFF signal high), the super-
visory program first checks for hardware failures to determine what stopped
the beam (see Figure 5.8 block 8 and Figure 5.11) and then attempts to read
back the delivered dose from the DMC. If the program fails to read back the
dose (e.g. if the DMC has failed or there is a communication failure), the user
is prompted to provide the delivered dose as read from the mechanical coun-
ters of the DMC (both monitor A and B). The program then compares the
values from the two dose monitors (see Figure 5.8 block 12) and if monitor A
is slightly greater than or equal to monitor B then the value for the delivered
dose is taken as monitor A reading, otherwise (i.e. monitor B is greater than
A) the user is informed that monitor B has overrun monitor A and is asked
which reading should be taken as the approximate value for the delivered dose.
The program then updates the delivered dose parameter in the program mem-
ory and commits the changes to disk (i.e. writes to the treatment record file,
flushes buffers and closes the file handle). The program then clears the failure
object before exiting the irradiation block back to the start of the field delivery
loop to check how the delivered dose compares to the preset dose in order to
determine if the field has been completed or not.

The systems configuration and patient positioning is where the patient
positioning system (SPG and X-Ray imaging systems) is configured (sent con-
figuration parameters). The program waits until it receives a signal from the
X-Ray imaging system indicating that the patient has been placed in posi-
tion, or until a timeout occurs (if there is a communication failure between
the Supervisory system and the X-Ray imaging System). If a timeout occurs,
or the patient is not properly positioned, the supervisory system notifies the
user and prompts if they wish to reposition (see Figure 5.9 blocks 1 to 5).
The program exits to the treatment block with a patient positioning failure
if the patient is not in position and the user does not wish to reposition the
patient. If however, the patient has been properly positioned, as indicated by
the signal from the X-Ray imaging system, the supervisory system program
then queries the X-Ray imaging system for the final x-ray image files used
when positioning the patient. After successfully retrieving and recording the
x-ray image files, the program configures all other remaining subsystems of the

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATIONS3

Proton Therapy Control System, namely the DMC, BSC, EDC and the TSB,
as well as starting the watchdog timer (see Figure 5.9 block 7 and Figure 5.10).

After all systems have been successfully configured, the program then en-
ters the watchdog section. This is the section entered into by the program
after successfully starting the watchdog timer to when the timer is intention-
ally allowed to timeout and the watchdog object cleared from the program
memory. It is the responsibility of the supervisory system to satisfy or pat
the watchdog during this section so that a watchdog timeout can quickly alert
the user that the supervisory system has failed thus rendering it incapable of
performing its task, before or during irradiation. After configuring systems
and patting the watchdog, the program double-checks that all systems are still
functional before irradiation can start. This is done by checking if any of the
configured systems experienced a hardware failure, as indicated by the SABUS
0K line (see Figure 5.11). Similarly, after irradiation, when the Beam OFF
signal goes high, the program checks if it was a hardware failure of another
system that stopped the beam, and records that information in the treatment
record file. Under normal operational modes, any subsystem of the proton
therapy control system should drop the SABUS OK TSB line when it incurs
a hardware failure. Thus a dropped SABUS OK line is an indication that
one or more of the control subsystems experienced a hardware failure. To de-
termine which subsystem(s) failed, the supervisory system individually pokes
every system (i.e. DMC, EDC and BSC) and updates its failure object ac-
cordingly. The poke command is a simple RPC call which works more like the
traditional PING command. After poking all relevent systems and updating
the failure object, the program exits to the treatment block if the hardware
failure(s) occurred before irradiation, otherwise it notifies the user and then
returns to the calling environment. This is because if a hardware failure occurs
before irradiation, treatment is prohibited, hence why the program exits with
a hardware failure result to the treatment block. On the other hand, if the
failure occurred during treatment and thus caused the beam to be switched
off, the program determines what caused the failure, notifies the user, records
the incidence, and then attempts to read the delivered dose from the DMC
which is why it returns to its calling environment. If no hardware failures
occurred, the program confirms that the patient is still in position before re-
turning to the irradiation block and proceeding with treatment. However, if
the patient is no longer in position, it stops the watchdog and prompts the
user whether to reposition. The program then loops to the start of the systems
configuration and patient positioning loop if a positive response is issued by
the user, otherwise it exits to the treatment block with a patient positioning
failure. The systems configuration block deals with the configuration that
the supervisory system performs to each and every other subsystem of the
Proton Therapy Control System that should be configured before treatment.
The order followed when configuring systems is to first configure those systems

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATION54

involved in beam alignment and steering (BSC, and EDC) then move on to
the DMC and end with the TSB before starting up the watchdog timer. All
configuration is done through RPC calls to the specific system with configura-
tion data sent as structures with appropriate attributes. When in this block,
the program first sends the required configuration data to the BSC and waits
for an acknowlegdement of receipt. If a timeout occurs or the BSC sends a
negative response, the program attempts reconfiguration for atleast two times
before notifying the user. The user is then prompted whether to reconfigure
the system or to exit to the treatment block with a BSC configuration failure.
Only after the BSC has been successfully configured will the program proceed
to configure the EDC. The same configuration process follows and the pro-
gram exits to the treatment block with an EDC configuration failure if it is
unable to successfully configure the EDC. Successful configuration of the EDC
allows the program to then proceed to DMC configuration process. Similary,
the same configuration process applies (just like for BSC or EDC) and the pro-
gram exits to the treatment block with a DMC configuration failure if unable
to configure the DMC. It then raises the SS OK line on the TSB signalling that
it has successfully configured other systems and is ready to supervise patient
treatment. Repeated failures to raise the SS OK line cause the program to exit
to the treatment block with a TSB Configuration failure. As the last action
before exiting the systems configuration block and returning to the systems
configuration and patient positioning loop the program starts up the watchdog
timer and thus enters the watchdog section.

Upon exiting the field delivery loop, the program checks to see if any failures
occurred while in the delivery loop and if so, it summons the failure recovery
block (section 5.2.2.6). If there are incomplete fields available the program
informs the user and waits for the user to select another field to administer, or
if the user wishes so, to return to the start of the treatment block. If all fields
have been completed, the program declares that fraction complete, notifies the
user, and returns to the start of the treatment block.

5.2.2.6 Error Handling

Numerous errors and failures can occur during treatment delivery to the pa-
tient and it is the responsibility of the supervisory system to accurately record
such failures and gracefully recover from them. Failures of interest include
[20]:

e Configuration failures that prevent irradiation from commencing since
one or more systems cannot be correctly set up;

e Hardware failures (power failure or hardware malfunction e.t.c) that can
occur after systems have been configured, but before irradiation starts;

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATIONS5

e Hardware failures that can occur to other systems during irradiation
(treatment delivery);

e Power failure of the supervisory system during Beam ON condition i.e. af-
ter all systems have been properly configured and irradiation has started
(BEAM OFF signal went low);

If a power failure (of the supervisory system), or any unhandled failure,
occurred in the previous execution of the program when treating a certain
patient, it will be picked up in the treatment record of that particular patient
through the unhandled failure flag (see Figure 5.6 block 13). The flag will also
highlight the cause of the failure by stating what the program was doing when
the failure occurred. Before attempting another session, the program notifies
the clinician about the unhandled failure, and if irradiation had started when
the failure occurred, it prompts the user to enter the delivered dose as read
from the mechanical counters of the DMC. However, if a failure occurs under
normal execution of the program, such as when configuring systems, or one of
the systems experiences a hardware failure, the program quits the field delivery
loop and jumps to blocks 21 and 22 of Figure 5.6. Similarly, if irradiation had
started when the failure occurred, it prompts the user to enter the delivered
dose as read from the mechanical counters of the DMC, otherwise it simply
notifies the user about the failure, reads the delivered dose from the DMC
and records the incident in the patient treatment record file. The ability to
recover from failures relies on the creation and proper updating of the failure
object parameter as well as timely updating of the patient record file. Thus it
is of paramount importance that all file-write buffers are timeously flushed to
commit every change to disk.

5.3 Supervisory System Implementation

This section describes how the software system was developed starting with
the development methodology followed in section 5.3.1. Section 5.3.2 discusses
the choice of programming language used as well as the development hard-
ware for the system. Being a file-intensive system, section 5.3.3 highlights the
Boost.Spirit template metaprogramming techniques adopted for parsing the
numerous files used by the supervisory system. The section ends with a dis-
cussion of the low-level module of the system which interfaces to the Therapy
Safety Bus through an 848C Eagle Technology PCI card.

5.3.1 Methodology

EXtreme Programming (XP) agile software development methodology was fol-
lowed when implementing the supervisory system. XP was chosen because of
its rich practices and approaches to reliable and robust software development,

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATIONS56

and because it is the most heavily documented, tried and tested agile method-
ology in software development. In [26] Abrahamsson et. al describe agile
methodologies as software development approaches that are flexible, adaptable
and allow developers to make late changes in the specifications, hence making
the requirements of the software project not to be locked-in and frozen before
the design and software development commences. They (Abrahamsson et al)
also identify focal values honored by all agile methodologies as;

e Individuals and interactions over processes and tools
e Working software over comprehensive documentation
e (Customer collaboration over contract negotiation

e Responding to change over following a plan

It is these central values, which accommodate the volatility and competi-
tiveness of today’s business community, that no doubt have put agile methods
in the forefront of software development approaches, and that have invariably
led us to the choice of XP as our preferred software development approach.
Figure 5.13 depicts the life-cycle of the XP process |26] and how it was applied
in implementing the supervisory system.

. - (e s s SO e _
EXPLORATION I pLarwmiG | [TERATIONS TO RELEASE PRODUCTIONIZING MAINTENANCE! DEATH
PHASE I PHASE 1 1 PHASE | PHASE | PHASE
- | | ’ N ! ! !
REEUI:\"Q. L~ I Cof:.ﬁ.uu ous P;Ti.aw I I I
UHJ,-\.'IES\\ - JE— ~i i i i
: - T PAIR PROGRAMMING i i i
MERATION | P]mmg | | |
| |Ansalvsizs|Dasimn for Testing || 1 1
N 1 Tasting 1 1 1
Effort i | | |
Estimates =7 \ : : :
| - vl ! !
| Feadback Continuets | | |
i ,.f” Intzgratipm | I I
i] ot i i i
i C:d:;‘a’;’: i Small i Updsed i Finsl
I 1 Falease 1 Faleases 1 Falease
1 \""x__‘ l ; - l T l —_—
i T = =T T T
: 7" CUSTOMER ,lf" :
e : - APPROVAE :
b ATTTTTTTTC e b [_
I 1 1 I 1
OLMAR — 30APR; XOOX - XOOKK 01MAY - AUG | MAY-JUN | JUN-AUG ; SEP
e — e — — o o e o o o e e = e e e —— e — e o o = e = '_._._._._._.'_ —

PHASE 1 :_M-\R- MAY

Figure 5.13: Software Development Methodology

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATIONS7

In the Exploration Phase, the tools, technologies and practices to be
employed in developing the project, were studied while at the same time users
wrote out ‘story cards’ containing the features they wished to be included in
the first release. The tools and technologies that were proposed to be used
included;

e Qt4 C++ for GUI programming.
e Qt Creator IDE for development and Unit tests.

Barcode Scanner.

RPC method invocation. (with possible upgrade to other technologies
such as RMI, SOAP, CORBA, e.t.c)

Eagle Technologies 848C PCI DAQ card.
e SABUS

In the Planning Phase, an agreement of the contents of the first release
was made, and the priority order for the user stories were set. The stories
which enforced building the overall structure for the whole system were se-
lected to form the contents of the first release.

It is in the Iterations to Release Phase, where the system underwent
several iterations before the first release. These iterations were determined
from the stories’ priority order set in the Planning Phase. The functional tests
created by the customer (or users) were then run at the end of every iteration.
Eventhough the Supervisory System was to be implemented in three phases,
each phase was implemented in increments which allowed early testing and
debugging before the system became too complex.

At the Productionizing Phase, extra testing and performance analysis
was carried out before the system could be delivered to the users.

In the Maintenance Phase, more effort was on customer/user support
tasks as well as some corrective and preventive maintenance on the system.

The Death Phase will be archived when the system meets all the func-
tional requirements set in the Planning phase and it’s operation is satisfactory
to the users in all respects (such as performance and reliability). The XP
practices that were employed in this project include [21; 26];

e Tactical Planning Game (between developer and users)

e Small/Short Releases

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATIONS8

Simple Design

Exhaustive Testing (Test-first practice)

Refactoring

Relentless Integration

On-site Customer/User

Coding Standards

And, a 40-hour Working Week

5.3.2 Development hardware and software

The system was developed on an Intel Core 2 Quad Q9000 series desktop
PC with four processing cores that can achieve up to 12MB of L2 cache and
1333MHz Front Side Bus [27]. The desktop PC also had 2x 2GB of RAM
and an Intel PRO/1000 GT Desktop Adaptor NIC for fast and reliable net-
work connectivity. Due to the non-functional requirement of using a Linux
operating system for development, the supervisory system was developed on
Scientific Linux 5.5 running kernel 2.6.18. Qt-Creator 1.3.1 based on Qt 4.6.2
was the IDE of choice for all the programming work, with C++ and C as
programming languages. A Zebex Z-3010/USB barcode scanner was used in
identifying treatment equipment so as to minimize the possibility of human er-
ror during the treatment process, while attribute-based access control for users
was afforded through the use of an internal MySQL database, version 14.22
distribution 5.0.77. Lastly, the system used an Eagle Technology 848C PCI
card in order to interface to the custom-made TSB-Simulation rig discussed in
chapter 4.

5.3.3 Template Metaprogramming techniques for file
parsing

The supervisory system employed Boost.Spirit libraries to develop generic
parsers for reading in all the different files used by the system.

"Boost Spirit is an object-oriented, recursive-descent parser and
output generation library for C++. It allows you to write gram-
mars and format descriptions using a format similar to Extended
Backus Naur Form (EBNF) directly in C++. These inline gram-
mar specifications can mix freely with other C++ code and, thanks
to the generative power of C+- templates, are immediately exe-
cutable. In retrospect, conventional compiler-compilers or parser-
generators have to perform an additional translation step from the
source EBNF code to C or C++ code." [28]

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATIONS9

This means that using Spirit, one is able to create parser grammars by speci-
fying required tokens used for parsing using C+-+ templates, thus generating
generic parsers that can handle different data types without recompilation of
the source code.

Below is a snippet of the config. sup file parser which reads in the file from
disk and stores it as attribute-value pairs in a map data strucure in program
IMemory.

namespace parsers
namespace (i — boost::spirit::qi;
namespace ascii = boost::spirit::ascii;

typedef std::multimap<std::string,std::string > pairs_type;

using qi::lit;
using ascii::char
using qi::eol;

ey,

/ Our Supervisory Configuration file (Config.sup) parser

N aad,

template <typename Iterator>
struct config : qi::grammar<Iterator, pairs_type()>
{
config() : config::base type(configStart)
{
configStart % = configPair >> *(+eol >> configPair);
configPair % = configKey >> —(—lit(‘=") >> configValue);
configKey % = x(char_ — (+1it(*=") | +eol));
configValue % = +(char_ — eol);

}

giz:rule<Iterator, pairs type()> configStart;
qi::rule<TIterator, std::pair<std::string, std::string>() > configPair;
gi:rule<TIterator, std::string()> configKey, configValue;

h
}

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATIONG60

The program defines a namespace called parsers which contains the differ-
ent parsers for each specific file used by the supervisory system. The parser
illustrated is for the configuration file config.sup which stores all the ini-
tialization information needed by the supervisory program. Using EBNF, the
above grammer can simply be translated into;

configStart ::= configPair (endOflineCharacter+ configPair)x;
configPair ::= configKey — (—(‘=") configValue);

configKey := (char_ — ((‘*=")+ / endOflineCharacter+))s;
configValue ::= (char_ — endOflineCharacter)+;

Where *, 4+, — and / are the regular-expression Kleene star, plus, difference
and alternatives operators respectively. Note that Spirit.Qi uses prefix star and
plus operators since there is no postfix star or plus in C'+ 4. The Kleene star,
plus, difference and alternatives operators are defined as;

ax — Match zero or more of a.
a+ — Match one or more of a.
a — b = Match a but not b.

a / b = Try to match a. If a succeeds, success, otherwise try to match b.

Y
o——> » »O

Figure 5.14: Kleene Star

It follows therefore that the parser simply parses the config.sup file one
line at a time forming attribute-value pairs from strings before and after the
‘=" regular expression, and storing the result into a multimap data structure

of strings.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. SUPERVISORY SYSTEM DESIGN AND IMPLEMENTATIONG1

Figure 5.15: Plus operator

o > A

»| B

Figure 5.16: Alternatives - Ordered Choice

Stellenbosch University http://scholar.sun.ac.za

Chapter 6

Experimental Results

This chapter is about the tests conducted and results obtained in determining
whether the developed supervisory system meets its intended objectives. It
begins with section 6 which describes the functional tests conducted and the
results obtained. Section 6 ends the chapter with a discussion of some of the
non-functional tests carried out on the system.

Functional Tests

Communication with other subsystems

These tests represent both unit and beta (integration) testing of the supervi-
sory system against its functional requirements. The tests were conducted at
the component level using the “happy path" (inputs within expected range)
and “unhappy path" style of testing. Since the development of most of the sub-
systems forming the new Proton Therapy Control System is still underway, the
bench testing methodology was followed. That is to say, all tests described in
this chapter were carried out with emulator systems whose interfaces mimicked
those of actual systems currently under development. This means that RPC
server programs with well-defined methods/functions that could be remotely
invoked were developed to simulate each of all systems to be configured by the
supervisory system through the PT1 subnet. These programs were launched
on a separate PC from the one hosting the supervisory system, but in the
same network so as to provide identical network communications with those
expected for the actual systems. In the case of the SPG and PR (x-ray) em-
ulators, file request modules were implemented to simulate actual file request
commands expected from such systems, and to test the proxy functionality of
the supervisory system.

Figure 6.1 illustrates the test setup consisting of a Surecom EP-808X 8
port 10/100M Ethernet Mini Switch, supervisory system computer, and the
test computer hosting the simulation programs. Each system is represented by

62

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. EXPERIMENTAL RESULTS 63
SPG
PR(x-ray)
DMC
-] ey s EDC
Il Switch Il BSC
Database server
Supervisory System PC Test System PC
196.124.16.180 196.124.16.182

Figure 6.1: Simple Test setup

a unique process running on the test PC with a unique RPC program number.
Figure 6.2 shows some of the configuration information send by the supervisory
system to respective systems to be configured. A custom struct datastructure
is used to hold the configuration information send by the supervisory system
to each and every subsystem while a simple return string is expected from all
subsystems to indicate whether the configuration was successful or not.

To test how the supervisory system reacted to network failures amid configu-
ration or file transfer requests, the network cable was intentionally removed for
15 seconds during a file transfer between the supervisory system and the test
SPG system, and then inserted back into the NIC of the supervisory PC. As
was expected, after the program detected the network failure, it waited for 5
seconds before attempting to resend the file. If no response was received in the
following 5 seconds, the program displayed a network failure error message
to the user notifying him or her of the incidence. The tests were repeated
for time periods less than 10 seconds whereby the user did not receive any
error notifications since the program issued resubmissions which went through
successfully, and for time periods more than 10 seconds which resulted in the
program terminating the transfer and notifying the user of the failure.

Communication with the database server (datastore) consisted of file trans-
fers to and from a remote directory structure. This is because implementation
details of the database server have not been fully specified as such a remote
directory structure has been assumed. The module responsible for such com-
munication was well designed as an independent black-box subsystem that
could easily be replaced while still maintaining the overall functionality of the
supervisory system. It consists of one main method/function that takes as
inputs, a pointer to the database server’s RPC handle, the name of the file,
and a string specifying whether to retrieve or store the file. The method then
returns a string detailing the transfer result. Figure 6.3 outlines the algorithm
adopted when transferring files between systems. It consists of three distinct
steps;

1: The client queries the server if the specified file is available. The file

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. EXPERIMENTAL RESULTS 64
SPG Configuration PR Configuration
M s S
IP_SUP : char*
| PatientlD : char*
I)
/l o /l Marke \
I_) — — — /
 —m o8 (] o8
‘” 1IN
Supervisory System PC SPG System Supervisory System PC PR System
- — N
sssss t EDCConfig{
e \ BeamType : chart
iaxDoseRate : double
S [
[08 o8 =)
I I ! L

SPGConfigResult : char*

Supervisory System PC DMC System

Supervisory System PC

EDC/BSC System

DMC Configuration

BSC and EDC Configuration

Figure 6.2: Systems Configuration data

name is send as input to the server.

2: The server responds by sending a file header datastructure consisting of
the following information: the name of the file being queried, an MD5
checksum of the file, a timestamp value of the time and date the file was
last modified, an integer specifying the size of the file, and a file-exists
flag which is set to 1 if the file exists or 0 if not. If the file does not
exist on the server then only the flag and the filename parameters are
set. Other parameters are left as null values.

3: If the file-exist flag was raised in the header structure, the actual file
transfer begins. The transfer consists of the client and server exchanging
chunks of data constituting the file. The data is organised into a fileBody
datastructure comprising of a variable size data block of up to 10Mega
bytes if large image files are being exchanged, the number of bytes send
in that particular chunk, and the position in the file where the data was

last read from or written to.

All file transfers between the supervisory system and the datastore server
were successful when tested with different kinds of files, from text files to image

files as well as compressed files.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. EXPERIMENTAL RESULTS 65

1 fileName : char*

N

struct xdr_FileHeader{
fileName : char*

2- timeStamp : char*

checksum : char*

— | fileExists : int
e e

wﬁleExists && \EOF)

| struct xdr_FileBody{

data : char*

pos : int
byteLength : int /

| }

Supervisory System } Datastore

Figure 6.3: File Transfer Algorithm

File Transfer Proxy

When acting as a proxy between other systems and the datastore, the super-
visory system performs a dual role of being a server (to other systems) and a
client (to the datastore). The proxy algorithm works as follows:

1: The client queries the supervisory system if the specified file is available.
The file name is send as input to the supervisory system.

2: The supervisory program queries the datastore whether the requested file
is available. The server responds by sending a file header datastructure
consisting of the name of the file being queried, an MD5 checksum of the
file, a timestamp value of the time and date the file was last modified, an
integer specifying the size of the file, and a file-exists flag which is set to
1 if the file exists or 0 if not. If the file does not exist on the server then
only the flag and the filename parameters are set. Other parameters are
left as null values.

3: The supervisory system forwards the header structure to the calling
client.

4: If the file-exist flag was raised in the header structure, the actual file
transfer begins. The transfer consists of the client, the supervisory sys-
tem and datastore server exchanging the fileBody datastructure compris-
ing of a variable size data block of up to 10Mega bytes if large image files

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. EXPERIMENTAL RESULTS 66

are being exchanged, the number of bytes send in that particular chunk,
and the position in the file where the data was last read from or written
to. The role of the supervisory system in this step is to receive and for-
ward the file-body structure between the datastore and the requesting
client program.

File transfers between the client program (SPG or PR), supervisory system
and the datastore server were successful when tested with different kinds of
files, from text files to image files as well as compressed files.

Attribute-based Access-control

The program has an internal MySQL database of all registered users to be
granted access to the system. FEach user has a unique username and password
used to gain access to the system. The users have also been grouped into
different groups, clinic, physics and admin, which determine what views and
functionality of the system they can access.

When a user logs into the system, the program runs a check on the provided
username and password against the entire database. If a match is found, the
program retrieves the group ID associated with that user and then loads the
appropriate view/display for that group. Different users registered under all
groups were used to test the attribute-view functionality of the supervisory
system with successful results.

Use of barcode scanner

The Zebex Z-3010USB barcode scanner used to test the system was also a
simple device to interface to. This is because the scanner inputs data to the
system as if it were a computer keyboard. Thus if an input widget is high-
lighted on the program’s display and a barcode is scanned, the text-equivalent
of that barcode is immediately entered into the widget as if the input came
from a computer keyboard device. Block 19 of Figure 5.6 represents the bar-
coding section of the program. A list of patient-specific treatment equipment
with check-boxes next to them is displayed to the user. At the top center of
the display window is a tiny text-edit widget which is highlighted immediately
after the dialog box is presented to the user. As the user scans the treatment
equipment being used, the text representation of the barcode is inputted into
the text-edit wigdet as if it were being typed-in through a computer keyboard.
Using Qt’s signals and slots mechanism, the program takes the string repre-
sentation of the barcode from the text-edit widget (after the hasChanged flag
of the text-edit item has been raised) and compares it with barcode strings of
equipment to be used when treating that specific patient, which were parsed

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. EXPERIMENTAL RESULTS 67

into program memory from the treatment plan file. If a match is found, the
program places a check on the check-box next to that device on the display.
The barcoding section is completed only when all devices on the display list
have been checked out, or the user decides to quit the program thus terminat-
ing treatment and returning to the Main Menu.

Proper use of the barcode scanner was tested with custom-made barcode
strings that represented different patient-specific devices to be used during
patient treatment. The strings were stored in the patient treatment record file
which was then parsed into program memory during treatment test procedure.
Only after scanning all required equipment did the program allow the user to
continue with patient treatment.

Electronically Interlocked with entire Proton Therapy
Control System

Proper support of the TSB simulator rig demonstrates that the supervisory
system is electronically interlocked with the rest of the proton control system.
When conducting the test procedure for patient treatment, the following lines
were properly raised;

‘ TSB Line ‘ Raised/Droppen when? ‘

SS OK Raised after properly configuring other sub-
systems. Block 10 of Figure 5.10.

SABUS OK | Dropped at any time if the system incurs
a hardware failure after the watchdog timer
has been started during treatment i.e. any-
where between blocks 2 and 9 of Figure 5.8.

Table 6.1: TSB Lines controlled by the supervisory system

The SS OK line was properly raised during normal program execution when
carrying out the test procedure. To test functionality of the SABUS OK line,
the system was intentionally powered off during treatment procedure after the
watchdog timer had been started. This caused the program to stop patting
the watchdog thus causing it to time-out, which then dropped the SABUS OK
line.

Non-Functional Tests

As was required, the system has been implemented using Qt C+-+ widget sets,
and uses the PCI technology to inteface to the Therapy Safety Bus. The pro-

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. EXPERIMENTAL RESULTS 68

gram also uses the Sun-RPC client-server model to configure other subsystems
of the Proton Control System. Also, due to the intensive failure recovery mea-
sures inherent in the system’s design, the reliability and dependability of the
system can be well assumed eventhough it is only time and proper testing that
can rightly determine such qualities for a system.

Stellenbosch University http://scholar.sun.ac.za

Chapter 7

Conclusion

The first version of the proton therapy supervisory system for iThemba LABS
has been designed, implemented and tested with custom-made dummy systems
representing the Proton Control System. The implemented system has been
shown to meet some of its requirements of coordinating and configuring all
other systems with beam parameters and treatment information needed to
ensure a correct and safe irradiation of a patient during treatment. Also, it
has been outlined how the system collects, records and verifies all the necessary
treatment information after any successful or otherwise irradiation session, and
how it acts as a gateway/proxy between all other subsystems of the proton
therapy control system and the radiotherapy data-store server.

Recommendations for Future Work

However satisfactory the current version of the supervisory system may be,
there is still more work to be done before the system can be considered com-
plete and ready for patient use.

Firstly, the current version still does not entirely support the proposed
dose algorithm. Currently, the program can only increment or decrement the
preset dose of the same field in the next fraction if there was a dose overrun
or under-dose during treatment delivery. Thus the current version does not
support blocks 7 and 18 of Figure 5.7 (Field Delivery loop). To support such
functionality would require the program to loop through all remaining fractions
locating the same field as the current one been delivered, and updating the
preset dose parameter accordingly. The solution is, in principle quite simple
though it depends on the structure and format of the treatment record file.
The current format of the treatment record is a simple list of attribute-value
pairs which are parsed into a multimap datastructure in program memory.
[terating through such a datastructure and easily locating separate fractions
and corresponding fields is not as intuitive as it should be. Thus the format

69

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. CONCLUSION 70

of the treatment record file needs to be looked into and designed to make it
easy to parse into a custom-made memory object which can seamlessly be
iterated over to locate separate fractions and fields. One format that could
be employed is the eXtensible Mark-up Language (XML) format. Using this
format the treatment record would be organized into XML tags or elements
representing different parameters of the treatment record file, with associated
values. Such a format would be well-formed hence it would be easy to parse
the record into a user-defined object belonging to a well-defined class that
could easily be iterated over. Developing a Boost.Spirit parser for an XML
document should also prove to be quite simple due to the well-formed nature
of XML and extensive documentation and support provided by Boost.

Stellenbosch University http://scholar.sun.ac.za

Bibliography

[1]

2]

[5]

[6]

8]

19]

[10]

[11]

[12]

NAPT: How proton therapy works, July 2011.
Available at: http://www.proton-therapy.org/howit.htm

Flanz, J., Delaney, T., Kooy, H., Rosenthal, S., Titt, U. and MGH-NPTC:
Treating patients with the nptc accelerator based proton treatment facility.
Proceedings of the 2003 Particle Accelerator Conference, 2008.

Giordanengo, S.: The cnao system to monitor and control hadron beams for
therapy. 2008 IEEE Nuclear Science Symposium Conference Record., 2008.

Rapoo, B.: Development of a patient set-up verification (psvd) for radiation
therapy treatment. Bioengineering Conference, Proceedings of the IEEE 28th
Annual Northeast, 2002.

de Kock, E.: Hardware specifications and functional design of the proton ther-
apy control system. Tech. Rep., iThemba LABS, 2010.

Carstens, J.: Fast generation of digitally reconstructed radiographs for use in
2D-3D wmage registration. MSc, University of Stellenbosch, 2008.

Wagener, D.W.: Feature Tracking and Pattern Registration. MScEng, Univer-
sity of Stellenbosch, November 2003.

van Wyk, B.-M.M.: Verifying Stereo Vision using Structure from Motion.
MScEng, University of Stellenbosch, 2008.

Ts’oeu, M.: Proton Beam Steering Control System for High Precision Radiother-
apy at iThemba LABS: An Investigation on Actuator Saturation Constraints.
Master’s thesis, University of Cape Town, 2008.

Schroeder, S.: Proton Therapy Operations and Treatment Procedure manual.
iThemba LABS, 2002.

J.Katuin: Proton therapy treatment room controls using a linux control sys-
tem. In: Proceedings of the 2003 Particle Accelerator Conference. IEEE,
http://ieeexplore.ieee.org/, 2003.

Blackmore, E., Evans, B. and Mouat, M.: Operation of the triumf proton ther-
apy facility. Proceedings of the 1997 Particle Accelerator Conference, vol. 3,
1997.

71

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 72

[13] de Kock, E. and van Tubbergh, C.: Conceptual design of the proton beam
treatment facility at ithemba labs. Tech. Rep., iThemba LABS, June 2005.

[14] de Kock, E.: The mechanical and mathematical aspects related to the control
system for the proton therapy chair and treatment collimator. Tech. Rep.,
iThemba LABS, August 2008.

[15] van der Bijl, L.: Verification of patient position for proton therapy using Portal
X-Rays and Digitally Reconstructed Radiographs. Master’s thesis, University of
Stellenbosch, 2006.

[16] Callaghan, C.: Communication between the spg and the portal x-ray systems
during configuration. Tech. Rep., iThemba LABS, April 2009.

[17] de Kock, E. and Muller, N.: Treatment and simulation algorithms for the new
proton supervisory system. Tech. Rep., iThemba LABS, March 2010.

[18] de Kock, E. and Carstens, C.: Command structure of the network communi-
cations in a distributed proton therapy control system. Tech. Rep., iThemba
LABS, 2007.

[19] Carstens, C. and Muller, N.: The new supervisory system. Tech. Rep., iThemba
LABS, March 2010.

[20] Qhobosheane, S.: Design document of the new proton supervisory system. Tech.
Rep., iThemba LABS, November 2011.

[21] Sommerville, I.: Software Engineering. 8th edn. Addison-Wesley, 2007.

[22] Coutrakon, G., Slater, J. and Ghebremedhin, A.: Design considerations for
medical proton accelerators. Proceedings of the 1999 Particle Accelerator Con-
ference, 1999.

[23] M, S.: Control system for the neutron therapy facility at fermilab. Particle
Accelerator Conference. Accelerator Science and Technology., Proceedings of the
1989 IEEE, 19809.

[24] Sepulchre, R.: Pencil beam scanning: a dynamical approach to proton therapy.
IEEE International Symposium on Bio-Informatics and Biomedical Engineer-
ing, 2000.

[25] Swanepoel, M.: Process for the proton treatment of a patient. Tech. Rep.,
iThemba LABS, 2005.

[26] Abrahamsson, P., Salo, O. and Ronkainen, J.: Agile software development meth-
ods: Review and analysis. 1st edn. VV'T Electronics, 2002.

[27] Intel: Intel core 2 quad processors.
Available at: http://www.intel.com/products/processor/core2quad/index.htm
Last Accessed: November 2012

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 73

[28] de Guzman, J. and Kaizer, H.: Boost.spirit 2.5 libraries: Documentation.
Available at: http://www.boost.org/doc/1libs/1_47_0/1libs/spirit/doc/html/spirit/introduc
Last Accessed: November 2012

Stellenbosch University http://scholar.sun.ac.za

Addendum A

Use of RPC Communication by the Supervisory
System

RPC (Remote Procedure Call) is a powerful technique for constructing dis-
tributed, client-server based applications. With RPC, the called procedure
need not exist in the same address space as the calling procedure. The two
processes may be on the same system, or they may be on different systems in
a network.

RPC makes the client /server model of computing more powerful and easier
to program since it adopts the notion of conventional procedure calls, and
hides the complex part of distributed communication from the programmer
(this applies if the programmer employs the high-level RPC interface and not
the detailed low-level interface).

Just like in a function call, when an RPC is made, the calling arguments are
passed to the remote procedure and the client blocks, waiting for a response to
be returned from the remote procedure. When the request arrives, the server
calls a dispatch routine that performs the requested service, and sends the reply
to the client. After the RPC call is completed, the client program continues.
The following pieces of code demonstrate use of RPC by the supervisory system
when configuring the dummy DMC system.

Shared Data Set

#ifndef SSSHAREDDATA_H
#define SSSHAREDDATA_H

#define SPGSERVER_NUM 0x31234568
#define SPGSERVER_VERSION 1

#define PRSERVER_NUM 0x31234566
#define PRSERVER_VERSION 1

#define DMCSERVER_NUM 0x31234565
#define DMCSERVER_VERSION 1

74

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A

#tdefine
#tdefine

#tdefine
#tdefine

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

SERVER_NUM 0x31234567
SERVER_VERSION 1

DBSERVER_NUM 0x31234569
DBSERVER_VERSION 1

SWITCH 1
IMP_FILE 3
LIST_FILES 31
LIST_FILES_SIZES 32
IMP_FILE_CONT 33
EXP_FILE 4
DEL_FILE 5
GET_CONFIG 6
SET_CONFIG 7
LOCK 8

UNLOCK 9
SPGSENDCONFIG 10
SPGGETCONFIG 101
PRSENDCONFIG 11
PRGETCONFIG 111
DMCSENDCONFIG 12
MONITORA 21
MONITORB 22
INCVOLT 23
INCVOLT2 24
INSETDOSE 25
INSETTIME 26
INMAXRATE 27
INDOSD 28

CONTES 29
CONSTOPONA 30
CONSTOPONB 230
OUTCVOLT 231
OUTCVOLT2 241
OUTSETDOSE 251
OUTFCDOSE1 252
OUTFCDOSE2 253
OUTDOSE1 254
OUTDOSE2 255
OUTSETTIME 261
OUTMAXRATE 271
OUTMAXARATE 272

75

ADDEND

#define
#define
#define
#define
#define
#define

#tdefine
#tdefine

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

Stellenbosch University http://scholar.sun.ac.za

UM A

OUTMAXBRATE 273
OUTARATE 274
OUTBRATE 275
OUTDOSD 281
EXIT 100

STATUS 411

ONE_MEG 1048576
TEN_MEG 10485760

<iostream>
<QString>
<QDateTime>
<QCryptographicHash>
<sys/stat.h>
<sys/socket.h>
<netinet/in.h>
<netinet/tcp.h>
<rpc/rpc.h>
<unistd.h>
<time.h>
<iomanip>

using namespace std;

struct S

};

typedef struct SPGConfig SPGConfig;

struct P
char
char
char
int
int
int
int

+;

typedef

PGConfig {
char* IPSUP;
charx IPPR;
char* patientID;
int planNum;

int beamNum;

RConfig{

*IPSUP;

*IPSPG;

*patientID;
planNum;
beamNum;
cubelNum;
markerCarrierID;

struct PRConfig PRConfig;

76

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A

struct fileHeader {
int fileExists;
int fileSize;
char *fileName;
char *timestamp;
char *checksum;
+;
typedef struct fileHeader fileHeader;

struct fileBody {
int pos;
int bytelength;
char* data;
I
typedef struct fileBody fileBody;

struct monitoredDevices {
unsigned long SABUS;
unsigned long HV;
unsigned long SS;
unsigned long RCS;
unsigned long BCS;
unsigned long DMC;
unsigned long PHYSICSMode;
unsigned long SOBPMode;
unsigned long BITEBLOCKMode;
unsigned long BEAMON;
unsigned long BEAMOFF,
unsigned long FC190UTREQ;
unsigned long BEAMONHOLDREQ;
I

typedef struct monitoredDevices monitoredDevices;
extern struct monitoredDevices monDevs;

struct field{
int number,
leaf_pairs,
misc_field_data,
irregular_field_num;

double weight,
iso_distance,

77

Stellenbosch University

ADDENDUM A

std:

};

MLC_rotation,
MLC_thickness,
leaf_width,
monitor_units,
radiological_depth,
output_factor,
tissue_mass_ratio,
tissue_phantom_ratio,
source_skin_dist,
wedge_factor,
relative_dose,

energy,

gantry_angle,
patient_support_angle,
beam_lim_device_angle,
field_width,
field_height,
wedge_angle;

:string name,

type,
irradiation_device,
radiation_type,
MLC_name,
MLC_variable_leaf_width,
beam_group_type,
flags,

dose_data,
target_point,
beam_lim_device_type,
wedge_orientation,
irregular_field_file,
applicator_name;

typedef struct field field;

struct Plan{
int number,
fractionsNumber,
fieldsNumber;

double prescribedDose,

http://scholar.sun.ac.za

78

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A

normalizationDose;

std::string patientName,
patientID,
therapist,
doseCalcSource;

field* treatmentFields;

3
typedef struct Plan Plan;

struct indicator
{
int value;
QDateTime date;
s
typedef struct indicator indicator;
typedef indicator timelnfo;
typedef indicator voltFactor;

struct error
indicator error_indicator;
QString reason;

+s;

typedef struct error error;

struct doseData
{
double dose;
QDateTime date;
+;
typedef struct doseData doseData;

struct xrayData
{
QString * fileName;
QDateTime * date;
s
typedef struct xrayData xrayData;

extern bool_t xdr_PRConfig (XDR *xdrs, PRConfig *objp);
extern bool_t xdr_SPGConfig (XDR #*xdrs, SPGConfig *objp);

79

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 80

extern bool_t xdr_fileHeader (XDR *xdrs, fileHeader *objp);
extern bool_t xdr_fileBody (XDR *xdrs, fileBody *objp);

extern int INTERRUPT_FLAG;
extern int STATE_TRANSITION_FLAG;
extern int STATE_IDENTIFY_FLAG;

#endif // SSSHAREDDATA_H

Supervisory System Client code

bool simulationwindow::initializeDMCClient ()
{

char Host[50];

char Protocol[4];

u_long Program, Version;

strcpy (Host, "196.21.126.124");
strcpy(Protocol, "tcp");
Program = DMCSERVER_NUM;
Version = DMCSERVER_VERSION;
DMCClient = clnt_create(Host, Program, Version, Protocol);
if (DMCClient '= 0)
return true;
else
return false;

int simulationwindow::configureDMC(int cvolt, int cvolt2, double presetDose,
int presetTime, int maxrate, double dosd)
{
if ('initializeDMCClient ())
return -1; // DMC RPC Client not initialized
cmdINCVOLT (cvolt) ;
if (cmdOUTCVOLT() != cvolt)
return -2; // CVOLT factor not set
cmdINCVOLT2(cvolt2) ;
if (cmdOUTCVOLT2() != cvolt2)
return -3; // CVOLT2 factor not set
cmdINSETDOSE (presetDose) ;
if (cmdOUTSETDOSE() != presetDose)

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 81

return -4; // Preset Dose not set
cmdINSETTIME (presetTime) ;
if (cmdOUTSETTIME() != presetTime)

return -5; // Preset Time not set
cmdINMAXRATE (maxrate) ;
if (cmdOUTMAXRATE() != maxrate)

return -6; // Maximum dose rate not set
cmdINDOSD (dosd) ;
if (cmdOUTDOSD() !'= dosd)

return -7; // Dose difference not set

return 0; // DMC Successfully configured!

void simulationwindow: :cmdINCVOLT (int cvolt)

{

struct timeval Timeout;

Timeout.tv_sec = 100;

Timeout.tv_usec = 0;

charx ParamQut = 0;

clnt_call(DMCClient,INCVOLT, (xdrproc_t) xdr_int, (char *) &cvolt,
(xdrproc_t) xdr_wrapstring, (char *) &ParamOut, Timeout);

void simulationwindow: :cmdINCVOLT2(int cvolt?2)

{

struct timeval Timeout;

Timeout.tv_sec = 100;

Timeout.tv_usec = 0;

charx ParamQut = 0;

clnt_call(DMCClient,INCVOLT2, (xdrproc_t) xdr_int, (char *) &cvolt2,
(xdrproc_t) xdr_wrapstring, (char *) &ParamQut, Timeout);

void simulationwindow: :cmdINSETDOSE (double dose)

{

struct timeval Timeout;

Timeout.tv_sec = 100;

Timeout.tv_usec = 0;

charx ParamQOut = 0;

clnt_call(DMCClient,INSETDOSE, (xdrproc_t) xdr_double, (char *) &dose,
(xdrproc_t) xdr_wrapstring, (char *) &ParamQut, Timeout);

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 82

void simulationwindow: :cmdINSETTIME(int time)
{
struct timeval Timeout;
Timeout.tv_sec = 100;
Timeout.tv_usec = 0;
charx ParamQut = 0;
clnt_call(DMCClient,INSETTIME, (xdrproc_t) xdr_int, (char *) &time,
(xdrproc_t) xdr_wrapstring, (char *) &ParamOut, Timeout);

void simulationwindow::cmdINMAXRATE (int maxrate)
{
struct timeval Timeout;
Timeout.tv_sec = 100;
Timeout.tv_usec = 0;
charx ParamQut = 0;
clnt_call(DMCClient, INMAXRATE, (xdrproc_t) xdr_int, (char *) &maxrate,
(xdrproc_t) xdr_wrapstring, (char *) &ParamOut, Timeout);

void simulationwindow: :cmdINDOSD (double dosd)
{
struct timeval Timeout;
Timeout.tv_sec = 100;
Timeout.tv_usec = 0;
charx ParamQut = 0;
clnt_call(DMCClient,INDOSD, (xdrproc_t) xdr_double, (char *) &dosd,
(xdrproc_t) xdr_wrapstring, (char *) &ParamOut, Timeout);

DMC Server code

Header file: rpcrequesthandler.h

#ifndef RPCREQUESTHANDLER_H
#define RPCREQUESTHANDLER_H

#include <QThread>
#include "SSSHaredData.h'"
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <rpc/rpc.h>

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 83

struct DMCDataf{
int cvolt,
cvolt2,
time,
maxrate,
maxarate,
maxbrate,
arate,
brate,
fcdosel,
fcdose?2;
double dose,
dosel,
dose?2,
dosd;
};
typedef struct DMCData DMCData;

class RPCRequestHandler : public QThread

{
public:
RPCRequestHandler () ;
~“RPCRequestHandler () ;
void terminateServer();
protected:
void run();
void initializeServer();
private:
SVCXPRT *Server;
};

extern void dispatch_me(struct svc_req *Request, SVCXPRT *Server);
extern DMCData *dmcData;

#endif // RPCREQUESTHANDLER_H

Source file: rpcrequesthandler.cpp

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 84

#include '"rpcrequesthandler.h"
#include <iostream>

#include <QString>

using namespace std;

DMCData *dmcData = new DMCData;

RPCRequestHandler: :RPCRequestHandler ()

{

//initializeServer();
}
RPCRequestHandler: : "RPCRequestHandler ()
{

terminateServer();
}
void RPCRequestHandler: :run()
{

initializeServer();
}

void dispatch_me(struct svc_req *Request, SVCXPRT *Server)
{
int result = 0;
double fresult = O;
charx args;
//QString args;
PRConfig argss;
argss.beamNum
argss.planNum =
argss.IPSUP = 0;
argss.IPSPG = 0
argss.patientID = O;
argss.cubelNum = 0;
argss.markerCarrierID = O;
//int argsss;

Il
o

switch (Request->rq_proc)

{

case SWITCH:
cout << "Switch COMMAND recieved: Entering Serialization State..." << end
args= "OK";

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 85

if (svc_sendreply(Server, (xdrproc_t) xdr_wrapstring, (char *) &args)){
cout << "Reply send successfully: " <<args<< endl;
result = 0;

}

elseq{
cout << "Reply NOT send. " << endl;
result = -1;

}

break;

case STATUS:
cout << "Status COMMAND recieved: Sending DMC Server status to client...'
args = "UNKNOWN";
if (svc_sendreply(Server, (xdrproc_t) xdr_wrapstring, (char *) &args)){
result = 0;

}

elseq{
cout << "Reply NOT send. " << endl;
result = -1;

}

break;

case CONTES:
cout << "CON TES COMMAND recieved..." <<endl;

args = "DMCOK";

dmcData->dosel 0;

dmcData->dose2 0;

dmcData->time = O;

if (svc_sendreply(Server, (xdrproc_t) xdr_int, (char *) &args)){
result = 0;

}
elseq{
cout << "Reply NOT send. " << endl;
result = -1;
}
break;
case CONSTOPONA:
cout << "CON STOPON A COMMAND recieved...'" <<endl;
args = "0OK";

if (svc_sendreply(Server, (xdrproc_t) xdr_int, (char *) &args)){
result = 0;

}

elseq{
cout << "Reply NOT send. " << endl;
result = -1;

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 86

break;
case CONSTOPONB:
cout << "CON STOPON B COMMAND recieved...'" <<endl;
args = "OK";
if (svc_sendreply(Server, (xdrproc_t) xdr_int, (char *) &args)){
result = 0;

i
else{
cout << "Reply NOT send. " << endl;
result = -1;
b
break;
case LOCK:
cout << "Lock COMMAND recieved: Locking SPG Server to client..." << endl;
args = " LOCKED";

if (svc_sendreply(Server, (xdrproc_t) xdr_wrapstring, (char *) &args)){
result = 0;

+
elseq{
cout << "Reply NOT send. " << endl;
result = -1;
+
break;
case UNLOCK:
cout << "Unlock COMMAND recieved: Locking SPG Server from client..." << e
args = " UNLOCKED";

if (svc_sendreply(Server, (xdrproc_t) xdr_wrapstring, (char *) &args)){
result = 0;

i
else{
cout << "Reply NOT send. " << endl;
result = -1;
i
break;
case DMCSENDCONFIG:
cout << "SendConfig COMMAND recieved: Reading inputs..." << endl;
args = " PRConfig received";
svc_getargs(Server, (xdrproc_t) xdr_PRConfig, (char *) &argss);
cout<<"PRConfig recieved:"<<endl<<"IPsup = '"<<argss.IPSUP<<endl;
cout<<"IPspg = '"<<argss.IPSPG<<endl;
cout<<"PatientID = "<<argss.patientID<<endl;
cout<<"Beam Number = "<<argss.beamNum<<endl;
cout<<"Plan Number = "<<argss.planNum<<endl;

cout<<"Marker Carrier ID = '"<<argss.markerCarrierID<<endl;

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 87

cout<<"Cube Number = "<<argss.cubeNum<<endl;
if (svc_sendreply(Server, (xdrproc_t) xdr_wrapstring, (char *) &args)){
result = 0;

}
elseq{
cout << "Reply NOT send. " << endl;
result = -1;
}
break;
case OUTDOSE1:
{
cout << "QUT DOSE1 COMMAND recieved..." << endl;

QTime midnight(0, 0, 0);
gsrand (midnight.secsTo(QTime: :currentTime())) ;

result = qrand() % 10;

dmcData->dosel = (double)result;

cout<<"dmcData->dosel: "<<dmcData->dosel<<endl;

if (svc_sendreply(Server, (xdrproc_t) xdr_int, (char *) &dmcData->dosel))q
result = 0;

}
else{
cout << "Reply NOT send. " << endl;
result = -1;
}
break;
}
case OUTDOSE2:
{
cout << "QUT DOSE2 COMMAND recieved..." << endl;

QTime midnight(0, 0, 0);
gsrand (midnight.secsTo(QTime: :currentTime())) ;

result = qrand() % 10;

dmcData->dose2 = (double)result;

cout<<"dmcData->dose2: '"<<dmcData->dose2<<endl;

if (svc_sendreply(Server, (xdrproc_t) xdr_int, (char *) &dmcData->dose2))q
result = 0;

}

else{
cout << "Reply NOT send. " << endl;
result = -1;

}

break;

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 88

}
case INCVOLT:
cout << "IN CVOLT COMMAND recieved...'" <<endl;
svc_getargs(Server, (xdrproc_t) xdr_int, (char *) &result);
dmcData->cvolt = result;
cout<<"dmcData->cvolt: '"<<dmcData->cvolt<<endl;
args = "CVOLT SET";
if (svc_sendreply(Server, (xdrproc_t) xdr_wrapstring, (char *) &args)){
result = 0;

}
elseq{
cout << "Reply NOT send. " << endl;
result = -1;
}
break;
case INCVOLT2:
cout << "IN CVOLT2 COMMAND recieved..." <<endl;

svc_getargs(Server, (xdrproc_t) xdr_int, (char *) &result);

dmcData->cvolt2 = result;

cout<<"dmcData->cvolt2: "<<dmcData->cvolt2<<endl;

args = "CVOLT2 SET";

if (svc_sendreply(Server, (xdrproc_t) xdr_wrapstring, (char *) &args)){
result = 0;

}
elseq{
cout << "Reply NOT send. " << endl;
result = -1;
}
break;
case INSETDOSE:
cout << "IN SETDOSE COMMAND recieved...'" <<endl;

svc_getargs(Server, (xdrproc_t) xdr_double, (char *) &fresult);

dmcData->dose = fresult;

cout<<"dmcData->dose: '"<<dmcData->dose<<endl;

args = "DOSE SET";

if (svc_sendreply(Server, (xdrproc_t) xdr_wrapstring, (char *) &args)){
result = 0;

}

else{
cout << "Reply NOT send. " << endl;
result = -1;

}

break;

case INSETTIME:

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 89

cout << "IN SETTIME COMMAND recieved...'" <<endl;

svc_getargs(Server, (xdrproc_t) xdr_int, (char *) &result);

dmcData->time = result;

cout<<"dmcData->time: "<<dmcData->time<<endl;

args = "TIME SET";

if (svc_sendreply(Server, (xdrproc_t) xdr_wrapstring, (char *) &args)){
result = 0;

}
elseq{
cout << "Reply NOT send. " << endl;
result = -1;
}
break;
case INMAXRATE:
cout << "IN MAXRATE COMMAND recieved...'" <<endl;

svc_getargs(Server, (xdrproc_t) xdr_int, (char *) &result);

dmcData->maxrate = result;

cout<<"dmcData->maxrate: "<<dmcData->maxrate<<endl;

args = "MAXRATE SET";

if (svc_sendreply(Server, (xdrproc_t) xdr_wrapstring, (char *) &args)){
result = 0;

}

else{
cout << "Reply NOT send. " << endl;
result = -1;

}

break;

case INDOSD:
cout << "IN DOSD COMMAND recieved..." <<endl;

svc_getargs(Server, (xdrproc_t) xdr_double, (char *) &fresult);

dmcData->dosd = fresult;

cout<<"dmcData->dosd: "<<dmcData->dosd<<endl;

args = "DOSD SET";

if (svc_sendreply(Server, (xdrproc_t) xdr_wrapstring, (char *) &args)){
result = 0;

}
elseq{
cout << "Reply NOT send. " << endl;
result = -1;
}
break;
case QUTCVOLT:
cout << "QUT CVOLT COMMAND recieved..." <<endl;

result = dmcData->cvolt;

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 90

cout<<"result: "<<result<<endl;
if (svc_sendreply(Server, (xdrproc_t) xdr_int, (char *) &result)){
result = 0;

}
elseq{
cout << "Reply NOT send. " << endl;
result = -1;
}
break;
case QUTCVOLT2:
cout << "QUT CVOLT2 COMMAND recieved...'" <<endl;

result = dmcData->cvolt2;

cout<<"result: "<<result<<endl;

if (svc_sendreply(Server, (xdrproc_t) xdr_int, (char *) &result)){
result = 0;

}
else{
cout << "Reply NOT send. " << endl;
result = -1;
}
break;
case OUTSETDOSE:
cout << "QUT SETDOSE COMMAND recieved..." <<endl;

fresult = dmcData->dose;

cout<<"result: "<<fresult<<endl;

if (svc_sendreply(Server, (xdrproc_t) xdr_double, (char *) &fresult)){
result = 0;

}
else{
cout << "Reply NOT send. " << endl;
result = -1;
}
break;
case OUTSETTIME:
cout << "QUT SETTIME COMMAND recieved..." <<endl;

result = dmcData->time;

cout<<"result: "<<result<<endl;

if (svc_sendreply(Server, (xdrproc_t) xdr_int, (char *) &result)){
result = 0;

}

elseq{
cout << "Reply NOT send. " << endl;
result = -1;

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 91
break;
case OUTMAXRATE:
cout << "QUT MAXRATE COMMAND recieved..." <<endl;

result = dmcData->maxrate;

cout<<"result: "<<result<<endl;

if (svc_sendreply(Server, (xdrproc_t) xdr_int, (char *) &result)){
result = 0;

}
elseq{
cout << "Reply NOT send. " << endl;
result = -1;
}
break;
case OUTMAXARATE:
cout << "QUT MAXARATE COMMAND recieved...'" <<endl;

result = dmcData->maxarate;

cout<<"result: "<<result<<endl;

if (svc_sendreply(Server, (xdrproc_t) xdr_int, (char *) &result)){
result = 0;

}
elseq{
cout << "Reply NOT send. " << endl;
result = -1;
}
break;
case OUTMAXBRATE:
cout << "QUT MAXBRATE COMMAND recieved...'" <<endl;

result = dmcData->maxbrate;

cout<<"result: "<<result<<endl;

if (svc_sendreply(Server, (xdrproc_t) xdr_int, (char *) &result)){
result = 0;

}
else{
cout << "Reply NOT send. " << endl;
result = -1;
}
break;
case 0UTDOSD:
cout << "QUT DOSD COMMAND recieved...'" <<endl;

fresult = dmcData->dosd;

cout<<"result: "<<fresult<<endl;

if (svc_sendreply(Server, (xdrproc_t) xdr_double, (char *) &fresult)){
result = 0;

¥

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 92

else{
cout << "Reply NOT send. " << endl;
result = -1;

}

break;

case OUTARATE:

cout << "OUT A RATE COMMAND recieved..." <<endl;

result = dmcData->arate;

cout<<"result: "<<result<<endl;

if (svc_sendreply(Server, (xdrproc_t) xdr_int, (char *) &result)){
result = 0;

}
else{
cout << "Reply NOT send. " << endl;
result = -1;
}
break;
case OUTBRATE:
cout << "QUT B RATE COMMAND recieved..." <<endl;

result = dmcData->brate;

cout<<"result: "<<result<<endl;

if (svc_sendreply(Server, (xdrproc_t) xdr_int, (char *) &result)){
result = 0;

+
else{
cout << "Reply NOT send. " << endl;
result = -1;
+
break;
case EXIT:
cout << "Exit COMMAND recieved: Exiting Serialization State..." << endl;
args = " 0OK";

if (svc_sendreply(Server, (xdrproc_t) xdr_wrapstring, (char *) &args)){
result = 0;

}

elseq{
cout << "Reply NOT send. " << endl;
result = -1;

}

break;

default:
cout << "Unknown message recieved.'"<< endl;
args = "Unknown Command.";

if (svc_sendreply(Server, (xdrproc_t) xdr_wrapstring, (char *) &args)){

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A

result = 0;

}

else{
cout << "Reply NOT send. " << endl;
result = -1;

}

break;

void RPCRequestHandler::initializeServer()
{
cout << "Inside InitializeServer()...." << endl;
int TCPSocket;
struct sockaddr_in Address;
//SVCXPRT *Server;

dmcData->arate = 0;
dmcData->brate = 0;
dmcData->cvolt = 0;
dmcData->cvolt2 = 0;
dmcData->dosd
dmcData->dose
dmcData->dosel =
dmcData->dose2 =
dmcData->fcdosel
dmcData->fcdose?2 5
dmcData->maxarate = 0;
dmcData->maxbrate = 0
dmcData->maxrate = 0;
dmcData->time = 0;

b

=0
=0

nmn o o~
o O

b

TCPSocket = socket (PF_INET, SOCK_STREAM, O0);
Address.sin_family = AF_INET;
Address.sin_port = htonl(7775);
Address.sin_addr.s_addr = INADDR_ANY;

bind (TCPSocket, (sockaddr*) &Address, sizeof (Address));

Server = svctcp_create(TCPSocket, 0, 0);
cout<<"Before service register...'"<<endl;

93

cout <<svc_register(Server, DMCSERVER_NUM, DMCSERVER_VERSION,

&dispatch_me, IPPROTO_TCP)<<endl;

//GlobalVar = -1;

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 94
svc_run();
}
void RPCRequestHandler::terminateServer ()
{
svc_destroy(Server) ;
svc_unregister (DMCSERVER_NUM, DMCSERVER_VERSION) ;
delete dmcData;
+

bool_t xdr_SPGConfig (XDR *xdrs, SPGConfig *objp)
{
if (!xdr_wrapstring (xdrs, &objp->IPSUP)){
return FALSE;

if (!'xdr_wrapstring (xdrs, &objp->IPPR)){
return FALSE;

if (!xdr_wrapstring (xdrs, &objp->patientID)){
return FALSE;

if (!xdr_int (xdrs, &objp->beamNum)){
return FALSE;

if (!xdr_int (xdrs, &objp->planNum)){
return FALSE;

return TRUE;

bool_t xdr_PRConfig (XDR *xdrs, PRConfig *objp)
{
if (!xdr_wrapstring (xdrs, &objp->IPSUP))
return FALSE;
if (!'xdr_wrapstring (xdrs, &objp->IPSPG))
return FALSE;
if (!xdr_wrapstring (xdrs, &objp->patientID))
return FALSE;
if (!xdr_int (xdrs, &objp->planNum))
return FALSE;
if (!xdr_int (xdrs, &objp->beamNum))
return FALSE;
if (!xdr_int (xdrs, &objp->cubelNum))

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 95

return FALSE;

if (!xdr_int (xdrs, &objp->markerCarrierID))
return FALSE;

return TRUE;

b
bool_t xdr_fileBody (XDR *xdrs, fileBody *objp)
{
cout<<"Entering xdr_fileBody..."<<endl;
if (!'xdr_int (xdrs, &objp->pos))
return FALSE;
if (!xdr_int (xdrs, &objp->byteLength))
return FALSE;
if (!'xdr_wrapstring (xdrs, &objp->data))
return FALSE;
cout<<"Leaving xdr_fileBody.'"<<endl;
return TRUE;
+

bool_t xdr_fileHeader (XDR *xdrs, fileHeader *objp)
{

cout<<"Entering xdr_fileHeader..."<<endl,

if (!xdr_int (xdrs, &objp->fileExists)){
cout<<"fileExists not int"<<endl;
return FALSE;

}

if (!xdr_int (xdrs, &objp->fileSize)){
cout<<"fileSize not int"<<endl;
return FALSE;

}

if (!xdr_wrapstring (xdrs, &objp->fileName)){
cout<<"fileName not charx*'"<<endl;
return FALSE;

}

if (!'xdr_wrapstring (xdrs, &objp->timestamp)){
cout<<"timestamp not charx*'"<<endl;
return FALSE;

}

if (!xdr_wrapstring (xdrs, &objp->checksum)){
cout<<"checksum not charx*"<<endl;
return FALSE;

}

cout<<"Leaving xdr_fileHeader.'"<<endl;

return TRUE;

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 96

Boost.Spirit Parsers

Parsers.h

#ifndef PARSERS_H
#tdefine PARSERS_H

#include <boost/config/warning_disable.hpp>

#include <boost/spirit/include/qi.hpp>

#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/spirit/include/phoenix_object.hpp>
#include <boost/fusion/include/adapt_struct.hpp>
#include <boost/fusion/include/io.hpp>

#include <boost/fusion/include/std_pair.hpp>

#include <map>

namespace parsers
namespace qi = boost::spirit::qi;
namespace ascii = boost::spirit::ascii;

typedef std::multimap<std::string,std::string> pairs_type;

using qi::1it;
using ascii::char_;
using qi::eol;

[ITTT177

// Our supervisory treatment plan (*.sup) parser

[ITTT17777777 77777777777 777777777777777777777777777777

template <typename Iterator>
struct supervisoryTreatmentPlan : qi::grammar<Iterator, pairs_type()>
{
supervisoryTreatmentPlan() : supervisoryTreatmentPlan::base_type
(supervisoryTreatmentPlanStart)

{

supervisoryTreatmentPlanStart 7%= supervisoryTreatmentPlanPair >>

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 97

*(+eol >> supervisoryTreatmentPlanPair);
supervisoryTreatmentPlanPair %= supervisoryTreatmentPlanKey >>

-(-1it(" ") >> supervisoryTreatmentPlanValue) ;
supervisoryTreatmentPlanKey %= (+qi::space | !eol) >>

*(char_ - (+1it(" ") | +eol));
supervisoryTreatmentPlanValue %= +(char_ - eol);

qi::rule<Iterator, pairs_type()> supervisoryTreatmentPlanStart;

qi::rule<Iterator, std::pair<std::string, std::string>()>
supervisoryTreatmentPlanPair;

qi::rule<Iterator, std::string()> supervisoryTreatmentPlanKey,
supervisoryTreatmentPlanValue;

};
//]

[1717777777777777777777777777777777777777177
// Our treatment plan (*.PLN) parser

[IT17777777777777777777777771777777777177777

template <typename Iterator>
struct treatmentPlan : qi::grammar<Iterator, pairs_type()>

{
treatmentPlan() : treatmentPlan::base_type(treatmentPlanStart)
{
treatmentPlanStart %= treatmentPlanPair >>
*(+eol >> treatmentPlanPair);
treatmentPlanPair %= treatmentPlanKey >>
-(-1it (" ") >> treatmentPlanValue);
treatmentPlanKey %= (+qi::space | !eol) >>
*(char_ - (+1it(" ") | +eol));
treatmentPlanValue %= +(char_ - eol);
+

qi::rule<Iterator, pairs_type()> treatmentPlanStart;

qi::rule<Iterator, std::pair<std::string, std::string>()>

treatmentPlanPair;

qi::rule<Iterator, std::string()> treatmentPlanKey,
treatmentPlanValue;

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 98
};
//]

[IT1177
// Our Supervisory Configuration file (Config.sup) parser

[ITTTITT7 7777777777777 7777777777777 77777777777777777777777777

template <typename Iterator>
struct config : qi::grammar<Iterator, pairs_type()>

{
config() : config::base_type(configStart)
{
configStart %= configPair >> *(+eol >> configPair);
configPair %= configKey >> -(-1it(’=’) >> configValue);
configKey %= #*(char_ - (+1it(’=’) | +eol));
configValue %= +(char_ - eol);
}
qi::rule<Iterator, pairs_type()> configStart;
qi::rule<Iterator, std::pair<std::string, std::string>()> configPair;
qi::rule<Iterator, std::string()> configKey, configValue;
I
//1]

[ITTTTTTTT07777777777 7777777 7771777

// Patient record file (patientID || planNumber || treatmentUnit.rec) parser

LITTTTTTT7077777777777 77777 771777

template <typename Iterator>
struct rec : qi::grammar<Iterator, pairs_type()>

{

rec() : rec::base_type(recStart)

{
recStart %= recPair >> *(+eol >> recPair);
recPair %= recKey >> -(-1it(’;’) >> recValue);
recKey %= *(char_ - (+1it(’;’) | +eol));
recValue %= +(char_ - eol);

+

qi::rule<Iterator, pairs_type()> recStart;
qi::rule<Iterator, std::pair<std::string, std::string>()> recPair;

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 99

qi::rule<Iterator, std::string()> recKey, recValue;

};
//1]

#endif // PARSERS_H

Dose Algorithm

The following sequence of instructions embodies the dose algorithm for a given
treatment plan:

1. Before starting the treatment for the first time, initialize the treatment
record by setting and recording the following parameters in the treatment
record fora=1,..., M and 7 =1,..., N:

a) Set and record the cumulative delivered doses as d; ; < 0.
b) Set and record the delivered doses as d, ; < 0.
c¢) Set and record the preset doses as d., ; < d..

d) Set and record the binary treatment flags P, ; < 0 and F, ; < 0.

2. Determine the next fraction ¢ for which the treatment must be completed.
This is done by first loading the flags F,, ; for « = 1,...,M and j =
1,..., N (if they are not yet loaded), and then searching for the smallest
value of i such that F,; = 0 for at least one value of o € [1, M]. If
Fony=1forall a=1,..., M, then the entire treatment pertaining to
the given treatment plan is completed. No further irradiations for this
treatment plan are then allowed.

3. The user is allowed to select the field o« that has to be administered for
the current fraction. The user is only allowed to select a field a for which
F,;=0.

4. For the treatment with the field a in the i-th fraction, use the following
instructions:

a) Assume that D;e{ ~ D'/ and set the theoretical dose overrun as
Ad™ « O, D¢/ At.

nom

b) Load the values d ;, d7 ;, d.
loaded.

c) If F, ; =1, then return to Step 2 above.

and P, ; if they are not already

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 100

d)

h)

i)
)

If P, ; =1, then prompt the user to provide the approximate value
d}'; for dg ; as obtained from the mechanical counters of the DMC,
and then set and record P, ; - 0 and d;, ; < d";.

Case [d} ; = d, and d; ; = O]:
Set and record df) ; < do — Ad".

Case [d] ; > d},]

Set and record dj} ; < dj ;+d; ;, db ;. < df ;. —(d;—d,) and
Foc,i +— 1.

Case [d, ; —d} ;> fd, fori < Nor d} ; —d} ;>0 fori= NJ|
Set and record d ; < dj ;+df ;, df ;< d. ;—d] ;and d]; < 0.

Case |Default]:

Prompt the user to determine if the dose difference d, ; — d ;
should be distributed over the remaining fractions. If not required,
then set and record dj ; < di,; +d},;, d}; < di,—d]; and

dj ; < 0, otherwise set and record F,, ; < 1, d; ; <= dj ; +d/ ; and
df j<db +(d} ;—dy)/ (N —i)forall j=i+1,...,N.

It F, ; < 1, stop SPG, and return to Step 2

Set P, ; < 1 and then send the preset dose as df, ; to the DMC
by using the IN SETDOSE(dY, ;) command. The execution of the
command IN SETDOSE must be checked with an OUT SETDOSE
command. If this check fails, then the treatment must be termi-
nated with a fatal error message.

The Supervisory System must remain in a suspended state until
the user indicates that the irradiation may commence. A CON TES
command must then be executed.

Record the values of P, ; and d, ; immediately when the BEAM ON
signal is obtained.

When the beam is terminated, as indicated by the BEAM OFF sig-
nal, execute the QUT DOSE1(dy) and OUT DOSE2(dp) commands.
If either or both these commands fail, then terminate the treatment
with a fatal error message (the user should be prompted to record
the dose values obtained from the mechanical counters of the DMC).

Ideally, the condition dy > dg should be satisfied. If this condition
holds true, then set d&i < da. However, if dy < dg, then the

user should be informed that Monitor B has overrun Monitor A.
The user must then choose whether ds or dg should be taken as

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 101

the legitimate value for the delivered dose — set d;, ; to the selected
value.

1) Set P, ; + 0 and record P, ; and d/; ; before returning to Step 4(e).

Dose distributions

Assuming that no dose differences were distributed over the remaining
fraction for any of the treatment fractions, the dose algorithm formu-
lated in Section Dose Algorithm above will result in the following dose
distribution for the field a:

(i—1
do+ Y (Adaj— Adg,ji1) + Ada; — Adllif i is odd
j=1, odd

a1 i—1

dy — Z (Ady, ; — Adg, j+1) if i is even.

\ j=1, odd

In this expression, the sums only run over odd values of 5. Adding the
cumulative doses for all the fractions yield

N N-1
Y di,=Dot Y (Ade;—Adl.
i=1 j=1, odd

If we now assume that Ad, ; = Ad" + ¢, ; for all j = 1,..., N, with
€q,; being small random errors that are normally distributed around zero,

then
(i1
g (Ca,j — €aj+1) + €a,i if i is odd
s . 7j=1, odd
doi —da=1{ ",
(€a,j — €a,j+1) if i is even,
\ j=1, odd
while

N N

E s 2 :
da,i_DOl: €a7j.

=1

j=1, odd
These results demonstrate that the objectives of the dose algortihm are
indeed achieved, especially when N is large.

Dosimetric relationships

This section summarizes some of the dosimetric equations that are of
importance to the supervisory system.

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 102

The prescribed dose per fraction is given by
do = Do /M, . (7.0.1)
The preset treatment time required for the preset dose d?, , is given by
Aty = Max((d}, ./da) Ato, Atmin) (7.0.2)

whereas the maximum allowed difference between the readings of moni-
tors A and B are given as

App = Max(%Aap d,_ /100, AVE). (7.0.3)

In these expressions, Max(z,y) returns the largest value of its two ar-
guments z and y. Upon the normal stopping of the beam, the dose
delivered can be expressed as

d;,n - dz,i + Ada,li) (704)

where Ad,, , is the dose overrun. This overrun is theoretically given by
the estimate

AdI ~ D™ Aty = O DI Aty . (7.0.5)

The beam-stop response time Aty of the beam delivery system can be
estimated using the procedure outlined in Section Measurement of the
response time below. The maximum dose-rate that should be tolerated
during the delivery of the dose d?, , is given by

D™ =0, D24 (7.0.6)

Measurement of the response time

Suppose that the field « is the reference field and d,.y is the prescribed
dose per fraction for this field. Thus, after M normally completed frac-
tions, with &, = dfefm = dycf for all fraction k = 1,..., M, the average
response time Aty can be approximated from eqs (7.0.4) and (7.0.5) as

M
1 . :
Atoys ~ 77 > (= dies)/Dregn (7.0.7)
=1

with Dre . denoting the average dose rate for the reference field during
the fraction k. Equation (7.0.7) represents a practical method for mea-
suring Atgys. In this experiment, large values should be chosen for both
M and d,.;. The large value for d,.; ensures long irradiation times AT,
so that the average dose rate Dre.ﬁ,{ can be approximated as

l)mf’,.i ~ dref/ATR . (708)

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 103

By combining eqs (7.0.7) and (7.0.8), we find that

M
1 T
Atsys = 57 > AT (dlyy = drep) /ey - (7.0.9)
k=1

When conducting this experiment, the beam current should be kept as
constant as possible throughout the irradiation time AT} for each frac-
tion k = 1,..., M. Furthermore, the beam current must be set at a
value to ensure that Dref,,{ 2 D?EO? forallk =1,..., M.

SABUS Technologies
SABUS crates

A South African standard for a communication bus for the Z80 microprocessors
was developed during the late 1970’s. iTL has simplified this SA-bus (SABUS)
for in-house use.

The SABUS is used as a 8-bit communications interface between a master
card and slave cards. The cards are mounted in a 19 inch crate, which is
referred to as a SABUS crate, so that they are connected by DIN-41612 con-
nectors to the backplane that provides the communication bus between the
cards. The backplane also connects the cards to the low-voltage power-supply
unit (PSU) of the SABUS crate. The SABUS crate and cards in the crate is
referred to as a SABUS system.

The iTL implementation of the SA-bus has 8 data lines, 8 address lines,
read and write control lines, and traditionally a reset line. The SABUS master
card drives the address, data and control lines.

In all the new TCS equipment, the reset line will be used as a SABUS
monitor line to indicate the functional status of all the cards in the SABUS
crate — this is referred to as the SABUS status. The monitor line is normally
at a logically high state, which signifies that the entire SABUS system is
functional. A failure of the master card to address the watchdog-timer devices
on any one of the slave cards, or a failure of any one of the SABUS cards,
will cause a voltage drop on the SABUS monitor line, thereby changing it to
a logically low state to indicate the SABUS failure status.

General features of the SABUS cards

Description

Each SABUS card typically uses a field-programmable gate array (FPGA) de-
vice or complex programmable logic device (CPLD) to achieve the required
functionality. These devices contain reconfigurable logic components and in-
terconnections. The FPGA devices are configured during the power startup of

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 104

the card by the configuration data (or “firmware”) stored in a memory device
specially provided for this purpose, whilst a CPLD is programmed before use.

Some of the SABUS cards may also implement a microcontroller that exe-
cutes a program to provide additional features in conjunction to those provided
by the re-configurable logic (CPLD or FPGA) device. Furthermore, some cards
may provide for specialized input and output to external devices through con-
nectors that are mounted on the front edge of the card. In these cases, the
card will typically implement additional components, such as buffers, differen-
tial drivers, opto-isolators and/or relays to prove the required interfaces with
the external devices. Figure 1 not only illustrates those features that are com-
mon to all SABUS cards, but also (in generic form) functional aspects that
are specific to certain specialized cards.

RE-CONFIGURABLE | sABuUS
LOGIC DEVICE BACKPLANE
/0 INTERFACE F—
BUFFERS & — DATA
[CONVERTERS] MICROPROCESSOR SPECIAL
FUNCTIONS]
ADDRESS | R
SABUS 3
(OPTIONAL) BACKPLANE 2
INTERFACE READ |
write | 8
E
110 WATCH - SABUS | m
BUFFERS & DOG INPUT MONITOR | Q
CONVERTERS 3
OUTPUT %
i |
(OPTIONAL)

Figure 1: Functional diagram of a SABUS card indicating common as well as
specialized features

Common functions and operation

The re-configurable logic device of a SABUS card provides the following set of
functions that are common to all SABUS cards:

e An interface with the bus on the backplane of a SABUS crate, which is
called the SABUS backplane interface.

e A backplane-status monitor that uses the input from the SABUS monitor
line to continually observe the logical state of this line, thereby notifying
the card when the SABUS monitor line changes to a logically low state
(to indicate the SABUS failure status).

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 105

e A watchdog-timer device, which is coupled with a fail-safe, open collector
transistor configuration to the SABUS monitor line. This transistor con-
figuration will drop the voltage on the monitor line as soon as a timeout
of the watchdog occurs, thereby changing the monitor line to a logically
low state.

e A timeout will occur if the SABUS master card fails to regularly update
the watchdog device of a slave card by writing a watchdog data value
(via the SABUS backplane interface) to the correct address space in the
slave card’s re-configurable logical device.

SABUS-interface card

Description

The SABUS-interface card is a SABUS master card that allows an external
unit, such as a personal computer (PC), to communicate with the cards in
the SABUS crate. This interface between the external unit and the SABUS
system is referred to as the SABUS communications interface.

The SABUS-inteface card is equipped with a differential communication
bus (diff-bus) and an FPGA device. The diff-bus acts as the SABUS com-
munication interface to the external unit. The FPGA device provides the
required SABUS backplane interface and watchdog-timer device, as well as an
interface between the diff-bus and the SABUS backplane (the diff-bus inter-
face). The card also provides for one output in the form a relay contact-pair
and one optically isolated input. The main features of the card are illustrated
in Figure 2.

SABUS-INTERFACE CARD
SABUS
BACKPLANE
B 8xRS-485 |_8-BIT DATA BUS FPGA INTERFACE DATA]
DIFFERENTIAL
TRANSCEIVERS] « SABUS BACKPLANE ®
DIFF-BUS 4xRS485 | 2-ADDRESS + 2 CONTROL SIGNAL$ INTERFACE ADDRESS | Q
DIFFERENTIAL « DIFF-BUS INTERFACE 2
— RECEIVERS >
+ WATCHDOG rerp | B
« RELAY CONTACT WRITE | §
. ouTPUT z
OUTPUT | | ! sABUS |
RELAY CONTACTS OPTO-ISOLATED INPUT MONITOR | ©
INPUT o
INPUT ®
CURRENT LOOP %XMK@ ouTPUT

Figure 2: Functional diagram of the SABUS-interface card

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 106

The implementation of the diff-bus uses eight RS-485 differential transceivers
to provide a 8-bit, bi-directional communication bus for the transferring of
data, and four RS-485 receivers to provide two address lines, a strobe signal
line and a directional control line to control the data flow (see Figure 2).

Due to the implementation of the differential drivers to establish the diff-
bus, the SABUS-interface card is also referred to as the differential-driver
card. We will refrain from this nomenclature since other SABUS cards also
implement a diff-bus.

Functions and operation

e The SABUS-interface card provides the general functions as described
in Section 7.

e The diff-bus, together with the diff-bus interface, acts as the SABUS
communication interface that allows an external unit to communicate
with the SABUS-interface card, and hence with all the other cards in the
same SABUS crate. The diff-bus is a 8-bit, bi-directional cummunication
bus with two address lines and two control lines.

e The external unit is responsible for keeping the watchdog-timer device
from timing out. This must be done by regularly writing a special watch-
dog data value to the required address space in the card’s FPGA device.
The success of this write operation can be confirmed by reading back the
value of the last written value. This read-back value is given as the last
written value incremented by 1. The status of the watchdog can also be
read back to check whether a timeout of this device has occurred.

e The relay contact is opened when the SABUS monitor line is pulled
down, or when the watchdog fails. It may therefore be used to transmit
the SABUS status as an output signal to an external device.

e The optical-isolator may be connected in series with an external current
loop. This will then generate an input signal that indicates whether a
current is flowing through the loop. The FPGA may also be configured
to pull down the SABUS monitor line when no detectable current is
flowing in the loop.

Multipurpose PCI card
Description

The multipurpose PCI card enables an external computer to communicate with
a SABUS system that is equipped with a master card that provides a SABUS
communication interface via a 8-bit, bi-directional differential communication

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 107

bus (diff-bus). The PCI card may be used in any computer that is equipped
with a 33 Mhz PCI bus.

The basic design of the multipurpose PCI card is displayed in Figure 3.
The card consists of a base board on which a PCI-bus bridge is connected to
a FPGA device. The PCI-bus bridge provides the interface between the PCI
bus of the computer and the logic circuits of the FPGA (the PCI interface).
The PCI-bus bridge is specified for a standard 32 bits, 33 MHz PCI-bus with
a 3.3 V or 5.0 V signaling voltage. The base board is also equipped with an
optically isolated input, a normally open (N/O) contact relay switch and a
differential-driver output that are all connected to this FPGA.

The main FPGA on the base board is connected to a daughter board
on which a second FPGA is mounted. The daughter board is also equipped
with RS-485 differential transceivers to provide a differential communication
bus (diff-bus) that allows the PCI card to be interfaced with the SABUS
system. The diff-bus is a 8-bit, bi-directional communication bus equipped
with two address lines and two control lines (similar to the diff-bus described
in Section 7). The secondary FPGA on the daughter board provides the logic
circuits that links the diff-bus to the main FPGA (the diff-bus interface).

BASE BOARD DAUGHTER BOARD

FPGA FPGA

DATA BUS &

DIFF-BUS CONTROL SIGNALS DIFF-BUS
PCI INTERFACE INTERFACE DIFFERENTIAL
WITH FPGA TRANSCEIVERS

BASED DUAL
PORT RAM

OUTPUT P
L

DIFFERENTIAL OUPUT
WATCHDOG
OUTPUT
RELAY CONTACTS
INPUT
I
gmy CURRENT LOOP

PCI BRIDGE

MULTIPURPOSE PCI CARD

Figure 3: Functional diagram of the multipurpose PCI card

The input and output (I/O) of data between the PCI card and the PCI
bus of the computer is illustrated in Figure 4.

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 108
BASE BOARD DAUGHTER BOARD
Main FPGA 2nd FPGA
for PCI Interface for Diff-bus RS-485
<5 Interface K=y Diff —
Drivers SABUS Interface
CPU MAIN
MEMORY ﬁ
PCI Bridge
7 MULTI PURPOSE PCI CARD

OUTPUT INPUT

Control Status
Words Words

<

32-Bit 33 MHz PCI Bus >

Figure 4: Communication between the PCI card and the computer

Functions and operation: Base board

Data can be accessed asynchronously by both the PCI interface and the
diff-bus interface (and hence the SABUS communications interface) with
the use of a dual ported RAM on the main FPGA.

The contacts of the relay switch can be opened and closed directly by
instructions from the computer. A watchdog-timer unit on the main
FPGA also controls the status of the relay contact. The relay is typically
used as an emergency-stop switch.

The watchdog-timer unit must be updated regularly at specified inter-
vals by writing a watchdog data value to the correct address space in the
main FPGA. Failing this, the watchdog will automatically open the relay
contact. The watchdog data value must be the compliment of the previ-
ously written value. The success of the write operation can be confirmed
by reading back the value of the last written value. This read-back value
is given as the last written value incremented by 1. The status of the
PCI watchdog can also be read back to check whether a timeout of this
device has occurred.

The timeout period for the watchdog unit is set at approximately 600 ms.

The optical-isolator may be connected in series with an external current
loop. This will then generate an input signal that indicates whether
a current is flowing through the loop. The optically isolated input is
typically used to obtain the status of the SABUS system without having
to use the SABUS communication interface.

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A 109

e The differential-driver output is controlled by the computer. It is typi-
cally used to provide a synchronization signal to an external device.

Daughter board

e The diff-bus interface controls the data flow in the SABUS interface (i.e.
the connection between the SABUS system and the PCI system).

e Data are transmitted and received via the diff-bus. It uses eight RS-485
differential transceivers to provide the 8-bit, bi-directional data bus. The
data flow is controlled by four RS-485 differential transmitters that drives
two address lines, one strobe signal, and one direction control signal.

e All data transfers, when done on a continuous basis, are completed within
500 pus.

ETX computer module

Stellenbosch University http://scholar.sun.ac.za

ADDENDUM A

ETX COMPUTER CARD

FPGA

ETX INTERFACE (PCI)

SABUS BACKPLANE
INTERFACE

DIFF-BUS INTERFACE
TSB INTERFACE
RELAY CONTACT
WATCHDOG

SABUS
BACKPLANE
INTERFACE

DATA

ADDRESS

READ

WRITE

SABUS
INPUT MONITOR

OUTPUT

ETX COMPUTER

o}
RELAY CONTACT C/ RELAY CONTROL
CL SENSING INPUT
M%
CURRENT LOOP (CL) CL CONTROL
m%
X9
‘ CL SENSING INPUT?
CURRENT LOOP (CL) yw ‘
v
X3
TSBINTERFACE
DIFF-BUS DATA BUS & CONTROL SIGNALS
DIFFERENTIAL
TRANSCEIVERS
RS 485 TRANSMIT
RS 232 — 485 RS-232
CONVERTER RECEVE | coM
VGA
MOUSE RAM
KEYBOARD
ETHERNET

CPU

N Y I

FLASH
DISK

Figure 5: Functional diagram of the ETX computer module

110

HOLOANNOD 3INV1dMOvd

