Evaluation of modern large-vocabulary speech

recognition techniques and their implementation

by

Renier Adriaan Swart

Thesis presented in partial fulfilment of the requirements for
the degree of Master of Science in Electronic Engineering at

the University of Stellenbosch

Department of Electrical and Electronic Engineering
University of Stellenbosch
Private Bag X1, 7602 Matieland, South Africa

Supervisor: Prof J.A. du Preez

March 2009

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is
my own original work and that I have not previously in its entirety or in

part submitted it at any university for a degree.

Copyright (C) 2009 University of Stellenbosch
All rights reserved.

Abstract

Evaluation of modern large-vocabulary speech
recognition techniques and their implementation

R.A. Swart
Department of Electrical and Electronic Engineering

University of Stellenbosch
Private Bag X1, 7602 Matieland, South Africa

Thesis: MScEng
March 2009

In this thesis we studied large-vocabulary continuous speech recognition.
We considered the components necessary to realise a large-vocabulary speech
recogniser and how systems such as Sphinx and HTK solved the problems
facing such a system.

Hidden Markov Models (HMMs) have been a common approach to
acoustic modelling in speech recognition in the past. HMMs are well suited
to modelling speech, since they are able to model both its stationary nature
and temporal effects. We studied HMMs and the algorithms associated with
them. Since incorporating all knowledge sources as efficiently as possible is
of the utmost importance, the N-Best paradigm was explored along with
some more advanced HMM algorithms.

The way in which sounds and words are constructed has been studied
extensively in the past. Context dependency on the acoustic level and on

the linguistic level can be exploited to improve the performance of a speech

ii

ABSTRACT iii

recogniser. We considered some of the techniques used in the past to solve
the associated problems.

We implemented and combined some chosen algorithms to form our
system and reported the recognition results. Our final system performed
reasonably well and will form an ideal framework for future studies on
large-vocabulary speech recognition at the University of Stellenbosch. Many

avenues of research for future versions of the system were considered.

Uittreksel

Evaluation of modern large-vocabulary speech

recognition techniques and their implementation

R.A. Swart

Departement Elektries en Elektroniese Ingenieurswese
Universiteit van Stellenbosch

Privaatsak X1, 7602 Matieland, Suid Afrika
Tesis: MSclng
Maart 2009

In hierdie tesis het ons kontinue spraakherkenning in die konteks van
groot woordeskatte bestudeer. Ons het gekyk na verskeie komponente wat
benodig word om so 'n stelsel te realiseer en hoe bestaande stelsels soos
Sphinx en HTK die probleme opgelos het.

Verskuilde Markov-Modelle (VMM’s) is in die verlede gereeld gebruik
vir akoestiese modellering van spraak. VMM’s is ideaal vir spraak toepass-
ings aangesien hulle daartoe in staat is om stasionére sowel as temporale
eienskappe te modelleer. Ons het VMM'’s en die algoritmes wat benodig
word om VMM’s te realiseer, bestudeer. Verskeie kennisbronne moet effek-
tief benut word vir 'n bruikbare stelsel en daar is maniere ondersoek om dit
te bewerkstellig.

Die manier waarop klanke en woorde in spraak gebou word is voorheen al
deeglik bestudeer. Konteks-athanklike klank- en taalmodelle en die tegnieke

wat al toegepas is om hulle te benut is bestudeer. Konteks is 'n uiters

iv

UITTREKSEL v

belangrike bron van kennis en moet in ag geneem word vir enige effektiewe
spraakherkenner.

Nadat ons gekyk het na verskeie gewilde benaderings tot die spraakherken-
nings probleem het ons 'n volledige stelsel van ons eie ontwerp. Ons het
verskeie algoritmes gekies en geimplementeer en die herkennings resultate
gerapporteer. Ons stelsel was redelik akkuraat en sal 'n ideale raamwerk
vorm vir toekomstige studies in groot woordeskat spraakherkenning by die

Universiteit van Stellenbosch.

Acknowledgements

I would like to express my sincere gratitude to the following people and

organisations who have contributed to making this work possible:

e Krygkor (Pty) Ltd for making funds available and also for permission

to publish the research results,

e Prof Johan du Preez at the University of Stellenbosch for leading me

through the entire study process,

e Dr Herman Engelbrecht at the University of Stellenbosch for all his

guidance in difficult times,

e Marisa Crous for always standing by me and listening to my technical

rants.

vi

Contents

Declaration i
Abstract ii
Uittreksel iv
Acknowledgements vi
Contents vii
List of Figures viii
Nomenclature ix

1 Introduction 1
1.1 Motivation o 1
1.2 Backgroundo 2

1.2.1 Audio processing L. 2
1.2.2 Acoustic modelling 2
1.2.3 Language modelling 3
1.2.4 Search techniques 3
1.3 Literature Study 4
1.3.1 History of speech recognition. 4
1.3.2 Speech Recognition in recent years 8
1.3.3 Summary 12

vii

CONTENTS viii

1.4 Objectives e 13
1.5 Overview of this work 13
1.5.1 Hidden Markov Models 13
1.5.2 Context Dependency 15
1.5.3 Implementation of test system 15
1.5.4 Experimental investigation 16

1.6 Contributionso 18
2 Hidden Markov Models 19
2.1 HMM Definition 19
2.2 HMM assumptions 20
2.2.1 Markov assumption 21
2.2.2 Output-independence assumption 21

2.3 The HMM problem 21
2.3.1 The evaluation problem 22
2.3.2 The decoding problem 24
2.3.3 The learning problem 27

24 HMM Types o o o o e 27
241 HMM Topology 28
2.4.2 State output probability distributions 28

2.5 HMM Applications 30
2.5.1 Whole word models 31
2.5.2 Phoneme models L. 33

2.6 Evaluating HMMs. oo 35
2.7 More HMM algorithms and optimisations 36
2.7.1 Beam segmentation 36
2.7.2 Multi-level HMM segmentation 38
2.7.3 N-Best paradigm 39

2.8 Summary e 44
3 Context dependency 46

3.1 Context types 46

CONTENTS ix

4

5

3.2 Context-dependent phoneme modelling 47
3.2.1 Trainabilityo o0 47
3.2.2 Decision Trees L. 49

3.3 Language Modelling 52
3.3.1 Definition L. 52
3.3.2 Techniques., 54

3.4 Summary .. o.o.o. Lo 59

Implementation 60

4.1 Multi-level Beam HMM segmenter 61

4.2 N-Best segmenter oL 66

4.3 Language model oL 7

4.4 N-Best grammar segmenter 78

4.5 Silence Detection 81

4.6 Context-independent phoneme modelling 81

4.7 Context-dependent phoneme modelling 85

4.8 Word Spotter 87

4.9 Summary 89

Experimental investigation 90

5.1 Continuous phoneme recognition on Hub-4 broadcast speech 91
5.1.1 Flat start monophone recognition on Hub-4 broadcast

speech 91
5.1.2 Forced alignment monophone recognition on Hub-4
broadcast speech 92
5.1.3 Forced alignment triphone recognition on Hub-4 broad-
cast speech with monophone densities 93
5.1.4 Forced alignment triphone recognition on Hub-4 broad-
cast speech L. 94
5.2 Effect of beam on accuracy and performance 99
5.3 Continuous word recognition on Hub-4 broadcast speech de-

velopment seto 99

CONTENTS X

5.3.1 Finding effective parameters for phase one. 100

5.3.2 Finding effective parameters for phase two. 105

5.3.3 Finding effective parameters for phase three. 108

5.4 Determining the effect of a word length penalty 110

5.5 Sphinx 3 Hub-4 Development set evaluation 112
5.6 Continuous word recognition on Hub-4 broadcast speech eval-

uation set 115

5.7 Summaryo 116

6 Conclusion 118

6.1 Concluding Perspective L. 118

6.2 Future work o 120

Bibliography 122

A General Speech Recognition and Evaluation Techniques 129

A.1 Linear Discriminant Analysis 129

A.2 Mel-frequency cepstral coefficients 130

A3 Perplexity 132

A.4 A density for the estimated average power of Gaussian noise 133
A.5 The mean and variance of an estimate of the variance of the

estimated mean power 135

B Phoneme set 140

C Question set 142

List of Figures

2.1 A small HMM example.

2.2 HMM used to illustrate use of path matrix. In the multi-level
example, null states 2, 4 and 6 are considered word endings
(super states).

2.3 A possible path matrix B;(j) produced by the Viterbi algorithm
applied to the HMM in Fig. 2.2.

2.4 An example of a four state left-to-right HMM.

2.5 A general Gaussian distribution. 000 L.

2.6 HMM for an N-word classifier for isolated word recognition.

2.7 HMM for an N-word spotter for continuous speech recognition.
The addition of the transition from the final state to the first
state (feedback loop) enables the HMM to recognise a sequence
of words instead of just isolated words.

2.8 HMM for a word model constructed from three phonemes.

2.9 Viterbi expansion without beam, where each possible expansion
ismade.

2.10 Viterbi expansion with beam, where only the higher scores are
expanded.

2.11 The N-Best Paradigm. Inexpensive knowledge sources (KSs 1)
are incorporated early, while the remaining and more expensive
knowledge sources (KSs 2) are used to generate the final hypoth-
esis [43]. . . .

2.12 An example of a 5-Best list represented as a lattice.

xi

26

33
34

38

LIST OF FIGURES

2.13 The traceback-based N-Best deficiency. Paths with different his-
tories cannot be distinguished [43]. L.
2.14 The word-dependent N-Best algorithm. Paths with different pre-

ceding words are combined [43].o

3.1 HMDMs not sharing PDFs, where many PDFs need to be trained
and a large amount of training data is required.
3.2 HMDMs sharing PDFs, where fewer PDFs need to be trained re-

xii

sulting in less data being necessary for them to be properly trained. 48

3.3 A simplified example of a decision tree that determines risk for
cancer. Males over the age of 40 and female smokers have the
highest risk.

4.1 The full path matrix from a small example. The arrows indicate
how backtracking takes place once the matrix is fully populated.
4.2 The super path and time matrix from a small example. The
arrows indicate how backtracking takes place once the matrices
are fully populated. o o0
4.3 Example of HMM used for two-word N-Best spotter. The sym-
bol under each state indicates which phoneme is represented by
that particular state. A list of the phonemes used in our imple-
mentation can be found in App. B.o
4.4 N-best relying on 1-best segmentation. Super states such as
states 33 and 39 are shown in the same matrix as non-super
states for the sake of this illustration. The arrows show the
l-best path.
4.5 Illustration of steps 1 and 2 in the N-Best segmentation algo-
rithm. Step 1 forms the marker entry at state 0 and time 0,
while step 2 expands that entry to the glue states and in turn

the begin states. Lo

62

69

LIST OF FIGURES

4.6 Tllustration of step 3 in the N-Best segmentation algorithm. The
begin state entries in the 1-best matrix are populated with the
best scores from their associated N-Best lists.

4.7 Tlustration of step 4 in the N-Best segmentation algorithm. Nor-
mal 1-best segmentation takes place exactly as is done with the
Viterbi algorithm. oo

4.8 Tllustration of step 6 in the N-Best segmentation algorithm. Af-
ter emitting states 8 and 11 are expanded to end states 1 and 2,
the 1-best end states scores are used to form the end state lists.

4.9 Tllustration of a later iteration of step 2 in the N-Best segmenta-
tion algorithm. The newly formed end state lists are expanded
and merged to the glue states and in turn the begin states. . . .

4.10 N-best end states and begin states path and score matrices.

4.11 1-best path, score and begin state backtrack buffers.

4.12 Example of HMM used for 2 word N-Best grammar spotter.
Words are not connected and the feedback loop and glue states
are removed. The language model is responsible for connecting
the words.o

4.13 Monophone training process.

4.14 Example of utterance HMM used in forced alignment. Optional
silences separate words.

4.15 Triphone training process.

4.16 HMM configuration used in first phase of word spotter. Words
are placed in parallel, with optional silences separating words.
The language model weights are incorporated last in the segmen-
tation process, so that they are incorporated first when backward
Viterbi segmentation takes place.

4.17 Process used to generate word hypothesis.

5.1 An HMM topology commonly used to model phonemes.
5.2 Context-dependent phoneme spotter with an alphabet contain-

ing two symbols. Only matching contexts can be recognised. . .

xiii

74

81

95

LIST OF FIGURES

3.3

5.4

3.9

3.6

2.7

5.8

2.9

Number of parameters for various MOCs. The number of clus-
ters drops as the maximum occupation count is increased.

Insertion and deletion rates for various parameter counts.
Accuracy for various parameter counts. The most accurate sys-
tems are between 1000 and 2000 clusters.
Ticks required for monophone spotting for beam values of e?¢*™,
The processing power required increases as the beam becomes
wider.
Accuracies found for monophone spotting for beam values of
ePeam The maximum accuracy is quickly reached and a heam
width that is increased further has no effect.
Lattice correctness for various average word beginnings per frame
counts. The lattice correctness only increases slightly for systems
with an average of more than 20 word beginnings per frame. . .

Linear model used for word length penalty. The more phonemes

the word contains, the smaller the penalty becomes.

A.1 Triangular filters used in MFCC.

xiv

97
97

98

Nomenclature

Acronyms:
CART Classification and Regression Tree
CFG Context Free Grammar
CHMM Coupled Hidden Markov Model
DL Description Length
EM Expectation-Maximisation
FFT Fast Fourier transform
GMM Gaussian Mixture Model
GW Grammar Weight
HMM Hidden Markov Model
KS Knowledge Source
LDA Linear Discriminant Analysis
LM Language Model
LPC Linear Prediction Coefficients
LVCSR Large-Vocabulary Continuous Speech Recognition
MAPMI Maximum Active Phone Model Insurance
MDL Minimum Description Length
MFCC Mel-frequency cepstral coefficients
MOC Minimum Occupation Count
PDF Probability Density Function

XV

NOMENCLATURE xvi

PLP Perceptual Linear Prediction
SAM Structured Adaptive Mixture
SNR Signal-to-Noise Ratio

WER Word-Error Rate

WIP Word Insertion Penalty
WPFEF Words Per Frame

Symbols:
a;(t) Forward probability
Bi(t) Backward probability

7i(t) Probability of being in state i at time ¢, given the observation

sequence X and the model ®

nw Mean vector

™ Initial state distribution in HMM

) Hidden Markov Model

P Hidden Markov Model with maximised likelihood for observing a
training observation sequence X

by Covariance matrix

Ci(i,7) Probability of taking the transition from state i at time ¢ to state
j at time t + 1

;j Transition probability from state ¢ to state 7 in an HMM

A Probability matrix containing state transition probabilities for an
HMM

b;(x) Probability of observing x at state ¢ in an HMM
B State output probability distributions for an HMM
By(i) Best-path state history

Cjk Weight of the kth mixture in the GMM at state j
k HMM state index

N The number of states in an HMM

NOMENCLATURE xvii

A

N
NB

NE
Np
N

P()
(

The number of super states in an HMM

The number of begin states in an HMM

The number of end states in an HMM

The number of terminating states in an HMM
Gaussian probability distribution

General probability

Q(P, <i>) Baum’s auxiliary function

s(n)

Discrete-time speech signal

Hidden Markov Model state occupied at time ¢

Hidden state sequence in an HMM

The amount of observations in an observation sequence
Best-path probability

Observation at time t

Sequence of observations

Chapter 1

Introduction

1.1 Motivation

Speech is by far the easiest and fastest way to communicate for humans. It
requires little effort for us to speak and we can communicate very efficiently
in this way. For this reason, it is sensible to develop ways for humans to
communicate with computers in the same way. Little or no additional train-
ing is required from the user. Traditional interfaces such as the keyboard
and the mouse can prove difficult for individuals not used to computers.

Speech recognition systems are developed in an attempt to realise such
ideas. Unfortunately speech recognition is an extremely complex task and is
infamous for being very difficult to carry out efficiently. On larger vocabu-
laries (greater than 1000 words), confusability and processing requirements
grow rapidly and along with it the complexity of the problem.

In this thesis we explored large-vocabulary continuous speech recogni-
tion (LVCSR) by looking at some current systems and by implementing
a basic LVCSR system of our own. We considered various approaches and
developed the fundamental building blocks necessary to realise speech recog-
nition with a large-vocabulary. We compared the results of our system with

Sphinx 3 [37] and considered possible future developments.

CHAPTER 1. INTRODUCTION 2

1.2 Background

A typical large-vocabulary speech recogniser will need all of the following

components:
1. Audio processing
2. Acoustic modelling
3. Language modelling

4. Search techniques

1.2.1 Awudio processing

Computers have limited storage, which renders them unable to store con-
tinuous signals. For this reason, we need to convert raw audio data received
from a microphone into a discrete signal s(n). This is done by sampling
the continuous signal with some form of analog-to-digital conversion. This

discrete signal is then converted into a sequence of feature vectors
X =xX1,Xo,...,%Xn. (1.2.1)

The audio processing component of the speech recogniser is responsible for

this task.

1.2.2 Acoustic modelling

In speaker independent speech recognition we have to represent a diverse
range of speakers with a single model. For this reason modelling the speech
is difficult and models need to be very versatile. This model grows ever more
complex as more and more speakers need to be understood, until eventually
you have the model that is completely speaker independent. When we need
to distinguish between a larger variety of sounds (phonemes) this becomes

increasingly difficult. Confusability increases and the accuracy of the model

CHAPTER 1. INTRODUCTION 3

becomes more important. Statistical Hidden Markov Models (HMMs) rep-
resent these speech models well, since they are intrinsically related to time.
HMMs are discussed in Chapter 2.

1.2.3 Language modelling

Language models are another valuable knowledge source. They are espe-
cially valuable in LVCSR applications, since there are so many word com-
binations to consider. The language model reduces the search space by
incorporating knowledge about the type of speech being recognised. In a
true LVCSR system this grammar would be quite vast, but even a very
general grammar makes the task more feasible. There are many ways to
construct and incorporate this grammar into the search.

A popular technique is to have a training set of common spoken label
sequences. These labels can be anything, but phonemes or words are used in
most cases. All these label sequences are used to create the language model.
This model can now be used for many things, including to determine the
probability of a word sequence being found. Since we are only interested in
recognising word sequences our grammar will be based on words. Language

modelling is discussed in greater detail in Chapter 3.

1.2.4 Search techniques

The search techniques are highly dependent on the modelling techniques,
but they play a significant role in any recognition task. Ideally we need to
find the highest probability for P(W)P(X|W), where P(W) is the proba-
bility of word sequence W and P(X|W) is the probability of the observa-
tion sequence X being generated given word sequence W. In practice this
is not feasible for large vocabularies, since we would need to consider each
possible word combination. The search space needs to be narrowed down
based on the acoustic observations. We would need to only consider word

sequences that sound very similar to the acoustic observations. By further

CHAPTER 1. INTRODUCTION 4

reducing the search space with a grammar (incorporated through P(W)),
we can reduce the search space sufficiently for a large-vocabulary search to
be feasible. The application of this idea to HMMs is explored further in
Chapter 2.

1.3 Literature Study

1.3.1 History of speech recognition

Speech recognition has been studied extensively throughout the world for
many years. Initial speech recognition systems had very limited resources
and were forced to restrict their capabilities to ensure feasibility. The first
systems modelled each word in the vocabulary for a specific speaker for
isolated words and recognition accuracies were acceptable. They found

decent results by using one or more of the following constraints:
1. Speaker dependence
2. Small vocabulary
3. Isolated word recognition
4. Restricted grammar

One of the primary problems with speech recognisers is the number of speak-
ers it needs to be able to recognise. If we have multiple speakers we not
only have confusability between models, but also between speakers. People
might pronounce the same word completely differently. On the acoustic
modelling side it is clearly very difficult to create models that are accurate
for a diverse range of speakers. Vast differences occur in the realisations
of speech units related to context, style of speech, dialect and speaker. In
1975, Ttakura [19] was one of the first to show that speech recognition for
a single speaker was possible. He used dynamic time warp techniques to

recognise isolated words in a 200 word vocabulary and achieved a 97.3%

CHAPTER 1. INTRODUCTION 5

accuracy. One of the main reasons for Itakura’s success was the fact that
his system was trained and tested on a single male speaker. Words were
recognised by calculating a minimum prediction residual and the models
were constructed using linear prediction coefficients (LPC). Computational
power was very limited at that time, which resulted in the system processing
telephone recordings at 22 times slower than real time.

Another big problem with recognition accuracy is the vocabulary size. If
the vocabulary becomes larger than about 1000 words we need significantly
more processing power and memory. The inherent confusability of many
words also add to the difficulty of the problem and lead to reduced recogni-
tion accuracy. The 1975 Hearsay Il system at Carnegie Mellon University
[26] was able to recognise continuous speech for a much larger vocabulary
of around 1200 words with an accuracy of 87%. This was only possible due
to a simple English-like grammar with a perplexity® of 4.5, which reduced
the search space significantly. The system was based on the hypothesise-
and-test paradigm and used cooperating independent knowledge sources
communicating with each other through a shared data structure. A conve-
nient modular structure was designed and could incorporate new knowledge
into the system at any level.

Others focused on recognising continuous speech. Itakura only recog-
nised isolated words, which makes recognition easier. Continuous speech
has the added dimension of unknown word boundaries. If we can assume
that only a single word was uttered in a given test sample we can simply
compare the test sample with the model of each word in the vocabulary
and find the best match. Baker [3] used uniform stochastic modelling to
represent knowledge sources in the same year as Hearsay Il and used a
probabilistic function of a Markov process to model speech. By introducing
the idea of using HMMs in speech recognition he formed the foundation for
many studies continuing today. They recognised continuous speech with

an accuracy of 84%, but they were still using a small set of speakers and a

'See Appendix A.3 for more information on perplexity.

CHAPTER 1. INTRODUCTION 6

limited 200 word vocabulary.

If we have a single speaker and a small vocabulary we can relatively
easily create whole-word models for each word in the vocabulary. Data
scarcity will not be a problem since we can easily gather examples of each
word from the single speaker. In later years some were able to lift this
constraint. In 1982 Wilpon et al. [51] made use of statistical clustering
techniques to create models that were not dependent on a specific speaker.
They reported an accuracy of between 80% and 97%, but were still using a
very small vocabulary of around 129 words.

It was not long before very large vocabulary recognition was attempted.
The speech recognition group at IBM attempted a very-large-vocabulary
task with their Tangora System [20] in 1985. They recognised isolated words
from a 5110 word vocabulary and used a trigram language model. Such a
language model gives the probability of any word within the vocabulary
when given the preceding two words. The specific language model used by
them had a perplexity of 160. They constructed their vocabulary from the
most common words in a massive business memo database, which totalled
about 25 million words. This system achieved between 93.3% and 98%
accuracy, but was speaker dependent.

Context-dependent phoneme modelling was studied in later years and
some success was achieved at BBN [8] in 1987. They developed the BYB-
LOS system, which was designed for large-vocabulary applications. The sys-
tem integrated acoustic, phonetic, lexical and linguistic knowledge sources
with great success. They modelled co-articulation effects using HMMs and
recognised around 97% on a 350 word vocabulary. Technically the sys-
tem was speaker dependent, but after a short? enrolment time the system
could very accurately recognise utterances from a new speaker. They used
a language model with a perplexity of 60.

Further progress was made at Bell Labs by Rabiner in 1988 [38| on

continuous and speaker-independent recognition by creating a connected

2Five to fifteen minutes.

CHAPTER 1. INTRODUCTION 7

digit recogniser. By modelling both instantaneous and transitional spectral
information with mixed HMMs they improved significantly on previous re-
sults by achieving accuracies of 97% and above. This result is particularly
impressive since they used no grammar and these accuracies were measured
on whole sentences.

One of the first to almost completely lift all of the constraints that
were mentioned earlier was Kai-Fu Lee with the 1988 Sphinx system [25].
This would play a major role in speech recognition development for the next
decade. Triphone models were used along with word-dependent phone mod-
elling. Deleted interpolation was also used to combine robust models with
detailed ones. Using a grammar with a perplexity of 997 and a vocabulary
of around 1000 words he was able to recognise 73.6% of the words correctly.
This was a great achievement since the recogniser was speaker independent
and recognised continuous speech on a large vocabulary with a very general
grammar. Kai-Fu Lee was one of the first to prove that large-vocabulary
speaker-independent continuous speech recognition was possible.

In later years, Huang et al. [16] further improved on Sphinx with the
1993 Sphinx-2 system. Focus was placed on the improvement of speech
recognition systems with increased task perplexity, speaker variation and
environment variation. This was achieved by making use of semi-continuous
HMMs, sub-phonetic modelling, improved language modelling and speaker-
normalised features. Long distance bigrams were incorporated along with
a special back-off model to create an accurate and efficient language model.
They attempted to recognise speaker-independent continuous speech. When
using a grammar with perplexity of 60 and a vocabulary of 1000 words they
achieved an accuracy of around 97%.

The Cambridge University Speech Group developed large-vocabulary
speech recognisers using their 1993 HTK system [53| in the same year.
They made use of state tying and Gaussian mixture density HMMs to model
triphones. They applied their system to the 5000 word 1993 Wall Street

Journal corpus and found an accuracy of around 95%. A trigram language

CHAPTER 1. INTRODUCTION 8

model was used and applied using a single pass dynamic network decoder.
The HTK system is still being developed and is examined further in Sec-
tion 1.3.2.1.

The next phase for the Sphinx system was the release of Sphinx 3 [37]
in 1996. Two language models were used in this system: one to guide the
decoder in the actual recognition, and a different one for re-scoring the
N-best output hypotheses®. The fact that they generated an N-best list
of hypotheses allowed them to optimise the language model weight and
insertion penalty with Powell’s algorithm. When evaluating a 25000 word
vocabulary and a language model with perplexity 170 they obtained an
accuracy of 65.1%.

Other new concepts were introduced in later years, such as the use of
discriminative training for large-vocabulary HMM-based speech recogni-
tion. The maximum mutual information estimation (MMIE) |52] proved to
have many advantages. This technique allowed the estimation of triphone
HMM parameters which led to significant reduction in word error rate for
the transcription of conversational speech relative to the best systems using

maximum likelihood estimation (MLE).

1.3.2 Speech Recognition in recent years

In recent years some notable LVCSR systems have been developed. In this
section we look at some of the more powerful systems and examine their
capabilities. This is by no means an exhaustive study, but the more popular

systems are examined.

1.3.2.1 HTK

The HTK toolkit [53] is still under development at the Cambridge Uni-
versity Engineering Department and version 3.4 was released in 2006. It

consists of tools for building and manipulating continuous density HMMs.

3A 200-best list was used in the final implementation of Sphinx 3.

CHAPTER 1. INTRODUCTION 9

The main focus of the system was an extensive structure for training and
evaluating HMMs using various techniques in order to advance speech recog-
nition research. HTK also supports a wide selection of acoustic modelling
techniques, including diagonal and full-covariance Gaussian mixture HMMs.

All the standard feature extraction techniques such as MFCC and PLP
are included in the system. Some other experimental techniques such as
Vocal Tract Length Normalisation (VTLN) were also added in later ver-
sions.

HMM support on HTK is extensive and all the normal HMM represen-
tations are included. State-of-the-art HMM modelling is the core feature of
the system, which is capable of parameter tying and decision tree state clus-
tering to create triphones. HTK also supports MLLR and MAP adaptation,
which makes it particularly useful as a speaker-independent system.

A silence detection tool is also part of the system and can be used to
subdivide longer segments and lighten the load on the decoder. Various op-
tional outputs can be extracted from any decoder in the system, including a
word lattice and N-Best sequences. The powerful large-vocabulary decoder
was also included in version 3.4 and supports multiple parallel data streams.
Bigram and trigram language modelling capabilities with advanced back-
off techniques and cross-word triphone support make HTK a very powerful
toolkit.

1.3.2.2 AVCSR

An audio-visual continuous speech recognition system was developed at
Intel |27], which made use of the Coupled Hidden Markov Model (CHMM).
The CHMM can describe the asynchrony of the audio and visual features
and at the same time preserve their natural correlation over time. This
enables the system to recognise continuous speech more accurately than an
equivalent audio-only system.

Each of the possible phoneme-viseme pairs are modelled by an CHMM

and they reduced the word error rate of their audio only speech recognition

CHAPTER 1. INTRODUCTION 10

system at an SNR of 0dB by over 55%. This is definitely a promising
avenue for future research, but the addition of visual data complicates the

data gathering process.

1.3.2.3 Aurora

The Aurora system [35] was developed in 2002 and is an extension of the
baseline system developed in 1999 [10]. The system made use of MFCCs
and lexical processing was done by means of HMMs and a lexical tree. A
virtual copy of the tree is created for each n-gram word history (a dynamic

tree approach), which resulted in two benefits:
1. More efficient lexical processing due to the reduced number of nodes
2. Grammar knowledge is incorporated at an earlier stage

A hierarchical variation of the Viterbi search was implemented and they

incorporated two types of pruning:
1. Beam pruning
2. Maximum active phone model insurance

Triphones and a bigram language model were used to generate a lattice.
This lattice was then used for rescoring using more expensive cross-word

triphone models and they found decent performance.

1.3.2.4 Sphinx-4

Sphinx remains one of the best LVCSR systems with the 2004 Sphinx-4
system [50, 24]. Sphinx-4 was implemented in Java and still focuses on
using HMMs to recognise speech. The system has an easy-to-understand
modular design and many implementations of the various standard building
blocks for speech recognisers. This enables a user to customise Sphinx-4 to

meet their own specific application needs.

CHAPTER 1. INTRODUCTION 11

The Sphinx-4 framework consists of three primary modules, which can
be configured individually and interact in various ways. The configuration
manager also provides various tools which can be used to measure word

error rate, memory usage and runtime speed.

e FrontEnd: The FrontEnd takes an input signal and calculates fea-
ture vectors using this information. Sphinx-4 is highly configurable
and capable of producing parallel sequences of features. The more
popular feature extraction techniques are available in the system, in-
cluding MFCC and PLP [14].

Various data processors can be connected in sequence to produce the
specific features required. Normally each block propagates features as
they are calculated to the next data processors, but Sphinx-4 has a
different approach. Each block requests data from previous blocks as
required, enabling it to manage data efficiently and also request data

from the history or the future.

Sphinx-4 uses advanced Endpoint detection to separate speech and
non-speech segments. Only speech segments are sent to the decoder,

preventing unnecessary data processing.

e Linguist: The linguist block is a representation of an arbitrarily
selected grammar and grammar type. Three main grammar formats

are supported:

— Word-list grammar: Simple unigram from list of words.

— n-gram: Statistical n-gram models in the ARPA-standard for-

mat.

— Finite state transducers [30].

Separate from this grammar is the sentenceHMM graph, which is a
directed state graph where each node represents a unit of speech.
Also using a wide variety of building blocks such as phonemes and a

lexicon, it constructs the appropriate HMM.

CHAPTER 1. INTRODUCTION 12

e Decoder: The decoder makes use of a search manager to search
through a tree of hypotheses constructed with data from the linguist.
Each node in the tree has references to a node in the "sentence HMM" |
which then in turn allows it to get all info about grammar state, word
and so forth. The search module has a list of active tokens, which
are the best scoring leaves in the tree. When new acoustic data is
received, these active tokens are expanded and the weaker points are
pruned. After all features are processed, the final active list is given
as a result. This list can be converted into an N-best list, or the best

scoring path can be extracted.

Decoding can also be customised and the user can choose traditional
breadth-first Viterbi search or variations of it, but also more recent
techniques such as Bush-Derby |45]. Depth-first search, such conven-

tional stack decoding, can also be performed.

1.3.3 Summary

From studying existing systems some basic universal features appear essen-
tial. HMMs are very popular and widely studied, making them an obvious
choice for acoustic modelling. A language model should also be incorpo-
rated, since previous studies have shown that it is essential to reduce word
error rates.

Clearly, most LVCSR systems make use of a multi-pass approach, which
enables them to use inexpensive knowledge sources to reduce the search
space. Later stages then apply the more detailed and expensive knowl-
edge sources to this reduced search space. This results in a highly dynamic
system with various parameters that can be tuned for accuracy and perfor-
mance.

One of the typical steps in reducing the search space is to perform an
N-Best search. This is a relatively cheap way to significantly reduce the

search space, while retaining important information.

CHAPTER 1. INTRODUCTION 13

1.4 Objectives

We wanted to achieve the following objectives:

e Study the chosen components necessary for a large-vocabulary speech

recogniser.

e Implement these chosen components as necessary, building a frame-
work for future LVCSR work.

e Combine an appropriate existing language modelling implementation

with these components into a functional complete LVCSR system.

e Test our system with the 1996 NIST Hub-4 Broadcast Speech evalu-

ation.

1.5 Overview of this work

This section contains a summary of the work done in this thesis. Further
detail and motivations are left for later chapters. Chapter 2 describes the
theory and algorithms behind the fundamental building block for our sys-
tem, namely the Hidden Markov Model (HMM). In Chapter 3 we explore
the ways in which neighbouring utterances and words interact as we look
at context dependency. Chapter 4 describes all the components of our final
speech recognition system and how they were implemented. Our evaluation

methods and results are shown in Chapter 5.

1.5.1 Hidden Markov Models

Any speech recogniser needs an acoustic modelling technique. One of the
most popular is the HMM, which is a powerful statistical modelling tech-
nique. In Chapter 2 we considered HMMs in detail and studied the various

algorithms associated with them. First we defined the HMM and some of

CHAPTER 1. INTRODUCTION 14

the theory necessary to understand them. The problems associated with
HMMs were then examined.

We also considered various ways to use the HMM to construct word
or phoneme models. For smaller vocabularies we can consider training
an HMM for each word. We need enough training data for each of these
words to ensure that the parameters for the associated HMMs are properly
estimated. This becomes extremely difficult with larger vocabularies and
we need to find a different approach to modelling words with HMMs. We
considered a commonly used approach, which is to break up words into
smaller building blocks (phonemes). This relatively small set of phonemes
is used to construct each of the words in the vocabulary. Finding enough
training data for each of these phonemes is much simpler than for word
models, which is why they are preferred for larger vocabularies. We decided
to use this approach for our implementation.

As the number of words in our vocabulary grows we are forced to find
more efficient ways to decode our HMMs. Memory and processing require-
ments quickly become unmanageable for HMMs modelling large vocabular-
ies. We considered some of the more advanced techniques such as beam
and multi-level HMM segmentation, which can drastically improve perfor-
mance. The beam ensures that the most unlikely paths are abandoned
early on. This reduces both memory usage and processing requirements.
We also considered multi-level HMM segmentation, which enables us to re-
duce memory usage even further. Since we know exactly at which states
words end in our complete HMM we can reduce memory usage by only
storing information related to those particular states.

Finally, we considered the N-Best paradigm and how it can be used
to extract information more efficiently. Making use of our most expensive
knowledge sources (KSs) when performing a search on this massive search
space would require an enormous amount of processing power and memory.
This is why the search space is often first reduced by making use of less

expensive KSs. One way to achieve this is to perform an N-Best search with

CHAPTER 1. INTRODUCTION 15

simple acoustic and language models. The N-Best list is then rescored with
more complex acoustic and language models. This multiple-pass approach

was used in our final implementation.

1.5.2 Context Dependency

The way in which neighbouring utterances and words interact is an essen-
tial KS in speech recognition. In Chapter 3 we examined various context
types that are of importance to a speech recogniser. On the speaker level
these include gender, age and dialect. On the utterance level we considered
context-dependent phonemes; they are used to model the way neighbour-
ing phonemes affect one another in natural speech. One significant problem
with context-dependent phonemes is that the number of phonemes grows
rapidly as the context becomes more detailed. This causes the same train-
ability problems we found with word models. Various ways to address this
issue were considered, such as decision trees.

Context between words was considered next as part of our investiga-
tion of language modelling. We examined many approaches that have been
attempted in the past, such as n-grams, decision tree models and context
free grammars. One problem that is common to all language modelling
approach is a shortage of training data. We considered various more ad-
vanced techniques surrounding n-grams that alleviate this problem, such
as Good-Turing discounting and Katz smoothing. Both these techniques

result in more accurate n-gram modelling.

1.5.3 Implementation of test system

The implementation of our system was described in Chapter 4. Our first
problem was segmentation of our massive HMM containing 800000 states
and describing our 18000 word vocabulary. The normal Viterbi algorithm
requires too much memory when the number of states becomes this large.

However, such strict segmentation is not necessary in speech recognition.

CHAPTER 1. INTRODUCTION 16

Since we knew which states are important on the word level, we were able
to reduce the memory requirements significantly with the implementation
of our multi-level beam segmenter.

We decided on a multi-pass approach to our word spotter, since it en-
ables us to incorporate more expensive knowledge sources gradually. We
described how we expanded our multi-level beam segmenter to search for
the N-Best paths so that they may be rescored later. The next challenge
was to incorporate a language model into our segmenter. The SRI Lan-
guage Modelling toolkit was chosen to create our n-gram language model.
We described how we incorporated the ARPA format language model into
our system and included it in the N-Best segmenter.

An essential component to any large-vocabulary speech recogniser is
an efficient silence detection technique. We used an algorithm developed
by Johan du Preez to aid our word spotter and phoneme modelling. Our
approach to context-independent phoneme modelling was discussed next
and we described how we used these models and a decision tree to create
context-dependent models.

Finally, we explained how all the various components in our system were
combined to form our complete three-phase large-vocabulary continuous

speech recogniser.

1.5.4 Experimental investigation

In Chapter 5 we described our experiments and the associated results.
Firstly, we tested our context-independent phoneme modelling approach.
We were able to train monophones from the Hub-4 training data and achieve
a monophone spotting accuracy of 42.10%. These monophones were used to
initialise our context-dependent phoneme models. After we experimented
with various minimum occupation counts we achieved a triphone spotting
accuracy of 45.90%. This improvement demonstrates the usefulness of mod-
elling context between phonemes.

The aim of our next experiment was to determine the effect of a beam on

CHAPTER 1. INTRODUCTION 17

phoneme spotting. For monophone spotting we found that with a properly
chosen beam width you can drastically improve performance while barely
affecting recognition accuracy.

Once we had our triphone models we were able to start optimising the
various parameters of our word spotter experimentally. Since optimising the
vast number of parameters at the same time would be nearly impossible we
decided to optimise each phase individually on the development set. With
our final baseline system we achieved a word spotting accuracy of 32% on
the development set.

Finding long words made up of a concatenation of several phonemes is
more difficult than finding words which consist of one or two phonemes.
Longer words depend on a long sequence of well matched phoneme models.
To compensate for this we experimented with a word length penalty. We
found that a simple word length penalty improved accuracy by almost 2%
for phase two and almost 1% for phase three. Our word length penalty
model can be improved further, but demonstrates that word recognition
accuracy can be increased with a word length penalty.

In order to put our results into context, we attempted the same develop-
ment set evaluation with the well-known Sphinx 3 system. The accuracies
were now no longer calculated by our own system, but by the SCLite soft-
ware as required by the official Hub-4 specifications. Sphinx 3.2 found a
word-error rate (WER) of 56.3%, while our system found a WER of 68.9%.
We could see that our system performs significantly worse and various po-
tential reasons for this were discussed. The greatest loss in potential accu-
racy was found in phase two, where the correctness dropped from nearly
75% to just over 45%.

We found similar results on the evaluation set. Sphinx 3.2 found a
WER of 57.1% and our system found a WER of 68.9%. When considering
these results we should remember that our system was only developed as a
framework for future large-vocabulary speech recognition research and not

as an improvement on professional systems.

CHAPTER 1. INTRODUCTION 18

1.6 Contributions

e During the course of this study we implemented various hypothesis

search components necessary for a LVCSR system. These included:

1. Multi-level forward and backward Viterbi beam segmenters, which

drastically reduce memory requirements.

2. Multi-level exact N-Best segmenters, one of which incorporates

knowledge from a language model.

e We combined various components into a LVCSR system. This in-
cluded:

1. Audio preprocessing (Mel-frequency cepstral coefficients and lin-

ear discriminant analysis).
2. HMMs for acoustic modelling.
3. Trigram language modelling with backoff and smoothing.

4. Various Viterbi searches.

e We implemented a complete system to act as a framework for future

LVCSR research at the University of Stellenbosch.

e We were able to show that our newly implemented components re-
duce memory requirements and improve accuracy with respect to the
baseline system at the University of Stellenbosch. We also verified

that the multi-pass search paradigm is effective.

e Our final system was evaluated on the 1996 NIST Hub-4 Broadcast
Speech evaluation and found moderately accurate recognition rates
compared to Sphinx 3 when using the same phoneme set, data, lexicon

and language model.

Chapter 2

Hidden Markov Models

Many modern systems make use of a powerful statistical method called the
Hidden Markov Model (HMM) to characterise observed data samples of
a discrete-time series as described in [5]. HMMs are a fundamental part
of pattern recognition in general and has been used effectively in speech
recognition by many independent parties 3, 8, 25, 53].

HMMs also form an intuitive framework for the development of concepts

such as pruning, multi-level decoding and N-Best decoding.

2.1 HMM Definition

An HMM can be compared to a state machine. It contains states which are
connected by transitions. Each transition has a transition weight which is a
value between 0.0 and 1.0. The sum of all weights on transitions leaving a
state must be 1. Some of these states are called emitting states and contain
probability density functions (PDFs) describing some pattern found in the
type of data being recognised. In Fig. 2.1 you can see a small example of
a first-order HMM. Higher-order HMMs are also feasible, but they will not
be considered in this study. For this reason any reference to an HMM in
the rest of this work will be to a first-order HMM.

An HMM also has a special parameter (7r) which describes the initial

19

CHAPTER 2. HIDDEN MARKOV MODELS 20

state distribution. It is a vector containing a probability for each state in the
HMM which is the probability that the HMM will start in a given state. In
HMMs applied to speech recognition there is mostly a single state in which
the HMM state sequence will always begin. In that case all the entries
in the 7 vector contains zero except the entry corresponding to the initial

state, which contains a 1. The full parameters for an HMM are denoted as
® = (A,B,), (2.1.1)

where A is the matrix of transition weights and B is a vector of state
output probability distributions corresponding to each state, which gives a
probability when given an observation.

The HMM is well suited for modelling speech since it models stationary
characteristics within state output PDFs, as well as time-varying phenom-
ena within the transition probabilities.

The following notation is used when working with HMMs:

e T - The number of observations in the observation sequence.

e N - The number of states in the HMM.

S - The underlying hidden state sequence in the HMM, {s1, S2, ..., s7}.
e X - The sequence of observations, {x1,Xs,...,X7}.

e A - is a matrix of transition weights [a;;], which is the weight of the

transition from state ¢ to state j for every state combination 7,7 =
1,2,....T.

B - collection of probability distributions {b;(x;)}, which is the prob-
ability of observation x; being generated by the Markov process in

state s;.

2.2 HMM assumptions

The definition of an HMM makes two assumptions.

CHAPTER 2. HIDDEN MARKOV MODELS 21

e

Figure 2.1: A small HMM example.

2.2.1 Markov assumption
The first-order Markov assumption is expressed as
P(sxi7 871 = P(sy]si-1) (2.2.1)

and states that the probability of entering state s; given an observation

sequence x. ! and a state history st~ is equal to the probability of entering

state s; when only the previous state is known. This defines the first-
order nature of the HMM. Only a history of length 1 affects the next state
probabilities.

2.2.2 Output-independence assumption
Mathematically it is expressed as
P(x¢|xt71, 8h) = P(xy|s¢) (2.2.2)

and states that the observation vector x; is independent of the past and

will only be determined by the state that the HMM occupies at time ¢.

2.3 The HMM problem

There are three fundamental problems that need to be solved for us to use

HMDMs to their full potential:

1. The evaluation problem: How do we find the probability that a series

of observations was generated by a given HMM?

CHAPTER 2. HIDDEN MARKOV MODELS 22

2. The decoding problem: How do we find the most probable state se-

quence in the HMM that generated the series of observations?

3. The learning problem: Given a model, how do we find the parameters
for the HMM so that it has a high probability of generating a given

sequence of observations?

2.3.1 The evaluation problem

To solve this we need to find the probability P(X]|®) for our observation
sequence X, given the HMM &. This can be done by taking the sum of all

probabilities for state sequences that generate observation sequence X:

P(X[®) = Y P(S|®)P(X|S, ®) (2.3.1)

each S

If we look at the Markov assumption stated in Section 2.2.1, we see that
the probability of each state is only dependent on the previous state. This
means the state sequence probability term in Eq. 2.3.1 can be rewritten as
the joint probability:

T

P(S|®) = P(s1]|®) [[P(si|si-1, @)

t=2

= T, Asysy - - - Qsp_ysp (2.3.2)

If we use this same state sequence S, we can use the output independence
assumption (Section 2.2.2) to write the output probability along the path

as:

P(X[S, @) = P(x]], D)

H Xt|5t7

t=

= by, (x1)bs, (X2) - - by, (%7 (2.3.3)

CHAPTER 2. HIDDEN MARKOV MODELS 23

We can now substitute Eq. 2.3.2 and Eq. 2.3.3 into Eq. 2.3.1 to find the
likelihood of the observation sequence given the HMM as:

P(X|®) =Y P(S|®)P(XS, ®)

all S

= by (X1) s 00bsy (X2) - - Gy orbag (X7) (2.3.4)

all S

In practice this equation is equivalent to the following procedure:

1. Start in initial state s; with probability 7, .

2. Generate observation x; with probability b, (x;) and move to the next

state in the state sequence (sy) with probability ajs.

3. Repeat step 2 until the observation in the final state in the sequence

is generated.

This is equivalent to solving «;(t) which is defined as follows:
a;(t) = P(x}, s, = i|®) (2.3.5)

An efficient algorithm commonly used to find the probability that an

HMM generated a sequence of observations is called the forward algorithm

[5]-
The forward algorithm makes use of a matrix («;(t)) of size T x N

to store the scores it calculates. The forward algorithm then functions as

follows:

1. Initialise first column of «;(t) matrix (where t = 1):
O[Z(l) = Wibi(xl) for 1 S 1 S N

2. Populate rest of «;(t) matrix:

N
Oéz(t) = [Z Oéj(t — 1)(lj7;] bi(Xt) for 2 S t S T and 1 S 1 S N
j=1

CHAPTER 2. HIDDEN MARKOV MODELS 24

3. Find probability P(X]|®) of HMM generating observation sequence:

PX|2) = 3" ar()

In general when working with models that describe units of speech, we
are interested in the results for one specific state. If we know that the HMM
state sequence must end in a given state sp, we can read the probability
directly from the « as follows: P(X|®) = ar(sp).

We know that in the forward algorithm there are T observations to
process. For each observation t we have to calculate the score for N states,
which is found by calculating the score for each transition entering state n.
If there is an average of L transitions per state, we have N L calculations
for each observation in the observation sequence. Now we can see that the
complexity of the forward algorithm is O(NLT).

2.3.2 The decoding problem

When given a sequence of feature vectors representing observations we can
find the sequence of states with the highest probability to have generated
that observation sequence. This is done by means of HMM segmentation,
also called decoding.

A common algorithm used to find the most probable state sequence
through an HMM is the Viterbi algorithm [49]|. The Viterbi algorithm is
based on the forward algorithm mentioned in the previous section. The
Viterbi matrix works on the same fundamental principle as the matrix used
in the forward algorithm, but also finds the most likely sequence of states
given the observation sequence. Instead of summing the probabilities at
each time t from all sources to a destination state ¢, the Viterbi algorithm
finds the maximum among these probabilities. The o matrix is replaced by
the Viterbi score matrix V;(i) and an additional path matrix By(i) is also

required. V;(7) is defined as

CHAPTER 2. HIDDEN MARKOV MODELS 25

V(i) = max P(x}, s s, = i|®) (2.3.6)

and is of the same dimensions as « in the forward algorithm. The Viterbi

algorithm is defined as follows:

1. Initialise first column of V' and B matrices (where ¢ = 1):

2. Populate rest of V and B:
Vi(y) = lrg.egv[vi(t — Dai;]bj(x;) with2 <t <T and 1 <j <N
Bi(j) = a_rglrgaécv [Vi(t —1)a;;] with2 <t <Tand 1 <j <N

3. Find best score V*, and state s* in which best path ends:
Ve = max [Vr(i)
st = arg max [Vr(i)]

4. Backtrack to find best sequence of states:
sy = Byyi(sy) witht =T —-1,T—-2,...,1

S* = (s}, s3,...,s5) is the best sequence

In practice, the Viterbi algorithm is slightly altered to solve some HMM
topology issues. We introduce the concept of the null state, which does
not contain a PDF. Null states are extremely useful in separating building
blocks in HMMs and are handled somewhat differently to emitting states.
Null states are backtracked within the same time step and included in the
maximum taken in step 2 above. The introduction of null states allows the
7 vector to be incorporated in the transition weights matrix.

An example HMM is shown in Fig. 2.2. The shaded states are emitting
states, while the rest are null states. Fig. 2.3 shows a possible path matrix
By(j) resulting from the Viterbi algorithm applied to this HMM and eight
observations. Note how the paths from null states remain within the same

time step.

CHAPTER 2. HIDDEN MARKOV MODELS 26

Figure 2.2: HMM used to illustrate use of path matrix. In the multi-level
example, null states 2, 4 and 6 are considered word endings (super states).

Time (t)

01 234 5/6|7 8

Y
Y
Y

(\S»\}Z\\;’/
[

<
\/
\

'_‘——_
Y

State

(1)

1y
FiNENINE

\\/ § /\\/\/
7

Figure 2.3: A possible path matrix By(j) produced by the Viterbi algorithm
applied to the HMM in Fig. 2.2.

NN BRI —= O
r/
'

\/ s $\/ Y

N
J/
\

According to this algorithm description, backtracking is done from the
highest scoring state at the final time ¢t = T in the Viterbi path matrix. In
our speech recognition applications this is not the case. We are only inter-
ested in the best path from the final state in the HMM, which intuitively is

CHAPTER 2. HIDDEN MARKOV MODELS 27

also where the unit of speech ends. Similarly to the forward algorithm, the
Viterbi algorithm does all computation in a time-synchronous fashion from
t =1tot="T. Thus it can also be shown to have a complexity of O(N?T).

The HMM in Fig. 2.1 contains 5 states. When HMMs contain many
states, this segmentation process can become very expensive in memory.
This is especially true when the full state sequence is required from the
segmenter. In the case of our Hub-4 HMM, the HMM contained more than
800000 states.

Logarithms are generally used to represent scores, which changes prod-
ucts to sums and prevents numerical underflow when working with small
numbers. Scores typically range from —oo to oc.

There are many useful variations of the Viterbi algorithm, such as the
backward Viterbi algorithm. It functions exactly like the forward Viterbi

algorithm, except for a few differences:
1. Segmentation starts at the final time in the final state.

2. Transitions are reversed. For example, a transition from state 3 to
state 5 with a probability of 0.5 would become a transition from state

5 to state 3 with the same probability.
3. The input audio is processed in reverse.

This algorithm is functionally equivalent to the forward Viterbi. The proof

and formal derivation of the algorithm can be found in [12].

2.3.3 The learning problem

To solve this problem, we need to find the best parameters for an HMM
given a collection of training data. This training data consists of obser-
vations and their corresponding symbol from the output alphabet. The
method we used for all our training is the iterative forward-backward algo-
rithm, also known as the Baum-Welch algorithm. More information on this

algorithm can be found in [5].

CHAPTER 2. HIDDEN MARKOV MODELS 28

2.4 HMM Types

We now have all the tools necessary to train and use HMMs. Now we need
to decide on the HMM configuration we will use, which is derived from
studying the problem. We need to choose HMM topology and state output

probability distributions that meet the requirements of the problem.

2.4.1 HMM Topology

The HMM topology describes the graphical structure of the HMM, which
corresponds to the transitions with non-zero weights. Since speech recogni-
tion is temporal in nature we need to choose a topology that best describes
this. The most popular HMM topology for speech recognition is called the
left-to-right topology and was first proposed by R. Baker [4]. An example
of a four state left-to-right HMM is shown in Fig. 2.4.

Figure 2.4: An example of a four state left-to-right HMM.

This left-to-right topology effectively models events that follow sequen-
tially over time such as basic speech sounds. Segmentation will always start
in the first state and end in the final state. The state index will also grow
monotonically since a previous state can never be reached a second time.
This simplifies all processing of the HMM since all transition weights to a

previous state index will be zero.

CHAPTER 2. HIDDEN MARKOV MODELS 29

2.4.2 State output probability distributions

To model the local characteristics in a speech signal we need to use an appro-
priate probability distribution. This distribution must be general enough
to allow for the variations associated with spontaneous speech. It must also
also be specific enough to distinguish between the various phonemes.

The most widely used distribution is the Gaussian distribution, since
it accurately describes quantities resulting from many small independent
random effects that create the quantity of interest. More importantly, it is
computationally simple. For these reasons it can be used in a large variety

of fields. A general one-dimensional Gaussian distribution with mean ay

2
X

to model highly detailed information and therefore use high-dimensional

and variance o can be seen in Fig. 2.5. In speech recognition we need

multivariate Gaussian distributions. They take the form

by(xe) = (2m) [B BB), (2:4.1)

where D is the dimensionality of the data, u; is the mean vector and X
is the covariance matrix of the Gaussian distribution associated with state
j. The parameters for such a single Gaussian distribution can be estimated
in a single pass using maximum likelihood estimation [22].

Depending on where these Gaussians will be applied we may use one of
two common variations. The first is the full-covariance Gaussian distribu-
tion, which has a detailed covariance matrix. This model is highly detailed
but needs a relatively large amount of data to estimate the large number of
parameters. The second is the diagonal-covariance Gaussian distribution.
In such a Gaussian distribution all the values in the covariance matrix are
zero except the diagonal entries. This results in less parameters to train
and less training data necessary to estimate these parameters properly. The
problem is that it assumes that individual components in the observation
vector are statistically independent.

A single Gaussian distribution represents a region in feature space asso-

ciated with a specific sound. This does not accurately model speech, since

CHAPTER 2. HIDDEN MARKOV MODELS 30

Jilx)

1

\/ 2mo2

ax — Ox Qx Qx + Ox x

Figure 2.5: A general Gaussian distribution.

there will rarely be only one such a region per sound. The mixture Gaussian
distribution attempts to model this collection of regions more accurately by
using a weighted sum of Gaussian distributions. For M mixtures the mix-

ture Gaussian distribution for state j has the form

M
bi(x1) = > Cimbjm(X1),
m=1
where

bim (%) = (2#)7%2171]' 7%‘9_%("““’”1)/2;;(xt_”’"j)a

M

> om =1

m=1

and

cjm > 0forall 1 <j <N.

A common algorithm that determines the parameters of the model based
on data is the Expectation-Maximisation (EM) algorithm [15]. This needs
multiple iterations as opposed to the single iteration for the single Gaussian

distribution.

CHAPTER 2. HIDDEN MARKOV MODELS 31

2.5 HMM Applications

When attempting to model speech with HMMs, there are a few things
we need to consider. We already mentioned processing requirements and
memory usage, but the problem of modelling the speech remains. Many

options are available to us, but we will only consider a few:
1. Create and train an HMM for each word in the vocabulary

2. Break up words into smaller general building blocks

2.5.1 Whole word models

In this approach we need a model for each word in the vocabulary. This
works well for small vocabularies since we do not have many models between
which to distinguish. It is not very difficult to gather enough training data
to estimate parameters for each word and storing these parameters is also
feasible. This approach was successfully used on many smaller vocabulary
speech recognition tasks, especially isolated word recognition [51|. Isolated
word recognition is significantly easier than continuous speech recognition,
since we already know that there was only one word spoken per utterance.
The only problem is to determine which word was the most likely to have
been uttered in the given observation sequence. To determine this we cal-
culate P(X|W,) for each word x in the vocabulary. The highest scoring
word is the most likely to have been uttered.

An example of the HMM structure used in isolated word recognition
is shown in Fig. 2.6. W;...Wjy corresponds to each word model, which
itself is an HMM with a chosen topology. Py, ... Py, are corresponding
weights, which specify how probable a word occurrence is. If we have no
knowledge of how probable words are (no unigram grammar), we can define
all these weights to be the same. We find the highest scoring word by finding
the most likely state sequence through this model given an observation

sequence. Once we know through which of the parallel word models that

CHAPTER 2. HIDDEN MARKOV MODELS 32

state sequence goes, we know the highest scoring model and also which
word was most likely spoken. The isolated word recogniser can easily be
expanded to be a continuous speech recogniser if we add a feedback loop to
the HMM as in Fig. 2.7.

With continuous speech recognition we do not have the luxury of know-
ing that only one word was spoken. We need to find the correct sequence of
words, which makes this task extremely difficult. Similar to isolated word
recognition, we find the most likely state sequence through the model in
Fig. 2.7. The feedback loop has the effect of concatenating words, because
you can enter any word at practically any time from 1 to T. However, this
makes the search much more difficult, since we have to check each possible
combination of words. The search space for larger vocabularies becomes

vast.

Figure 2.6: HMM for an N-word classifier for isolated word recognition.

Large vocabularies (1000 words or more) make this approach ineffective
for various reasons. We typically do not have enough training data to
estimate proper parameters for each word model. If another word is added
to the vocabulary, we would need to gather more data from speakers, which

is an expensive process. For models to work effectively they need as much

CHAPTER 2. HIDDEN MARKOV MODELS 33

Figure 2.7: HMM for an N-word spotter for continuous speech recognition. The
addition of the transition from the final state to the first state (feedback loop)
enables the HMM to recognise a sequence of words instead of just isolated words.

training data as possible to avoid poor performance. Another difficulty is
the storage of these parameters. When there are so many complex models
there can be a vast amount of data, which will negatively affect memory

use and processing time.

2.5.2 Phoneme models

For larger vocabularies we need to find a better approach to modelling words
than the word model approach. A commonly used technique is to break up
words into smaller speech units, called phonemes [25|. In speech recognition
applications the most commonly used topology is the left-to-right HMM.
This is intuitive due to the sequential nature of speech. An example of this
topology can be seen in Fig. 2.1, which is an example of an HMM that
represents a phoneme without any context.

A phoneme is a small unit of speech, ideally with a very general pronun-
ciation. We define an alphabet of phonemes and construct each of the words

in the vocabulary from a combination of them. By doing this we create a

CHAPTER 2. HIDDEN MARKOV MODELS 34

pronunciation lexicon for our current vocabulary, which is a list of words
and their matching pronunciation. We create word models by sequentially
linking these phoneme models according to the lexicon. This is illustrated
in Fig. 2.8, which is the HMM for a word (W,) where p;, p» and p3 are
phoneme models. In this example the word contains three phonemes, but

the number of phonemes depends on the length of the word.

S YER

—O OO

Wa

Figure 2.8: HMM for a word model constructed from three phonemes.

Once we have a word model for each of the words in the vocabulary,
we can begin to find our initial boundaries. We now iterate through each
of the training audio files and use their associated transcription to create
a model that describes the entire sentence. This is done by sequentially
linking the word models according to each transcription. We then use this
large HMM and find the most likely state sequence given the audio file,
which also describes the most likely time boundaries for each word and
each phoneme. This is called forced alignment [18]. Now we can use these
boundaries to train new phoneme models with this abundance of training
data.

After such a training iteration we can use the newly trained models to
do another forced alignment to find new boundaries that are likely to be
more accurate. This accuracy converges to a local maximum within a small
number of iterations.

There are various ways to model phonemes, but in this work we will
focus mainly on monophones and triphones. Monophones are independent

of left and right context. This makes them easy to train since there are very

CHAPTER 2. HIDDEN MARKOV MODELS 35

few instances of them. In the monophone set used in this work there were 42
phonemes. The problem is that monophones do not effectively model effects
between consecutive phones, while triphones take both left and right context
into consideration. Unfortunately there are many possible combinations of
three consecutive monophones and this results in many models. With our
monophone set of 42 phonemes there are around 74088 (42%) triphones.
This number can be greatly reduced however, since many triphones do not
occur in natural speech. Chapter 3 further explores context dependency
and shows how we can use a classification and regression tree (CART) to
reduce the number of parameters in the HMMs. Other configurations such
as diphones and larger contexts can also be considered, but will not be

examined in this work.

2.6 Evaluating HMMs

Determining the accuracy of an isolated word recogniser is relatively easy,
since it is just a simple ratio:

k
ACCisolated =
n

where n is the number of words tested and k is the number of correctly
classified words.

Finding the accuracy of a continuous word recogniser is significantly
more difficult, since we cannot simply regard imperfect classifications as
incorrect. We use a generally accepted system for measuring the accuracies.

Continuous speech recognition accuracy is affected by several factors:
1. Deletion: A correct word is omitted in the recognised word sequence.
2. Insertion: A word is added into the recognised sequence.
3. Substitution: An incorrect word is substituted for a correct word.

In practice we determine these errors by aligning the correct word se-

quence and the recognition result with dynamic programming. In essence

CHAPTER 2. HIDDEN MARKOV MODELS 36

we match all the correct words possible from both word sequences and then
determine deletions, insertions and substitutions from the difference. Once

this is done we can calculate the final word error rate (WER) as follows:

SUB + DEL + INS
ER = 2.6.1
WER oY (2.6.1)

where NUM is the number of words in the correct sequence. The final

accuracy is then determined as:
ACContinuous = 1 — WER (2.6.2)

It is important to note that the denominator used to determine the final
accuracy is not used when calculating insertions and deletions. In other
words, the final accuracy is not necessarily equal to the insertion ratio

subtracted from the correctness ratio.

2.7 More HMM algorithms and optimisations

When the number of states in an HMM becomes larger we have to consider
sacrificing accuracy for performance. The number of transitions that need
to be considered is no longer practical. To optimise the processing of such
HMDMs we can consider leaving out the less probable paths and only focusing
on those that are most feasible. This introduces the concept of a beam.

In some large-vocabulary speech recognition applications the full state
sequence is not important. We are more interested in the words that were
formed than we are in the sequence of phonemes or sub-phones. It is possible
to find a state sequence in terms of a specified set of states. In the normal
decoding case this set of states contains all the states in the HMM, but we
can reduce this set and optimise decoding. This introduces the concept of

multi-level segmentation.

2.7.1 Beam segmentation

At each time interval in the observation sequence there is a score greater

than — inf at each state entry that is possible to reach. In order to determine

CHAPTER 2. HIDDEN MARKOV MODELS 37

which transitions to expand next from a given state we check the score at
the current time first. If the score is minus infinity there is no reason
to calculate the forward probability since it will inevitably also be minus
infinity.

We can extend this to only evaluate paths with scores above a certain
threshold. This is called a beam and eliminates unlikely paths early. This
may have the side-effect of eliminating the correct path when the beam is
too narrow. In other words, accuracy is sacrificed to increase processing
speed. Memory usage is also reduced by leaving some parts of the path
matrix unpopulated which would have been used without the beam.

Let us look at a small example to illustrate the effect of the beam. If we
are segmenting a fully connected HMM with 5 states, we might have a range
of scores as illustrated in Fig. 2.9. The arrows indicate all the expansions
that need to be made. Each state can go to each other state, which means

we have 5 X 5 expansions.
Time

23 24

-102.3 &

-232.1%

-95.2

-121.5 €
-513.9£

State

N R T N S

Figure 2.9: Viterbi expansion without beam, where each possible expansion is
made.

On the other hand, if we were using a beam on the same example we
could have the situation in Fig. 2.10. For this figure we applied a beam of
width e!?. The best score was found (—95.2) and the beam was subtracted,
giving us a threshold of —105.2. Now instead of expanding all states, we

only expand states with scores higher than the threshold. This means we

CHAPTER 2. HIDDEN MARKOV MODELS 38

only expand states 0 and 2, resulting in a mere 10 expansions. The reduction
here is significant. This approach would reduce expansions most when the
best path is clearly distinguished from other paths. Intuitively this makes
sense, since more attention will be given to segments of speech with greater
ambiguity.

It can be argued that we might abandon a path that would have be-
come the most likely global path. In practice this does occur, but the loss in
accuracy is greatly compensated for by the reduction in computational re-
quirements. An experiment showing the practical implications of the beam

is done in Section 5.2.
Time

23 24
-102.3
-232.1
-95.2
-121.5
-513.9

State

S N S N

Figure 2.10: Viterbi expansion with beam, where only the higher scores are
expanded.

2.7.2 Multi-level HMM segmentation

The basic Viterbi HMM segmentation as described in Section 2.3 gives a
path on a state level through the entire HMM. This is a long sequence
of states which is converted into a shorter list of phonemes and an even
shorter list of words. For a large-vocabulary recogniser, phoneme level
transcriptions are not important. We are only interested in the most prob-

able sequence of words given the sequence of acoustic observations. If we

CHAPTER 2. HIDDEN MARKOV MODELS 39

can avoid finding the entire path through the states a great deal of memory
can be freed.

Depending on the application there are certain states in a given HMM
that are known to be of importance. For example, in speech recognition
we are commonly only interested in the states where words end. If we are
able to find a state sequence in terms of these end states we can deduce the
complete word sequence. Let us call these states “super states”. We reduce
memory usage by not storing all the information during segmentation, but
only storing information pertaining to these super states.

In the general case where the full sequence of states is found, we have
at least one state for each observation vector. It is possible to have more
than one state per observation since not all states are emitting. Now if we
are able to specify a set of states in the HMM which are important we do
not need to store the full path matrix as is done with the normal Viterbi
decoding. For example, we only need to know the states in the HMM where
word endings are found when the HMM is used to find a word sequence. If
this technique is used we can use a small collection of buffers to represent
the entire path matrix and only extract the important information from

them. This is explained further in Section 4.1.

2.7.3 N-Best paradigm

If we had a computer with limitless processing power and memory, we could
create an HMM recogniser that includes all our most expensive knowledge
sources at the same time. We could include our most complex language
model, acoustic models and search algorithm. This would be the ideal case,
but not feasible to implement for a large-vocabulary system.

For this reason the common multi-pass approach might be more reason-
able, where our least expensive and most discriminating knowledge sources
are incorporated first. Later we can make use of our more expensive knowl-
edge sources, because our search space is being progressively reduced. For

the N-Best paradigm as shown in Fig. 2.11, the N-Best list allows us to

CHAPTER 2. HIDDEN MARKOV MODELS 40

make use of expensive rescoring.

K&s1 K&z 2
Speech Input Ordered Reorder Top
— = N-Best))
Sentence List Choice
List

Figure 2.11: The N-Best Paradigm. Inexpensive knowledge sources (KSs 1) are
incorporated early, while the remaining and more expensive knowledge sources
(KSs 2) are used to generate the final hypothesis [43].

There are however some concerns with this type of multi-pass approach.
One concern is that real-time performance can never be achieved, since
no matter how fast the first pass is, successive passes cannot begin until
the user has finished speaking. Fortunately, this delay can be kept to a
minimum with optimised multi-pass algorithms.

Another problem is that the hypotheses generated by this multi-pass
search strategy are not strictly correct. We are systematically removing
word sequences, which means we might get rid of the optimal word sequence
too early. Interestingly, this problem is shared with one-pass systems, where
pruning is often necessary to achieve good performance.

The first multi-pass approach that comes to mind is generating more
than one hypothesis so that they can be re-evaluated later. This is where
N-Best search comes in. It has been shown to be effective in many systems
[37, 53, 50].

There are things we need to keep in mind when considering N-Best lists:

e If the N-Best list that is generated does not contain the correct word
sequence, later rescoring obviously has no hope of generating the cor-

rect sequence.

CHAPTER 2. HIDDEN MARKOV MODELS 41

e In general N-Best lists, the different word sequences will differ by
only one word, since similar word sequences using the same acoustic

models and language model will have similar scores.

e The number of hypotheses that would be needed to form a list with ev-
ery possible hypothesis grows exponentially with the utterance length.

Longer utterances have more possible word combinations.

There are many different approaches to generating N-Best hypotheses.

2.7.3.1 Word Lattice

The simplest and most intuitive approach to the N-Best algorithm is a sim-
ple word lattice [17]. It consists of a collection of words and their associated
end times (or begin times). By finding all possible word permutations we
can compile an N-Best list, but the lattice is a much more efficient rep-
resentation. For example, suppose we have an utterance that contains 5
words, but the system is unsure which of 2 words is the best for each word
position. A word lattice would then contain 10 words, while an N-Best list
would contain 2° = 32 sentences. In Table 2.1 you can see an example of a
5-Best list that was generated by our segmenter. The same word sequences

represented in a word lattice is shown in Fig. 2.12.

and why is by parts of chip in both
and why is by parts the chip in both
and why is by parts of chip in told
and why is by parts the chip in told
and why is by parks the chip in both

A

Table 2.1: An example of a 5-Best list.

and why is by parts of chip in both

parks the told

Figure 2.12: An example of a 5-Best list represented as a lattice.

CHAPTER 2. HIDDEN MARKOV MODELS 42

The word lattice needs to be distinguished from a word graph, in which

words are connected explicitly and the temporal constraints are embedded.

2.7.3.2 Exact N-Best

Generating N-Best sentence hypotheses from an HMM can be done rel-
atively efficiently. The efficient N-Best algorithm for Viterbi search was
first introduced by Schwartz and Chow [42|. It functions by maintaining
a separate record for each separate word history, up to a maximum of N
histories. When two or more paths arrive at the same time and state with
the same word history, they are merged; otherwise, a new entry is created.
Since each word sequence probability is stored separately, an accurate score
can be found for any word sequence hypothesis that reaches the end of the
sentence.

The algorithm can be inefficient when N becomes large and the search
space is large. Normally the complexity of the algorithm is O(N), but
when other knowledge sources are incorporated (such as a word lattice) we
can improve performance. This is the most accurate and thus preferable

algorithm to use when an N-Best search is performed.

2.7.3.3 Traceback-based N-Best

The traceback-based N-Best algorithm [46] is a very simple extension of the
normal Viterbi algorithm to find N-Best hypotheses. For all within-word
transitions it functions exactly the same way as the Viterbi algorithm. How-
ever, for each word ending state at each frame ¢, all the different preceding
words and their corresponding scores are stored in a traceback list. When
the search is complete we can search through the stored traceback list to
get all the possible permutations of word sequences and the scores corre-
sponding to them.

The advantage of this algorithm is that there is almost no computational
overhead above the normal Viterbi algorithm. The disadvantage is that

low cost word sequences can easily be lost since there can only be one word

CHAPTER 2. HIDDEN MARKOV MODELS 43

history at a time for each word ending state. This is illustrated in Fig. 2.13,
where three words (W5, W5 and W3) are segmented. Let us assume that the
score for word sequence Wy — W3 is slightly worse than for word sequence
W1 — Wi, but still within the allowable beam. Since W3 has different start
times for history W; and W5, the slightly less likely (but still viable) second
best path would be lost and cannot be recovered. If they had coincidentally
started at the same time, the post-processing traceback would discover both

words W7 and W,. However, this can clearly not be relied on.

Wi

Path is lost. \—/4

Time

Figure 2.13: The traceback-based N-Best deficiency. Paths with different his-
tories cannot be distinguished [43].

2.7.3.4 Word-dependent N-Best

The word-dependent N-Best algorithm [43] alleviates the deficiency of traceback-

based N-Best. It provides a middle ground between maintaining complete

CHAPTER 2. HIDDEN MARKOV MODELS 44

word histories as with the exact N-Best algorithm, and the traceback-based
N-Best algorithm, which does not distinguish between histories. The word-
dependent N-Best algorithm maintains more than one history per word
ending, but only the immediately preceding word is taken into account as
shown in Fig. 2.14. This is called the word-dependent assumption and en-
sures that we can remember both paths when the paths through words W;

and W5 begin to overlap within word Wi.

Wi

Paths are combined. _/

Time

Figure 2.14: The word-dependent N-Best algorithm. Paths with different pre-
ceding words are combined [43].

Similar to the traceback N-Best algorithm, a traceback must be per-

formed at the end of the search to find the N-Best hypotheses.

CHAPTER 2. HIDDEN MARKOV MODELS 45

2.8 Summary

To model speech properly, we need a technique that is both accurate and
versatile. In this chapter, we defined the HMM and considered their more
important aspects. HMMs are ideally suited to temporal modelling, making
them a good choice for our speech recognition task. It is also the most
commonly used approach. HMMs are used to form all our acoustic models
and all our hypothesis search techniques rely on the details in this chapter.

For us to create and use HMMs as acoustic models we need to un-
derstand the fundamental HMM problems. The basic Markov assumptions
along with the evaluation and decoding problems were considered first. The
evaluation problem is solved with the forward algorithm, while the decoding
problem is solved with the famous Viterbi algorithm. We used a standard
training technique to solve the learning problem, namely the Baum-Welch
algorithm. These algorithms created the framework for all our later imple-
mentations.

The types of HMMs and their applications were considered next, along
with how they are applied to continuous and isolated word recognition. Sev-
eral fundamental HMM topologies were also studied. For our continuous
word recognition system we need to use the continuous word recognition ap-
proach. Due to the size of our vocabulary the phoneme modelling approach
seems best.

Finally, we considered some of the more advanced HMM algorithms such
as beam segmentation and multi-level HMM segmentation. These optimi-
sations are crucial in solving our problem, since the memory and process-
ing requirements would otherwise be immense. The multi-pass approach
to speech recognition and the N-Best paradigm are also considered, along
with various N-Best algorithms. These techniques reduce the search space
even further by permitting us to incorporate our more expensive knowledge
sources gradually.

We decided to use a variation of the traceback-based N-Best algorithm,

since it is simpler and more efficient than the other algorithms. The word-

CHAPTER 2. HIDDEN MARKOV MODELS 46

dependent N-Best algorithm was also considered, but the experiments per-
formed by Schwartz and Austin [43] show only a slight improvement in

accuracy over the traceback-based algorithm.

Chapter 3
Context dependency

The subject of context dependency has been thoroughly studied throughout
the years [17, 32]. In order for us to accurately model speech we need to
make use of as much knowledge as possible. Context is a great knowledge
source and it has been shown that creating context-dependent models will
increase accuracy |[31].

Language modelling is another valuable knowledge source that takes
cross-word effects into account. Many studies have been done in the past
on successfully modelling the deep structure that governs natural speech
|7, 41].

3.1 Context types

In general we can consider acoustic contexts such as the speaker age, gender,
dialect and speaking style. Unfortunately when this is done the resulting
system is no longer speaker independent. There are speaker adaptation
techniques |29] that can include such information in a speaker independent
system, but they will not be considered in this thesis. We will only consider
local contexts that occur within an utterance and linguistic phenomena that
govern the way in which sentences are constructed.

Cross-word contexts on the acoustic level are very difficult to use since

47

CHAPTER 3. CONTEXT DEPENDENCY 48

the number of models will grow rapidly with vocabulary size. Another prob-
lem is the fact that the decoding process will become impossible because
of the size of the search space. Each word will have a different context
depending on the preceding and following words, resulting in a seemingly
colossal search space when the vocabulary size grows beyond a few hun-
dred words. For these reasons much of the focus in the past has been on
context-dependent phoneme modelling [8, 25|, while using language models

for cross-word contexts.

3.2 Context-dependent phoneme modelling

3.2.1 Trainability

Modelling co-articulatory effects such as the triphones described in Sec-
tion 2.5.2 would result in an extensive collection of models. Finding enough
examples for each context would prove to be a difficult task.

We would expect to have a more accurate recogniser if we have more
complex models, but this is only the case if we can reliably estimate param-
eters for these models. We need to find a balance between a few general
densities and many specific densities. Some contexts are very common and
many example utterances can be found in a given training corpus. However,
there will often be contexts that do not appear in the training corpus at
all. We therefore need to estimate reliable parameters for rare and unseen
contexts in some way.

One way to solve this problem is to use a less context-specific model
when no properly trained model is available. This is called backing off [39].
For example, we can use a biphone if a properly estimated triphone is not
available. However, if we back off from a large number of triphones, we
would not be taking full advantage of the context dependency we are trying
to model.

The more common alternative is to make use of parameter sharing or

state tying |34|. In Fig. 3.1 the ideal configuration is illustrated, where each

CHAPTER 3. CONTEXT DEPENDENCY 49

state in the system has a unique PDF associated with it. This configuration
is ideal, but not realistic since we typically do not have enough training data.
If there are many parameters in a system as is the case with triphones, we

need an impossible amount of training data to train that many densities.

b-@+d b—at+d - @+d

\| 1] \

PANIPANIPAN AN EANIPAN A A A

Figure 3.1: HMMs not sharing PDFs, where many PDFs need to be trained and
a large amount of training data is required.

A more realistic case is illustrated in Fig. 3.2 where there is a constant
number of distributions and all possible states are connected to one of them.
This is called parameter sharing or state tying. In effect we are keeping the
specific nature of each triphone, but the underlying densities are more gen-
eral. Each triphone HMM still retains a unique transition weights matrix,
but its densities are chosen from a density codebook. A technique com-

monly used to determine which PDFs to tie is discussed in the next section.

b—@+d b—a+d —@+d

A A A A A

Figure 3.2: HMMs sharing PDFs; where fewer PDFs need to be trained resulting
in less data being necessary for them to be properly trained.

CHAPTER 3. CONTEXT DEPENDENCY 50

3.2.2 Decision Trees

Classification and regression trees (CART) [6] are representations that in-
terpret and predict the structure of a set of data in an intuitive way. By
simply attaching a question to each split in the decision tree we can quickly
classify an unseen data point into one of the classes found in the training
data. In Fig. 3.3 we see a simplified version of a tree that determines the
risk for cancer for an individual whose gender, age and smoking status is
known. Normally such trees are created by hand after studying a limited
number of samples. A CART enables us to automatically construct such

trees by making use of a data set and a collection of questions.

FPerzonal Detailz

Figure 3.3: A simplified example of a decision tree that determines risk for
cancer. Males over the age of 40 and female smokers have the highest risk.

We can apply decision trees to speech recognition by using it to cluster
acoustically similar sounds. We construct a tree that groups densities ac-
cording to their context and state in the HMM. An unseen context and state
can then be classified into one of the clusters formed when the decision tree
was constructed. We can do this for each context-dependent HMM that
occurs and build the required HMM.

The two most important tasks when constructing a CART is choosing

a proper question set and determining an appropriate splitting criterion.

CHAPTER 3. CONTEXT DEPENDENCY 51

The splitting criterion specifies how we decide which question best splits

the data.

3.2.2.1 Constructing a decision tree

A top-down sequential optimisation procedure [32] is used to construct the
tree. All the training data samples are first placed at the root node of
the tree. In the case of a binary decision tree, the root node is then split
into two by finding the question that divides the data in the node most
effectively. Normally the question that maximises entropy reduction [17] is
chosen for the split. However, when we have continuous densities as is the
case with continuous HMMs, we need to find other criterium.

The data from the root node is now divided according to the question
chosen and placed into leaf nodes. The same process finds the appropriate
question for each leaf node until no further splits can be made. A leaf node

may not be split if one or more of the following conditions are met:

1. All the data points in a node belong to the same class and no further

splits can be made.

2. A minimum occupation count (MOC) is normally maintained through-
out all the nodes of the tree to ensure that the tree does not become
too specific. If a split results in a node containing fewer data points
than the MOC, the split would not be made.

3. The best split among the questions in the question set for the node ac-
cording to the chosen splitting criterion falls below a chosen threshold
n. In other words, maX[Ag)L(S)] < 1, where A%)L(S) is the splitting

q

criterion of node S given question q.

3.2.2.2 Question set

The first problem is to construct a question set that distinguishes between
the basic pronunciation types. This will allow us to logically cluster contexts

and make use of state tying.

CHAPTER 3. CONTEXT DEPENDENCY 52

Let us assume we have data in the following format:

x = (r1,%2,...,2q), (3.2.1)

where x; is a discrete or continuous variable. It is possible to construct
a set of questions that would ask all the necessary questions. This question
set is also known as the standard set of questions (). We compile it as

follows:

1. Each question concerns the value of only one of the variables in the

data. These questions are called singleton or simple questions.

2. If z; is discrete and can assume values from the set {cl, Coy.n. ,ck},
() contains all questions in the form: {Is x; € S?} where S can be

any subset of {01,02, e ,ck}

3. If z; is a continuous variable, () includes all the questions in the form:

{Is ; < ¢?} for ¢ € (—o0,00)

The questions generated by condition 3 above appear to be an infinite
set. Fortunately this is not the case, since there is only a finite set of training
data. We only use the distinct splits which appear in the training data.

In practice we can reduce the number of questions even further. Since
we have an understanding of the problem, we can select a question set which
would create easily classifiable clusters. For example, in speech recognition
we can select subsets such as stop sounds and fricatives for the question set.
It does not matter how large our question set is, because of the data-driven
nature of the tree growing process. Each question is asked at each decision

point and the question that best splits the data is selected.

3.2.2.3 Splitting criterium

Typically we would evaluate the entropy reduction of each question and

select. the question with the highest entropy reduction for the question.

CHAPTER 3. CONTEXT DEPENDENCY 53

Unfortunately there is no simple entropy measurement for continuous dis-
tributions such as Gaussians so we need to use a likelihood gain splitting
criterion.

There are various splitting criterium that can be used for continuous
distributions, but we used the Minimum Description Length (MDL) crite-
rion as described in [44]. When splitting node S with question ¢ into nodes
Sg+ and S,_, the change in model description length (DL) is

1
AL(S) =5 {T(S4+) log [(Sy)| + T(S,-) log [£(S,.-)
~T(S) log |2(s>|} + K log (S, (3.2.2)

where the accumulated state occupancy of each node is I'(x), the dimen-
sionality of the feature vector is K, 3(x) is the covariance matrix of each
node and Sy denotes the root node of the decision tree.

We can rewrite Eq. 3.2.2 as

A5y =AW - (S)+ Threshold, (3.2.3)
where
1
Al einooa(S) =§{F(Sq+) log |33(Sg+)| + T'(S,-) log [X(S5,-)|
— I(8) log [2(5) |} (3.2.4)
Threshold =K log I'(Sp). (3.2.5)

3.3 Language Modelling

3.3.1 Definition

Statistical Language Models are an attempt to model the underlying lin-
guistic phenomena found in speech and the way in which sentences are
constructed.
Let W be a sequence of words from a given vocabulary of a fixed size,
given by
W = wy,ws, ..., w,. (3.3.1)

CHAPTER 3. CONTEXT DEPENDENCY 54

P(W|X) is the probability that the word sequence W was spoken if the
sequence of acoustic features X was observed. If all the words were equally
important, we would find the most likely word string W by finding the
highest probability for P(W|X). This would mean that we would need to

consider every possible word sequence:

A

W = arg max P(W|X) (3.3.2)
This would prove to be an almost impossible task, but luckily we can use

a language model to reduce the search space. If we rewrite Eq. 3.3.2 using

Bayes’ formula:

P(W)P(X|W)
P(X)
Now P(W) is the probability that the word sequence W is spoken and
P(X|W) is the probability that we will observe the acoustic data X when

W is spoken. P(X) is the average probability that X will be observed.

P(W|X) = (3.3.3)

This probability remains constant throughout the search, so we only need
to find the maximum value for P(W)P(X|W). This means we can rewrite
Eq. 3.3.2 as

W = arg max P(W)P(X|W). (3.3.4)
The P(W) term is where the language model becomes useful. Without
a language model this probability is equal for each W, since all word se-
quences are equally probable. This is not the case in real life applications,
because we know that certain sentences are very likely to be uttered and
some are not possible or extremely improbable. Knowledge about possible
sentences helps us to eliminate improbable sentences and reduce the number
of hypotheses that need to be considered.

A language model can be used to reduce word-error rates by reordering
an N-best list that was generated by a recogniser. This will not improve
recognition speed, but only improve accuracy. For the language model to
have a significant effect we would need a large value for N (typically greater
than 100) to increase the probability that the list contains the correct an-

Swer.

CHAPTER 3. CONTEXT DEPENDENCY 55

Another approach is to have a language model that constantly guides
the recogniser and reduces the search space. It has been shown that this im-
proves recognition accuracy and speed when a well trained language model
is used |16, 25, 26]. At each decision point (at the end of each word, for
example) the recogniser uses the current history and the language model
to find P(wgyq|wy ... wy). In effect the recogniser uses the language model
knowledge source to constantly reduce the search space.

Most commonly both these approaches are employed and the recogniser
uses a simple grammar during recognition and a more complex grammar to

reorder the N-best list that was generated [48].

3.3.2 Techniques

Many ways to solve the P(W) term have been explored, but we will only
mention the most noteworthy among them. All approaches share the need
for a large training database of word sequences from which the model is

constructed.

3.3.2.1 n-grams

n-grams are by far the most commonly used and intuitive approach. n-
grams model language as a Markov source of order n—1 (P(we1|wi—(n—1), - - -
Most commonly n = 3 is used when a large training corpus (millions of
words) is available, but otherwise n = 2 is normal. Even with a large train-
ing corpora there is still a shortage of data. It is not enough to simply use
maximum likelihood estimation from counts for the n-gram probabilities.
This was proven to be the case when Rosenfeld [41] took an extremely large
training corpora from newspaper articles (38 million words) and observed
all trigrams. A third of all the new articles from the same source revealed
unseen trigrams and the vast majority of the observed trigrams occurred
only once.

There are many ways to combat data scarcity that have already been

explored. Smoothing techniques such as Good-Turing discounting [13] are

7wt))'

CHAPTER 3. CONTEXT DEPENDENCY 56

used to assign some non-zero probability to any n-gram, even if it was never
seen in the training data. Backing off to lower order n-grams in various ways

such as Katz smoothing [21] also performs well.

e Good-Turing discounting:

In order to get a more accurate picture of the probabilities associated
with infrequent n-grams, we require a smoothing technique. In essence
the n-grams are divided into groups depending on their frequency of
occurrence in the training data in order to smooth the parameter

according to n-gram frequency.

The Good-Turing estimate tells us that any n-gram that occurs c
times, should be treated as an n-gram that occurs c* times:
Nc+1
N,

where N, is the number of n-grams that occur ¢ times in the data.

¢ =(c+1) (3.3.5)

The probability for an n-gram a with ¢ counts is now:

(3.3.6)

o0
It is important to notice that N = ZC*NC, which is equal to the

c=0
original number of counts in the distribution.

e Katz Smoothing:

Katz smoothing is an extension of the idea behind Good-Turing dis-
counting and combines the higher-order models with lower-order mod-
els. Katz smoothing extends the Good-Turing estimate for nonzero

bigram counts in the following way:

d.c ife¢>0

R (wiywi) = { a(w;—1)P(w;) ifc=0

where R* is the estimated probability for word sequence w;_jw;, ¢

. . *
is the number of times that n-gram w;_;w; occured and d. ~ <.

CHAPTER 3. CONTEXT DEPENDENCY 57

Nonzero bigram counts are discounted with the ratio d. and zero bi-
gram counts are assigned a value which is a combination of an equal-
isation factor and the lower-order distribution (the unigram in this
case). The factor a(w;_1) ensures that the total number of counts in
the distribution remains the same. In other words Zw,- R*(w;_qw;) =

Zwi R(w;_qw;) for each n-gram order. a(w;_1) is calculated so that:

1- Zwi:R(wl 1w;)>0 P* Wy |wz 1)

alw;_q) = (
Zwi R wz l'll)z =0 P(w)
1- Zw :R(w;—qw;)>0 P*(wl‘wl 1)
= (3.3.7)
1 - Zwi:R(wi,lwi)>0 P(wl)
where P*(w;|w;_1) calculated from the corrected count:
R* 7 7
P (wi|w;_y) = (wi-w) (3.3.8)

Dy, B (wimwy)

Typically we assume that large counts are reliable and therefore they
are not discounted. In other words d. = 1 where ¢ > k for some k. The
discount ratio for the lower counts is derived from the Good-Turing
estimate as applied to the global bigram distribution. In other words
N, in Eq. 3.3.5 is equal to the total number of bigrams occurring c
times in the training corpus. The d. for ¢ < k are chosen to ensure
that:

1. The discounts are proportional to the Good-Turing discounts.

2. The total number of counts from the global bigram distribution
that are discounted is equal to the total number of counts as-

signed to bigrams with zero Good-Turing counts.

The first constraint is equivalent to:

*

C

de = i (3.3.9)

CHAPTER 3. CONTEXT DEPENDENCY 58

for ¢ € {1,...,k} with some constant u. According to the Good-
Turing estimate the total mass that will be assigned to bigrams with

zero counts is NO%—(I) = Ny, which brings us to the second constraint:

Y N(l—d)e=N, (3.3.10)

c=1
From this we can conclude:
& _ (k+1)Nigy

c N
d. = m (3.3.11)

Ny

The higher-order n-gram models are derived recursively. The Katz n-
gram backoff model is defined in terms of the (n —1)-gram model and
so forth. In summary, the Katz probabilities for bigrams are defined

as follows:

C’(wi_lwi)/C(wi_l) ife>k
PKatz<wi|wi—1) = dCC(wi,lwi)/C’(wi,l) if k >c>0
a(w;_1)P(w;) ifc=0

In essence this system results in maximum knowledge usage through-
out the LM. The higher-order n-grams make use of information from

the lower-order n-grams wherever insufficient data is available.

3.3.2.2 Decision tree models

A decision-tree-based model breaks up the different possible word histo-
ries from the training data according to arbitrarily chosen binary questions
about the history at each decision point. The history space is however ex-
tremely large and applying decision trees to language modelling is extremely
difficult for that reason.

Trees are grown by selecting the most informative question at each node
depending on the one with the highest reduction in entropy. At each node
there is a yes/no question relating to the words already spoken and at each

leaf there is a probability distribution over the allowed vocabulary. There

CHAPTER 3. CONTEXT DEPENDENCY 59

were a few attempts at constructing such a decision-tree-based language
model, such as the the one by Bahl et al. [2]. The language model they
constructed took many months to train and predicted the next word spo-
ken from the preceding 20 words. They only found a minor reduction in
perplexity of 4% when using the tree-based language model compared to
the baseline trigram. Interestingly, they found a greater reduction in per-
plexity with a combined model than with either model on its own. From
this they concluded that the most effective use of such a tree-based model

is in conjunction with a trigram and not as a replacement for it.

3.3.2.3 Context-free grammar

All language models are based on a human understanding of speech to
some degree, but the linguistic content in most resulting models is minor.
There are some language models that are directly based on language as we
understand it, such as the context free grammar.

The context free grammar (CFG) is defined by a vocabulary, a set of non-
terminal symbols and a set of production rules. Sentences are generated by
starting with an initial non-terminal and the production rules are repeatedly
applied until a sentence of terminal symbols from the vocabulary remains.
There have been attempts at creating a CFG based on parsed and annotated
corpora, such as the CFG created by Marcus et al. [28]. This model resulted
in good coverage of unseen data.

The normal CFG can be expanded by adding probability distributions
to the transitions from each non-terminal. These probabilities can be es-
timated using algorithms based on the EM algorithm. It was found that
these probability surfaces contain many local maxima which are inferior to
the global maxima. This makes it ineffective to use the EM algorithm and

there is no known efficient algorithm to find the global maximum.

CHAPTER 3. CONTEXT DEPENDENCY 60

3.4 Summary

In this chapter we considered the importance of context dependency in
speech. We explored how modelling context dependency can improve ac-
curacy and considered several context types such as cross-word and co-
articulatory contexts.

Next we explored the importance of isolating the most important acous-
tic contexts and merging the less important contexts with them, because
there are many more theoretical contexts than those that appear in prac-
tice. For this reason we have insufficient training data and must find an
intelligent way to generalise some contexts.

This problem was addressed by describing decision trees and their al-
gorithms. Decision trees are an intuitive representation of a dataset. All
the data points in the set are distributed between the leaves of the tree
with questions attached to each decision point. We considered how they
are constructed and ideally suited for speech recognition applications.

For any large-vocabulary recogniser to be efficient we need to take all
knowledge sources into account. It is essential to consider the way in which
sentences are constructed in spontaneous speech. We defined the language
modelling problem and considered some advances in this field. We then
considered some of the most popular language modelling techniques.

We examined n-gram modelling and some of the more advanced expan-
sions associated with it, such as Good-Turing discounting. n-grams are a
very intuitive way to model language, but require an immense amount of
training data. Little or no configuration needs to be done by hand, which is
what prevents us from using CFGs and various other techniques for LVCSR.
More exotic techniques such as decision tree models and CFGs are also
considered. After comparing various techniques we decided to use n-grams,
since they are an effective way to create an accurate language model without
supervision. An efficient implementation for training n-grams also already

existed, namely the SRI Language modelling toolkit [47].

Chapter 4
Implementation

The entire implementation was done in C++ and each component was fully
coded and tested individually. Several pieces of software that were used
in our experiments were already implemented and tested in our baseline

System:

1. HMM training and representation

[\

. Signal processing
3. CART training
4. Language model training

In order for us to construct our system we needed to implement various

new components including:
1. Multi-level HMM segmenters (forward and backward Viterbi).
2. N-Best segmenters (with and without language model).
3. Integration of the SRI language model with our system.
4. Three-phase word spotter combining all the necessary components.

All components were implemented with reusability in mind. Each com-

ponent can be replaced or improved individually with minimal effort.

61

CHAPTER 4. IMPLEMENTATION 62

4.1 Multi-level Beam HMM segmenter

In the pattern recognition software system of our DSP department (Pa-
trecll) the Viterbi beam segmenter was already implemented and reduced
calculations by eliminating transitions when the score drops below a certain
threshold, as described in Section 2.7.1. This proves very effective even with
a relatively wide beam, because many unlikely paths are eliminated early.

The idea behind our multi-level implementation is to replace the full
path matrix from the normal Viterbi segmenter with reduced path and
time matrices.

Both the reduced path matrix and the reduced time matrix have a size
of T x N, where T is the length of the observation sequence and N is the
number of super states, usually the states where words end in the HMM.
A list of super states is given to the segmenter before segmentation starts.
By doing so it only records the super states in the solution path. We will
illustrate this by means of a small example.

Say we are given the HMM in Fig. 2.2. In each state the first number
denotes the state number and for the sake of simplicity we assume that each
state in the HMM is emitting. If we are also given a sequence of arbitrary
acoustic observations resulting in the most probable state sequence {0, 1,
1,1, 2,5, 5,6, 7}, we would have the path matrix in Fig. 4.1. The arrows
indicate how backtracking takes place.

The blank entries in the table represent values that are unimportant to
us. These entries will contain values, but since we are only interested in the
path that ends in the final state (state 7 at time 8) we can ignore entries

that are not on the backtracking route. The backtracking is done as follows:

1. Look at the entry in the last state at the last time. The entry is 7, so
we know the final entry in the sequence; state 7. (Path = {7})

2. Follow entry to time T'— 1, which places us in line 6. (Path — {6, 7})

3. Continue following back to the start, state 0, adding the lines recorded

CHAPTER 4. IMPLEMENTATION 63

Time

0| 1]2|3|4]5/6|7|8

0F171

State

NN | (W= | O
—

7 6

Figure 4.1: The full path matrix from a small example. The arrows indicate
how backtracking takes place once the matrix is fully populated.

to the front of the path sequence.

After segmentation, the most probable route through the HMM with the
given acoustic observations would have been determined to be {0, 1, 1, 1,
2,5, 5,6, 7}. To find this complete path we need a large matrix to contain
the various paths that were found such as the one seen in Fig. 4.1. This
matrix is of size 7' x N, where T is the length of the observation sequence
and N is the number of states in the HMM. The matrix is populated using
the Viterbi algorithm as described in Section 2.3.2.

Now what if we didn’t need the full route? Let’s say that state 2, 4
and 6 were super states. This means that we only need to know when the
route passes through state 2, 4 or 6. We can immediately see from the full
state sequence that the super state sequence would be {2, 6}. As mentioned
earlier we reduced this full path matrix to two, much smaller matrices by
processing the HMM exactly as before, but only storing super state infor-
mation. To illustrate, we show the reduced matrices after segmenting the

HMM in Fig. 2.2 with the same observation sequence. The results are shown

CHAPTER 4. IMPLEMENTATION 64

in Fig. 4.2, which represents the super path and super time matrices. The
first entry in each pair is stored in the super path matrix and the second
entry in the super time matrix. The arrows illustrate how the sequence
of super states is extracted from these reduced matrices. Once again the

blank entries are not shown for the sake of simplicity.
Time
01 2 3,45 6/78

State 4
6 ‘

Figure 4.2: The super path and time matrix from a small example. The arrows
indicate how backtracking takes place once the matrices are fully populated.

These two matrices may not seem to be much smaller than the original
path matrix, but on larger examples the memory usage reduces significantly.
For the original Viterbi algorithm, we need to store a full path matrix of
size T x N, where T is the length of the observation sequence and N is
the number of states in the HMM. We do not need to store the entire score

matrix, but can replace it with 2 buffers:
1. Buffer to keep scores for current time ¢
2. Buffer to keep scores for next time ¢ + 1

The score information is only important when deciding which states to
expand for each frame. When expansion of all necessary states at a certain
frame is completed we will have no further need for these scores. This is
why we can reuse the score buffers. For the multi-level segmentation we

only need to store the reduced matrices as described earlier and replace the

CHAPTER 4. IMPLEMENTATION 65

full matrices with buffers. The reduced matrix in Fig. 4.2 was formed by

using the following buffers:

1. Score buffer of size N to keep scores for current time ¢

2. Score buffer of size N to keep scores for next time ¢ + 1

3. Path buffer of size N to keep paths for current time ¢

4. Path buffer of size N to keep paths for next time ¢ + 1

5. Time buffer of size N to keep time references for current time ¢

6. Time buffer of size N to keep time references for next time ¢ + 1

The score buffers function the same way as with the normal Viterbi
segmentation. The path buffers simulate the complete path matrix that
would have been stored normally. References to the previous time at which
a super state was encountered are propagated by means of the time buffers
in parallel with the path entries. Expansions occur slightly differently to the
normal Viterbi segmentation. If we expand from one of the super states, it
is recorded and passed forward along with the time at which it was found.
This will enable us to backtrack to it directly. If we expand from one of the
other states, we simply continue passing the previously found super state
and time. In both cases the score is calculated and propagated exactly as
in the Viterbi algorithm.

After the buffers are expanded fully for a certain observation, the nec-
essary information is extracted from them and inserted into the super path
and super time matrices. The buffers are then swapped and used again
fully without any extra memory being allocated. This reusability is possi-
ble because all the necessary information can be passed along as the buffers
are swapped. The advantage is that the buffers are used repeatedly and a
full-size matrix is not necessary. We only need to store the greatly reduced

path and time matrices.

CHAPTER 4. IMPLEMENTATION 66

Segmentation takes place normally until the first super state is encoun-
tered, leaving the reduced path matrix with invalid entries. In our example,
the first super state is encountered at time 4 where state 2 is found. From
there on, the time where it was found and the super state number is passed
along between the buffers, until time 7 where another super state (state 6)
is found. The new time where this super state was found along with its
state number is then passed along until the next super state is found and
so forth. Note that this distinction between super states and normal states
also enables us to apply different beam widths and maximise efficiency.

The highest scoring super state at the final time is recorded when seg-
mentation is complete, so that it may be used in the backtracking. In our
example this is state 6, so the backtracking starts there. Immediately, we
recognise the final super state in the sequence, state 6, so it is added to
the super path that will be returned. We also know which entry we will
be backtracking to next from the path matrix at that entry (state 6, time
8). This is illustrated in Fig. 4.2. The time value is then extracted from
the same entry in the time matrix. In this case the time value would be
6, so the next entry to be inspected is state 2, time 6. Now we know the
next super state (state 2) and add it to the front of the backtracking path,
giving us the path {2, 6}. In the entry at state 2, time 6, we read a negative
state from the reduced path matrix, telling us that there are no more super
states to which to backtrack. Note that we can use the frame number to
calculate the time at which a super state was found.

It is clear that the result for the super backtracking is exactly the same
as finding the super states in the original backtracking. The only difference
is that instead of allocating memory for a 7' x N path matrix we now only
allocate memory for two smaller matrices. Memory is only allocated for
two T x N matrices, where T is length of the observation sequence and N
is the number of super states.

If we choose super states to only be at the end of words we would have

an extreme reduction in memory usage. For example, if we have an HMM

CHAPTER 4. IMPLEMENTATION 67

with 1000 states and we are processing an acoustic observation sequence
of length 20, we would need to allocate memory for 20 x 1000 = 20000
entries. If this model contains 50 phoneme spellings (words), there would
be 50 super states. For the multi-level HMM segmentation you would only
require 20 x 50 x 2 = 2000 entries. Given these improvements we would
expect to see a reduction in memory usage by a factor of about § = 22,
where s is the number of super states and n is the total number of states
in the HMM. In the case of our Hub-4 evaluation there were about 18000
words and 800000 states in the HMM that were segmented. This results in

(£ = 0.045, which equates to a major reduction in memory usage.

4.2 N-Best segmenter

We implemented our own N-Best Viterbi beam segmenter and attempted a
variation of the traceback-based N-Best approach described in Section 2.7.3.3,
where N-Best paths are found during Viterbi segmentation. This is an
expansion of the normal Viterbi segmenter with some alterations to the
Viterbi matrix and the algorithm used. The entire structure is also based
on the multi-level segmentation technique described in Section 4.1, which
enables us to reduce memory requirements significantly since we are not in-
terested in exact state sequences. Similarly to the multi-level segmentation
technique, our N-Best segmenter also requires knowledge about important

states in the HMM being segmented. Two state lists are required:

1. A list of begin states which contains all the states of the HMM in

which a word can begin.

2. A list of end states which contains all the states of the HMM in which

a word can end.

These states are used to tell the segmenter which states in the HMM

are important. The begin states are simply used as place holders to connect

CHAPTER 4. IMPLEMENTATION 68

end states to each other. The end state information is the only outcome
that is really meaningful to the user.

Instead of only determining the best end state sequence as was the case
with the normal multi-level segmenter, we need to find the N-Best end state
sequences, where N is an arbitrary number. To do this we need to expand
the entries in the reduced path matrix to contain N backtracking sources
instead of just one. When backtracking occurs, we would also need to know
more than just the super state number and the time to backtrack to, since
each of the entries now contains more than one entry. For this reason we
add the index to each backtracking source to indicate the offset in the N-List
we are interested in. Now each entry in the reduced path matrix contains

a list of size N of the following backtracking information:
e State number
e Time
e Route index
e Current score

Fig. 4.3 contains an example of the typical setup required for the N-
Best segmenter. The super states contain N-Best lists, while the other
states contain only 1-best list as with normal segmentation. This is because
for the same sequence of features, the score difference will be the same
for the same sequence of models. For this reason we can do a normal 1-
best segmentation within words. When an end state is encountered in the
segmentation process the current within-word score difference is added to
each of the scores contained in the begin state list associated with the end
state found.

This newly updated list forms the entry in the end state. This is il-
lustrated in Fig. 4.4, which shows an arbitrary example with N = 3. The
N-Best entries are shown as (n,t,i,d), where n is the state number, ¢ is
the time, 7 is the index in the backtracked N-Best list and d is the score.

CHAPTER 4. IMPLEMENTATION 69

Figure 4.3: Example of HMM used for two-word N-Best spotter. The symbol
under each state indicates which phoneme is represented by that particular state.
A list of the phonemes used in our implementation can be found in App. B.

States 33 and 39 are end states. The best score from end state 33 is used
to initiate the 1-best segmentation. Once a 1-best state is propagated to
an end state we use the score difference (16 in this case) to form the new
N-best list. Note that begin states are omitted in this figure, since they are
only needed when forming the end state lists. Let us consider the 3-Best
list contained in state 33 at time 40. Each entry in the list backtracks to a
different word at a different time. Since each entry contains a list, we need
the index to indicate the exact backtracking source.

To ensure that the end state information reaches the begin states we
define a new type of super state called the “glue state”. They are states
that connect end states to begin states. Each glue state contains an N-Best
list similar to the other super states. States 3 and 4 in Fig. 4.3 are examples
of glue states.

To facilitate the final backtracking, we also need to remember the last
begin state time and state number so that we may extract the previous end
state information from it. This begin state list contains the same infor-
mation as the preceding end state, which was projected through the glue

states into the begin state. Begin states contain the exact same information

CHAPTER 4. IMPLEMENTATION 70

Time
40 41 42 43 44 45 46 47 48
5,23,1,-100
33 17,18,0,-112
27,19, 2, -118 1‘
4 ‘—IUZ =1
State b_ | —103-_--103\
36 10
Y | . ‘ \—lll"‘hllﬁ
33,40,0,-116
” 33,40.1,-128
33,40,2,-134

Figure 4.4: N-best relying on 1-best segmentation. Super states such as states
33 and 39 are shown in the same matrix as non-super states for the sake of this
illustration. The arrows show the 1-best path.

as the associated end state, except for the scores which differ as mentioned

above. End state list entries are formed by combining two things:

1. The state number, time and index of the previous end state, which
was propagated to subsequent begin states and in turn the end state

concerned.

2. The score found by adding the 1-best score difference to each entry

in the begin state associated with the end state concerned.

The group of super states now includes glue states, begin states and end
states and all contain N-best lists. In an HMM configuration such as seen
in Fig. 4.3 the glue states can be found recursively if the begin and end

states are known. The complete algorithm is defined as follows:

1. Initialise root state (also an end state) with one entry (state 0, time
0, index 0, score 0) at time ¢ = 0, which will be used as an end point

for the final backtracking.

CHAPTER 4. IMPLEMENTATION 71

2. Expand end and glue states at time ¢ by merging lists contained in
them with those in their destination and applying the HMM transition

weights as is normally done.

3. Form begin state 1-bests at time ¢ by extracting only the highest

scoring entry from the associated N-Best list.

4. Expand non-super states at time ¢ as with normal 1-best segmentation
by first expanding the null states to time ¢ and then adding the PDF

score to the emitting states and expanding them to time ¢ + 1.
5. Expand null non-super states at time ¢ + 1.

6. Form end state N-Best lists at time ¢ + 1 by copying the N-Best list
from the begin state associated with the end state and adding the

score difference found within the word to each entry.

Repeat steps 2 to 6 for time ¢t = 1...7T where T is the number of
observations.

Once segmentation is complete, we find the final N-best list by merging
all the N-best lists contained in end states at time ¢ = T" with each other.
Each entry in this list represents one of the N-best paths.

The root state is the first state in the HMM and the tail state is the
final state. For example, in Fig. 4.3, state 0 is the root state and state 12
is the tail state. There can only be one of each in this algorithm.

We will now illustrate the use of this algorithm by applying it to the
example in Fig. 4.3. Please note that states 6, 7, 8, 10 and 11 are simplified
emitting states. In practice they would themselves contain the HMM that
models the phoneme represented by that state. They would also need a
number of non-emitting states to connect them into a whole, which is why
we need step 5. It ensures that all the results from emitting states reach
the appropriate end states, from where the higher-level N-best lists can
take over. For this example we will express the entries in N-best lists as 4-

tuples (state, time, index, score). Also, transition weights are 1.0 between

CHAPTER 4. IMPLEMENTATION 72

all states for the sake of simplicity. Blank entries in the lattices do not
necessarily mean the absence of a value, but that they do not assist in the
illustration of the example.

Step 1: This creates an N-Best list containing 1 entry (0, 0, 0, 0.0),

which is used as a marker to end the final backtracking. This can be seen

in Fig. 4.5 at super state entry 0 (root) and time 0.

Time
0 1
(0, 0,0,0.0)
0 (root) - -
1 (end_yes) - \ -
2 (end_no) -] -
3 (glue) - -
Super state (0, 0,0, 0.0)
4 (glue) - -
. (0.0,0,000%
5 (begin_yes) | - -
) (0,0,0,0.0) ="
9 (begin_no) | - -
12 (tail) - -

Figure 4.5: Illustration of steps 1 and 2 in the N-Best segmentation algorithm.
Step 1 forms the marker entry at state 0 and time 0, while step 2 expands that
entry to the glue states and in turn the begin states.

Step 2: We can see the expansion of the list at root state 0 to glue
state 4 and from there to begin states 5 and 9 at time ¢ = 0 in Fig. 4.5. At
each time in the segmentation we will form end state lists for time ¢ + 1 in
step 6. These lists are expanded in this step to form begin state lists.

Step 3: The best score from each begin state (state 5 and state 9),
which is 0.0 in both cases, is used to populate the 1-best lattice at the

associated states. This can be seen in Fig. 4.6.

CHAPTER 4. IMPLEMENTATION 73

Time
0 1
0,0,0,00
5 (begin_yes) |2 *% -
Super state (0,0,0,0.0)
9 (begin_no) | ~ -
0 /]
1 /]
2 /
3 /
4 /
5007 /
State ©
.
8
g 0.0%
10
11
12

Figure 4.6: Illustration of step 3 in the N-Best segmentation algorithm. The
begin state entries in the 1-best matrix are populated with the best scores from
their associated N-Best lists.

Step 4: In Fig. 4.7, we can see how HMM segmentation takes place as
with the normal Viterbi algorithm. Only the single best route through all
the phonemes is calculated for the current time.

Step 5 and 6: Step 5 cannot be applied to this example since there
are no non-emitting non-super states in the HMM. Normally the phoneme
models would be more complex than a single emitting state and they would
contain non-emitting states themselves. In Fig. 4.8 we see the lattices at a
later time. We assume that the 1-best Viterbi segmentation has resulted in
the scores in the figure. Now in step 6 we form the N-best lists contained in
the end states as illustrated. This is done by backtracking within the word
from the end state until we find the associated begin state. The N-Best list
associated with the begin state is copied to the end state N-best list and the

score difference between the begin and end state is added to all the scores

CHAPTER 4. IMPLEMENTATION 74

Time
0 1
0
1
2
3
4
5000 ——
State 61-40.0
7 = —~50.00
8
9100 —>
10 |-20.0
11 F= —40.00
12

Figure 4.7: Illustration of step 4 in the N-Best segmentation algorithm. Normal
1-best segmentation takes place exactly as is done with the Viterbi algorithm.

in the list. In this case it is just the scores found, since the associated begin
states contain 0.0.

Step 2 (later): In Fig. 4.9 we can see how step two later expands the
newly formed entries and merges them into glue state 3. They are expanded
to glue state 4 and then to begin states 5 and 9. The 1-best lattice is then
populated in Step 3 and the cycle continues.

The merging that is done in step 2 eliminates entries that have the same
source state, time and index as an entry already in the destination vector,
since they represent the same path. N-Best vectors are sorted with the
highest scoring entry at the top and the worst scoring entry at the bottom
with the rest of the entries unsorted in the middle. This allows us to rapidly
determine whether a new entry should be entered into the vector and also
eliminates costly sorting. We assumed that the HMM does not contain any
emitting end or glue states, since there is no reason for them to exist in
speech recognition applications and they greatly complicate segmentation.
Two beam widths are used during segmentation. One is used to limit the
number of end states expanded in step 2, which is also called a “between-

word” or “word-level” beam. The other is used to limit the number of

CHAPTER 4. IMPLEMENTATION 75

Time
4 5

State

N L I - R SRt
N
™
d
L~

5
\\

11 | -107.007
12 /
{0, 0,0, —125.00) ¥
1 (end yes) | - -
Super state {0, 0,0, —110.00) 4
2(end_no) |- -

Figure 4.8: Illustration of step 6 in the N-Best segmentation algorithm. After
emitting states 8 and 11 are expanded to end states 1 and 2, the 1-best end states
scores are used to form the end state lists.

expansions within a word in step 4 and is known as the “within-word” or
“phoneme-level” beam.

It is important to note that in step 2 we need to transform the entries
in an end state list when we expand them to a glue state. This is to enable
the next found end state to backtrack to the correct end state. If we simply
projected an end state entry forward we would backtrack directly from the
tail to the root. The first N-best list at the root would be projected through
the entire HMM. For this reason we transform the end state list in step 2
when they are projected. The projected entry contains the same scores,
but the state, time and index point to the entry from which the projection
takes place.

The same score buffers described in Section 4.1 are used here. We do

not need time buffers, but several additional matrices are required in deter-

CHAPTER 4. IMPLEMENTATION 76

Time
5 6
0 (root) | — a
(0, 0, 0, —125.00)
1 (end yes) |- \ -
(0, 0, 0, —110.00)
2 (end_no) | - \\ -
- (2.5, 0, —110.00)
(glue) | 5 5 o 125.00) -
Super state (2.5,0,-110.00)
4 (glue) {, 5,0, ~125.00) g&\
. (2,5, 0, —110.00)
5 (begin_yes) (1, 5,0, ~125.00) j& w
. (2,5, 0, —110.00) =
9 (begin no) (1, 5,0, ~125.00) 4—"’%
13 (tail (2,5,0,-110.00) <=
@il 13 5 0, ~125.00 <~

Figure 4.9: Illustration of a later iteration of step 2 in the N-Best segmentation
algorithm. The newly formed end state lists are expanded and merged to the glue
states and in turn the begin states.

mining these routes:

1. N-Best path matrix for end states, which contains all the paths be-
tween end states. This is the most important segmentation result,

since it contains all the final word sequences.

2. N-Best score matrix, which contains the scores related the entries
in the N-Best path matrix for end states. We can reduce the size
of this matrix drastically if specific scores in the word sequences are

unimportant.

3. N-Best path matrix for begin states, which contains information used

to construct end state lists. This is only used during segmentation.

4. N-Best begin states score matrix, which contains the scores related to
the entries in the N-Best path matrix for begin states. This is only

used during segmentation.

CHAPTER 4. IMPLEMENTATION 77

5. 1-Best path buffers used by the Viterbi algorithm to determine the
1-best path between word begin- and end states. Used in the exact

same way as the paths buffer in the Viterbi segmentation.

6. 1-Best score buffers used by the Viterbi algorithm to determine the
1-best path between word begin- and end states. Used in the exact

same way as the score buffer in the Viterbi segmentation.

7. 1-Best begin state and time buffers, which contain the backtrack to
the last begin state from any entry in the 1-Best matrix. These are
equivalent to the paths buffers used in normal Viterbi segmentation,
but in this case a pair (state and time) is projected instead of only
the state.

The N-Best path and score matrices can be seen as one. They are
separated in the implementation to enable further optimisations later. The
end state and begin state path and score matrices are illustrated in Fig. 4.10.
NB and N¥ are the number of begin states and end states, respectively.
The buffers used in the 1-best segmentation are shown in Fig. 4.11.

The only matrix that needs to store a column for each observation vector
is the N-Best path matrix, since it contains all the information related to
the paths finally found. Each entry in this matrix contains a N-sized list
of previous state, time and index. The N-Best score matrix is used during
decoding, but the matrix does not need to be stored for the entire length of
the observation sequence. Recall that we only use the N-Best score matrix
to calculate the new score list for the current end state. There is a limit
to the score history length required, since there is a limit to possible word
length in practice. We do not need N-Best lists for begin or end states earlier
than this, because no words will be that long. Silences are an exception,
but they can be represented by a sequence of silences and do not affect
accuracy since they are removed in the final word sequence. Similarly the
N-Best begin states path and score matrices do not need to be stored in
full.

CHAPTER 4.

IMPLEMENTATION 78

N-Best end state path and score matrix

0 1 2 3 4 T—-4T-3T-2T-1T

State

NE -3

NE -2

NE -1

N-Best begin state path and score matrix

0 1 2 3 4 T—-4T-3T-2T-1T

State

NEB -3

N 2

NB -1

Figure 4.10: N-best end states and begin states path and score matrices.

All the 1-Best matrices can be reduced to two buffers each, which sim-

ulate a matrix. This can be done since for any given time ¢ we do not need

to remember any information earlier than time ¢t — 1. After processing a

frame we simply swap these two buffers and clear the buffer at time ¢ + 1.

4.3 Language model

For the language model (LM) we decided to use the SRILM toolkit [47],

which is a complete package for training n-grams with various advanced

techniques.

We represented the trained grammar as an HMM with each of the nodes

CHAPTER 4. IMPLEMENTATION 79

1-Best delta buffers 1-Best path buffers 1-Best begin state buffers 1-Best begin time buffers
0 0 0 0
1 1 1 1
2 N o 2 N o 2 N o 2 o o
3 3 3 3
4 4 4 4
5 5 5 5
State State State State
'\—57 o \—57 o '\—)7 o '\—57 o
N—4 N—4 N—4 N—4
'\—37 o \—37 o ;"\‘"—37 o '\—37 o
\—27 o \—27 o ;\‘"—27 o \—27 o
’\—17 o \—17 o }\“'—17 o ’\—17 o

Figure 4.11: 1-best path, score and begin state backtrack buffers.

representing a word in a tree topology. The major problem with this gram-
mar is the same as with any n-gram grammar: insufficient training data.
As mentioned in Section 3.3 it is not possible to train an effective n-gram
model, even with an extremely large training corpus. For this reason we
decided on the standard Good-Turing discounting and Katz back-off for

smoothing.

4.4 N-Best grammar segmenter

To incorporate our LM into the N-best segmenter, we need to make some
changes to the original algorithm. We want to evaluate only the word
sequences that are found in the LM. We can easily find word sequences at
any time by backtracking the entries found in a given end state. We now
need to add entries to valid destinations given a word history. Efficiency is
important here, so we need to find an efficient way to find the appropriate
begin state given a destination word.

The N-Best grammar segmenter is an expansion of the normal N-Best

CHAPTER 4. IMPLEMENTATION 80

segmenter and can use a language model during segmentation, such as those
described in Section 3.3. This grammar takes a word history and calculates
a probability associated with that word sequence. The grammar is in-
tegrated into the segmenter by changing the HMM topology slightly and
adding another step to the segmentation process. The feedback loop and the
glue states are removed, along with the transitions from glue states to begin
states and from end states to glue states. This is illustrated in Fig. 4.12,
which is what the previous example would look like when used with the
N-Best grammar segmenter. The segmentation process can no longer rely
on the HMM to designate potential next words and a new technique to

determine candidate words needs to be found.

begin IH lH ._ la '/‘"\ end
(end)] E 5 {end)

root tail

©

begin e IH lE /N%;
n @u

Figure 4.12: Example of HMM used for 2 word N-Best grammar spotter. Words
are not connected and the feedback loop and glue states are removed. The lan-
guage model is responsible for connecting the words.

Evaluating each possible word sequence is extremely expensive and un-
necessary. For this reason our N-Best grammar segmenter needs a lattice
associated with the begin states at each time. This lattice contains a value
for each begin state at each time and indicates whether the particular word
should be considered. If we have no extra knowledge to give the segmenter,
a fully populated lattice can be given. However, for a large-vocabulary the
processing requirements would be prohibitive. For this reason we need to

somehow do an initial pass, which gives the N-Best grammar segmenter a

CHAPTER 4. IMPLEMENTATION 81

greatly reduced matrix of possible word beginnings. This would enable us
to find a detailed N-Best list efficiently. The correctness of the lattice is the
maximum accuracy that can be achieved by the N-Best segmenter. In other
words, the N-Best segmenter can only produce word sequences in terms of
words in the lattice. If the lattice does not contain the correct word at the
correct time, it will not be evaluated.

The words are now disconnected in the HMM and can only be connected
through a combination of the lattice and the grammar. For each time ¢ and
each end state, we backtrack each entry in the N-Best list to find the N-
sized list of word histories. Each of these word histories is then augmented
with each possible word beginning according to the lattice, and given to the
grammar to find the probability. For each of these possibilities, we add a
new entry to the list in the N-Best lattice at the begin state of the word.
This entry simply contains the source word end state number, current time
and appropriate index from which this word was activated. The new entry
is abandoned if the score that is found after the grammar score has been
added fails to improve on the worst score already in the destination list.
This new algorithm eliminates the need for glue states.

We calculate the grammar score G, with the following formula:
G, = G% 4 Py, (4.4.1)

where G is the N-gram score found, G, is a constant grammar weight
and Py is a word insertion penalty (WIP). For the sake of computational
simplicity we keep all the scores in log, form. Now all the multiplica-
tions caused by transition weights become additions. We add the grammar
weight so that we can optimise the scale of the grammar by evaluating the
development set.

In order to recognise silences between words, we append an optional
<sil> phoneme to each word model in the vocabulary. This results in more

accurate time boundaries in the generated transcriptions.

CHAPTER 4. IMPLEMENTATION 82

4.5 Silence Detection

In any speech recognition task a fast and accurate silence detection tech-
nique is an important asset. Johan du Preez developed a silence detection
technique based on the use of densities to model power and power variance
of Gaussian noise in a signal. The full derivation as made available by Johan

du Preez can be found in App. A.4.

4.6 Context-independent phoneme modelling

The high level process behind our context-independent (monophone) model

training is illustrated in Fig. 4.13.

Audio _‘ Audio Processing Features
Word Transcriptions
Monophone Lexicon ‘
| ‘ ‘
o Silence Detection
|
(Silence PDF —~1
Silence Transcriptions m SR " . . LN
= Initial PDF Training Speech PDF .. Embedded Re—estimation |
‘ Flatstart Monophone Models
Forced Alignment | Word/Monophone/Sub-Monophone Transcriptions
= Initial PDF Training | Monophone PDF's || Embedded Re—estimation |
[——————
‘ Detailed Monophone Models
Forced Alignment | Word/Monophone/Sub-Monophone Transcriptions

-

Figure 4.13: Monophone training process.

We used the XML transcriptions that were given with the original HUB-
4 training corpus. These transcriptions are on the word level with a few
arbitrarily fixed boundaries specified by the transcriber. However, these
fixed boundaries are not always present, so it is mostly up to the training

to guess the best phoneme-level transcription given the word sequence and

CHAPTER 4. IMPLEMENTATION 83

the lexicon. The lexicon was constructed from a subset of the Pronlex
lexicon [23].

Often a Gaussian mixture model (GMM) would be used to model speech,
but we opted for a more efficient Structured Adaptive Mixture (SAM) [9]
Gaussian. SAMs represent GMMs in a tree form with the most significant
mixture component at the root node. The densities near the root of the
tree have the highest contribution and we can quickly evaluate a reduced
number of mixtures to get an approximation of the similarity between a
particular density and an observation. This can be seen as a form of fast
match.

To construct the initial context-independent monophone models we use
a simple initial PDF describing all the speech in the database to initialise
each model. This is also known as the “flat start” training strategy [33].
First we create a single PDF from all the speech features and a PDF from
all the silence features as found with our silence detection technique. For
these two initial models we used a 24-dimensional SAM with 64 mixtures
and a diagonal covariance matrix. The speech PDF is then assigned to all
the states in the collection of speech HMMs we desire and the silence PDF
is assigned to the silence HMM. This initial configuration is put through
a sequence of parameter estimation iterations (embedded re-estimation) to
improve the parameters for each model. After we find no significant further
improvement in performance or we reach a maximum specified number of
iterations, training is concluded.

We now proceeded to train these initial phoneme HMMs with a sequence
of embedded re-estimation iterations to find our first phoneme HMMs.
These HMMs are used to create forced alignments for each utterance in
the corpus. This is done by concatenating the phoneme models in the
sequence specified by the lexicon for each word in order to create an ut-
terance model. Forced alignment then finds the most likely state sequence
given the utterance model and the observation sequence. This gives us the

best boundaries for each phoneme and sub-phoneme.

CHAPTER 4. IMPLEMENTATION 84

For example, let us assume we have to find the boundaries for an audio
file 0.876 seconds long and we know the word sequence “come here” was
said. We don’t know exactly at what time the “come” ends and the “here”
begins and it is extremely expensive to create transcriptions on such a
phoneme or even word level by hand. For this reason it is necessary to
use this estimation approach. To create the utterance model we need for
the forced alignment, we concatenate the word models as specified in the
word sequence. The super model for the utterance HMM in this example

is illustrated in Fig. 4.14.

Figure 4.14: Example of utterance HMM used in forced alignment. Optional
silences separate words.

Note the optional silence model that was added between each word since
there may be silences between words in spontaneous speech. We now create
word models from the initial models trained from the flat start iteration.
This is done by simply concatenating the phoneme models as specified by
the lexicon. In this case these pronunciations are:

come: k am here: hir

If more than one pronunciation exists for a word, both phoneme se-
quences are added in parallel. Now we are left with the final utterance
model, which is simply a long concatenation of the phoneme models found
during the flat start iteration. We now use the features and this utterance
model and find the best possible route using the Viterbi algorithm. After
we know the best route we can calculate the times for each transition on
a sub-phone level. These transcriptions can now be used to create more
detailed models. An example of a state-level monophone transcription can
be seen in Table 4.1.

CHAPTER 4. IMPLEMENTATION 85

End time ‘ Word ‘ Monophone ‘ Sub-Monophone

0.045 kO
0.090 k1
0.120 k k2
0.150 al
0.180 al
0.225 a a2
0.270 m0
0.305 ml
0.350 come m m2
0.395 hO
0.455 hi
0.505 h h2
0.580 il
0.640 i i2
0.730 r0
0.805 rl
0.880 here r r2

Table 4.1: Example of a monophone level transcription.

Depending on the topology of the HMMs the sub-phone level paths do
not need to go through each state in the HMM. If we have manually placed
boundaries in the transcription the forced alignment will not create one big
utterance model for the entire sentence, but separate models for the sub-
sentences as split by the manual boundary. Also noteworthy is the fact that
the times are in multiples of 0.015, which is the length in seconds of each
speech frame for our implementation. These estimated times are calculated
by multiplying the number of features spent in each state by the frame
length of 15 ms.

These forced alignment transcriptions generated by the initial flat start
models are then used to train more detailed models and a similar sequence
of events is used. We now know the features that relate to each PDF for the
utterances more accurately and can initialise each PDF accordingly. More
detailed densities were used for these forced alignment models. Here we

used a 256 mixtures instead of 64. After a further embedded re-estimation

CHAPTER 4. IMPLEMENTATION 86

cycle we have context-independent monophone HMMs.

4.7 Context-dependent phoneme modelling

The high level process behind our context-dependent (triphone) model
training is illustrated in Fig. 4.15.

Monophone Lexicon

Word/Monophone/Sub—monophone Transcriptions

Features L

Word/Triphone/Sub=Monophone Transcriptions

Monophone to Triphone Triphone Lexicon

Initial PDF Training | Monophone PDF's

Embedded Re—estimation Triphone Models with Monophone PDE"s

Improved Word/Triphone/Sub-Monophone Transcriptions

|
|

T Tree Clustering Word/Triphone/Clustered Sub—Triphone Transcriptions

Initial PDF Training Embedded Re—estimation
=

Forced Alignment Detailed Triphone Transcriptions

: Forced Alignment

" Monophone to Triphone ‘ Word/Triphone/Sub—Triphone Transcriptions

Triphone HMM's

-

Figure 4.15: Triphone training process.

To construct the context-dependent triphones, we first construct the new
triphone transcriptions from the initial monophone transcriptions. This can

easily be done by mapping each monophone to a triphone depending on

CHAPTER 4. IMPLEMENTATION 87

the surrounding monophones. Each word starts and ends in a biphone to
enable us to construct a lexicon and separate words and simplify the use of
a grammar. These biphones are estimated in the same way as the rest of
the triphones, but a placeholder label is added to the monophone set.
Now we have a triphone set with sub phone labels identical to those of
the monophones. This equates to more transition matrices, but the same
number of density functions. We now train these triphone models to find
our initial triphone models. These models are used to find new triphone
transcriptions with forced alignment. In turn, we map each sub-monophone
label to a sub-triphone label. This is done by mapping the monophone label
contained in the sub-monophone label to the associated triphone label. An

example of a detailed triphone transcription can be seen in Table 4.2.

’ End time ‘ Word ‘ Triphone ‘ Sub-Triphone ‘

0.045 *k+a0
0.090 *k+al
0.120 *k+a *k+a2
0.150 k-a+m0
0.180 k-a+ml
0.225 k-a-+m k-a-+m?2
0.270 a-m-+*0
0.305 a-m-+*1
0.350 come | a-m-+* a-m+*2
0.395 *_h-+i0
0.455 *_h-+il
0.505 *h-+Hi *h-+i2
0.580 h-i+rl
0.640 h-i+r h-i412
0.730 i-r-+*0
0.805 i-r+*1
0.880 here -r+* i-r+*2

Table 4.2: Example of a triphone level transcription.

These initial triphone transcriptions are now used to build a decision

tree for state clustering. We use this decision tree to create triphones for

CHAPTER 4. IMPLEMENTATION 88

all the contexts (seen and unseen) in the closed lexicon that consists of all

the words in the training, test and development sets.

4.8 Word Spotter

We decided to break our recogniser up into separate recognition phases.
This allows us to gradually reduce the search space as described Section 2.7.3.
In addition, this enables us to separately measure and optimise each phase
and also to evaluate the effect on the accuracy of each. Since our N-Best
segmenter depends on a lattice to perform efficiently, we decided to let our
first pass create this lattice.

Initially, a normal forward Viterbi beam search on a parallel word HMM
such as the one shown in Fig. 2.7 seemed like a good idea. However, all
words would be activated at each time due to the transition to each word.
The only distinguishing factor between words would be the grammar score
for the hypothesis word at the current time. This is not enough information
to make an informed decision on which word beginnings are probable at
which time. We need to incorporate acoustic knowledge as well, but a
combination of LM score and acoustic score can only be found at the word
ending. This is the case if we use the forward Viterbi algorithm.

If we need a more detailed word score at the word beginnings, we could
do a backward Viterbi beam search such as described in Section 2.3.2. This
would result in Viterbi scores at probable begin states for each frame, which
include both the grammar and acoustic information. After we find the lat-
tice, we backtrack and store the most likely word sequence for later evalu-
ation.

Initially we attempted to incorporate the SRI LM toolkit unigram weights
as Py, ... Py, in Fig. 2.7. However, this did not produce good results, since
backward segmentation is taking place. In this configuration, the unigram
weights would only be incorporated upon exiting the begin states. We re-

quire them to be included by the time we reach the begin states. For this

CHAPTER 4. IMPLEMENTATION 89

reason, we inserted the unigram weights on the end state side of each word.

This is illustrated in Fig. 4.16 and produced the desired result.

Figure 4.16: HMM configuration used in first phase of word spotter. Words
are placed in parallel, with optional silences separating words. The language
model weights are incorporated last in the segmentation process, so that they are
incorporated first when backward Viterbi segmentation takes place.

Now that we have a lattice, we can perform an efficient N-Best search.
An HMM is constructed such as the one shown in Fig. 4.12 and used along
with the lattice from the backwards Viterbi search. This results in a list of
N word sequences, which can now be rescored to find the final hypothesis.
The entire process is illustrated in Fig. 4.17.

The general idea behind the three phases is the systematic reduction of
the search space efficiently with minimal loss in potential accuracy. The first
phase results in a relatively general answer. Most options are completely
eliminated with this fast search. Normally here we would have the most
simple grammar or no grammar at all. The second phase does a more
detailed search on a greatly reduced search space and a more complicated
grammar can be incorporated. The final phase has the smallest search space

and we perform our most detailed search and include a powerful grammar.

CHAPTER 4. IMPLEMENTATION 90

Phase 1 Hypothesis

Signal _| Audio Features | Backwards Viterbi _
Preprocessing Beam Search Lattice

j Phase 2 IHypothesis
" N-Best
Segmenter N-Best IIypotheses
Rescoring Final Hypothesis

Figure 4.17: Process used to generate word hypothesis.

4.9 Summary

In this chapter we explained how we implemented the theory considered in
the previous chapters. First we showed how we incorporated the multi-level
segmentation techniques into the normal Viterbi segmentation software to
reduce memory usage. This formed the foundation of all the segmenters
implemented at a later stage. We showed how we expanded the multi-level
segmenter to create our N-Best segmenter and explained with the help of a
detailed example how it works.

Next we discussed the LM we used, which was created by a commonly
used toolkit implemented by SRI. We went on to explain how this LM was
incorporated into our N-Best segmenter. Our silence detection technique
was also considered.

We later explained how our context-independent monophones were trained
and in turn used to create our final context-dependent triphones. Finally,
we explained how our three phase word spotter was constructed. The first
phase of the spotter creates a high level lattice using a simple unigram lan-
guage model. The second phase of the spotter performs an N-Best search
using a bigram language model on the lattice created in the first phase.
Finally, the third phase rescores the N-Best list from the second phase with
a trigram language model to find the final hypothesis.

Chapter 5
Experimental investigation

In our practical investigation we made use of all the components necessary
for a complete large-vocabulary speech recogniser. We tested our system
on the 1996 DARPA/NIST continuous speech recognition broadcast news
Hub-4 partitioned evaluation. All the audio recordings are excerpts from
television and radio news. The audio consisted of approximately 30 hours of
training, two hours of development and two hours of testing data. With the
partitioned evaluation we conducted, the transcriptions consisted of equally
divided word level transcriptions for all the audio with some additional
manually placed boundaries.

We constructed a lexicon from all the words in the training, development
and evaluation sets, resulting in a vocabulary of around 18000 words. The
SRI trigram language model that was used had a perplexity of 350.

In this chapter we experimentally determined appropriate parameters
for our phoneme models and word recogniser. We evaluated our hypotheses
by making use of our own implementation of the techniques described in
Section 2.5.1, except where specified otherwise.

We also performed the same word recognition experiments on Sphinx
3.2 with the same lexicon, phoneme set and language model so that the

performance of our system might be compared to it.

91

CHAPTER 5. EXPERIMENTAL INVESTIGATION 92

5.1 Continuous phoneme recognition on

Hub-4 broadcast speech

5.1.1 Flat start monophone recognition on Hub-4

broadcast speech

Motivation: For us to build a word recogniser, we first need to construct
proper acoustic building blocks that we will use to represent the wide range
of words that will be recognised by the system. The first step in constructing
these models is constructing our initial phone level transcriptions from our
word level transcriptions.

Experimental setup: We made use of the Callhome Pronlex lexicon as
a base pronunciation lexicon and also used the phoneme set proposed by
them [23|. The final phoneme set consisted of 40 monophones, 1 silence
model and 1 model for other utterances (junk). The 24 dimensional fea-
tures were calculated using MFCCs with 12 cepstral coefficients and 12 A
|17| coefficients to represent each 15 ms speech frame. To find our initial
monophone level transcriptions we constructed flat start HMMs. We first
used silence detection as derived in App. A.4 to find initial silence/speech
transcriptions. We then used these transcriptions to train a silence and a
speech PDF, which we used in all the states as an initial condition for the
HMMs used in the embedded re-estimation. All states in all HMMs are
assigned the speech PDF, except the silence HMM and the first state in all
stop sounds. This included the phonemes b, d, g, k, p and t.

The 40 monophones were modelled by three-state HMMs with a single
skip link, as illustrated in Fig. 5.1. The density on each emitting state was
a 256 mixture SAM with diagonal covariance Gaussians. The sil and junk
HMDMs each contained a single emitting state with the same type of density
as the rest of the HMMs, but only 64 mixtures. We created all hypothesis
transcriptions using a normal Viterbi segmenter.

Results: Our experiments were done on the development set. After the

CHAPTER 5. EXPERIMENTAL INVESTIGATION 93

Figure 5.1: An HMM topology commonly used to model phonemes.

flat start training we found the results in Table 5.1 for phoneme spotting:

Substitutions || 45.34%
Deletions 15.81%
Correct 38.83%
Insertions 5.52%
Accuracy 33.91%

Table 5.1: Phoneme spotting results for flat start monophone HMMs.

Interpretation: A relatively poor result, but these models are only used

to initialise more accurate models.

5.1.2 Forced alignment monophone recognition on

Hub-4 broadcast speech

Motivation: We now had our initial monophone transcriptions and could
use them to create more accurate models. We can now make use of Linear
Discriminant Analysis (LDA), which is a class-based dimension reduction
technique and is described in App. A.1. It was unavailable to us in the flat
start phase since we did not have any class-level segmentation.

Experimental setup: To simulate using A and AA coefficients, we formed
108-dimensional features by concatenating sets of nine neighbouring 12-
dimensional MFCCs from the previous experiment. These new features
were reduced to 24 dimensional features using LDA. We used the same
HMM topology and density functions as before and could train new models
using forced alignments formed with the flat start models. We created all

hypothesis transcriptions using a normal Viterbi segmenter.

CHAPTER 5. EXPERIMENTAL INVESTIGATION 94

Results: After adding a large measure of context in the calculation of the

feature vectors, we found the results in Table 5.2.

Substitutions || 35.59%
Deletions 19.75%
Correct 44.64%
Insertions 3.08%
Accuracy 42.10%

Table 5.2: Phoneme spotting results for forced alignment monophone HMMs.
A significant improvement on the flat start monophones.

Interpretation: After we trained the monophone models from the flat
start monophones we have significantly more accurate monophone models
and state-level transcriptions. More intelligent features also contributed to

a 8.19% improvement on the flat start models in phoneme spotting accuracy.

5.1.3 Forced alignment triphone recognition on Hub-4

broadcast speech with monophone densities

Motivation: In order for our decision tree clustering to be most effective
we need the monophone transcriptions to be as accurate as possible. For
this reason we boost our monophone transcription accuracy by creating
triphones with monophone densities. This way we do not need to construct a
decision tree and can make use of a larger number of transition probabilities.
Experimental setup: We built a set of triphones consisting of all the
triphones that occur in the training, testing and development set. All the
monophone state-level forced alignment transcriptions were converted to
triphone state-level transcriptions. Normally a decision tree would be con-
structed immediately, but we first created triphone models which have iden-
tical state distributions to the monophones. We have the exact number of
PDFs as before (122) but now we have 9898 triphone HMMs instead of the
42 monophone HMMs. We created all hypothesis transcriptions using a

normal Viterbi segmenter.

CHAPTER 5. EXPERIMENTAL INVESTIGATION 95

Results: After training the triphone models with the same number of

densities as the monophones we found the results in Table 5.3.

Substitutions || 34.47%
Deletions 18.35%
Correct 47.17%
Insertions 3.63%
Accuracy 44.0892%

Table 5.3: Phoneme spotting results for forced alignment monophone HMMs,
which also make use of triphone transition matrices. A 2% improvement on
the forced alignment monophones using only monophone transition matrices was
found.

Interpretation: As we suspected, we were able to gain some extra ac-
curacy from the training of the triphone transition probabilities. This 2%
gain in phoneme spotting accuracy from monophones will help us to create

a more accurate decision tree.

5.1.4 Forced alignment triphone recognition on Hub-4

broadcast speech

Motivation: We now had more detailed monophone transcriptions. These
were converted to triphone transcriptions, which could be used to build a
decision tree. Since most of the triphones do not occur often enough, we
need to cluster the rare triphone states with the more common triphone
states using decision trees. The number of clusters formed is controlled by
the minimum occupation count (MOC). From this decision tree we relabel
the triphone state-level transcriptions to clustered triphone state-level tran-
scriptions. These new transcriptions are then used to train the triphones
using the same procedure as before.

Experimental setup: The decision tree was constructed for a wide range
of MOCs. We also constructed a triphone lexicon from the monophone lex-
icon which covered all the words in the training, testing and development

sets. Using this new lexicon we knew all the contexts that we would need

CHAPTER 5. EXPERIMENTAL INVESTIGATION 96

to recognise and could assign them to the closest known context by using
the decision tree. We transformed the state-level transcriptions to clus-
tered state-level transcriptions and trained the 9898 triphone models using
embedded re-estimation.

To evaluate the triphone spotting accuracy we started off by construct-
ing reference triphone transcriptions with forced alignments using the newly
trained triphone models. Next, we used a triphone spotter to construct
triphone level hypothesis transcriptions. The context-dependent phoneme
spotter makes use of a grammar where the context-independent phoneme
spotter did not. We are only interested in phoneme sequences with con-
texts that match. This idea is illustrated with the two-alphabet context-
dependent spotter illustrated in Fig. 5.2. After finding the most likely
phoneme sequence by using this spotter we compare it with the forced
aligned transcriptions to find the phoneme spotting accuracy for the ut-
terance. We created all hypothesis transcriptions using a normal Viterbi

segmenter.

Figure 5.2: Context-dependent phoneme spotter with an alphabet containing
two symbols. Only matching contexts can be recognised.

CHAPTER 5. EXPERIMENTAL INVESTIGATION 97

Results: For our range of MOC we found the results in Table 5.4.

’MOC\Clusters H Subs \ Del \ Corr \ Ins \ Acc ‘

200 6581 36.70% | 09.08% | 54.21% | 9.89% | 44.23%
500 4142 36.24% | 09.46% | 54.29% | 9.29% | 45.01%
1000 2691 35.98% | 09.83% | 54.17% | 8.97% | 45.28%
1500 2020 36.00% | 10.19% | 53.80% | 8.49% | 45.46%
2000 1619 35.80% | 10.48% | 53.71% | 8.33% | 45.58%
2250 1472 35.56% | 10.66% | 53.76% | 8.14% | 45.84%
2500 1364 35.63% | 10.67% | 53.68% | 8.01% | 45.90%
2750 1264 35.68% | 10.81% | 53.50% | 7.88% | 45.86%
3000 1178 35.74% | 10.97% | 53.27% | 7.711% | 45.83%
3250 1096 35.81% | 10.91% | 53.26% | 7.60% | 45.93%
3500 1025 35.63% | 11.15% | 53.21% | 7.58% | 45.91%
3750 973 35.85% | 11.15% | 52.99% | 7.63% | 45.65%
4000 918 36.00% | 11.21% | 52.77% | 7.53% | 45.54%
5000 765 36.01% | 11.65% | 52.33% | 7.14% | 45.53%
10000 410 37.55% | 12.56% | 49.87% | 6.34% | 43.95%

Table 5.4: Triphone spotting results for various MOCs. An appropriate MOC
seems to be 2500.

Interpretation: In Fig. 5.3 we see the effect of MOC on the number of
clusters. We see the most volatile range of occupation counts are between 1
and 4000, which yields between 1000 and 6500 clusters. Greater occupation
counts have little effect on the number of clusters. For this reason we tend
to choose our MOC between 1 and 4000. Another consideration is that we
would like to keep the number of clusters low, since more clusters would
require more training data.

In Fig. 5.4 we see that as the number of clusters drops we have an
increase in insertions and a decrease in deletions. The closest we could get
them to each other is within the range of 3000 to 5000 clusters, indicating
a balanced system.

In Fig. 5.5 we see the accuracy for the various parameter counts. The

greatest accuracies are for cluster counts between 1000 and 1500.

CHAPTER 5. EXPERIMENTAL INVESTIGATION 98

7000,

000, T T T

6000f-

5000

4000

Clusters

3000}

2000

1000]

Figure 5.3: Number of parameters for various MOCs. The number of clusters
drops as the maximum occupation count is increased.

13 T T T T 1 T

eeee [nsertions
»x#x Deletions

; i : i ; i
1] 1000 2000 3000 4000 5000 G000 7000
Clusters

Figure 5.4: Insertion and deletion rates for various parameter counts.

CHAPTER 5. EXPERIMENTAL INVESTIGATION 99

46.0

=450

Accuracy[%

e
s
u

44.0

435

i i i i i i
1000 2000 3000 1000 5000 G000 7000
Clusters

Figure 5.5: Accuracy for various parameter counts. The most accurate systems
are between 1000 and 2000 clusters.

Considering all these factors, we concluded that a reasonable number of
clusters is 1364 found with a MOC of 2500. These were the triphones that

were used in our further experimentation.

CHAPTER 5. EXPERIMENTAL INVESTIGATION 100

5.2 Effect of beam on accuracy and

performance

Motivation: To measure the effect of a beam on the performance and
accuracy of a recogniser, we need to have some measurement of computa-
tional requirements. Normally the number of clock cycles used on a process
(or ticks) is a good indication of computational requirements. We want to
know what the effect of beam width is on accuracy and performance.
Experimental setup: We performed monophone spotting on the complete
development set and measured ticks and phoneme error rate as before on
a variety of beam widths. Hypothesis transcriptions were created using a
Viterbi segmenter which makes use of a beam as described in Section 2.7.1.
We used our monophones as trained in Section 5.1.2.

Results: For beam widths of €°, €'?, e!®, €2 and e?® we see the required
ticks in Fig. 5.6 and the monophone spotting accuracies in Fig. 5.7.
Interpretation: We can see from these results that the accuracy drops as
the beam width is reduced. This is to be expected, since the number of
paths considered is reduced.

It should also be noted that even with a beam of e!® the accuracy has
already nearly reached its maximum. This is despite the fact that signif-
icantly fewer ticks are required to find the same result. From this we can
conclude that a well chosen beam width significantly improves performance

while barely affecting accuracy.

5.3 Continuous word recognition on Hub-4

broadcast speech development set

If we assume that good results in earlier phases of our word spotter lead
to equal or better results in later phases, we could find parameters for each
phase individually. In other words, we assume that later phases in the

recogniser are fully dependent on earlier phases.

CHAPTER 5. EXPERIMENTAL INVESTIGATION 101

xle+d
1 1 I
20_ /,. N
| e
: : I : :
15_,, - o e S ._ o
: e
0 ; C
3 s ; :
o=t L 3 4 : : 4
s B S e S R ks -
0.8} srarsshrssrimtrsmamninsmiend PRRRT—— A—— SP— buossnm A
i i i ; i
00 5 10 15 20 25
Beam

Figure 5.6: Ticks required for monophone spotting for beam values of eB¢@™,

The processing power required increases as the beam becomes wider.

We do not aim to find the ideal parameters for the system, since this
could take a very long time. We are simply searching for local optima. This
will give us an idea of the performance we could hope to achieve with our

system.

5.3.1 Finding effective parameters for phase one.

Motivation: In the first phase the lattice is created, which forms the basis
for phase two and consequently phase three. A sparse and accurate lattice
from phase one will result in efficient and accurate processing of later phases.
If our lattice is overpopulated, we could not hope to efficiently perform the
N-Best search in phase two. On the other hand, if our lattice is too sparse

and does not contain the correct word sequence, our later accuracies will

CHAPTER 5. EXPERIMENTAL INVESTIGATION 102

1 ! ;
: B e S S L)
D428t D ;_.,_._,_(..’. ,,,,,, T TR D Bereeaas .
: /i : : :
i ! : 4]
0,426 --reorfoeeernneesaneens Jredneesenn e e Forseen Fooneees N
1 o : i]
/
— /
R gazab i T RO, - ST, . - S n
= /
3] /
g /
53 !
%0422_ e e e -
/
/
: / : : : :
0_420_._......::.,..;!. \ 4
o] ; ; .
1] : 3 :
0_418_ ‘.......................E :, , -
; i i i i
051% 5 10 15 20 25
Beam

Figure 5.7: Accuracies found for monophone spotting for beam values of eZ¢@™,
The maximum accuracy is quickly reached and a beam width that is increased
further has no effect.

suffer.

In the worst-case scenario, the normal Viterbi algorithm would have
required 22 times more memory than our multi-level Viterbi algorithm for
the first phase in our Hub-4 implementation. With smaller vocabularies we
might have found an acceptable ratio, but in our experiments we used a
large-vocabulary. For this reason, the normal Viterbi segmenter would not
have been feasible at all for our experiments.

Experimental setup: We assumed that our word level beam should not
be wider than our state-level beam. This is due to the fact that the state-
level beam determines the lower bound for the scores that enter word level
states and having a wider beam at this stage would not result in more

information.

CHAPTER 5. EXPERIMENTAL INVESTIGATION 103

The word level beam was also chosen to be narrower than the state-level
beam, since once we reach word level states we have acoustic and linguistic
knowledge already included in the score. A beam of € is considered wide
and was chosen as our state-level beam. A beam of 3" performs moderate
pruning and was chosen as our word level beam.

For various combinations of grammar weights (GWs) and word inser-
tion penalties (WIPs) as defined in Equation 4.4.1, we created a lattice for
each sub-segment as described in Section 4.8. A unigram language model
making use of Good-Turing discounting was used, which was trained from
the Hub-4 training data. The final grammar scores were calculated as de-
scribed in Equation 4.4.1. We tried GWs 1.0, 2.0, 3.0,4.0 and 5.0 with WIPs
2,0,—2,—4 and —6. For each of these configurations we evaluated the two

hours of speech in the development set and measured:
1. The average words per frame (WPF).

2. The percentage of words appearing in the correct word sequence and

also in the lattice.

3. The accuracy, insertions and correctness for the best scoring path in
the lattice.

Results: In Table 5.5 we see the accuracies of the highest scoring paths
from phase one for each segment. The associated insertion and correctness
rates is seen in Table 5.6. The correctness of the lattice and average word
beginnings per frame is seen in Tables 5.7 and 5.8 respectively. In Fig. 5.8
we see the lattice correctness for various average word beginnings per frame.
Interpretation: From the accuracies found in Table 5.5 we see that the
most accurate best path is found with GW 4.0 and WIP —6. If the sys-
tem was forced to give a word hypothesis after the first phase unigram
segmentation, we would find this WER of 72.72%.

Since this phase only forms the foundation for later phases in the system,
we had to consider the results in more detail. We noted that with GW 4.0
and WIP —6 the correctness is significantly lower than with lower WIPs.

CHAPTER 5. EXPERIMENTAL INVESTIGATION

| WIP [GW 1.0 | GW 2.0 | GW 3.0 | GW 4.0 | GW 5.0 |

2 2.56% | 1547% | 22.01% | 25.43% | 24.75%
0 7.35% | 18.13% | 23.85% | 26.54% | 24.95%
-2 11.21% | 20.36% | 25.45% | 26.83% | 24.81%
-4 14.51% | 22.32% | 26.51% | 27.21% | 24.25%
-6 16.89% | 23.83% | 26.92% | 27.28% | 23.61%

104

Table 5.5: Accuracies for various WIPs and GWs on most likely path from first
phase of word spotter.

(WIP[| GW10 | GW20 GW30 | GW40 | GW5.0 |
2 [[21.9%, 30.2% [15.1%, 32.6% | 11.1%, 33.8% | 8.7%, 34.2% [8.3%, 33.0%
0 [18.7%, 29.9% | 12.9%, 32.3% | 9.4%, 33.5% | 7.5%, 33.9% | 7.5%, 32.4%
2 [[16.0%, 29.7% | 11.0%, 32.0% | 7.9%, 33.4% | 6.7%, 33.3% | 7.2%, 31.8%
-4 [[13.5%, 29.5% | 9.3%, 31L.9% | 6.8%, 33.1% | 6.0%, 32.9% | 6.9%, 30.9%
6 [11.4%, 29.2% | 7.8%, 31.6% | 6.0%, 32.7% | 5.5%, 32.4% | 6.4%, 29.7%

Table 5.6: Insertions and correctness respectively for various WIPs and GWs
on most likely path from first phase of word spotter.

| WIP [GW 1.0 | GW 2.0 | GW 3.0 | GW 4.0 | GW 5.0 |

2 78.19% | 78.06% | T717% | 74.83% | 69.50%
0 78.31% | 77.96% | 76.80% | 74.10% | 68.25%
-2 78.19% | 77.81% | 76.33% | 73.08% | 66.51%
-4 78.13% | 77.49% | 75.74% | 72.09% | 64.36%
-6 77.95% | 77.13% | 75.06% | 70.65% | 62.26%

Table 5.7: Correctness of lattice for various WIPs and GWs on most likely path
from first phase of word spotter.

Considering GW 4.0 in Table 5.6, we see that from WIP 2 to WIP 0 we

have a significant reduction in insertions, but only a slight reduction in

correctness. We can also see in Table 5.7 that when using GW 4.0, with

WIPs of 2 and 0 the lattice contains significantly more of the correct words
compared to WIP —6. The correctness rate of the lattice was very high
(almost 80%), showing us that with proper search techniques in later phases

we should be able to find very accurate hypotheses. We can see that phase

one worked properly and had been effective in reducing the search space

CHAPTER 5. EXPERIMENTAL INVESTIGATION

105

| WIP | GW 1.0 | GW 2.0 | GW 3.0 | GW 4.0 | GW 5.0 |

2 86.63 52.01 31.03 19.81 13.12
0 81.58 48.67 29.20 18.51 12.21
-2 76.74 45.46 27.55 17.28 11.49
-4 72.09 42.44 25.93 16.10 10.71
-6 67.60 39.67 24.39 14.91 10.01
Table 5.8: Average word beginnings per frame in the lattice for various WIPs
and GWs.
&o : T T T T T
: i . .« i 5
a 8" a :
e e :
75k aemin gy 4
E?D_ .:.... .
9 :
.
60 1in 20 3 70 % % % 5 50

Average word beginnings per frame

Figure 5.8: Lattice correctness for various average word beginnings per frame
counts. The lattice correctness only increases slightly for systems with an average
of more than 20 word beginnings per frame.

significantly while retaining as many correct hypotheses as possible.

We assumed that it is better to have too many insertions in our N-

Best lists than to have too many deletions, since deletions can never be

recovered. If the lattice correctness was our most important consideration,
we would tend to choose GW 1.0 and WIP 0. However, the load on later

phases would be prohibitive, since we see in Table 5.8 that on average there

CHAPTER 5. EXPERIMENTAL INVESTIGATION 106

are more than four times more word beginnings per frame to consider. In
Fig. 5.8 we see that the lattice correctness increases only slightly for systems
with an average of more than 20 word beginnings per frame.

In summary, GW 4.0 and WIP 0 seem to find a good balance between
best path accuracy, correctness and insertions, average words per frame and
lattice correctness for phase one.

These results are seen as the baseline results of the original system at
the University of Stellenbosch. If we had performed these experiments with
the original system we would have found this WER of 73.46%. Note that
these experiments would not have been possible if we were forced to use a
normal Viterbi segmenter as we would have done in the past. Our multi-
level segmenter enables us to perform evaluations with a large-vocabulary,

since memory requirements are vastly reduced.

5.3.2 Finding effective parameters for phase two.

Motivation: Once the lattice from phase one was in place, we could pro-
ceed to find the proper parameters for phase two. We had to ensure that
our N-Best list contained as many correct words as possible, which would
enable our later rescoring to increase accuracy further.

Experimental setup: We chose a state-level beam of ¢ and a word level
beam of 3.

For various combinations of grammar weights (GWs) and word inser-
tion penalties (WIPs), we found our N-Best paths for each sub-segment as
described in Section 4.8 with N — 200. A bigram language model making
use of Good-Turing discounting and Katz smoothing was used, which was
trained from the Hub-4 training data. The final grammar scores were cal-
culated as described in Equation 4.4.1. We tried GWs 1.0, 2.0, 3.0,4.0 and
5.0 with WIPs 2,0, —2, —4 and —6. For each of these configurations we

evaluated the two hours of speech in the development set and measured:

1. The percentage of words appearing in the correct word sequence and

CHAPTER 5. EXPERIMENTAL INVESTIGATION 107

also in one of the N-Best paths.

2. The accuracy, insertions and deletions for the most likely path in the

N-Best list (path 1 out of N).

Note that this correctness is not the ideal measurement but only an indi-
cator. To truly measure potential gain from rescoring, we would need to
evaluate each of the N-Best paths and use the best scoring path as our
maximum potential accuracy. Our measurement is similar to the lattice
correctness measure for phase one, and only shows us how many of the cor-
rect words survived in the N-Best lists. This is much simpler to measure,
yet still gives us a good indication of the quality of the N-Best lists.

Results: The accuracies of the highest scoring paths from phase two for
each segment is seen in Table 5.9. The associated insertion and deletion

rates appear in Table 5.10. We see the correctness of the N-Best lists in
Table 5.11.

| WIP [GW 1.0 | GW 2.0 | GW 3.0 | GW 4.0 | GW 5.0 |

2 7.20% | 19.10% | 25.33% | 28.79% | 28.40%
0 11.10% | 21.27% | 26.93% | 29.78% | 28.70%
-2 14.53% | 23.27% | 28.22% | 30.25% | 28.43%
-4 16.91% | 24.87% | 29.00% | 30.73% | 27.97%
-6 18.80% | 26.09% | 29.76% | 30.92% | 27.31%

Table 5.9: Accuracies for various WIPs and GWs for most likely path in the
N-Best list generated from the second phase of the word spotter.

Interpretation: From the accuracies found in Table 5.9 we see that the
most accurate best path is found once again with GW 4.0 and WIP —6. If
this was a two-phase system, we would find the WER of 69.08%.

However, we are not finding the parameter to maximise accuracy, but
to maximise potential gain from the rescoring in the final phase. It is
important to note that the correctness of the best scoring hypothesis drops
as the WIP is increased, which is seen in Table 5.10. We again assumed that

it is better to have too many insertions than to have too many deletions.

CHAPTER 5. EXPERIMENTAL INVESTIGATION

108

(WIP|] GW10 | GW20 | GW30 | GW40 | GW50 |
2 || 20.6%, 32.4% | 15.1%, 36.1% | 12.0%, 38.1% | 10.2%, 39.3% | 10.3%, 39.0%
0 || 17.9%, 32.1% | 13.3%, 35.8% | 10.5%, 37.9% | 9.1%, 39.0% | 9.5%, 38.4%
2 [15.5%, 32.0% | 11.5%, 35.4% | 9.2%, 37.6% | 8.4%, 38.6% | 9.2%, 37.6%
-4 [13.5%, 31.7% | 10.1%, 35.2% | 8.1%, 37.0% | 7.6%, 382% | 8.8%, 36.7%
-6 || 11.9%, 31.5% | 8.7%, 34.8% | 7.3%, 36.8% | 5.4%, 37.7% | 8.5%, 35.7%

Table 5.10: Respective insertions and correctness for various WIPs and GWs on
most likely path in the N-Best list generated from the second phase of the word

spotter.

| WIP [GW 1.0 | GW 2.0 | GW 3.0 | GW 4.0 | GW 5.0 |

2 36.65% | 41.73% | 44.52% | 45.70% | 45.39%
0 36.80% | 41.47% | 44.04% | 45.40% | 44.46%
-2 36.69% | 41.22% | 43.63% | 44.92% | 43.56%
-4 36.51% | 40.92% | 43.20% | 44.48% | 42.40%
-6 36.29% | 40.59% | 42.68% | 43.82% | 41.15%

Table 5.11: The percentage of words appearing in the correct word sequence
and also in one of the N-Best paths from the second phase of the word spotter
for various WIPs and GWs.

For this reason we chose a lower WIP in phase two to maximise correctness.
The percentage of correct words in the N-Best lists is seen in Table 5.11.
It shows us that when using GW 4.0 with WIP 0 the lattice contains 1.6%
more of the correct words compared to WIP —6. If the lattice correctness
was our most important consideration, we would be inclined to choose GW
4.0 and WIP 2. We noticed that the correctness of the N-Best lists were
almost 30% lower than the correctness of the lattice from the first phase.
From this we can conclude that a significant amount of information was
lost and another approach for phase two might be considered.

In summary, GW 4.0 and WIP 0 seems to find the best balance between
best path accuracy, correctness and deletions and N-Best list correctness.
We would expect to see a significant improvement on the best path accuracy
from the first phase to the second phase, since we are now making use of a

significantly more complex bigram LM. This was indeed the case and we saw

CHAPTER 5. EXPERIMENTAL INVESTIGATION 109

an improvement from 26.54% to 29.78%, which supports the theory that
more information can be extracted from the unigram word lattice created
in the first phase. We found a significant improvement on the baseline
system by performing an N-Best search and simply using the best scoring
hypothesis.

Incorporating these more complex LMs into the extensive search space
of phase one would call for a different approach. The calculation of the
higher-order grammar scores in our implementation was not computation-

ally feasible.

5.3.3 Finding effective parameters for phase three.

Motivation: Now that the lattice from phase one and the N-Best lists from
phase two are in place, we can find proper parameters for phase three. Since
this is the final step in our recogniser, we only need to maximise accuracy
in this phase.

Experimental setup: For various combinations of grammar weights (GWs)
and word insertion penalties (WIPs), we rescored our N-Best paths for each
sub-segment as described in Section 4.8. An utterance HMM is created for
each of the N hypotheses which is evaluated using the same triphones, but
using a trigram language model making use of Good-Turing discounting
and Katz smoothing. This LM was trained from the Hub-4 training data.
The best scoring path, after a re-evaluation of each of the N hypotheses, is
chosen as the final hypothesis.

The final grammar scores were calculated as described in Equation 4.4.1.
We tried GWs 5.0, 6.0, 7.0, 8.0 and 9.0 with various insertion penalties. GWs
lower than 5.0 and higher than 9.0 were attempted, but the results were
extremely poor. For each of these configurations we evaluated the two hours
of speech in the development set and measured the accuracy, insertions and
deletions for the path with the best score after rescoring.

Results: In Table 5.12 we see the accuracies of the highest scoring paths

after rescoring from phase three for each segment. The associated insertion

CHAPTER 5. EXPERIMENTAL INVESTIGATION 110

and deletion rates is seen in Table 5.13.

| WIP | GW 5.0 | GW 6.0 | GW 7.0 | GW 8.0 | GW 9.0 |

2 30.57% | 31.14% | 31.20% | 31.18% | 31.24%
0 31.04% | 31.42% | 31.42% | 31.41% | 31.40%
-2 31.37% | 31.56% | 31.60% | 31.57% | 31.53%
-4 31.66% | 31.66% | 31.60% | 31.52% | 31.53%
-6 31.78% | 31.83% | 31.69% | 31.57% | 31.52%
-8 31.76% | 31.96% | 31.78% | 31.71% | 31.65%
-10 31.82% | 31.98% | 31.95% | 31.81% | 31.70%
-12 31.80% | 31.94% | 31.96% | 31.83% | 31.78%
-14 31.87% | 31.95% | 32.00% | 31.92% | 31.78%
-16 31.84% | 31.94% | 31.90% | 31.95% | 31.88%

Table 5.12: Accuracies for various WIPs and GWs for the hypotheses from the
third phase of the word spotter.

(WIP[[| GW50 | GW60 | GW70 | GWS80 | GW90 |
2 [19.0%, 39.7% | 8.6%, 39.7% | 8.4%, 39.6% | 8.3%, 39.5% | 8.3%, 39.4%
0 | 85%, 39.6% | 8.2%, 39.6% | 8.2%, 39.5% | 8.1%, 39.4% | 8.1%, 39.4%
2 || 8.1%, 39.3% | 8.0%, 39.4% | 8.0%, 39.5% | 8.0%, 39.4% | 7.9%, 39.4%
4 [7.7%, 39.2% | 7.8%, 39.3% | 7.8%, 39.3% | 7.9%, 39.2% | 7.9%, 39.4%
-6 || 7.5%, 39.1% | 7.6%, 39.2% | 7.6%, 39.2% | 7.7%, 39.1% | 7.8%, 39.1%
-8 || 7.3%, 38.8% | 7.4%, 39.1% | 7.5%, 39.1% | 7.6%, 39.1% | 7.6%, 39.1%
-10 || 7.2%, 38.8% | 7.3%, 39.1% | 7.3%, 39.1% | 7.4%, 39.1% | 7.5%, 39.1%
12 || 7.1%, 38.7% | 7.2%, 38.9% | 7.3%, 39.0% | 7.4%, 39.0% | 7.4%, 39.0%
14 [7.0%, 38.6% | 7.1%, 38.8% | 7-2%, 39.0% | 7.3%, 39.0% | 7.4%, 39.0%
16 [| 7.0%, 38.6% | 7.0%, 38.7% | 7.1%, 38.8% | 7.2%, 38.9% | 7.3%, 39.0%

Table 5.13: Insertions and correctness respectively for various WIPs and GWs
for the hypotheses from the third phase of the word spotter.

Interpretation: From the accuracies found in Table 5.12 we see that the
most accurate system is found with a GW 7.0 and WIP —14. This results
in a WER of 68%. From Table 5.13 it would seem that higher insertion
penalties result in a significant drop in insertions with a slight drop in

correctness, which accounts for the more accurate results.

CHAPTER 5. EXPERIMENTAL INVESTIGATION 111

Since we are now making use of a trigram LM, we would expect to
see an improvement on the bigram LM result from the second phase. The
accuracy was improved from 29.78% in the second phase to to 32.00% in
the third phase, showing that we were able to extract more information by

rescoring the N-Best list.

5.4 Determining the effect of a word length
penalty

Motivation: We now have a simple measure for our WIP, but a more
complex form should be considered. Finding long words which are a con-
catenation of several phonemes is more difficult than finding words which
consist of just one or two phonemes. This is simply because the odds of
matching a short segment of speech with the phoneme for a poorly artic-
ulated word is easier than matching a long segment of speech with a long
sequence of phonemes.

For this reason we attempted to make use of a simple word length
penalty and measured its effect.

Experimental setup: A penalty model of any complexity can be used, but
we decided to simply see if incorporating this knowledge source improves
the performance of our system.

A simple linear penalty model as illustrated in Figure 5.9 was used. =z
is the fundamental penalty and was chosen to be 8 in our experiment. The
penalty reduces linearly with the number of phonemes in the word.

We now repeated our complete development set evaluation with the
length penalty incorporated in each phase. We used the same GW and
WIP for all phases, namely GW 4.0 and WIP 0 for phase one and phase
two and GW 7.0 and WIP —14 for phase three.

Results: We found the results for phase one, phase two and phase three
in Tables 5.14, 5.15 and 5.16 respectively.
Interpretation: The word length penalty had almost no effect on the first

CHAPTER 5. EXPERIMENTAL INVESTIGATION 112

0.75%
Penalty 0.5x%

0.25x%

1 2 3 4 5 6

Number of phonemes

Figure 5.9: Linear model used for word length penalty. The more phonemes
the word contains, the smaller the penalty becomes.

’ H No penalty ‘ Penalty ‘

Accuracy 26.54% 26.54%
Insertions 7.5% 7.5%
Correctness 33.9% 33.9%
Average WPF 18.51% 18.53%
Lattice correctness 74.10% 74.10%

Table 5.14: Phase one results comparing the normal system with the system
using a word length penalty.

’ H No penalty \ Penalty ‘

Accuracy 29.78% 31.74%
Insertions 9.1% 6.08%
Correctness 38.98% 37.43%

N-Best correctness 45.40% 43.73%

Table 5.15: Phase two results comparing the normal system with the system
using a word length penalty.

CHAPTER 5. EXPERIMENTAL INVESTIGATION 113

’ H No penalty ‘ Penalty ‘

Accuracy 32.00% 32.90%
Insertions 7.2% 4.7%
Correctness 39.0% 37.2%

Table 5.16: Phase three results comparing the normal system with the system
using a word length penalty.

phase of the word spotter, but this is not surprising since the unigram LM
plays a relatively small role.

In phases two and three the effect of the word length penalty becomes
apparent. Insertions are reduced, while the accuracy of the best path is
increased. It should be noted that the correctness of the best path and also
the N-Best lists are reduced. This can be attributed to the reduction in
hypothesis words that accompanies the drop in insertions. Fewer hypothesis
words reduce insertions, but also result in fewer correct words.

From these results we can conclude that we can improve accuracy by
adding a penalty to shorter words. This also shows us that our system

prefers shorter words and this needs to be accounted for.

5.5 Sphinx 3 Hub-4 Development set

evaluation

Motivation: In order to compare our system with Sphinx 3, we performed
the Hub 4 evaluation with a very similar configuration to our own system.
This allowed us to compare the performance of the two systems as effectively
as possible.
Experimental setup: We used the 1999 Sphinx 3.2 system, which was
compiled from source code that we downloaded from the Sphinx site. We
used a lexicon, a phoneme set and a language model that were identical to
those used in our system and all the default parameters for Sphinx 3.2.
Our Sphinx 3.2 setup made use of 3-state no-skip topology HMMs in

a lexical tree search structure. A lexical tree is an effective compact way

CHAPTER 5. EXPERIMENTAL INVESTIGATION 114

to represent a lexicon, but there are some problems associated with them.
More information on lexical trees can be found in [39].

Triphones (including cross-word triphones) making use of a total of 1000
tied states were trained. The density at each state was a Gaussian mixture
model with 8 mixtures. Sphinx 3.2 performed a single pass search with the
the SRI trigram language model we trained on the Hub-4 training data.

The hypotheses were evaluated exactly as described by the Hub 4 eval-
uation specifications, by making use of all the provided word filters and
SCLite software.

Results: The results for the development set evaluation of the various Hub
4 focus conditions are shown in Table 5.17. Our development set hypotheses
were evaluated in the exact same way and the results are also shown. The

focus conditions are described as follows:

e FO - Baseline broadcast speech: (10.15%) Speech that is directed
to the general broadcast audience is recorded in a quiet studio envi-
ronment with a signal-to-noise ratio (SNR) of greater than 20 dB and

mostly read from prepared text.

e F1 - Spontaneous broadcast speech: (20.46%) Unprepared speech
that is directed to one or more conversational partners that is recorded
in a quiet studio environment and is presumed to have an SNR of
greater than 20 dB.

e F2 - Speech over telephone channels: (12.79%) Speech that is
collected over reduced-bandwidth conditions, such as telephony and

similar media.

e F3 - Speech in the presence of background music: (5.00%)
Equivalent to FO or F'1, but includes background music such that the

speech is still intelligible to the normal listener.

e F4 - Speech under degraded acoustic conditions: (10.68%)

Speech that is acoustically degraded for reasons other than those in

CHAPTER 5. EXPERIMENTAL INVESTIGATION 115

condition F2 and include reasons such as additive noise, environmental

noise or nonlinear distortions.

e F5 - Speech from non-native speakers: (4.46%) Speech that
satisfies the attributes of condition FO, but is spoken by non-native

fluent speakers of American English with a foreign accent.

e FX - All other speech: (36.47%) All speech that does not fall in

any of the other categories.

The percentage in brackets following each description shows the portion of

the total data that falls in that particular category.

| [Overall | FO | F1 | F2 | F3 | F4 | F5 | FX |
Sphinx 3 [56.3% [37.2% | 59.7% | 65.3% | 65.1% [50.8% | 50.3% [57.6
Our system || 68.9% | 51.5% | 68.3% | 76.0% | 78.3% | 65.9% [62.7% [71.9

| Difference [[-12.6% | -14.3% | -8.6% [-10.7% [-13.2% [-15.1% [-12.4% [-14.3% |

Table 5.17: Word-Error rates for Sphinx 3 and our system on the development
set.

Our system performed the development set evaluation in about 41.5
hours, while Sphinx 3.2 performed the same evaluation in about 2.25 hours.
Thus our system was around 18 times slower than Sphinx 3.2 on a 1.8 GHz
dual-core Pentium 4 with 2 GB RAM. We found that our system spent
around 45% of the total processing time on phase one and another 45% on
phase two. The remaining 10% was spent on the final phase.
Interpretation: The performance of our system was significantly worse

than that of Sphinx 3. There are various potential reasons for this:

1. Sphinx had been in development for over 11 years by various teams

of scientists.

2. Sphinx 3 made use of lexical tree search and had various copies of
different lexical trees in memory at a given time depending on LM

context.

CHAPTER 5. EXPERIMENTAL INVESTIGATION 116

3. Sphinx 3 incorporated left-context cross-word triphones.

4. Sphinx 3 made use of various absolute pruning boundaries to control
worst-case performance. (Maximum active HMMs, maximum word

exits and maximum LM histories per frame)

These techniques should be considered for future versions of our system.
Since the vast majority of processing time was spent on the first two phases,
we should consider the lexical tree search in particular if performance is to

be improved.

5.6 Continuous word recognition on Hub-4

broadcast speech evaluation set

Motivation: We have performed our experiments on the development set
and we would now like to see the performance of Sphinx 3.2 and our system
on the evaluation set.

Experimental setup: All the parameters for our system as they were de-
termined by earlier experiments were used. We also used the same lexicon,
phoneme set and language model.

Results: The results for the evaluation set of the various Hub 4 focus
conditions are shown in Table 5.18. Our development set hypotheses were
evaluated in the same way and the results are also shown. The focus condi-
tions are the same as in the development set and the proportions the make

up of the evaluation set are:
e FO - Baseline broadcast speech: 13.70%

F1 - Spontaneous broadcast speech: 0.01%

F3 - Speech in the presence of background music: 3.35%

F4 - Speech under degraded acoustic conditions: 0.27%

FX - All other speech: 81.65%

CHAPTER 5. EXPERIMENTAL INVESTIGATION 117

| | Overall| FO | F1 | F3 | F4 [FX |

Sphinx 3 571% | 46.4% | 55.9% | 56.4% | 83.3% 28.8
Our system || 68.9% | 61.4% | 63.7% | 78.1% | 94.4% 69.7

| Difference [| -11.8% [-15.0% | -7.8% [-21.7% | -11.1% [-10.9% |

Table 5.18: Word-Error rates for Sphinx 3 and our system on the evaluation
set.

Our system performed the evaluation in about 38.0 hours, while Sphinx
3.2 performed the same evaluation in about 2.0 hours. Thus our system was
around 19 times slower than Sphinx 3.2 on a 1.8 GHz dual-core Pentium 4
with 2 GB RAM.

Interpretation: These results are consistent with the experiments on our
development set and the final difference in accuracy between our system
and Sphinx 3 was 11.8% for the evaluation set.

As mentioned earlier, there are many differences between Sphinx and our
system that account for the difference in WER. There are many avenues of
research that should be considered for future versions of the system at the

University of Stellenbosch that would result in more competitive WERs.

5.7 Summary

In this chapter we found appropriate parameters for all the components in
our word recogniser. First, we explained our phoneme modelling approach
and how we trained monophone models. The accuracy of the baseline mono-
phone models was reported and found to be relatively poor. We later incor-
porated A and AA coefficients and LDA into our features. This expansion
of the original flat start monophones resulted in a significant increase in
accuracy (8.19%) for continuous monophone spotting.

After finding our initial monophone transcriptions, we could move on to
training triphones. We experimented with various MOCs for decision tree-

based triphones and were able to improve our baseline 42.10% continuous

CHAPTER 5. EXPERIMENTAL INVESTIGATION 118

monophone spotting accuracy to 45.90% for triphones making use of 1364
tied states.

After finding our triphones, we were interested in measuring the effect
of beam width on recognition accuracy and performance. We were able to
conclude that a properly chosen beam width improves performance signifi-
cantly, while barely reducing phoneme recognition accuracy.

Our next challenge was to find appropriate parameters for the vast pa-
rameter space for our three-phase word spotter. We decided to determine
parameters one phase at a time. After extensive experimentation on the
development set, we found proper parameters for all three phases and could
perform our final evaluation. However, the lattice correctness of phase one
dropped by almost 30% compared to the N-Best lists of phase two. From
this we can conclude that other approaches to the search in phase two
should be considered, such as the word-dependent N-Best algorithm. We
were also able to show that the inclusion of a word length penalty improved
performance significantly.

Experiments comparing the performance of our system to Sphinx 3.2
were performed and showed that our system performed significantly worse.
Various possible reasons for this were mentioned, including some of the

features present in Sphinx 3.2 that were absent in our system.

Chapter 6

Conclusion

6.1 Concluding Perspective

In this thesis we studied some of the components necessary for a large-
vocabulary speech recognition (LVCSR) application. We also decided on
specific algorithms for each component and implemented them. These var-
ious implementations were then combined into a single LVCSR, system.

Firstly, we considered the acoustic modelling required for any speech
recogniser. Hidden Markov Models (HMMs) were chosen, since they have
been widely studied and applied to speech recognition. We also considered
some of the more advanced HMM segmentation techniques, such as N-Best
HMM decoding, which was shown to be very useful in LVCSR applications.

Next, we studied context dependency and the ways in which it can
be incorporated into speech recognition. We considered some of the stan-
dard context-dependent phoneme modelling techniques and opted to use the
classic decision tree approach. Context between words and the modelling
thereof was also considered and we chose to use normal n-gram models as
implemented by SRI in our implementation. Our system was developed to
have a purely modular approach and any of the components can be replaced
so that new and different approaches can be compared in future work.

We described in detail how the various components were integrated to

119

CHAPTER 6. CONCLUSION 120

form a complete, three-phase, LVCSR system. We attempted to find effec-
tive values for all the parameters in the system experimentally. Finally, we
performed the 1996 NIST Hub-4 Evaluation on our system so that it might
be compared with the performance of Sphinx 3.

Several significant new pieces of code are now included in the recognition

system at the DSP department of the University of Stellenbosch:

e Multi-Level and backward Viterbi HMM decoders

N-Best HMM decoders

Language modelling integration

Three phase combination of various components

Experimentally we found that our system did not perform as well as we
had hoped. We found our system to be 12.6% less accurate than Sphinx
3.2 on the development set and 11.9% less accurate on the evaluation set.
However, when considering these results we should remember that Sphinx
had been in development for more than 11 years when Sphinx 3.2 was
released. Many of the top scientists in the field (including Kai-Fu Lee and
Raj Reddy) were intimately involved in the development of the system.
Advanced techniques such as lexical tree search and cross-word triphones
play a part in its accurate recognition. Various major optimisations such as
limiting the maximum number of active HMMs, maximum word exits and
maximum LM histories per frame enable them to perform the search more
efficiently. These optimisations also allow them to perform a more detailed
search in the same amount of time.

When we take these differences into account along with the complex-
ity of the problem, we can justify the relatively poor performance of our
system. We did not develop this system to be an improvement on Sphinx,
but simply to be a complete and functional LVCSR system. We considered
modern speech recognisers and the necessary components for them to func-

tion. After deciding on some basic components and implementing them, we

CHAPTER 6. CONCLUSION 121

were able to combine them to produce a basic system that will be valuable
in the future study of large-vocabulary speech recognition at the University
of Stellenbosch. We were able to effectively bring the system closer to a

competitive large-vocabulary continuous speech recogniser.

6.2 Future work

Many aspects of our system should be further explored if performance more

comparable to Sphinx 3.2 is desired:

e The three phases in our implementation were chosen to illustrate the
gains from each phase. By incorporating some more intelligent algo-
rithms and optimisations, the three phases can be combined into one
phase as was done in Sphinx 3.2. This approach should be studied
further.

e The significant drop in correctness from the lattice in phase one to the
N-Best lists in phase two should be addressed. Variations of our phase
two search should be considered as it appears that this is where we
found the greatest loss in potential accuracy; the traceback-based N-
Best algorithm deficiency as described in Section 2.7.3.3 could account

for this.

¢ Finding appropriate parameters for the system and testing them is an
extremely extensive and time consuming task. We were only able to
find initial guess parameters and these are by no means guaranteed to
deliver the best results. Further experimentation with beam widths

and word insertion penalties could deliver positive improvements.

e Lexical tree search should be included in the system, since it has been
shown that they are essential for an efficient system. Ravishankar
|39] was able to improve performance by a factor of 5, while barely

increasing the lattice WER. This is accompanied by a much smaller

CHAPTER 6. CONCLUSION 122

HMM, resulting in greatly reduced memory requirements. Since the
majority of the computational load was on the first two phases, a
lexical tree model should be considered to replace our parallel word

model.

e Our simple word length penalty reduced the WER by 1.38%. Further
experimentation with our word length penalty and other more com-

plex word length penalty models should yield further improvements.

e Information can be shared to a greater extent between the three
phases of the spotter, which would yield significant performance im-
provements. For instance, the acoustic scores found in phase two are
recalculated during the rescoring in phase three. Such redundancies

should be minimised or eliminated.

Other advanced techniques can also be considered for future versions of

our recogniser and include:

e The word-dependent N-Best algorithm, which has been shown to per-
form well and deliver good results [43|. It should be considered as
an alternative to the traceback-based N-Best algorithm used in our
implementation. The N-Best algorithm we used did not distinguish
N-Best paths on their history, while the word-dependent algorithm

takes the single previous word into account.

e Adaptation techniques such as speaker adaptation [29]| and acoustic
adaptation [37]. These have been used in the past with great success

and should be considered.

Bibliography

[1]

2]

13l

4]

15]

[6]

Afify, M., Liu, F., Jiang, H., Siohan, O., “A New Verification-Based
Fast-Match for Large Vocabulary Continuous Speech Recognition,”
in IEEE Transactions on Speech and Audio Processing, July 2005,
Vol. 13, pp. 546-553.

Bahl, L. R., Brown, P. F., de Souza, P. V., Mercer, R. L., “A
tree-based statistical language model for natural language speech
recognition,” in IEEE Transactions on Acoustics, Speech, and
Signal Processing, July 1989, pp. 1001-1008.

Baker, J. K., “The DRAGON System — An Overview,” in IEEFE
Transactions on Acoustics, Speech, and Signal Processing,

February 1975, pp. 24-29.

Baker, R., “Continuous speech word recognition via centisecond
acoustic states,” in Proc. ASA Meeting (Washington, DC), April
1976. Referenced in [11].

Baum, L. E., “An Inequality and Associated Maximisation
Technique in Statistical Estimation of Probabilistic Functions of
Markov Processes,” in Inequalities 3, 1972, pp.1-8. Referenced in
[25].

Breiman, L., et al., Classification and Regression 'Trees. Pacific
Grove, CA: Wadsworth, 1984. Referenced in [17].

123

BIBLIOGRAPHY 124

17l

18]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Brown, P. F., Cocke, J., Della Pietra, S. A., Della Pietra, V. J.,
Jelinek, F., Lafferty, J., D., Mercer, R., L., Roossin, P., S., “A

9

statistical approach to machine translation,” in Computational

Linguistics, June 1990, Vol. 16, pp. 79-85.

Chow, Y. L., Dunham, M. O., Kimball, O. A., Krasner, M. A.,
Kubala, G. F., Makhoul, J., Roucos, S., Schwartz, R. M.,
“BYBLOS: The BBN Continuous Speech Recognition System,” in
IEEE International Conference on Acoustics, Speech, and Signal
Processing, April 1987, pp. 89-92.

Cilliers, F. D., Tree-based Gaussian Mixture Models for Speaker
Verification. MScEng Thesis, University of Stellenbosch, 2005.

Deshmukh, N., Ganapathiraju, A., Hamaker, J., Picone, J.,
Ordowski, M., “A public domain speech-to-text system,” in
Proceedings of the 6th European Conference on Speech
Communication and Technology, September 1999, Vol. 5, pp.
2127-2130.

Engelbrecht, H. A., Automatic Phoneme Recognition of South
African English. MScEng Thesis, University of Stellenbosch, 2003.

Engelbrecht, H. A., Efficient Decoding of Higher-order Hidden
Markov Models. Phd Thesis, University of Stellenbosch, 2007.

Good, 1., “The population frequencies of species and the estimation
of population parameters,” in Biometrika, 1953, Vol. 40, pp.
237-264. Referenced in [40].

Hermansky, H., “Perceptual linear predictive (PLP) analysis of
speech,” in The Journal of the Acoustical Society of America, 1990,
Vol. 87, no. 4, pp. 1738-1752. Referenced in [50].

Hogg, R., McKean, J., Craig, A., Introduction to Mathematical
Statistics. Upper Saddle River, NJ: Pearson Prentice-Hall, 2005.

BIBLIOGRAPHY 125

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

Huang, X., Alleva, F., Hon, H., Hwang, M., Rosenfeld, R., “The
Sphinx-IT Speech Recognition System: An Overview,” in
Computer, Speech and Language, 1993, Vol. 2, pp. 137-148.

Huang, X., Acero, A., Hon, H., Spoken Language Processing. New
Jersey: Prentice-Hall, 2001.

Hunt, A. J., Black, A. L., “Unit selection in a concatenative speech
synthesis system using a large speech database,” in Proceedings of
the IEEE International Conference on Acoustics, Speech, and
Signal Processing, Atlanta, GA, USA, 1996, Vol. 1, pp. 373-376.

Itakura, F., “Minimum Prediction Residual Principle Applied to
Speech Recognition,” in IEEE Transactions on Acoustics, Speech,

and Signal Processing, February 1975, pp. 67-72.

Jelinek, F., “A Real-Time, Isolated-Word, Speech Recognition
System for Dictation Transcription,” in IEEE International
Conference on Acoustics, Speech, and Signal Processing, March
1985.

Katz, S., “Estimation of probabilities from sparse data for the
language model component of a speech recogniser.” in IEEE
Transactions on Acoustics, Speech, and Signal Processing, March
1987, Vol. 35, pp. 400-401. Referenced in [40)].

Kay, S. M., Fundamentals of Statistical Signal Processing:
Estimation Theory. New Jersey: Prentice-Hall, 1993.

Kingsbury, P., et al., CALLHOME American English Lexicon
(PRONLEX), Linguistic Data Consortium, Philadelphia, 1997.

Lamere, P., Kwok, P., Gouvéa, E. B., Bhiksha, R., Singh, R.,
Walker, W.; Wolf, P., “The CMU Sphinx-4 Speech Recognition
System,” in IEEE International Conference on Acoustics, Speech,

and Signal Processing, April 2003.

BIBLIOGRAPHY 126

[25] Lee, K., Automatic Speech Recognition. Kluwer Academic
Publishers, 1989.

[26] Lesser, V. R., Fennell, R. D., Erman, L. D., Reddy, R. D., “The
Hearsay II Speech Understanding System,” in IEEE Transactions

on Acoustics, Speech, and Signal Processing, February 1975, pp.
11-24.

[27] Liu, X., Zhao, Y., Xiaobo, Pi., Liang, L., Nefian, A. V.,
“Audio-Visual continuous speech recognition using a coupled
hidden Markov model,” in IEEE International Conference on

Acoustics, Speech, and Signal Processing, 2002, Section 2.3.8.

[28] Marcus, M., Santorini, B., Marcinkiewicz, M., “Building a large
annotated corpus of English: the Penn Treeback,” Computational

Linguistics, 1993.

[29] Matsui, T., Furui, S., “N-best-based instantaneous speaker
adaptation method for speech recognition,” International
Conference on Spoken Language Processing, 1996, Vol. 2, pp.
973-976.

[30] Mohri, M., “Finite-state transducers in language and speech
processing,” Computational Linguistics, 1997, Vol. 23, no. 2, pp.
269-311.

[31] Odell, J. J., The Use of Context in Large Vocabulary Speech
Recognition. PhD thesis, University of Cambridge, 1995.

|32] Odell, J. J., The Use of Decision Trees With Context Sensitive
Phoneme Modelling. MPhil Thesis, University of Cambridge, 1992.
Referenced in [31].

[33] Odell, J. J., Ollason, D., Woodland, P., Young, S., Jansen, J., The
HTK Book for HTK V2.0.. Cambridge University Press,
Cambridge, 1995.

BIBLIOGRAPHY 127

[34]

[35]

[36]

[37]

38|

[39]

|40]

[41]

[42]

Odell, J. J., Woodland, P. C., Young, S. J., “Tree-Based State
Clustering for Large Vocabulary Speech Recognition,” International
Symposium on Speech Image Processing and Neural Networks,
1994, pp. 690-693.

Parihar, N., Picone, J., “DSR Front End LVCSR Evaluation,”
AU/384/02, Aurora Working Group, Dec. 2002.

Peebles, P. Z., Probability, Random Variables and Random Signal
Principles. McGraw-Hill, 2001.

Placeway, P., Chen, S., Eskenazi, M., Jain, U., Parikh, V., Raj, B.,
Ravishankar, M., Rosenfeld, R., Seymore, K., Siegler, M., Stern,
R., Thayer, E., “The 1996 HUB-4 Sphinx-3 system,” in Proceedings
of the DARPA Speech Recognition Workshop, February 1997.

Rabiner, L. R., Wilpon, J. G., Soong, F. K., “High Performance
Connected Digit Recognition Using Hidden Markov Models,” in
IEEE International Conference on Acoustics, Speech, and Signal

Processing, April 1988.

Ravishankar, M., K., Efficient Algorithms for Speech Recognition.
PhD thesis, Carnegie Mellon University, May 1996.

Rosenfeld, R., “Two decades of statistical language modelling:
Where do we go from here?,” in Proceedings of the IEEE, 2000,
Vol. 88.

Rosenfeld, R., Adaptive Statistical Language Modelling: A
Maximum Entropy Approach. PhD thesis, Carnegie Mellon
University, April 1994.

Schwartz, R., Chow, Y. L., “The N-Best Algorithm: an Efficient
and Exact Procedure for Finding the N Most Likely Sentence
Hypotheses,” in Proceedings of the IEEE International Conference

BIBLIOGRAPHY 128

[43]

[44]

[45]

[46]

|47]

48]

|49]

on Acoustics, Speech, and Signal Processing, Albuquerque, New

Mexico, 1990, pp. 81-84.

Schwartz, R., Austin, S., “A Comparison of Several Approximate
Algorithms for Finding Multiple (N-BEST) Sentence Hypotheses,”
in Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, Toronto, Canada, 1991, pp.
701-704.

Shinoda, K., Watanabe, T., “DL-based context-dependent
sub-word modelling for speech recognition,” in J. Acoust. Soc.
Jpn.(E), 2000, Vol. 21, No. 2, pp.79-86. Referenced in [54].

Singh, R., Warmuth, M., Raj, B., Lamere, P., “Classification with
free energy at raised temperatures,” in Proceedings of the 8th
European Conference on Speech Communication and Technology ,
Geneve, Switzerland, September 2003, pp. 1773-1776. Referenced in
[50]

Steinbiss, V., “Sentence-Hypotheses Generation in Continuous
Speech Recognition,” in Proceedings of Eurospeech, Paris, 1989,
pp.51-54. Referenced in [17].

Stolcke, A., “SRILM — An Extensible Language Modelling Toolkit,”
in Proceedings of the International Conference on Spoken

Language Processing, Denver, 2002, Vol. 2, pp. 901-904.

Tran, B., Seide, F., Steinbiss, V., “A word graph based n-best
search in continuous speech recognition,” in International

conference on spoken language processing, 1996, pp. 2127-2130.

Viterbi, A. J., “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm, ” in IEEE
Transactions on Information Theory, April 1967, Vol. 13, pp.
260-269.

BIBLIOGRAPHY 129

[50]

[51]

[52]

[53]

[54]

Walker, W., Lamere, P., Kwok, P., Bhiksha, R., Singh, R., Gouvea,
E., Wolf, P., Woelfel, J., “Sphinx-4: A Flexible Open Source
Framework for Speech Recognition”, Technical Report SMLI
TR2004-0811, Sun Microsystems Inc., 2004.

Wilpon, J. G., Rabiner, L. R., Bergh, A., “Speaker-Independent
Isolated Word Recognition Using a 129-Word Airline Vocabulary,”
in The Journal of the Acoustical Society of America, August 1982,
pp- 390-396.

Woodland, P. C., Povey, D., “Large scale discriminative training of
hidden Markov models for speech recognition,” in Computer,
Speech and Language, 2002, Vol. 16, pp. 25-47.

Woodland, P. C., Odell, J. J., Valtchev, V., Young, S. J., “Large
Vocabulary Continuous Speech Recognition Using HTK,” in IEEE
International Conference on Acoustics, Speech, and Signal

Processing, April 1994.

Zen, H., Tokuda, K., Kitamura, T., “Decision tree-based
simultaneous clustering of phonetic contexts, dimensions, and state

positions for acoustic modelling,” in Eurospeech 2003,
pp-3189-3192.

Appendix A

(General Speech Recognition and

Evaluation Techniques

A.1 Linear Discriminant Analysis

In order to calculate the best feature set for our evaluations we need to
transform them into a new space in which the important classes can be
more easily distinguished. A systematic approach is to use within-class
and between-class scatter matrices to formulate the criterion for class

separability. This approach is called Linear Discriminant Analysis. The

within-class scatter matrix is calculated as:

Sw =Y Plw)B{(x — mi)(x —) |wi} = > Plw)%s (A.1.1)

XEw; XEw;
where the sum is for all the data x within the class w;. This represents the
scatter of samples around the mean for each class. The between-class
scatter matrix is the scatter of samples around the mixture mean and is

calculated as:

Sp= > P(w)(; — mg)(p; — my)* (A.1.2)

Hi€w;

130

APPENDIX A. GENERAL SPEECH RECOGNITION AND EVALUATION
TECHNIQUES 131

where

m = E{x} =) m, (A.1.3)

which is the expected mean vector of the mixture distribution. To derive
the linear transformation matrix A we can use the eigenvectors of S}, Sp.
We can now easily reduce the dimension of the original input feature by

discarding the least significant eigenvalues.

A.2 Mel-frequency cepstral coefficients

The Mel-frequency cepstral coefficients (MFCC) is a popular
representation of a windowed short-time signal. It is based on the FFT of
the signal. This representation incorporates the behaviour of the auditory
system by using a non-linear frequency scale to filter the signal. The
short-time Fourier spectrum for the discrete-time speech signal s(n) is
calculated by using the short-time DFT [17|. The short-time DFT of a

windowed speech signal is defined as

—j2mnk

Xu[k] = znel =")™ for k=0,1,..., N — 1. (A.2.1)

Next we need a filter bank with M filters, where each filter m is a

triangular filter given by:

0 if k< flm —1]
2(h—Flm—1)) - B
Ho(t] = { TP DG if flm —1] <k < fm] (A.2.2)
Ty i flm] <k < fim+1]
0 it k> flm+ 1]

These filters find the average spectrum around the various center
frequencies with increasing bandwidths and they are displayed in Fig A.1.
Now we define f; and fj, to be the lowest and highest frequencies in the

filter bank in Hz, F; the sampling frequency in Hz, M the number of

APPENDIX A. GENERAL SPEECH RECOGNITION AND EVALUATION
TECHNIQUES 132

Figure A.1: Triangular filters used in MFCC.

filters and N the size of the FFT. The boundary points f[m] are

uniformly spaced in the mel-scale:

fim] = (%)Bl(B(ﬁ) + mB(%;?ﬁ)) (A.2.3)

where the mel-scale B is given by:

f
B(f) =11251og(1 + =— A2.4
(f) = 125 log(1 + =) (4.2,
and its inverse is given by:
B~ (b) = 700(e% — 1) (A.2.5)

The log-energy of the output of each filter is then computed as

S[m] = log [Z |, k]2 Hon K] (A.2.6)

Finally, the mel-frequency cepstrum is the discrete cosine transform of the
output from the M filters:

APPENDIX A. GENERAL SPEECH RECOGNITION AND EVALUATION
TECHNIQUES 133

cn] = MZ__IS[m] cos (%_%» (A.2.7)

For speech recognition applications the first 13 cepstrum coefficients are

typically used.

A.3 Perplexity

For us to be able to compare different language models we need to define
some kind of measure. The purpose of a language model is to reduce
uncertainty during recognition. The search space reduces as the grammar
becomes more restricting. This is good for processing requirements, but
has a negative effect on the variety of sentences that can be recognised. In
other words, we do not want to restrict the search to an unnecessary
extent or the recogniser will be unable to recognise valid sentences. In
contrast, we might put extreme computational strain on the recogniser if
the grammar is too general. In the extreme case where there is no
grammar the recogniser must evaluate the possibility of each word at each
decision point. A typical grammar will not make invalid sentences
impossible, but merely improbable.

Such a language model can be constructed by studying the problem you
are trying to solve. For example, if we are trying to recognise spoken
numbers we will know that numbers in speech are constructed using a
simple grammar. By using a grammar we can give the recogniser
additional information on the way in which logical sentences are put
together. In effect we are limiting the search space to results that are
logical. This will have the negative effect of making it more difficult for
the recogniser to correctly identify sentences that were actually
pronounced incorrectly. However, it will make the results more accurate in
general and much easier to obtain.

The measure of constraint at a decision point (j) can be measured by

entropy (H), which is a measure typically used in information theory.

APPENDIX A. GENERAL SPEECH RECOGNITION AND EVALUATION
TECHNIQUES 134

Entropy can also be seen as the number of bits necessary to specify the
next word using an optimal encoding scheme:

)
HWj) = = 3 Plwlj) - logal P(w]j)] (A3.1)

w=1

Now we can define perplexity at decision point j as:
Q(wlj) = 2wl (A.3.2)

In most practical cases you will have a finite state grammar with many

states, or decision points, and entropy is computed as:
H(L) =Y w(j) HWIj) (A.3.3)
J

where 7(7) is the steady-state probability of being in state j. From this

we can calculate the per-word perplexity of this language model as:

Q(L) = 2H(L) (A.3.4)

A.4 A density for the estimated average

power of Gaussian noise

We model a silence signal (with a certain background noise-level) as a
sequence of statistically independent Gaussian random variables X; with
i=1...N, each with mean ax = 0 and variance o2

First we will derive a density function for the estimated average power P

of X. From this we can determine the mean and variance of P. Let

N
1
P=—) X? A.4.1
¥ (A1)

be the estimated power. Since the X,’s are random variables, so is P. We
want to find the density fp(p).

First consider the transformation Y = X?2. Then % =2r and v = +,/y.

APPENDIX A. GENERAL SPEECH RECOGNITION AND EVALUATION
TECHNIQUES 135

Using basic theory on the transformation of random variables [36] we find

that

fY(y) _ fXd_?(Jx)|m:—\/§+ fX()|m y
dx dz
_ Ix(=)| it fx(z)|
= 2\/_ T=—\/y \/— =1y
_ 1 1/2—1 2aX u(y>

Therefore Y is Gamma distributed with parameters b = 3 and a = #
X

Its characteristic function is given by:

1

202, 1
Py (w) = ()2
3T T IW
Now consider:
N
7 = ZYi with Y; TID.
=1

The characteristic function of Z is now given by:

Cz(w) = [Py(w)]"

Therefore 7 is also Gamma distributed, but now with parameters b = %
1

207

The corresponding density function of Z is given by:

and a =

N (201X)N/2 SN/2-1, u(z)

R VO]

The estimated power is calculated as P = Z/N. Then %’ =1/N and
z = Np.

APPENDIX A. GENERAL SPEECH RECOGNITION AND EVALUATION
TECHNIQUES 136

—Np

(32)N/Z(NP)N/2 Le2% u(p)

20

%Wﬂpm-le@u(p)
B L(N/2)

Therefore, finally, we can conclude that P is also Gamma distributed, but

now with parameters

N
b= — (A.4.2)
2
and
N
20%
From the properties of a Gamma density this also implies that
P=bla=o% (A.4.4)
and
op =b/a* =20%/N. (A.4.5)

A.5 The mean and variance of an estimate of
the variance of the estimated mean

power

We now estimate the variance () of the above estimate of the average

power P. This is given by

1 K
Z P, — (A5.1)
k:l

APPENDIX A. GENERAL SPEECH RECOGNITION AND EVALUATION
TECHNIQUES 137

with each P an independent power estimate such as given by

Equation A.4.1. From the results of the previous section we know P, to be
Gamma distributed, and in general we can assume its parameters to be a

and b. Its mean is given by P = b/a (Equation A.4.4) and its variance by

0% = b/a* (Equation A.4.5).

The density of () is somewhat involved, therefore we will rather focus on

directly finding its mean @ and variance Uc2,2- First consider:

Y:fj&—ﬁ? (A.5.2)

Since the Py terms are statistically independent we can easily find the

mean Y:

EY] =) E[(P—P)
= Ko?
= Kb/a®. (A.5.3)

The variance of Y can be determined via its moments around the origin:

0% = E[Y?-Y°

= E[Y? — (Kb/a*)% (A.5.4)
An expression for E[Y?] is needed:

E[Y? = E}j PPY (P

=1

s
Il

—
<.

APPENDIX A. GENERAL SPEECH RECOGNITION AND EVALUATION
TECHNIQUES 138

Taking into account that F; is independent of P; with 7 # j it now follows
that:

K K K

E[Y?] =) E[(P,~P)"|+) ElR—P)) FBlF~P)]
i=1 i=1 j=1,j#i
= K,u4+2b/a2 Z b/a?
i=1 j=1,j#i

= Kus+ (K?* — K)(b/a*)?

with 14 = E[(P — P)* the 4’th central moment of P. Substitute this back
into Equation A.5.4 to find

oy = Kps+ (K*— K)(b/a*)? — K*(b/a?)?
= Klug — (b/a*)?). (A.5.5)

Using the binomial expression for the power of a sum the required central

moment can be determined as:

w = E[(P-P)"

_» (i) Pr(—P)*]
= E[(-P)"'+4P(-P)’ +6P*(—P)* + 4P*(—P) + P"]
= my — 4mzP + 6my(P)* — 3P (A.5.6)

with m,, the n’th moment of P around the origin and m; = P. We
therefore still need to find expressions for the 2nd up to 4th moments of P
around the origin. This can be done via the characteristic function of P.

In general:

d”@p(w)

.= E[P"] =
(L

’w=0

Therefore:

APPENDIX A. GENERAL SPEECH RECOGNITION AND EVALUATION

TECHNIQUES 139
) = (=) = jw/a)”
D)~ 21— jojay
PO PN
d?’fgjgw) _ b+ ;3)(1) +2) (1= juoja)>-3
d4(£j£w) _ j4b(b+1)(24+ 2)(b+3)(1_jw/a),b,4_

After simplification we therefore find the required moments around the

origin:

bb+1) b +b

a? a?
bb+1)(b+2) b+ 3b>+2b
m3 = a3 = a3
b+ 1)(b+2)(b+3) b+ 60>+ 110* + 6
my = a4 = CL4 .

Substitute this into Equation A.5.6 and simplify to find that

3b% + 6b
Ha = 1
a

Substitute this into Equation A.5.5 and simplify:

2b* + 6b

1 .

oy =K (A.5.7)

a
We now know Y and o2 via Equations A.5.3 and A.5.7, and from

Equations A.4.2 and A.4.3 we know the appropriate values of b and a.
From Equations A.5.1 and A.5.2 it follows that @) = Y/K. After further
simplification (standard expectation manipulations) we finally get that:

Q=—=bla*=—= (A.5.8)

==l

and

APPENDIX A. GENERAL SPEECH RECOGNITION AND EVALUATION
TECHNIQUES 140

oy 20 +6b 8(N +6)o%

2—_
QT KT T K KN3

(A.5.9)

Appendix B

Phoneme set

’ No. ‘ Name ‘ Example ‘
1 Q (a)brupt
2 Qr abs(ur)d
3 Qu alth(ough)
4 D ano(th)er
5 E acad(e)mic
6 I accept(e)d
7 N bri(ng)

8 O: acc(o)rd
9 Oi ann(oy)
10 Q an(o)maly
11 S applica(t)ion
12 T ari(th)metic
13 Z a(s)ia
14 a bankr(u)pt
15 ai basel(i)ne
16 au black (ou)t
17 b (b)lame
18 d blackwoo(d)
19 dZ bonda(ge)
20 ei br(a)ces

Table B.1: Phoneme set used in our implementation (part 1).

141

APPENDIX B. PHONEME SET

’ No. ‘ Name ‘ Example ‘

21 f break(f)ast
22 | g bu(g)
23 h a(h)ead
24 i: abilit(ie)s
25 j a(bu)se
26 k a(cc)use
27 1 active(l)y
28 m ada(m)
29 n abdome(n)
30 | other (noise)
31 p abru(p)t
32 r abso(r)b
33 S ab(s)tract
34 sil (silence)
35 t accen(t)
36 tS a(ch)ieve
37 u amb(u)sh
38 u: am(u)sed
39 v an(v)il
40 w any (w)ay
41 z apologie(s)
42 { (a)pathy

Table B.2: Phoneme set used in our implementation (part 2).

142

Appendix C

Question set

High Vowel [Qi: uu
Medium Vowel {a@E Qr ei Qu
Low Vowel Q { a O: au ai Oi

Rounded Vowel

O:QuOiuu w

Unrounded Vowel

Q{aau@aiEQreihT@i:lrj

Reduced Vowel @@
1 Vowel IQi:
E Vowel E ei
A Vowel Q { au ai @r
O Vowel O: @u O1
U Vowel a@uu

Unvoiced Consonant

tSfhkpsStT

Voiced Consonant

bdDgdZImnNrvwj

Front Consonant bfmpvw
Central Consonant dDdInrstTzZ
Back Consonant tSghdZkNSj

Fortis Consonant tSfkpsStT

Lenis Consonant

bdDgdZvzZ

Neither F or L

hlmnNrwj

Coronal Consonant

tSdDdZ1lnrsStTzZ

Non Coronal

bfghkmNpvw]j

Anterior Consonant

bdDflmnpstTvwz

Table C.1: Question set used in construction of decision tree (part 1).

143

APPENDIX C. QUESTION SET

Non Anterior

tSghdZkNrSjZ

Continuant

DfhlmnNrsSTvwjzZ

No Continuant

btSdgdZkpt

Positive Strident tSdZs Sz Z
Negative Strident DfhTv
Neutral Strident bdgklmnNprtwj
Syllabic Consonant @r
Voiced Stop bdg
Unvoiced Stop ptk
Front Stop bp
Central Stop dt
Back Stop gk
Voiced Fricative tSDvzZ
Unvoiced Fricative tSfsST
Front Fricative fv
Central Fricative DsTz
Back Fricative tSdZ S Z
Affricate Consonant tS dZ
Not Affricate DfsSTvzZ
Silence sil

Table C.2: Question set used in construction of decision tree (part 2).

144

