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ABSTRACT

Remote sensing and image processing tools provide speedy and up-to-date information on land

resources. Although remote sensing is the most effective means of land cover and land use mapping, it

is not without limitations. The accuracy of image analysis depends on a number of factors, of which the

image classifier used is probably the most significant. It is noted that there is no perfect classifier, but

some robust classifiers achieve higher accuracy results than others. For certain land cover/uses,

discrimination based only on spectral properties is extremely difficult and often produces poor results.

The use of ancillary data can improve the classification process. Some classifiers incorporate ancillary

data before or after the classification process, which limits the full utilization of the information

contained in the ancillary data. Expert classification, on the other hand, makes better use of ancillary

data by incorporating data directly into the classification process.

In this study an expert classification model was developed based on spatial operations designed to

identify a specific land cover/use, by integrating both spectral and available ancillary data. Ancillary

data were derived either from the spectral channels or from other spatial data sources such as DEM

(Digital Elevation Model) and topographical maps. The model was developed in ERDAS Imagine

image-processing software, using the expert engineer as a final integrator of the different constituent

spatial operations. An attempt was made to identify the Level I land cover classes in the South African

National Land Cover classification scheme hierarchy. Rules were determined on the basis of expert

knowledge or statistical calculations of mean and variance on training samples. Although rules could

be determined by using statistical applications, such as the classification analysis regression tree

(CART), the absence of adequate and accurate training data for all land cover classes and the fact that

all land cover classes do not require the same predictor variables makes this option less desirable. The

result of the accuracy assessment showed that the overall classification accuracy was 84.3% and kappa

statistics 0.829. Although this level of accuracy might be suitable for most applications, the model is

flexible enough to be improved further.
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OPSOMMING

Afstandswaameming-en beeldverwerkingstegnieke kan akkurate informasie oorbodemhulpbronne

weergee. Alhoewel afstandswaameming die mees effektiewe manier van grondbedekking en

grondgebruikkartering is, is dit nie sonder beperkinge nie. Die akkuraatheid van beeldverwerking is

afhanklik van verskeie faktore, waarvan die beeld klassifiseerder wat gebruik word, waarskynlik die

belangrikste faktor is. Dit is welbekend dat daar geen perfekte klassifiseerder is nie, alhoewel sekere

kragtige klassifiseerders hoër akkuraatheid as ander behaal. Vir sekere grondbedekking en -gebruike is

uitkenning gebaseer op spektrale eienskappe uiters moeilik en dikwels word swak resultate behaal. Die

gebruik van aanvullende data, kan die klassifikasieproses verbeter. Sommige klassifiseerders

inkorporeer aanvullende data voor of na die klassifikasieproses, wat die volle aanwending van die

informasie in die aanvullende data beperk. Deskundige klassifikasie, aan die ander kant, maak beter

gebruik van aanvullende data deurdat dit data direk in die klassifikasieproses inkorporeer.

Tydens hierdie studie is 'n deskundige klassifikasiemodel ontwikkel gebaseer op ruimtelike

verwerkings, wat ontwerp is om spesifieke grondbedekking en -gebruike te identifiseer. Laasgenoemde

is behaal deur beide spektrale en beskikbare aanvullende data te integreer. Aanvullende data is afgelei

van, óf spektrale eienskappe, óf ander ruimtelike bronne soos 'n DEM (Digitale Elevasie Model) en

topografiese kaarte. Die model is ontwikkel in ERDAS Imagine beeldverwerking sagteware, waar die

'expert engineer' as finale integreerder van die verskillende samestellende ruimtelike verwerkings

gebruik is. 'n Poging is aangewend om die Klas I grondbedekkingklasse, in die Suid-Afrikaanse

Nasionale Grondbedekking klassifikasiesisteem te identifiseer. Reëls is vasgestel aan die hand van

deskundige begrippe of eenvoudige statistiese berekeninge van die gemiddelde en variansie van

opleidingsdata. Alhoewel reëls met behulp van statistiese toepassings, soos die 'classification analysis

regression tree (CART)' vasgestel kon word, maak die afwesigheid van genoegsame en akkurate

opleidingsdata vir al die grondbedekkingsklasse hierdie opsie minder aantreklik. Bykomend tot

laasgenoemde, vereis alle grondbedekkingsklasse nie dieselfde voorspellingsveranderlikes nie. Die

resultaat van hierdie akkuraatheidsskatting toon dat die algehele klassifikasie-akkuraatheid 84.3% was

en die kappa statistieke 0.829. Alhoewel hierdie vlak van akkuraatheid vir die meeste toepassings

geskik is, is die model aanpasbaar genoeg om verder te verbeter.
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CHAPTER ONE: LAND COVER RESOURCES INFORMATION FOR
DECISION MAKING

The continual production of relevant and up-to-date spatial information on the distribution of land

cover resources is a first step in dealing with important environmental issues. This information

provides a better understanding of resource utilization problems and forms the basis for the

identification of suitable strategies for sustainable development (Moller-Jensen 1998). However, the

flexibility and speed with which such data are produced are crucial. In this context remote sensing and

digital image processing are highly suitable tools for many problems that are associated with the spatial

distribution of phenomena on the earth's surface (Mulders & Jordens 1993; Moller-Jensen 1998;

Burrough 1993). The spatial and temporal distribution of land cover constitutes a fundamental dataset

for a wide variety of studies in the physical and social sciences, as well as government agencies for

land planning purposes (Stefanov, Ramsey & Christensen 2001). As a result, remote-sensing

techniques have been the single most effective method for land cover and land use data acquisition

(Thompson 1996). Remote sensing is required for continuous monitoring, change detection and map

updating of land cover and land use data (Moller-Jensen 1998).

1.1 LAND COVER VERSUS LAND USE

In recent years the term 'land cover' has come to be commonly used in association with the term 'land

use'. The two are not synonymous and bear different meanings, though some overlap is evident. Land

use is an abstract concept, covering an amalgam of economic, social and cultural factors, and includes

everything the land of a country or an area is used for by its residents. Thus it is defined in terms of

function rather than physical property (Barr & Bamsley 2000; Tapiador & Casanova 2003). Land cover

refers more to cover of the land surface, which includes mainly vegetation and artificial constructions

(Lindgren 1985). Land use information must be inferred from land cover information and the

associated patterns (Jansen & Gregorio 2003).

Land cover classification from high-resolution imagery, using existing pixel-based multi-spectral

classification algorithms, is comparatively easier than land use classification. This is due to the abstract

nature of land use, which implies that the relationship between land use and the multi-spectral signals

detected by a satellite sensor is complex and indirect (Bamsley & Barr 1996 in Barr & Bamsley 2000).
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1.2 LAND COVER DATABASES

Land cover classification from remotely sensed data is often used for purposes of mapping and

inventorying of natural resources over relatively large areas, and such general land cover information is

required for many environmental, land management and modeling applications (Langley, Cheshire &

Humes 2001; Vogelmann et al. 2001). Data can be derived at a range of spatial scales and the scale at

which information is extracted determines the appropriate usage of data. For example, data derived

from the Advanced Very High Resolution Radiometer (AVHRR) may be well suited for global

analysis, but of limited value for regional and local investigations (Vogelmann et al. 2001). The

dynamic perspective over a range of spatial scales has been the real strength of remotely sensed data

(Boyd, Foody & Ripple 2002).

Land cover classification processes have been focusing on a generation of specialized data products

suitable only for specific needs of projects. The effect of such narrowly focused applications has been

remote sensing datasets and methods with limited value for other uses and that are difficult to compare

(spatially and temporally) with one another. This may have been partly due to technological limitations

and funding (Collin, Huang, Yang & Wylie 2002). Historically, this has been the case in South Africa

(Thompson 1996). The Council for Scientific and Industrial Research (CSIR) and the Agricultural

Research Council (ARC) initiated the National Land Cover project (NLC) to provide land cover

products that are suitable for GIS-based mapping and modeling applications at suitable scales. The

NLC project is the first standardized land cover database that provides baseline information on national

land cover, including Swaziland and Lesotho.

The 1994 NLC database was mapped from a series of precision-corrected satellite images at a scale of

1:250000. The product indicates the dominant land cover within a 1-2 hectare unit and can be used for

a wide variety of purposes. However, reliability and consistency have been the biggest obstacles in the

1994 NLC project as qualitative methods were used. Images were interpreted by different interpreters

rather than being classified quantitatively (CGA 2003). The product is available to the public domain

and can be purchased from the CSIR.

The Land Cover Classification Scheme for South African Remote Sensing Applications was

standardized using known land-cover classes identifiable on high-resolution satellite imagery.
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The 31 broad-level thematic land cover classes can be adapted to suite individual user requirements

(CSIR 2003). The current NLC project is the NLC 2000, which is being contracted out to remote

sensing contractors. The NLC 2000 is suitable for mapping and modeling at a scale of 1:50000. The

supervising institutes specify instructions and frameworks that the contractors should comply with. The

decision as to what classification methodology to use lies with the contractors. Some contractors have

made use of advanced object-orientated classifiers but, as far as the author is aware, no contractor is

employing a per-pixel rule-based classification method.

Several methods and algorithms have been developed to maximize the extraction of information from

digital satellite imagery. These include statistical (e.g. maximum likelihood), contextual, textural, fuzzy

sets and artificial neural networks (Stuckens, Coppin & Bauer 2000). Although it has been proven that

no image classifier is perfect (Matsuyama in Liu, Skidmore & Oosten 2002), classification accuracy

can be improved by using more rigorous classifiers. Pixel-based spectral classification approaches have

been shown to be limited in nature and are only effective in cases where land cover classes are

spectrally well differentiated (Lira & Maletti 2002; Oetter et al. 2000). Many approaches utilize

ancillary non-image spatial data as a pre-classification procedure or as part of post-classification

manipulations to increase classification accuracy. Failure to incorporate ancillary data during the actual

classification process might, however, result in the under-exploitation of the full range of information

available (Lawrence & Wright 2001).

In recently developed approaches, such as expert systems and neural networks, ancillary data can be

incorporated directly into the classification algorithms that are usually not dependent on a priori

weights (Bolstad & Lillesand 1992; Lawrence & Wright 2001). Expert models may use various

decision criteria and operations to identify distinct land cover classes. A set of defined spatial data

operators, which may be called image classification primitives, is used to build expert classifier

models. Expert systems support both evidential and hierarchical inferences, and this combination is

desirable both for increased classification accuracy and enhanced run-time efficiency (Bolstad &

Lillesand 1992). There is no complete classification expert system that can start from the raw data and

produce complete and correct classifications, although some ongoing research is developing prototypes

that show the viability of such an approach. Expert systems have been applied to solve classification



1. Acquire Landsat ETM+ images as well as training and ancillary data.

2. Correct images geometrically and radiometrically.

3. Prepare ancillary data.

4. Identify and calculate basic models that constitute the lowest level of the classifier.

5. Determine the rules and procedures to be implemented in compound models.

6. Develop the compound models that identify the land cover classes.

7. Implement the classifier model into the ERDAS Imagine knowledge engineer.

8. Assess accuracy of the model.

9. Report findings.
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problems by guiding classification of features by a set of decision rules (Tsatsoulis 1993; Bolstad &

Lillesand 1992).

1.4 RESEARCH AIMS AND OBJECTIVES

The aim of this study is to develop an expert classifier based on available ancillary data that will

provide an increased classification accuracy of Landsat ETM+ images for the extraction of land cover

classes of the study area. The developed classifier model is assessed in terms of its suitability for the

National Land Cover (NLC) project and the wider remote sensing community. The model will be

implemented in the widely used remote sensing software ERDAS Imagine (ERDAS 2001). To achieve

these aims, the following objectives were set:

1.5 STUDY AREA

The study site is located in KwaZulu-Natal and partly in the Eastern Cape, South Africa. Itwas chosen

for the diversity of the land cover that occurs in the area and because near cloud-free Landsat 7 ETM+

images were already available. The study site is on the eastern side of South Africa bordered by the

warm Indian Ocean to the east and the high escarpment of the Drakensberg Mountains to the west. The

climate is generally warm subtropical. Summers are usually hot and humid with temperature averaging

28 degrees, and majority of the annual rainfall rains in summer. Whereas winters are generally warm,

dry and clear with average temperatures of 23 degrees. There is however occasional frost in the interior

and snow often falls in the higher altitudes in winter (Tourism KwaZulu-Natal 2004). The average

annual rainfall of the area ranges from 570 to 1150 mm.
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In terms of vegetation it is home to some of the most diverse forests in the country. A range of

agricultural activities takes place in the area, which includes commercial tree plantations; non-timber

cultivation such as sisal, sugar cane and orchards; and other agricultural activities (Mucina et al. 2003).

The study area includes two major South African cities, namely, Durban and Pietermaritzburg, and

other small urban areas, formal and informal townships and rural villages. Numerous light and heavy

industries and mining activities are also found in the area.

Northern Cape

Durban

Kilometres
500

Figure 1.1Location of study area in South Africa

1.6 REMOTEL Y SENSED IMAGERY AND PRE-PROCESSING

The Landsat ETM+ satellite images needed for this study were acquired from the Centre for

Geographical Analysis, Department of Geography and Environmental Studies, University of

Stellenbosch. The dates of the ETM+ images are 7 February and 17 July 2001. The images were

orthorectified in ERDAS Imagine (ERDAS 2001) using the standard Landsat 7 ETM+

orthorectification module. A DEM of 30m, supplied by the CSIR (Environmentek), was used in the

process. The DEM was generated from 20m (vertical) interval contour data. lnput ground control
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points (GCPs) were collected from a fused image of +/- 15m resolution for better feature distinction.

The fused image was generated from the multi-spectral and panchromatic Landsat ETM+ bands. A

RMS error of 7.1537 meters was obtained, with no error exceeding 30m. Data were re-sampled with

the nearest neighbourhood method. The VTM south zone 36 projection was used. The small amount of

cloud cover and shadows present on the images was masked out by on-screen digitizing.

Ancillary data may be defined as data acquired by methods other than by remote sensing techniques and

are used to assist in the classification or analysis of remotely sensed data (Campbe1l2002). Topographic

maps of 1:50 000 scale were supplied by the Chief Directorate, Surveys and Mapping. The toposheets

for the study area were printed in 1984 and the maps indicated cultivated, built-up and forested areas

along with other topographic information. The cultivated, forested and built-up areas were digitized on-

screen and converted to a grid of 30m resolution. Other ancillary data that were obtained included a

30m Digital Elevation Model (DEM), as well as geological, rainfall and temperature data. Data in

shapefile format were converted to a 30m resolution grid to match the resolution of the Landsat ETM+

images. Image-derived ancillary data were also used. These included: texture measures (local, first-

order and second-order measures); NDVI; and synthetic bands, created either by means of arithmetic

operations or by transformations. Training data of the study area were acquired from the CSIR in point

shapefile format. These were converted to polygon themes based on the information supplied in the

point theme's attribute table. To do this, a procedure for ArcView 3.2 was written in the Avenue

programming language. Some manual adjustments of the polygon shapefiles based on the composite

colour images (4-5-3) were necessary in some cases.

1.8 TEXTURE MEASURES

Textures are considered to be homogeneous patterns or spatial arrangements of pixels that regional

intensity or colour alone do not adequately describe (Debeir et al. 2002). Texture analysis is often used

to introduce spatial information of object classes into the classification of satellite images. Texture

images are derived from the satellite images and they may be either classified directly or used as an

additional band together with other multi-spectral bands in a classification (Berberoglu et al. 2000; He

& Collect 1999; Wulder 2002). Texture analysis is done by calculating the grey value relationships

between the current pixel and the pixel next to it using texture measures such as mean, variance,
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contrast and correlation (see figure 1.2). The output image's grey values represent the local measure of

texture of an input image. A more effective and rigorous second-order texture measure is the grey level

co-occurrence matrix method (Haralick 1986 in Zhang 1999). In this method the co-occurrence matrix

of grey values of the input image is first calculated, which involves transforming the image's space into

a co-occurrence matrix. Grey value relationships are then calculated on the co-occurrence matrix space

(Zhang 1999). There are a range of texture measures, including homogeneity, contrast, entropy,

dissimilarity, angular second moment and inverse difference (PCI Geomatica 2003). Texture measures

are not only influenced by scale, but also by the size of the object features in the image (Ferro 1998). In

this study the texture images were calculated in ERDAS Imagine (ERDAS 2001) based on local texture

measure (variance) of the panchromatic image, while contrast and dissimilarity measures, based on a

grey level co-occurrence matrix (GLCM) of the ETM+ band 4, were done in PCI Geomatica V9.0.

Texture analysis is based on a single channel; a suitable channel that provides the best contrast among

land cover features has to be selected. In this study ETM+ band 4 was selected as the basis for texture

analysis, because this band gives better contrast among land cover classes than the other ETM+ bands.

The panchromatic band could also have been used based on grey level co-occurrence, but would have

to be degraded or re-sampled to 30m resolution as required by the PCI EASIIP ACE module, which is

not ideal. Another channel that is often used (Berberoglu et al. 2000) is the first component of the

principal component analysis (PCA) of the six ETM+ bands (bands 1-5 and 7). It was however not

used in this study.
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Figure 1.2: a) Variance, b) 4-5-3 composite image of the subset image, c) GLCM contrast and d)

GLCM dissimilarity texture measure.

Textural classifiers are often used for urban land cover classification, which is characterised by a high

heterogeneity within a pixel (Moller-Jensen 1998). The different texture measures are useful for

contextual spatial properties of the various land covers. As a result most classification processes derive

and use texture measures for improved classification accuracy. In the following chapter various

classification techniques are discussed and reviewed.



9

CHAPTER TWO: REMOTE SENSING MAPPING OF LAND COVER AND A
METHODOLOGICAL OVERVIEW

Remote sensing plays a fundamental role in land cover mapping and in long-term monitoring of

changes in land cover and land use at multiple scales. Satellite remote sensing is used predominantly

for large area land cover mapping. Diverse sensors are available with different technology and mapping

capability (ACRES 2003).

The selection of an appropriate sensor for a specific land cover mappmg and scale important

implications for the accuracy of a classification process. In addition, the algorithm used to classify the

particular satellite image is crucial.

This chapter discusses a range of topics that include remote sensors, image processing, pattern

recognition, land cover classification schemes, image classifiers and land cover change monitoring.

The main focus of this chapter is however the image classifiers and a variety of image classifiers are

discussed and reviewed.

2.1 REMOTE SENSORS USED FOR LAND COVER MAPPING

The most commonly used satellite imagery for land use/cover mapping is acquired by the U.S. Landsat

Multispectral Scanner (MSS) and Thematic Mapper (TM) (including ETM+) sensors and the French

Systeme Probatoire d'Observation de la Terra High Resolution Visible (HRV) Sensor (Smit 1993),

which operate at different resolutions and area coverage (see Table 3.1).

It should be noted that the MSS system was designed less for land use/land cover mapping purposes

than for geologic applications. The MSS has four spectral bands for which data are acquired and these

four bands tend to be redundant. Bands 4 (0.5 to 0.6 micrometer) and 5 (0.6 to 0.7 micrometer) are the

only two visible bands, and bands 6 (0.7 to 0.8 micrometer) and 7 (0.8 to 1.1micrometer) are reflective

infrared bands, providing information on vegetation and water resources, with band 7 being the

superior one for this purpose.

The thematic mapper has a smaller pixel size than the MSS; it acquires data in eight bands, of which

one was selected for geologic purposes (Lindgren 1985). The recently launched (by Space Imaging in

lINlVERS1mT~
BIBLIOTEEK
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1999) IKONOS satellite has already started producing imagery that are black and white, colour and

multi-spectral at higher resolution (~4m); with a scene size of l lx l l km (Smith 2003).

Table 2.1: Principal specifications of common satellite media.

Specification Landsat Landsat TM SPOT XS

MSS

SPOT pan IKONOS

Spatial resolution 80 30 20 10 ~4
(m)

Bands

Area cover (km)

4 7

185 x 172 185 x 185

3

60 x 60

1

60 x 60

multi

l Ixl l

Source: Adapted from Edwards & Mumby 2000:66.

The ETM+ is the newest in the Landsat remote sensing satellites series. ETM+ has an additional

panchromatic band with 15m resolution and a thermal band of an increased resolution (60m) compared

to its predecessors. This sensor also has a five percent absolute radiometric calibration (ACRES 2003).

Table 2.2: Radiometric Characteristics of the ETM+ and TM Sensors

Band Spectral EM Region Generalized Application

Number Range Details

(Microns)

1 OAS - 0.52 Visible Blue Coastal water mapping,

differentiation of

vegetation from soils

2 0.52 - 0.60 Visible Assessment of vegetation

Green vIgor

3 0.63 - 0.69 Visible Red Chlorophyll absorption for

vegetation differentiation

4 0.76 - 0.90 Near Infrared Biomass surveys and

delineation of water bodies

5 1.55 - 1.75 Middle Vegetation and soil

Infrared moisture measurements;

differentiation between

snow and cloud

6 10040 - 12.50 Thermal Thermal maQQing, soil
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Infrared moisture studies and plant

heat stress measurement

7 2.08 - 2.35 Middle Hydrothermal mapping

Infrared

8 0.52 - 0.90 Green, Large area mapping, urban

(panchromatic) Visible Red, change studies

Near Infrared

Source: (ACRES 2003)

The new generation satellites are expected to provide unprecedented levels of spatial detail and, among

other things, these data will be of particular use in urban studies, for which the relatively small size and

complex spatial pattern of the component scene elements (e.g., building, roads and intra-urban open

space) has had a limiting effect on the value of the previous generation's space-borne systems

(Barnsley & Barr 1996 in Barr & Barnsley 2000).

2.2 IMAGE PROCESSING

Digital image processing consists of the computational processes applied to the image matrices with the

aid of algorithms. The purposes of image processing are many and varied; however, they may be

classified as follows:

Image encoding: data compression or data reduction for efficient and reliable transmission

or storage.

Image enhancement: the processing of images to facilitate visual interpretations and

further digital image processing.

Image restoration: the removal or reduction of degradations (e.g., noise and distortions) that

were incurred while the image was being obtained.

Image analysis: extraction of information for measurements, pattern recognition, image

interpretation (Gerbrands 1993; Mumby & Clark 2000).

1 This table is available at the website: http://www.ga.gov.au/acres/prod_ser/landdata.htm

http://www.ga.gov.au/acres/prod_ser/landdata.htm
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Encoding, improvement or restoration finally results in a new image, and this process can be described

as image-to-image transformation. In contrast, computer-supported image analysis can be described as

image-to-data transformation (Gerbrands 1993).

2.3 PATTERN RECOGNITION AND CLASSIFICATION

As part of pattern recognition, image interpretation is the recognition and identification of terrain

objects using a digital approach. Terrain objects are characterized by their nature (thematics) and their

position, shape and size (geometry). The nature of objects is determined by the spectral signature as

represented in a remote sensing (RS) image (spectral pattern recognition); while their geometry is

determined by the pixels making up the image of the object (spatial pattern recognition) (Molenaar

1993; Richards 1986). The basic functions needed to recognize objects in images include: pre-

processing, feature selection and detection, segmentation, description, recognition and classification

(Argialas & Harlow 1990). Pattern recognition is the categorization of data into identifiable classes and

this is done by the extraction of significant features or attributes of the data (Tou & Gonzalez 1974 in

Argialas & Harlow 1990).

Image information may be described at many levels of abstraction and the descriptions associated can

range from one in terms of meaningful attributes of the scene captured in the image to one that

describes only the spatial variation of intensity. These descriptions can be represented in a model that

captures only the relevant features of the image at that level of abstraction, leaving the others

unspecified. A model is helpful in converting the information in the image to usable forms, enabling

the inference of objective properties of the objects under consideration (Argialas & Harlow 1990).

2.4 LAND COVER CLASSIFICATION SCHEME IN REMOTE SENSING

APPLICATIONS

Spatial resolution of the satellite image affects the accuracy of land cover classification, and

understanding the effect of scale on the spectral signatures of satellite data will help secure the correct

interpretation of any classification results (Raptis, Vaughan & Wright In press). This effect is due to

certain classes being spectrally heterogeneous at certain resolutions. A systematic framework for

remote sensing-based classification is needed to avoid resolution-related errors of land cover
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representation. This hierarchical classification system is based on the assumption that there is a direct

relation between the level of classification/categorization and the spatial resolution of the image data.

For example, the U.S. Geological Survey classification scheme has four levels hierarchically organized,

with each level having land cover classes that can be identified with at least 85% accuracy, from a

specific group of sensors with similar spatial resolutions (Moller-Jensen 1998). Such a classification

framework ensures that the final classification output structure and category definitions are appropriate

for the objectives of the specific mapping. A significant problem associated with using a particular

classification scheme is the lack of clear, precise and unambiguous class definitions. This lack may

result in misinterpretation and erroneous data coding as well as difficulties of comparison of different

thematic data sets based on the same classification scheme.

A similar systematic framework has been developed in South Africa, designed to suite the South

African environment. This scheme has three levels (Level I, Level II and Level III) of which the first

two levels are presented in Table 2.2. Level III categories are project specific. The standard

classification scheme of South Africa is scale independent, while the expected operating range is

between scales of 1:50 000 and 1:250 000 (Thompson 1996). The classes in the NLC 2000 field guide

are a mix of land covers and land uses, and most land uses are poorly correlated with the imagery data,

which makes it necessary to use ancillary data to isolate the land cover classes.

Table 2.3 Standard land cover classification for remote-sensing application in South Africa: class

summary.

Level I Level II

l.Forest and Woodland Forest

Woodland

Wooded grassland

Thicket2. Thicket, bushland, scrub

forest and high fynbos

Scrub forest

Bushland

Bush clumps

High heathland (high fynbos)

3. Scrubland and low fynbos Scrubland
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Low fynbos (heathland)

4. Herbland

5. Grassland

6. Forest plantations

Unimproved grassland

Improved grassland

Pine species

Eucalypt species

Wattle / other species

Indigenous species

7. Water bodies

8. Wetlands

9. Barren lands

10. Cultivated land

Bare rock / Soil

Degraded land

Permanent crops

Temporary crops

Residential

Commercial

Industrial/transport

11. Urban / built-up land

12. Mines and quarries

Source: (Thompson 1996:35).

2.5 SATELLITE IMAGE CLASSIFIERS

In land cover classification, land cover classes are the features to be extracted from the satellite images.

This extraction is done with models that capture only the relevant features of the image at that level of

abstraction. Models convert information in the image into usable forms so that inferences about the

objects of interest can be made. Various models use different information abstraction and inference

processes thus there are diverse approaches to pattern recognition such as mathematical or statistical,

syntactic or structural, and heuristic or descriptive (Argialas & Harlow 1990).

The commonly employed pattern-recognition methodologies for land cover classification are statistical

and contextual models (Molenaar 1993; Argialas & Harlow 1990). Of these, supervised, per-pixel,

maximum-likelihood spectral classifiers are the most commonly used techniques in automated land

cover classification (Bolstad & Lillesand 1991), while Foody (2000) used the fuzzy classification
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approach to improve accuracy. The per-pixel classification approach has however proved to be limited

in nature and applicable only to spectrally well-differentiated cases (Lira & Maletti 2002; Buiten 1993).

Very recently, image interpretation techniques have been shifting from spectral classification to spatial,

contextual classification, and to a recent and more powerful approach, namely knowledge-based

interpretation (Argialas & Harlow 1990). The use of expert systems or knowledge-based systems

within the field of remote sensing has been a topic of discussion in several studies and the trend is

towards object-oriented methods, considering ancillary and multi-temporal data and spatial relations,

with knowledge inferred via expert systems (Gumbricht, McCarthy & Mahlander 1996). Expert

systems for image processing enable effective use of available image-processing techniques. This has

to be distinguished from an image understanding system, which is designed for knowledge-based

interpretation of visual scenes. Expert systems play an important role in simplifying the user's

interaction with a complex search space, allowing the extraction of useful environmental information

from complex sources of data, involving automatic data integration, and interpretation of results

(Moller-Jensen 1998). As adjusted for a land cover classification, a knowledge-based system is

composed of the following three main elements:

1.) A knowledge base: a set of simple facts composed of imagery and environmental

information (database) and a set of rules describing relations between these facts.

2.) These rules are formalized through a learning phase, which aims at identifying

distinguishable relationships between elements in the database and land cover type as

represented in training areas. These relationships can then be generalized using expert

knowledge and domain literature.

3.) A problem-solving mechanism (a recognition path): a set of production rules designated for

accessing the knowledge base facts and rules, and which controls the way its rules are

activated and utilized (Frost 1986 in Cohen & Shoshany 2002; Cordon, Del Jesus & Herrera

1999).

It has been shown that different classification algorithms can result in different classification products,

even with the same training sets (Skidmore et al. 1997). This may be because algorithms implement

procedures that recognize patterns based on certain properties of images, for example, contextual and

spectral classifiers. The incorporation of ancillary data has proven not only to increase the accuracy but

also the consistency of classifications (Marble & Peuquet 1983 in Bolstad & Lillesand 1992).
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Incorporation can take place before, during or after the image classification process. Most classifiers do

not support automated integration of non-image spatial data in image classification (Hutchinson 1982).

Any such attempt results in inflexible hard-coded classifiers, which violate distributional conditions

(Bolstad & Lillesand 1992; Mehldau & Schowengerdt 1990). However, classifiers such as expert

systems and neural networks provide the means by which ancillary data can be incorporated into the

classification process, allowing the utilization of the full information range of the ancillary data. Most

non-expert approaches, such as maximum-likelihood classifiers, are self contained (Tsatsoulis 1993). In

other words they can start from raw data and produce complete and correct classifications, therefore

allowing only limited user interaction during the classification process.

The use of expert systems or knowledge-based systems for land cover classification has been

investigated by several workers (Moller-Jensen 1998). Tsatsoulis (1993) gives an excellent review of

expert systems in remote sensing applications. According to Tsatsoulis, expert systems applications in

remote sensing have been classified into: (1) user assistance systems, (2) classifiers, (3) low-level

processing systems, (4) data fusion systems, and (5) GIS applications. Expert systems classifiers may

operate on the pixel level by applying rules to each pixel in the image or at regional level. Even though

expert systems are not complete on their own, they have been found to improve land cover

classification by allowing the integration of non-image spatial data (Argialas & Harlow 1990), and

their flexibility, generality and intuitive appeal make them viable for remote sensing application

(Bolstad & Lillesand 1992).

There are numerous reports in the literature on the usefulness of experts systems in remote sensing land

cover classification. Sader, AhI & Liou (1995) assessed the accuracy of GIS model/expert system

classification against three other classifiers: unsupervised, supervised and Tasseled Cap classification.

They found that GIS model classification improved accuracy over the unsupervised classification by

8%. Although this is not significant, the kappa value was the highest for the GIS model. The reasons

for the low level of improvement could be attributed to many factors, of which the most crucial could

be the use of inappropriate and/or inaccurate input explanatory variables.

Gumbricht, McCarthy and Mahlander (1996) employed expert systems for land cover classification in

Cyprus. The expert system was pixel-based using a maximum-likelihood classifier based on Landsat

TM data (bands 3, 4 and 7) and knowledge rules that considered Landsat-MSS data, elevation and

geology. Manual and automatic (by extracting statistical data from training sets) representations of
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knowledge were tried and rules could be modified or added iteratively by domain experts for improved

classification. Their findings showed that manually inferred knowledge rules performed better than

automatic rules.

An expert system developed by Stefanov, Ramsey and Christensen (2001) had a primary objective to

reclassify the initial maximum-likelihood classification and reduce errors of omission and commission.

The model used TM bands together with ancillary data and an overall accuracy of 85% was attained.

The model also achieved higher user accuracy for some land cover classes; validating the use of expert

systems for land cover classification.

A study by Liu, Skidmore and Oosten (2002) integrated expert system classification with other

sophisticated classifiers such as neural network classifiers (NNC). The study's objective was to

investigate whether integrating individual classifiers improved classification accuracy. The integrated

classifier produced better results than the maximum-likelihood, expert system and neural network

classifiers when applied individually. Such findings reinforce the idea that incorporating complete,

correct and relevant expert knowledge may lead to improved land cover classification.

Bolstad and Lillesand (1992) demonstrated that the integration of satellite imagery, thematic spatial

data and artificial intelligence (AI) resulted in a significant increase of accuracy in land cover

classification. In summary, rule-based expert systems had several advantages in comparison to standard

approaches:

• the domain of discourse and control information is provided m an easily modified and

understandable set of rules;

• specific feature type, thematic variable and image classification information can be

persistent across different classifications of the same area, and can be modified for use in other

regions or with different feature types;

• computationally expensive operations can be avoided usmg restriction operators, without

resorting to manual image recoding, masking and image recombination;

• the modular rule-based approach allows the integration of evidential and deterministic

discrimination techniques, and the incremental addition of new spatial data operators,
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thematic data or knowledge, which aid land cover classification (Bolstad & Lillesand 1992;

Gegg, Gunther & Riekert 1990).

Aware of the advantages of expert systems, Gegg, Gunther and Riekert (1990) developed a knowledge-

based system for the extraction of environmental information from multi-spectral raster image data.

Knowledge-based software architecture, which implements the integration of an image processing

system, a geographic information system and an expert system, was chosen. The software, which they

called RESEDA, contains a suit of image-processing operators, and the rule base contains the necessary

strategic knowledge to apply the appropriate models for a required computation. The GIS serves as a

representation framework and as a user interface to access the required information. The GIS software

RESEDA was implemented in the SICAD-HYGRIS (Siemens Computer Aided Design-Hybrid

Graphic Information System).

2.6 LAND COVER CHANGE DETECTION AND MONITORING

Human land use is an extremely dynamic process. Land use inventorying provides a basis against

which to measure future changes in land use and to assess its temporal variability. In addition, land

cover change monitoring is one of the objectives of long-term ecological research (Stefanov, Ramsey

& Christensen 2001; Lindgren 1985). Land cover change monitoring requires a suitable methodology.

Digital land use/cover change detection is a complex procedure and the accuracy may be as low as 50

percent or even less for some individual categories (Lindgren 1985). Digital change detection assumes

that land cover change of a particular parcel of land will accordingly lead to a change in the spectral

response of that parcel (Mongkolsawat & Thirangoon 1990; Lindgren 1985). A number of algorithms,

including image differencing, image rationing, classification comparison and change vector analysis

are used for change detection analysis. Algorithms operate differently, for example image differencing

calculates the difference in reflectance values between different date images on a pixel-by-pixel basis,

while image rationing calculates change by means of compensating for the difference in sun angle,

sunlight intensity and shadows between data sets of different dates. Therefore the choice of using a

particular algorithm should be based on factors such as familiarity with the region, precision of image

registration and the algorithm's behaviour (Lindgren 1985). Change detection based on a thematic map

should be treated with caution and intelligent approaches have been suggested which draw upon a

broader knowledge of the directions, patterns and scale of the changes to be recorded in order to refine

the assessments (Fuller, Smith & Devereux In press).
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As the literature shows, expert systems in remote sensing application are being used increasingly for

improved accuracy and consistency. The following chapter deals with the modular approach to expert

systems for land cover classification developed in this study.
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CHAPTER THREE: CLASSIFICATION MODEL, EXPERT SYSTEMS
APPROACH

The modular expert systems approach is flexible as it allows for the modification and improvement of

individual rule-based primitive models, while incorporating satellite and GIS data (Sader, AhI & Liou

1995). An expert model has several advantages over other satellite image classifiers: a) it is non-

parametric and therefore independent of the distribution of class signature; b) it can handle both

continuous and nominal variables; c) it generates interpretable classification rules; and d) it is fast to

train and is often as accurate and sometimes more accurate than many other classifiers (Hansen,

Dubayah & DeFries 1996; Huang et al. 2002 in Huang et al. 2002a). The ability to handle data

measured on different scales is another striking advantage (Pal & Mather 2002).

In this study the developed expert classification model consists of two hierarchical levels of sub-

models: basic models and compound models (see Figure 3.l). Basic models constitute the lowest level

of the expert classifier structure. Examples of these include NDVI, band ratios and texture. Basic

models output results that can be used by compound models.

Basic models use algorithms and/or rules. Rules are simply recipes that can be followed to create a data

product. They have a condition part that can contain one or more antecedent clauses and an action part

(the consequent) that creates a data product (Argialas & Harlow 1990).

Rules were also used in the compound models. Each compound model consists of several basic models

and may take as input output of other compound models and was designed to identify a single land

cover class. Compound models may include intermediate results; data products derived in the process

of identifying a certain land cover class. Intermediate geographic data are common in complex GIS

models, and these by-products have great potential for use in other similar models (DeMers 2000).

Some intermediate results were used as input to other compound models.
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Expert classification model

output of Basic Model (Bn).

c=:==~> output of Compound Model (Cn).

Figure 3.1: Expert classifier model structure.

3.1 SELECTION OF DAT A LAYERS (VARIABLES) AND DETERMINATION OF

THRESHOLDS FOR RULES

Since in modular expert systems each spatial operation model, also called a compound model, is

designed to identify a single land cover category, the data layers used in the model need to be

appropriate explanatory variables of the response variable (land cover). Explanatory variables could be

spectral or ancillary data, continuous or categorical. Explanatory variables must be analyzed to fmd

which thresholds best identify the response variable under investigation. One way of finding the

thresholds is by applying expert knowledge. Another common and automated approach is statistical

analysis. An example of such a statistical technique is the Classification And Regression Tree (CART)

analysis, available in widely used statistical packages such as S-Plus. CART, using preset criteria,

analyses explanatory variables by recursively splitting the data until terminal nodes (land cover

categories) are obtained. The result is a dichotomous decision or classification tree. This classification

tree can be viewed as a series of rules that may be used for predicting unknown response variables to

likely class membership (Lawrence & Wright 2001). The use of a decision tree as a classifier has been

explored within the context of global or continental-scale land cover classification. The majority of

these studies have used data acquired by the Advanced Very High Resolution Radiometer (AVHRR)

instrument at fairly coarse spatial scales ranging from 1 degree to 1 km (cell resolution).
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A typical study would use AVHRR data acquired over a year and the classification would be based on

either the temporal evolution of vegetation growth (phenology) using the NDVI index or individual

spectral bands of the AVHRR as attributes for the classification (Brown de Colstoun et al. 2003).

A hybrid method was used in this study. This means that both expert knowledge and some statistical

calculations were applied in determining suitable thresholds (to be used in the rules) for predicting

response variables. Expert knowledge was used in cases where there is an expert understanding of the

relationship between the explanatory and response variables. In cases where no accurate expert

knowledge of the relationship between the explanatory and response variables is available, means and

standard deviations were calculated from training samples of the particular response variable under

investigation. Supervised classification was used for discriminating between classes that can be clearly

differentiated spectrally, the result of which could be used as a data layer in the spatial operations.

3.2 KNOWLEDGE ENGINEER AND AGGREGATION OF LAYERS

The knowledge engineer in ERDAS Imagine 8.6 (see figure 3.2) is a powerful tool that can run several

models to produce a single classification result. It implements a decision tree approach, called forward

chaining in artificial intelligence (AI) terminology, to perform classification'. Decision trees and other

expert systems such as neural networks are non-parametric in nature and can easily fit a variety of

situations, whereas parametric classifiers have to meet certain statistical conditions (such as normality),

which unfortunately most land cover objects do not assume (Brown de Colstoun et al. 2003; Pal &

Mather 2002).

Although decision trees do not recover from classification errors like neural networks (NNC) and fuzzy

classifiers do, they are computationally efficient and less expensive. Because of their hierarchical

structure, decision trees give the analyst a simpler yet robust method to interpret, test and analyze the

results (Brown de Colstoun et al. 2003).

2 In rule-based systems two types of rules can be used: forward chaining and backward chaining. Forward chaining is used

to establish new facts or hypotheses by matching rules against facts, whereas in backward chaining the system starts

with what it wants to prove and proceeds to establish the facts it requires to prove it (Argialas & Harlow 1990).
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Even though the knowledge engineer is a powerful tool, it has certain limitations. It firstly does not

allow the use of several separate conditions in a hypothesis (a component model within the knowledge

engineer that is equivalent to a compound model in this study) and secondly, the hypothesis must use

input layers that are mutually inclusive (with the same geographical extent and pixel resolution and

pixels must have values) to identify a single land cover. Since the compound models developed in this

study included multiple conditions, input layers were not necessarily mutually inclusive. To solve this

problem, each compound model was designed and executed separately.

The compound models were implemented in ERDAS modeller where the intermediate steps were

simplified using separate spatial operations and the resulting layers were aggregated into suitable

classes to match the NLC Level I categories. Results obtained by each compound model are mutually

exclusive. In other words, there are no pixels that are members of two land cover classes. The

knowledge engineer was used to combine all the results into one fInal land cover layer.
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3.3 COMPOUND MODELS

A defined set of spatial operations is needed to constitute the image classification model. A

classification model is defined by the sequence and combination of these compound models (Bolstad &

Lillesand 1992). For this expert model, various compound models were used to build the classification

model.

In expert models that apply progressive layered classification, the execution order of the compound

models is important to ensure the mutual exclusiveness of the pixels that have to be assigned to a

particular land cover class. It is logical and often practised to start a classification process with the less

difficult and relatively easily identifiable classes. The logical order of classification operations is a key

factor in the accuracy of the expert models. This is significantly important within compound models.

Identified pixels are excluded from the next classification process by masking. This technique is

applied in this study and the following compound models were developed and executed in the order

they are presented:

1. Compound model I: Water bodies;

2. Compound model2: Burnt and fire scarred areas;

3. Compound model3: Wetlands;

4. Compound model4: Bare soils and degraded land;

5. Compound model 5: Forest plantations and commercial indigenous forests;

6. Compound model6: Indigenous forests and woodlands;

7. Compound model 7: Coastal forests and woodlands;

8. Compound model 8: Thicket and bushland forests;

9. Compound model9: Shrub land;

10. Compound modellO: Commercial permanently irrigated cultivated land;

Il. Compound model II: Temporary cultivated areas and unimproved grasslands;

12. Compound modelI2: Residential areas;

13. Compound model 13: Mines and quarries;

14. Compound model 14: Commercial, industrial and transportation areas; and

15. Compound modelI5: Shade.
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These compound models incorporate one or more procedures based on basic models. The following

sections discuss each compound model in terms of the techniques and basic models that it utilises.

3.3.1 Compound Modell: Water bodies

Water bodies in the study area include farm dams, lakes, rivers and the ocean. In terms of its spectral

characteristics water has low overall brightness and low reflectance in band 5 (near infrared). During

summer days water bodies also have a lower temperature than the surrounding land.

Because of these qualities water is considered to be relatively easily identifiable on satellite images.

This may not always be true due to suspended particulate matters on the water bodies that can cause

considerable variation in the spectral and thermal signature (CGA 2003). In addition depth, dissolved

particles and even substrate matter of the water bodies may increase variation. Foamy waters caused by

wave action on seashores can cause high brightness and further complicate identification. Water can

also be spectrally confused with opencast mines, shade and commercial and industrial land uses.

Identifying water bodies based only on spectral bands may therefore not be accurate.

Topographical and hydrological models can be used to support the identification of water bodies. Such

models are based on Digital Elevation Models (OEM) and may involve the calculation of topographic

indices such as flow accumulation and slope. In addition to these explanatory variables, texture is

another important discriminatory variable as water bodies are expected to have very little texture.

For compound modell, water bodies were identified using a combination of spectral, topographical

and spatial (distance) techniques. The following basic models were used:

Basic Modell: Winter moisture

As can be seen in Figure 3.3 the spectral reflectance of water in ETM+ bands 2 (green) and 5 (near

infrared) differs considerably. A simple ratio between these two bands should therefore highlight areas

of high moisture. As non-water pixels are expected to show low moisture during winter, the ratio was

calculated using the July image. The result was compared to known data and it was found that a ratio

value of more than ten (band 2 has a reflectance of more than ten times that of band 5) represented

areas of potential moisture.
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Basic Modell: Summer NDVI

Since water bodies are not expected to be vegetated, one would expect areas of low vegetation during

the summer to potentially represent water bodies. Vegetation's spectral reflectances for the different

ETM+ bands are shown in Figure 3.3. These properties are used in the Normalized Difference

Vegetation Index (NDVI) to indicate vegetation occurrence (Campbell 2002) and was subsequently

calculated for the February image using formula 3.1.

NDVI = (TM4-TM3)~(TM4+TM3) ... (3.1)

Based on known water bodies it was determined that NDVI values of below 0.1 potentially represented

water bodies.

Basic Model 3: Slope percentage

Water bodies are usually found in depressions and areas with very low slope gradient and profiles. A

OEM of the study area was used to calculate slope (in percent). Normally water bodies are expected to

have 0% slope. But this is not the case with rivers, especially when the riverbeds are narrower than 2

pixel sizes, and slope for these pixels in the river course can be as high as 20% or more. The slope

constraint was relaxed to include all the potential water pixels, while excluding shade (shadows of

mountains) pixels. A slope of27% was taken as the upper threshold.
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Basic Model 4: Winter wetness

Water bodies are defined as perennial wet areas (Thompson 1996). Water bodies are expected to be wet

even during the winter season when there is less precipitation. Seasonal wet areas should therefore be

excluded. For basic model 4 and 5 a Tasseled Cap transformation was applied to the winter ETM+

image. This transformation condenses spectral information into meaningful thematic layers, the most

important layers being I, 2 and 3 representing scene brightness, greenness and wetness respectively.

The coefficients used to calculate these transformations are those provided by Huang et al. (2002b) (see

Appendix A). To differentiate water bodies from seasonal wet areas, the Tasseled Cap wetness layer

(band 3) was used and a threshold of 130 was identified from known wet areas. Wetness values above

this threshold were considered to be very wet and will potentially represent water bodies.

Basic Model 5: Winter brightness

Water bodies show low spectral reflectance. This characteristic is more pronounced in winter than in

summer since the higher runoff during summer results in turbid and sediment laden water bodies. For

discriminating, water bodies from other land cover classes, Tasseled Cap brightness was used.

Brightness values of less than 70 were found to correlate well with known water bodies.

Basic Model 6: Shoreline distance

Foamy waters are mostly found within a few meters from the shoreline. This area constitutes a high-

energy zone where a lot of wave action is present. To delineate this area the model calculates a buffer

zone from the shore within which foamy waters are expected to be found. From visual inspection of

satellite images it was decided that a 200m zone is sufficient. Anything within this distance was

considered to potentially be a water body (the ocean).

Basic Model7: NDVI change 1

NOV! and change in NOV! between seasons gives an important indication as to potentially what type

of land cover a pixel can be. Most vegetation land cover types show significant NOV! variation. Water

bodies on the other hand are expected to show no NOV! change and to maintain a negative NOV!

value. Based on the ISOOAT A derived zones, NOV! change (February NOV! - July NOV!) between

the two dates was calculated. !SOOATA classification was performed to obtain 30 homogeneous zones

in terms of texture, Tasseled Cap brightness, wetness and greenness. These layers were selected

because of water's low reflectance, high wetness, low greenness and low texture properties. The texture



28

used was a grey level, co-occurrence matrix based dissimilarity texture. Of the zones three showed

negative mean NDVI change and were taken as potential water bodies.

Figure 3.4 illustrates how the basic models were combined to identify water bodies. The first procedure

uses basic model I and 3 to identify the majority of the inland water bodies. The results showed that

some water bodies were not detected, especially the ocean.

The second procedure identifies foamy waters. For this, basic modell, 6 and 2 were utilized. Pixels

within the buffer zone (200 metres) were classified, as foamy water if the winter moisture was greater

than 1.8 and the NDVI was less than 0.1.

The remaining undetected water bodies, which include the ocean, estuaries and lagoons were identified

by procedures three and four. Procedure three employs basic model 4, 5 and 7. Here pixels were

identified as water if the winter wetness was greater than 130, winter brightness less than 70 and the

zonal mean NDVI change less than O.

The final procedure utilized basic model 3, 5 and 7. Pixels with winter brightness of less than 28, slope

of less than 27% and a zonal mean NDVI change of less than 0 were considered to be water bodies.

The outputs of the four procedures were combined to give the final layer representing water bodies.

The result was compared to a supervised classification and was found to represent water bodies much

more accurately. Pixels identified in this compound model were excluded in the further data

processing. The next class identified was fire-scarred areas.
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Figure 3.4: Compound model I: Water bodies

3.3.2 Compound Model2: Burnt and fire-scarred areas

Burnt areas were included as a class on its own, since the study area had a number offires during 2001.

Wild fires have a significant impact on the dynamics of vegetation and can disturb ecosystems. Fires

also destroy timber resources and fire monitoring is therefore a critical aspect of sustainable forest

management.
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Smit (2001) showed that Landsat data can be used to identify and monitor fire-scarred areas. The low

vegetation cover and dark bum residue in fire-scarred areas cause low reflection in the near-infrared

(TM4) band (Lawrence & Wright 2001). As a result bumt areas usually have negative NDVI values

(Smit 2001).

Burnt areas can easily be spectrally confused with water bodies, quarries and mines, since they have

similar spectral properties. Identifying bumt areas based on satellite images alone can therefore lead to

poor results. Single date imagery should also be avoided since fire occurrences are seasonal and fire-

scarred areas can show different spectral responses at different stages of recovery. The use of multi-

temporal images and ancillary data is therefore ideal.

Smit (2001) illustrated the value of uncorrelated pairs of bands in fire-scar mapping. To identify fire-

burnt areas, an algorithm based on the NDVI equation was used. Good results were obtained by

substituting the red and infrared bands with TM bands 4 (near infrared) and 7 (middle infrared). The

formula used is as follows:

Smit (2001) extended this formula to include the brightness and wetness bands derived from Tasseled

Cap Transformation. The equation of the uncorrelated band pairs has a similar mathematical statement

as in formula 3.2:

x = (Brighness - Moisture) -ê- (Brightness +Moisture) ... (3.3)

When applied in the study area, these techniques did not produce acceptable results. This is probably

due to the difference in vegetation, as Smit's (2001) study was specifically focused on fynbos

vegetation. In addition, the underlying soils are also considerably different. The fire scars in Smit

(2001) was on limestone soils, which produced fire scars that were in some cases lighter than the

surrounding vegetated areas.
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Figure 3.5: Compound model 2: Burnt and fire-scarred areas.

For this study a different approach was taken to identify fire-scarred areas. Compound model 2 (see

figure 3.5) uses spectral and ancillary data. Rules were defined based on known burnt areas. In addition

to basic model 1 (refer to section 3.3.1) the following basic models were employed:

Basic Model 8: July vegetation

Fire-scarred areas are usually dark and devoid of vegetation. Vegetated areas should therefore be

excluded from further data processing. To do so, vegetated areas were identified on the winter image.

Fire incidents predominantly occur in winter when berg winds blow from the interior plateau to the

coast (Dilley et al. 2001). Figure 3.2 illustrates that vegetation pixels have a high reflectance in the

ETM+ band 4 and a very low reflectance in band 3. Vigorous winter vegetation growth was obtained

by the condition that if ETM+ band 4 (near infrared) is greater than ETM+ band 3 (red) and 5 (middle

infrared), then the pixel is likely to represent vegetation. The resulting vegetation image was compared

with known vegetated areas and it was found to be very representative. Areas with negative NDVI

values were taken to potentially represent fire-scars.

Basic Model 9: Bare soils (X3)

As mentioned earlier, fire scars are usually dark in appearance. In this model the transformation

developed by Shrestha (2000) was used to identify dark soils. According to Shrestha (2000), in a two-
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dimensional feature space defined by red and near-infrared bands, vegetation, soil and water occupy

three distinct locations (see figure 3.6).
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Figure 3.6: Feature space ofTM4 and TM3 Source: Adapted from Shrestha (2000: 2).

The vegetation pixels occur in the upper left, implying high reflectance in the near infrared and high

absorption in the red portion of the spectrum. Soil pixels occur in the upper right indicating high

reflectance in the near infrared as well as red portion of the spectrum. Dark soil surfaces are

represented in the lower-left of the feature space, while water bodies are found further down in the two-

dimensional space. The diagonal line AB is considered to be the line showing variation in soil. Red and

near infrared data can therefore be transformed into a soil index by means of band rotation.
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The index is used to assist in soil feature mapping and it maximizes soil variation while suppressing

spectral responses from vegetation. Formula 3.4 is used to transform the red and near infrared bands

into a soil index. The formula achieves an anti-clockwise rotation of the bands through an angle to

isolate soil pixels (Shrestha 2000).

cosêsinê

ETM+4X2 -sinêcosê

This transformation creates two new bands, Xl and X2. Band Xl maximizes soil variation, while band

X2 maximizes vegetation information. In order to find the suitable angle of rotation, a linear least

square method must be applied on bare soil samples. To get the suitable angle of rotation for generating

the soil line, 300 samples of bare soil surfaces were collected by visual observation from a true colour

composite of the satellite images (bands 3-2-1).

Regression analysis of these samples showed a high positive correlation (r2 = 0.85) between ETM+

band 3 and 4. Using the linear least square method, the slope and intercept points were calculated to

find the best fitting line (formula 3.5).

y=ax+b . .. (3.5)

Where b is the position where the line intercepts the Y-axis (ETM+ band 4) and a is the slope of the

line. The values for a and b, based on the sample data, was 40 degrees and 14.5 respectively.

The algebraic form of equation (3.4) gives two distinct formulas (equation 3.6). The new bands, Xl and

X2, were generated by substituting the cosine and sin values of 40 degrees in equation (3.4) .

Xl = 0.642 Band 3 + 0.642 Band 4

X2 = - (0.642) Band 3 + 0.766 Band 4

. . . (3.6)



To compensate for the small bias in the NIR band, which is the intercept value in the linear least square

equation, a shift is applied in the NIR band by subtracting it from ETM+ band 4. The equations above

were modified as follows:

Xl = 0.766 Band 3 + 0.64~ (Band 4 - b)

X2 = - (0.642) Band 3 + 0.766 (Band 4 - b)

... (3.7)
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To get a soil image without water and vegetation, the following conditional expression was applied:

X3 = ifX2 < 0 then Xl ELSE 0 ... (3.8)

This expression generates a new band (X3) having only soil surface features with the rest of the area

having pixels of value zero (see figure 3.7). By comparing the X3 band with known fire scars it was

determined that values of between 0 and 50 corresponded very well with fire scars.

Y=aX+b
Y=TM4
X=TM1

Bare soil samples a = 0.83
b = 13
Arctan fn R,) = 40°

-sinê TM3 + cosë (TM4 - 13)

X2 image

X3: Bare Soils

Key: c=:J Dataset/Basic model ~ Spatial operation c=J Tabular data/formula/formula parameters

Figure 3.7: Basic model 9: Bare soils (X3).

Basic modellO: July NDVI
Burnt areas are expected to have low to negative NOVI values. NOVI was calculated for the July

(winter) image, as burnt areas will recover more slowly during the winter season when precipitation is

low.
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A comparison between winter moisture (basic model I) and fire scars showed that these areas have

moisture values of less than 1.1. This observation together with the outputs of basic models 8 and 10

produced a result of acceptable accuracy when compared to the original images.

3.3.3 Compound Model3: Wetlands

Various types of wetlands occur in the study area. These include seepage zones, saltmarsh, reedpan and

highveld wetlands, which can be vegetated or not. Geographically they are scattered on the landscape

and most of the individual wetlands are small in extent. Vegetated wetlands often have a similar

physical appearance to the surrounding non-wetland vegetation, and in such circumstances can be

difficult to identify based on single date spectral data (Thompson et al. 2002).

Wetlands usually occur on hydric soils, on lower slopes, in basins and near water bodies such as lakes,

ponds and streams (Sader, AhI & Liou 1995) and are often associated with either herbaceous or woody

vegetation cover (Thompson 1996; Thompson et al. 2002).1n terms of slope, Sader, AhI & Liou (1995)

showed that wetlands are likely to occur on slopes of less than 8% and that multi-temporal imagery is

invaluable for the identification of seasonal wetlands such as dried pans.

An attempt was made to adapt the wetland model used by the national wetland inventory programme

(Thompson et al. 2002), which uses the following procedures:

1) image classification using a combination of original and derived datasets (i.e. biomass and

wetness indicators), in order to enhance seasonal differences in wetland and adjacent land

covers' spectral characteristics, within each multi-temporal dataset;

2) terrain-based hydrological modeling to determine areas of 'potential wetness', where water,

and thus wetlands, may be likely to accumulate, irrespective of land cover; and

3) spatial modeling to combine the terrain-based 'potential wetness' model with the image-

derived wetland areas, in order to derive the final wetland distribution (Thompson et al.

2002).

For deriving a terrain-based hydrological model, a model called Landscape Wetness Potential (LWP) is

recommended by Thompson et al. (2002). LWP makes use of a weighted overlay technique that

combines several physical parameters influencing the formation of wetlands. The four parameters are:
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occurrence of sinks or depressions, slope steepness, surface hydrological or flow accumulation, and

relative slope position or topographic index (TPI) (Thompson et al. 2002).

An AML program for ARC/INFO GRID was given in Thompson et al. (2002) to derive TPI and it was

implemented in ARC/INFO and rewritten in ERDAS modeller by the researcher. However, neither the

AML in ARC/INFO nor its ERDAS equivalent produced a realistic result (the entire area was one

value, i.e. 2) when executed on the DEM of the study area, which is approximately 184 x 143 km in

size. When the programs were executed on a subset of the DEM, reasonable results were obtained. The

algorithm is therefore not suitable for larger DEMs such as the one for this study area.

Thompson et al. (2002) recommended the TARDEM model for calculating flow accumulation.

TARDEM IS a suite of executable programs that can be downloaded from the Internet

(http://www.engineering.usu.edulcee/faculty/dtarb/tardem.html). TARDEM was extremely slow (on a

Pentium IV, 2.4 GHz computer) when applied to a DEM of geographical extent as large as the study

area. For these reasons, as well as the fact that the wetland identification procedure requires some

visual interpretation by the analyst during the unsupervised classification process, this approach was

not pursued.

In this study a procedure that combines topographical as well as spectral properties was developed. For

compound model 3 the following basic models were used:

Basic Model II: Winter greenness

Thompson et al. (2002) noted that, for wetland classification, images taken during transitional wet-up

or dry-down periods (when wetlands exhibit significantly different characteristics to the surrounding

land-cover) are ideal, especially if the wetlands are primarily vegetated. Wetlands are less wet during

winter, which can lead to lower densities in wetland vegetation.

To discriminate between vegetated wetlands and other spectrally similar vegetation the winter

greenness band of the Tasseled Cap transformation (see section 3.2.1) was employed. Based on known

wetland areas it was determined that winter greenness values of greater than 150 potentially represent

wetlands.
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Basic Model12: Topographical profile

Wetlands occur in depressed and low profiled areas. A geomorphological model was adapted from

Brabyn (1998) and executed on a 30m resolution DEM of the study area. As illustrated in the figure

3.8, to calculate the up-low land profile index the model derives slope (in percent), focal elevation

range and focal maximum elevation based on a 5x5 moving window. Segmenting the landscape based

on the combined index of these parameters has untapped potential for the prediction of many earth

surface phenomena. To obtain the up-low land layer, the DEM elevation values are subtracted from the

focal maximum elevation layer, which is then divided by focal elevation range. Pixels of the resulting

layer are classified as up-land if the value is greater than 0.5 otherwise the pixels are low-land. This

layer was combined with the slope layer, which was classified into classes of 0 - 15, 15 - 50, 50 - 60

and > 60 to produce the final topographical index. These class groups were adapted from Brabyn

(1998) to match the landform components: plain/low hills, hills, high hills and mountains. Areas

identified as low-land were considered to possibly represent wetlands.

I DEM (30m) I

~ l
Slope in percent

1 1
Subtract elevation1 Apply focal Apply focal r--+ height (DEM) from the

neighbourhood neighbourhood layer obtained above
Classify slope range function with maximum function

+layer into suitable NAW of5 x 5 with NA Waf 5 x 5

classes Divide the above

I1 obtained layer by
relative relief

Slope classes ~

l Combine with slope
Classify layer

obtained above into
classes up-land ifvalue is>

I 0.5, else low-landUp-low land profile I

Key: I )L___l Dataset/Bnsic model Spatial operation

Figure 3.8: Basic model 12: Topographical profile.

In addition to these models, basic modell, 3 and 8 were also used (refer to sections 3.2.1 and 3.2.2).

Basic model 1 was used to determine the moisture content of a pixel, and pixels with moisture between
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1.1 and 10 were considered to potentially represent wetlands. Since wetlands are predicted to occur on

slopes of less than 8%, basic model 3 was employed to flag out potential wetland pixels that are below

the threshold. Non-wetland vegetation were excluded by using basic model 8, as vigorous vegetation

during the winter season are less likely to represent wetlands, when they are normally expected to be in

their dry-down phase. Compound model 3 also utilized the output of compound model land 2, in

order, to exclude water bodies and fire scars from being considered as wetland areas (see figure 3.9).
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Figure 3.9: Compound model3. Wetlands.

3.3.4 Compound Model4: Bare soils and degraded land

Bare soils and rocks are naturally exposed sand, sailor rock with no or very little vegetation cover in

any season. This category excludes agricultural areas without crop cover (CSIR 2000). The NLC 2000

field guide (CSIR 2000) describes degraded land as permanent or near-permanent areas of low

vegetation cover induced by man; often caused by severe soil erosion. It is typically associated with

subsistence agriculture. For this reason it is difficult to separate pixels of this category from agricultural

fallow areas using spectral data only. A classifier that uses ancillary data is therefore ideal.

In this study bare soil and degraded land were identified using compound model 4 (see figure 3.10),

which in turn employs the following basic models:
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Basic model13: February vegetation

As mentioned, degraded areas have very low vegetation cover throughout the year. Vigorously growing

vegetation can therefore be excluded from further consideration. This model identifies areas of

vigorous summer growth, by applying the following condition: if ETM+ band 4 (near infrared) is

greater than ETM+ band 3 (red) and 5 (middle infrared), then the pixel represents vigorous vegetation.

The summer image was selected as dry, seasonally un-vegetated areas on the winter image can easily

be mistaken for bare soil.

Basic model 14: Built-up areas

Another land cover feature that can be mistaken for bare soil is built-up areas as these are hard surfaces

that are devoid of vegetation. Fortunately, built up areas are usually well mapped and can therefore be

easily excluded. Built-up areas were digitized from existing maps, at a scale of 1:50 000, obtained from

Chief Directorate: Surveys and Mapping (CDSM) and converted to grid format.

To ensure that all built-up areas are excluded, buffered streets were used to supplement the built-up

dataset. A buffer of 300m was identified as being an appropriate distance to include all built-up areas.

The resulting layer was combined with the digitized built-up layer to form a layer that represents areas

that should be excluded from further processing in this compound model.

Basic model15: Cultivated land

Cultivated lands include fallow areas, which have similar spectral characteristics as degraded lands.

Cultivated lands that may be found in the study area mostly constitute seasonal commercial or

subsistence farming. This basic model attempts to avoid such confusion. Cultivated lands as shown on

1:50 000 topographical maps were digitized on-screen using ArcView 3.2 and the resulting shapefile

was converted to a grid. These areas were not considered as degraded land.

Basic Model16: Beach sand

Non-vegetated sand dunes found in the coastal areas are categorized as bare soils in the NLC 2000 field

guide, even though they have different spectral properties. Beach sand is characterized by negative

NDV! and high brightness. To identify beach sand a buffer was created around the coastal shoreline

obtained from CDSM at 1:50 000. From visual inspection it was determined that beach sand does not

occur more than 230m from the coastline. To differentiate between beach sand and other land covers in
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this zone, areas with a February NDVI (basic model 2) of less than 0.05 and winter moisture (basic

model 1) of less than 1.8 were used to identify beach sand.

In addition to the basic models discussed here, basic model 2 (refer to section 3.3.1) and 8 (refer to

section 3.3.2) as well as outputs from compound modell, 2 and 3 were used to identify bare soil or

degraded land. A mask and exclude approach was taken. Pixels that are least possible to represent

degraded lands were excluded from further data processing. These pixels belonged to the output of

basic model 8 (July vegetation) and 14 (built-up areas) as well as compound model 1 (water bodies), 2

(fire-scarred) and 3 (wetlands). From this exclusion one can expect the following land covers to

remain: bare-soil, degraded land, mines, quarries and clear felled forest.

The next discriminatory step was to exclude vegetated areas using basic model 2. By close inspection

of the summer NDVI image it was determined that pixels having a value greater than 0.05 represented

cultivated areas, bare soil or degraded land and clear felled forest areas. By excluding these together

with cultivated lands (basic model IS) and built-up areas (basic model 14) and by adding coastal dunes,

a layer representing bare soils and degraded land was obtained.

In areas where there is little vegetation and high geological variation, the geologic index in formula

(3.9) may be used to remove geological noise (eGA 2003) and to set rules. Since the study area is

mostly covered by vegetation it was not used.

Baresoil_index = ~(band7 _ band2)/(band7 +band2)
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Figure 3.10: Compound model 4. Bare soils and degraded land.

3.3.5 Compound ModelS: Forest plantations and commercial indigenous forests

Forest plantations include all forests that are systematically planted, commercial and primarily

composed of exotic trees. The most commonly planted trees in South Africa are: pine, eucalypts, wattle

and indigenous species. This category excludes all non-timber-based plantations such as tea, sisal and

orchards (Thompson 1996).

Forest plantations show low seasonal NOV! variation and are less textured than indigenous forests.

Permanent dry land cultivation, which may include vineyards, nut and banana plantations, has similar

reflectance and texture properties as indigenous and mixed timber plantations (CGA 2003).
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The use of vegetation indices is one of the primary methods for discriminating forests from satellite

images. Although their use has been successful, vegetation indices have limitations. Boyd, Foody and

Ripple (2002) and Chen and Cihlar (1996) argue that vegetation indices could be environment-specific

and may vary in applicability over space and time. Furthermore, since the indices are typically based on

two or three spectral wavebands, their use could exclude useful information measured in other

wavebands. This is a growing concern, since new-generation sensors are now operating at hyper-

spectral resolutions.

A multi-step approach was taken in this compound model (see figure 11). Multi-temporal imagery was

used to derive broad classes of annual and perennial vegetation covers. In addition to the basic models

developed in this section basic model 8, 10 and 14 were also used (refer to sections 3.3.2 and 3.3.4).

The initial step in this compound model was to identify, mask and subsequently exclude pixels that

would not contain vigorously growing vegetation from further data processing. Pixels that were not

represented in a vegetation layer derived by the condition discussed in basic model 8 were excluded

from subsequent data processing. A new layer-stacked dataset (refer to basic model 19) representing

the sub-set layer obtained by the above condition was created to perform unsupervised classification to

generate homogeneous zones in terms of the combination of the explanatory variables: texture variance

(refer to basic model 17), spectral band difference between band 4 and 3 (refer to basic model 18),

Tasseled Cap bands 1, 2 and 3 and NOVI layers of the two dates. The classification was performed

(with 50 iterations and a 0.990 threshold) to get 20 classes. This was necessary to calculate zonal mean

NOV! to extract zones that do not show significant NOV! change between seasons as potential forests.

Basic Model17: Texture variance

Texture is one of the most important explanatory variables. Most land cover classes show characteristic

texture patterns. Among forest vegetations, forest plantations show less texture due to the regular

spacing of trees. Texture was calculated on the ETM+ panchromatic band using a 5x5 moving window.

The 15m resolution of the panchromatic band enables the calculation of intra-pixel texture as it is twice

the resolution of the multi-spectral bands. The resulting variance image was re-sampled to 30m to

comply with the multi-spectral imagery.
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Basic Model18: Band difference

Different vegetation types require different wavelengths of electromagnetic energy for photosynthesis.

Vigorously growing vegetations have higher reflectance in band 4 (near infrared) than in band 2

(green) (Dorren, Maier & Seijmonsbergen 2003). Band difference between ETM+ band 4 and 2, for

both dates, was calculated to assist the discrimination between different vegetation types.

As explained in section 3.3.1, !SODATA derived zones are essential for calculating zonal statistics of

explanatory variables. In this compound model a new layer-stacked dataset was prepared using the

relevant explanatory variables to create spectrally homogeneous zones. The dataset included Tasseled

Cap channels 1,2 and 3, NDVI for the two dates, texture variance and band difference between ETM+

band 4 and 2. These layers were selected because they can individually and in combination increase the

separability of land cover classes, especially among vegetated areas. This layer-stacked dataset was

used as an input (see figure 3.11).

The mean NDV! change between February and July was calculated in percent. The result showed the

range of change to be between -40 and 156.5 percent, with only two zones having negative percentages

(-40 and -30.5% respectively). These negative values indicate that the NDV! of the zones were higher

in winter than in summer. This implies that the areas represent irrigated lands, as one would expect

higher vegetation growth during the rainy season.

Forests are permanently vegetated and are expected to show less seasonal NDV! variation. Based on

this assumption 80% NDV! change was selected as a relaxed constraint to extract potential forests.

Therefore only zones below this threshold and above 0% were considered for further discrimination.

This criterion allows other non-forested vegetations to be included. NDV! was also used to exclude

these.

Forest vegetations usually have higher NDV! values than most other vegetation types. Based on known

forest areas a relaxed NDV! threshold of 0.5 was selected and pixel values greater than this were

extracted as potential forests. On the output layer a maximum-likelihood supervised classification was

performed to obtain classes representing forest plantations, permanent cultivated land and indigenous

forests. The training data for this classification was obtained from the CS!R in point shapefile format,

which was expanded to polygon format using the Avenue programming language.
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Since residential areas, especially small-holdings, often contain vegetated areas it was necessary to

isolate these for exclusion. Forests in residential areas that are larger than nOOm2 (8 pixels) were not

excluded, because some forest patches can be found within residential boundaries. To do so the

ERDAS "clump" function was used. Therefore only clumps (connected pixels) of vegetation below the

size of 8 pixels were excluded. Pixels with clump size below 8 pixels were used as input to compound

model12, which identifies residential areas (see section 3.3.12).
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Figure 3.11: Compound model 5. Forest plantations and commercial indigenous forests.

> 0.5 <80AND>0Basic modellO: July
NDVI

Basic model 14: built- True

Permanent cultivated
land



45

The final step in this compound model was to reclassify indigenous forest pixels with July NDVI

values greater than the threshold of 0.61 (determined from know areas in the study area) as forest

plantations.

3.3.6 Compound Model 6: Indigenous forests and woodlands

In South Africa natural forests can be divided into two major categories namely inland temperate

Afromontane and coastal subtropical Indian Ocean forests. At a more detailed level, natural forests may

be grouped into: southern Afrotemperate, northern Afrotemperate, northern mist-belt, southern rnist-

belt, scarp, southern coastal, northern coastal, lowveld riverine, swamp, mangrove, and licuati sand

forests. The greatest diversity of forest types is located in KwaZulu-Natal and the Eastern Cape

(Mucina et al. 2003). The types of forest groups found in the study area are southern mist-belt, northern

coastal, scrub and mangrove forests.

It has been reported that no definitive spatially explicit maps exist on the distribution of indigenous

forests in South Africa (Geldenhuys 1994; Mucina et al. 2003). The most detailed available maps are

those produced by Cooper in 1985 and the forest biome programme in 1987. These maps are however

not available in GIS format and the scale at which they were mapped (approximately 1:1 000 000) is

not appropriate for this study.

Another map of forests, derived from a combination of LANDSAT and field data, delineated plantation

forestry (main focus) and indigenous forests on a portfolio of 31 map sheets at a scale of 1:250 000.

The minimum mapping unit for plantations and indigenous forests was 25 and 50 ha respectively (Van

der ZeI 1988 in CSIR 2003). Although the spatial accuracy of this map is questionable, it is probably

the best GIS map available to date (Mucina et al. 2003). The low accuracy can possibly be attributed to

the wide range of spectral reflectances associated with forests, as it contains many shadows due to the

terrain and the sun's azimuth and because the spectral properties can easily be confused with those

from plantations. Or possibly it is due to the gradual transitions between forest and bushveld.

An alternative map is the 1994 National Land Cover (NLC) project map (Thompson 1999). Even

though the map is spatially accurate, the accuracy with which it identifies forest patches raises some

concern, as it did miss some known forests such as Island forest and other Eastern Cape dune forests. It
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is also possible that exotic wattle infestation, dense woodland and thicket may have been classified as

forest in some areas (Mucina et al. 2003).

Geldenhuys (1994) hypothesized that environmental factors such as rainfall regime, geology and soils

determine the potential limits of forest distribution in the east and southern parts of South Africa, but

the actual location pattern of forest in the landscape is determined by the bergwind fire regime. The

typical forest location pattern is described as follows:

i) The largest forests are found on the coastal platform in locations of immediately south of the

southernmost mountain ridge and along the east-west running river valleys in the coastal

platform. The platform forests occur on the west side of the north-south oriented river gorges

cutting the platform. Forests are absent on the platform to the east of each gorge, but these sites

are only vegetated with Fynbos or pine plantations replaced by Fynbos. The northern boundary

of these forsts occurs on the steep foot slope of the southernmost ridge, resulting in the western

north-south boundary being shorter than the eastern north-south boundary. These forests

generally show a finger-pointed pattern on their southern boundary to the southwest, except

when the forest borders the east-west river valleys through the coastal platform.

ii) On both the northern and southern sides of the valleys, forests occur close to the sharp edges

formed by the coastal platform and the valley. However, forests occur at much lower level from

the upper edge of the valley on ridges running from the coastal platform into the valley.

iii) Along the coastal scarp, forests, occupy positions that very similar to those in river valleys.

vi) The smallest forest patches are found in several localities in the mountains. Most of these

forests occur west of the streams, near the bottom of the valleys. Such forests do not occur on

the east side of these same streams. A few of these mountain forests, however, occur

immediately below precipitous krantzes on concave slopes. Forests do not occur near the top of

ridges, with the exception of those that occur in ridges that have gentler slope in the north than

in the south, which can be straight or concave near the top of the ridge. Forests also occur near

the lower end of some ridges, in the valley of a first-order stream within the forking end of the

ridge (Geldenhuys 1994).

This pattern of indigenous forest distribution may be explained to some extent by using a

geomorphological model (refer to basic model 12). The geomorphological model involves calculating

local relief, local up and low land, slope classes and aspect.
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In the National Land Cover 2000: illustrated field guide, indigenous forest areas are described as all

wooded areas with a tree canopy (mainly composed of self-supporting, single stemmed, woody plants

greater than 5m in height) cover of greater than 70%. A community of multi-layered with interlocking

canopies composed of canopy, sub-canopy, shrub and herb layers.

For identifying natural indigenous forests, the compound model developed here (see figure 3.11) used

basic model 2, 10, 12 and 14 and intermediate result 1 and 2 (refer compound model 5) from the

previous sections and the basic model 20 developed here.

Basic Model 20: Relative relief

As pointed out by Geldenhuys (1994) indigenous forests are not likely to occur on crests or wind

exposed altitudes. Relative relief was calculated to identify potential forest areas in terms of positional

occurrence on the terrain. Relative relief was derived from a OEM by calculating Focal Neighbourhood

Range (FNR) using a 5x5 moving window. The resulting image (see Table 3.1) is classified into five

classes adapted from Brabyn (1998). It was determined that indigenous forests are likely to occur in

relative reliefs that range between 20 and 100m.

Table 3.1: Relative relief classes

Relief Class ranges

Flat/low relief 0-20m

Low hills 20-100m

Hills 100- 600m

High hills 600- 900m

Mountains >900m

Source: adapted from Brabyn (1998:40).

Figure 3.12 illustrates the basic models were combined to identify indigenous forests and woodlands.

The process starts with the masking of intermediate result 1 (stacked vegetation image) obtained in

compound model 5 and intermediate result 3 (pixels in this image are already assigned to classes) from

the same compound model to exclude pixels that have been already identified.

3 Relative relief is an important topographic parameter used to explain the terrain of a landscape. Relative relief indicates a

pixel's position in terms of its altitude relative to its neighbouring pixels.
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Using basic model 12 (refer to section 3.3.3) potential indigenous forests was extracted from the

resulting image. Basic model 12 provides the topographic orientation of a pixel.
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Figure 3.12: Compound model 6. Indigenous forests and woodlands.
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As explained by Geldenhuys (1994) indigenous forests usually occur below precipitous krantzes on

concave slopes and occupy positions that are less affected by berg winds. For example forests do not

usually occur near the top of ridges. As a result pixels that were low-land (basic model 12) with relative

relief (basic model 20) values of between 20 and 100m were selected as potential indigenous forests. In

addition, a vegetation index, July NDVI, was used to retain perennial vegetation, excluding pixels that

are less likely to be indigenous forests. To do this a suitable threshold (> 0.3) was selected based on

known areas.

On the resulting image, a supervised maximum-likelihood classification was performed based on the

training data. The following classes were obtained: indigenous forest, thicket and bushland, and

commercial permanent cultivated. In some cases the forest class included woodlands and some dense

thickets as they have similar spectral characteristics as indigenous forests (Mucina et a/. 2003).

Residential vegetation pixels were excluded using the same method described in section 3.3.5. Pixels

that have summer NDVI values of greater than 0.6 and are residential (basic modell4) were excluded.

This model can be modified by including techniques to accurately predict the distribution of indigenous

forests based on more explanatory variables and empirical data. Information on soil, ecology and other

model variables may improve predictions.

3.3.7 Compound Model 7: Coastal forests and woodlands

Coastal forests differ from inland Afromontane forests in terms of species composition and distribution.

They occur in a relatively low relief landscape and communities are usually not as dense as those of

inland forests. In the study area, coastal forests are limited to a small number of localities. This is

perhaps because most of the coastal forests' habitats are being used for agricultural purposes.

As mentioned earlier (see section 3.3.6) forests in general can be grouped into Afromontane, Scarp and

Coastal forests. Coastal forests include coastal dune forests and they are positioned along the narrow,

geologically young coastal strip of the Zululand coast (Mucina et al. 2003). The differentiation of these

forests from other forests can be done based on floristic and biogeographical models. The models are

ecological models that need biological samples, and are used by foresters.
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The extraction of coastal forests and woodlands from remote sensing satellite images requires the use

of vegetation indices and topographical information. The compound model developed in this study

used NOV! and local relief to isolate potential coastal forests and woodlands. The model firstly

considered all vegetations with relatively high July NOV! values of greater than 0.3 and low local relief

of less than 20 meters as potentially coastal forests and woodlands. Vegetation pixels were identified

by using basic model 8 (July vegetation). Pixels that were identified as forest plantations and

indigenous forests in compound model 5 and 6 respectively were excluded. To do so, intermediate

result 4 (from compound model 6) was masked with intermediate result 5 (also from compound 6) (see

figure 3.13). From the resulting layer potential pixels were isolated by using the July NOV!, and pixels

with NOV! value of greater than 0.3 were extracted. In the resulting layer other two vegetation types

are contained namely commercial cultivated vegetation and improved grasslands. Maximum-likelihood

supervised classification was employed based on the training data to produce distinct classes of coastal

forests and woodlands, commercial cultivated lands and improved grasslands.
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False
AND
T

l Indigenous forest &
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Dataset/Basic model ~ Spatial operationKey: L~:J
I I Intermediate resu It

Figure 3.13: Compound model 7. Coastal forests and woodlands.
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Improved grassland, which includes golf courses, racing tracks and parks, was treated as a class on its

own and constitute a very small area compared to other vegetation covers. Almost all improved

grasslands occur on flat to low relief areas. Improved grasslands resemble cultivated areas in many

respects and there is high possibility that improved grasslands can be spectrally confused with some

cultivated crops, which can lead to significant misclassification. The selection of suitable training data

is therefore crucial when supervised classification is used.

Pixels identified as coastal forests and woodlands but falling within the residential boundary were

excluded. The exclusion was done by applying the method used in compound model 6. The excluded

pixels are included in the compound model 12 (residential areas).

In this progressive classification process, the next class to be identified is thicket and bushland forests,

and compound model 3.3.8 discusses the approach taken and basic models used. Pixels classified in

this compound model were excluded from further processing.

3.3.8 Compound Model 8: Thicket and bushland forests

Thicket and bushland is defined as vegetation communities (essentially indigenous species) mainly

composed of tall, woody, self-supporting, single or multi-stemmed plants that branch at or near the

ground, in most cases lacking definable structure. Tree heights of thicket and bushland communities are

in the range of 2 - 5m and have a canopy cover of greater than 10%. Even though structural class

definitions (i.e. canopy cover and height parameters) are suitable for satellite based vegetation

classification (Thompson 1996)4, the correlation of these parameters with spectral information may

require a substantial amount of empirical data in order to do regression analysis.

As empirical data was not available an alternative approach was taken in this study. Thicket and

bushlands occur on riverbanks, in valleys and on a variety of relief types. Thicket and bushlands

therefore do not show a definite pattern in terms of local relief. In this compound model the vegetation

index (NDVI) was used as a suitable explanatory variable. The sub-set vegetation layer from which

forest plantations, indigenous forests, coastal and woodlands were excluded constituted a vital input.

4 The community-type method is based on functional definition rather than conspicuous structural characteristics that can be

correlated with satellite data.



52

To get this layer intermediate result 6 of compound model 6 was masked with intermediate result 7 of

the same compound model. A suitable NDVI threshold was determined from known thicket and

bushland areas to isolate potential pixels from the vegetation sub-set layer. Pixels with July NDVI

values of between 0.2 and 0.3 were isolated to represent potential thicket and bushland areas. In the

resulting layer commercial cultivated areas are also included. A supervised maximum-likelihood

classification was used to obtain distinct classes of thicket and bushland areas and commercial

cultivated lands (see figure 3.14).

Pixels identified as thicket and bushlands but falling within the residential boundary were excluded. To

do so the technique applied in compound model 6 was used. These pixels are included in the residential

compound model 12.
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Figure 3.14: Compound model 8. Thicket and bushland forests.
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3.3.9 Compound Model 9: Shrub land

As described in the National Land Cover 2000, Illustrated Field Guide, shrub land is vegetation

dominated by low, woody, self-supporting, multi-stemmed plants, branching at or near the ground. The

tree height range of this class is between 0.2 and 2 metres, and with a total tree cover of less than 0.1%

(CSIR 2000). These structural parameters are poorly correlated with spectral information.

Huang et al. 2001 developed a technique for estimating tree canopy density using Landsat 7 ETM+

images. Although this technique is of great value, it requires empirical relationships between tree

canopy density and Landsat data as well as good empirical data on the structural parameters of trees

(i.e. canopy cover and tree heights) in order to apply linear and other regressions and to establish the

correlation a priori. This information was not available for this study.

The approach taken for identifying shrub lands is similar to that of thicket and bushland forests. The

very low total tree cover (less than 0.1 percent) of shrub lands result in very low NDV!. Vegetation that

were not identified in the previous compound models were considered as potential shrub lands.

The compound model (see figure 3.15) that identifies shrub lands utilizes intermediate result 8 (from

compound model 7). Pixels with a value less than or equal to 0.2 were classified as shrub land. The

confused residential pixels were again excluded using the technique applied in compound model 7.

Unlike natural forests cultivated lands show significant NDVI variation. Moreover, almost all

cultivations are undertaken in low local relief to flat areas. These and other properties can be used to

distinguish cultivated lands and natural vegetation. The following two sections attempt to identify

cultivated lands.
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FIgure 3.15: Compound mode19. Shrub land.

3.3.10 Compound ModellO: Commercial permanently irrigated cultivated lands

Of all the land cover categories in the standard classification scheme, cultivated land is perhaps the

most diverse. In the illustratedjield guide for the National Land Cover 2000 project (CSIR 2000) more

than 7 subclasses are identified under the broad class 'cultivated land'. Irrigated cultivated areas are

characterized by their location relative to large water resources, either in the form of rivers or dams and

in exceptional cases, ground water. Cultivated maturing crops are usually associated with vigorous

growth resulting in NDVI values of above 0.5. Cultivated crops have the highest variance, both

spatially and temporally, and the wide variety of crops ranging from sisal, sugar cane, maize, wheat,

vegetables and fruit orchards together with the range of different development stages, complicate the

definition of spectral signatures (CGA 2003).

The phenological pattern of crops is a useful source of information for the identification of and

discrimination between cultivated crops. Crops are seasonal and differ in their seasonal cycles of

greening, flowering and ripening. Forests also show seasonality by changing leaf colouration. These are
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the patterns plants show in response to seasonal and climatic changes, which include duration of

sunlight, precipitation and temperature. A number of studies have employed seasonal changes in

vegetation indices, such as NDVI, to represent phyto-phenological differences between vegetation

formations and crop types (Shoshany & Cohen 2002), while Dymond, Mladenoff & Radeloff (2002)

used Tasseled Cap indices of multi-temporal imagery. The relative strength of the phenological

approach depends on its interpretability by the analyst, as it requires a good knowledge of vegetation

phenomenology (Shoshany & Cohen 2002). Moreover, this method requires multi-temporal data,

preferably at more than two dates, to derive the phenological stages of different crops.

For the identification of permanently irrigated cultivated lands, compound modeilO (see figure 3.16)

used intermediate result 3 of compound model 5. Compound modeilO classifies the zones that showed

negative mean NDVI change as permanently irrigated cultivated land. This class may include non-

timber plantations under drip irrigation, which can be identified from its low-hue light orange

appearance in a 4-5-3 composite colour image (CGA 2003). Since some irrigated cultivated areas may

not have negative mean NDVI values they may be identified as a different cultivated land sub-category

in other compound models. Temporary cultivated lands that are likely to show high positive mean

NDVI change values are identified in the next compound model.

Intermediate result 3: NDVI change < 0
Irrigated landJmean NDVI zones -

FIgure 3.16: Compound modellO. Commercial permanently irrigated cultivated lands.

3.3.11 Compound Modelll: Temporary cultivated areas and unimproved grasslands

Temporary cultivated lands mainly include seasonal crops and subsistence cultivated lands (CSIR

2000; Thompson 1996). Temporary crops are described as annual crops harvested at the completion of

the growing season; remaining idle until the next season. Examples include maize and Soya bean.

Subsistence agriculture is characterized by small and numerous field units of usually less than 10ha in

size that are found in close proximity to rural population centres. Discrimination of this category based

on phenological patterns is ideal. However, as noted in the previous section, this approach requires

multi-temporal image data.
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For identifying temporary cultivated lands and unimproved grasslands the strategy used by this

compound model (see figure 3.17) was divided into two phases. In the first phase an image was created

by extracting pixels that were identified as vegetation in the February (summer) vegetation image (refer

to basic model 13) and non-vegetation in the July (winter) vegetation image (refer to basic model 8).

From this image, burnt areas (refer to compound model 3) and open water bodies (refer to compound

model 1) were then excluded. The resulting image contained small plantations that were not identified

in the winter vegetation (basic model 8). This is possibly as a result of stressed growth due to climatic

and environmental conditions. Other features that can be found in this image include thicket and

bushland (less dense).

Unimproved grasslands have little vegetation cover and they show significant NDVI seasonal variation,

becoming more vigorous in the summer due to higher precipitation. This is even evident by visual

inspection and comparison of the satellite images. Temporary non-irrigated cultivated lands show a

similar pattern. Pixels in the sub-set image (described above) with February NDVI (basic model 2)

values of less than 0.64 were therefore classified as unimproved natural grassland. The result obtained

also contained cultivated lands, thicket, bushlands and forest plantation areas.

In the second phase of this model supervised maximum-likelihood classification, based on the training

data, was performed to distinguish between different land cover types. As in previous compound

models pixels that represent residential areas were separated based on the technique applied in

compound model 7. These were included in the residential class as discussed in the next section.
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Figure 3.17: Compound model II. Temporary cultivated areas and unimproved grasslands.

3.3.12 Compound Model12: Residential areas

Residential areas is the most difficult class to isolate from satellite imagery. This type of built-up area

is characterized by high intra-pixel spectral variability as well as inter-pixel variation. The presence of

a combination of vegetation and hard surfaces makes it one of the most heterogeneous categories.

Built-up areas in general have high texture, and they show explicit spatial pattern (e.g. shape) (Moller-

Jensen 1998). Because of high heterogeneity the use of ancillary data is indispensable.
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To delineate residential areas ancillary data was used. Street features were extracted from a roads

dataset (at a scale of 1:50 000) obtained from the Chief Directorate: Surveying and Mapping (CDSM),

which was used to calculate a distance layer. Urban built-up areas indicated on 1:50 000 topographical

maps (also obtained from CDSM) were digitized and subsequently converted to grid format. The two

grid layers were overlaid to represent residential areas. Apart from those pixels that were identified as

water bodies (Compound model 1), fire scars (compound model 2), wetlands (compound model 3),

forest patches and commercial permanently irrigated land (compound model 10), pixels within this

boundary were classified as residential.

This technique proved to be successful in major urban areas, but was less effective in identifying

formal and informal townships and villages. Compared to formal urban areas, informal settlements and

rural villages are characterized by lower spectral brightness, probably due to the difference in building

materials. Brightness is however higher than the surrounding areas. Rural settlements are associated

with small gardens, which may result in slightly higher NDVI values compared to bare soil areas and

can be easily confused with subsistence and semi-commercial agriculture. They are therefore not easily

extracted from satellite images alone.

In the study area plenty of informal townships and villages are know to exist. Most of the villages

appear to be distributed in the central and southern part of the study area while the informal settlements

are scattered near the coastal areas such as Durban.

The compound model (see figure 3.18) to identify these land cover features is based on the basic

models mentioned below as well as basic models 2 and 5 (see section 3.3.1).

Basic Model21: Texture (contrast)

Texture models are often used for urban classifications (Moller-Jensen 1998). Since texture measures

provide spatial relations of pixels, they can be used to identify land cover categories with unique spatial

patterns. In this basic model grey level co-occurrence matrix texture was calculated.

The grey level co-occurrence matrix was first calculated based on ETM+ band 4 using the EASIIP ACE

module in PCI Geomatica V-9 (PCIIGeomatica 2003). Next the contrast texture measure was

calculated on this grey level matrix. It was determined from known areas that built-up areas have

texture (contrast) greater than 15.
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Basic Model22: Low to unvegetated areas layer

Degraded and unimproved grasslands images identified by compound models 4 and 10 respectively,

may include rural and informal townships as they are dominated by low vegetation and have some

spectral similarity with degraded and unimproved grassland. To isolate these built-up areas degraded

and unimproved grasslands layers were combined.

The use of texture on the combined image of degraded and unimproved grasslands along with other

ancillary data can resolve the confusion. A combination of basic model 21 (texture (contrast)), basic

model 2 (February NOV!) and basic model 5 (Tasseled Cap brightness) was used. A pixel within the

combined image was, based on known samples, classified as township and villages if the pixel has an

NOV! value of less than 0.57, texture greater than 15 and Tasseled Cap brightness of greater than 80.

The result showed that the method was able to identify most of the informal settlements and villages,

although it did include some areas of bright and unvegetated soil areas that should have been classified

as bares soils. The misclassified pixels account approximately for less than 1 percent of the combined

layer created in this basic model.

Built-up infrastructure may also occur in other land cover types including mines and quarries. The

following section discusses the identification of mines and quarries.
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FIgure 3.18: Compound model 12. Residential areas

3.3.13 Compound Model13: Mines and quarries

Mines and quarries include active or non-active mining areas that may be underground or sub-surface.

The sub-surface mining includes hardrock and sand quarries as well as opencast mining (coal) (CS!R
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2000). This category is heterogeneous since it includes associated surface infrastructure. Pixels of this

class can therefore be confused with other classes such as commercial and industrial areas and rock

outcrops.

In the KwaZulu-Natal province a number of mining activities are known to exit and some of these are

found within the study area. These include heavy mineral, coal, marble, gold, dimension stone and

stone aggregate mines (Geoscience 2003).

A progressive masking approach was taken to identify mines and quarries. This method ensures that the

pixels of each land cover class are mutually exclusive. Land covers that have been identified in

previous compound models were excluded from being considered for this category. Besides basic

model2 (February NOVI), 8 (July vegetation) and 13 (February vegetation) and outputs of compound

model 1 (water bodies), 2 (fire scars) and 3 (wetlands), a newly created basic model23 was used.

Basic Model 23: Mines and quarries

Spectrally, mines and quarries can easily be confused with commercial, industrial and transport areas,

as they are usually devoid of any vegetation. Mines and quarries are generally smaller in extent

compared to commercial and industrial land covers. Mines and quarries delineated on the 1:50 000

topographic maps, obtained from Chief Directorate: Surveys and Mapping, were digitized and adjusted

manually using the 4-5-3 colour composite to match the position on the satellite images. The resulting

polygon shapefile was then rasterized.

In this compound model, output of compound modell, 2 and 3 as well as basic model 8 and 13 were

excluded from being considered. A suitable February NDVI threshold « 0.05) was used to further

exclude pixels that are less likely to represent mines and quarries. The resulting image is expected to

contain commercial, industrial, transportation and mines and quarries. From this image, mines and

quarries were extracted using basic model 23 (mines and quarries). The remaining unclassified pixels

were used in compound model14 (commercial, industrial and transportation) (see figure 3.19).
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Figure 3.19: Compound Model 13 and 14: Mines, quarries, Commercial, industrial and transportation

3.3.14 Compound Model14: Commercial, industrial and transportation areas

Built-up, commercial urban areas are typically located in the central business district (CBO) of towns

and cities and industrial and transportation areas are infrastructure related to major industrial and

transport activities (Thompson 1996). This level I land cover class is characterized by bright spectral

reflectance in all the ETM+ bands and high texture. It is usually devoid of vegetation and has as a

result very low NOV! values. A combination of spectral and textural information is therefore ideal, but

care should be taken as confusion with residential areas may occur. Because of this, both Zhang (1999)

and Moller-Jensen (1998) used texture based on co-occurrence matrices and contextual spatial

information to classify urban areas. Commercial, industrial and transportation areas can also be

confused with mines and quarries (see previous section).
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For identifying commercial, industrial and transport areas a similar process was followed as with mines

and quarries. A single compound model was therefore enough to identify both of these land covers.

From the image that contained commercial, industrial and transport and mines and quarries (refer to

compound model13), commercial, industrial and transportation areas were extracted using basic model

23. Pixels that are not mines and quarries were classified as commercial, industrial and transportation

areas.

3.3.15 Compound Model15: Shade

Shade is not a land cover, but was treated as a class on its own. This is because land covers in shade do

not demonstrate the expected reflectance properties and shaded areas can cause confusion with water,

burnt areas and other dark objects. Shaded areas should therefore be excluded from processing.

Shaded areas are usually found in areas of rough terrain and are accentuated during winter when the

sun's azimuth is low. The occurrence of shade is related to aspect and slope. For example concave

slopes are more likely to be shaded.

The study area includes mountains and valleys, which increase inland from the coastal areas. Shade

constitutes a minority class (with 0.000063 percent of the total pixels classified) compared to other

covers with only few groups of pixels scattered in the study area.

To identify shade, basic models I and 3 (refer to sections 3.2.1) and output from compound model 3

were used. Pixels with a slope (basic model 3) of greater than 27%, band ratio (basic model I) between

2 and 60 and not representing fire scars were classified as shade. These discriminatory thresholds were

based on shade samples identified on the satellite images.

3.4 POST -CLASSIFICATION MANIPULATION

Since the classification model developed in this study was pixel based, outlier pixels ("salt-and-pepper"

effect) had to be manipulated to produce a more meaningful thematic result. A contextual classifier in

the form of a low-pass filter is often used in post-classification manipulation. For this the most widely

used window size is 3x3, but larger windows are often used for small-sized pixels or larger land cover

entities such as in this study (Stuckens, Coppin & Bauer 2000). A 5x5 low-pass filter was therefore



63

applied to the classification to obtain a generalized classification map. The resulting map was used in

the accuracy assessment based on reference samples of the land cover classes. The following section

assesses the accuracy of the classification process.

3.5 ACCURACY ASSESSMENT

The accuracy with which image classifiers identify land cover features is evaluated using accuracy

assessment. Accuracy assessment is a function of training data and classifier performance and

generalizes to a certain degree the information content and the accuracy of the resulting thematic map

(Stuckens, Coppin & Bauer 2000). The first step toward an accuracy assessment is the collection of

ground truth samples of each land cover feature. Ground truth samples may be collected by field

surveying, from topographical maps, previously classified images, aerial photographs or any

combination of these sources. Samples for accuracy assessment need to be different from the training

samples used in the classification process.

Aalderes, in Burrough and McDonnell (1998), grouped GIS data accuracy into thematic accuracy,

positional accuracy and temporal accuracy. The first two factors apply to classified images. As with

GIS analyses errors can occur at various stages in the classification process and can be propagated

throughout. One can therefore conclude that the performance of an image classifier depends on the

algorithm employed and the accuracy (which includes image quality, image registration and

consistencies and completeness) of the input layers that were used. Classification accuracy also varies

with scale, showing a general trend of accuracy increase with coarser levels of spatial aggregation of

pixels. Accuracy is also related to the number of land cover classes to be identified in a classification,

and in addition to increasing the level of effort to create a land cover classification product, higher

numbers of classes generally result in higher levels of error (Vogelmann et al. 2001).

The commonly employed method for assessing the accuracy of a classifier is by means of an error

matrix. An error matrix reveals two basic kinds of errors namely the user's and producer's accuracy.

By examining the relationship between these errors a map user can obtain an understanding of the

varied reliabilities of classes on the map, while the map producer acquires insight into the performance

of the process that generated the map. Measures such as these do not adjust for chance agreement

between the expected and observed and they could be dependent on the samples and sampling strategy

used in the analysis.
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These deficiencies were to a large extent solved with the introduction of the K (kappa) measure

(formula 3.10), which measures the difference between the observed agreement between two maps and

the agreement that could be achieved solely by chance matching (Campbell 1996).

observed - expected
K=-----O""""--

I-expected
.... (3.10)

It indicates how much better a classification process performed than would be expected from chance

assignment of pixels to categories. The kappa measure approaches +1.0 as the percentage of correctly

identified pixels approaches 100 and the contribution of chance agreement decreases to O. Measures

near zero indicate that the chance agreement and contribution from the classification are about equal.

The kappa index can assume negative values if chance agreement increases and percentage of

contribution from the classification decreases (Campbell 2002).

Most of the pixels (99.66%) within the study area were classified (see Appendix B for sub-set

classification images). The unclassified pixels were grouped into regions using the 'Clump' function to

see if they formed substantial areas that could represent specific land cover classes. The average

regions size was 3 pixels and the maximum 91. The few regions that were bigger in size were

examined and found to belong to water bodies, wetlands and burnt areas. Variable constraints of water

bodies, wetlands and burnt areas compound models were then relaxed to include these pixels (these

changes are reflected in the compound models discussed earlier in the chapter). More than 80% of the

unclassified pixels were reclassified in this manner. The remaining unclassified pixels were less than 3

pixels in size and were conflated by using a low-pass contextual filter.

Accuracy assessment was carried out on the classification result using the ERDAS Imagine (ERDAS

200 I) 'accuracy assessment' facility. A total of 5062 pixels were used as input, with each class having

on average 374 reference point/pixel samples. As not enough reliable reference samples were available

for the shrub land cover, it was omitted from the accuracy assessment. Results of the accuracy

assessment are presented in Table 3.2.
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Table 3.2: Accuracy assessment result

Class Reference Classified Number Producer's User's Kappa

Name Totals Totals Correct Accuracy Accuracy stat.

-------------- ----------- ------------ ------------

Burnt/fire-scarred areas 367 306 305 83.11% 99.67% .9965

Water bodies 246 239 238 96.75% 99.58% .9956

Wetlands 327 292 274 83.79% 93.84% .9341

Forest plantations 595 555 509 85.55% 91.71% .9061

Cultivated land 565 704 521 92.21% 74.01% .7074

Residential 491 495 428 87.17% 86.46% .8501

Indigenous forests 547 536 438 80.07% 81.72% .7950

Improved grass land 193 130 130 67.36% 100.00% 1.000

Thicket bushland 333 362 265 79.58% 73.20% .7132

Commer./indust. & trans. 370 312 312 84.32% 100.00% 1.000

Degraded land 242 267 199 82.23% 74.53% .7325

Unimproved grass 300 428 248 82.67% 57.94% .5529

Shade 65 63 60 92.31% 95.24% .9518

Mines & quarries 231 190 187 80.95% 98.42% .9835

Overall Classification Accuracy = 84.31%

Overall Kappa Statistics = 0.8294

As the result above shows 14% of the land cover classes have a producer's accuracy of less than 80%

and 28% of them have a user's accuracy of less than 80%. Unimproved grasslands showed the lowest

user's accuracy of 57% with a kappa measure ofO.5529. The low accuracy can be attributed to the

absence of effective explanatory ancillary data. Identification of this class relied on vegetation indices

that were derived from the spectral information. The confusion with agricultural fallow areas has also

been a significant factor contributing to the low accuracy obtained.

Cultivated lands also produced a low kappa statistic. This land cover includes a variety of agricultural

vegetation types that were not clearly distinguished by NDVI. The application of supervised

classification methods on NDVI to identify cultivated lands proved to be less successful. Many

researchers use phenological methods to identify cultivated crops. Unfortunately this method could not

be used in this study due to unavailability of multi-temporal satellite images.
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Other land cover classes that had low kappa statistics include thicket and bushlands and degraded

lands. The reason for their low accuracy can to a large extent be attributed to the spectral confusion

with other classes.

More than two thirds of the land cover classes were however accurately classified, with kappa statistics

of 0.80 and better. Improved grasslands and commercial, industrial and transportation areas showed a

user's accuracy of 100%. This means that none of the pixels belonging to other classes within the

accuracy-testing sample were incorrectly classified as either of these classes. The accuracy assessment

rated the overall accuracy of the expert classification system at 84.31 % and kappa statistics of 0.829.

This high accuracy can be attributed to the integration of ancillary, spectral information and expert

knowledge.

From these results it is clear that the selection of an appropriate classifier is one of the major factors

that influence classification accuracy. In the next and final chapter, accuracy and other criteria

identified from the literature are used to evaluate the expert system developed in this study.
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CHAPTER FOUR: DISCUSSION

4.1 EVALUATION

The primary objective of this study was to develop an expert system and to test its feasibility and

suitability for the National Land Cover Project (NLC). In this chapter, the system is evaluated based on

criteria identified from the literature. These are structure, complexity, accuracy, ancillary data

(information requirement) and explanatory variables and rules.

4.1.1 Structure

According to Argialas & Harlow (1990), the representation of expert knowledge in unordered and

unstructured sets of rules is not ideal. Logical structure and knowledge representation is therefore an

important criterion that can be used to evaluate an expert classification model. Although the expert

classifier developed in this study is less structured than some other models, the modular structure

provides the flexibility to modify individual compound and basic models. It also allows additional

models to be easily incorporated. Fine-tuning the model for a different area or time should therefore

only involve minor changes.

4.1.2 Complexity

The developed expert classifier is less complex when compared to other non-parametric neural

networks and fuzzy classifiers that implement complex statistical formulae and algorithms. The model

is simple enough to be implemented (and modified) in most GIS or RS software packages such as

ArcView, ArcGIS, IDRISI and ER mapper. The logical structure is understandable and enables the less

technical user to interpret results (including intermediate results) for model tweaking.

4.1.3 Ancillary data

The developed model has the disadvantage of requiring complete and consistent ancillary information

as input, which is not always available. Although the use of more ancillary data may increase accuracy,

it could also have a negative effect on accuracy if the input layers are not accurate. The use of ancillary

data from different sources makes the model prone to error propagation as most of input layers will
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have variable positional, thematic and temporal accuracy (Burrough and McDonell 1998). In contrast,

artificial neural networks and fuzzy systems are more tolerant to noise within the data, limited training

data, and inaccurate or missing data (Hepner et al. 1990; Kalogiron 2002; Campbell 2002). These

systems are however much more complex (Berberoglu et al. 2000).

4.1.4 Explanatory variables and rules

One of the biggest challenges of this research was to identify effective explanatory ancillary data and to

determine the rules based on thresholds obtained from training areas. Automated statistical techniques

(e.g. CART, Classification and Regression Trees) could have been employed for this purpose, but (as

mentioned in section 3.1) this technique requires suitable training samples. In addition, the different

compound models needed different input explanatory variables. The inference of rules based on expert

knowledge was therefore more suitable in such cases.

4.1.5 Accuracy

The main strength of expert systems is their ability to integrate spectral and ancillary information and

use them in a step-wise classification process. The maximization or identification of potential pixels

before they are actually assigned to a particular land cover class enables the avoidance of potential

confusion that can occur among land cover classes. The identification of potential pixels is done by

using ancillary information, which permits the making of contextual decisions. This contributes to the

accuracy of land cover identification. For some land cover classes such as unimproved grasslands the

finding of effective ancillary information may be difficult.

The overall accuracy attained by this classification model was 84.31 % with a kappa statistic of 0.8294.

This level of accuracy should be suitable for most earth resource management purposes. Certain

classes, e.g. water and forest plantation, have higher accuracy than other classes (see Table 3.2). This

may be due to the availability of appropriate and accurate variables (data) or the nature of the classes

itself. While not effective for cultivated and unimproved grasslands, the use of vegetation indexes,

topographic and spectral information for indigenous forests resulted in acceptable classification

accuracy.
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The integration of ancillary and spectral information proved to be effective for most land cover classes

and resulted in higher accuracies. Although aerial photographs of the study area would have been

suitable to further assess the accuracy of the model, they were not available. Visual interpretation as

well as comparison with other classifications (NLC 94 and CGA (2003)) show that the model

performed well in terms of its overall accuracy. The results are encouraging, but more research is

needed to further improve accuracy.

4.2 DISCUSSION

This study shows that the use of expert systems for the NLC or similar projects is feasible. These

systems allow users to generate local objective-specific land cover classes without having to do lengthy

data preparation and manipulation prone to error generation. They are especially suitable for such

projects because they will ensure that the classification process is transparent and that the data is

standardized, which will improve comparability of classification results in different areas and times.

Expert systems also provide the mechanism for making all the information related to land cover/use to

be significant in the classification process. This becomes more applicable for land cover/use categories

at Level III. For example certain land use classes are not supposed to be located in close proximity to

each other (e.g. industrial and educational built-up areas). Such rules can be used in expert systems to

guide the classification process.

Considering that most decision makers often lack the necessary technical abilities to perform land

use/cover classification, expert systems can be automated and customized to provide those in authority

an ability to generate project specific land cover/use classes. The supply of data layers (that include

spectral clusters, ancillary information and training data, which can provide a great deal of information)

and metadata of the rules, both in terms of spatial and textual format, via the Internet can provide users

with the flexibility to download both the database variables and rules and to even make simple for

modification their own purposes (Collin et al. 2000). Since the Internet has revolutionized GIS, such a

set-up might provide the user with a quick preview of land cover for a specified area.
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4.3 FURTHER RESEARCH

Many land cover/use classes, such as cultivated lands and settlement areas are affected by topography.

Topographic indices (e.g. slope and local relief) need to be explored to develop a model for use as

ancillary information. Texture has also been very useful ancillary information and textural classifiers

can be used in expert models. Combination of such models with other information such as vegetation

indices or synthetic bands can prove to be effective. The assimilation of such information in techniques

such as object-oriented classification is untapped potential. Object-oriented image classification as

currently implemented only in the eCognition Imaging software package (Baatz et al. 2002) is

algorithm is ideal for the hierarchical segmentation of a target area. In addition to speeding up the

classification process, object-oriented techniques might reduce the number of variables (ancillary

layers) and rules needed in a classification process. Object-oriented expert systems can prove to be

superior to pixel based expert systems, as they can incorporate functional aspects of land cover classes.

Moreover pixel based systems can result into more confusion of pixels; since pixel based systems

operate at pixel level.

Further research in the area of building expert systems implemented in object-oriented packages is a

worthy future research avenue.

4.4 CONCLUSIONS

Land cover classification is a lengthy process that starts with choosing appropriate imagery for the land

cover objects in a classification scheme. There are numerous techniques available; most of which are

implemented in remote sensing image processing software. Broadly, image classifiers may be divided

into parametric and non-parametric. Although the non-parametric classifiers are known to be more

flexible, giving the analyst the opportunity to interact with the classification process, most of them are

based on complex algorithms, such as neural networks and fuzzy classifiers.

The expert classification model developed in this study is simple to implement and has an easily

interpretable logical structure of sub-models that can be modified without major restructuring. In

addition, its modular structure is easy to understand and robust.
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The use of such a classification model within a standardized framework ensures the development of a

database that will enable users to easily share classification models and results. The use of expert

systems is therefore feasible and highly suitable for National Land Cover (NLC) projects.
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Appendix A: Tasseled Cap coefficients for Landsat 7 ETM+ at-satellite
reflectance.

Index Band 1 Band2 Band3 Band4 Band 5 Band 7

Brightness 0.3561 0.3972 0.3904 0.6966 0.2286 0.1596

Greenness -0.3344 -0.3544 -0.4556 0.6966 -0.0242 -0.2630

Wetness 0.2626 0.2141 0.0926 0.0656 -0.7629 -0.5388

Fourth 0.0805 -0.0498 0.1950 -0.1327 0.5752 -0.7775

Fifth -07252 -0.0202 0.6683 0.0631 -0.1494 -0.0274

Sixth 0.4000 -0.8172 0.3832 0.0602 -0.1095 0.0985



Appendix B: Sub-set images of the classification map and their corresponding
composite false colour (4-5-3) satellite images.
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