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Abstract

CubeSats have become popular due to their simplified model that reduces development

time and costs. The standard, however, suffers from limitations imposed by the small form

factor. Research is undertaken at different levels to improve the performance of CubeSats,

of which one is on the communication subsystem. The question is how the throughput per

satellite-to-ground communication session can be improved using modified error correc-

tion methods.

Previous work at the ESL proposed a hybrid protocol design of the AX.25 and the FX.25,

known as the AFX.25, whose simulation results suggested improved performance over pure

protocol implementations. The AX.25 protocol has an error checking functionality but with-

out error correction, so the FX.25 was introduced as a wrapper to the AX.25 to provide for

error correction. Inasmuch as the AX.25 is popular among university CubeSat designs, it was

necessary that an investigation be done to evaluate if it was the best choice of implemen-

tation. The CCSDS Telecommand protocol was chosen for performance evaluation against

the AFX.25 due to its functionality which is closer to the FX.25. The evaluation was based on

simulation and hardware complexity analysis. SatSim was used as a satellite network simu-

lation environment. The results showed that the AFX.25 is a better choice over the CCSDS

TC.

The AFX.25 hardware design and implementation was therefore considered on a Field Pro-

grammable Gate Array (FPGA). The FPGAs’ parallel processing capability makes them an

attractive choice of implementation for error encoding and decoding. The adaptive proto-

col was designed to switch between no error correction (AX.25) and error correction (FX.25)

where the number of correctable errors is 8 using the Reed Solomon code (255, 239). The

switching from AX.25 to FX.25 is determined by the packet loss rate while switching from

FX.25 to AX.25 is influenced by the packet success rate. The system was implemented on a

Fusion M1AFS1500 development board interfaced with a half duplex RF board.

Tests were carried out successfully on a terrestrial testbench which modelled a typical satel-

lite pass.
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Uittreksel

CubeSats het populêr geword weens hulle vereenvoudigde model wat beide ontwikkelingskostes

en tye verminder. Die CubeSatstandaard het egter beperkings weens die klein formfak-

tor. Navorsing word op verskeie vlakke uitgevoer om die effektiwiteit van CubeSats te ver-

beter, met die kommunikasiesubstelsel wat ook aandag geniet. ’n Sleutelvraag is hoe die

datadeurset van ’n satelliet tot grondstasie kommunkasie sessies verbeter kan word met spe-

siale metodes om datafoute te verhoed.

Vorige werk by die ESL het ’n hibriedeprotokol ontwerp vir AX.25 en FX.25 voorgestel, bek-

end as AFX.25 wat se simulasieresultate better gelyk het as die suiwer protokol toepassings.

Die AX.25 protokol kan foute optel, maar kan nie hulle regstel nie, dus was FX.25 voorgestel

as ’n aanpassing op AX.25 om data ontfouting uit te voer. Alhoewel AX.25 reeds populêr is

vir Universiteitstoepassings, is ’n ondersoek ingestel om te bevestig of dit die beste keuse vir

implementings is. Die CCSDS protkol is gekies vir hierdie vergelyking teenoor AFX.25 aange-

sien die protokol se werking soortgelyk aan FX.25 is. Die vergelyking het gebruik gemaak van

simulasies en ’n analise van die hardewarekompleksiteit. SatSim was gebruik as die satelliet-

netwerk simulator. Die resultate het voorgestel dat AFX.25 better resultate lewer as CCSDS

TC.

Die AFX.25 hardewareontwerp en implementering was dus gedoen vir ’n Field Programmable

Gate Array(FPGA). Die vermoë van FPGA’s om parallele verwerking uit te voer maak dit ’n

goeie keuse vir fout enkodering en fout dekodering. AFX.25 was ontwerp om te skakel dussen

’n protokol sonder data ontfouting (AX.25) en een met data ontfouting (FX.25) waar die ho-

eveelheid herstelbare foute 8 is deur gebruik te maak van Reed Solomon kode (255, 239). Die

oorskakel vanaf AX.25 tot FX.25 word bepaal deur die tempo waarteen pakkies verlore gaan

terwyl die oorskakel vanaf FX.25 tot AX.25 word bepaal deur die tempo waarteen pakkies

suksesvol gestuur word. Die sisteem was geïmplementeer op ’n Fusion M1AFS1500 on-

twikkelingbord wat gewerk het met ’n half duplex RF-bord.

Toetse is suksesvol uitgevoer op ’n aardstoetsbank wat ’n tipiese satellite kommunkasie sessie

gemodelleer het.
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Chapter 1

Introduction

1.1 Problem Analysis

Back in 1999, the CubeSat co-founders1 envisioned the CubeSat standard as an educational

tool to enable students to have hands-on experience with space. CubeSats can be designed

and built in a relatively shorter period and with smaller budgets than traditional satellites.

Seventeen years on from then, the CubeSat community has seen remarkable progress with

the standard, with high schools, universities, non-governmental organizations and govern-

ment agencies flying their CubeSat experiments into space. Furthermore, CubeSats are in-

creasingly being adopted at industry level, with the likes of Planet Labs[12] on the front line.

However, much like every invention, the CubeSat suffers some limitations. The cube surface

area does not allow the mounting of bigger solar panels, resulting in limited available power

which imposes direct limitations on the CubeSat subsystems. Amongst the subsystems, the

CubeSat has a communication subsystem which transmits to and receive information from

other satellites or ground stations. The communication subsystem, which typically con-

sumes a bigger percentage of power, requires a careful design to work within the tight power

budget. This is even more necessary considering that CubeSats orbit the Low Earth Orbit

(LEO) which results in narrow communication windows for space-to-ground communica-

tions.

Consider a CubeSat on a circular LEO2 orbit as shown in Figure 1.1. Each satellite pass will

last up to a maximum of 10-15 minutes for typical educational missions. Chu et al. [14]

pointed out that approximately 78% of the communication window time yields useful com-

munication data because at lower elevation angles the signal path loss is very high [14].

1Professors, Jordi Puig-Suari and Bob Twiggs[11]
2LEO has altitudes between 160km and 2000km [13]

1
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Acquisition and Loss of Signal for a Satellite to Ground Communication link

The satellite to ground station link is dynamically changing from the Acquisition of Signal

(AOS) to the Loss of Signal (LOS) due to changes in the clearness of line of sight, antenna

pointing errors, signal shadowing by obstacles, signal propagation distances between the 2

communication nodes [15]. This results in regions of severe signal degradations, better and

finally good signal reception. In Figure 1.1, regions A and A’ indicate regions where the signal

to noise ratio is low and increases until the point of ’clear’ line of sight in B. To guarantee

a certain quality of service, regions A and A’ requires a satellite’s communication subsys-

tem that implements an open-loop design (Forward Error Correction (FEC) protocol) to re-

cover the lost packets for real time applications or a closed-loop (Automatic Repeat reQuest

(ARQ)) design for time-insensitive applications or a combination of the two. In an optimal

system, the open-loop module will execute first in an attempt to correct corrupt data pack-

ets of which upon failure will request retransmissions using the ARQ. Retransmissions come

with round trip delays, thus this research work considers an open loop design.

A satellite communication session throughput analysis for an FEC enabled protocol and a

non-FEC protocol for a 13 minutes satellite pass is shown in Figure 1.2. The protocol with

error correction capability performs better than non-FEC in regions A and A’, however; in

region B the non-correction protocol outperforms the correction protocol. This is owing to

the fact that at region B the packet loss rate is low, the FEC redundancy bits deteriorates the

throughput since they are not necessary at this interval.
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A B A’

Figure 1.2: Theoretical Throughput for a FEC and non-FEC protocol over a satellite pass [1]

Several authors have adopted different approaches for optimal use of the bandwidth for

maximum throughput in scenarios related to Figure 1.2 which is covered in the next section.

1.2 Related Work

Earlier works [16][17][18][19][20][21][22] have explored the subject for time-varying and noisy

channels. Two submissions are prevalent, firstly using a rate adaptive code and secondly a

hybrid with an ARQ protocol. Few literature sources could be found which are directly appli-

cable to CubeSats, thus the following discussion covers mostly wireless channels as in many

ways their principle of operation can be applicable to CubeSat LEO communication.

Emmelmann and Bischl [17] presented a hybrid protocol which switches between three

protocols, a non-error correcting code (unnamed), a Reed Solomon (RS)(63,53) and a 1/2

rate turbo code concatenated with a RS(63,53) scheme for an Asynchronous Transfer Mode

(ATM) based LEO network to provide a fixed data rate. Their protocol was simulated on

FreeBSD[17]. However, the published reference does not give all the switching parameters

and implementation details. It only mentions that the switching is based on the signal-to-

noise ratio and the channel error rate at a given instance. On a video multi-cast application,

Lamoriniere et al. [20] presented an error correction hybrid solution using four schemes, the

adaptive XOR-based FEC, a RS based FEC, an Unequally Interleaved FEC, and a PRO-MPEG.

The switching control is based on two performance metrics, the recovery ratio and efficiency
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ratio which give indicators of recovered packets and total successfully received packets. A

loss ratio is calculated each time, and a suitable scheme is selected.

Littman [16] proposed that a 3-state Markov model be used for the channel model with a

code selection mechanism. The states represent the channel as bad, intermediate, or good,

based on throughput and Packet Error Rate (PER) metrics. The code is concatenated, with a

Rate Compatible Convolutional Code as an inner code, and a RS code as an outer code.

The Reed Solomon is seemingly a popular choice when implementing error correction for

burst errors. Amongst others, Ahn et al. [19]’s design on wireless sensor networks incremen-

tally infers an appropriate RS code rate based on the channel condition with a lower code

rate when packet loss rate increases and a higher code rate for an error free zone. The design

had four discrete levels, the RS(106,100), RS(112,100), RS(118,100), and RS(126, 100).

The above works, though, focused on noisy wireless networks but were not explicitly concen-

trating on CubeSat communications to cater for computational and bandwidth constraints.

For example, implementing the algorithm proposed by Ahn et al. [19] would be heavy on real

estate cost on dedicated hardware. Most of the designs are simulated at a higher level C im-

plementation [19][17], which could be optimized when implemented on hardware. A Field

Programmable Gate Array (FPGA) implementation of a hybrid Reed Solomon decoder was

implemented by Shimiz et al. [22] which is reconfigurable with four RS codes, RS(255,253),

RS(255,251), RS(255,249), RS(255,247) with error correcting capabilities of 1, 2, 3, and 4 re-

spectively. The strategy was to use the Peterson algorithm in a shared matrix solver tech-

nique for the four codes to find the error locator polynomial. However, the Peterson algo-

rithm is not the best in terms of efficiency in finding the error locator problem [23].

At the Electronic Systems Laboratory (ESL), Le Roux [1] in his work on a satellite network sim-

ulator, proposed a hybrid protocol of AX.25 and FX.25, which he called AFX.25. The principle

of operation of AFX.25 is that, the FX.25 accounts for communication intervals of low signal

to noise ratio and for high signal to noise ratios, the protocol state switches to AX.25. The

choice of AX.25 is justified considering the 2015 survey on communication systems for Cube-

Sats done by Klofas [9] which enlisted the AX.25 as the first amongst the non-proprietary

protocols. The second larger share belongs to the CCSDS protocols at 6.06%. The numbers

at a glance can be deceiving without a close investigation on the protocols. It was found that

the Cubesat Space Protocol(CSP) uses the CCSDS standards at its layer 2[24]. Therefore, the

CCSDS has a share of 6.06% when the 2.61% for the CSP is added. It was followed by the

Internet Protocol over Digital Video Broadcasting via Satellite Second Generation (IP over

DVB-S2), Mobitex, Cubesat Space Protocol (CSP) protocols and others as shown in Table 1.1.
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Protocols Percentage of CubeSats

AX.25 52.17 %
AX.25 plus CW beacon 25.22 %
IP over DVB-S2 5.22 %
CCSDS 3.48 %
Custom 3.48 %
CSP 2.61 %
Mobitex 2.61 %
CW 1.74 %
AX.25/SRLL plus beacon 0.87 %
AX25/Mobilex 0.87 %
FX.25 0.87 %
NSP 0.87 %
HDLC 0.87 %
CSP/CW 0.87 %
TI 0.87 %

Table 1.1: CubeSat Non-proprietary Communication Protocols Summary. Adapted from the
CubeSat Communication System Table, Appendix A by Klofas [9]

1.3 Research Question

Le Roux [1] showed experimental results which indicate that FX.25 in a hybrid setup with

AX.25 can have an improved overall throughput. Is there anything better than AX.25/FX.25

combination? If the experiment done by Le Roux [1] is to be considered, how feasible is that

implementation on hardware?

1.4 Research Statement

As observed from Table 1.1, a couple of studies[25][9] suggest that AX.25 is trendy amongst

CubeSat developers. It is worth noting though that the CCSDS standard protocols also have

their share not only on small satellites but also on the traditional spacecrafts. This fact is de-

rived from considering that the CCSDS agency provide their protocols as standards which

might grow in numbers amongst CubeSats in the years to come. Due to its architecture

[26] which is complex in nature, the CCSDS is not suited for smaller designs. In this work,

an AX.25/FX.25 adaptive FEC protocol is designed and implemented on a dedicated Fusion

MFS1500 FPGA board.

1.5 Research aim and objectives

The overall aim of the project was to design and implement a FPGA based FEC adaptive data

link protocol for CubeSats.

Thus, the objectives of the research are:
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(i) Evaluating the CCSDS TC against the AX.25/FX.25/AFX.25 performance over a satellite

pass.

(ii) Implement an adaptive version of the better performer between the AFX.25 or the

CCSDS TC protocol on a FPGA.

(iii) Experimentally validate the hybrid protocol’s performance and cost of implementa-

tion.

1.6 Design requirements

With the project aim and objectives outlined, there are design requirements which are based

on the nature of this project. This work falls under the satellite research at ESL and as an

educational based project, the following requirements are implied:

• CubeSat standard: The first requirement was that the communication module must

be miniaturised to ensure that the whole CubeSat is within the standard volume and

weight. Secondly, the power utilisation of the module must be within the CubeSat

power supply allocation.

• Amateur radio focus: Much like South Africa’s first satellite which was developed at

Stellenbosch University’s Electronic Systems Laboratory (ESL) laboratory and launched

in 1999 [27] (which used amateur radio communications), this project aimed at mak-

ing use of the amateur radio community intellectual resources as much as possible.

• Open standard: Although there are various protocols available, this work was confined

to open standards to reduce financial barriers and increase accessibility.

• FPGA design: The design and implementation of the protocol was aimed at reaping

the benefits of system-on-chip designs.

The project is constrained to improving the performance of communication for CubeSats

from a layer 2 design perspective utilising error coding and control. At protocol level, the

data link protocol has the potential of adding an improvement in performance through er-

ror correction.

As a limitation, the project testing will be performed by computer simulation and on a ter-

restrial equivalent environment which may compromise the exactness of the protocol per-

formance from what it would be in outer space.
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1.7 Value of project

The research work will contribute to the improvement of the CubeSat communication sub-

system design by providing recommendations for an adaptive FEC protocol, which brings

about an improvement in the overall throughput per session. As per the design require-

ments, the development recommendations will be more applicable to CubeSat projects.

1.8 Overview of this work

Chapter 1: Introduction

This chapter provides an introductory section of the work; the problems faced in CubeSat

communications are highlighted, the project scope is narrowed to adaptation only with er-

ror correction schemes, the current research relating to adaptive FEC and CubeSat protocols

is discussed. In response to the research question(s), the AFX.25 was found to be a better

choice which leads to the AFX.25 adaptive design. The project aims were outlined, with de-

sign requirements and finally the project contribution.

Chapter 2: Simulation Environment

This introduces the simulation tools for a satellite network. A choice of SatSim is made as a

simulation tool for this project after a comparison with other network simulators. The chap-

ter ends with a discussion of the theory of a communication link budget, then how it was

designed and implemented on SatSim.

Chapter 3: Protocol Simulation and Evaluation

The chapter on protocol simulation compares the protocol performances of the AFX.25 and

the CCSDS TC which determines the protocol that is implemented on hardware in the next

chapter.

Chapter 4: Adaptive AFX.25 Implementation

The chapter on protocol simulation and evaluation suggested that the AFX.25 was a better

choice than the CCSDS TC. This chapter first introduces background literature for FX.25 cor-

rection codes, then the protocol design, and implementation on FPGAs. The chapter ends

with discussion of results from the implementation.

Chapter 5: Conclusion and Future Work

Having covered the main aspects of the work, chapter 5 brings a summary of what has been

achieved, and suggests what aspects of the project can be improved as part of future work.
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Chapter 2

Simulation Environment

This chapter introduces the simulation tool that is used in the protocol simulation in the next

chapter and key fundamentals for channel estimation and its modelling in the simulation

environment.

2.1 Communication Simulation

2.1.1 Simulation Background

It was necessary that a satellite network simulation framework be selected for the analysis.

The satellite network simulator in question must provide an environment of propagating

satellite objects while allowing network communication between the dynamic node(s) and

stationary ground stations. The network framework must allow for easy ’plug and play’ ad-

dition of protocols and the customisation of existing ones. Moreover, event based frame-

works/simulators are better estimators of realistic network performance because events are

generated and executed based on the state of the preceding events instead of timed events.

Several tools are available both on an open source and commercial basis ranging from frame-

works to fully fledged simulators offering different features.

2.1.1.1 Network Simulator (NS3)

A series of network simulators under the codename ns have been released over the years

from ns-1, ns-2, ns-3 under the public licence [28]. The ns3 which is the current active release

is a discrete computer network simulator written in C++ which supports Internet Protocol

(IP) and non-IP networks [29]. The ns3 does not officially support satellite communications,

a third-party plug-in, the satellite network simulator, sns3[30] can be considered for satellite

simulations. The challenge with the ns is that its scripting language is very complex which

present a time-consuming task to master.

8
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2.1.1.2 OMNET++

A similar public source discrete network simulator written in C++ is OMNET++[31]. It is a

component-based simulation tool that allows network components to be assembled into

larger network components with a network description language (NED) that separates the

network interface design from the underlying functionality implementation on C++ class

files. The challenge to using OMNET++ is that it is not a dedicated network simulator which

presents a steep learning curve for new developers.

2.1.1.3 OPNET IT Modeller

OPNET IT Guru is another discrete event network simulator provided under a commercial

licence[32]. OPNET provides a powerful graphical support for users to create network enti-

ties and topologies whilst providing a programming structure for advanced users. The com-

pany that develop the product provides an academic version of the simulator which has a

certain maximum number of allowed events in a simulation.

2.1.1.4 SatSim

SatSim is a satellite network simulation tool developed by Le Roux [1] for his Master’s work

at the ESL. It is an event driven simulator written in Python based on the Simpy[33] event

framework. This brings about ease in terms of simulation setup time since Python has an

intuitive syntax and a broad developer community. The event driven model is superior to

a time driven simulation because data packets are generated, queued and transmitted not

at intervals but using the concept of queuing theory. An event only occurs when the previ-

ous one has been executed completely and pushed out of the queue stack. The spacecraft

objects can be propagated using the PyEphem propagator or the Python-SGP4 propagator.

The PyEphem[34] is a Python port of the XEphem astronomical package which was originally

written in C. The Python-SGP4 package is a pure Python implementation of the SGP-4.

SatSim was selected as a choice for simulation because unlike the other simulators, it comes

pre-packaged with the AX.25, FX.25 and AFX.25 protocols and allows for an easy addition of

new protocols.

2.1.2 SatSim Architecture

SatSim has a modular structure which is presented below:

• Graphical User Interface (GUI): SatSim provides a GUI which can be used to con-

figure simulation parameters or to visualise an animated simulation. The configura-

tion allows for each node design at a physical layer (antenna parameters, modulation

scheme, frequency, elevation, propagation models, etc), at data link layer (the coding

protocols) and at application layer (data generation and scheduling).
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• Debug: During a simulation, the state of a network (transmission and reception) can

be viewed from the console output.

• Data Logging: The packets transferred, lost, and received with and without error are

logged in a file which can be exported to a .csv file.

• Graphing: SatSim provides a graphing utility driven by the Matplotlib library for per-

forming data analysis during or after the simulation.

• RF Channel: To properly model a wireless scenario, the simulator provides the RF

channel module which propagates the packets. The packets/bits will be corrupted

based on the random noise generator, the current signal to noise ratio computed from

the link budget, and the error rate.

• Node Objects: Each spacecraft/ground station is modelled as a simulation object with

propagation model and an elevation map. The propagation model propagates the

satellite in simulated time and provides the satellite’s positional information for the

RF Channel module. Each node models the physical characteristics of the transmit-

ter/receiver, the antenna properties, the modulation schemes, as well as the routing

and coding schemes.

2.1.3 SatSim Programming Interface

The previous subsection 2.1.2 introduced a simulation option at a higher level, the GUI. For

more detailed simulations, SatSim provides a scripting interface that allows for more cus-

tomisation of simulations. The scripting allows for more control of the simulation parame-

ters which can speed up the simulation, for example, allowing the simulation processes to

be distributed among available processor cores in a multi-core computer. The scripts are

written in Python. The scripting interface also allows for creating of new libraries. The simu-

lator is shipped with a package of pre-assembled scripts that can be modified to suit certain

simulation requirements. Specifically, for this work, SatSim provides libraries for encoding

and decoding AX.25, FX.25 and AFX.25 protocols. The protocol classes are sub-classes of the

base protocol super class which provides generic protocol definitions and functions.

2.2 Link Budget Simulation

2.2.1 Link Budgeting Theory

The basis for performance comparison for the protocols is the data throughput, which is a

function of the quality of service, the Bit Error Rate (BER) which is dependent on the modu-

lation scheme and the signal-to-noise ratio.
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A selection of RF modulation schemes with corresponding BER equations are given in Table

2.1.

Table 2.1: RF Modulation Schemes and BER equations. Adapted from Ref [10]

Modulation

Scheme

Description BER Bit Per

Symbol

No Of

Symbols

BPSK In BPSK, two waveforms

which are 180◦ out of phase

are used to represent either

a 0 or 1

(1
2

)
erfc

(√
Eb
No

)
1 2

QPSK The QPSK has 4 symbols

which are modulated using

4 waveforms which are π/2

rad out of phase

(1
2

)
erfc

(√
Eb
No

)
2 4

M-ary PSK The number of symbols, M

is greater than 4. Each sym-

bol is modulated by a wave-

form that is shifted 2π/M

out of phase

(1
k

)
erfc

[√
k Eb

No
sin

( ı
M

)]
k M

FSK M waveforms of different

frequencies are used to rep-

resent digital data.

(M−1
2

)
erfc

(√
k
2

Eb
No

)
k M

MSK The MSK waveform can be

represented as an FSK with

two signalling frequencies

to represent data. It has a

BER like that of QPSK

(1
2

)
erfc

(√
Eb
No

)
k M

ASK Equally spaced amplitude

waveforms are used to

transmit digital data. If the

system is coherent (phase-

locked to the received

signal), it can operate as

a unipolar, detecting only

positive amplitudes or bipo-

lar which detects positive

and negative amplitudes.

Unipolar BER,
1
k

M−1
M erfc

(√
3k

2(M−1)(2M−1)
Eb
No

)
Bipolar BER,(1

k

)(M−1
M

)
erfc

(√
3k

(M2−1)
Eb
No

)
k M
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erfc is the complementary error function[35] defined by

erfc(x) =
2p
π

∫ ∞

x
e−t2

dt (2.1)

The Eb/No is the energy per bit to noise power density ratio, which determines how strong

the received signal is and is given by the equation[15]:

Eb

No
=

PLlGtLsLaGr

kTsR
(2.2)

where

P = transmitter power,

Ll = transmitter to antenna loss,

Gt = transmitter antenna gain,

Ls = free space loss,

La = transmission path loss,

Gr = receiver antenna gain,

k = Boltzmann’s constant,

Ts = noise temperature,

R = data rate

Figure 2.1: Basic satellite-ground communication configuration

The free space loss, Ls depict the losses due to spreading of the signal from node 2 to node 1

[36] as shown in Figure 2.1, thus is given by the relation:

Ls =

(
4πd

λ

)2

(2.3)

where
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d = range between the 2 nodes

λ = wavelength of the signal

and,

λ =
c

f
(2.4)

where

c = speed of light

f = signal carrier frequency

The space-earth link can be degraded by atmospheric conditions which include absorption

in atmospheric gases, scattering and depolarization by water, precipitation ice droplets, slow

fading, and attenuation by local environment[37]. The International Telecommunications

Union (ITU) provides an algorithm for calculating the the losses due these effect. However,

for this project the path loss is assumed at 0 dB because these effects are critical for frequen-

cies above 1 GHz. Rain, fog and clouds can also weaken the signal strength especially at high

frequencies[37], but it is not easy to model weather conditions for the dynamic link. The

project will assume clear weather conditions.

The antenna gain[15], G is defined by

G = η

(
4π

λ2

)
A (2.5)

where

η = efficiency of the antenna

λ = signal wavelength (m)

A = area of the antenna (m2)

λ =
c

f
(2.6)

where

c = speed of light

f = signal carrier frequency

The system noise temperature, Ts accounts for all the noise temperature from thermal ra-

diation of objects within the range of view of the antenna, from losses in the antenna and

within active and passive components of the receiver[15]. It is generally defined as

Ts = (TA ×L) + ((1−L)×TL) + ((F−1)×T0)

where
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TA = antenna noise temperature

TL = feed and other passive components noise temperature

L = antenna feed loss

F = receiver noise figure

T0 = reference temperature = 290 K

2.2.2 Link Budget Design

The RF channel link budget was designed to be as follows[1]

From equation 2.2, the transmitted power (P ) and the data rate (R) are inputs to the simu-

lation. The antenna gains are dynamically computed within the simulation with the aid of

antenna gain maps which evaluates the gain value from the map using the current position

of the satellite relative to the ground station[1]. Each gain map graphic represents an an-

tenna radiation pattern in form of a grey-scale pixel image. Each pixel color is mapped to a

different gain value. The full antenna mapping algorithm can be found in Ref. [1].

Combining equations 2.3 and 2.4, and substituting c = 3×108, Ls becomes

Ls =

(
4πdf

c

)2

= 20log(d) + 20log(f)−147.55 dB (2.7)

From ref. [15], Ll = 0.5dB . From ref. [1], Ts = 412.037 K , k = 1.38066×10−23 and polarisation

and implementation losses, Ladd = −5 dB .

The link budget is thus,

Eb

N0
= PdB + Ll dB + Gt dB + Ls dB + La dB + Gr dB + 10log(1.38066×10−23)

+10log(412.037) + 10log(R) + Ladd

= 10log(P) + 0.5 dB + 10log(Gt)−20log(d)−20log(f) + 147.55 dB−0dB

+10log(Gr)−10log(R)−10log(1.38066×10−23)−10log(412.037)−5

(2.8)

2.2.3 Error Modelling

The channel is modelled as a Binary Symmetric Channel (BSC) whereby the probability of

a bit being flipped is not dependent on previous occurrences[7]. The reception of bits is

thus a memoryless model which takes one bit at a time. A bit T b
i is propagated through the

channel with a probability of being flipped, p and is received correctly with probability 1−p.

The received bit, Rb
i is given by:

Rb
i = Tb

i + Nb
i (2.9)

where Rb
i ,T b

i , N b
i ∈ {0,1}. N b

i is the channel noise which can be inflicted on the original bit

via a modulo 2 addition[38]. The likelihood function given by,

P(Rb
i |Tb

i ) =

(
1−p if Rb

i = Tb
i ,

p, if Rb
i 6= Tb

i ,
(2.10)
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gives a good error approximation at bit level. Given a communication scenario, one may be

interested in the number of corrupted bits, k in a packet of n bits. Such a sequence {Ni , i ∈
Z≥ 0} is a Bernoulli random process where a bit is either in error or not[39].

Therefore, the probability that k bits are in error in a n-sized packet is given by:

P(k bits in error in n bits) =
n!

k! (n−k)!
pk(1−p)n−k (2.11)

2.2.4 Implementation on SatSim

To generate channel noise, the value of the link budget equation 2.8 must be computed and

combined with the bit error rate equation selected from Table 2.1. The other variables of

equation 2.8 are based on the simulation configuration except the antenna gains and the

range between the two nodes which are dynamic throughout the simulation. The propa-

gation model computations play a key role in computing the two categories of variables.

Antenna gain maps are represented as gain maps in the simulator which are attached to

every transmitter and receiver. The elevation and azimuth computed from the spacecraft’s

position vector relative to the ground station is used to map the right pixel in the gain map.

Depending on the colour of the pixel, the antenna gain is calculated. Each ground station

has an elevation map to model obstacles which, when combined with the node’s elevation

azimuth, determine whether there is a line of sight. Details on the computation algorithms

can be found in Ref. [1]. The range R is given by the difference in position between the com-

municating nodes.

Two possible noise generation techniques were considered, a packet level and a bit level

invalidation. The packet level noise generation corrupts a packet based on the packet error

rate. This approach is well suited for bigger simulations as it is time-efficient though it is

not necessarily a good representation of channel noise. The second technique which was

adapted for the simulations, was the bit level flipping which uses the BER to invalidate a bit.

This gives a much finer approximation of a realistic channel although it is computationally

heavy.
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Chapter 3

Protocol Simulation and Evaluation

3.1 Introduction

As per the first design objective, this chapter evaluates the CCSDS TC, AX.25/FX.25 per-

formance over a satellite pass. The CCSDS protocol stack comprises of three main data

link layer protocols, the Telemetry(TM), the Telecommand(TC) and the Advanced Orbiting

Spacecraft (AOS) protocols[26]. The TC was a choice for simulation over the TM and AOS

due to its minimalistic implementation and its similar functionality to FX.25. This chapter’s

investigation should enable the identification of the protocol that yields a better throughput

that will lead to modifying it to adapt dynamically throughout the changing channel condi-

tions.

3.2 AX.25

3.2.1 AX.25 Definition

The AX.25 protocol is an amateur radio protocol that ensures link layer compatibility be-

tween stations irrespective of the upper layer employed. Of interest to this work, are the data

link layer and the physical layer as depicted in Figure 3.1. The Segmenter breaks units of

Figure 3.1: AX.25 Protocol Stack. Adapted from AX.25 Specification Report [2], pg.2

16
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data into smaller units if they exceed the maximum number of allowed information units for

the frame for transmission. On the receiver, the de-segmenter reassembles the segments,

and delivers them to upper layers[2].

The Management Data Link provides all the necessary parameter negotiation required in a

communication session [2] between two nodes.

Multiple data links are multiplexed by the link Link Multiplexer [2] so they can share the

same RF channel.

AX.25 offers three general types of frames, the information frame (I frame), supervisory frame

(S frame) and the Unnumbered frame (U frame)[2]. Each frame is made up of the fields as

shown in Figure 3.2.

Figure 3.2: AX.25 Frame types. Adapted from AX.25 Specification Report [2], pg.6

Flag Field: The flag field is an 8-bit long field that delimits the start and end of a packet. In

a multi packet transmission, one delimiter flag can be used to mark the end of a frame and

the beginning of another. The delimiter sequence is 01111110[2].

It is therefore not expected that a similar pattern occurs anywhere along the train of bits.

If the data contains the pattern, then the encoder performs bit stuffing. Bit stuffing inserts

a ’0’ bit after every contiguous five ’1’s. This implies that the receiver performs destuffing

whereby any ’0’ detected after five contiguous ’1’s is discarded.

Address Field: As the packet traverses through the network, the address field aids the packet

routing by providing the packet’s source and destination addresses, and optionally Layer 2

repeater subfields. Each subfield contains the amateur callsign and the Secondary Station

Identifier (SSID) [2].

In a non-repeater mode, the destination address is the callsign and SSID of the station which

the frame is destined for. Similarly, the source address will contain the source callsign and

the SSID of the sender.

The Layer 2 repeater allows more than one repeater to share the same RF channel. This is

achieved by appending an additional address subfield at the end of the address field.
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Control Field: The 1 or 2-byte Control field provides information about the type of the frame.

If bit 0 is ’0’, the frame is an I frame. If bits [0-1] are ’01’ or ’11’, the frame is an S or U frame re-

spectively. The other bits [2-7] or [2-15] contain the Poll/Final (P/F) bit and send and receive

sequence numbers for the S and I frames, whereas, for a U frame, the bits [2-7] or [2-15] are

the P/F bit and the modifier bits. The P/F bit is used a poll (request for a reply to a frame) or

a final (reply to the poll).

The Information frame is a general frame for sending payload data.

The Supervisory frame provides acknowledgement, retransmission and window control in-

formation.

The Unnumbered frame contains link maintenance data. Some U frames may have infor-

mation and PID fields.

Protocol Identifier (PID) Field: As the AX.25 is compatible with other high layer protocols,

the PID field which is only on I and UI frames stores information about the layer 3 protocol

implemented. A list of compatible layer 3 protocols is given in the Appendix, Table B.1.

Information(I) Field: The user payload data is stored in the Information field of the frame

whose size is variable up to 256 bytes. The I field is found in I, UI, XID, TEST and FRMR

frames.

Frame Check Sequence: Since data is transmitted between two different nodes, during which

the data may incur errors along the channel path, the Frame Check Sequence (FCS) field

contains a 16-bit Cyclic Redundancy Check (CRC) code for data validation. The FCS is trans-

mitted with the most significant bit first.

All other fields are transmitted with the least significant bit first[2].

A frame is invalid if its length is less than 136 bits including the delimiter tags, or if it is not

enclosed by the delimiters or if it does not have an integral number of octets.

The AX.25 can be operated in a connectionless mode where frames cannot be acknowledged

in a frame format known as the Unnumbered Information frame (UI frame). This is achieved

by setting the Control Field bits to correspond to the UI frame type. For full details on the

AX.25, refer to [2].

Retransmission Mechanism: Both the sender and receiver maintain counters for sequence

numbers from within the retransmission modules. Five state variables/numbers are used

in the retransmission algorithm, the Send State Variable V(S), Send Sequence Number N(S),

Receive State Variable V(R), Receive Sequence Number N(R) and the Acknowledge State Vari-
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able V(A). V(S) contains the number to be assigned to the next I frame. N(S) contains the

sequence number of the I frame transmitted[2]. V(R) is the next expected frame’s sequence

number. The N(R) sequence number is updated before sending an I or S frame to be equal to

the V(R). If the N(S) stored in the control field does not match the V(R) of the receiver station,

an error has occurred. A Selective Reject (SREJ) command is then transmitted in supervisory

frame format to the transmitter to request a retransmission. This condition is cleared upon

successful receipt of the requested I frame[2]. The V(A) contain the sequence number of the

last acknowledged frame.

3.2.2 AX.25 Implementation

For most CubeSat missions, the need for simplicity and reducing overheads is key, thus the

connectionless version of AX.25 was implemented in SatSim[1]. The connectionless mode

does not guarantee arrival of packets as it does not use of any error recovery methods, there-

fore the ARQ functionality is not used in this mode. In the connectionless mode, Unnum-

bered Information(UI) frames are used. The UI frame is shown in Figure 3.3.

Figure 3.3: AX.25 UI frame. Adapted from Ref. [2]

To use the UI frame, the Control field is set to 0x03 in the 8-bit mode according to the con-

figuration given by Table 3.1. The 16 bit FCS is generated using the CRC-16-CCITT generator

polynomial,

g(x) = x16 + x12 + x5 + 1

Control Field Type Type
Control-Field

7 6 5 4 3 2 1 0
Set Async Balanced Mode SABME Cmd 0 1 1 P 1 1 1 1
Set Async Balanced Mode SABM Cmd 0 0 1 P 1 1 1 1
Disconnect DISC Cmd 0 1 0 P 0 0 1 1
Disconnect Mode DM Res 0 0 0 F 1 1 1 1
Unnumbered Acknowledge UA Res 0 1 1 F 0 0 1 1
Frame Reject FRMR Res 1 0 0 F 0 1 1 1
Unnumbered Information UI Either 0 0 0 P/F 0 0 1 1
Exchange Identification XID Either 1 0 1 P/F 1 1 1 1
Test TEST Either 1 1 1 P/F 0 0 1 1

Table 3.1: AX.25 Control Field. Adapted from Ref. [2]
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The full details of the implementation can be found in the in the work "Development of a

satellite network simulator tool and simulation of AX.25, FX.25 and a hybrid protocol for

nano-satellite communications" by Le Roux[1].

3.3 FX.25

3.3.1 FX.25 Definition

As a means of facilitating error correction with AX.25, the amateur community introduced a

backward compatible extension protocol wrapper on the AX.25 frame, FX.25[3]. An FX.25

frame is constructed from an AX.25 frame by pre-adding a preamble and correlation tag

fields and appending a pad field, FEC check symbols, and a postamble field[3]. A FX.25

frame is backward compatible with the AX.25 in that any station with AX.25 decoder but not

FX.25 can decode the frames since the preamble and postamble will be discarded. A basic

FX.25 frame structure is shown in Figure 3.4.

PAD POSTAMBLE

FEC CODEBLOCK

PREAMBLE
CORRELATION

TAG

AX.25
PACKET
START

AX.25
PACKET

BODY

AX.25
PACKET

FCS

AX.25
PACKET

END

FEC CHECK
SYMBOLS

Figure 3.4: FX.25 basic frame format. Adapted from FX.25 Specification Report [3], pg.3

Preamble: The preamble block is a sequence of 01111110 bytes to enable receiver synchronisation[3].

A minimum of 4 bytes of the sequence is required.

Correlation Tag: A 64-bit correlation tag is used to indicate which FEC algorithm is used and

marks the start of a frame. Gold codes are used to generate the correlation tags, ensuring a

favourable auto- and cross-correlation. A list of correlation tags is shown in Table 3.2.

Table 3.2: FX.25 Correlation Tag Values. Adapted from FX.25 Specification Report [3], pg.7

Tag Correlation Tag Value FEC coding algorithm, number of information bytes avail-

able
Tag_00 0x566ED2717946107E Reserved

Tag_01 0xB74DB7DF8A532F3E RS(255, 239) 16-byte check value, 239 information bytes

Tag_02 0x26FF60A600CC8FDE RS(144,128) - shortened RS(255, 239), 128 info bytes

Tag_03 0xC7DC0508F3D9B09E RS(80,64) - shortened RS(255, 239), 64 info bytes

Tag_04 0x8F056EB4369660EE RS(48,32) - shortened RS(255, 239), 32 info bytes

Tag_05 0x6E260B1AC5835FAE RS(255, 223) 32-byte check value, 223 information bytes

Tag_06 0xFF94DC634F1CFF4E RS(160,128) - shortened RS(255, 223), 128 info bytes

Tag_07 0x1EB7B9CDBC09C00E RS(96,64) - shortened RS(255, 223), 64 info bytes

Tag_08 0xDBF869BD2DBB1776 RS(64,32) - shortened RS(255, 223), 32 info bytes

Tag_09 0x3ADB0C13DEAE2836 RS(255, 191) 64-byte check value, 191 information bytes
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Tag_0A 0xAB69DB6A543188D6 RS(192, 128) - shortened RS(255, 191), 128 info bytes

Tag_0B 0x4A4ABEC4A724B796 RS(128, 64) - shortened RS(255, 191), 64 info bytes

Tag_0C 0x0293D578626B67E6 Undefined

Tag_0D 0xE3B0B0D6917E58A6 Undefined

Tag_0E 0x720267AF1BE1F846 Undefined

Tag_0F 0x93210201E8F4C706 Undefined

Tag_10

Undefined Undefinedto

Tag_3F

Tag_40 0x41C246CB5DE62A7E Reserved

Pad: If the AX.25 packet does fit within the codeblock’s information length, the AX.25 is

padded with a sequence of the pad byte 0x7E. If the AX.25 is not byte aligned, then the last

bits of the non-byte aligned octet will be filled with the most significant bits of 0x7E.

FEC Check Symbols: The FEC field contains redundancy bits necessary for error recovery of

corrupted bits on the receiver.

FEC Codeblock: The FEC codeblock comprises the AX.25 packet (unaltered), padding bytes

(in the case where the length of the AX.25 packet and the number of FEC check symbols

is less than the required frame size for the code used. Based on the AX.25 frame and the

algorithm used, the FEC check symbols are generated[3]. The FX.25 error-correcting scheme

is based on variants of the Reed-Solomon codes.

Postamble: The FX.25 frame is delimited by a postamble which is a sequence of 01111110

bytes[3].

The FX.25 bytes are transmitted in least significant bit first mode. The full specification ref-

erence for FX.25 can be found ref [3].

3.3.2 FX.25 Implementation

In creating the FX.25 packet, the FX.25 developers[3] suggested a step-wise approach whereby

the packets are first bit stuffed, then passed to the Reed encoder to generate the parity bits

and then pushed to the RF channel.

Le Roux’s[1] implementation of the packet generator begins with 4 bytes of the sequence

0x7E forming the Preamble. A rolling window is used to detect the correlation tag. The RF

bits are pushed into a 64-bit memory, if the first byte is not recognised as a valid correlation

tag, it is chopped out and the bits are shifted to the left. The correlation algorithm requires a

90% matching of the received and expected correlation tag and after that the incoming train

of bits can be saved into the packet buffer. The packet is delimited by a 2-byte sequence of
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0x7E, the postamble.

Implementing the Reed Solomon algorithm as is on SatSim can increase in the overall sim-

ulation time due to its complexity. So, a modified approach for the error correction strategy

was adopted[1]. The receiver node computes the Hamming distance of the sent and received

bytes, and if the distance is greater than t for a t correction code, the packet is dropped, oth-

erwise the packet is fixed. Fixing the packet assumes the original packet that was transmitted

which is stored in the Tx copy buffer. This procedure is sufficient in a configuration where

the priority is to determine the performance of the code but not considering the amount of

time each code takes to correct the errors. This configuration is sufficient for this chapter

as the hardware design implements the encoding and decoding algorithms as per the Reed

Solomon specification.

3.4 AFX.25

3.4.1 AFX.25 Definition

AFX.25 is a hybrid of the AX.25 and the FX.25 protocols that switches to the FX.25 protocol

for noisy RF channels else it defaults to AX.25. The basic frame and error correcting control

mechanisms for AFX.25 uses the specifications for AX.25 and FX.25 as outlined in subsec-

tions 3.2.1 and 3.3.1 respectively.

Given that the protocol can operate as either AX.25 or FX.25, the protocol modes are rep-

resented as states, a and f for AX.25 and FX.25 respectively. The modes are particular to

the transmitter to determine which packet format to encode. The state change is driven by

the channel parameters from the receiver node. Both the transmitter and receiver manages

timers at 20-second intervals. The 20 seconds is an experimentally chosen interval after sev-

eral tests motivated by 2 reasons. Firstly, the interval must be wide enough not cause an un-

stable behaviour where the channel conditions are rapidly changing and the protocol mode

is continually changing to and fro between the protocols. The second reason is that the win-

dow is not supposed to be too wide such that significant changes in the channel could occur

and be cancelled out without being detected by the algorithm. On timer expiry, the receiver

node computes the channel performance parameter and sends a switching command to the

transmitter.

Assuming that the protocol mode is AX.25 at the interval t , the probability of the protocol

switching to FX.25 is given by 1−a and continues in AX.25 mode with probability a. Similarly,

the FX.25 mode will be retained for the next interval with probability f but changes to AX.25

with probability 1− f . The transitions are summarised in Figure 3.5.
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AX.25 FX.25

1−a

1− f

f
a

.

Figure 3.5: Protocol Transition States

If the mode is AX.25, the receiver calculates the packet loss rate given by:

Packet loss rate, la =
Packets received in error in t

Total packets received in t
(3.1)

If the packet loss rate is above than a set threshold, a switch command is sent to the sender

to switch to FX.25. The protocol packet loss threshold can be adjusted depending on the

quality of service required for the mission.

For the FX.25 mode, the parameter of interest is the packet success rate

Packet success rate, r (a)
s =

Error free packets received in t

Total packets received in t
(3.2)

The parameter is evaluated within the FX.25 state machine whereby, if the success rate goes

above the threshold, the channel is considered to have a sufficient link margin for AX.25.

3.4.2 AFX.25 Implementation

For a typical satellite pass, whose trajectory moves from acquisition to loss of signal, the

transmitter will transmit in an error recoverable state, the FX.25 mode, until a point where

the two nodes agree to switching to AX.25[1]. The receiver maintains a sliding window whereby

the number of dropped, corrected and error free packets received are logged. If the drop rate

falls below the threshold, the receiver sends a command frame to the transmitter negotiating

a switch to AX.25. The threshold must be chosen carefully so that maximum throughput is

achieved. A performance evaluation of different thresholds was necessary. Figures 3.6a and

3.6b show the switching points for randomly selected success rate thresholds of 0.6 and 0.95.
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(a) Switching point for 0.6 threshold (b) Switching point for 0.95 threshold

Figure 3.6: Throughput Curves for different BER for a 156 byte payload data

The total data received for each threshold for switching from FX.25 to AX.25 is given in Table

3.4.

Threshold AX.25 Data Received
(KB)

AFX.25 Data Received
(KB)

AFX.25 Improvement
over AX.25 (%)

0.6 319.96 338.74 5.87
0.95 319.39 344.53 7.87

Table 3.4: AX.25/AFX.25 Data Received over 400 seconds for different success rate thresholds

The 0.6 threshold causes the protocol to switch to FX.25 prematurely when the channel’s

probability of losing is still significant. This causes a drop in throughput as observed from

Table 3.4. The 0.95 threshold shows a better performance even though the protocol does not

switch immediately when the AX.25’s throughput becomes more than the FX.25’s.

Le Roux [1] implemented the decoding of packets in a layered-processing manner. If the

packet contains errors, it is forwarded to the FEC recovery module for error correction. How-

ever, for an AX.25 packet, if the packet was invalidated by channel noise, it cannot be recov-

ered since it has no FEC information bits. Such a packet will be dropped by the decoder.

Error free packets before or after error correction are moved to higher layers.

3.5 CCSDS Telecommand(TC)

3.5.1 Telecommand Definition

The TC protocol is part of the CCSDS space communications protocols reference model[26].

The TC can be used for ground-to-space or space-to-space communication links. The TC

protocol layer accepts data from upper layers, segment larger packets to reduce the proba-
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bility of the packets being invalidated by channel noise. The small packets serve well in pre-

serving the bandwidth in the case when the packet needs to be retransmitted, since only the

smaller segment will be retransmitted instead of the original big packet[4]. To avoid smaller

segments, data units that are smaller than the segment information limit are blocked to form

the standard segment size. The TC employs two strategies of error recovery which are ’go-

back-n’ type retransmissions by the Communications Operation Procedure(COP) and the

BCH error correction handled by the Synchronisation and Channel Coding sublayer.

The protocol performs its services in layered module architecture as shown in Figure 3.7.

Figure 3.7: TC Sending Node. Adapted from [4], pg.2-12

Applications from a ground station can send data simultaneously in a shared channel through

the Virtual Channel (VC) feature. Packets from different applications within the node are ver-

sioned with a packet version number which are multiplexed to share the Multiplexer Access

Point (MAP) channel. Similarly packets of different versions can share a single virtual chan-

nel by being multiplexed to have a new identifier. Virtual channels are inputs to the Virtual

Channel Generation which generates packet units called Transfer Frame (TF) and imple-

ments an ARQ window protocol for frame retransmissions for unacknowledged frames[40].

The structure of a TF is shown in the Figure 3.8.

Transfer Frame Primary Header: It is mandatory field with 8 subfields:

• TF Version Number(2 bits): Identifies the data unit as a TF frame, always ’00’

• Bypass Flag (1 bit): Indicates whether a frame is a Type A (sequence-controlled with

ARQ) or Type B(no retransmissions) frame.

• Control Command Flag (1 bit): Indicates whether the data field contains data or con-

trol commands.
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Figure 3.8: TC Transfer Frame. Sourced from Telecommand Space Data Link Protocol Rec-
ommendation Report [4], pg.4-1, pg.4-2

• Reserved Space (2 bits): Reserved for future use.

• Spacecraft Identifier (10 bits): The identifier for the spacecraft associated with the data.

• Virtual Channel Identifier (6 bits): Identifies the virtual channel

• Frame Length (10 bits): The number of bytes less than one in the packet.

• Frame Sequence Number (8 bits): The frame sequence number, N(S).

Data Field: The data field contains an integral number of bytes containing information up

to 1019 bytes or 1017 bytes if Frame Error Control field is present[4].

Frame Error Control Field: The All Frames Generation module performs the error control

procedure of adding an error control information if FEC is used[40]. The 16-bit error detec-

tion field is useful for double-checking undetected error from the Channel Synchronisation

and Coding layer, and it is optional. The FEC[40] is a CRC-16 with a generator polynomial

x16 + x12 + x5 + 1.

The receiver has a similar service architecture as Figure 3.7, to perform acceptance checks

and error correction, demultiplex virtual channels and extra packets. The receiving node’s

architecture is given in Appendix C.

Communications Operations Procedure (COP-1): The COP-1 Management specifies closed-

loop mechanisms to provide guaranteed service delivery. The sending node Frame Opera-

tion Procedure (FOP) transmits a TF to the receiving node, which perform acceptance checks

through the Frame Acceptance and Reporting Mechanism(FARM) and report back to the

sender using Communications Link Control Words (CLCWs)[4].

Synchronisation and Channel Coding Sublayer

The layer below All Frames Generation is the Synchronisation and Channel Coding layer
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which adds synchronisation bits and error control information. The internal structure of

the Channel and Synchronisation and Channel Coding sublayer is shown in Figure 3.9. The

Figure 3.9: TC Synchronisation and Channel Coding Sublayer and Physical Layer. Adapted
from [5], pg.2-4

Transfer Frame from the data link layer is optionally pseudo-randomised to improve bit syn-

chronization.

BCH Encoding

The TFs are formatted into fixed length Bose-Chaudhuri-Hocquenghem (BCH) codeblocks

using a systematic BCH code of length 64 bits where 56 of the bits are information bits[5], 7

parity bits, and a filler bit. The BCH codeblock format is provided in Figure 3.10.

Figure 3.10: BCH Codeblock. Adapted from [5], pg.2-4

If the transfer frame is less in size than 56 bits, the frame is padded with a sequence of al-

ternating ’1’s and ’0’s starting with a ’0’. The receiver data link layer is then responsible for
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stripping out the extra bits. The BCH(63, 56) code uses the generator polynomial,

g(x) = x7 + x6 + x2 + 1 (3.3)

to generate the 7-bit parity bits which are stored as complements in the codeblock.

The receiver can decode the frames either in an error-detecting mode (capable of detecting

up to 3 bits in error) or an error correcting mode (capable of detecting 2 bits in error and one

bit in error can be corrected)[5].

Communications Link Transmission Unit(CLTU)

The unit of transmission for the physical layer is the CLTU, which consists of the start se-

quence, BCH codeblocks, and a tail sequence[5]. The structural components of the are

shown in Figure 3.11.

Figure 3.11: CLTU Unit Format. Adapted from [5]

Start Sequence: The 16-bit start sequence marks the start of the contiguous BCH blocks. It

is made of the pattern

0000100111010111

which is transmitted as the least significant bit first.

Encoded Data: The encoded data consists of a set of BCH codeblocks either randomised or

not depending on the mission design.

Tail Sequence: The tail sequence marks the end of the CLTU which is 64 bits long. The

pattern is leading contiguous 7 bytes 11000101 and the eighth octet is 01111001.

1100010111000101110001011100010111000101110001011100010101111001

3.5.2 Telecommand Implementation

As with the two preceding protocols, the CCSDS TC was implemented in a minimalistic ap-

proach. In CCSDS standardisation, the protocol can be operated in an Expedited (Type B)

service, which does not use the systematic retransmission mechanism[5].

The Transfer Frame Primary Header is set to

00 1 0 00 xxxxxxxxxx 000001 xxxxxxxxxx 00000000
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with the 3-bit set to ’1’ as an indicator for a Type-B frame. The spacecraft identifier and frame

length are represented with ’x’s since they are simulation-dependent variables. The Control

Command flag is cleared to ’0’ since for the purposes of the simulation only data(D) frames

will be transferred. The result is a compounded Type-BD frame. The frame sequence num-

ber is not used, thus it will be held constant at 0x00. Due to the interest of the project in the

underlying low-level data link layer, only one higher-layer application is assumed, such that

only one virtual channel is utilised, hence the virtual channel number value of 1.

The FEC field is not used. Instead the BCH(63,56) error handling module is responsible for

error checking and correction. The code generation is a pipelined version of a polynomial

division of the message bits

m(x) = m70x70 + m69x69 + ... + m0x0 (3.4)

by the divisor,

g(x) = x7 + x6 + x2 + 1 (3.5)

to obtain the remainder, b(x). The transmitted message which is represented in polynomial

form m(x), has coefficients for each term being either a 0 or 1. The receiver locks into in-

coming signal, and thereafter for each block, computes the syndromes S(x) for a received

vector, which is a polynomial division by g (x). If S(x) is zero, it is assumed that the block

did not incur any error along the channel so it is delivered to the upper layers. If S(x) 6= 0,

the block is handed to the error correction unit. The error correction implementation is sim-

ilar to the one mentioned in subsection 3.3.2 which finds the Hamming distance between

the received message vector, r (x) and the original message vector, t (x). Technically with the

modified BCH(63,56) code, in triple error detection mode, up to 3 bits in error can be de-

tected whereas in single error correction, 2 bits in error can be detected and 1 bit corrected.

The latter is an appealing option. So, if the Hamming distance is less than or equal to 1 within

a 64-bit block, the data is correctable otherwise the block is dropped.

The TC was not part of the initial implementation of the protocols(the AX.25, FX.25, AFX.25)

in SatSim, but it has been added as part of the additions for this work.

3.6 Simulation Scenario

The simulation comparisons were based on the configurations:

• An omnidirectional ground station antenna is used without spacecraft tracking capa-

bility. The maximum antenna gain is 40dB.

• The transmit power is 1 W
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• The spacecraft is in circular 600km sun synchronous orbit, propagated by the PyEphem

• The modulation scheme used is BPSK

• The baud rate is 9600 bps

• The randomness of the experiment requires that the results are averaged over a num-

ber of repeats. Le Roux [1] noted that the results gets to stabilise over 8 to 16 repeats.

However, for this project the results were averaged over 4 repeats because the simu-

lation is time consuming, it took around 4.5 hours a simulation for 4 repeats. Fur-

thermore, from the data averaging analysis performed by Le Roux [1] and graphically

shown on [1, pp. 53] Figure 3.37, the data obtained over 4 repeats gives enough infor-

mation having compared the 4 and 8 repeat subplots.

• Packet sizes of 100, 156, 177, 205, 303, 506, 702, 905, 1017 information bytes were sim-

ulated. The packets are generated on demand (dynamically when needed).

The metric used for comparison is the throughput, which is the number of data bits received

per unit of time,

Throughput(bps) =
Amounts of data received (bits)

Amount of time (s)
(3.6)

FX.25 can use different code rates of the Reed Solomon for error correction from 239/255 to

191/255. The comparisons will use the RS(255, 239) for the FX.25 and the BCH(64,56) for the

CCSDS TC. The RS(255,239) is the basic among the FX.25 FEC codes with error correction of

8 bytes. The CCSDS TC uses only one FEC scheme, the BCH(64,56).

3.6.1 FX.25 vs CCSDS TC

The simulation comparisons for FX.25 against CCSDS TC were based on the configurations:

• Two ground stations are used, one for sending FX.25 frames on 437.31 MHz and the

other for sending CCSDS TC packets on 437.41 MHz.

• Two satellites, one receiving FX.25 frames and the other receiving CCSDS TC frames.

• The satellite pass was 800 seconds

3.6.2 AFX.25 and CCSDS TC

The simulation comparisons for AFX.25 against CCSDS TC were based on the following con-

figurations:
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• AFX.25 : The ground station uses a transmitter at 437.11 MHz and a receiver at 437.21

MHz. The transmitter sends data packets and the receiver listens for switching com-

mands from the satellite. The satellite has a transmitter sending commands at 437.21

MHz and a receiver listening to packets at 437.11 MHz.

• CCSDS TC: The CCSDS ground station has a transmitter sending data packets on 437.41

MHz. The corresponding spacecraft receives data packets at the ground station’s fre-

quency.

• The satellite pass was 800 seconds.

3.6.3 Discussion of Results

(a) Constant 10−5 BER (b) Constant 10−4 BER

(c) Constant 10−3 BER (d) Constant 10−2 BER

Figure 3.12: Throughput Curves for different BER for different payload sizes

The amount of payload data received per session for each protocol for different payload sizes

is shown in Figures 3.12a, 3.12b, 3.12c, 3.12d for different constant BER. Different payload

data sizes were used for the tests from 100 bytes to 1017 bytes. The objective is determin-

ing the protocol’s response to various data sizes and different bit error rates. Amongst the
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compared protocols, the CCSDS TC has the maximum allowed payload size of 1017 bytes.

For Figures 3.12a and 3.12b, the total usable data is steadily increasing as the packet size in-

creases until a peak point is reached where total payload data is constant. If the payload size

is small, the total amount of usable data will be smaller compared with larger packet sizes

because smaller payload sizes require more padding bits. As the payload size increases, the

amount of information bytes received also increases until all the information bytes are filled

with actual data. For the FX.25, the maximum payload goes as high as around 210 bytes,

according to [1] to allow for the bits introduced by the AX.25 bit stuffing. The CCSDS TC

has better performance over the FX.25 as it can be observed from Figure 3.12a for less noisy

channels. The CCSDS TC has a better performance than the FX.25 in the region due to the

padding methods which gives smaller padding for the CCSDS TC in the bit range while the

FX.25 has a larger padding in the byte range.

However, the BCH(64,56) code does not perform well with low signal-to-noise ratios. The

CCSDS TC performance degrades for more noisy channels as observed from Figures 3.12b

to 3.12c. The Reed Solomon has strong error correction capabilities which is the reason that

the FX.25 performs better than the CCSDS TC for higher bit error rates where bursty errors

are prevalent. In these regions, the AFX.25 operates as a pure FX.25 protocol. From Fig-

ure 3.12c, it is observed that the CCSDS error correction capability degrades with increasing

packet size because the maximum CCSDS TC transfer frame has a maximum of 1017 bytes

of which the probability of data being invalidated increases with bigger packets. The packet

size and data corruption can be observed also from Figure 3.12d which has a very low signal-

to-noise ratio. The first packet sizes 100, 156, 177 show some received packets after which

with increased payload size, all the packets get corrupted.

Having observed the payload bytes received for constant BERs, Figure 3.13 shows results

logged for an experiment for a dynamic BER for satellite pass from acquisition of signal to

loss of signal.
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Figure 3.13: Throughput for FX.25, AFX.25, CCSDS Telecommand of data size 156 bytes

The simulation in Figure 3.13 uses an idealistic switching from FX.25 to AX.25 and back

which was hard-corded to make the switchovers on the 200 and 620 seconds intervals. The

data throughput shows that the AFX.25 throughput is the highest followed by the CCSDS TC.

The AFX.25 operates in FX.25 from 0 to 200 seconds, a protocol change to AX.25 occurs at

200 seconds and a change to the FX.25 at 625 seconds.

The total data received for the simulation shown in Figure 3.13 is shown in Table 3.5. The

relationship compares the protocols where the AX.25 is used as a base for the comparisons.

Protocol Total Data Received (KB) Relative Performance (%)
AX.25 459.7 100.0
FX.25 400.5 87.1
AFX.25 531.3 115.6
CCSDS TC 463.5 100.8

Table 3.5: AX.25/FX.25/AFX.25/CCSDS TC Data Received over 800 seconds

From the experiment, it is clear that AFX.25 is the best candidate based on the throughput.

However, the real estate cost of implementing the protocol must be considered before a final

choice of candidate protocol for implementation on FPGA is considered.
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Chapter 4

Adaptive AFX.25 Hybrid Hardware

The previous chapter evaluated the protocol performance at software simulation. This chap-

ter first investigates the projected hardware implementation complexity to evaluate the costs

given the improvement in throughput.

4.1 Protocol Choice

4.1.1 Projected Cost of Hardware Implementation

1. Encoding The BCH(63,56) code generator makes use of the generator polynomial g (x) =

x7 + x6 + x2 +1[5]. The hardware design with linear shift registers is shown in Figure 4.1.

Figure 4.1: BCH(63,56) Code Generator. Adapted from TC Synchronisation and Channel
Coding Recommendation [5], pg.3-2

The R-S (255,239) encoder architecture based on the Linear Feedback Shift Register

(LFSR) design is shown in Figure 4.14. The encoder uses the coefficients generated

34
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from the generator polynomial [6]:

g (x) = x16 + 59x15 + 13x14 + 104x13 + 189x12 + 68x11+

209x10 + 30x9 + 8x8 + 163x7 + 65x6 + 41x5+

229x4 + 98x3 + 50x2 + 36x + 39

(4.1)

Figure 4.2: Reed Solomon (255,239) Encoder Architecture. Adapted from [6], pg.2

2. Decoding

Decoding received data bits is computationally more expensive than encoding. For

the pre-design analysis, a qualitative comparison of the BCH and RS is presented. The

encoding and decoding algorithms will be discussed in full in the sections to follow.

The algebraic decoding of BCH or RS codes has the following general steps[38]:

a) Computing the syndrome

b) Determining the error locator polynomial to find the error locations. The Peter-

son’s, Berlekamp-Massey and Euclidean algorithms are used.

c) Solving the error locator polynomial using the Chien search

d) Finally, the Forney algorithm is used to determine the error values in the case of

RS and non-binary BCH.

The Reed Solomon is essentially a non-binary BCH code which makes its hardware circuit

to have more gates than the binary version. For a binary BCH the polynomial coefficient is

either a 0 or 1, rendering the multipliers in Figure 4.2 either a wire or an open connection as

can be viewed in Figure 4.1.

Secondly, the RS(255, 239) is capable of correcting more bytes (8 bytes) in error than the

BCH(63,56), which comes with a proportional cost of hardware implementation.
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4.1.2 Protocol Choice of Implementation

From the simulations performed in subsections 3.6.1, 3.6.2, 4.1.1, it can be deduced that the

hybrid AFX.25 has an improved throughput over the ordinary AX.25, FX.25 or CCSDS TC.

Even though the AFX.25 protocol shows a theoretical improvement, the complexity of the

hardware implementation indicates that it requires more hardware logic units than the BCH

(64,56).

A summary of comparisons of the protocols studied in the previous chapter and subsections

and from the work of Le Roux [1] is given in Table 4.1.

Table 4.1: Protocols Comparison Summary

Protocol Simulation Performace Hardware Cost Popularity

AX.25 Good on error free

channels[1]

Simple Implementation 52.17% among CubeSats

[9]

FX.25 Good on noisy

channels[1]

High in Hardware Com-

plexity (due to non-binary

encoding and decoding)

0.87% usage on CubeSats

[9]

AFX.25 Good performance both

on noisy and noiseless

channels

Highest in Hardware

Complexity (FX.25 and

AX.25 decoding plus

switching)

New protocol, not yet

available amongst Cube-

Sat developers

CCSDS TC Good performance for

smaller packet sizes

Lighter in hardware com-

plexity than FX.25

3.48% among CubeSat

launches [9]

After the simulation and hardware analysis, it is a good option to choose the AFX.25 as the

protocol of implementation for this work for the following reasons:

• It has a performance significantly higher than all the other investigated protocols as

observed from Figure 3.13

• It has a backward compatibility with the existing AX.25 systems which are more widely

used in the CubeSat community

Having chosen the AFX.25, the fact that it comes with high costs of hardware implementa-

tion cannot be ignored. There was a need to implement the protocol on hardware to get a

better understanding and estimate of the true implementation cost.

It is worth mentioning that the CCSDS Telecommand is a relatively old protocol which was

introduced specifically for its simplicity in traditional satellites. Even though the CCSDS
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standards are reviewed every five years, the error-coding protocol has not changed for many

years. Kazz et al. [41] made their submission in 2012, to replace the CCSDS TC with the Next

Generation Uplink (NGU) which adopts six variants of error correction schemes amongst

other improvements. These error codes include the BCH(63,56), Low Density Parity Codes

(LDPC) 1
2 (128,64), LDPC 1

2 (256,128), LDPC 1
2 (512,256), Non-binary LDPC 1

2 (512,256), and the

LDPC 1
2 (2048,1024). These error corrections will undoubtedly improve the overall through-

put of the TC under certain conditions[41]. However, the suggestions from their work have

not been implemented in the simulation of the TC since it is not yet included in the official

recommended standards which were updated in 2015.

4.2 FEC Theoretical Background for FX.25

FX.25 employs the Reed Solomon FEC scheme. In the following section, the theory of op-

eration of BCH which will be required to implement the FX.25 FEC code in hardware is dis-

cussed.

4.2.1 Introduction

Reed Solomon codes are heavily dependent on abstract algebra mathematics in the Galois

Field, named after the French mathematician Évariste Galois.

4.2.2 Galois Field

A Galois Field (GF) consists of a finite set of elements whereby the addition, subtraction, mul-

tiplication and division operations obey certain rules. The elements are based on a primitive

element[7], α which is a root of the field generator polynomial, φ(X). The elements take the

form:

0,α0,α1,α2, .....,α(N−1) (4.2)

where N = 2m −1. Such a field will be a GF(2m). The Reed Solomon code (255,239) is in the

GF(256) field where m = 8.

To construct such a field, the primitive element is used as root of the field generator polyno-

mial. For φ(X ) = X8 + X4 + X3 + X2 + 1 [42],

α
8 + α

4 + α
3 + α

2 + 1 = 0 (4.3)

therefore

α
8 = α

4 + α
3 + α

2 + 1 (4.4)

The two equations are equivalent, as addition and subtraction yield similar results within a

field, as it will be shown in the following subsection.
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The first element is 0, followed by α0 and multiplied by α at each stage and substituting α8

for α4 + α3 + α2 + 1. Table 4.3 shows the first few elements of the GF(256). The complete set

can be found in Appendix D.

Table 4.3: GF(256) elements generated from the generator polynomial, φ(X ) = X 8 + X 4 + X 3 +

X 2 + 1

Index Form Polynomial Form Binary Form Decimal Form

0 0 00000000 0

α0 1 00000001 1

α1 α1 00000010 2

α2 α2 00000100 4

α3 α3 00001000 8

α4 α4 00010000 16

α5 α5 00100000 32

α6 α6 01000000 64

α7 α7 10000000 128

α8 α4 +α3 +α2 + 1 00011101 29

α9 α5 +α4 +α3 +α1 00111010 58

α10 α6 +α5 +α4 +α2 01110100 116

α11 α7 +α6 +α5 +α3 11101000 232
...

...
...

...

α253 α6 +α2 +α1 + 1 01000111 71

α254 α7 +α3 +α2 +α1 10001110 142

α255 1 00000001 1

The GF basically has two operations addition and multiplication, subtraction and division

are additive and multiplicative inverses respectively.

4.2.2.1 Addition

Given two polynomials,

(am−1Xm−1 + ... + a1X1 + a0X0) + (bm−1Xm−1 + ... + b1X1 + b0X0) = (cm−1Xm−1 + ... + c1X1 + c0X0)

the sum c is a modulo-two addition of the coefficients, which in binary form takes an exclusive-

OR operation[42] of bits in corresponding bit positions. In a nutshell,

(cm−1Xm−1 + ... + c1X1 + c0X0) = ((am−1 + bm−1)Xm−1 + ... + (a1 + b1)X1 + (a0 + b0)X0)
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A basic GF adder circuit can be viewed in Figure 4.3.

bm−1

am−1

b1

a1

b0

a0

cm−1 c1 c0

Figure 4.3: Galois Field Adder

The additive inverse of an element a is −a such that a +−a = 0, thus in the GF, addition is

similar to subtraction.

4.2.2.2 Multiplication

Galois Field multiplication is similar to general polynomial multiplication with the exception

that product, p(X) must have a degree less than the generator polynomial φ(X)’s degree. If

it happens that the degree is higher, then the final p(X) = p(X) mod φ(X). Alternatively, the

multiplication can be achieved through lookup tables of the nature of table 4.3. Traditionally,

multiplying 2 and 4,

210 = 010b = X(polynomial form)

410 = 100b = X2
(polynomial form)

X ·X2 = X3 = 1000b = 810

Alternatively, using lookup table 4.3, 2 is α1 and 4 is α2. Adding the powers of the 2 elements,

we have α3 whose decimal form is 8.

An example of a circuit that multiplies an element β of GF(28) by the element α3 which is the

element, 810.

β = b0 + b1α + b2α
2 + b3α

3 + b4α
4 + b5α

5 + b6α
6 + b7α

7

So

α
3
β = b0α

3 + b1α
4 + b2α

5 + b3α
6 + b4α

7 + b5α
8 + b6α

9 + b7α
10

And the primitive polynomial is φ(X ) = X 8 + X 4 + X 3 + X 2 + 1, therefore

α
3
β = b0α

3 + b1α
4 + b2α

5 + b3α
6 + b4α

7 + b5(α4 + α
3 + α

2 + 1)

+b6(α5 + α
4 + α

3 + α) + b7(α6 + α
5 + α

4 + α
2)

(4.5)

And grouping similar terms, the result is

α
3
β = b5 + b6α + (b5 + b7)α2 + (b0 + b5 + b6)α3 + (b1 + b5 + b6 + b7)α4

+(b2 + b6 + b7)α5 + (b3 + b7)α6 + b4α
7

(4.6)
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The resulting circuit is shown in Figure 4.4.

b0 b1 b2 b3 b4 b5 b6
b7

α0 α1 α2 α3 α4 α5 α6

α7

Figure 4.4: Galois Field (256) Constant Multiplier for a constant α3 (810)

Similarly division can be computed using long division, or using the multiplicative inverse[42].

As an example, 4÷2. Using the field representations,

4÷2 = α
2 ÷α = α

(2−1) = α = 2

4.2.3 Non-binary BCH - Reed Solomon

Even though there are some shared principles in encoding and decoding of binary and non-

binary BCH, this subsection will cover decoding of non-binary codes as they are the interest

of this work.

The Reed Solomon codes are a class of random error correcting codes with a cyclic structure.

An operation on any element of the field result in another element within the field. The

Reed Solomon codes are also regarded as systematic codes based on their nature in that

the encoding process does not alter the original message bytes. Typically, the message is

encoded into a fixed sized codeblock depending on the code rate chosen for that code. The

following code parameters will be used:

Code block length, n = 2m −1

Information bytes, k

Correctable errors, t

2t = n−k

Code Rate, R =
k

n

A t error correcting code (n,k) can correct up to t errors using 2t FEC redundant bytes. For

RS(25,239), n=255, k=239, 2t=255-239=16 and t=16/2=8.
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4.2.3.1 Encoding

A Reed Solomon codeblock represented as an (n,k) block is a formulated n-sized data format

that is recognised both by the encoder and decoder. The format of the block is shown in

Figure 4.5.

k information symbols (n −k) FCS

FCS is the Forward Error Correction Symbols

Figure 4.5: Reed Solomon Codeblock

The codeblock is generated using a code generator polynomial, g (X ) which has 2t factors[42],

g(X) =
2t−1∏
i=0

(X + α
b+i) = (X + α

b)(X + α
(b+1))...(X + α

(b+2t−1)) (4.7)

where b ≥ 0, but typically 0 or 1 depending on the code design.

Suppose the hexadecimal message information 7E ,10, · · · ,BC is to be transmitted from satel-

lite to ground node. The message can be represented as a polynomial of the form

M(X) = Mk−1Xk−1 + · · ·+ M1X + M0

whose coefficients Mk−1, · · · , M1, M0 corresponds to 7E ,10, · · · ,BC . The encoder creates the

codeblock which necessitates data recovery at the receiving node in the case of data corrup-

tion in the channel. The encoding process is a typical 3 step process outlined[7]:

1. Shift the message polynomial M(X ) by n−k bytes to the left. Mathematically, M(X) ·Xn−k.

2. Then divide M(X) ·Xn−k by the generator polynomial g (X ) to get the remainder, b(X ).

3. Lastly the codeword is a concatenation of M(X) ·X(n−k) and b(X )

The transmitted codeword, C (X ) then becomes

C(X) =
n−1∑
i=0

CiX
i = Mk−1(X)Xn−1 + ... + M0Xn−k + bn−k−1(X)Xn−k−1 + ... + b0 (4.8)

An implementation of the encoder can be achieved through polynomial division.

To simplify the hardware circuit, the value of b = 0 is chosen

g(X) = 1 + g1X + g2X2 + ... + gn−k−1Xn−k−1 + gn−kXn−k

The polynomial has the roots, 1,α,α2,α3, ...,α2t−1 and the coefficients from within the field,

GF(2m). A representative hardware encoder circuit is given in Figure 4.6.
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b0 b1 b2

bn−k−1

input

control

output

g1 g2 gn−k−1

Figure 4.6: RS(n,k) Encoder for code generator polynomial g (X ) = 1 + g1X + g2X 2 + ... +
gn−k−1X n−k−1 + gn−k X n−k . Adapted from [7]

The message M(X) is serially fed into the encoder, and simultaneously to the channel via the

output multiplexer. After the last byte of the message is received in the circuit, the contents of

the registers bn−k−1,bn−k−2, ....,b2,b1,b0 contains the remainder values. Each of the registers

bi can store a field element from the field GF(2m). Thus, the output buffer then disables the

raw message input but selects the remainders as the multiplexer input.

4.2.3.2 Decoding

During transmission, it is possible that the codeword may incur channel noise resulting in

the received message, R(X) = R0 + R1X + R2X2 + ... + Rn−1Xn−1 to be a combination of the origi-

nal codeword and noise. R(X) can be represented as

R(X) = C(X) + E(X) (4.9)

where E(X ) is the error pattern

E(X) =
n−1∑
i=0

EiX
i = E0 + E1X + E2 + ... + En−1Xn−1

S.1 Syndrome Computation

The first step in the decoding begins with calculating the syndromes, S1,S2, ...,S2t which

gives an indicator as to whether the original message was invalidated or not. The syn-

dromes are also useful in the error location and magnitude algorithms (to be discussed

shortly in S.2 and S.4).

The syndromes can be computed by substituting the field elements α,α2, ...,α2t into

the receiver polynomial.

Si= R(αi)

= R0 + R1(αi) + R2(αi)2 + ... + Rn−1(αi)n−1

= S0 + S1X + S2X2 + · · ·+ S2t−1X2t−1

(4.10)
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From encoding, it is known that X + αi is a factor of T(X) implying that T(αi) = 0, there-

fore from 4.9,

R(αi) = E(αi) = Si (4.11)

If Si(X) = 0, the received message does not contain any errors and no further processing

is required, the packet is delivered to upper layers. If Si(X) 6= 0, the message contains

errors.

The error pattern contains v errors at locations j1, j2, ..., jv where v ≤ t.

The error pattern equation can be represented as

E(X) = e1Xj1 + e2Xj2 + · · ·+ evXjv (4.12)

where e1,e2, · · · ,ev are the error values at the locations. Both the error locations, jv s

and the error values, ev s are unknowns at this particular time as well as the number

of errors, v . Finding the solutions to equation 4.12 means a step closer to correcting

the errors, but the equation has many possible solutions which yield different error

patterns. The solution that has the lowest order is the most probable solution. To

arrive to such a solution, the Berlekamp iterative algorithm which is considered to be

amongst the most efficient so far[7][42] will be used to find the solution in S.2.

Combining equations 4.11 and 4.12,

Si = E(αi)

= e1α
j1 + e2α

j2 + · · ·+ evα
jv

= e1β
i
1 + e2β

i
2 + · · ·+ evβ

i
v

(4.13)

where

βi
1,β2

2, ...,βi
v are error locators

A pipelined division circuit for finding Si would be to have R(X ) divided by X +αi

to obtain Si as shown in Figure 4.7. The circuit shows a single syndrome Si which

is representative of the entire circuit with different constant multipliers, α,α2, ...,α2t.

The respective syndrome values will be read from the output of the buffer after a clock

pulse.

R(x)

αi Si

Si

Figure 4.7: Reed Solomon Syndrome Computation Circuit for a single Si . Adapted from [7]
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The syndromes can be represented in a matrix form as:
S0

S1
...

S2t−1

 =


β0

1 β0
2 · · · β0

v

β1
1 β1

2 · · · β1
v

...
...

. . .
...

β2t−1
1 β2t−1

2 · · · β2t−1
v




e1

e2
...

ev

 (4.14)

Solving the system of non-linear equations of 4.14 directly is a challenging mathemat-

ical task, so an intermediate polynomial is introduced.

S.2 Error locator polynomial

Suppose that

σ(X) = 1 + σ1X + · · ·+ σvXv (4.15)

is the intermediate polynomial, the error polynomial σ(X ) which has zeros at the lo-

cations β1, · · · ,βv for l = 1, · · · , v[23]. The equation expressed as factored solutions is

σ(X) = (1−β1X)(1−β2X) · · · (1−βvX) (4.16)

Multiplying equations 4.15 and 4.16 above by elβ
j +v
l and setting X =β−1 gives

0 = elβ
j+v
l

(
1 + σ1β

−1 + σ1β
−2 + · · ·+ σ−vβ

v)
= el

(
β

j+v
l + σ1β

j+v−1
l + σ1β

j+v−2
l + · · ·+ σvβ

j
l

)
=

v∑
l=1

el

(
β

j+v
l + σ1β

j+v−1
l + σ1β

j+v−2
l + · · ·+ σvβ

j
l

) (4.17)

This equation is the same as

Sj+v + σ1Sj+v−1 + σ2Sj + v−2 + · · ·+ σvSj = 0

σ1Sj+v−1 + σ2Sj+v−2 + · · ·+ σvSj = −Sj+v

(4.18)

For correctable errors, the number j is 1 ≤ j ≤ 2t − v . The systems of equations are

simplified to a linear set of equations 4.19 which can be solved directly.
−Sv+1

−Sv+2
...

−S2v

 =


S1

1 S2 · · · Sv

S2 S3 · · · Sv+1
...

...
. . .

...

Sv Sv+1 · · · S2v−1




σ1

σ2
...

σv

 (4.19)

The Peterson algorithm [23] computes the solution by inverting the matrix for the dif-

ferent values of v . However, such a computation is heavy especially when the number

of errors is high since the number of multiplications required will be proportional to
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v3. Berlekamp proposed a faster algorithm for finding the coefficientsσs for the small-

est v ≤ t in an iterative manner[23].

Berlekamp algorithm

Let

σ
(µ)(X) = 1 + σ

(µ)
1 X + σ

(µ)
2 X2 + · · ·+ σ

(µ)
lµ

Xlµ (4.20)

be the polynomial determined at the µth step of iteration. The algorithm iterative steps

fill in the values for Table 4.5 where each column value is computed at each µth stage

from 1 to 2t.

µ σ(µ)(X) dµ lµ µ− lµ
-1 1 1 0 -1
0 1 S1 0 0
1
2
...
2t

Table 4.5: Berlekamp Iterative Stages. Adapted from [7]

The equation 4.21 calculates the discrepancy, dµ at the µth stage

dµ = Sµ+1 + σ
(µ)
1 Sµ + σ

(µ)
2 Sµ−1 + · · ·+ σ

(µ)
lµ

Sµ+1−lµ (4.21)

If dµ = 0 at stage µ, the next stage error locator polynomial will be equivalent to the

current stage error polynomial.

σ
(µ+1)(X) = σ

(µ)(X) (4.22)

and

lµ+1 = lµ

If there is a discrepancy, d 6= 0, the next stage error location polynomial will be a cor-

rected version of the current stage error location polynomial. By correction in this

context, it does not mean error correction but a way of adjusting the stage σ so that it

finally converges to a polynomial of minimum degree at stage 2t [7]. To find the cor-

rection terms, the previous stages are looked up to find a discrepancy at some stage, ρ

whose value dρ 6= 0 and ρ− lρ has the largest value, where lρ is the degree of σ(ρ)(X ).

The next stage µ(µ+1)(X ) is found to be

σ
(µ+1)(X) = σ

(µ)(X) + dµd−1
ρ X(µ−ρ)

σ
(ρ) (4.23)

and

lµ+1 = max(lµ, lρ + µ−ρ) (4.24)
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The last stage 2t error locator polynomialσ(2t )(X ) is the required error locator polyno-

mial.

S.3 Finding error locations

Having found σ(X ), the next step is finding the solutions of σ(X ) from the received

message polynomial, r (X ).

Peterson algorithm

Peterson’s algorithm for finding solutions toσ(s) is substituting the values 1,α,α2, · · · ,αn−1

into σ(X ), in each of the substitution and solve[7]. If the answer is 0, that is an indica-

tion that the element is a root whereby its reciprocal gives the error location.

Chien search

Chien formalised the algorithm of substituting and finding the roots to be thus. The

decoder tests r (X ) byte by byte starting from the higher order bytes. Given the received

message as

r(X) = r0 + r1X + r2X2 + · · ·+ rn−1Xn−1

the rn−1X n−1 will be tested first. To decode rn−l , the decoder tests the sum

1 + σ1α
l + σ2α

2l + · · ·+ σvα
vl

to see if it equals 0. If so, then αl is a root of σ(X ), therefore the byte in position n − l

is in error[7]. The successive test of each non-zero element can be illustrated in the

form,

σ(α)= 1 + σ1(α) + σ2(α)2 + · · ·+ σt(α)t

σ(α2)= 1 + σ1(α2) + σ2(α2)2 + · · ·+ σt(α
2)t

...

σ(αn−1)= 1 + σ1(αn−1) + σ2(αn−1)2 + · · ·+ σt(α
n−1)t

(4.25)

A typical search unit is shown in Figure 4.8. The coefficients of σ(X ) are stored in the

registers σ1 to σt and pushed into the multiplier ⊗ to be multiplied by αi l . The prod-

ucts of the multiplications are summed ⊕ to determine the output[7].
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σ1

σ2

σt

α

α2

αt

output

...
... ...

t∑
i=1

σiα
il

σt−1

αt−1

.

Figure 4.8: Error locator polynomial roots search unit. Adapted from [7]

At this step of decoding, the values for βi
1,β2

2, ...,βi
v from equation 4.12 are known. The

next step is finding the error magnitudes e1,e2, · · · ,ev using Forney’s algorithm.

S.4 Finding error magnitudes

Forney’s algorithm

Let

Γ(X )= [1 + S(X)]σ(X)

= (S0 + S1X + S2X2 + · · ·+ S2t−1X2t−1)(1 + σ1X + σ2X2 + · · ·+ σvXv)

= 1 + (S1 + σ1)X + (S2 + σ1S1 + σ2)X2+

· · ·+ (Sv + σ1Sv−1 + σ2Sv−2 + · · ·+ σv)Xv

(4.26)

be the error magnitude polynomial, then the error value at the found location βl can

be found by substituting the found values to the following equation[7]

el =
Γ(β−1

l )∏v−1
i=0,i6=l(1 + βiβ

−1
l )

(4.27)

The result of this step gives the values for e1,e2, · · · ,ev . Now all the unknowns have

been solved, the data can be corrected.

The Gorenstein-Zierler[7] can also be used to determine the error magnitudes but it is

not discussed in this work because it is computationally inefficient as it uses the direct

matrix determinant method to determine the error magnitudes.
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S.5 Error Correction

The data is corrected by XORing the error pattern

E(X) = e1Xj1 + e2Xj2 + · · ·+ evXjv

and the received information polynomial

R(X) = R0 + R1X + R2X2 + ... + Rn−1Xn−1

such that the corrected data R ′(X ) at l is

R′
l(X) = el

⊕
Rl

4.3 FPGA-based Hardware

The discussion in the previous section clearly indicates that error correction requires signifi-

cant hardware resources and computational time. Field Programmable Gate Arrays (FPGAs)

were considered the suitable implementation of choice. An FPGA contains a matrix of gate

array logic circuitry that can be configured using a Hardware Description Language (HDL) to

give a certain output. Two HDL languages are popular with designing FPGAs, which are Ver-

ilog and Very High-Speed Integrated Circuit Hardware Description Language (VHDL). FPGAs

were preferred over microcontrollers for the following reasons:

• Processing Efficiency: Complex signal processing system designs require a lot of com-

putations to be achieved in a very short interval of time. On multi-core computers, this

is normally achieved through distributing the processes among the processor cores.

Most microcontrollers do not have such a capability. However, since FPGAs have a

configurable structure of gates, processing can be done in parallel on different sec-

tions of the array.

Secondly, FPGA design offer engineers the advantage of predetermining the structure

of the circuit. Depending on the requirement, certain blocks can be configured to com-

pute results within a few clock cycles.

• Flexibility: FPGAs give the freedom to design any kind of circuit no matter its complex-

ity by configuring the gate interconnections of the array.

• Microcontroller Embedded: If the project specifically requires a microcontroller, FP-

GAs allows for a ’soft-core’ processor design and more advanced FPGAs are ported with

a hard-core processor on them.

• Project Requirement: The project is a proof of concept from the work done by Le Roux

[1], at hardware level. Given that the objective was having the system implemented on

hardware, FPGAs were the way to go instead of a microcontroller which is still in many

ways software.
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Having discussed the pros of FPGAs, there are penalties to pay too. The first of these is that

FPGAs are relatively expensive compared to microcontrollers. Secondly, for inexperienced

developers, FPGA designing and debugging can present a steep learning curve.

The choice was to use the Microsemi M1AFS1500-FGG484 FPGA on a Fusion Embedded De-

velopment Kit because the board provides all the required functionalities in one package.

Amongst other features, it is pre-packaged with a USB to UART converter circuit which is

necessary for PC-to-FPGA communication. The M1AFS1500 development board provides

easy integration with other boards aided by the interface connector pins. This was neces-

sary for this project to allow for connecting the RF board. Moreover, the Fusion boards were

already available for use in the ESL.

The FPGA design flow is a back-and-forward flow with stages; design, simulation, synthesis,

place and route, and flashing as shown in Figure 4.9. It is not a straight-down flow because

each of the first three stages’ simulation results may require adjustments to the design pa-

rameters of the first stage. The names asterisked (*) are the tools used in each stage on the

Microsemi design tool chain.

Programming
*Flash Programmer

VHDL Design
*LiberoSoC IDE

Synthesis
*Synplify

Place & Route
*LiberoSoC IDE

Simulation
*ModelSim

.

Figure 4.9: FPGA Design Flow

4.4 Hardware Design and Implementation

This subsection covers the design and implementation of the protocol on hardware. The sys-

tem design of the protocol consists of transmitter and receiver node as illustrated in Figure

4.10. The design presented here does not cover all the OSI layers but it instead outlines the

layers pertinent to this work which are the Application, Data Link and the Physical Layer.
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Application Layer
Terminal

Channel

FPGA Board
(Encoder)

RF Transceiver RF Transceiver

FPGA Board
(Decoder)

Application Layer
Terminal

Transmitter Node Receiver Node

.

Figure 4.10: System High-level Block Diagram

4.4.1 Application Layer Terminal

The Application Layer Terminal is a computer terminal that generates and schedules data

on the transmitter node and listens for incoming data on the receiving end. The terminal

program is a script written in Python which generates data. The data generated is transmit-

ted to the FPGA encoder through the serial port upon the reception of the CTS command.

This negotiation necessitates the need for an event-based transmission rather than a timed

sequence. The CTS is returned by the encoder as an indication for the next data batch. The

data that is queued into the FPGA is time stamped and logged by the data logger as illustrated

in Figure 4.11.

Data
Generator

Transmitter

Data Buffer

Serial Port
Listener

Serial Port
Queuer

Data Logger

From Serial
Port

To Serial Port

Receiver

Serial Port
Listener

Data Logger

From Serial Port

.

Figure 4.11: Application Layer Terminal
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The receiver end terminal listens to incoming data from the serial port. If new bytes are

detected, the port listener accepts data from the serial port, passes it to the data logger to

add timestamps to it and logs it into a file.

4.4.2 FPGA-based Transmitter

The FPGA encoder accepts data from the upper layer and encodes it into the desired protocol

format depending on the protocol mode. Figure 4.12 shows the FPGA encoder. The data

from the PC terminal is transferred to the FPGA using the RS232 protocol and read serially

by the UART module. The UART data listener reads the received data as bytes into a 255 byte

data buffer. Even though the data buffer is 255 bytes long, it can load up to 239 in FX.25

mode as the other bytes will consist of the FCS bytes. The CRC Generator updates the CRC

bits with the reception of each byte. The calculation is completed before the reception of the

next byte.

UART Module
UART Data

Listener

Data Register

CRC Generator

CRC Register

Protocol
Mode

Framing Parallel to
Serial Module

RS (255,
239)

Encoder

AX.25
Framing

Padder

Parallel to
Serial

Module

Serial bits
from/to

PC

Serial bits
to RF

AX.25 Encoder

FX.25 Encoder
Notifier Module

Adaptive Module

.

Figure 4.12: FPGA Board - Encoder

The CRC-16 checksum is required by the AX.25 error control to verify data integrity on the

receiver. A CRC generator is a circuit of linear shift registers and gates designed to perform

polynomial division such that at the end of the message bits, the registers b0,b1, · · · ,b15 con-

tain the checksum. The checksum is basically the remainder after the polynomial division.
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The CRC-16-CCIT with a generator polynomial g (X ) = x16 + x12 + x5 + 1 calculates the error

check bits in a bit-wise implementation with the circuit in Figure 4.13.

b0 b4 b5 b12 b15

Message
bits input

.

Figure 4.13: CRC-16-CCIT Generator, g (X ) = x16 + x12 + x5 + 1

The CRC bits are stored in the 16-bit CRC register which is read by the Framing modules

when creating packet checksums. The encoder selects the protocol encoder to use based on

the value of the Protocol Mode flag bit where the value ’0’ selects the AX.25 and ’1’ selects

the FX.25. To assimilate as much as possible the results obtained from the simulation, the

hardware configuration will in many ways resemble the protocol implemented in SatSim.

4.4.2.1 AX.25 Encoder

The AX.25 connectionless mode is implemented with a packet framing that is the same as

the one designed for the simulation which can be found in subsection 3.2. The Framing

module reads the Data and CRC Random Access Memory (RAM)s to create the AX.25 frame

as per the AX.25 specification. This module also performs bit stuffing of the payload bits.

The frame bytes are read by the Parallel to Serial module to output the packet bit by bit to

the RF transmitter. Upon sending the last bit, it notifies the PC terminal by sending a CTS

command via the serial port.

4.4.2.2 FX.25 Encoder

The general framing and transmission is the same for the FX.25 hardware except that the

simplified error correction algorithm used earlier cannot work in a realistic environment.

The Reed Solomon (255, 239) code is used for error correction. The primitive polynomial for

the GF(28) is chosen to be φ(X) = X8 + X4 + X3 + X2 + 1 whose elements can be referred to from
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Appendix 4.3. The (255, 239) code has a generator polynomial

g(X) =
2(8)−1∏

i=0
(X + α

i)= (X + α
0)(X + α

1)...(X + α
(2(8)−1))

= (X + α
0)(X + α

1)...(X + α
15)

= X16 + 59X15 + 13X14 + 104X13 + 189X12 + 68X11 + 209X10 + 30X9

+8X8 + 163X7 + 65X6 + 41X5 + 229X4 + 98X3 + 50X2 + 36X1 + 59

(4.28)

resulting in an encoder circuit illustrated in Figure 4.14. The multipliers were implemented

using the constant multiplier approach discussed in subsection 4.2.2.2. The bytes from the

message to be transmitted are fed serially, and after 239 clock cycles the output of the en-

coder will be reading out the shifted values of the parity bytes. If the AX.25 packet from the

Framing module is less than 239, the Padding module adds redundant filler 0111110 bits un-

til the data is byte aligned at 239 bytes. The Framing module performs the bit stuffing on the

data bits.

b0 b1 b2 b15

input

control
output

36 50 5959

Figure 4.14: Reed Solomon (255,239) Encoder Circuit

For the first 239 clock cycles, the output multiplexer control signal is ’1’ allowing data into

the encoder yet pushing the same copy of bytes into the output port. After 239 cycles, the

control is cleared to ’0’ thus turning off the input into the encoder yet allowing the parity

bytes out of the encoder. The bytes are shifted byte-by-byte from the 8 byte registers until

the value of b0 is read. The Parallel to Serial Queue module translates the received bytes into

a bit by bit stream into the RF transmitter. This is necessary for RF transmission since the

data is serially transmitted on the RF side. This module also prepends the Correlation tag,

Preamble and appends the Postamble bytes to the data.

4.4.3 RF Transceiver

The RF Transceiver board is a 869 MHz Adeunis ARF6921D half-duplex board with a trans-

mission power up to 500 mW. The transceiver can be operated as either a transmitter or
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receiver depending on the value of the RF Rx/Tx mode selection pin. The board is unavail-

able when changing mode for approximately 2.2ms from reception to transmission, 3.1ms

for transmission to reception. The switching timing diagram is found Appendix E.1. The RF

block diagram is shown in Figure 4.15.

1

2

4

5

6

7

3

14

12

8

11

9

10

13

GND

POWER DOWN

BUSY

TX/RX

P1

DATA

P0
VCC

C2

CLOCK

C1

RSSI

C0

GND15

16

RF

GND
.

Figure 4.15: RF Transceiver Block Diagram. Adapted from [8]

Pin Name Direction Function
1,14,16 GND Power Supply
2 Power Down Input Module in standby. 0V = normal mode, VCC = standby

mode which limits consumption to 400µA
3 Busy Output Indicates when module is not available. This occurs

when the module changes mode
4 Tx/Rx Input Transmitter/Receiver mode selection. 0V = reception

mode, VCC = transmission mode
5, 7 P1, P0 Input Pin P0 and P1 enable transmission power level selection.
6 Data Input/Output Data to be transmitted in Tx mode/ Data received in Rx

mode
8 VCC Power supply Power supply input
9 C2 Input Channel selection
10 Clock Output Clock recovery for data synchronisation
11 C1 Input Unused
12 RSSI Output Indicates RF level received
13 C0 Input Unused
15 RF Input/Output RF output/Module antenna

Table 4.6: Adeunis ARF6921D RF Board Interface. Adapted from [8]

The RF board is power by a 3V regulated voltage with available current of 600 mA [8]. The RF

board can transmit at four different power levels; 14 dBm, 20 dBm, 23 dBm, 27 dBm which
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is configured by changing the values of P0 and P1 according to Appendix E.1. The serial data

from the FPGA encoder is fed into the data pin in synchronisation with the RF Clock during

transmission. The transmitter clocks data on the rising edge as illustrated in Figure 4.16.

Figure 4.16: RF Clock and Data Synchronisation. Adapted from [8]

On the receiver, data is read from the same data pin into the FPGA decoder. The RF signal

is Frequency Shift Keying modulated. The full specifications for RF transceiver are given by

Appendix E.2.

4.4.4 FPGA-based Receiver

Serial bits
from RF

Deframing

Serial to
Parallel Module

AX.25 decoder

FX.25 Decoder

Data RAM

CRC Check

Packet Sync

Deframing

Serial to
Parallel Module

Data RAM

CRC Check

Packet Sync

Syndrome
Calculator

Berlekamp’s
Algorithm

Chien’s
Algorithm

Forney’s
Algorithm

Reed Solomon (255, 239) Decoder

UART Module

Adaptive Control

Serial bits to
PC

Serial bits to
RF

.

Figure 4.17: System Decoder Block Diagram
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The receiver block diagram is shown in Figure 4.17. The decoder parallel decoding enables

it to decode either AX.25 or FX.25 packets seamlessly.

4.4.4.1 AX.25 Decoder

The AX.25 Packet Sync continually listens to the RF and buffers the serial input into an 8-bit

shift register. If the shift register value is the AX.25 start sequence 0x7e, the decoder state

machine transitions to De-framing and Data Capture. In this state, the decoder reads the

incoming data, discards the address bits (since only two nodes are used in this communi-

cation), discards control bits (the protocol only uses UI frames) and store information bits

into data RAM. The data capturing process runs so long as the end tag has not been de-

tected or until the maximum number of allowed information bytes (253 bytes) is reached.

The 253 maximum is considered the absolute maximum with the assumption that it can go

up as much if a pure AX.25 packet was transmitted otherwise for a packet wrapped in a FX.25

frame, it will be far less as the FX.25 codeblock spans 239 bytes. The De-framer also destuffs

the incoming information bits.

The destuffed byte buffer passes through a CRC calculator before being written to the RAM.

The CRC circuit is similar to the CRC generator in Figure 4.13. The principle of operation of

the CRC checker is that since the same circuit was used to generate the checksum which is

essentially the remainder, dividing the polynomial with its remainder polynomial appended

to it should give a remainder of 0x0000. That is if the data has not been altered, otherwise the

remainder will not be 0. Upon detecting the end tag, the CRC buffer value is checked. Every

valid frame is forwarded to the PC terminal via serial port. Every corrupted frame is dropped,

and a packet drop indicator message is sent to the PC terminal. A simplified algorithm for

the decoder is shown in Algorithm 1.
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Algorithm 1 AX.25 Decoder
1: Packet Sync
2: while RF_BUF 6= 0x7E do
3: Shift RF bit in
4: end while
5: read in, and drop address, control bits
6: while END_TAG not detected or max read bytes read do
7: shift RF bits in
8: bit destuffing
9: if RF_BUF has a new byte then

10: save byte to RAM
11: calculate CRC
12: end if
13: end while
14: if CRC_BUF = 0x0000 then
15: send information bytes from RAM to PC
16: else
17: drop packet, send packet drop notifier to PC
18: end if
19: Go to Packet Sync

The AX.25 decoder can also decode FX.25 packets since the inner wrapped AX.25 packet is

not altered. If a FX.25 packet is received, the preamble, correlation tags, and postamble will

not be detected and will thus be discarded. After the shift register has read in the AX.25

start tag, the decoder state machine thereafter processes the rest of the AX.25 packet in a

predefined manner.

4.4.4.2 FX.25 Decoder

The FX.25 Packet Sync is different from the equivalent in AX.25 due to the fact that the FX.25

signal is locked based on the received correlation tags rather than the preamble. The de-

coder is synced once an 80% correlation is achieved. The decoder’s Finite State Machine

(FSM) next state goes to reading the preamble after which a AX.25 decoding process simi-

lar to algorithm 1 occurs. If the data is found to be corrupt, instead of dropping the packet,

the RF data is read until 255 bytes have been received. The 255 byte data block is the Reed

Solomon codeblock that is handed to the Reed Solomon decoder.

The RS(255,239) syndrome polynomial given by

Si(x) = S0 + S1X + S2X2 + · · ·+ S15X15 (4.29)

The full Syndrome circuit is illustrated in Figure 4.18. The syndrome is computed in 255

clock cycles with the R(x) byte in position per cycle. It is already known from the CRC calcu-

lation in the previous stage that the syndrome computation will give a non-zero value. The

encoder issues a START pulse signal to the syndrome calculator to initiate start of syndrome

calculation.
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D
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D

R(X )

S0
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S1

S15

1

2

38

.

Figure 4.18: Reed Solomon (255,239) Syndrome Circuit

At each clock cycle, the syndrome calculator multiplies the received byte by the roots of the

generator polynomial g (x) from α0 to α15. The value of each syndrome is accumulated on

the register D which after 255 clock cycles contains the coefficients, R(α0),R(α1), ...,R(α15).

The syndrome calculator triggers the Berlekamp circuit to start the locator decoding.

The Berlekamp circuit is shown in Figure 4.19. The syndrome registers are not a standalone

memory but from the previous step. The σ(µ+1) and σ(ρ) are each 9-byte memory arrays

that store the coefficients of the current and ρth error locator polynomial respectively. The

dµ,ρ,µ 8-bit registers stores the discrepancy, the last stage with non-zero discrepancy, and

the inverted value of the discrepancy at that stage respectively. The µ−ρ in equation 4.23 is

accounted for by the shifting circuitry control. Initially the registers for σ(µ+1) and σ(ρ) con-

tains the values of 1 to match the values of rows 1 and 0 of Table 4.5 respectively.
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16 syndromes register
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Control byte shifting

.

Figure 4.19: Berlekamp Circuit

Upon reception of the ST ART pulse, the circuit checks the dµ register. If it has a value of 0,

then the current value of σ is retained implying that the σ feedback switch is closed. If not,

a new value of σ is calculated which takes the value of the σ registers and adds them to the

output of the multiplier fromσ(ρ). This process involves shifting theσ(ρ) registers µ−ρ bytes

to the left, multiplying each coefficient of σ(ρ) by dµd−1
ρ and adding it to the corresponding

terms of the σ. The Berlekamp multiplication is different from the multiplications from the

previous subsections in that neither of the values to be multiplied is known in advance. The

multipliers for the Berlekamp uses the principle for deriving constant multipliers, but has

more complexity and resource requirements. The inverse calculation is based on an inverse

ROM lookup table for the inverse of the field elements.

The circuit flow can be illustrated by Algorithm 2.
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Algorithm 2 Berlekamp’s Algorithm

1: INIT: Set registers σ(µ+1) ← 0x01, σ(ρ) ← 0x01,
2: Set registers for µ← 0x00, lµ← 0x00, (µ− lµ) ← 0x00
3: NEXT_ITER:
4: if dµregister value = x00 then
5: Go to COMPUTE_dµ
6: else
7: Go to COMPUTE_σ
8: end if
9: COMPUTE_dµ :

10: while j ≤ lµ do
11: dµ + =σ j Sµ+1− j

12: end while
13: COMPUTE_σ:
14: if (register value dµ 6= 0x00 and (µ− lµ) ≥ (ρ− lρ)) then
15: Assign to registers σ(ρ) ←σ(µ),ρ←µ, (ρ− lρ) ← 0x00
16: else
17: Add a 0x01 to the value of (ρ− lρ) register
18: end if
19: if (the register containing (µ−ρ) > 0x08) then
20: % The degree of (σρ) > 0x08
21: Go to HALT
22: end if
23: Shift the bytes σρ ¿ (µ−ρ)
24: MULTIPLY_DMU_DRHO: Multiply dmu and d−1

ρ

25: Multiply the product MULTIPLY_DMU_DRHO by each coefficient of σ(ρ)

26: Add the coefficients of the operation from the previous step to the coefficients of σ(µ)

27: CHECK_ITER:
28: if µ = t then
29: Go to SUCCESS
30: else
31: Go to NEXT_ITER
32: end if
33: SUCCESS: Error locator polynomial found
34: HALT : Errors cannot be corrected

This process is succeeded by calculating and updating the discrepancy which is achieved by

summing the terms of multiplication operation of the coefficients of the stage error locator

and the corresponding term of the syndrome σ j Sµ+1− j . An address counter for j is used to

move the address pointer at each iteration. After getting the discrepancy, and updating the

registers for dµ, lµ,and(µ− lµ), the value of µ is incremented and the process starts all over

again. The iteration is halted when µ = 2t and the error locator is found or when the degree

of the stage polynomial σ(µ+ 1) is greater than t . This occurs when the shifting circuitry is

attempting to shift bytes to the left more than the 9-byte size. In the latter case, the number

of errors has exceeded the correction capability. If the locator decoding succeeds, the Chien

search algorithm is triggered.

The Chien search is implemented based on Figure 4.8 with the values of the error locator
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registers as 8 bits, σ1,σ2, · · · ,σ8 The second logic unit in the circuitry 4.8 is the multiplier

for the GF element raised to the powers 1,2, · · · ,8. The power function is implemented in

hardware based on the principle of multiplication introduced in subsection 4.2.2.2. For the

second multiplicand for instance, α2, the power circuitry will be designed as follows from

the element β = b0 + b1α+ · · ·+ b7α
7

(β)2 = b0 + b1α
2 + b2α

4 + b3α
6 + b4α

8 + b5α
10 + b6α

12 + b7α
14

= b0 + b1α
2 + b2α

4 + b3α
6 + b4(α4 + α

3 + α
2 + 1) + b5(α6 + α

5 + α
4 + α

2)+

b6(α7 + α
6 + α

3 + α
2 + 1) + b7(α7 + α

4 + α
3)

= (b0 + b4 + b6)α0 + (b1 + b4 + b5 + b6)α2 + (b4 + b6 + b7)α3 + (b4 + b5 + b7)α4+

b5α
5 + (b3 + b6)α6 + (b6 + b7)α7

(4.30)

The full multiplier combinational logic circuitry is derived from each of the terms from 4.30.

The search for the roots takes 255 clock cycles to exhaust all the elements, and the solution

of a zero at location i indicates that the inverse of that element is the location of the error.

The inverse logic is achieved through an inverse ROM lookup table.

The last but one step is the finding the error values at the locations using Forney’s algo-

rithm. The algorithm uses values from the previous computations namely the syndromes

and the error-locator coefficients which will be accessed from the respective RAMs. The ad-

dress counters move the address pointers for the syndromes andσ(X ) to find the numerator

of equation 4.27. This is achieved by circuit 4.20 whereby the products for β×S are summed

and stored on the 8-bit registerΓ(β−1) at each clock cycle. On completion of the summation

loop, the value is XORed with 0x01. Much like in the Chien search, the inverse of any ele-

ment is achieved through a lookup table. The denominator, on the other hand is obtained

by calculating the βiβ
−1
l through the multiplier and the product added to 0x01. The process

loops for all the found error locations and finally after 2v clock cycles, the values from nu-

merator and denominator registers will be added. This is the same as division due to the

multiplicative inverse principle.
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GF Inverse ROM

α−255α−254 α−1 α0· · ·

From Syndrome RAM From error
locator RAM

1

1

Γ(β−1
l )

∏

.

Figure 4.20: Forney’s Error Magnitude Calculator Circuit

The design then requires that the denominator get its inverse from the inverse lookup table

and is added to the numerator since the denominator is a numerator with a negative power.

Finally, the original R(x) at the v locations and the found error values are fed into an XOR

gate to correct the error.

The data from the decoder is read back by the AX.25/FX.25 decoder to validate whether the

data was successfully corrected by to re-computing the CRC checksum for the corrected

data. If the checksum is still not equal zero, then the number of errors incurred were more

than 8. In a scenario this, the packet is dropped and a packet notification message is sent to

the PC.

4.4.5 Adaptive Module

The AFX.25 switching algorithm is implemented in a hardware based on it’s principle of op-

eration outlined in 3.4.2. The transmitter, will use a TRANSMIT-AND-WAIT state machine to

change the RF transceiver from transmitter to reception mode to listen to switch commands

since the RF boards are half-duplex.

The comparisons of the packet success or drop rate was implemented on hardware using

the cross multiplication comparison method for fractions. This solution is economical be-

cause it eliminates the gates required by floating point division. As an example, for a 0.95

threshold, the values 95 and 100 are stored on registers. If at some window, the number of

non-erroneous packets is 23 and the total number of received packets is 50, the comparison

circuit will be evaluating if (23 × 100) is greater than (95 × 50).
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4.5 Testing and Results

4.5.1 ModelSim Simulation Verification

The protocol VHDL design was first simulated on ModelSim to evaluate if it gives the ex-

pected response. Due to the complexity of ModelSim, the design could not be simulated as

a complete system. To simulate the whole project would have required that the Python Data

Scheduler and Serial Port module queues the data packets into ModelSim and reads the data

back from the output in some "closed loop" format. This would take a significant amount of

time to implement. The ModelSim simulation is necessary to verify the correct functionality

of the VHDL code. A semi "closed loop" simulation was achieved through a Smart design in

Libero and was simulated on ModelSim as illustrated by Figure 4.21.

The SmartDesign schematic specifies the simulation components as the hardware testbench,

transmitter, channel, and receiver. The transmitter and receiver components are the actual

sub-units of the implemented design and the other components are testbench components.

The hardware testbench emulates the physical hardware components of the system, namely

the RS232 interfaces which provide the PC-to-FPGA connectivity. The RS232 Tx module ac-

cepts one byte at a time from the upper layer and outputs one bit serially to the UART mod-

ule. The bytes from the upper layer are an output from the testbench driver script. The

UART core receives the serial data and forwards it to the Transmitter module. The Gener-

icControlTx and RS encoder modules perform framing and encoding on the received pay-

load data. After data encoding, the data is propagated through the channel that consists of

a noise generator module, the BitFlipper. The BitFlipper will at certain interval(s) flip the

channel bit. If the transmission packets fall within that interval, then the data received on

the decoder will be invalid.
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The receiver decodes the serial RF bits, check for errors, correct corrupt packets and forward

the data/response to the RS232Rx via the UART core. The output is observed on the Model-

Sim console.

Consider the following testbench for a transmitting node that requires to transfer the mes-

sage "Hel lo":

• The testbench creates a byte RAM containing 0x48656c6c6f (hexadecimal equivalent)

• The testbench initiates a transmission session by asserting the LD pin

• One byte is read into the testbench output every baud clock cycle

• The last data byte is succeeded by a delimiter byte

With the protocol on FX.25 mode, after the last byte of the testbench is received, the Reed

Solomon encoder creates the codeblock and the transmitter propagates the bits into the

channel. Figure 4.22 shows the RS codeblock transmitted with leading AX.25 start tag 0x7E.

The second signal inside the red circle shows the bit that was flipped resulting in the first

letter "l" in "Hello" to be corrupted into 0x4C.

.

Figure 4.22: Simulation showing channel noise injected in the data
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The receiver reads in the codeblock and detects that the checksum is not zero. The receiver

then initiates error recovery with the RS decoder module as shown in Figure 4.23. The de-

coder goes through the decoding process, calculating syndromes, finding error locator and

solving it, finding and the error magnitudes and correcting the invalid bits. The Chien search

located the error at location 251 along the yellow line in Figure 4.23. The 251 position is

where the "l" was in 255 FX.25 frame since the first 254th byte is the AX.25 delimiter. The

result of the decoder can be observed from the output console. The decoder succeeded in

correcting the 0x4C into 0x6C which was the original byte. After several testbenches with

different test inputs, the decoder was verified to function as expected.

.

Figure 4.23: Received Codeword Into and Out of RS Decoder

4.5.2 Terrestrial Experimental Network

The initial tests for the hardware implementation were conducted from within the ESL. Three

different measurements were taken with each experiment, with the protocol in either AX.25

or FX.25 or AFX.25 mode over three minutes for each session. Two workstations, a fixed and

mobile one were used. The fixed workstation is representative of the ground station node

equipped with the system transmitter and the mobile workstation being satellite node with

the system receiver circuit. The mobile node was moved in timely steps from the fixed node

out of the laboratory up the staircases to the second floor laboratory and back over a 3.33

minute period. The movement was accomplished by carrying the mobile node by hand and
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incrementally step forward at 1-second intervals with the help of a stop watch. The human

movements were carefully observed so that the steps are equal for all the experiments so that

the mobile node reaches the second floor after 80 seconds and back at the laboratory after

140 seconds. The signal deteriorates as the wall thickness changes, which alters the diffrac-

tion rate of the signal. The signal-to-noise ratio at the third floor is lower compared to the

ground floor close to the fixed node.

The tests were conducted for a fixed size 150-byte packet size with a baud rate of 9600 bps

where the packets are generated on demand. The results were logged and the combined

results are displayed graphically on Figure 4.24.

(a) Raw data (b) 20sec sliding window averaged data

Figure 4.24: Throughput Curves for AX.25/FX.25/AFX.25 Indoor Tests

Figure 4.24a shows the throughput evaluated per second. The protocol performance cannot

be visualised correctly due to the scatter of the individual points. It is for that reason the

data points were averaged over a 20 seconds sliding window resulting in Figure 4.24b. The

0-second point is the start point of the mobile movement, the 80-second is the farthest point

(second floor) and at 140 seconds the mobile node is back at the starting point. It can be ob-

served that at the start point, the AX.25 performance is the highest but drops as the mobile

node moves away from fixed node. At the farthest distance at 80 seconds, the AX.25 through-

put is the worst. The FX.25 throughput does not have the greatest performance near the

transmitter node but at the farthest point (80 seconds). This displays its strength in correct-

ing corrupted packets. The AFX.25 throughput follows the AX.25 curve from 0 to 40 seconds,

the FX.25 from 40 to 110 seconds, and the AX.25 from 110 to 140 seconds. This indicates its

adaptability functionality. The AFX.25 does have an initial throughput less than the AX.25

because on system start-up, the protocol operates in FX.25 mode. The highest throughput

from the experiment is 6000 bps which is a deviation from 9600 bps, the theoretical through-

put. This is so because of the time losses during the transmission; the time it takes for bytes

to be serially transferred from the PC to the FPGA and from the FPGA to the PC. Secondly, the

transmitter always wait for a response from the receiver every 20 seconds. The waiting time
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also accounts for the 3 to 5 ms required by the RF transceiver to change from transmission

to reception or reception to transmission mode. The total data received for the 140 seconds

communication is given in Table 4.8.

Protocol Total Data Received (KB) Relative Performance (%)
AX.25 92.5 100.0
FX.25 94.1 101.7
AFX.25 96.5 104.3

Table 4.8: AX.25/FX.25/AFX.25 Data Received over 140 seconds indoor tests

A terrestrial environment was thereafter assumed. It does not have exactly the same char-

acteristics for a space-to-ground communication but was adopted because of its ability to

mimic the rise and fall satellite trajectory on the horizon from an observer ground station.

The task was to identify a road with a semi-circular bend where the peak of the bend would

be the ground station location.

.

Figure 4.25: Terrestrial Test Environment

Figure 4.25 shows the test environment where points A and A’ are zones of high signal loss

and B is clear line of sight. The ground station node is fixed at point B. The mobile node

moves from B to A’, then from A’ it passes via B to A and back to B for each session. As the

mobile unit moves from B to A or A’, the signal-to-loss ratio lowers gradually until point A or

A’, where the ground node is out of sight. This is so because of the elevated topography that
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provides an obstruction as you go along the road. Since the road bend length is small, it was

required that the RF modules were operated on minimum transmitting power.

The experiment was conducted over a test period of 8 minutes with fixed sized 156 byte pack-

ets generated on demand. The node movements were human aided as with the indoor test.

However, the outdoor setting allowed for footstep calibration. The ground along the path

was marked at equal intervals so that each marked distance is covered per second. Three ex-

periments were performed with each protocol (AX.25, FX.25, AFX.25) per session. The results

were logged and are represented by Figure 4.26.

(a) Scatter plot (b) Averaged plot

Figure 4.26: Throughput Curves for AX.25/FX.25/AFX.25 Terrestrial Tests

The 0-second point is at the starting point, B. Point A’ is at 120 seconds, point B is at 210/240

seconds, point A at 330 seconds and point B at 420 seconds. Having a closer look at the 120 to

330 seconds region, it can be observed the FX.25 has a better throughput than the AX.25 but

drops at around 210 seconds when the AX.25 is at its maximum. This has been established

by the simulation chapter that at the clear line of sight, the FX.25 FEC symbols waste the

bandwidth. During this window, the AFX.25 switching capability is observed as the highest

overall data received for AFX.25 is high.

However, some unexpected overlapping in performance is observed, for example at 330 sec-

onds, the AFX.25 has a lesser throughput than the FX.25 and AX.25. This is not expected as

the AFX.25 is a hybrid of the FX.25 and AX.25, so its throughput is expected to be higher. Ide-

ally this would be the case for parallel tests run at the same time with identical equipment

but it was not the case. The results were concluded from three standalone experiments with

tried timings and the results vary for each experiment. Firstly, the data generation algorithm

is random for each experiment. Secondly, in as much as the same path is followed for each

time step, but the errors imposed on the data cannot be exactly be similar for all the experi-

ments. Thirdly, the time steps are within 1 meter accuracy.
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4.6 AFX.25 Implementation Real Estate Cost

This section summarises the design resource utilisation summary after synthesis on a Fusion

MFS1500 device running on a 24 MHz clock.

Table 4.9: Resource Utilisation for Fusion MFS1500

Module No. of Core

Cells

No. of IO

Cells

No. of Block

RAM (255 × 8

bits)

Max. Freq.

(MHz)

Min Period

(ns)

RS Encoder 355 21 0 70.8 14.109

Transmitter

(incl. RS enc)

1131 14 2 70.8 14.109

RS Decoder 5857 52 1 45.6 21.907

Receiver

(incl. RS dec)

7925 13 4 45.6 21.907

Total (Tx and

Rx)

9056 27 6 45.6 21.907

From the analysis in Table 4.9, the number of IO cells for both the RS encoder and decoder is

higher than the overall because their calculations were done on standalone modules. A big-

ger number of IO cells are not used in the combined transmitter/receiver because the IO cells

now become port connections to the GenericController module. The total estimated power

consumption of the receiver is 55.225 mW and that of the transmitter 34.167 mW amounting

to 89.392mW for the full design excluding RF front end electronics consumption.

The smallest Microsemi FPGA that can be used for the design is the IGLOO AGL600V5 which

has 13,824 core cells, 285 I/O cells and 108x1024kbits of RAM. The resource utilisation for

the IGLOO AGL600V5 is shown in Figure 4.10

Table 4.10: Resource Utilisation for IGLOO AGL600V5

Module No. of Core

Cells

No. of IO

Cells

No. of Block

RAM (255 × 8

bits)

Max. Freq.

(MHz)

Min Period

(ns)

RS Encoder 430 21 0 27.0 37.1

Transmitter

(incl. RS enc)

1440 7 2 27.0 37.1

RS Decoder 4906 22 1 15.7 63.7

Receiver

(incl. RS dec)

6868 6 3 15.7 63.7

Total (Tx and

Rx)

8308 13 5 27.0 37.1
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

The project objectives were met; an adaptive AFX.25 protocol has been designed and imple-

mented on a FPGA.

5.1.1 Protocol Simulations

The choice of AX.25/FX.25 was heavily influenced by the popularity of the AX.25 amongst

amateur developers[9]. Le Roux [1] initiated the idea of hybridisation of the two protocols

and conducted a performance simulation. Whilst the current trend has a bigger share on the

AX.25, it was imperative that a further investigation is done for other popular data link pro-

tocols. The CCSDS standards were found to be trendy too, more especially with big satellites.

That motivated the protocol simulation for the AX.25, FX.25, CCSDS TC in chapter - 2. The

results of the simulation proved that the AFX.25 performs better.

It was noted that even though each protocol may have a larger payload size like the CCSDS

TC, the protocol’s performance with large packets is not as good as with packets with an av-

erage size of around 200 bytes. This is because larger packets have a higher probability of

being corrupted than smaller ones. Upon corruption, the amount of data lost is significantly

larger than if a smaller packet is lost. It was also observed that with the FX.25/AFX.25, the

protocol is at its best around that margin. Theoretically, the FX.25 would have high perfor-

mance if the codeblock information contains a full AX.25 data structure without padding as

the padding does not provide useful content. However, the number of information bytes

cannot be determined exactly beforehand due to the AX.25’s bit stuffing algorithm.

Even though the project was geared towards a hardware design, the importance of a network

simulator like SatSim cannot be underestimated as it was handy in verifying the protocol’s

functionality. Another advantage of using a simulation tool is the short development and

71
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testing time.

5.1.2 Hardware Implementation

Most of the project time was spent in designing and implementing the error correction codes

hardware. The field of error correction has been studied for years and many applications us-

ing the codes have been developed over the years. However, there are gaps in the literature

between the concepts explained in books and their practical implementations in hardware.

There are some literature sources that discuss the concepts and applications but in a more

abstract mathematical manner. The simplest approach for inexperienced developers will be

to adapt existing codes written in high level languages like C or Python to VHDL. Some of the

codes can be used, but in most cases it does not translate well for hardware designs, resulting

in unnecessarily long hours of debugging and frustration. Irrespective of the time spent in

understanding the theory behind them, there is a reward in designing from concept directly

to the hardware architecture in a non software approach.

The terrestrial tests showed that Le Roux’s [1] idea of the AFX.25 yields good performance

metrics. However, the improvements could not be quantified down to an exact value. This

limitation was because of the way the tests were conducted. The terrestrial test environment

didn’t represent the exact rise and fall time of a typical LEO satellite trajectory. Secondly, the

test data generation was probabilistic which varied the results each test session. At simula-

tion level, this can be overcome by running several simulations with same input parameters

and averaging the results over the number of repeats. But the tests could not be performed

up to that level due to time constraints and the available workstation power when out in the

test field.

5.2 Future Work

Having designed and tested the adaptive protocol on hardware, the following ideas are con-

sidered for future work. The current implementation’s adaptability algorithm switches be-

tween code rates 239/255 and 1. A full adaptive stack could be implemented to cover the best

performance code rates compatible with the FX.25 outlined by Table 3.2. Not all the codes

will be implemented as an increase in correction capability adds a non-linear response to the

circuit complexity and decoding time. An example would be an interleaved code which can

enhance the probability of a packet being corrected due to the randomisation of the packet

bits. An improperly designed interleaver circuit can, however, use a big chunk of resources

and add an increase to the overall system latency. The decoder can correct almost all the

errors if they are less than the code rate in use otherwise it fails. When the latter occurs, the
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system needs a reporting and resend mechanism for the corrupted packets. That will require

that the error correction will trigger the ARQ module on decode error.

This loss rate using equation 3.1, does not take into consideration the number of unknown

packets that do not reach the receiver. It could be considered as part of improving the pro-

tocol to incorporate the number of packets that are dropped in the channel. This can be

achieved by by using sequence numbers. The resultant system can manage sequence coun-

ters on the transmitter and receiver. If the packet received has a sequence number that is

greater than the expected sequence number, the total number of packets can therefore be

updated by the adding the difference. Thus, the new r (a)
l can be

Packet loss rate, r (a)
l =

Packets received in error in t

Total packets received in t + Packets lost in t
(5.1)

The current switching method is based on thresholds configured into the switching module.

However, this can be improved by adapting machine learning algorithms.

Wai and Yang [43] pointed out that the Berlekamp algorithm uses fewer resources than the

Euclidean algorithm for finding the error locator polynomial. However, they also noted that

the Euclidean algorithm used less resources on the Xilinx Virtex4 [44] architecture. This was

attributed to the fact that FPGA vendors use different algorithms for synthesis. Since real

estate is one of the key watch areas on FPGAs, it would be worth a while to implement the

Euclidean algorithm on the FPGA and compare the resource utilisation and performance.
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Version 9; Page 1 of 2. This chart shows the 256 total CubeSats deployed in orbit so far, for a total of 499 Units. March 10, 2015.
Bryan Klofas. bklofas@gmail.com. Green are University CubeSats; Red are Commercial or Private; Blue are US Government.
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AAU1 CubeSat 27846 1U Wood & Douglas SX450 437.475 MHz amateur 500 mW MX909 AX.25, Mobitex 9600 baud GMSK 1 kB 3 months dipole Dead April 2013
DTUsat-1 27842 1U RFMD RF2905 437.475 MHz amateur 400 mW AX.25 2400 baud FSK 01 0 days canted turnstile DOA April 2013
CanX-1 27847 1U Melexis 437.880 MHz amateur 500 mW Custom 1200 baud MSK 01 0 days crossed dipoles DOA April 2013
Cute-1 27844 1U Alinco DJ-C4 (data) 437.470 MHz amateur 350 mW MX614 AX.25 1200 baud AFSK >10 MB2 118+ months monopole Alive April 2013

(CO-55) Maki Denki (beacon) 436.8375 MHz amateur 100 mW PIC16LC73A CW 50 WPM N/A monopole
QuakeSat-1 27845 3U Tekk KS-960 436.675 MHz amateur 2 W BayPac BP-96A AX.253 9600 baud FSK 423 MB 7 months turnstile Dead April 2013

XI-IV 27848 1U Nishi RF Lab (data) 437.490 MHz amateur 1 W PIC16C622 AX.25 1200 baud AFSK >11 MB2 118+ months dipole Alive April 2013
(CO-57) Nishi RF Lab (beacon) 436.8475 MHz amateur 80 mW PIC16C716 CW 50 WPM N/A dipole

SSETI
Express

27 Oct 2005

XI-V 28895 1U Nishi RF Lab (data) 437.345 MHz amateur 1 W PIC16C622 AX.25 1200 baud AFSK 90+ months dipole Alive April 2013
(CO-58) Nishi RF Lab (beacon) 437.465 MHz amateur 80 mW PIC16C716 CW 50 WPM N/A dipole
NCube-2 288974 1U 437.505 MHz amateur AX.25 1200 baud AFSK 01 0 days monopole DOA April 2013
UWE-1 28892 1U PR430 437.505 MHz amateur 1 W H8S/2674R5 AX.25 1200/9600 baud AFSK 3 weeks end-fed dipole Dead Apri 2013

M-V-8
22 Feb 2006

Cute-1.7+APD 28941 2U Alinco DJ-C5 437.505 MHz amateur 300 mW CMX589A AX.25/SRLL 1200 AFSK/9600 GMSK <1 MB 2.5 months dipole Deorbited April 2013
(CO-56) Telemetry (beacon) 437.385 MHz amateur 100 mW H8S/23285 CW 50 WPM N/A dipole

Minotaur-1
11 Dec 2006

GeneSat-1 29655 3U+ Microhard MHX-2400 2.4 GHz experimental 1 W Integrated6 Proprietary 500 kB 3 months patch Deorbited April 2013
Stensat (beacon)7 437.067 MHz amateur 500 mW PIC12C617 AX.25 1200 baud AFSK N/A monopole
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CSTB1 31122 1U Yaesu VX-2R 400.0375 MHz experimental 300 mW PIC Proprietary 1200 baud AFSK 6.77 MB 18 months dipole Dead April 2013
AeroCube-2 31133 1U FreeWave FGRM 915 MHz experimental 2 W Integrated6 Proprietary 38.4 kbaud 500 kB 1 week patch Dead April 2013

CP4 31132 1U TI CC1000/RF2117 437.325 MHz amateur 1 W PIC18LF6720 AX.25 1200 baud FSK 487 kB 2 months dipole Dead April 2013
Libertad-1 31128 1U Stensat 437.405 MHz amateur 400 mW AX.25 1200 baud AFSK 08 1 month monopole Dead April 2013

CAPE1 31130 1U TI CC1020 435.245 MHz amateur 1 W PIC16LF452 AX.25 9600 baud FSK 09 4 months dipole Dead April 2013
CP3 31129 1U TI CC1000/RF2117 436.845 MHz experimental 1 W PIC18LF6720 AX.25 1200 baud FSK 2.0 MB2 19+ months dipole Dead April 2013

MAST10 31126 3U Microhard MHX-2400 2.4 GHz experimental 1 W Intgrated6 Proprietary 15 kbps >2 MB 0.75 months monopole Dead April 2013
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Delfi-C3 32789 3U Custom (transponder) 145.9-435.55 MHz amateur 200 mW N/A Linear 40 kHz wide N/A 60+ months turnstile Alive April 2013
(DO-64) Custom (beacon) 145.870 MHz amateur 400 mW PIC18LF4680 AX.25 1200 baud BPSK 60 MB11 turnstile
Seeds-2 32791 1U Musashino Electric (data) 437.485 MHz amateur 450 mW AX.25 1200 baud AFSK 500 kB2 60+ months monopole Alive April 2013
(CO-66) Musashino Electric (beacon) 437.485 MHz amateur 90 mW CW N/A monopole
CanX-2 32790 3U Custom S-Band 2.2 GHz space research 500 mW Integrated NSP 16-256kbps BPSK 250 MB 60+ months patch Active April 2013

AAUSAT-II 32788 1U Holger Eckhardt (DF2FQ) 437.425 MHz amateur 610 mW PIC18LF6680 AX.25 1200 baud MSK 8 MB122 60+ months dipole Alive April 2013
Compass-1 32787 1U Holger Eckhardt (data) 437.405 MHz amateur 300 mW C8051F123, FX614 AX.25 1200 baud AFSK/MSK <1 MB2 60+ months dipole Alive April 2013

BC549 (beacon) 437.275 MHz amateur 200 mW PIC12F629 CW 15 WPM N/A dipole
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AeroCube-3 35005 1U FreeWave FGRM 915 MHz experimental 2 W Integrated Proprietary 77 kbaud GFSK 52 MB 7 months patch Deorbited April 2013
CP6 35003 1U CC1000/RF2117 437.365 MHz amateur 1 W PIC18LF6720 AX.25 1200 baud FSK 4 months dipole Deorbited April 2013

HawkSat-1 35004 1U Microhard MHX-425 437.345 MHz amateur 1 W Integrated Proprietary 0 kB 0 days monopole DOA April 2013
PharmaSat 35002 3U+ Microhard MHX-2400 2.4 GHz experimental 1 W Integrated Proprietary 10 kbps 650 kB 10 days patch Deorbited April 2013

Stensat (beacon)7 437.465 MHz amateur 500 mW Integrated AX.25 1200 baud AFSK N/A 1 month monopole
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BEESAT-1 35933 1U STE BK-77B 436.000 MHz amateur13 500 mW CMX909B Mobitex 4800/9600 baud GMSK 43+ months monopole Alive April 2013
UWE-2 35934 1U Custom 437.385 MHz amateur AX.25 1200 baud AFSK 1 week dipole Dead April 2013

ITUpSAT-1 35935 1U Microhard MHX-425 437.325 MHz amateur 1 W Integrated Proprietary 19200 baud 0 kB8 43+ months dipole Alive April 2013
BeeLine/CC1050 437.325 MHz amateur 350 mW CW N/A monopole

SwissCube 35932 1U Butler oscillator/RF5110G 437.505 MHz amateur 1 W MSP430F1611 AX.25 1200 baud FSK 6 MB 43+ months monopole Active April 2013
RF2516 (beacon) 437.505 MHz amateur 100 mW Integrated CW 10 WPM N/A monopole
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0 Hayato 36573 1U Custom 13.275 GHz Earth exploration 100 mW Integrated 10 kbps/1 Mbps BPSK 0 kB8 18 days patch Deorbited April 2013

Waseda-SAT2 36574 1U TXE430-301A 437.485 MHz amateur 150 mW H8/3052F5 AX.25 9600 baud FSK 0 kB 0 days monopole DOA April 2013
TXE430-301A (beacon) 437.485 MHz amateur 100 mW H8/3052F5 CW N/A dipole Deorbited

Negai-Star 36575 1U Data 437.305 MHz amateur 150 mW AX.25 1200 baud FSK 1 month dipole Deorbited April 2013
Beacon Radio 437.305 MHz amateur 100 mW CW 50 WPM N/A dipole

NLS-6/
PSLV-C15

12 July 2010

TIsat-1 36799 1U Alinco DJ-C6 437.305 MHz amateur 500 mW MSP430F169 AX.25 1200 baud AFSK 33+ months monopole Active April 2013
CC1010 (beacon) 437.305 MHz amateur 400 mW MSP430F169 CW 15-110 WPM N/A monopole

StudSat 36796 1U CC1020 437.505 MHz amateur 500 mW UC3A05125 Custom AX.25 4800 baud FSK 0 kB8 5 days monopole Dead April 2013
MAX1472 (beacon) 437.860 MHz amateur 10 mW UC3A05125 CW 22 WPM N/A monopole
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0 RAX-1 37223 3U Lithium-1 437.505 MHz amateur 750 mW Integrated AX.25 9600 baud GMSK 4.8 MB 2 months turnstile Dead April 2013

O/OREOS 37224 3U+ Microhard MHX-2400 2.4 GHz experimental 1 W Integrated Proprietary Variable 8 MB 29+ months patch Alive April 2013
Stensat (beacon)7 437.305 MHz amateur 500 mW Integrated AX.25 1200 baud AFSK N/A monopole

NanoSail-D2 37361 3U+ Microhard MHX-2400 2.4 GHz experimental 1 W Integrated Proprietary Variable 5 days14 patch Deorbited April 2013
Stensat (beacon)7 437.270 MHz amateur 500 mW Integrated AX.25 1200 baud AFSK N/A monopole
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Perseus (4) 37251+ 1.5U government 1 month dipole Deorbited April 2013
QbX (2) 37249+ 3U TTC 450 MHz government 1 W 9600 baud GMSK 1 month quadrafilar helix Deorbited April 2013

SMDC-ONE 37246 3U Pericle UHF government 1 month turnstile Deorbited April 2013
Mayflower 37252 3U Microhard MHX-425 437.000 MHz unlicensed 1 W Integrated Proprietary Variable 0 kB8 2 days dipole Deorbited April 2013

Stensat (beacon)7 437.600 MHz unlicensed 1 W Integrated AX.25 1200 baud AFSK N/A

PSLV-C18
12 Oct 2011

Jugnu 37839 3U CC1070/RF5110G 437.505 MHz amateur 1 W AX.25 2400 baud FSK 18+ months monopole Alive April 2013
MAX1472 (beacon) 437.505 MHz amateur 10 mW CW 20 WPM N/A monopole
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AubieSat-1 37854 1U Melexis TH72011 437.475 MHz amateur 800 mW ATmega12815 CW 20 WPM 0 kB 22+ months dipole Alive April 2013
DICE (2) 37851+ 1.5U L3 Cadet 465 MHz meteorological 1 W Integrated Proprietary 2.6 Mbps OQPSK 8.4 GB 20 months dipole Dead Aug 2013

HRBE 37855 1U CC1000 437.505 MHz amateur 850 mW AX.25 1200 baud FSK 11 22+ months monopole Active Aug 2013
M-Cubed 37855 1U Lithium-1 437.485 MHz amateur 1 W Integrated AX.25 1200 baud FSK 0 kB8 22+ months monopole Alive April 2013
RAX-2 37853 3U Lithium-1 437.345 MHz amateur 1 W Integrated AX.25 9600 baud GMSK 242 MB 18 months turnstile Dead Aug 2013
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Xatcobeo 38082 1U GomSpace U482C 437.365 MHz amateur 500 mW Integrated AX.25/CW 1200 baud MSK/20 WPM 18+ months turnstile Active Aug 2013
ROBUSTA 1U MC12181/MAX2608 437.325 MHz amateur 800 mW PIC18F45805 AX.25 1200 baud AFSK 0 kB15 2 days dipole Dead April 2013

e-st@r 38079 1U BHX2-437-5 437.445 MHz amateur 500 mW PIC16 AX.25 1200 baud AFSK 0 kB8 3 days dipole Dead April 2013
Goliat 38085 1U Alinco DJ-C7 437.485 MHz amateur 500 mW FX614/MSP430 AX.25/CW 1200 baud AFSK/20 WPM 1 week monopole Dead April 2013

Microhard MHX-2420 2.4 GHz 1 W Integrated Proprietary Variable 0 kB15 patch
PW-Sat 38083 1U ISIS TRXUV 145.900 MHz amateur 200 mW Integrated AX.25/CW 1200 baud BPSK/12 WPM 10 months dipole Dead April 2013
Masat-1 38081 1U Si4432 437.345 MHz amateur 100/400 mW dsPIC33F5 Custom/CW GFSK/120 CPM 305 MB 18+ months monopole Active Aug 2013

UniCubeSat-GG 1U AstroDev Custom 437.305 MHz amateur 500 mW Integrated AX.25/CW 9600 baud GFSK 0 kB8 2 days dipole Dead April 2013

E
L

aN
a-

6
/N

R
O

L
-3

6
1
3

S
ep

20
12

SMDC-ONE (2) 38766+ 3U Pericle UHF government turnstile Alive April 2013
AeroCube-4 (3) 38767+ 1U FreeWave MM2 915 MHz experimental 2 W Integrated Proprietary 38.4 kbaud 8+ months patch Active April 2013

CC1101 915 MHz experimental 1.3 W Integrated Proprietary 500 kbps FSK patch
Aeneas 38760 3U MHX-425 437.000 MHz experimental 1 W Integrated Proprietary Variable 8+ months monopole Alive April 2013

Stensat (beacon)7 437.600 MHz amateur 1 W Integrated AX.25 1200 baud FSK N/A 8+ months monopole
CSSWE 38761 3U Lithium-1 437.345 MHz experimental 1 W Integrated AX.25 9600 baud GFSK 60 MB 12+ months monopole Active April 2013

CP5 38763 1U CC1000/RF2117 437.405 MHz amateur 500 mW PIC18LF6720 AX.25 1200 baud FSK 500 kB 4 months dipole Dead April 2013
CXBN 38762 2U Lithium-1 437.525 MHz amateur 1 W Integrated AX.25 9600 baud GFSK 8+ months turnstile Active April 2013

CINEMA 38764 3U Emhiser 2200 MHz space research 1 W FPGA Proprietary 1 Mbps FSK 8+ months patch Active April 2013
Re 38765 3U Helium-100 915 MHz government 1 W Integrated AX.25 57.6 kbps FSK 0 kB 0 days dipole DOA Aug 2013
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FITSat-1 38853 1U High-speed Custom 5.84 GHz amateur 2 W PIC16F886 115.2 kbps FSK 9 months patch Deorbited Aug 2013
Custom (data) 437.445 MHz amateur PIC16F1519 AX.25 1200 baud AFSK monopole

Custom (beacon) 437.250 MHz amateur 10 mW PIC16F1519 CW N/A monopole
TechEdSat16 38854 1U Stensat (beacon)7 437.465 MHz amateur 1 W Integrated AX.25 1200 baud AFSK N/A 7 months Deorbited Aug 2013

F-1 38855 1U VX-3R 145.980 MHz amateur 1 W PIC18F AX.25 1200 baud AFSK 0 kB 0 days dipole Deorbited Aug 2013
VX-3R 437.485 MHz amateur 200 mW PIC16F FM PWM CW 20 WPM N/A dipole

WE-WISH 38856 1U (data) 437.505 MHz amateur 100 mW SSTV 30 kbps SSTV 5 months monopole Deorbited Aug 2013
(beacon) 437.505 MHz amateur CW monopole

RAIKO 38852 2U Custom 13 GHz 10 months patch Deorbited Aug 2013

PSLV-C20
25 Feb 2013

STRaND-1 39090 3U Custom SSC/SSTL 437.575 MHz amateur 1.6 W PIC24 HDLC 9600 baud FSK 6+ months monopole Active Aug 2013
AAUSAT3 39087 1U ADF7021/AWT6388 437.425 MHz amateur 900 mW ATmega32U4 CCSDS/CW 2400 bps/30 WPM 6+ months turnstile Active Aug 2013
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OSSI-1 39131 1U ADF7021 437.525 MHz amateur 2 W AX.25 9600 baud FSK 0 kB 0 days dipole DOA Aug 2013
ADF7021 (beacon) 145.980 MHz amateur 80 mW CW 12 WPM N/A monopole

SOMP 39135 1U 437.485 MHz amateur 500 mW Custom 23 kbps BPSK 2 months turnstile Dead Aug 2013
Si4420 437.485 MHz amateur 500 mW CW/AX.25 12 WPM/1200 baud FSK turnstile

BEESAT-2 39136 1U STE BK-77B 435.950 MHz amateur 500 mW CMX909B Mobitex 4800 bps GMSK 2+ weeks monopole Alive April 2013
BEESAT-3 39134 1U STE BK-77B 435.950 MHz amateur 500 mW CMX909B Mobitex 4800 bps GMSK 2+ weeks monopole Alive April 2013

Dove-2 39132 3U Custom UHF 401.3 MHz experimental 1.6 W 2.4 kbps FSK 4+ months monopole Alive Aug 2013
MHX-2420 2.4 GHz experimental 1 W Integrated Proprietary variable patch
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Phonesat 1.0 (Graham)16 39146 1U Stensat (beacon)7 437.425 MHz amateur 1 W Integrated AX.25 1200 baud FSK 1 week monopole Deorbited Aug 2013
Phonesat 1.0 (Bell) 39145 1U+ Stensat (beacon)7 437.425 MHz amateur 1 W Integrated AX.25 1200 baud FSK 1 week monopole Deorbited Aug 2013

Iridium Q9602 1616 MHz experimental 1.6 W Integrated Proprietary 340 byte packet Patch
Phonesat 2.0b (Alexander)16 39144 1U Stensat (beacon)7 437.425 MHz amateur 1 W Integrated AX.25 1200 baud FSK 1 week monopole Deorbited Aug 2013

Dove-1 39143 3U Custom UHF 401.3 MHz experimental 1.6 W 2.4 kbps FSK 1 week monopole Deorbited Aug 2013
D3-8225 8.225 GHz experimental 3 W IP over DVB-S2 4 Mbps QPSK patch

Long March-2D/
Gaofen 1

26 April 2013

TurkSat-3USat 39152 3U Custom Transponder 435.225 MHz amateur N/A N/A 50 kHz N/A 1 week monopole Dead Aug 2013
BeeLine/Astrodev? 437.225 MHz amateur 1 W Integrated CW/AX.25 9600 baud FSK monopole

CubeBug-1 39153 2U Lithium-1 437.445 MHz amateur 1 W Integrated AX.25 1200 baud AFSK 4+ months turnstile Alive Aug 2013
NEE-01 Pegasus 39151 1U Custom 910 MHz 1.9 W SSTV/Audio 1 month Dead Aug 2013

Vega VV02
7 May 2013

ESTCube-1 39161 1U Data 437.505 MHz amateur 500 mW AX.25 9600 baud FSK 3+ months monopole Alive Aug 2013
Beacon 437.250 MHz amateur 100 mW CW 18 WPM monopole

1 Satellite never heard from in space.
2 As of April 2008.
3 Used a modified Pacsat protocol on top of AX.25. Source code available upon request.
4 This object separated from SSETI Express months later and is presumed to be NCube-2.
5 This is also the main satellite processor.
6 The radio module accepts serial data and uses an internal TNC.
7 This beacon is based on a Atmel ATA8402.
8 No uplink commands received by spacecraft.
9 The CAPE1 team knew the receiver was dead before integration but had no time to fix it.
10 One identical radio per satellite section, so three total radios onboard.
11 Since no on-board telemetry storage exists on this satellite, this figure is not for commanded data and cannot be directly compared to the other spacecraft. This figure is beacon data and includes duplicate beacons.
12 This figure includes all data from the spacecraft, including beacons, bad packets, and retransmissions.
13 This satellite was not coordinated through the IARU.
14 There were no solar cells on this satellite.
15 This spacecraft did receive uplink commands, but it died before before downlink could be established.
16 These satellites did not have command receivers.
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Version 9; Page 2 of 2. This chart shows the 256 total CubeSats deployed in orbit so far, for a total of 499 Units. March 10, 2015.
Bryan Klofas. bklofas@gmail.com. Green are University CubeSats; Red are Commercial or Private; Blue are US Government.

Launch Satellite Object Size Radio Downlink Satellite Service Power TNC Protocol Data Rate/Modulation Downloaded Lifetime Antenna Status Updated
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ArduSat-1 39413 1U NanoCom U482C 437.000 MHz Experimental 1 W NanoMind A712D1 CSP 9600 baud FM-MSK/20 WPM CW 2+ months turnstile Alive/Deorbited Mar 2015
ArduSat-X 39414 1U NanoCom U482C 437.000 MHz Experimental 1 W NanoMind A712D1 CSP 9600 baud FM-MSK/20 WPM CW 2+ months turnstile Deorbited Mar 2015

Pico Dragon 39412 1U (data) 437.365 MHz Amateur 800 mW AX.25 1200 baud AFSK 1 month monopole Alive/Deorbited Mar 2015
(beacon) 437.250 MHz Amateur 100 mW CW monopole

TechEdSat-3P 39415 3U Stensat (beacon) 437.465 MHz Experimental 1 W Integrated AX.25 1200 baud AFSK N/A 1 month monopole Deorbited Mar 2015
Iridium Q9602 1616 MHz Experimental 1 W Integrated Proprietary patch
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COPPER 39395 1U AstroDev He-100 437.290 MHz Experimental 1 W Integrated AX.25 9600 baud FSK dipole DOA Jan 2014
TJ3Sat 39385 1U Stensat 437.320 MHz Experimental 1 W Integrated AX.25, CW 1200 baud AFSK Dec 2013

Vermont Lunar Cube 39407 1U Helium-100 437.305 MHz Experimental 1.5 W Integrated AX.25 9600 baud FSK 1+ month Crossed Dipoles Alive Jan 2014
SwampSat 39402 1U 437.385 MHz Experimental 1 W AX.25 9600 baud FSK Jan 2014
CAPE-2 39382 1U CC1101 437.325 MHz Experimental 1 W Integrated TI 9600 baud FSK 1+ month Alive July 2014
(LO-75) RadioMetrix Parrot repeater 145.825 MHz Experimental 1 W Parrot repeater FM N/A

Ho’oponopono-2 39403 3U Microhard MHX-2420 2.4 GHz Experimental 1 W Integrated Proprietary 57.6 kbps patch DOA Jan 2014
AstroDev Ne-1 (beacon) 437.220 MHz Experimental dsPIC33F monopole

PhoneSat-v2.4 39381 1U StenSat 437.425 MHz Experimental 1 W Integrated AX.25 1200 baud AFSK monopole Alive Jan 2014
Trailblazer 39400 1U AstroDev He-100 437.425 MHz Experimental 1 W Integrated AX.25 9600 baud FSK turnstile DOA Jan 2014

DragonSat-1 39383 1U AstroDev He-100 145.870 MHz Experimental 500 mW Integrated AX.25 9600 baud FSK monopole DOA Jan 2014
KySat-2 39384 1U AstroDev Li-1 437.405 MHz Experimental 1.5 W Integrated AX.25 9600 baud FSK 1+ month turnstile Alive Jan 2014

ChargerSat-1 39405 1U CC1100 437.405 MHz Experimental 1 W 9600 baud FSK dipole DOA Dec 2013
NPS-SCAT 39389 1U Microhard MHX-2400 2.4 GHz Experimental 1 W Integrated Proprietary patch Alive Jan 2014

CC1000 (beacon)2 437.525 MHz Experimental 1 W Integrated AX.25 1200 baud FSK N/A dipole
Black Knight 1 39398 1U MHX-425 437.345 MHz Experimental 1 W Integrated Proprietary

ORSES 39386 3U Government
ORSTECH (2) 39387+ 3U Government
Prometheus (8) 39406+ 1.5U Government

SENSE (2) 39388+ 3U Innoflight SCR-100 2.2 GHz Government patch Alive Dec 2013
FireFly 39404 3U L-3 Cadet 425 MHz Government 1 W Integrated Proprietary QPSK dipole Alive Jan 2014
Horus 39397 3U AstroDev 915 MHz Government patch DOA Dec 2013
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FUNcube-1 39444 1U AMSAT 145.936 MHz Amateur 300 mW N/A 1200 baud BPSK 70 MB+ 2+ months dipole Active Jan 2014
ZACube-1 39417 1U Custom 437.345 MHz Amateur AX.25 1200 baud AFSK/9600 baud FSK 2+ months dipole Alive Jan 2014
HiNcube 39445 1U 437.305 MHz Amateur AX.25 9600 baud GMSK DOA Jan 2014

First-MOVE 39438 1U ISIS TRXUV 145.970 MHz Amateur 230 mW Integrated AX.25 1200 baud BPSK 2+ months dipole Alive Jan 2014
UWE-3 39446 1U 437.385 MHz Amateur AX.25 9600 baud FSK 2+ months Alive Jan 2014

Velox-PII 39438 1U ISIS? 145.980 MHz Amateur 230 mW Integrated AX.25 1200 baud BPSK 2+ months Alive Jan 2014
NEE-02 KRYSAOR 39441 1U 980 MHz

CubeBug-2 39440 2U AstroDev Li-1 437.445 MHz Amateur 1 W Integrated AX.25 1200/9600 baud AFSK/GFSK 2+ months turnstile Alive Jan 2014
KHUSAT (2) 39424+ 3U Emhiser 2.2 GHz Space Research 1 W FPGA Proprietary 1 Mbps FSK 2+ months patch Alive Jan 2014
TRITON-1 39427 3U ISIS TRXUV 145.815 MHz Amateur 230 mW Integrated AX.25 9600 baud BPSK 2+ months dipole Alive Jan 2014
Delfi-n3xt 39428 3U ISIS TRXUV 145.900 MHz Amateur 230 mW Integrated AX.25 9600 baud BPSK 2+ months dipole Alive Feb 2014

ISIS Custom 2.405 GHz Amateur 125 mW 20-500 kbps MSK patch
OPTOS 39420 3U 402 MHz Earth-exploration
Dove-3 39429 3U+ D3-400-T 401.3 MHz Experimental 1.6 W monopole Active Jan 2014

D3-8200-T 8.1 GHz Experimental 3 W IP over DVB-S2 patch
PUCP-SAT-13 39442 1U Telemetry 145.840 MHz Amateur 1.5 W AX.25 1200 baud AFSK dipole Jan 2014

Beacon 437.200 MHz Amateur 10 mW CW 12 WPM N/A dipole Jan 2014
ICUBE-13 1U ISIS TRXUV 145.947 MHz Amateur 230 mW Integrated AX.25 1200 baud BPSK

HumSAT-D3 39433 1U NanoCom U482C 437.325 MHz Amateur 500 mW CSP/CW 1200 baud MSK 2+ months turnstile Active Jan 2014
Dove-43 39434 3U+ D3-400-T 401.3 MHz Experimental 1.6 W monopole Jan 2014

D3-8200-T 8.1 GHz Experimental 3 W IP over DVB-S2 patch
GomX-1 39430 2U NanoCom U482C 437.250 MHz Amateur 3 W CSP 4800 baud MSK turnstile Alive Mar 2015
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IPEX 39471 1U 437.270 MHz Experimental 1 W AX.25 9600 baud FSK 2+ months dipole Active Jan 2014
MCubed-2 39469 1U AstroDev Li-1 437.485 MHz Experimental 1 W AX.25 9600 baud GMSK 2+ months monopole Active Jan 2014

CUNYSAT-1 39470 1U 437.505 MHz Experimental 1.2 W
FIREBIRD (2) 39463+ 1.5U 437.405 MHz Amateur 1 W 27+ MB 2+ months dipole Active/DOA Jan 2014

Alice 39467 3U Government
AeroCube-5 (2) 39465+ 1.5U Freewave FGRM 915 MHz Experimental

CC1101 915 MHz experimental 1.3 W Integrated Proprietary 500 kbps FSK patch
SMDC-ONE (2) 39472+ 3U Government

TacSat-6 39473 3U Government
SNAP 39468 3U Government

O
rb

-1
/
IS

S
28

F
eb

20
1
4

Flock-1 (28) 39513+ 3U+ D3-400-T 401.3 MHz Earth exploration 1.6 W monopole Active Feb 2014
D3-8200-T 8.1 GHz Earth exploration 3 W IP over DVB-S2 patch

UAPSAT 39568 1U 437.385 MHz Amateur AX.25 turnstile
ArduSat-2 39571 2U AstroDev Li-1 400 MHz Experimental 2 W turnstile DOA Apr 2014

AstroDev Beryllium 2.4 GHz Experimental 2.3 W patch
SkyCube 39567 1U AstroDev C2 915 MHz Government AX.25 57.6 kbps dipole Dead Apr 2014
LitSat-1 39570 1U 145.850 MHz Amateur AX.25

LituanicaSAT-1 39569 1U Amateur
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INVADER 39578 1U Custom 437.200 MHz Amateur 800 mW AX.25 1200 baud AFSK 2+ months dipole Active Apr 2014
(CO-77) Beacon 437.325 MHz Amateur 100 mW CW N/A dipole
KSAT-2 39573 1U S-band

Ku-band
OPUSAT 39575 1U Custom 437.150 MHz Amateur CW/AX.25 1200 baud AFSK/9600 baud GMSK 2+ months Alive Apr 2014
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SporeSat 39681 3U StenSat 437.100 MHz 1 W Integrated AX.25 1200 baud AFSK monopole Deorbited Aug 2014
TSAT 39682 2U GlobalStar simplex STX2 1.6 GHz Experimental4 200 mW PIC18F2620 Proprietary 36bytes/sec Patch Deorbited Aug 2014

PhoneSat-v2.5 39684 1U 437.425 MHz AX.25 1200 baud AFSK monopole Deorbited Aug 2014
ALL-STAR 39683 3U Custom SDR 2401.7 MHz Experimental Deorbited Aug 2014

KickSat 39685 3U 437.505 MHz 1 W AX.25 1200 baud AFSK Deorbited Aug 2014
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AntelSat5 40034 2U Custom (beacon) 437.280 MHz Amateur 200 mW CW N/A 1.5 months Alive Aug 2014
Custom (downlink) 437.575 MHz Amateur 1W AX.25 1200 baud FSK/AFSK monopole
Custom (downlink) 2403 MHz Amateur 1W AX.25 500 kbps GFSK patch

AeroCube-65(2) 40045+ 0.5U CC1101 915 MHz experimental 1.3 W Integrated Proprietary 500 kbps FSK 1.5 months patch Aug 2014
LEMUR-15 40044 3U AstroDev Lithuim 402 MHz MHz Experimental 2 W Integrated
TigriSat6 40043 3U

Flock-1 (11) 40027+ 3U+ D3-400-T 401.3 MHz Earth exploration 1.6 W 1.5 months monopole Active Aug 2014
D3-8200-T 8.1 GHz Earth exploration 3 W IP over DVB-S2 40 Mbps patch/helix

Perseus (2) 40039+ 6U AstroDev Lithium 401 MHz Experimental 1 W Integrated AX.25 1.5 months Monopole Alive Aug 2014
Custom transmitter 26.8 GHz Experimental 500 mW Integrated DVB-S2 40 Mbps Horn

QB50P1 40025 2U ISIS TRXUV 145.815 MHz Amateur 200 mW Integrated CW/AX.25 15 WPM/1200 baud BPSK 1.5 months dipole Alive Aug 2014
FUNcube-3 145.950 MHz Amateur 400 mW Linear transponder dipole

QB50P2 40032 2U ISIS TRXUV 145.880 MHz Amateur 200 mW Integrated CW/AX.25 15 WPM/1200 baud BPSK 1.5 months dipole Alive Aug 2014
AMSAT-Francophone 145.940 MHz Amateur FX25 9600 bps FSK dipole

DTUSat-2 40030 1U Custom 2.401 GHz Amateur 220 mW CW/FSK
PolyITAN-1 40042 1U 437.675 MHz Amateur 600 mW CW/AX.25 9600 baud FSK 1.5 months dipole Alive Aug 2014
Duchifat-1 40021 1U ISIS TRXUV 145.980 MHz Amateur 200 mW Integrated CW/AX.25 15 WPM/1200 baud BPSK 1.5 months dipole Alive Aug 2014

145.825 MHz Amateur AX.25 1200 baud AFSK dipole Aug 2014
NanoSatC-Br 1 40024 1U ISIS TRXUV 145.865 MHz Amateur 200 mW Integrated CW/AX.25 15 WPM/1200 baud BPSK 1.5 months dipole Alive Aug 2014

PACE 40022 2U 437.485 MHz Amateur 1 W CW/AX.25 15 WPM/1200 baud FSK dipole Aug 2014
POPSAT-HIP-1 40028 3U 437.405 MHz Amateur CCSDS Aug 2014

PSLV-C23 - 6/30/2014 VELOX-1 40057 3U ISIS TRXUV 145.980 MHz Amateur 200 mW Integrated AX.25 1200 baud BPSK Alive Aug 2014

Soyuz-2
8 July 2014

UKube-1 40074 3U ISIS TRXUV 145.840 MHz Amateur 200 mW Integrated AX.25 1200 baud BPSK 1 month dipole Alive Aug 2014
FUNcube-2 145.915 MHz Amateur 300 mW 1200 baud BPSK dipole

CS-CPUT-STX-01 2.401 GHz Amateur 1 W 2 Mbps QPSK patch

ISS - 8/18/2014 Chasqui-17 40117 1U 437.025 MHz AX.25 1200 baud AFSK 0 days monopole DOA Mar 2015

SMAP/ELaNa-10
31 Jan 2015

ExoCube 40380 3U Axsem AX5042 437.270 MHz Amateur 1 W AT918 AX.25 9600 baud FSK 2+ months monpole Alive Mar 2015
GRIFEX 40379 3U AstroDev Lithium 437.485 MHz Amateur 300 mW Integrated AX.25 9600/19200 baud GFSK 2+ months monopole Active Mar 2015

FIREBIRD-2 (2) 40377+ 1.5U 437.405 MHz Amateur AX.25 19200 baud GMSK 2+ months dipole Alive Mar 2015

ISS - 2/5/2015 AESP-14 40389 1U 437.600 MHz Amateur 500 mW AX.25 9600 baud GFSK 0 days dipole DOA Mar 2015
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Flock-1 (12) 40451+ 3U+ D3-400-T 401.3 MHz Earth exploration 1.6 W 1+ week monopole Active Mar 2015
D3-8200-T 8.1 GHz Earth exploration 3 W IP over DVB-S2 40 Mbps patch/helix

MicroMAS 3U L-3 Cadet 465 MHz Meterological 1 W Integrated Proprietary 3 Mbps 1+ week dipole Alive Mar 2015
LambdaSat 1U StenSat 437.462 MHz Amateur 1 W AX.25 1200 baud AFSK 1+ week dipole Active Mar 2015

Iridium Integrated Proprietary patch
TechEdSat-4 3U Iridium Experimental Integrated Proprietary 1+ week patch Mar 2015
GEARRSAT 3U GlobalStar Experimental Integrated Proprietary 1+ week patch Mar 2015

1 This is the main spacecraft processor.
2 This beacon was built by Cal Poly based on CP2/3/6 heritage.
3 These satellites were deployed from UniSat-5.
4 TSAT used Mobile Satellite Service (ground to satellite) frequencies for inter-satellite communications, requiring an experimental license.
5 These CubeSats were deployed from UniSat-6 from a Cal Poly P-POD.
6 This satellite was deployed from UniSat-6 from a PEPPOD.
7 Chasqui-1 was hand-deployed by Cosmonaut Oleg Artemyev during an ISS space walk.
8 This is the satellite’s main Tyvak Intrepid processor.
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Appendix B: AX.25 Layer 3 Protocol Definitions

Table B.1: AX.25 Layer 3 Protocol Definitions
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Appendix C: CCSDS Telecommand Additional Infor-

mation

C.1 Sending Node Architecture

Figure C.1: TC Sending Node. Adapted from [4]
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Appendix D: GF(256) Elements

GF(256) elements, φ(x) = x8 + x4 + x3 + x2 + 1. The field elements are generated by first having

setting 0 element then, the primitiveα element. For each stage fromα0, multiply the current

stage α value with α and substituting x8 with x4 + x3 + x2 + 1 from equations 4.3 and 4.4.

Exp Bin Dec Exp Bin Dec

0 0 00000000 0

α0 1 00000001 1 α128 α7 +α2 + 1 10000101 133

α1 α1 00000010 2 α129 α4 +α2 +α1 + 1 00010111 23

α2 α2 00000100 4 α130 α5 +α3 +α2 +α1 00101110 46

α3 α3 00001000 8 α131 α6 +α4 +α3 +α2 01011100 92

α4 α4 00010000 16 α132 α7 +α5 +α4 +α3 10111000 184

α5 α5 00100000 32 α133 α6 +α5 +α3 +α2 + 1 01101101 109

α6 α6 01000000 64 α134 α7 +α6 +α4 +α3 +α1 11011010 218

α7 α7 10000000 128 α135 α7 +α5 +α3 + 1 10101001 169

α8 α4 +α3 +α2 + 1 00011101 29 α136 α6 +α3 +α2 +α1 + 1 01001111 79

α9 α5 +α4 +α3 +α1 00111010 58 α137 α7 +α4 +α3 +α2 +α1 10011110 158

α10 α6 +α5 +α4 +α2 01110100 116 α138 α5 + 1 00100001 33

α11 α7 +α6 +α5 +α3 11101000 232 α139 α6 +α1 01000010 66

α12 α7 +α6 +α3 +α2 + 1 11001101 205 α140 α7 +α2 10000100 132

α13 α7 +α2 +α1 + 1 10000111 135 α141 α4 +α2 + 1 00010101 21

α14 α4 +α1 + 1 00010011 19 α142 α5 +α3 +α1 00101010 42

α15 α5 +α2 +α1 00100110 38 α143 α6 +α4 +α2 01010100 84

α16 α6 +α3 +α2 01001100 76 α144 α7 +α5 +α3 10101000 168

α17 α7 +α4 +α3 10011000 152 α145 α6 +α3 +α2 + 1 01001101 77

α18 α5 +α3 +α2 + 1 00101101 45 α146 α7 +α4 +α3 +α1 10011010 154

α19 α6 +α4 +α3 +α1 01011010 90 α147 α5 +α3 + 1 00101001 41

α20 α7 +α5 +α4 +α2 10110100 180 α148 α6 +α4 +α1 01010010 82

α21 α6 +α5 +α4 +α2 + 1 01110101 117 α149 α7 +α5 +α2 10100100 164

α22 α7 +α6 +α5 +α3 +α1 11101010 234 α150 α6 +α4 +α2 + 1 01010101 85

α23 α7 +α6 +α3 + 1 11001001 201 α151 α7 +α5 +α3 +α1 10101010 170

α24 α7 +α3 +α2 +α1 + 1 10001111 143 α152 α6 +α3 + 1 01001001 73

α25 α1 + 1 00000011 3 α153 α7 +α4 +α1 10010010 146

α26 α2 +α1 00000110 6 α154 α5 +α4 +α3 + 1 00111001 57

α27 α3 +α2 00001100 12 α155 α6 +α5 +α4 +α1 01110010 114

α28 α4 +α3 00011000 24 α156 α7 +α6 +α5 +α2 11100100 228

α29 α5 +α4 00110000 48 α157 α7 +α6 +α4 +α2 + 1 11010101 213

α30 α6 +α5 01100000 96 α158 α7 +α5 +α4 +α2 +α1 + 1 10110111 183

α31 α7 +α6 11000000 192 α159 α6 +α5 +α4 +α1 + 1 01110011 115

α32 α7 +α4 +α3 +α2 + 1 10011101 157 α160 α7 +α6 +α5 +α2 +α1 11100110 230

α33 α5 +α2 +α1 + 1 00100111 39 α161 α7 +α6 +α4 + 1 11010001 209

α34 α6 +α3 +α2 +α1 01001110 78 α162 α7 +α5 +α4 +α3 +α2 +α1 + 1 10111111 191

α35 α7 +α4 +α3 +α2 10011100 156 α163 α6 +α5 +α1 + 1 01100011 99

α36 α5 +α2 + 1 00100101 37 α164 α7 +α6 +α2 +α1 11000110 198

α37 α6 +α3 +α1 01001010 74 α165 α7 +α4 + 1 10010001 145

α38 α7 +α4 +α2 10010100 148 α166 α5 +α4 +α3 +α2 +α1 + 1 00111111 63

α39 α5 +α4 +α2 + 1 00110101 53 α167 α6 +α5 +α4 +α3 +α2 +α1 01111110 126

α40 α6 +α5 +α3 +α1 01101010 106 α168 α7 +α6 +α5 +α4 +α3 +α2 11111100 252

α41 α7 +α6 +α4 +α2 11010100 212 α169 α7 +α6 +α5 +α2 + 1 11100101 229

α42 α7 +α5 +α4 +α2 + 1 10110101 181 α170 α7 +α6 +α4 +α2 +α1 + 1 11010111 215

α43 α6 +α5 +α4 +α2 +α1 + 1 01110111 119 α171 α7 +α5 +α4 +α1 + 1 10110011 179

79
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α44 α7 +α6 +α5 +α3 +α2 +α1 11101110 238 α172 α6 +α5 +α4 +α3 +α1 + 1 01111011 123

α45 α7 +α6 + 1 11000001 193 α173 α7 +α6 +α5 +α4 +α2 +α1 11110110 246

α46 α7 +α4 +α3 +α2 +α1 + 1 10011111 159 α174 α7 +α6 +α5 +α4 + 1 11110001 241

α47 α5 +α1 + 1 00100011 35 α175 α7+α6+α5+α4+α3+α2+α1+1 11111111 255

α48 α6 +α2 +α1 01000110 70 α176 α7 +α6 +α5 +α1 + 1 11100011 227

α49 α7 +α3 +α2 10001100 140 α177 α7 +α6 +α4 +α3 +α1 + 1 11011011 219

α50 α2 + 1 00000101 5 α178 α7 +α5 +α3 +α1 + 1 10101011 171

α51 α3 +α1 00001010 10 α179 α6 +α3 +α1 + 1 01001011 75

α52 α4 +α2 00010100 20 α180 α7 +α4 +α2 +α1 10010110 150

α53 α5 +α3 00101000 40 α181 α5 +α4 + 1 00110001 49

α54 α6 +α4 01010000 80 α182 α6 +α5 +α1 01100010 98

α55 α7 +α5 10100000 160 α183 α7 +α6 +α2 11000100 196

α56 α6 +α4 +α3 +α2 + 1 01011101 93 α184 α7 +α4 +α2 + 1 10010101 149

α57 α7 +α5 +α4 +α3 +α1 10111010 186 α185 α5 +α4 +α2 +α1 + 1 00110111 55

α58 α6 +α5 +α3 + 1 01101001 105 α186 α6 +α5 +α3 +α2 +α1 01101110 110

α59 α7 +α6 +α4 +α1 11010010 210 α187 α7 +α6 +α4 +α3 +α2 11011100 220

α60 α7 +α5 +α4 +α3 + 1 10111001 185 α188 α7 +α5 +α2 + 1 10100101 165

α61 α6 +α5 +α3 +α2 +α1 + 1 01101111 111 α189 α6 +α4 +α2 +α1 + 1 01010111 87

α62 α7 +α6 +α4 +α3 +α2 +α1 11011110 222 α190 α7 +α5 +α3 +α2 +α1 10101110 174

α63 α7 +α5 + 1 10100001 161 α191 α6 + 1 01000001 65

α64 α6 +α4 +α3 +α2 +α1 + 1 01011111 95 α192 α7 +α1 10000010 130

α65 α7 +α5 +α4 +α3 +α2 +α1 10111110 190 α193 α4 +α3 + 1 00011001 25

α66 α6 +α5 + 1 01100001 97 α194 α5 +α4 +α1 00110010 50

α67 α7 +α6 +α1 11000010 194 α195 α6 +α5 +α2 01100100 100

α68 α7 +α4 +α3 + 1 10011001 153 α196 α7 +α6 +α3 11001000 200

α69 α5 +α3 +α2 +α1 + 1 00101111 47 α197 α7 +α3 +α2 + 1 10001101 141

α70 α6 +α4 +α3 +α2 +α1 01011110 94 α198 α2 +α1 + 1 00000111 7

α71 α7 +α5 +α4 +α3 +α2 10111100 188 α199 α3 +α2 +α1 00001110 14

α72 α6 +α5 +α2 + 1 01100101 101 α200 α4 +α3 +α2 00011100 28

α73 α7 +α6 +α3 +α1 11001010 202 α201 α5 +α4 +α3 00111000 56

α74 α7 +α3 + 1 10001001 137 α202 α6 +α5 +α4 01110000 112

α75 α3 +α2 +α1 + 1 00001111 15 α203 α7 +α6 +α5 11100000 224

α76 α4 +α3 +α2 +α1 00011110 30 α204 α7 +α6 +α4 +α3 +α2 + 1 11011101 221

α77 α5 +α4 +α3 +α2 00111100 60 α205 α7 +α5 +α2 +α1 + 1 10100111 167

α78 α6 +α5 +α4 +α3 01111000 120 α206 α6 +α4 +α1 + 1 01010011 83

α79 α7 +α6 +α5 +α4 11110000 240 α207 α7 +α5 +α2 +α1 10100110 166

α80 α7 +α6 +α5 +α4 +α3 +α2 + 1 11111101 253 α208 α6 +α4 + 1 01010001 81

α81 α7 +α6 +α5 +α2 +α1 + 1 11100111 231 α209 α7 +α5 +α1 10100010 162

α82 α7 +α6 +α4 +α1 + 1 11010011 211 α210 α6 +α4 +α3 + 1 01011001 89

α83 α7 +α5 +α4 +α3 +α1 + 1 10111011 187 α211 α7 +α5 +α4 +α1 10110010 178

α84 α6 +α5 +α3 +α1 + 1 01101011 107 α212 α6 +α5 +α4 +α3 + 1 01111001 121

α85 α7 +α6 +α4 +α2 +α1 11010110 214 α213 α7 +α6 +α5 +α4 +α1 11110010 242

α86 α7 +α5 +α4 + 1 10110001 177 α214 α7 +α6 +α5 +α4 +α3 + 1 11111001 249

α87 α6 +α5 +α4 +α3 +α2 +α1 + 1 01111111 127 α215 α7 +α6 +α5 +α3 +α2 +α1 + 1 11101111 239

α88 α7 +α6 +α5 +α4 +α3 +α2 +α1 11111110 254 α216 α7 +α6 +α1 + 1 11000011 195

α89 α7 +α6 +α5 + 1 11100001 225 α217 α7 +α4 +α3 +α1 + 1 10011011 155

α90 α7 +α6 +α4 +α3 +α2 +α1 + 1 11011111 223 α218 α5 +α3 +α1 + 1 00101011 43

α91 α7 +α5 +α1 + 1 10100011 163 α219 α6 +α4 +α2 +α1 01010110 86

α92 α6 +α4 +α3 +α1 + 1 01011011 91 α220 α7 +α5 +α3 +α2 10101100 172

α93 α7 +α5 +α4 +α2 +α1 10110110 182 α221 α6 +α2 + 1 01000101 69

α94 α6 +α5 +α4 + 1 01110001 113 α222 α7 +α3 +α1 10001010 138

α95 α7 +α6 +α5 +α1 11100010 226 α223 α3 + 1 00001001 9

α96 α7 +α6 +α4 +α3 + 1 11011001 217 α224 α4 +α1 00010010 18

α97 α7 +α5 +α3 +α2 +α1 + 1 10101111 175 α225 α5 +α2 00100100 36

α98 α6 +α1 + 1 01000011 67 α226 α6 +α3 01001000 72

α99 α7 +α2 +α1 10000110 134 α227 α7 +α4 10010000 144

α100 α4 + 1 00010001 17 α228 α5 +α4 +α3 +α2 + 1 00111101 61
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α101 α5 +α1 00100010 34 α229 α6 +α5 +α4 +α3 +α1 01111010 122

α102 α6 +α2 01000100 68 α230 α7 +α6 +α5 +α4 +α2 11110100 244

α103 α7 +α3 10001000 136 α231 α7 +α6 +α5 +α4 +α2 + 1 11110101 245

α104 α3 +α2 + 1 00001101 13 α232 α7 +α6 +α5 +α4 +α2 +α1 + 1 11110111 247

α105 α4 +α3 +α1 00011010 26 α233 α7 +α6 +α5 +α4 +α1 + 1 11110011 243

α106 α5 +α4 +α2 00110100 52 α234 α7 +α6 +α5 +α4 +α3 +α1 + 1 11111011 251

α107 α6 +α5 +α3 01101000 104 α235 α7 +α6 +α5 +α3 +α1 + 1 11101011 235

α108 α7 +α6 +α4 11010000 208 α236 α7 +α6 +α3 +α1 + 1 11001011 203

α109 α7 +α5 +α4 +α3 +α2 + 1 10111101 189 α237 α7 +α3 +α1 + 1 10001011 139

α110 α6 +α5 +α2 +α1 + 1 01100111 103 α238 α3 +α1 + 1 00001011 11

α111 α7 +α6 +α3 +α2 +α1 11001110 206 α239 α4 +α2 +α1 00010110 22

α112 α7 + 1 10000001 129 α240 α5 +α3 +α2 00101100 44

α113 α4 +α3 +α2 +α1 + 1 00011111 31 α241 α6 +α4 +α3 01011000 88

α114 α5 +α4 +α3 +α2 +α1 00111110 62 α242 α7 +α5 +α4 10110000 176

α115 α6 +α5 +α4 +α3 +α2 01111100 124 α243 α6 +α5 +α4 +α3 +α2 + 1 01111101 125

α116 α7 +α6 +α5 +α4 +α3 11111000 248 α244 α7 +α6 +α5 +α4 +α3 +α1 11111010 250

α117 α7 +α6 +α5 +α3 +α2 + 1 11101101 237 α245 α7 +α6 +α5 +α3 + 1 11101001 233

α118 α7 +α6 +α2 +α1 + 1 11000111 199 α246 α7 +α6 +α3 +α2 +α1 + 1 11001111 207

α119 α7 +α4 +α1 + 1 10010011 147 α247 α7 +α1 + 1 10000011 131

α120 α5 +α4 +α3 +α1 + 1 00111011 59 α248 α4 +α3 +α1 + 1 00011011 27

α121 α6 +α5 +α4 +α2 +α1 01110110 118 α249 α5 +α4 +α2 +α1 00110110 54

α122 α7 +α6 +α5 +α3 +α2 11101100 236 α250 α6 +α5 +α3 +α2 01101100 108

α123 α7 +α6 +α2 + 1 11000101 197 α251 α7 +α6 +α4 +α3 11011000 216

α124 α7 +α4 +α2 +α1 + 1 10010111 151 α252 α7 +α5 +α3 +α2 + 1 10101101 173

α125 α5 +α4 +α1 + 1 00110011 51 α253 α6 +α2 +α1 + 1 01000111 71

α126 α6 +α5 +α2 +α1 01100110 102 α254 α7 +α3 +α2 +α1 10001110 142

α127 α7 +α6 +α3 +α2 11001100 204 α255 1 00000001 1
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Appendix E: Adeunis RF ARF6921D 869.525 MHz Board

E.1 Transmission Power Configuration

.

P0 P1 Power
0V 0V +14 dBm (25 mW)
0V open +20 dBm (125 mW)
open 0V +23 dBm (200 mW)
open open +27 dBm (500 mW)

Table E.1: Transmission power configuration. Adapted from [8]

E.2 Busy

The RF module is unavailable for use when changing modes. The switching timing signals

are given by Figure E.1.

Figure E.1: Switching timing signals. Adapted from [8].

82
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E.3 Specifications

Parameter Value Conditions

Tr
an

sm
it

te
r

(T
x) Maximum power 500mW (+27dBm) In 50 ohms

Modulation FSK +/-40kHz Version G (1-channel)
Consumption 550 mA - @max power in 50 Ohms
Wake-up time 10ms From Power_Down mode
Rx to Tx turn-around time 2ms

R
ec

ei
ve

r
(R

x) Sensitivity -103 dBm (1.6uV) Version H (2-channel)
Passband @3dB 60 kHz Version G (1-channel)
Consumption 25 mA
Wake-up time 10 ms From Power_Down mode
Rx to Tx wake-up time 3 ms

Tr
an

sc
ei

ve
r

VCC power supply Regulated 3V
Transmission rate 76,8 kBps NRZ i.e. 38.4kHz G version (1-channel)
Digital input/output 0/VCC
Standby consumption 400µA Take care over the position

of C2, P1 and P2
Channel settling time 2 ms
Free field range 3 km G version (1-channel)
Temperature From -20◦C to +70◦C

Table E.2: ARF6921D Specifications
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