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ABSTRACT 

The earth’s atmosphere causes pronounced spatial and temporal variability in 

downwelling solar radiation at the planet’s surface. Since the characterisation of 

sun strength is important in solar resource assessment studies, and in the Earth 

sciences generally, more effective methods are sought to measure irradiance at 

ground stations. The general drive is towards greater spatial coverage, reduced 

instrument uncertainty, lower costs and higher temporal data resolution.  

This study investigates a new method of measuring the principle components of 

solar irradiance at 1-minute intervals using a single pyranometer and a novel 

shading structure. The perforated shadow band decomposes global horizontal 

irradiance (GHI) to obtain the diffuse horizontal and direct normal irradiance 

components (DHI and DNI). The design of the band and its positioning relative to 

the thermopile sensor of a radiometer are described. A ray trace-derived model of 

pyranometer exposure is presented as a function of the local hour angle.  

In operation, the band produces a composite output trace incorporating both 

global and diffuse fragments that require separation and reconstitution as 

independent time-series. DNI values can then be calculated from these 

components. Gaps between data fragments must be filled using appropriate 

interpolation techniques to lower statistical uncertainty. The structure of the trace 

is dependent on atmospheric turbidity and the nature of the prevailing cloud field.  

A test programme was run at the US National Renewable Energy Laboratory in 

Colorado to establish performance of the system relative to collocated reference 

instruments. The band functioned most effectively under clear sky conditions, 

where it produced GHI, DHI and DNI measurements with root mean square 

differences of 2.7%, 13.6% and 2.0% respectively. Mean bias differences were 

0.1% for GHI, 7.9% for DHI and –0.3% for DNI.    

The presence of cloud introduces stochasticity to the perforated band output trace. 

In such a case the ray trace model of pyranometer exposure can be used to identify 

and separate GHI and DHI data. Uncertainties rise for GHI and DNI under partly 

cloudy conditions. As the inaugural study on perforated band performance, this 

work tested several approaches to filling measurement gaps, including numerical 

interpolation and data replacement by radiometric decomposition models. A key 

finding of the study is that uncertainties may be lowered by interpolating 

adaptively according to the prevailing clearness index. Tests run at a southern 

hemisphere ground station suggest that the system’s performance is not location-

dependent.            

It may be concluded that the perforated shadow band system is most effective in 

sunny regions where the average daily clearness index remains above 

approximately 0.7. This would include large parts of continental Africa in the 

south-western and northern desert areas. The best potential for deploying the band 

is in existing sub-optimal measurement schemes utilising a single pyranometer, 

where it would enable the direct measurement of two radiometric components 

rather than one.    
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OPSOMMING 

Die aarde se atmosfeer veroorsaak beduidende ruimtelike en tydafhanklike 

veranderlikheid in afwellende sonstraling op die planeet se oppervlakte.  

Aangesien die karakterisering van sonsterkte belangrik is in 

hulpbronbeoordelingstudies, en in die aardwetenskappe in die algemeen, is 

doeltreffender metodes in aanvraag om bestraling by grondstasies te meet.  Die 

algemene stukrag is in die rigting van groter ruimtelike dekking, verminderde 

instrument-onsekerheid, laer koste en hoër data-resolusie met tyd. 

Hierdie studie ondersoek ’n nuwe metode om die hoofkomponente van 

sonbestraling teen 1-minuut intervalle te meet deur ’n enkele piranometer en ’n 

nuutgeskepte skadubandstruktuur te gebruik. Die geperforeerde skaduband breek 

die globale horisontale bestraling (GHB) op om die diffuse horisontale en direkte 

normale bestralingskomponente (DHB en DNB) te verkry. Die ontwerp van die 

band en sy plasing relatief tot die termostapelsensor van ’n radiometer word 

beskryf.  ’n Straalnavolgmodel van piranometerblootstelling word voorgestel as ’n 

funksie van die plaaslike uurhoek. 

In bedryf lewer die band ’n saamgestelde uitsetverloop wat beide globale en 

diffuse breukdele inkorporeer, wat skeiding en hersamestelling as onafhanklike 

tydreeks vereis.  DNB-waardes kan dan uit hierdie komponente bereken word.  

Gapings tussen die data-breukdele moet gevul word deur geskikte 

interpolasietegnieke te gebruik om statistiese onsekerheid te verminder. Die 

struktuur van die verloop hang af van atmosferiese turbiditeit en die aard van die 

heersende wolkveld. 

’n Toetsprogram is by die US National Renewable Energy Laboratory in 

Colorado bedryf om die vertoning van die stelsel te bevestig relatief tot 

aanliggende verwysings-instrumente. Die band het die doeltreffendste gewerk 

onder skoon lugtoestande, waar dit GHB-, DHB- en DNB-metings gelewer het 

met wortelgemiddelde kwadraat afwykings van 2.7%, 13.6% en 2.0% 

onderskeidelik. Gemiddelde afwykingsneigings was 0.1% vir GHB, 7.9% vir 

DHB en –0.3% vir DNB. 

Die teenwoordigheid van wolke bring wisselvalligheid in die geperforeerde band 

se uitsetverloop mee.  In so ’n geval kan die straalvolgmodel van 

piranometerblootstelling gebruik word om die afsonderlike GHB- en DHB-data te 

identifiseer en te skei.  Onsekerhede in GHB en DNB ontstaan onder gedeeltelik-

bewolkte toestande. Synde die inleidende studie oor geperforeerde bandvertoning, 

toets hierdie werk verskeie benaderings vir die invul van meetgapings, insluitende 

numeriese interpolasie en datavervanging deur radiometriese dekomposisie-

modelle.  ’n Sleutelbevinding van die studie is dat onsekerhede verminder kan 

word deur aanpasbaar te interpoleer volgens die heersende helderheids-indeks.  

Toetse gedoen by die suidelike halfrond-grondstasie doen aan die hand dat die 

stelsel se gedrag nie afhanklik is van die ligging nie. 

Die gevolgtrekking kan gemaak word dat die geperforeerde-skaduband stelsel die 

effektiefste werk in sonnige streke waar die daaglikse helderheidsindeks bo 
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ongeveer 0.7 bly. Dit sluit groot dele van kontinentale Afrika in die suidwestelike 

en noordelike woestynareas in.  Die beste potensiaal vir die ontplooiing van die 

skaduband is in bestaande sub-optimale meetstelsels wat ‘n enkele piranometer 

gebruik, waar dit die direkte meting van twee radiometriese komponente moontlik 

maak, eerder as een. 
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1. INTRODUCTION 

1.1  Background 

Solar radiation is an abundant source of energy that drives the earth’s climate, 

fuels photosynthesis, supports life in its myriad forms and offers humanity a 

sustainable alternative to conventional power sources. Apart from its abundance, 

there is also considerable spatial and temporal variability to the resource that 

defies simple characterisation. The acquisition and analysis of sun strength data is 

therefore crucial to understanding the role of solar energy in our environment and 

to deploying solar technologies on a wider scale.  

This dissertation proposes and evaluates a novel instrumentation system for 

characterising the components of broadband solar irradiance. The system 

comprises a perforated shadow band operated in conjunction with a thermopile 

pyranometer and data logger. Under certain conditions, the perforated shadow 

band (PB) enables the extraction of greater amounts of data from a single 

thermopile pyranometer than is possible with a conventional solid band or an 

unshaded instrument. It is aimed at improving the coverage of solar measurement 

networks by reducing the cost of instrumentation and lowering the measurement 

uncertainty of data generated by existing radiometers of the pyranometric type.  

This chapter describes the fundamentals of solar radiation and the rationale for its 

measurement. The components of sun strength are addressed, including the 

instrumentation commonly used to characterise the resource. A brief history of 

solar radiometry in South Africa is provided to contextualise the present study. 

Having considered existing radiometric methods, the perforated shadow band is 

proposed as an alternate approach and the outline of the dissertation is then 

described, including the technical aims of the research.  

1.2 Solar radiation and the earth’s climate 

Solar radiation is the primary driver of the earth’s climate, accounting for more 

than 99.9% of the energy input to the atmosphere (Kandel and Viollier, 2010).  

Since measurements began, the average shortwave solar flux at top-of-atmosphere 

(TOA), referred to as the solar constant, has been estimated and revised many 

times. Duffie and Beckman (1991) recommended a value of 1367 W/m2, while 

Gueymard (2004) confirmed a slightly lower value of 1366.1 W/m2 using a 

revised dataset. More recently, this value was lowered again to 1360.8 ± 0.5 W/m2 

by Kopp and Lean (2011). Aside from the seasonal variation due to the earth’s 

eccentric orbit, the solar constant, or total solar irradiance, is highly stable and 

changes by only about 0.1% within the Sun’s 11-year activity cycle (Frohlich and 

Lean, 2004).   

When averaged over the surface area of the earth, the annual solar constant is 

approximately 341 W/m2. The planet’s annual mean energy budget can be derived 

from this input value, as illustrated by Trenberth et al. (2009) in Figure 1.1. The 
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irradiance values in the graphic are annualised averages; in practice the measured 

solar irradiance at a given location on the earth’s surface may exceed 1000 W/m2, 

depending on sky conditions. 

Of the shortwave solar energy intercepted by the earth each year, approximately 

30% is reflected back into space by clouds, atmospheric particulates and the 

planet’s surface, while 47% is absorbed by the surface. The remainder is absorbed 

by the atmosphere which stores energy and exchanges it convectively and by 

radiation with the ground. Approximately 70% of the input energy is returned to 

space as longwave radiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Estimation of the global annual mean energy budget of the earth 

between March 2000 and May 2004 (Trenberth et al., 2009). 

 

Solar radiation thus fuels a complex set of energy exchanges between the ground, 

the atmosphere and space that drive weather systems and affect most aspects of 

human, plant and animal life. The study of sun strength by satellite-based 

instruments and ground-based stations has become an essential tool in 

understanding the earth’s climate.  

1.3 Solar radiation as energy source 

The world’s total energy demand is predicted to grow by 36% between 2013 and 

2030 (British Petroleum, 2013). This trend, together with concerns over fossil-fuel 

consumption, is driving the acceptance of sustainable power sources and lowering 

their costs. As a result, the contribution by renewable energy (RE) to global 
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consumption is expected to rise from 13% in 2011 to as much as 26% by 2035  

(International Energy Agency, 2013). Although biomass, hydropower and wind 

will remain the dominant RE sources of electricity, solar photovoltaic (PV) and 

concentrating solar power (CSP) are predicted to grow substantially from their 

present levels (de Castro et al., 2013; Matsuo et al., 2013; Viebahn et al., 2011). 

Solar radiation can be harnessed in several ways, the most common being direct 

electricity generation by PV panels, conversion of thermal energy to electricity by 

concentrating systems such as central receiver and parabolic trough plants (Figure 

1.2), and the capture of thermal energy for heating.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Parabolic trough receiver at the Solar Electric Generating System 

(SEGS) I plant in Daggett, California. 

 

The rate at which CSP systems are being constructed has accelerated globally. At 

the beginning of 2014 there was 4 GW of operational capacity in parabolic trough, 

central receiver, compound linear Fresnel and parabolic dish systems, mostly for 

electricity generation. A further 11 GW has been announced or is now in the 

planning and construction phases (CSP Today, 2015). Matsuo et al. (2013) 

estimate the installed capacity of PV to rise from 38.9 GW in 2010 to 525.1 GW 

by 2035.     

South Africa is ideally positioned to exploit solar energy because of its strong 

resource. Five of the nine provinces receive irradiance levels deemed sufficient to 

implement CSP projects (Fluri, 2009) and the Northern Cape has among the best 

resources of any region on Earth.  

South Africa’s long-term policy on solar energy is articulated through the 

Integrated Resource Plan for Electricity (Department of Energy, 2013) which 

commits the country to installing 17.8 GW of RE-based electricity generating 

Direct normal 
irradiance 
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capacity by 2030. Of this, 8.4 GW is dedicated to PV and 1.0 GW to CSP. The 

implementation is effected through the Renewable Energy Independent Power 

Producers Procurement Programme (REIPPP), which had allocated 200 MW of 

CSP capacity and 1048 MW of PV to commercial developers by January 2014 

(Giglmayr et al., 2014).  

It is not possible to accelerate the roll-out of CSP and PV technologies without an 

extensive radiometric capacity, including satellite and ground-based 

measurements. Stoffel et al. (2010) consider solar data as integral to three phases 

of a CSP project: correct site selection, prediction of the long-term annual output, 

and development of short-term performance and operating strategies. 

Optimisation of the mechanical and optical design of solar energy equipment 

necessarily also requires an understanding of the solar resource. In addition, the 

financing or ‘bankability’ of solar projects is based on accurate projections of sun 

strength at a given site (Leloux et al., 2014; Myers, 2010b). In South Africa, the 

importance of radiometry is illustrated by the growth of commercial enterprises 

such as CSAfrica and GeoSun Africa (Pty) Ltd that supply stations and 

monitoring services to clients in the CSP and PV industries. 

1.4 The measurement of sun strength 

1.4.1 Attenuation and the solar spectrum 

As sunlight passes through the atmosphere it is attenuated by water vapour, 

airborne particles and gases, reducing the flux at the earth’s surface. Even on a 

cloud-free day, more than 20% of the TOA irradiance may be lost to absorption 

and scattering. Attenuation forms the basis of numerous transmittance models of 

clear-sky irradiance, including the REST2 model of Gueymard (2008), given in 

equation (1.1). The direct normal irradiance at the earth’s surface, Ebn, may be 

obtained by applying band transmittance scaling factors (τ) to the TOA irradiance, 

Eon.  

   𝐸𝑏𝑛  =  𝐸𝑜𝑛𝜏𝑅𝑖𝜏𝑔𝑖𝜏𝑜𝑖𝜏𝑛𝑖𝜏𝑤𝑖𝜏𝑎𝑖                        (1.1) 

The factors in equation (1.1) are for Rayleigh scattering (τRi), extinction by mixed 

gases (τgi), ozone absorption (τoi), nitrogen dioxide absorption (τni), water vapour 

absorption (τwi) and aerosol extinction (τai). The transmittances are obtained 

empirically. The REST2 model has low uncertainties that are comparable to the 

best radiometers, however it requires accurate input data from a sun photometer 

which makes it impractical as a general means of measuring sun strength.  

At Earth’s surface the sun’s energy is distributed across a range of wavelengths 

indicated by the blue trace in Figure 1.3. The ordinate represents the flux in 

W/m2/nm and has been normalised for readability. The ultraviolet band includes 

UVA (shaded blue) and UVB (yellow) up to a wavelength of about 380 nm. The 

infrared band (shaded cream) exceeds 780 nm, and the visible spectrum occurs 

between 380 and 780 nm (Duffie and Beckman, 1991). The black line centred on 
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555 nm represents the human eye’s spectral (‘photopic’) response. The typical 

responses of thermopile (red) and photovoltaic (green) sensors are shown. 

The spectral nature of sunlight is of interest in different fields. For example, the 

ultraviolet spectrum is important to oncology because of its role in the 

development of skin cancers (de Gruijl, 1999; Medhaug et al., 2009; Utrillas et al., 

2013). Photosynthetically active radiation (PAR), which occurs within the visible 

band is of interest to biologists and the agricultural sector because of its effect on 

plant growth and crop yields (Alados and Alados-Arboledas, 1999; Oliphant et al., 

2006; Parisi et al., 1998). In most thermal engineering applications, the spectral 

nature of sun strength is less important than its broadband energy content.       

 

     

 

 

 

 

 

 

 

 

Figure 1.3: Normalised solar energy spectrum at the earth’s surface (adapted 

from Kipp & Zonen (2014)). 

 

1.4.2 Broadband solar radiometry 

Radiometry is the acquisition and analysis of sun strength data. As an important 

field of study it serves the needs of many sectors, including agriculture, physics, 

environmental science, solar energy engineering, the medical sciences and 

biology. In order to advance, radiometry needs efficient, accurate and widespread 

methods of data collection together with effective analytical tools to make sense 

of the information.  

Unlike spectroradiometry that characterises light as a function of wavelength, 

broadband radiometry aims to measure sun intensity for the full spectrum from 

300 to 3000 nm. Irradiance is measured in watts per square metre, while radiation 

is the time integrated equivalent, measured in joules per square metre.  

The sensors used to detect solar irradiance must be capable of responding to the 

wavelengths present in the spectrum. In the case of sunlight, thermopile detectors 
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composed of a mat of temperature thermocouples, cover the full wavelength range 

(red line in Figure 1.3) and are commonly used, although they are more expensive 

than photodiode-based sensors that are similar to photovoltaic cells. Photodiodes 

have a limited spectral response shown by the green line in Figure 1.3, and their 

output must be corrected, particularly with respect to diffuse irradiance measured 

under clear sky conditions (Alados-Arboledas et al., 1995).  

Broadband irradiance is highly variable with respect to both space and time. 

Stoffel et al. (2010) suggest that variability represents the single greatest 

uncertainty in the forecast output of CSP power plants. Temporal variability at a 

site is driven mainly by the dynamic nature of cloud fields and results in 

stochasticity in the output data trace of measurement instruments. There is also 

the problem of interannual variability in which the resource changes from year to 

year. This is most pronounced for direct normal irradiance (DNI) and necessitates 

the installation of ground measurement stations during the early planning stages 

of solar energy projects so that performance models can be refined and financing 

secured (Gueymard, 2012).  

Gueymard and Wilcox (2011) note that a minimum of 30 years of measurements 

is necessary to understand precisely the resource at a location. This is illustrated in 

Figure 1.4 which shows the convergence of annual DNI, global horizontal 

irradiance (GHI) and global tilt irradiance (GTI) averages towards the long-term 

average at the National Renewable Energy Laboratory (NREL) in Golden, 

Colorado. Similar trends are given by Pitz-Paal and Hoyer-Klick (2010).  

The spatial variability of solar radiation is a function of topography, climate and 

differences in ground reflectivity, or albedo. The lack of ground measurement 

stations has led to gaps in geographic coverage and spurred the development of 

interpolation techniques for solar data (Bosch et al., 2010; Glasbey et al., 2001; 

Miller et al., 2008; Rehman and Ghori, 2000). 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Interannual variability of the solar resource at Golden, Colorado, 

between 1981 and 2008 (Gueymard and Wilcox, 2011). 
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1.4.3 The components of sun strength and their measurement  

The solar energy incident on a surface within the earth’s atmosphere per unit time, 

correctly termed ‘irradiance’, is composed of several parts. These include direct 

normal irradiance emanating from the solar disc, diffuse circumsolar irradiance 

from the disc’s aureole, diffuse isotropic irradiance from the sky, atmospheric 

particulates and translucent clouds, diffuse irradiance reflected off clouds and 

nearby objects, and a horizon brightening component.   

In the case of the exposed horizontal surface of a stationary measurement sensor, 

irradiance can be grouped into two categories: diffuse irradiance and a component 

of the DNI which may be absent when the sun is obscured by cloud. The 

relationship between the components measured in the horizontal plane is 

commonly given as: 

   𝐸𝑔  =  𝐸𝑏𝑛cos𝑍 +  𝐸𝑑                         (1.2) 

where Eg is the global horizontal irradiance (sometimes called total hemispherical 

irradiance), Ebn is the direct normal irradiance, Z is the solar zenith angle and Ed is 

the sum of all diffuse horizontal irradiance components. The product EbncosZ is 

the direct horizontal irradiance, that is, the vertical component of direct normal 

irradiance. Figure 1.5 illustrates the difference between the three solar 

components, and how they are measured.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: The direct normal, global horizontal and diffuse horizontal 

components of solar irradiance and their measurement. 
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Broadband sun strength is fully described when the DNI, GHI and DHI 

components are known contemporaneously. Since they are related through the 

closure equation (1.2) it is only necessary to measure two components in order to 

determine the third, although many ground stations measure all three 

independently to provide redundancy and enable cross-checking of the sensors.  

Irradiance is measured with a radiometer that generates a voltage proportional to 

the solar flux. This is converted to a measurement in watts per square metre by 

applying a shortwave responsivity factor, determined when the sensor is 

calibrated.  

Radiometers are classified according to the ISO 9060 standard as secondary 

standard, first class or second class instruments (Table 1.1). Secondary standard 

sensors are of the best quality and are generally employed for specific research-

grade climatological and radiometric measurements, while first and second class 

instruments are more commonly used in applications such as meteorological 

networks, equipment testing and agricultural monitoring systems. Often, the 

choice of sensor is dictated by cost. Surprisingly, ISO 9060 does not classify 

sensors according to their measurement uncertainty, thus a first class instrument 

may, under specific conditions, provide more accurate data than a secondary 

standard sensor. 

 

Table 1.1: Specifications of radiometers according to the ISO 9060 standard 

(Ammonit, 2014). 

ISO 9060 Radiometer Specifications 
Secondary 

Standard 

First  

Class 

Second 

Class 

Response time: time to reach 95% response < 15s < 30s < 60s 

Zero offset-A: response to 200 W/m² net thermal 

radiation, ventilated 
+ 7 W/m² + 7 W/m² + 7 W/m² 

Zero offset-B: response to 5 K/h change in 

ambient temperature 
± 2 W/m² ± 2 W/m² ± 2 W/m² 

Non-stability: % change in responsivity per year ± 0.8% ± 1.5% ± 3% 

Non-linearity: % deviation from responsivity at 

500 W/m² in range from 100 to 1000 W/m² 
± 0.5% ± 1% ± 3% 

Directional response (for beam irradiance): the 

range of errors for a beam of 1000 W/m² 
± 10 W/m² ± 20 W/m² ± 20 W/m² 

Spectral selectivity: % deviation of the product of 

spectral absorbance and transmittance from the 

corresponding mean, from 0.35 to 1.5 μm 

± 3% ± 5% ± 10% 

Temperature response: % deviation due to 

change in ambient within an interval of 50K 
2% 4% 8% 

Tilt response: % deviation in responsivity relative 

to 0 to 90° tilt at 1000 W/m² beam irradiance 
± 0.5% ± 2% ± 5% 
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The most common types of radiometer are the pyranometer, which measures total 

hemispherical irradiance in a 180° solid angle field of view, and the pyrheliometer 

which is typically mounted on a tracker and measures collimated irradiance 

emanating from the solar disc (Figure 1.6).  

Pyranometers are commonly fitted with either a thermoelectric (thermopile) or 

photodiode detector (Myers, 2013). The thermopile sensor of the Eppley Precision 

Spectral Pyranometer (PSP) used with the perforated shadow band in this study 

consists of multiple thermocouple junctions housed beneath a set of glass domes 

(Figures 1.6 (a) and (b)). The domes filter incoming light to the wavelength range 

of interest, namely 285 nm to 2800 nm. This coincides with the red line in Figure 

1.3 indicating the thermopile sensor’s response to visible light. The PSP is 

ubiquitous in broadband radiometry with over 10 000 having been produced 

(Kirk, 2013). It is classified as a first class radiometer, while the Kipp & Zonen 

CMP 11 and 22 models are defined as secondary standard sensors. 

Photodiodes make use of photovoltaic sensors and offer certain advantages over 

the thermopile. They are less expensive, smaller in size and they offer much 

shorter response times (King et al., 1998). Disadvantages include spectral and 

temperature-related dependencies that cause variation in the output signal under 

different cloud conditions. These can be corrected (Alados-Arboledas et al., 1995) 

but photodiode detectors do not comply with the ISO 9060 or WMO standards 

and are generally not used in research-grade solar radiometric installations. Their 

spectral response is indicated by the green line in Figure 1.3. 

Duffie and Beckman (1991), Myers (2013) and Vignola et al. (2012) provide 

useful descriptions of commercially available radiometers, of which there are 

many, ranging in cost from a few hundred to several thousand US dollars.   

Diffuse horizontal irradiance: the shading method 

The measurement of diffuse irradiance requires a pyranometer in conjunction with 

a shading device that occludes the sun and prevents DNI from striking the sensor. 

This is commonly achieved with a shadow band, as in Figure 1.6 (a), or a shading 

ball (or disc) mounted on a tracker (Figure 1.7).  

The perforated shadow band used in this study is designed for use with an Eppley 

shadow band stand (SBS) as shown in Figure 1.6 (a). The arms holding the band 

are inclined at the latitude angle of the site and are adjusted manually along their 

axis every few days to maintain an occluding position as the declination angle 

changes. The SBS is widely used with approximately 500 having been sold 

globally (Kirk, 2013). Kipp & Zonen manufactures a fully circular shading ring 

for use at higher latitudes where the range of azimuth angles exceeds the 

occluding limits of the Eppley band.  

As an alternate approach, the shading ball occludes less of the sky and is the most 

accurate method of measuring DHI, however it requires a tracker and is costlier to 

implement. A ground station developed by the author at the University of 
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KwaZulu-Natal (UKZN) in Durban, South Africa, operates an automated tracker, 

Kipp & Zonen radiometers and a shading ball as shown in Figure 1.7. 

 

 

 

 

 

 

 

 

                    (a)                                       (b)                                        (c) 

Figure 1.6: (a) Pyranometer with a shadow band for measuring DHI, (b) 

exposed pyranometer for GHI, and (c) pyrheliometer on a mechanical 

tracker for measuring DNI (Kunene, 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: UKZN HC ground station with first class pyrheliometer and 

secondary standard pyranometers. 
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Two corrections are often applied to DHI data; the first is for the excessive 

blocking effect of the shadow band and the second is to account for the thermal 

offset error of the instrument.  

The shadow band introduces an error in DHI by blocking more of the sky than the 

area around the solar disc. This must be accounted for by a correction factor (fsb) 

that inflates the instrument output, that is, fsb > 1. A number of formulations for fsb 

based on geometry have been proposed, including that of the South African 

radiometry pioneer, Drummond (1956), who later worked for the Eppley 

Laboratory. For ease of use, the Eppley Laboratory publishes a table of correction 

factors for their solid band that decrease the measurement uncertainty of the 

system to ±5% versus the reference DHI (Drummond, 1964). Other studies on the 

shadow band method include those of Ineichen et al. (1983), De Oliveira et al. 

(2002) and Kudish and Evseev (2008).  

An infrared (IR) thermal offset error is caused by the difference in temperature 

between a shortwave sensor and the sky. This is more pronounced for all-black 

thermopile instruments like the Eppley PSP because of the positioning of the 

reference junction inside the sensor casing. If the effective sky temperature is 

lower than that of the sensor, net radiation is lost skywards, lowering the output 

signal (Bush et al., 2000; Dutton et al., 2001; Gueymard and Myers, 2009). A 

correction flux (ΔEcorr) can be determined if the net infrared long-wave radiation 

between the ground and the sky (IRnet) is measured. This is achieved using 

specially tuned sensors called pyrgeometers that detect terrestrial radiation in the 

wavelength range between about 3.5 and 50 μm. The correction flux is then 

obtained using equation (1.3) (Reda et al., 2005): 

   ∆𝐸𝑐𝑜𝑟𝑟  =  𝐼𝑅𝑛𝑒𝑡 . 𝑅𝑆𝑛𝑒𝑡 . 𝑅𝑆𝑚𝑓𝑟   (1.3) 

where RSnet is the net infrared responsivity of the pyranometer in [μV/W/m2] and 

RSmfr is the inverse of the instrument manufacturer’s shortwave sensitivity in 

[W/m2/μV]. The output from the pyranometer is adjusted by ΔEcorr to yield a final 

irradiance that is corrected for thermal offset. Typically, the magnitude of ΔEcorr is 

between 1 and 15 W/m2.  

All PB data used in this study from the United States National Renewable Energy 

Laboratory (NREL) were corrected using equation (1.3). Southern hemisphere 

data from the University of KwaZulu-Natal (UKZN) ground station were not 

corrected because pyrgeometers are not installed.  

Global horizontal irradiance 

An exposed pyranometer is used to measure GHI directly, since it must detect 

both the DHI and the horizontal component of the DNI simultaneously (Figure 1.6 

(b)). In fact, the most accurate way of obtaining GHI is not by direct 

measurement, but by obtaining DNI and DHI separately, and then summing DHI 

with the horizontal component of DNI calculated using the zenith angle, as in 

equation (1.2) (Gueymard and Myers, 2009; Michalsky et al., 1999). This is 
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because diffuse and direct normal irradiance can be measured with lower 

uncertainties than that with which an exposed pyranometer measures EbncosZ. 

This is provided that the DHI component is obtained with a shading ball and not a 

band. The slightly higher uncertainty of a GHI measurement obtained from an 

exposed pyranometer is caused by the instrument’s variable response to irradiance 

as a function of the incidence angle. The cosine effect, as it is known, is 

exacerbated for DNI because of its directional nature and becomes more 

pronounced at medium to high zenith angles.   

Direct normal irradiance 

DNI can be measured directly by pointing a pyrheliometer at the sun and 

following it through the course of the day. This requires a tracker as shown in 

Figure 1.6 (c). The instrument is an Eppley Normal Incidence Pyrheliometer 

(NIP) and the tracker is an electrically driven, non-automated ST-1 model that 

rotates at 15° per hour to keep pace with the sun. Regular adjustment of the clamp 

is required to maintain alignment with the plane of the ecliptic. The pyrheliometer 

in Figure 1.7 is a Kipp & Zonen CHP1 mounted on an automated SOLYS 2 

tracker that locates the sun using an accurate solar position algorithm and a GPS 

system. It requires no manual adjustment but is considerably more expensive than 

the ST-1 device. Both the NIP and CHP1 models are first class instruments, 

although with traceability to the World Radiometric Reference (WRR) a sensor 

might be classified as a secondary standard. Other manufacturers of first class 

pyrheliometers include Eko Instruments, Middleton Solar and Hukseflux.  

DNI can also be measured by an absolute cavity radiometer (ACR) which is 

considered as a primary standard instrument because it does not require 

calibration against another thermopile sensor. The Hickey-Friedan ACR measures 

solar irradiance by comparing the output of two thermopiles, one of which is 

irradiated by solar energy and the second of which is heated electrically (Hickey 

et al., 1977).  

ACRs are unsuitable for continuous use because of their open aperture design and 

complex operation but they exhibit extremely low measurement uncertainties on 

the order of 0.3% (PMOD-WRC, 2010) and are used to calibrate other 

radiometers. The World Standard Group is a set of six ACR-type sensors that 

defines the World Radiometric Reference for solar irradiance. This is updated 

every five years at the International Pyrheliometer Comparison in Davos, 

Switzerland. National laboratories send instruments to be calibrated alongside the 

WSG, after which they are returned home to transfer the reference to secondary 

standard field instruments by repeat calibration.      

Characterising DNI is important because of its use in CSP projects but it is the 

most expensive component to measure because of the tracking requirement, and is 

often calculated instead from DHI and GHI using equation (1.2). Although DNI is 

directional, the sun subtends an average solid angle of 0.53° at the surface of the 

earth such that DNI rays are not perfectly parallel (Duffie and Beckman, 1991). 

The effect is negligible for most applications although it contributes to the spread 
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of focused images in CSP equipment such as heliostats and parabolic troughs, 

reducing the concentration ratio and the optical efficiency of the system (Stine and 

Harrigan, 1985). 

1.4.4 Alternate instruments 

Inevitably, there is a trade-off between the cost of an instrument and its accuracy. 

Since cost varies inversely with measurement uncertainty, there is an ongoing 

challenge to introduce better quality low-cost sensors. The need for radiometric 

ground data from multiple stations distributed over as wide an area as possible is 

also driving research efforts in radiometer development.  

Examples of recently introduced alternatives to traditional radiometers include the 

Delta-T SPN1 instrument and the Irradiance Rotating Shadowband Radiometer. 

Delta-T SPN1 radiometer 

The SPN1 sunshine pyranometer contains seven thermopile sensors that each 

produce a voltage output when exposed to sunlight (Figure 1.8). A shading mask 

beneath the instrument’s glass dome shields the sensors such that at least one 

sensor is always fully exposed to GHI while one is exposed only to DHI (Delta-T 

Devices Ltd., 2006). Coupled with an onboard computer processor and software 

algorithm, the SPN1 is able to determine separate instantaneous values for GHI 

and DHI from the sensor readings. Direct normal irradiance can then be calculated 

using equation (1.2). The cost of the instrument was about R87 400 in 2014. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8: A Delta-T Devices Ltd. SPN1 radiometer installed at the UKZN 

Howard College ground station. 
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An advantage of the SPN1 is its ability to generate DHI, GHI and DNI values 

from a single, compact device, making it easier to deploy in monitoring networks 

than optimal equipment schemes with trackers. Although it is thermopile-based 

the instrument exhibits some spectral selectivity below 400 nm meaning that it 

tends to under read diffuse irradiance in very clear conditions, and at high 

altitudes (Delta-T Devices Ltd., 2007). A further disadvantage is that the 

instrument requires a power supply for signal conditioning and the onboard 

heater. In addition, the SPN1 must be run for several weeks alongside a reference 

sensor when outdoor calibration is required, because of the presence of the mask 

and multiple thermopiles. The cost is also high compared with an Eppley PSP, 

however this must be weighed against the greater capabilities of the device. 

Rotating Shadowband Radiometer (RSR) 

The Rotating Shadowband Radiometer uses a single silicon diode sensor to 

produce GHI and DHI measurements of irradiance (Michalsky et al., 1986). It 

does this by rotating an electrically driven arm twice per minute into position over 

the sensor, blocking DNI and enabling the instantaneous measurement of DHI 

(Figure 1.9). The device measures GHI five times a minute, from which it builds a 

continuous measurement history of both components. Direct normal irradiance 

can be obtained from the closure equation (1.2). The Irradiance RSR2 model cost 

approximately R83 300 in 2014. 

 

 

 

 

 

 

 

 

 

 

Figure 1.9: RSR2 Rotating Shadowband Radiometer measuring GHI on the 

left and DHI on the right. 

 

The RSR2 device uses a LI-COR silicon photodiode sensor, which is known to 

suffer from spectral selectivity (Vignola, 1999). The LI-COR LI-200 sensor 

responds to radiation in the 400 to 700 nm range, which eliminates the remaining 

LI-COR sensor 
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visible wavelengths from 700 to 3900 nm. It typically produces low readings for 

diffuse irradiance under clear sky conditions.   

1.4.5 Optimal and sub-optimal measurement schemes 

A measurement scheme refers to the combination of radiometers in use at a 

ground station, the array of data they provide and the quality of the measurements. 

Configuring a station can be difficult given the variety of sensors available and 

the numerous ways in which they may be combined. Consideration must be given 

to factors including the number of solar components to be measured, the cost of 

the installation, the desired measurement uncertainty, the availability of sensors 

and technical backup in a given location, the frequency of maintenance required, 

the power requirements of the station and the integration of the station with 

existing networks.    

In an attempt to provide guidance, the US National Renewable Energy Laboratory 

proposed two standard station configurations (Wilcox and Stoffel, 2009). The first 

is a low-cost, higher uncertainty option comprising silicon photodiode sensors 

based on the RSR instrument, providing GHI and DHI data. This would be 

deemed sub-optimal because the resulting data do not exhibit the lowest 

uncertainty. The second is a more expensive configuration comprising 

independent measurement of DHI, GHI and DNI using secondary standard or first 

class thermopiles. The measurement uncertainty for GHI is approximately half 

that of the cheaper version.    

To assist in the selection of station instruments, several studies have compared the 

relative performance of commercial radiometers. Gueymard and Myers (2009) 

considered common sources of uncertainty in 12 silicon and thermopile 

instruments located at the NREL Solar Radiation Research Facility (SRRL), 

including thermal offset error and seasonal variation. Myers and Wilcox (2009) 

tested 12 pyranometers and four pyrheliometers over a year-long period, also at 

SRRL. Michalsky et al. (2011) documented the comparative performance of 33 

pyrheliometers over a trial period of ten months.      

Gueymard (2009) argued that an optimal scheme should make use of Kipp & 

Zonen CM22 pyranometers for GHI and DHI, together with a CHP1 

pyrheliometer for obtaining DNI. Using this as the reference scheme, Table 1.2 

gives a comparison of selected instrument configurations ranging from the 

optimal setup to less expensive options. The comparison is based mainly on 

secondary standard Kipp & Zonen and Eppley radiometers. 

To facilitate a fair comparison, the calculated costs include radiometers, trackers, 

shading devices where applicable and a logger, but exclude site preparation, 

mounting equipment, ventilation, battery backup and remote communications 

equipment. All of the schemes except 6 and 7 are configured with Kipp & Zonen 

or Eppley sensors. The least expensive combination of sensors is used to establish 

the normalised cost and the RSR2 in scheme 6 is the only non-thermopile 

instrument.  
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Schemes 1 and 2 incorporate redundancy in that they permit the independent 

measurement of DHI, GHI and DNI without recourse to calculation. The others 

measure one or two components and calculate the outstanding values, including 

the perforated shadow band system. The normalised costs are based on 2014 retail 

prices of landed sensors in South Africa, converted to US dollars at an exchange 

rate of ZAR10.50 to $1. 

 

Table 1.2: Notional cost comparison of selected radiometric measurement 

schemes using commercially available instrumentation, normalised and 

calculated in 2014 US dollars.  

 Measurement scheme 
Normalised 

Cost 
Comment 

1* Tracked pyrheliometer + 

unshaded pyranometer + shaded 

pyranometer with tracked 

occulting disc or ball  

1.00 Optimal measurement capability, 

with thermopile/secondary standard 

sensors, low uncertainty and 

redundancy. From $32,500.  

2 Tracked pyrheliometer + 

unshaded pyranometer + shaded 

pyranometer with shadow band 

≥0.57 From $18,550. Full measurement 

capability with redundancy. 

3 Tracked pyrheliometer + 

unshaded pyranometer 

≥0.36 From $11,830. Partial capability. Ebn 

and Eg measured, Ed calculated. 

4 Tracked pyrheliometer + shaded 

pyranometer  

≥0.47 From $15,430. Partial capability. Ebn 

and Ed measured, Eg calculated. 

5 Pyranometer (unshaded) + 

pyranometer (shaded) 

≥0.35 From $11,250. Partial capability. Eg 

and Ed measured, Ebn calculated. 

6 RSR2 silicon photodiode 

rotating shadow band radiometer 

≥0.24 From $7,260. Partial capability. Eg 

and Ed measured, Ebn calculated. 

7 Delta-T SPN1 thermopile 

radiometer 

≥0.31 From $10,190. Partial capability. Eg 

and Ed measured, Ebn calculated.  

8 Single pyranometer (shaded) + 

model 

≥0.25 From $8,120. Only Ed measured, Ebn 

and Eg derived from model(s).  

9 Single pyranometer (unshaded) + 

model 

≥0.15 From $4,990. Only Eg measured, Ebn 

and Ed derived from model(s). 

10 Single pyranometer + perforated 

shadow band on SBS 

≥0.27 From $8,680. Partial capability. Ed 

and Eg measured, Ebn calculated. 

11 Replace existing solid band with 

perforated shadow band 

≥0.003 From $100. Adds measurement of Eg 

to Ed. Ebn calculated. 

*Reference scheme 

 

There is a substantial premium to be paid for scheme 1 which includes a shading 

disc on a tracker and conforms to Gueymard’s definition of an optimal setup 

(Gueymard, 2009) with redundancy. This is nearly twice the cost of scheme 2, 
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which utilises high quality instruments but which relies on less expensive 

pyranometers and a sub-optimal shadow band for DHI. Scheme 4 is potentially 

optimal but only if CMP22 sensors are used and shading is accomplished with a 

tracking disc. This would raise the cost substantially over the given value which is 

based on Eppley sensors and a shadow band. 

The RSR2 and SPN1 sensors in schemes 6 and 7 offer good value, but the non-

thermopile sensor of the RSR2 limits its use in research-grade applications. 

Scheme 9 represents one of the most common setups in use, namely a single 

unshaded pyranometer measuring GHI (Perez et al., 1990b). The output can be 

used in conjunction with a radiometric decomposition model, described in 

Chapter 4, to estimate DHI, from which DNI can then be calculated. 

Two values are given for the perforated band system. Scheme 10 accounts for the 

purchase of new components at 27% of the nominal scheme’s cost. This places 

the PB system in a similar range as the RSR2 and SPN1 sensors. Scheme 11 

considers the replacement of the solid shadow band in scheme 8 with a perforated 

band, for which the cost is restricted to the band itself and is negligible. Given that 

a substantial number of SBS systems have been distributed, this scheme 

represents an opportunity to extract greater amounts of data from an existing 

single thermopile radiometer than operating it in the fully shaded state.      

The uncertainties associated with several of the schemes in Table 1.2 are 

addressed in Chapter 5. 

1.4.6 Clearness index  

As a classification tool in resource assessment analyses, clearness index, kT, is a 

measure of the atmosphere’s solar energy transmission efficiency and hence, 

indirectly, of cloud presence. It can be calculated for any one of the solar 

components as the ratio of the measured flux at the planet’s surface to that 

component’s extraterrestrial value at the earth’s top of atmosphere (Myers, 2013). 

In addition, it can be varied for time periods ranging from one minute to monthly, 

with the minute-based value for GHI as follows: 

   𝑘𝑇  =  
𝐸𝑔

𝐸𝑜
                        (1.4) 

Eg and Eo are the measured GHI and calculated minute-average of extraterrestrial 

global horizontal irradiance, respectively. That is, Eo is the component of the 

direct normal top of atmosphere irradiance (Eon) perpendicular to the earth’s 

surface. Eon is available for download alongside NREL solar data and is 

continuously adjusted to account for the variation in Earth-Sun distance. The 

hourly averaged clearness index for GHI is designated KT_hour and the daily 

equivalent is KT_day. The value of the parameter lies in its ability to characterise 

relative sun strength when only the global irradiance is measured (Perez et al., 

1990b). Although there are more complex ways to classify the sky condition, such 

as total sky imaging camera systems, they are more expensive and rarely 

available.  
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In this study clearness index is used extensively because GHI values are generated 

by the perforated band system whose performance is heavily dependent on the sky 

condition. The metric can thus be used to grade data and inform the processing 

methodology.  

Clearness index is often correlated with the diffuse fraction, k, to yield an 

empirically derived method of calculating diffuse irradiance when GHI is known. 

This is described in greater detail in Chapter 4. 

1.5 Global data availability 

The high cost of instrumentation remains a central challenge to the large-scale 

deployment of radiometric networks and drives the search for lower-cost sensors. 

Although station density remains limited, a substantial number of monitoring 

stations are operated throughout the world by government agencies, weather 

services, research institutes and universities. These are located mostly in Europe 

and the United States. Stoffel et al. (2010) provide a useful summary of data 

sources, including satellite-derived measurements. In some cases instruments are 

integrated into networks and the data are made available to the public (Table 1.3). 

  

Table 1.3: Examples of active solar radiometric monitoring networks (Brooks 

et al., 2015).  

Data source Website access 

Baseline Surface Radiation Network (BSRN) www.gewex.org/bsrn.html 

World Radiation Data Center  wrdc-mgo.nrel.gov 

Surface Radiation Network  www.esrl.noaa.gov/gmd/grad/surfrad/ 

Atmospheric Radiation Measurement  www.arm.gov 

University of Oregon Solar Radiation Monitoring 

Laboratory 
solardat.uoregon.edu/index.html 

Australian Bureau of Meteorology  
www.bom.gov.au/climate/data-

services/solar/ 

Southern African Universities Radiometric 

Network (SAURAN) 
www.sauran.net 

 

There are several advantages to systematising the collection of radiometric data 

through networks of sensors (Brooks et al., 2015). The management of 

measurement campaigns can be centralised according to accepted principles of 

metrology, instruments can be properly maintained, data can be subjected to 

quality control filters and rigorous methods of data analysis can be encouraged 

among users. Networks may also be better funded and more widely publicised 

than single installations, broadening public access to solar measurement 

information.  

Stellenbosch University  https://scholar.sun.ac.za



19 

 

Perhaps the best known network is the Baseline Surface Radiation Network 

(BSRN) which falls under the World Climate Research Programme. Data are 

obtained from research-grade sensors located at more than 50 stations on seven 

continents, and subjected to rigorous quality checks (Zhang et al., 2013). Other 

sources of information include the Surface Radiation Network (SURFRAD) and 

the World Radiation Data Center in Russia which publishes daily totals of global 

irradiance from more than 1000 stations (Stoffel et al., 2010). SURFRAD 

maintains seven stations across the United States and is funded by the National 

Oceanic and Atmospheric Administration. The United States Department of 

Energy operates the Atmospheric Radiation Measurement programme with 

instruments located mainly in the United States as well as at three sites in the 

Western Pacific ocean (US Department of Energy, 2013).  

An extensive historical record of solar data for the Pacific Northwest of the 

United States is available through the University of Oregon’s Solar Radiation 

Monitoring Laboratory. Measurements from as far back as 1977 can be 

downloaded for certain of the locations. Lastly, the Australian Bureau of 

Meteorology operates a network of 10 active stations and makes historical data 

available to the public from several others.   

1.6  South African data availability 

Although South Africa (SA) has a history of sporadic radiometric monitoring 

campaigns, there has been no continuous, coordinated deployment of high-quality 

ground measurement stations. From the 1980s to the mid-90s the South African 

Weather Bureau, now the Weather Service (SAWS) maintained a network of 

thermopile sensors, however this fell into disrepair and no systematic 

measurement programme was in operation until rehabilitation began very 

recently. SAWS archived data are not freely available to the public. Ciolkosz 

(2009) presented results from a network of silicon-based sensors operated by the 

Agricultural Research Council, but these do not output research-grade data nor is 

the archive easily accessible.  

In the last fifteen years several universities have started radiometric measurement 

and research programmes, including Mangosuthu University of Technology 

(Brooks and Harms, 2005; Zawilska and Brooks, 2011), Stellenbosch University 

and the University of KwaZulu-Natal (Brooks and Roberts, 2009; Kunene et al., 

2013; Lysko, 2006). Zawilska et al. (2012) provided a more comprehensive 

history of radiometric initiatives in South Africa. Given the lack of a long-term, 

coherent record of sun strength in the region, they argued for the establishment of 

a formal network utilizing instrumentation at universities and elsewhere. 

In 2014 the Southern African Radiometric Network, or SAURAN, was 

established to address the regional lack of publicly accessible, long-term, high-

quality solar data of high-temporal resolution. This was an initiative of the Centre 

for Renewable and Sustainable Energy Studies at Stellenbosch University and the 

Group for Solar Energy Thermodynamics at the University of KwaZulu-Natal in 

Durban (Brooks et al., 2015). 
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In its initial phase, SAURAN consists of ten ground stations across South Africa, 

marked in black in Figure 1.10. Six of these are located on university campuses in 

the cities of Stellenbosch (SUN), Port Elizabeth (NMU), Durban (KZH and 

KZW), Pretoria (UPR) and Bloemfontein (UFS). Four are on farms in rural areas 

near the towns of Vanrhynsdorp in the Western Cape, Vryheid (VRY) in 

KwaZulu-Natal, Graaff-Reinet (GRT) in the Eastern Cape and near Alexander 

Bay in the Richtersveld region of the Northern Cape (RVD). The ten sites cover a 

range of climate and vegetation conditions, from desert scrubland through to 

coastal sub-tropical. Some of the stations are existing facilities that have also 

contributed historical data to the archive that predate the SAURAN project.   

In the project’s second phase, stations are planned in the far northern province of 

Limpopo (UVT), near the town of Alice in the Eastern Cape (UFH) and at the 

Mangosuthu University of Technology south of Durban. Data from the USP 

station will be of particular interest given the construction of several CSP and PV 

power plants in the region, which boasts very high DNI levels. Further stations are 

planned in the Namibian capital city of Windhoek (PNW), at Gaborone in 

Botswana (UBG) and on the Indian Ocean island of Reunion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10: Initial SAURAN stations (in black) and planned stations (in 

white) on a satellite-derived map of annual average global horizontal 

radiation (Brooks et al., 2015). 

 

The primary aim of the SAURAN initiative is to build a high-quality, long-term 

dataset of high temporal resolution for public use. To this end, the ten initial 
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radiometers that are properly maintained and cleaned regularly. All sites measure 

DNI, DHI and GHI independently so that cross-checking of the radiometric 

components at a given location is possible through the closure equation (1.2). The 

responsibility for maintaining sensors belongs to the partner universities that own 

the stations.  

SAURAN data are provided to website users as 1 minute, hourly and daily 

averages from sensor scans conducted at sub-6 second intervals. Some of the sites 

host additional radiometers for research purposes. Stellenbosch University 

operates a CMP11 under a shading ring to provide additional diffuse 

measurements and UVS-AB-T sensor for recording ultraviolet radiation in the 

wavelength ranges of 280 to 315 nm and 315 to 400 nm. UKZN has a CUV5 

sensor for UV radiation in the 280 to 400 nm range. The KZH station also hosts a 

Delta-T SPN1 pyranometer and an Eppley Precision Spectral Pyranometer fitted 

with the perforated shadow band. 

1.7 Objectives of the research 

Whereas most solar radiometric systems use two sensors to measure GHI and 

DHI, this research proposes a novel radiometric scheme that generates 

independent global and diffuse time-series from a single thermopile pyranometer. 

The key component of the scheme is an innovative shadow band incorporating a 

series of perforations so as to cyclically shade and expose a radiometer sensor. 

Used in conjunction with a stationary pyranometer and a data processing 

methodology, the perforated band system enables the decomposition of global 

horizontal irradiance to obtain the direct normal and diffuse components. The 

research has potential to impact solar monitoring programmes by providing an 

inexpensive measurement scheme that yields competitively low statistical 

uncertainties under certain cloud conditions.  

To date, the approach of occluding and exposing a radiometric sensor has been 

used in two specific applications. The first is by instrument laboratories to 

establish the responsivity factor of pyranometers by the shade-unshade calibration 

method (Reda et al., 2003). Shading is effected manually over brief periods to 

determine the relationship between GHI and DHI. The second application is in the 

Rotating Shadowband Radiometer where an electrically driven solid band 

periodically blocks the sun’s direct normal component, from which the global and 

diffuse components can be obtained.   

The PB system represents a new type of radiometric scheme. The solid shadow 

band of a conventional diffuse measurement station is replaced by a perforated 

version such that the accompanying pyranometer is intermittently exposed as the 

sun traverses the sky. This has the same cyclical shading effect used in the RSR 

device, however it is mechanically simpler and the switch between GHI and DHI 

takes place at much lower frequency because the band is static. The output from a 

pyranometer used with such a device comprises a single curve that alternates 

between global (exposed) and diffuse (shaded) irradiance. A processing algorithm 
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separates the curve into independent traces and completes the measurement of 

both components of sun strength, from which DNI can then be calculated.  

The study is motivated by the need to expand solar radiometric efforts through the 

provision of less expensive monitoring techniques. The research has particular 

application in sun-rich regions such as south-western and northern Africa where 

the solar resource is strong but underexploited, and where radiometric coverage is 

limited. While the output from a PB system cannot be classified as optimal, it 

offers potential advantages to station operators: 

1.  The perforated band does not require electrical power  

2.  A secondary standard thermopile sensor can be used 

3. Although the normalised cost of a new PB system is not insignificant, it is 

possible to retrofit the perforated band in place of solid bands at existing 

measurement stations, such that the investment is negligible 

The technical objectives of this research were three-fold: 

1. To define the physical geometry of a perforated shadow band that can be 

retrofitted to existing station architecture. 

2. To establish a test programme in which the performance of the PB system 

is rigorously assessed in conjunction with adequate reference instruments. 

3. To characterise the performance of a PB system under all sky conditions 

through recognised measures of statistical uncertainty. 

1.8 Dissertation outline and methodology 

Chapter 2 introduces the concept of the perforated shadow band and describes the 

geometry governing its interaction with the sun’s direct normal component. A ray 

trace model of pyranometer exposure is then developed to describe the dynamic 

shading mask that the band creates over the course of a day, and seasonally 

throughout the year. Performance of the ray trace model is assessed using data 

from an experimental system. The derivation of a correction matrix is described to 

account for physical distortion of the band under operational conditions. 

Chapter 3 addresses the performance of the PB system under clear sky conditions. 

A clear sky processing methodology is proposed to disaggregate the composite 

GHI/DHI data trace into its constituent parts and reconstitute the irradiance 

fragments as continuous time-series. The perforated band test programme, which 

was carried out in collaboration with the United States National Renewable 

Energy Laboratory, is also described. Experimental results from the operation of 

the system are given. The test methodology compares outputs from the PB system 

with reference data from collocated instruments at the NREL site. Performance is 

quantified via several statistical metrics including root mean square difference and 

mean bias difference. 

An important feature of the PB system is its sensitivity to cloud which induces 

stochasticity in the pyranometer output trace and invalidates the use of visual 

filtering to separate GHI from DHI data. Chapter 4 addresses the complexities 
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introduced by cloud fields and describes a cloudy sky processing methodology for 

the PB system. The methodology uses three methods of reconstituting fragmented 

GHI and DHI traces; numerical interpolation techniques, data replacement via 

radiometric models and an adaptive approach that monitors clearness index and 

deploys best-performing techniques in response. 

Chapter 5 gives the experimental performance results of the PB system for cloudy 

sky conditions. In line with best practice, two independent, long-term datasets 

extending over several years are used to assess the Cloudy Sky Processing 

Methodology and confirm reproducibility of the statistical results. The chapter 

includes a comparison between the performance of the PB system and that of 

alternate measurement schemes, including the SPN1 radiometer, the rotating 

shadow band system and commercially available satellite data. 

Chapter 6 describes PB system performance under southern hemisphere 

conditions. Results are presented from an experimental trial at the UKZN Howard 

College ground station in Durban. These shed light on whether the band’s 

performance is affected by geographic location. The chapter concludes by 

considering the advantages and disadvantages of the system versus existing 

radiometric schemes.  The deployment of the perforated shadow band system is 

briefly discussed with reference to regions in Africa where it may register lower 

uncertainties than competing measurement schemes. 

The dissertation is concluded with Chapter 7, which summarises the main findings 

of the study and describes further areas of research that might improve the 

performance of the PB system.              
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2 THE PERFORATED SHADOW BAND 

2.1  Introduction 

The perforated shadow band permits the decomposition of global irradiance, as 

measured with a pyranometer, to obtain the diffuse and direct normal solar 

components. The band represents a novel type of radiometric scheme whose 

concept and performance have not been characterised prior to this study.  

The band is introduced in this chapter, which is drawn mainly from the first three 

sections of the journal article by Brooks (2010). The geometry of the device is 

described and a time-dependent model of pyranometer exposure is developed with 

the aid of ray tracing software. Operation of the model is illustrated using 

experimental data from the NREL Solar Radiation Research Laboratory (SRRL) 

in Golden, Colorado. A method is described for adjusting the exposure model so 

as to account for structural deformation of the band in situ.  

2.2 Principle of operation 

The perforated shadow band is a semi-circular structure similar in dimension to its 

solid counterpart, from which apertures are cut, as shown in Figure 2.1. The 

perforations impose a cyclical shade/unshade regime on the sensing thermopile of 

a horizontally oriented pyranometer located below the band (Figure 2.2). As a 

result, the instrument output trace cycles between measurements of GHI when 

exposed and DHI when shaded yielding a characteristic square-wave trace under 

clear sky conditions (Figure 2.3). 

 

 

 

 

 

 

 

 

 

Figure 2.1: Perforated shadow band operated in conjunction with an Eppley 

Laboratory Precision Spectral Pyranometer, adapted from Brooks (2010). 
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Figure 2.2: Perforated shadow band with an Eppley PSP at NREL SRRL 

showing (a) full sensor exposure for measurement of GHI, (b) partial sensor 

exposure and (c) full occlusion for DHI.  
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Figure 2.3: (Left) Schematic of square-wave output trace from the PB system 

under clear sky conditions and (right) its reconstitution as independent 

diffuse and global horizontal irradiance curves (Brooks, 2010). 

 

A defining feature of the system is its inability to measure both GHI and DHI 

simultaneously; when one component is recorded, the other is missing. Under 

clear sky conditions the band generates clearly defined but fragmented upper and 

lower curves that must be separated and then reconstituted individually. Under 

partly cloudy and overcast conditions the coherency of the trace is disrupted, 

although the fragmentation effect remains. Developing appropriate data 

processing algorithms to separate and reconstitute the DHI and GHI curves with 

acceptably low uncertainties thus represents the primary challenge of this study. 

2.3 The geometry of the perforated shadow band 

The geometry of the band is influenced by several factors. First, the greater the 

number of apertures, the more frequently the sensor can switch between DHI and 

GHI. Secondly, as the shading mask transitions from exposure to occlusion 

(Figure 2.2 (b)) the pyranometer generates indeterminate data which represent 

neither GHI nor DHI, and which are discarded. These factors give rise to 

competing constraints: the first drives the design towards many smaller apertures, 

while the second suggests fewer apertures to limit transitional data.  

In addition, the band must permit unhampered exposure and occlusion of the 

pyranometer thermopile (Figures 2.2 (a) and (c)), therefore the geometry of the 

radiometer also influences the band’s design. Early trials with greater numbers of 

smaller apertures (Figure 2.4) produced a shading mask that never fully exposed 

the pyranometer’s outer glass dome. Although this does not affect the 

measurement of GHI, provided the sensing thermopile is exposed, the apertures 

were lengthened in response. A minimum of 20 minutes full exposure or 

occlusion was considered adequate in the GHI and DHI time-series fragments for 

trend identification during the reconstitution of the curves. This equates to 20 

individual 1-minute averages of sun strength from a ground station logger.   
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Figure 2.4: Alternate aperture configurations. 

 

The total width (W) of the band and the internal aperture width (Wa) are set at  

84 mm and 60 mm respectively to ensure lateral occlusion of the solar disc during 

shading and unobstructed communication between the sun and the outer glass 

hemisphere of the sensor during exposure, regardless of declination angle or time 

of day (Figure 2.5). 

The aperture length (La) in the circumferential direction was determined using a 

two dimensional analysis, based on a maximum zonal exposure time (tz) of 30 

minutes.  This is illustrated in Figure 2.5 for a zenith angle of 0° during the solar 

noon period of exposure. The PSP measures GHI while the solar disc of diameter 

Ws is in full sight of the sensor, that is, while the disc appears fully within the 

window of the band. For a mean radial distance from sensor to band of 320 mm 

and sun speed of 0.25 deg/min, the arc length (s) of the sun’s movement at the 

band radius and the total aperture length are obtained from equations 2.1 to 2.3: 

   𝜇 =  (
0.25𝜋𝑡z

180
)  = 0.1309 rad                      (2.1) 

   𝑠 =  320𝜑 = 41.9 mm                      (2.2) 

   𝐿𝑎  =  𝑠 +  𝑊𝑠  ≈ 45 mm                     (2.3) 

To account for variation in tz due to three dimensional effects, and to ensure that 

the aperture length exceeds the diameter of the outer glass hemisphere of the PSP 

(48 mm), La is extended to 55 mm.  

Multiple rectangular apertures of length 55 mm are cut from the band as shown in 

Figure 2.6. They are equal to the eight alternating solid zones contained between 

the first and last apertures such that the band has a total of nine apertures and ten 
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shading zones, with zone 1 located to the left of aperture 1 and zone 10 to the 

right of aperture 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Top and side views of perforated shading band geometry with 

solar disc traversing a single aperture (Brooks et al., 2007). 

 

In this study, three pyranometer exposure states (Es) are defined as a result of the 

sun-band interaction. They are: complete shade during which DHI is measured, 

denoted as Es = 0, transitional exposure (Es = 0.5) when the edge of the aperture 

throws a creeping shadow over the sensor and full exposure (Es = 1) during which 

GHI is measured. 

The perforated band is manufactured from a strip of stainless steel 1700 mm long, 

84 mm wide and 2 mm thick. It is inclined on a polar mount at the local 

geographic latitude angle, φ, and aligned with true north (Figure 2.7). It is 

manually adjusted daily or every few days to accommodate changes in the 

declination angle of the sun, δ, which varies between extrema of +23.45° and –

23.45° and is defined as positive in the northern hemisphere and negative in the 

south. The band is inclined with the upslope pointing north in the northern 

hemisphere and south in the southern hemisphere. 

Sensor 

Perforated  
band 

Aperture 

 

 

 

 

 
  

  
 

 

320 mm 

L
a
 

W W
a
  

 

μ 

W
s
 

Top view 

Side view Arc length s 

Solar disc 

Stellenbosch University  https://scholar.sun.ac.za



29 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Plan view of an unrolled perforated band with close-up of 

apertures 3 and 4 (Brooks, 2010). 

 

An advantage of the polar mount is that the plane of the band coincides with the 

plane of the ecliptic at the equinoxes (δ = 0°), thus the maximum travel to the 

north and south of the equinox position is equal. That is, a band displacement of 

+Δl is required for δ = +23.45° and –Δl for δ = –23.45°. It should be noted that a 

ray drawn from the centre of the solar disc to the thermopile sensor does not strike 

the band perpendicularly, apart from twice yearly on the equinoxes.  

In Figure 2.7, the PSP sensor (white dash) remains stationary while the band is 

adjusted along the polar axis through maxima of ±Δl. The central solar ray is 

coincident with the midpoint of the band’s outer radius at any instant of the day as 

the sun traverses the plane of the ecliptic. Some inaccuracy in the band’s axial 

position may be tolerated because aperture width exceeds that of the solar disc.  

For a band of radius Rb whose displacement is zero at the equinoxes, Δl may be 

calculated from equation (2.4) which applies to perforated and solid bands in the 

northern or southern hemispheres. If intra-day variations of δ are ignored 

throughout day number n, Δl is given by: 

   Δ𝑙 =  R𝑏tan𝛿                      (2.4) 

The declination angle may be calculated as follows (Duffie and Beckman, 1991): 

   𝛿 =  23.45sin [
360(284 +  𝑛)

365
]              (2.5) 
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Figure 2.7: Seasonal variation of the perforated band relative to the sensor 

for latitude φ in the northern hemisphere at solar noon (Brooks, 2010).  

2.4 Ray trace model of pyranometer exposure 

2.4.1 Methodology 

In the absence of cloud, hereafter ‘clear sky conditions’, the structure of the PB 

data trace is coherent and cycles unambiguously between its GHI and DHI 

components, as in Figure 2.3. This permits the accurate identification and removal 

of transition data between exposure and shading of the sensor. Under such 

conditions, the decomposition of the PB trace into fragmented DHI and GHI time-

series can be carried out by visual filtering. Reconstituting the separated values 

into continuous functions can be achieved by curve-fitting, as described in 

Chapter 3.  

Under partly cloudy conditions, the PB trace is chaotic and incoherent, and visual 

filtering of the transition data is no longer possible (Brooks and Roberts, 2009). 

Identification of GHI and DHI fragments may also not be possible by inspection. 

To meet the third aim of this research and characterise the system’s performance 

under all cloud conditions, it was necessary to provide a non-visual method of 

identifying the diffuse and global components in the PB trace. This was achieved 

by the development of a model in which the state of pyranometer exposure is 
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correlated with the sun’s hour angle. The model uses a ray tracing approach to 

determine when the PSP sensor is shaded or exposed for the band geometry in 

Figure 2.8 on a regularly spaced number of days spanning a generic 365-day year. 

The steps followed in deriving the model were: 

1. Calculate solar position data for a given day number (n) from sunrise to 

sunset in hour angle increments of 0.125º. 

2. Calculate perforated band movement (Δl) for day n number using 

equations (2.4) and (2.5).  

3. Define the spatial coordinates and angular orientation of the ray trace solar 

source. 

4. Trace light rays, plot sensor flux maps and determine the exposure state of 

the thermopile for apertures 1 to 5 as a function of day number 

5. Mirror the results for apertures 6 to 9 and process the ray trace results to 

correlate sensor exposure with zenith and hour angles 

In positioning the ray-emitting solar source, the model makes use of solar 

geometric relationships given by Duffie and Beckman (1991) and Sproul (2007), 

as described in equations 2.6 to 2.11. For daily declination angle δ and zenith 

angle Z, the hour angle ω is given as: 

   𝜔 =  cos−1 [
(cos𝑍 –  sin𝜑 sin𝛿)

(cos𝜑 cos𝛿)
]  (2.6) 

The sunrise hour angle ωsr is obtained from equation (2.6) by setting Z = 0º. For 

the analysis, a table of daily hour angle values was created using ωsr as the 

starting point, increasing in 0.125º increments. These were used to step the solar 

source through the given day during the ray tracing exercise and represent the 

resolution of the model.  

For each value of ωsr the corresponding altitude and zenith angles (α and Z) were 

generated from equations (2.7) and (2.8): 

   𝛼 =  sin−1[sin𝛿 sin𝜑 +  cos𝛿 cos𝜑 cos𝜔]  (2.7) 

 
𝑍 =  90° −  𝛼  (2.8) 

Azimuth angle is calculated from the following, where 0° ≤ γ' ≤ 360°: 

   𝛾′ =  cos−1 [
sin𝛿 cos𝜑 −  cos𝛿 sin𝜑 cos𝜔

cosα
]                  (2.9) 

The above equation is subject to the condition that γ' = γ' for ω < 0, and  

γ' = (360° – γ') for ω > 0. Lastly, the angle is adjusted so that –180° ≤ γ ≤ 180°. 

   𝛾 =   𝛾′ − 180°                 (2.10) 
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In the ray trace model, light rays emanate from a grid source whose position is 

defined by spatial displacement relative to the coordinate origin, and by the 

angular orientation of the emitting face. The values of δ, ω, α and γ obtained 

above are used to position the grid such that it simulates the sun’s position as 

shown in Figure 2.8. Latitude, declination, zenith, and altitude angles are 

indicated for the solar noon position.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Generalised geometry of a shadow band in the northern 

hemisphere used to establish the ray trace model of pyranometer exposure 

(Brooks, 2010).  

 

The artificial solar source is defined by spatial coordinates P(x,y,z) relative to the 

PSP sensor at a defined origin O(0,0,0), and by the angular orientation of the grid. 

The final orientation of the emitting face is obtained by three successive rotations 

of the displaced grid about the x-, y- and z-axes, in that order, given by the 

rotation vector S(ξ,η,ζ) (Figure 2.9). A straight line drawn perpendicular from the 

centre of the emitting face therefore passes through the centre of the pyranometer 

sensor for any solar position.  

Light rays emanate in the z' direction from the upper surface of the grid source 

which must be displaced along the solar vector to P after rotation so that the 

emitting face is perpendicular to OP. OB represents the projection of the solar 

vector on the plane of the earth’s surface. In this case |OP| is set at 1000 mm to 

ensure it exceeds the distance from the sensor to the outer radius of the band.   
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Figure 2.9: Schematic of the translation and rotation required to orient the 

solar source in the ray trace model (Brooks, 2010).  

 

The components of P and S proceed from Figure 2.8 and are given in equations 

(2.11) to (2.16): 

   𝑧𝑝  =  |OP|sin𝛼 (2.11) 

   𝑦𝑝  =  −|OB|cos (270° −  𝛾) (2.12) 

   𝑥𝑝  =  −|OB|sin𝛽 = −|OB|cos𝛾 (2.13) 

   𝜉 =  −(90° +  𝛼) (2.14) 

   𝜁 = (90° −  γ)                 (2.15) 

In the above, |OB| = √(10002 – zp
2) and no rotation about y is required, that is,  

η = 0°. The diameter of the grid is 20 mm to ensure that it fully floods the sensor 

of diameter 11.3 mm. The source generates rays with a half-angle of 0.255° to 

accommodate the finite size of the solar disc. Tracing is executed using TracePro 

software and outputs from each run consist of a physical picture of the rays within 
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the model space and an irradiance flux map of the pyranometer sensor, isolated 

from its surrounding plane. The resulting flux map defines the exposure state of 

the sensor as occluded (Es = 0), partially exposed (Es = 0.5) or fully exposed  

(Es = 1), thereby associating each value of ω and Z with a corresponding value of 

Es for a given day. In this way, pyranometer exposure is correlated with sun 

position for the given latitude and day. As an example, Figure 2.10 shows a ray 

bundle generated by the artificial source positioned according to equations (2.11) 

to (2.16). A close-up of the first aperture (lower left) shows light rays partially 

obstructed by the band’s lower edge. The irradiance flux map of the sensor (lower 

right) shows a light region representing the transitional state, Es = 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Graphic of a perforated band in the ray tracing environment for 

n = 232, φ = 39.74° and ω = -81.019° (Brooks, 2010). 

 

2.4.2 Model parameters 

Ray tracing results are given in Figure 2.11 for a set of daily computational runs 

spanning a generic year at the NREL SRRL site. The graphs show the hour angle 

values defining the start and end of sensor exposure (Es = 1) and occlusion  

(Es = 0), related to each aperture and shading zone of the band respectively as a 

function of day number. In each case the lower set of markers for each aperture or 

Ray bundle 

Sensor 
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shading zone represents the values of ω at which full exposure or occlusion of the 

sensor first occurs and the upper markers represent the end of full exposure or 

occlusion. For example, a pyranometer sensor at the NREL site will be fully 

exposed through aperture 6 between hour angle values of 15.2° and 22.3°, and this 

behaviour will be repeated daily throughout the year.    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Ray tracing-derived hour angle limits for (a) full sensor 

exposure (Es = 1), and (b) full sensor shading (Es = 0) as a function of day 

number at φ = 39.74° (Brooks, 2010).  

 

In the case of Figure 2.11 (a), the sensor is never fully exposed through apertures 

1 and 9 for 1 ≤ n ≤ 18 and 326 ≤ n ≤ 365 due to the downward manual adjustment 

of the band in mid-winter. For 1 ≤ n ≤ 56 and 289 ≤ n ≤ 365 shading zones 1 and 

10 fall below the level of the pyranometer and have no influence on the sensor 

exposure state (Figure 2.11 (b)).  

-120

-80

-40

0

40

80

120

0 50 100 150 200 250 300 350

H
o

u
r 

an
gl

e,
 ω

[d
eg

]

A
p

er
tu

re

9

8

7

6

5

4

3

2

1

(a)

-120

-80

-40

0

40

80

120

0 50 100 150 200 250 300 350

H
o

u
r 

an
gl

e,
 ω

[d
eg

]

Day number, n

Sh
ad

in
g 

zo
n

e

10

9

8

7

6

5

4

3

2

1

(b)

Stellenbosch University  https://scholar.sun.ac.za



36 

 

With the exception of exposure data for apertures 1 and 9, and shading data for 

zones 1 and 10, ω is independent of day number. This is a useful result and is due 

to the polar mount of the band, its circular shape and the daily adjustment of the 

band to accommodate for changes in declination angle. These factors result in the 

sun-band-sensor geometric relationship remaining constant for a given solar time, 

or hour angle.  

As an extension to the model, it is possible to relate zenith angle to exposure and 

shading for each aperture or zone by reworking equations (2.7) and (2.8):  

   𝑍 =  cos−1[𝐾1sin𝛿 + 𝐾2cos𝛿]                  (2.9) 

where K1 = sinφ and K2 = cosφcosω. For NREL SRRL, K1 = 0.64. K2 is ω-

dependent with values are given in Table 2.1 along with corresponding average 

hour angle limits for each aperture and zone. These constitute the predictive 

model of pyranometer exposure for the perforated band. Figure 2.12 gives the 

resulting zenith angle limits from the ray trace model for exposure and shading 

states at the NREL test site. 

 

Table 2.1: Annual hour angle limits for onset and completion of full 

pyranometer exposure (Es = 1) and shading (Es = 0) at NREL SRRL (Brooks, 

2010). 

Es = 1 (Exposure) Es = 0 (Shading) 

Aper

-ture 

Start 

ω 
K2 End ω K2 

Shad. 

zone 

Start 

ω 
K2 End ω K2 

1 -79.80* 0.14 -71.77** 0.24 1 Variable -81.60† 0.11 

2 -60.37 0.38 -52.69 0.47 2 -69.83 0.27 -62.33 0.36 

3 -41.19 0.58 -33.85 0.64 3 -50.65 0.49 -43.38 0.56 

4 -22.27 0.71 -15.15 0.74 4 -31.61 0.66 -24.63 0.70 

5 -3.49 0.77 3.49 0.77 5 -12.78 0.75 -5.92 0.77 

6 15.15 0.74 22.27 0.71 6 5.92 0.77 12.78 0.75 

7 33.85 0.64 41.19 0.58 7 24.63 0.70 31.61 0.66 

8 52.69 0.47 60.37 0.38 8 43.38 0.56 50.65 0.49 

9 71.77** 0.24 79.80* 0.14 9 62.33 0.36 69.83 0.27 

     

10 81.60† 0.11 Variable 

Limits are valid approximately as:  
*
50 ≤ n ≤ 294   

**
19 ≤ n ≤ 325   †57 ≤ n ≤ 288 
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Figure 2.12: Annual zenith angle start (s) and end (e) limits: (a) by band 

aperture for pyranometer exposure (Es = 1) and (b) by shading zone (Es = 0) 

at φ = 39.74° (Brooks, 2010). 

 

2.4.3 Implementation of the ray trace model 

The ray trace model is illustrated in Figure 2.13 (a) to (c) using sample data from 

NREL SRRL. Under both summer and winter conditions the shading mask 

correctly identifies GHI, DHI and transition data without recourse to visual 

filtering.  A magnified view of aperture 5 flanked by shading zones 5 and 6 for  

n = 322 is given in Figure 2.13 (c). Predicted shading, exposure and transition 

states from the ray trace model are superimposed in black. Figures 2.13 (a) and (b) 

illustrate the seasonal difference in waveforms produced under clear skies, both 

with respect to magnitude and shape. In summer, the band is adjusted upward in 

its stand relative to the PSP, activating apertures 1 and 9 and producing a 

characteristic ‘nine-peak’ waveform versus the ‘seven-peak’ shape of mid-winter.  
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Figure 2.13: Characteristic square wave irradiance data for NREL on clear-

sky days: (a) 27 August 2009 (n = 239) and (b) 18 November 2009 (n = 322) 

(b) (Brooks, 2010). 
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The potential latitude-dependence of the ray trace model was investigated by 

comparing the hour angle limits in Table 2.1 with values derived for the UKZN 

ground station in Durban at latitude φ = –29.87° (south). The maximum absolute 

variation in the hour angle exposure start and end limits for any single aperture 

was 0.14°, as described in detail in Chapter 6. For shading zones, the maximum 

difference in predicted hour angle limits was 0.23°.  

The model described in Table 2.1 is expected to apply universally except at 

extreme polar latitudes where a fully circular structure is required to occlude the 

sensor over the summer months. This universality is due to the semi-circular 

nature of the band and the use of a polar mount. The only differences between 

sites will be the tilt of the pyranometer sensor relative to the band, and the 

variations peculiar to the first and last apertures as they fall below the sensor level 

in winter. 

2.5  Correction factors 

2.5.1 Structural deformation 

In practice, minor structural deformation of the perforated band is difficult to 

avoid because of wind loading, the regular adjustments made to the device and 

deflection of the stand’s support arms.  

Two corrections are therefore made to account for deviation of the structure from 

its idealised shape and to reverse the resulting inaccuracy of the pyranometer 

exposure model. First, an empirically derived correction factor is applied to the 

ray trace model to shift the predicted shading mask, where necessary, in 

accordance with periodically measured locations of peaks and troughs in the data 

output trace. Second, the transitional period is extended by one minute at the start 

and end of each crossover phase between GHI and DHI to provide an additional 

buffer and to prevent confusion between data types.     

The first correction factor is obtained by inspection of clear sky days at regular 

intervals throughout the datasets. The degree to which the model deviates from 

the trace curve under clear conditions is quantified in the form of a lookup table 

and read into the processing software to reverse the misalignment. The peaks and 

troughs of the predicted shading mask are shifted to the left or right of their 

idealised position by integer multiples of 1 minute, so as to align them with the 

square-wave trace visible on selected clear days. The correction factors are 

specified independently for each peak and trough and cover the duration of all 

datasets used in this study for both the NREL site and the UKZN ground station. 

On cloudy and partly cloudy days they are obtained by linear interpolation 

between the clear sky data. The second correction factor is also applied 

automatically to data generated by the PB system.  

Figure 2.14 illustrates the application of the correction factors to an extract of data 

from NREL SRRL on 20 July 2012. The unadjusted shading mask is shown in red 

and is noticeably misaligned with the data trace in apertures 1 to 4. The correction 
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procedure shifts the mask to the left (black) and extends the duration of 

transitional data by 1 minute at the start and end of the crossover from DHI to 

GHI, and vice versa.  

 

 

 

 

 

 

 

Figure 2.14: Correction of the predicted shading mask for NREL SRRL data 

sample (20 July 2012). 

 

Structural distortion does not affect the band’s capacity to split a composite signal 

into separate global and diffuse components under clear sky conditions, since a 

visual filtering technique can be applied. This approach is discussed in the next 

chapter.  

Under cloudy conditions, the corrected ray trace model adequately identifies 

diffuse horizontal, global horizontal and transition data, albeit with the loss of a 

small number of measurement values as GHI and DHI patches are reduced in 

duration by 1 minute at their start and end. As a general principle of operation, it 

is important that a perforated band is carefully installed to replicate the geometry 

of the ray trace model and regularly checked for symmetry of the data about the 

solar noon position.  

2.5.2 Shadow band blockage 

All shadow bands cause a reduction in the measured diffuse horizontal irradiance 

by occluding a portion of the sky within the field of view of the pyranometer 

sensor. This increases the measurement uncertainty and requires a correction 

factor, fsb, to reverse the effect, applied as follows: 

   𝐸𝑑_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  𝑓𝑠𝑏𝐸𝑑                  (2.10) 

For a solid band, fsb typically ranges between 1.05 and 1.30 (Ineichen et al., 1983) 

and several approaches have been used to derive it. Drummond (1956) proposed 

the “Pretoria method” in which an isotropic sky is assumed and the band is 
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modelled geometrically. The correction factor is derived as a function of solar 

position and the band parameters of width and radius. LeBaron et al. (1990) 

proposed a more sophisticated approach in which band geometric effects are 

combined with empirical data to yield a correction factor that accounts for the 

anisotropic nature of diffuse irradiance. Kudish and Evseev (2008) compared the 

above methods with two more approaches by Batlles et al. (1995) and Muneer and 

Zhang (2002) and found the latter to be the best overall performer. 

The methodologies described above cannot be applied to the perforated shadow 

band since they rely at least partly on the solid band geometry. An alternate 

approach is to derive an empirical factor by comparing output from the PB system 

with an unshaded, collocated reference pyranometer under overcast conditions. 

Although an unshaded pyranometer normally registers GHI, the overcast sky 

ensures that the reference instrument measures diffuse horizontal irradiance with 

low uncertainty. The minute-based experimental values of fsb were obtained by 

dividing the reference DHI by the diffuse output from the PB sensor at each 1-

minute interval on a series of overcast days: 

   𝑓𝑠𝑏 =  
𝐸𝑑_𝑟𝑒𝑓

𝐸𝑓𝑑
  (2.11) 

The daily correction factor was then obtained by averaging the resulting factors 

between 09:00 and 15:00. This was repeated for multiple days across a calendar 

year to yield fsb as a function of day number, as given by the discrete markers in 

Figure 2.15 for both NREL and the UKZN ground stations. A regression curve 

was then fitted to the data to provide the final continuous functions describing fsb 

at both sites. For the NREL data, the coefficient of determination (R2) is 0.89, 

indicating a good fit with the data. The UKZN curve returned an R2 value of 0.91. 

 

 

 

 

 

 

 

 

 

 

Figure 2.15: Empirically derived shadow band correction functions for the 

NREL SRRL and UKZN ground stations. 
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In Figure 2.16 a data sample from NREL SRRL on 12 September 2011 is given to 

illustrate the application of fsb to experimental data. When measuring DHI, the 

uncorrected perforated band trace (grey) exhibits a visible deficit in magnitude 

versus the expected reference DHI curve (red). The corrected trace (black) 

coincides with the reference data, indicating that the blocking effect of the band 

has been properly accounted for. 

 

 

 

 

 

 

 

 

 

 

Figure 2.16: Application of a correction factor to amplify perforated band 

irradiance and reverse the blocking effect of the band structure (NREL 

SRRL data from 12 September 2011).  

 

2.6 Summary 

This chapter introduced the perforated shadow band as a device to decompose an 

aggregate pyranometric signal into separate GHI and DHI traces. The principle of 

operation was explained through a geometrical analysis of the interaction between 

the solar disc, the band and the pyranometer sensor.  

A ray trace model of pyranometer exposure was developed to predict the time-

dependent shading regime at the radiometer sensor as a function of hour angle. 

Other than minor variations at sunrise and sunset, the model is location-

independent due to the polar mount of the band. The ray trace model permits the 

use of the band under partly cloudy and overcast conditions, and therefore 

removes any reliance on clear-sky conditions in order to process data from the 

radiometer. This transforms the system into an all-weather radiometric tool. 

Chapter 3 addresses the performance of the PB system under clear sky conditions, 

following which Chapter 4 uses the ray trace model developed here to formulate a 

cloudy sky processing methodology.   
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3. PERFORMANCE UNDER CLEAR SKY CONDITIONS 

3.1  Introduction 

The methodology used to process data from a perforated band depends on the sky 

conditions under which measurements are generated. Under clear skies, the PB 

trace is sufficiently coherent (see Figure 2.13) that a visual filtering technique can 

be employed to separate the diffuse and global horizontal values, before 

reconstructing the fragmented DHI and GHI traces. Under partly cloudy or 

overcast conditions, there may be limited differentiation between components and 

the ray trace model of pyranometer exposure must be used. The techniques 

employed to reconstruct fragmentary DHI and GHI curves are also more complex 

in the presence of trace stochasticity. 

This chapter, which is drawn partly from the journal article by Brooks (2010), 

addresses the processing of data from a PB system under cloud-free conditions. 

The clear sky processing methodology (CrSPM) is introduced and applied to a set 

of NREL data gathered between 2008 and 2010. Results describe the statistical 

performance of the band under clear sky conditions versus collocated reference 

radiometers independently measuring global horizontal, diffuse and direct normal 

irradiance. In addition, PB uncertainty is compared to that of DNI predictions 

from radiative transfer models, since these offer an alternate method of generating 

irradiance estimates at ground stations. 

3.2  NREL and the data gathering program 

3.2.1 The Solar Radiation Research Laboratory 

NREL’s Solar Radiation Research Laboratory in the town of Golden, Colorado, 

was the primary test-site for the perforated shadow band system. The facility is 

located atop the South Table Mountain mesa, west of the city of Denver at 

39.74°N 105.18°W and at 1829 m AMSL. Gueymard and Myers (2009) 

categorise SRRL as a major United States radiometric installation. It is active both 

in calibrating instruments and in developing better calibration techniques for 

implementation by organisations such as the ARM network and BSRN. Due to its 

elevation and location, the laboratory experiences lower pollution and 

atmospheric moisture levels than at sea level sites.  

A prototype version of the perforated band, with the dimensions described in 

Figure 2.6, was shipped to SRRL in 2007 and mounted on a standard Eppley 

shadow band stand, over an Eppley Precision Spectral Pyranometer. The system 

was positioned on an outdoor instrument platform (Figure 3.1) where it was run 

continuously for over 7 years until early 2015. During this time it received regular 

maintenance alongside approximately 50 other radiometric instruments that were 

either undergoing tests or providing reference data for laboratory operations.  
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Figure 3.1: (a) The NREL Solar Radiation Research Laboratory instrument 

platform, (b) collocated research and reference radiometers, and (c) the PB 

system alongside a solid shadow band.  
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Data from most of SRRL’s instruments, including the perforated shadow band 

pyranometer and the reference radiometers used in this study, are publicly 

available through the online Baseline Measurement System (BMS) (NREL, 

2014). The website enables users to download measurements for a selected date 

range from the NREL archive and provides a solar calendar that makes 

preliminary filtering of data possible according to trace structure. A sample of the 

calendar is given in Figure 3.2 which covers August 2009, including the cloud-

free day used to illustrate the operation of the ray trace model in Figure 2.13.   

The Baseline Measurement System also provides solar vector information from 

the implementation of the NREL Solar Position Algorithm (Reda and Andreas, 

2008). Data include the sun’s hour, zenith, and declination angles at 1-minute 

increments, and extraterrestrial global and direct irradiance estimates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Sample NREL solar calendar showing GHI, DNI and DHI traces 

for August 2009 (NREL, 2014). 
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3.2.2 SRRL instruments  

The perforated band was operated in conjunction with an Eppley PSP radiometer 

that was exchanged periodically as part of the NREL calibration process. 

Measurement scans were conducted by the laboratory’s BMS every few seconds 

and averaged to provide data at 1-minute resolution. 

The reference data used to establish perforated band performance in this study 

were obtained from two collocated, research-grade secondary standard Kipp & 

Zonen pyranometers and a first class pyrheliometer (Table 3.1). Table 3.2 gives 

the serial numbers, sensitivity coefficients and periods of operation for the Eppley 

pyranometers used with the perforated band in this study. In this case, sensitivity 

is defined as the inverse of the instrument responsivity, given in [W/m2/mV]. 

Appendix A gives similar information for the reference sensors. A comprehensive 

maintenance log was kept for the PB system, a sample of which is given in 

Appendix B. The log remains publicly available through the Baseline 

Measurement System at www.nrel.gov/midc/srrl_bms/ (NREL, 2014). 

 

Table 3.1: Instruments used at NREL SRRL to characterise PB performance.  

Component Instrument configuration Manufacturer/type 

Perforated shadow band  Pyranometer Eppley PSP 

GHI (reference) Ventilated, unshaded pyranometer Kipp & Zonen CM22 

DHI (reference) 
Ventilated, shaded pyranometer with 

occulting ball 
Kipp & Zonen CM22 

DNI (reference) Tracking pyrheliometer Kipp & Zonen CH1 

Net infrared irradiance Pyrgeometer 
Eppley Precision 

Infrared Radiometer 

 

Table 3.2: Instrument history of the perforated band PSP at NREL SRRL.  

Eppley PSP Sensitivity Date installed Date removed 

serial number [W/m2/mV] 

  29668F3 121.30 25 May 2007 28 Jul 2008 

25818F3 115.25 28 Jul 2008 22 Jul 2009 

25765F3 116.68 22 Jul 2009 02 Jul 2010 

25818F3 115.26 02 Jul 2010 26 May 2011 

25765F3 117.20 26 May 2011 07 Jun 2012 

25818F3 115.05 07 Jun 2012 20 Jun 2014 

25765F3 116.59 20 Jun 2014 11 Dec 2014 
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3.2.3 Measurement uncertainty 

SRRL radiometers are subject to rigorous maintenance, including cleaning of their 

optical windows multiple times each week. Importantly, they are calibrated on an 

annual or biennial basis to negate instrument drift and ensure that quality 

standards are maintained with respect to measurement uncertainty. The facility 

uses the Broadband Outdoor Radiometer Calibration (BORCAL) procedure, 

described in detail by Reda et al. (2003). This employs a component-sum 

technique to generate a pyranometer’s responsivity, measured in [μV/W/m2], that 

is divided into the radiometer output signal, measured in [μV], to generate an 

irradiance value in [W/m2].  

Despite careful maintenance, all radiometers exhibit some form of measurement 

uncertainty, or dispersion of measurand values about the true radiometric result 

(Joint Committee for Guides in Metrology, 2008). This is determined from the 

known behaviour of a radiometer (commonly referred to as ‘type-B’ errors) and 

from a statistical analysis of the instrument’s performance against a class I 

instrument traceable to the World Group of Radiometers. The uncertainty for each 

radiometer is obtained by ascribing uncertainties to functional parameters such as 

the radiometer output voltage, net infrared responsivity, net infrared irradiance, 

direct normal irradiance measured by an absolute cavity pyrheliometer, and the 

reference diffuse irradiance measured by a shaded pyranometer (Reda et al., 

2008). SRRL reports expanded uncertainties for each instrument to a 95% level of 

confidence.  

Table 3.3 gives the overall instrumental uncertainties provided by NREL for GHI, 

DHI and DNI measurements in this study. These were obtained by combining the 

calibration uncertainties in the test PSP with those of the reference instruments as 

the root sum of squares (RSS). 

  

Table 3.3: Average expanded measurement uncertainties for the radiometers 

used in the study, and RSS instrument uncertainties applicable to the 

measurement of Eg, Ed and Ebn (Brooks, 2010). 

 
Eppley PSP 

under band 

K&Z CM22 

E 

K&Z CM22 

Ed 

K&Z CH1 

Ebn 

 
(%) (%) (%) (%) 

Average expanded 

uncertainty 
± 4.7 ± 1.7 ± 1.6 ± 0.6 

RSS instrument 

uncertainty for 

combined PSP and 

reference data 

± 5.0 combined with CM22 (E) for global horizontal irradiance 

± 5.0 combined with CM22 (Ed) for diffuse horizontal irradiance 

± 3.9 combined with CH1 (Ebn) for DNI 

 

Stellenbosch University  https://scholar.sun.ac.za



48 

 

The RSS values reflected in Table 3.3 include the PSP error as well as that from 

the comparative reference instrument. Because direct normal irradiance obtained 

using the PB system is a composite measurement, the uncertainty is scaled to 

include 80% global horizontal irradiance and 20% diffuse horizontal irradiance 

from the PSP, in combination with CH1 uncertainty. The radiometer serial 

numbers used to establish these metrics were #29668F3, #25818F3 and #25765F3 

(PSP), #10046 and #10034 (CM22) and #10256 (CH1 for Ebn). 

The combined overall measurement uncertainties applicable to this study are thus 

±5% for global horizontal and diffuse horizontal irradiance, and ±3.9% for DNI 

(Gueymard and Myers, 2009; Joint Committee for Guides in Metrology, 2008; 

Myers, 2005; Myers et al., 2002; Reda et al., 2008). For full-range limits of  

1100 W/m2 (GHI), 250 W/m2 (DHI) and 1100 W/m2 (DNI), the true values of Eg, 

Ed and Ebn therefore lie within approximately ±55.0 W/m2, ±12.4 W/m2 and  

±43.1 W/m2 respectively of the reported values from the study, with a 95% 

confidence level. It is important to note that the values in Table 3.3 quantify 

measurement uncertainty only and do not permit direct comparison of the 

perforated band approach with the schemes listed in Table 1.2. For that purpose, it 

is necessary to quantify model uncertainty, or the difference between the PB 

system predictions of each solar component and the outputs from collocated 

reference instruments. Section 3.3 gives the results of such an analysis. 

3.3 The clear sky processing methodology (CrSPM)  

3.3.1 The clear sky dataset   

This study focuses on high-resolution data at 1-minute intervals which are 

generally more useful in radiometric studies than hourly averages. The clear sky 

dataset consisted of 30 days drawn from the NREL Baseline Measurement System 

between March 2008 and January 2010. The days were selected by visual 

inspection of the solar calendar to ensure clean, cloud-free traces and as even a 

distribution as possible throughout the year.  

The maximum zenith angle at which SRRL radiometers are calibrated is 60° 

therefore it is preferable to restrict the analysis of PB performance to the same 

limit. An expanded range up to 70° was permitted, however, to include the mid-

winter period when zenith angles increase. In total, the dataset spans  

14 002 minutes, with the early morning and late afternoon data (Z ≥ 70°) excluded 

from the analysis to minimise the uncertainty associated with high incident angle 

measurements.  

Table 3.4 provides metadata for the clear sky set, including the daily clearness 

index (KT_day) that varies between 0.74 and 0.82, with an average of 0.78. The 

intermittency of measurements caused by the band apertures and zones means that 

the dataset contains only 5361 readings of diffuse horizontal irradiance, and 5789 

readings of global horizontal irradiance. These constitute the input to the clear sky 

processing methodology for generation of DHI, GHI and DNI continuous curves.  
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Table 3.4: The NREL radiometric dataset for clear sky conditions. 

Date Day KT_day Number PB DHI PB GHI 

 

number 

 

of data Measured Missing Measured Missing 

   

N (Z<70°) (Z<70°) (Z<70°) (Z<70°) 

20080318 78 0.81 505 184 321 217 288 

20080413 104 0.79 574 240 334 222 352 

20080414 105 0.81 577 240 337 223 354 

20080613 165 0.80 663 234 429 292 371 

20080629 181 0.77 662 243 419 292 370 

20080712 194 0.74 653 245 408 287 366 

20080819 232 0.77 594 237 357 239 355 

20080829 242 0.74 572 244 328 221 351 

20080915 258 0.77 528 203 325 220 308 

20080929 273 0.74 488 175 313 219 269 

20081007 281 0.77 463 172 291 197 266 

20081015 289 0.76 437 174 263 173 264 

20081017 291 0.76 430 170 260 164 266 

20081028 302 0.75 393 160 233 151 242 

20090120 20 0.80 314 106 208 138 176 

20090204 35 0.79 365 131 234 152 213 

20090305 64 0.81 464 168 296 200 264 

20090314 73 0.82 492 171 321 216 276 

20090406 96 0.81 556 234 322 219 337 

20090827 239 0.77 577 239 338 221 356 

20090926 269 0.77 498 175 323 221 277 

20090928 271 0.76 491 172 319 219 272 

20091002 275 0.79 480 176 304 209 271 

20091017 290 0.77 431 175 256 163 268 

20091117 321 0.77 326 114 212 145 181 

20091118 322 0.77 322 115 207 140 182 

20091124 328 0.76 304 117 187 124 180 

20091127 331 0.78 295 115 180 114 181 

20091210 344 0.78 268 117 151 92 176 

20100108 8 0.77 280 115 165 99 181 

 

3.3.2 Process flow 

The CrSPM algorithm for obtaining direct normal, diffuse and global components 

comprises five steps (Brooks, 2010): 

1) Filtering: intermittent upper global and lower diffuse data are separated 

out from the composite PSP output signal. This is achieved using a statistical 

filtering approach in which the ramp rate of the PB trace is monitored so as to 
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detect the presence of a transition sequence, as illustrated in Figure 2.13 (c). The 

ramp rate, ΔEi, is defined as: 

 ∆𝐸𝑖 =  
𝐸𝑖 −  𝐸𝑖−1

𝐸𝑖−1
 × 100%                                        𝑖 = 2, … , 𝑁 (3.1) 

Since diffuse irradiance curves are flatter than their global irradiance counterparts 

under clear sky conditions, the threshold rates for identifying transition in the 

statistical filtering schema are set at 2% and 3% for DHI and GHI respectively. 

Early morning and late afternoon measurements are subject to additional visual 

inspection to ensure the quality of the filtering step. 

2) Curve-fitting: following the removal of transition data and the separation 

of the composite trace into fragmented DHI and GHI traces, a fourth-order 

polynomial curve is applied to reconstitute the data as independent, continuous 

curves. Irradiance curves are expressed as a function of time, where time is 

defined as the normalised fraction of a 24-hour period. The curve-fitting technique 

differs from a previous method demonstrated in Brooks et al. (2007), where 

irradiance was correlated with the cosine of Z. The approach used here is simpler 

to employ and gives acceptable results.  

3) Thermal offset correction: data from the perforated band PSP are corrected 

for thermal offset by subtracting the product of PSP net long wave responsivity 

and net radiation, as measured by SRRL pyrgeometers, from the pyranometer 

output, as described in equation (1.3). Positive thermal offset effects caused by the 

geometry of the perforated band are estimated to be on the order of 1 W/m2 (Reda, 

2010) and are disregarded in calculations of overall performance. 

4) Shadow band correction: diffuse horizontal irradiance data are corrected 

for that portion of the sky obscured by the perforated band, according to the 

empirically derived function given in Figure 2.15. 

5) Calculation of DNI: reformed functions representing Eg and Ed are used to 

calculate Ebn from equation (1.2).  

3.4 Clear sky results  

3.4.1 Uncertainty analysis  

Measurement uncertainty (Table 3.3) describes the difference between an 

instrument’s output and the ‘true’ value of the solar component which is sought, 

and thus quantifies sensor error. Model uncertainty, on the other hand, refers to 

the difference between reference data and the predicted radiometric data from the 

perforated band processing methodology. The former is based on instrument 

calibration, but gives no insight to the effectiveness of the shadow band algorithm. 

The latter idealises the reference data as true, even though they are not, to 

characterise differences between competing measurement schemes.  
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This study is principally concerned with model uncertainty since the decision to 

implement a perforated band in preference to a competing radiometric scheme 

would rest on the relative performance of the two. In effect, the model 

uncertainties given in this study benchmark perforated band performance against a 

number of the reference schemes given in Table 1.2.   

Model uncertainty 

Perforated band performance is quantified through the metrics of mean bias 

difference (MBD) and root mean square difference (RMSD). These are the most 

commonly used measures of uncertainty in radiometric analysis and are cited in 

numerous modelling studies (Batlles et al., 2000; Dazhi et al., 2012; Erbs et al., 

1982; Gueymard, 2009; Ineichen, 2006; Jacovides et al., 2006; Kudish and 

Evseev, 2008; Muneer and Younes, 2006; Perez et al., 1990a; Perez et al., 1990c; 

Singh et al., 1996; Skartveit et al., 1998; Zawilska and Brooks, 2011).  

MBD quantifies the systematic difference between predicted values and their 

reference measurements, while RMSD indicates random error. Although both are 

important, RMSD may be considered the primary metric in assessing model 

performance since it captures the dispersion of predicted values, and is sensitive 

to poorly performing models. MBD and RMSD are calculated using equations 

(3.2) and (3.3) to yield values in [W/m2] or using equations (3.4) and (3.5) to give 

equivalent percentages, where the divisor, Ēmeas, is the average measured 

irradiance from the reference dataset (Gueymard and Myers, 2008b): 

     MBD =  
1

𝑁
∑[𝐸𝑚𝑜𝑑 − 𝐸𝑚𝑒𝑎𝑠]

𝑁

𝑖=1

        (3.2) 

     RMSD =  √
1

𝑁
∑[𝐸𝑚𝑜𝑑 −  𝐸𝑚𝑒𝑎𝑠]2

𝑁

𝑖=1

        (3.3) 

     %MBD =  
MBD

�̅�𝑚𝑒𝑎𝑠

 × 100%        (3.4) 

     %RMSD =  
RMSD

�̅�𝑚𝑒𝑎𝑠

 × 100%        (3.5) 

In the above equations, Emod is the modelled (interpolated) value of irradiance, 

Emeas is the measured reference value and the population size is N.  

3.4.2 Perforated band model uncertainty versus reference data  

The application of the CrSPM is illustrated in Figure 3.3 for sample data from 

October 28, 2008 (n = 302). Unprocessed values from the PSP are shown in (a), 

following which transition data are removed and polynomial functions are used to 

reform the global and diffuse curves in (b). In (c) the final predicted irradiance 

curves are plotted along with reference data. For the given day (n = 302), the 
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shadow band correction factor is 1.05 and the number of transition data equals 

128 out of 633 minute values (Z < 90°). Measured data in (c) are shown in black 

and model values in grey. For Z < 70°, the MBD and RMSD values are –1.9% and 

2.3% (global), 0.05% and 3.5% (diffuse), and –0.8% and 1.4% (direct). The R2 

coefficients applicable to the polynomial curves in (b) are 1.000 and 0.994 for 

global and diffuse irradiance respectively. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Application of the CrSPM to SRRL data on 28 October 2008 with 

(a) raw data, (b) separated DHI and GHI fragments and (c) model values 

shown as dashed lines and reference data as solid lines (Brooks, 2010).  
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values. The statistics are generated from mean measured irradiance values of 

654.3 W/m2 (global), 71.2 W/m2 (diffuse) and 944.9 W/m2 (direct). The 

perforated band system under-predicts DNI versus the reference data by 2.6 W/m2 

on average, or 0.3%. Random error for the direct component is 2.0%. The 

perforated band is effective at predicting global horizontal irradiance under clear 

sky conditions, returning a root mean square difference of just 2.7% and 

negligible bias. The RMSD and MBD values for diffuse horizontal irradiance are 

13.6% and 7.9%, respectively. Diffuse and direct normal irradiance are both 

normally distributed for the full dataset, while the global distribution indicates a 

positive skewness. Kurtosis is close to zero for all three components. 

 

Table 3.5: Clear sky performance of the perforated shadow band (Brooks, 

2010).  

 
MBD 

(W/m2) 

MBD 

(%) 

RMSD 

(W/m2) 

RMSD 

(%) 

Z < 70°, N = 14002 
    

Global, Eg 0.3 0.1 17.3 2.7 

Diffuse, Ed 5.6 7.9 9.7 13.6 

Direct normal, Ebd -2.6 -0.3 19.0 2.0 

       

3.4.3 Seasonal effects 

As a check on seasonal dependence, daily averages of RMSD and MBD are 

plotted against the day number in Figure 3.4 (a) to (c). Some variation is evident 

suggesting that the bias difference, and to a lesser extent the random difference, is 

affected by changes in declination angle. Whether this is caused by seasonal 

adjustment of the band’s position relative to the pyranometer sensor, by seasonal 

variation in sun strength or by other declination-related factors is not clear. 

Neither the curve-fitting procedure nor the location and number of apertures in the 

perforated band are thought to be the cause, however, since the R2 values for GHI 

are consistently close to 1.00 throughout the year. Similarly, there is no obvious 

pattern in the deviation of the coefficient for DHI.  

Since the data in Figure 3.4 represent differences between predicted and reference 

irradiances, it is possible that any seasonally-related variation is due to 

inaccuracies in the reference measurements and the PSP resulting from cosine 

response errors. The calibration factor for the reference pyranometer (CM22) is a 

fixed value obtained from the inverse of responsivity at Z = 45°, however 

responsivity decreases at higher zenith angles. In winter when high zenith angles 

prevail and the output voltage of the CM22 is multiplied by a fixed calibration 

factor, slightly lower readings are produced. The effect is more pronounced for 
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the PSP (Myers, 2010a), thus MBD reflects an underestimation by the perforated 

band system relative to the reference data when zenith angles exceed 45°.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Mean bias and root mean square differences for (a) GHI, (b) DHI 

and (c) DNI versus day number at NREL SRRL, including R2 coefficients for 

diffuse and global regression curves (d) (Brooks, 2010). 
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For low zenith angles the reverse is true and the model overestimates global 

irradiance, as shown in Figure 3.4 (a). Interestingly, bias difference for global 

irradiance is close to zero around n = 100 and n = 250 when the mean daily zenith 

angles are in the region of 45°. 

3.5 Band performance compared with radiative transfer models 

Radiative transfer models can estimate sun strength without direct measurement 

of solar flux and thus represent a potential alternative to the deployment of 

radiometers. They operate through the measurement and manipulation of indirect 

parameters such as geographic location, zenith angle, aerosol optical depth 

(AOD), barometric pressure and turbidity. They may be simple formulations 

based on empirically-derived coefficients, for example the ASHRAE model 

(ASHRAE, 1972), or complex models that require multiple inputs, for example 

the REST2 transmittance model of Gueymard (2008), described in equation (1.1).  

Table 3.6 compares the statistical performance of eighteen clear-sky radiative 

models with that of the perforated shadow band system. The radiative models 

were not tested concurrently with the PB system but were implemented by 

Gueymard (2012) using 1-minute averaged NREL data gathered from June to July 

2002 and from March to May 2005. Datasets were checked to eliminate the 

presence of cloud. The PB uncertainties listed for comparison are those reported 

in Table 3.5 using the 4th order curve-fitting methodology of the CrSPM applied 

to cloud-free data. Additionally, uncertainties are given for a ramp interpolation 

function applied to PB data on days for which KT_Day ≥ 0.75, as described in 

Chapter 4. The latter were generated under predominantly clear skies in which 

some cloud may have been present, and are included here for comparison. 

Processing was carried out using the cloudy sky processing methodology that 

relies on the ray trace model of pyranometer exposure as a filtering mechanism, 

rather than the statistical filtering described in section 3.3.2.  

In Table 3.6 the number of input parameters to each model, other than the date, 

zenith angle and solar constant, is indicated in column 2. In general the 

uncertainty is inversely proportional to the number of input parameters to the 

model. The REST2 model, for example, requires surface albedo, barometric 

pressure, total ozone abundance, total nitrogen dioxide abundance, precipitable 

water, the Angström wavelength exponent, Angström turbidity coefficient and 

aerosol single-scattering albedo. Some of these must be obtained using sensors 

such as the sunphotometer that are complex or expensive to operate. Thus, 

although the better models perform as well as conventional radiometric sensors, it 

is not practical to employ them across networks with large numbers of remotely 

distributed ground stations.       

Other than REST2, the perforated band system utilising the CrSPM for data 

processing outperforms the radiative models under cloud-free conditions. It does 

so with two inputs: the PSP sensor data and infrared measurements for thermal 

offset correction. This is compared to the multiple inputs required by the better 

transfer models in the table. Importantly, the models cannot function in the 
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presence of opaque cloud and are thus quite restricted in their application, while 

the PB system can decompose global horizontal irradiance to obtain the diffuse 

and direct normal components under the full spectrum of sky conditions, albeit 

with differing levels of uncertainty. Chapters 4 and 5 address the operation of the 

PB system under partly cloudy and overcast conditions.    

 

Table 3.6: Radiative transfer models tested by Gueymard (2012) at NREL 

SRRL under cloud-free conditions compared with PB performance. 

 

No. of DNI DHI GHI DNI DHI GHI 

Radiative Transfer Model model RMSD RMSD RMSD MBD MBD MBD 

 

inputs [%] [%] [%] [%] [%] [%] 

REST2 8 1.3 11.9 1.6 0.2 -1.7 0.0 

Ineichen 3 2.1 26.7 2.5 1.1 -18.4 -1.6 

METSTAT 5 2.8 26.0 2.1 2.2 -25.4 -1.6 

Iqbal-C 6 3.6 18.4 1.6 2.7 -15.5 0.1 

Yang 4 4.0 27.6 1.3 3.4 -21.2 0.0 

Bird and Hulstrom 6 4.7 19.5 2.5 -3.3 5.2 -2.1 

Hoyt 5 4.8 24.0 4.1 0.9 -19.8 -1.9 

MRM-5 5 5.2 35.5 1.2 3.8 -26.1 -0.4 

CSR 5 6.9 26.0 2.6 6.8 -25.4 2.4 

ESRA 2 8.5 21.3 5.6 7.8 -11.3 5.3 

Heliosat-1 2 8.5 26.6 4.6 7.8 -19.2 4.2 

Hottel Liu and Jordan 1 14.1 68.0 4.3 5.5 -44.7 -1.1 

ASHRAE 0 14.3 49.6 7.3 -6.7 -3.3 -5.9 

NRCC 4 14.4 60.9 4.9 3.4 -12.4 1.4 

McMaster 5 14.8 52.3 5.9 7.3 -14.6 4.3 

Heliosat-2 2 15.7 40.0 8.9 15.1 -31.9 8.6 

Kumar 1 21.2 85.1 7.6 16.5 -66.1 5.8 

Fu and Rich 1 32.1 122.1 12.5 -28.5 100.1 -9.6 
*Perforated Band – 4th order 2 2.0 13.6 2.7 -0.3 7.9 0.1 

**Perforated Band - Ramp 2 8.7 18.9 7.4 -1.9 5.8 -1.6 

       *Applied to cloud-free data as per the clear sky processing methodology. 

       **Applied to data for which KT_Day ≥ 0.75, using cloudy sky processing methodology. 

 

3.6 Summary 

Clear sky performance of the perforated shadow band was quantified using a clear 

sky processing methodology implemented on test data gathered at the NREL 

SRRL facility in Golden, Colorado, between March 2008 and January 2010. The 

test protocol utilised calibrated sensors for the PB system and the collocated 
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reference instruments. The measurement uncertainty of the sensors was estimated 

at ± 5% for GHI and DHI, and ±3.9% for DNI.  

Predictions of GHI, DHI and DNI obtained from perforated band system were 

compared with data from research-grade Kipp & Zonen instruments to quantify 

performance. Thermal correction of the PSP data was carried out.  

A statistical evaluation of PB uncertainty versus reference measurements at zenith 

angles up to 70° indicated mean bias differences of 0.3 W/m2 for GHI, 5.6 W/m2 

for DHI and –2.6 W/m2 for DNI. These correspond to MBD percentages of the 

mean measured values equal to 0.1%, 7.9% and –0.3% respectively. Root mean 

square differences relative to the reference values were 17.3 W/m2 or 2.7% for 

GHI, 9.7 W/m2 or 13.6% for DHI and 19.0 W/m2 or 2.0% for DNI. By 

comparison, most radiative transfer models utilising a similar number of input 

parameters deliver RMSD and MBD percentages several times higher. Only 

minor seasonal variation in PB performance was noted, and this was likely due to 

exaggeration of the radiometer’s cosine effect during winter, rather than the 

perforated band itself. 

Under cloud-free conditions, the perforated shadow band is an effective tool for 

decomposing global horizontal irradiance so as to obtain the diffuse and direct 

normal components. Considering the relative inexpense of the system versus 

alternate schemes in Table 1.2, the retrofitting of an existing pyranometer with the 

perforated band may be considered a worthwhile option for operators wishing to 

measure more than a single solar component at a ground station. The system 

offers particular benefits for stations in arid regions measuring only diffuse 

irradiance with a single pyranometer and a conventional shadow band. In such 

cases, replacing the solid band with a perforated version enables the determination 

of all three solar components at little additional cost.  

The question that must be addressed is how well the perforated band functions 

when skies are not cloud-free. When cloud intermittently obscures the PB sensor 

the coherent data traces from the pyranometer become chaotic, rendering the clear 

sky processing methodology ineffective. Under such conditions, irradiance ramp 

rates fluctuate excessively, the statistical filtering technique employed in the 

CrSPM does not work and the stochasticity of the fragmented traces precludes 

curve-fitting as an effective regeneration technique. Chapter 4 thus considers 

several alternate approaches to dealing with perforated band data under cloudy 

conditions and formalises the cloudy sky processing methodology.  
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4. CLOUDY SKY CONDITIONS: METHODOLOGY 

4.1 Introduction 

In this chapter a method is proposed for processing data generated by the 

perforated shadow band under partly cloudy and overcast conditions. The cloudy 

sky processing methodology (CdSPM) enables the generation of separate diffuse 

and global irradiance curves from a single PB pyranometer output trace despite 

the lack of structural coherency in the data.  

A number of techniques are described for replacing missing values from the 

perforated band trace, including mathematical averaging methods, numerical 

interpolation, polynomial curve-fitting, statistical methods and radiometric 

modelling. In addition, an adaptive interpolation scheme is proposed that monitors 

clearness index and deploys specific interpolation models to minimise uncertainty. 

The performance of the PB system under partly cloudy conditions was first 

addressed in a preliminary paper by Brooks and Roberts (2010), presented at the 

2010 Optics and Photonics Conference of the Society of Photo-Optical 

Instrumentation Engineers (SPIE) in San Diego. Parts of this chapter are drawn 

from that paper and from a second article by Brooks et al. (2014) on the 

replacement of missing data in radiometric time series, presented at the 2nd 

Southern African Solar Energy Conference (SASEC) in Port Elizabeth. 

4.2  Cloud effects in broadband radiometry 

The World Meteorological Organisation defines cloud as a hydrometeor 

consisting of minute particles of liquid water or ice, suspended in the free air 

(World Meteorological Organization, 1987). Clouds may be classified according 

to ten primary genera (eg. cirrus, stratos and cumulus), fourteen species (defining 

form, structure and dimension, eg. congestus, floccus and lenticularis) and nine 

varieties (eg. radiatus and translucidus). Classification is done visually and with 

several types of instrumentation, including radiometers, sky spectral cameras, 

LIDAR, radiosondes and satellite imagery (Tapakis and Charalambides, 2013).  

Clouds affect the magnitude of measured irradiance in two ways: first, they may 

obstruct the solar disc and either reduce or eliminate DNI, and second, they may 

reflect, dampen or amplify diffuse irradiance. When the solar disc is not 

obstructed, clouds tend to enhance DHI by scattering and reflection. When DNI is 

reduced, the overall effect on DHI can be enhancement or dampening, depending 

on the type of cloud and its degree of opacity (Tapakis and Charalambides, 2013).  

In the absence of direct normal irradiance, the DHI and GHI measurements 

recorded by a pyranometer will be identical, as illustrated in Figure 4.1, which 

shows changing conditions from clear to cloudy for the UKZN Howard College 

ground station on 15 May 2011. The global irradiance is shown in blue (Eg), the 

diffuse irradiance is green (Ed) and the perforated band pyranometer output in 

black (Ef). As cloud occludes the radiometric station in the mid-afternoon, DNI is 
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largely extinguished and DHI is enhanced, tracking the global value. After 

shading occurs, the coherent data curves evident throughout the morning become 

stochastic. 

In a number of studies the effect of cloud on pyranometer output has been 

exploited to predict sky conditions, although with limited success. Duchon and 

O'Malley (1998) correlated the ratio of measured irradiance over modelled clear 

sky irradiance, with standard deviation of the observed measurements. The former 

represents a version of the clearness index and the latter captures the traverse of 

clouds through the portion of the sky where the sun is located. The results enabled 

correct prediction of five cloud types about 45% of the time, as measured against 

human observations.  

Using a similar method on Antarctic data, Orsini et al. (2002) reported the 

successful prediction of cloud type at rates of 94% for cirrus, 67% for 

cirrostratus/altostratus and 33% for cumulus/altocumulus. The success rate is 

therefore higher under clearer conditions. Attempting to correlate specific forms 

of cloudiness with irradiance measurements taken by a single pyranometer is thus 

difficult because of the numerous ways in which clouds interact with the sun, and 

each other, to produce a range of radiometric conditions. 

 

 

 

 

 

 

 

 

 

Figure 4.1: Typical interplay between GHI and DHI components logged at 1-

minute intervals, as conditions change from clear to cloudy (UKZN data 

from 15 May 2011). 

 

In general, clouds introduce an unstable element to the measurement record and 

disrupt the smooth data curves produced under clear conditions. This stochasticity 

is related to the nature of the cloud field. Tomson et al. (2008) define unstable 

radiation as successive measurements of global irradiance that vary by more than 

50 W/m2. They note that the most unstable time-series are produced by cumulus, 

stratocumulus translucidus and altocumulus translucidus clouds.  
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Mathematically, a solar radiation time-series comprises of a deterministic 

component, caused by astronomical effects, and the stochastic element caused by 

meteorological effects (Tovar-Pescador, 2008). Stochasticity is also affected by 

the frequency with which readings are sampled; at 1-minute intervals (applicable 

to this study) the potential for chaotic data structures to arise is high, while 30-

minute or hourly values benefit somewhat from the smoothing effect of averaging.   

4.3  Perforated band sensor output in the presence of cloud  

In the presence of cloud, the sensor under a perforated band may be subject to 

varying degrees of shading from the direct normal component of sunlight, over 

and above that caused by the perforated band itself. This occurs as clouds drift 

into and out of the sensor’s line of sight to the solar disc. Since the PB system is 

only capable of measuring DHI or GHI at any given moment, the reduction in 

DNI is not recorded directly, but is expressed through fluctuations in the two 

measured components. 

The degree of sensor occlusion and the frequency with which an irregular shading 

regime is imposed by cloud on the PB data trace vary considerably. This 

variability yields a range of trace morphologies from near-clear sky curves with 

minimal disruption (high clearness index conditions) to stochastic structures in 

which the DNI is heavily attenuated for all or part of the day.  

The disruption of the perforated band trace is illustrated in Figure 4.2. This 

includes the PB sensor trace (in black), reference irradiances in blue (GHI), red 

(DNI) and green (DHI), and the associated cloud patterns as photographed by a 

Total Sky Imager (TSI) at the NREL site on 3 May 2011. The daily clearness 

index was 0.58. Clear sky conditions prevail up until 10:00 during which the 

structure of the diffuse and global curves is strongly coherent and the PB values 

cycle unambiguously between the two, to an overcast period between 12:00 and 

14:00 when both the PB sensor DHI and GHI traces continuously track the 

reference diffuse irradiance. A partly cloudy period follows between 14:00 and 

15:30 during which no relationship can be visually determined between the output 

from the PB sensor and the reference data.  

To illustrate the range of data structures produced under increasingly cloudy 

conditions, Figure 4.3 shows eight sample days from the NREL site, with the 

daily clearness index decreasing from high (a) to low (h). Clearness index 

typically varies between about 0.1 and 0.8, although extreme values occasionally 

occur outside this range.  

The sequence of eight graphs illustrates how increasing cloudiness and decreasing 

clearness index are associated with a breakdown in structural coherency of the PB 

sensor output. Under cloud-free conditions (a), there is no ambiguity between 

diffuse and global irradiance measurements from the PB sensor, making visual 

sorting and processing possible. As KT_day decreases in panes (b) through (f), it 

becomes difficult and in some cases impossible to determine the difference 

between the two components visually. Furthermore, the transition data cannot 
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always be distinguished which adds to the complexity of the processing task. In 

panes (g) and (h) there is little difference between the DHI and GHI 

measurements since the DNI component is absent. It should be noted that short-

term breakouts of sunshine can still occur for very low clearness index days, 

although they are not present in the data of Figure 4.3.    

Figure 4.3 illustrates why the visual processing methodology of Chapter 3 cannot 

be used under partly cloudy conditions. A more sophisticated approach is required 

to enable sorting and processing of the PB data in the presence of cloud. Whether 

cloudy or clear, the following logic applies to the operation of the system: 

1. When sunlight is admitted through an aperture in the band, the 

pyranometer is unshaded and records global irradiance 

2. When the band occludes the sensor, the pyranometer records diffuse 

irradiance 

3. When the sun is part-hidden by the band, whether emerging from behind 

the band or moving into a shading position, the resulting data are 

indeterminate and are classified as transition values. 

As with clear sky operation, when the PB system is recording GHI, the DHI 

values are unknown and vice versa. This fact can be used to improve the CdSPM, 

as described in Section 4.8.  
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Figure 4.2: Perforated band output and corresponding cloud cover under variable weather conditions on 23 May 2011 at 

NREL SRRL.  
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Figure 4.3: Deterioration in the coherency of perforated band data structures 

with decreasing daily clearness index, KT_day (data from NREL SRRL). 
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Figure 4.3 (continued): Deterioration in the coherency of perforated band 

data structures with decreasing daily clearness index, KT_day (data from 

NREL SRRL).  
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4.4 The cloudy sky processing methodology (CdSPM) 

4.4.1 Inputs 

The cloudy sky processing methodology disaggregates the output signal from a 

PB pyranometer at 1-minute resolution into separate data for DHI and GHI, 

replaces missing data from the resulting fragmented traces and generates separate, 

continuous curves for the diffuse and global components. These are used to derive 

DNI by combining the resulting data through equation (1.2). It is required that the 

methodology be repeatable and sound, so as to minimise statistical uncertainty 

between the modelled irradiance and the measured reference values.  

Although NREL reference data are used in this study to quantify CdSPM 

uncertainty, the final methodology is implementable without recourse to any 

measurement other than the output from a pyranometer located under a perforated 

shadow band. The following inputs were used to develop the CdSPM, and are 

described in the sections that follow:  

1. Two temporally independent datasets; the first for development of the 

methodology and the second for its validation.  

2. A filtering algorithm to eliminate errant data 

3. The ray trace model of pyranometer exposure described in Chapter 3 

4. Mathematical, numerical and statistical models for replacement of missing 

data 

5. Radiometric decomposition models 

6. Statistical metrics for the analysis of model uncertainty  

7. An adaptive interpolation scheme to deploy interpolation methods 

optimally and in response to clearness index 

8. Two MATLAB software programmes to implement the methodology 

4.4.2 Process flow 

The CdSPM is implemented in five stages as described in Figure 4.4. In stage 1 

raw radiometric data at 1-minute intervals from the NREL ground station are 

combined with solar position information to yield the 18-column, daily spread 

sheet files making up dataset #1. The measurement data are filtered to screen out 

instrumentation errors and weather-related problems. The files for dataset #2 are 

configured the same way but held over for use later in the sequence. Sections 4.5 

and 4.6 describe stage 1 in detail. 

In stage 2, the daily data files are read by a MATLAB application that applies the 

ray trace model of pyranometer exposure to isolate GHI and DHI data as separate 

traces. The software then applies a range of interpolation schemes, described in 

Sections 4.8 and 4.9, to generate artificial values for the missing measurements. 
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Figure 4.4: Stages of the cloudy sky processing methodology. 

Raw radiometric  

data from PB and 

reference instruments 

located at NREL 

SRRL  

Astronomical data 

from NREL Solar 

Position Algorithm 

Time-stamped daily spread sheet files with data at 1-minute 

intervals (413 files in dataset #1) 

CloudInterp.m 

Missing data in the GHI and DHI traces replaced by 

interpolation methods  

Repeat stages 1, 2 and 4 for dataset #2, but use the same 

configuration for the adaptive interpolation scheme as 

dataset #1. Uncertainties from datasets compared to 

establish reproducibility of the CdSPM. 

Stage 1 

Stage 2 

Interpolated data partitioned into bins by kT_patch. Model 

uncertainty determined and interpolation methods 

statistically ranked. AIS is configured.  

Stage 3 

CloudAnalyser.m 

All data, measured and interpolated, partitioned into bins 

by KT_day. Model uncertainty determined and interpolation 

methods statistically ranked for DHI, GHI and DNI.  

Stage 4 

CloudAnalyser.m 

Stage 5 

Complete description of PB 

performance under partly cloudy 

and overcast conditions 

Stellenbosch University  https://scholar.sun.ac.za



67 

 

Stage 3 classifies the interpolated data for each scheme into bins using the patch-

wise clearness index, kT_patch, as the controlling parameter. There are eight bins 

covering the spectrum of possible values from 0 to 1. The patch-wise data in each 

bin are then concatenated to quantify overall statistical uncertainty through 

parameters such as the root mean square difference and mean bias difference. 

These metrics permit the ranking of interpolation methods as a function of kT_patch. 

The adaptive interpolation scheme (AIS), which represents a formula for 

distributing the most effective interpolation scheme to each gap as a function of 

that gap’s clearness index, is then configured. Stage 3 is executed by the 

MATLAB application “CloudAnalyser” and described in Section 4.11.    

The uncertainty analysis conducted in stage 3 of the CdSPM applies only to 

interpolated values and therefore does not describe overall PB performance. In 

stage 4, the analysis is expanded to include all the data generated by the system, 

both measured as well as interpolated. This is achieved by concatenating the data 

for the full set and partitioning them into bins based on daily clearness index, 

KT_day. An uncertainty analysis is conducted by comparing the concatenated data 

with reference values at 1-minute intervals.  

The use of KT_day as the partitioning parameter in the uncertainty analysis of stage 

4, and not kT_patch, is necessary to inform decisions about deployment. The 

perforated band offers a potential improvement over the standard shadow band, 

but this may not be true in all geographic regions or for all sky conditions. The 

decision to deploy the band must be made quantitatively, using available 

radiometric data, but this is contingent on linking system performance to an easily 

understood and readily available metric. One of the more commonly available 

metrics is average daily clearness index, which can be obtained from ground-

based data, satellite imagery and maps such as that provided by Diabate et al. 

(2004). The final description of PB performance (uncertainty) is therefore given in 

terms of daily clearness index. 

A comparison between results from the temporally independent datasets #1 and 

#2 is conducted in stage 5 of the CdSPM. This is necessary to confirm 

reproducibility of the method and to ensure that the uncertainty values determined 

in stage 4 are a true representation of the system’s performance. Inputs to the 

CdSPM are described in detail in the sections that follow. 

4.5 Development and validation datasets 

The use of two datasets is a standard approach in the development of radiometric 

models (Gueymard and Myers, 2008b) and is intended to confirm repeatability 

and temporal independence of the methodology under investigation. In this study 

the development and validation datasets (#1 and #2 respectively hereafter), each 

contain a series of identically formatted spread sheet files, covering different 

periods. Dataset #1 (413 days) runs from August 2009 to December 2011, with 

the majority of data from the 2011 year (339 days) and the remainder from 2009 

and 2010. The total number of data rows (N) for which Z < 70° is 201 454.  
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Dataset #2 comprises of 341 days taken exclusively from 2012 and contains  

167 681 rows. Metadata for sets #1 and #2 are given in Table 4.  

 

Table 4.1: NREL radiometric datasets #1 and #2 used in the development of 

the CdSPM. 

 
Dataset #1 

(Development) 

Dataset #2 

(Validation) 

No. of daily files 413 341 

Time span 
August 2009 to 

December 2011 

January 2012 to 

December 2012 

Total number of data rows 

for Z < 70°, N 
201 454 167 681 

No. of DHI data 

interpolated 
72 756 (36.1%) 60 581 (36.1%) 

No. of GHI data 

interpolated 
128 698 (63.9%) 107 100 (63.9%) 

Average daily clearness 

index, KT_day 
0.59 0.61 

 

 

Structurally, each daily file contains 18 columns and between 560 and 897, rows 

depending on the time of year. The full period from sunrise to sunset is included, 

from which a subset of measurements are analysed for Z < 70°. Table C-1 in 

Appendix C contains an extract from one of the files (26 November 2011), 

presented as it appears in spread sheet form. Table C-2 describes the contents of 

the file, in addition to which further samples of NREL data may be requested 

from the author.  

4.6 Data filtering algorithm 

All files were filtered using an algorithm adapted from standards set by the 

European Commission on Daylight, as reported by Jacovides et al. (2006). This 

eliminates data that meet the following criteria: 

Reference DHI:   Ed > 1.1Eg     (4.1) 

Reference DHI:   Ed > 0.8Eo        (4.2) 

Reference GHI:   Eg > 1.2Eo     (4.3) 

Reference DNI:   Ebn > Eon     (4.4) 

Perforated band PSP:   Ef > 1.2Eo     (4.5) 

All radiometers: Output signal < –100 W/m2 (check for disconnection) (4.6) 
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The exclusion criteria remove non-physical readings from the dataset. For 

example, equation (4.3) ensures that the global horizontal irradiance from the 

reference instrument does not exceed the global extra-terrestrial irradiance by 

more than 20%. Equation (4.6) eliminates egregious errors due to electrical 

disconnection, which typically produces a “-9999” output signal. 

4.7 The ray trace model as disaggregation tool 

The ray trace model is incorporated in the CdSPM software to distinguish 

between data types under cloudy conditions. The hour angle value for each 

measurement is assessed (column R in Table C-1) from which the associated PB 

value is designated as diffuse (Efd), global (Efg) or transitional (Eft). This is 

illustrated in the upper pane of Figure 4.5 which shows the result for 27 July 

2011. Reference GHI and DHI data are given in blue and green respectively. 

Patches of measured diffuse irradiance (Pd1 to Pd10) are indicated with light red 

shading and measured global patches (Pg1 to Pg9) are in grey. Transitional gaps are 

left unshaded. The trace begins with the PB sensor fully occluded, thus the 

exposure transition sequence for this file is designated Sq1. Three other sequences 

are possible throughout the year depending on the initial exposure state of the 

sensor: initially exposed, partially exposed becoming occluded, and partially 

exposed becoming fully exposed.  

Transitional data are stripped from the trace, leaving separate curves for global 

horizontal irradiance and diffuse horizontal irradiance, shown in the middle and 

lower panes of Figure 4.5 respectively. Once fully separated, the DHI and GHI 

traces each represent a fragmented irradiance time-series comprising patches of 

known values interspersed with gaps of missing data (Gd and Gg) that must be 

filled. In the sections that follow, various techniques are described for replacing 

missing data, some of which are common to both the DHI and GHI traces.  
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Figure 4.5: Application of the ray trace model to a sample NREL daily file 

showing measured diffuse data (red) and global data (black).  
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4.8 Numerical techniques for the replacement of missing data 

In the strict definition of mathematical interpolation, a continuous function 

assumes specified values at discrete points in a field permitting prediction of field 

values between the known points. When predictions outside of the known values 

are made, the process is extrapolation (Kreyszig, 1988). In this work interpolation 

includes any technique that uses known radiometric data from the left and/or right 

patch of a PB trace, to generate irradiance values in the adjacent gap. Techniques 

such as curve-fitting and averaging are therefore included.  

Although it may not describe the underlying physics governing changes in flux, 

artificial data generation through interpolation can capture patterns in the trace of 

a PB system with some accuracy. Some interpolation techniques perform better 

than others, requiring that different approaches be tested. Table 4.2 lists the 

techniques used in this study to replace missing radiometric data, some of which 

are applicable to both the GHI and DHI gaps and others of which are exclusive to 

one only, as indicated.  

 

Table 4.2: Interpolation methods used in the CdSPM. 

Interpolation method Abbreviation Type Applicability 

Ramp function Ramp Numerical GHI/DHI 

1-minute averaging 1 min Numerical GHI/DHI 

10-minute averaging 10 min Numerical GHI/DHI 

20-minute averaging 20 min Numerical GHI/DHI 

Spline Spline Numerical GHI/DHI 

Piecewise cubic Hermite 

interpolating polynomial 
PCHIP Numerical GHI/DHI 

3rd order polynomial 3OP Least squares regression GHI/DHI 

4th order polynomial 4OP Least squares regression GHI/DHI 

5th order polynomial 5OP Least squares regression GHI/DHI 

ARIMA(1,0,1) A101 Statistical/numerical GHI/DHI 

ARIMA(1,0,0) A100 Statistical/numerical GHI/DHI 

ARIMA(0,0,1) A001 Statistical/numerical GHI/DHI 

ARIMA(0,1,1) A011 Statistical/numerical GHI/DHI 

ARIMA(1,1,1) A111 Statistical/numerical GHI/DHI 

Orgill and Hollands  O&H Decomposition model DHI 

Erbs, Klein and Duffie Erbs Decomposition model DHI 

Boland, Ridley and Brown BRB Decomposition model DHI 

Boland, Ridley and Lauret BRL Decomposition model DHI 

Reindl, Beckman and Duffie Reindl Decomposition model DHI 

GHI equals DHI GeD Numerical GHI 

Bird and Hulstrom Bird Clear sky transmittance model GHI/DHI/DNI 
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The interpolation methods in Table 4.2 span a range of techniques. There are 

relatively simple numerical techniques, such as averaging values from the left and 

right patches as well as more complex polynomial expressions. Advanced 

statistical techniques such as the autoregressive integrated moving average 

(ARIMA) models are included because researchers are now using them in 

radiometric analyses. The various methods are described in detail in the sections 

that follow. 

A unique feature of the PB system is that for those gaps in the data trace where 

diffuse irradiance is not known, the contemporaneous global horizontal 

component is measured. In addition to purely numerical or statistical techniques, 

this permits another approach to data generation using decomposition models. A 

decomposition model relates diffuse irradiance to global irradiance via a 

correlating equation, permitting the prediction of DHI when GHI is the only 

known component. Details of this data generation method are given in Section 

4.9.   

Figure 4.6 gives a schema by which the mathematics of some of the techniques in 

Table 4.2 is formalised (Brooks et al., 2014). In the general case there are NL 1-

minute measurements in the patch to the left of the gap for which j = 1, ..., NL and 

NR 1-minute measurements in the patch to the right of the gap such that k = 1, …, 

NR. The missing data in the gap, which must be artificially generated and are 

denoted as Eint,i, comprise of NG values where i = 1, …, NG.  

 

 

 

 

 

 

 

 

Figure 4.6: Schema used to formalise interpolation methodologies (Brooks et 

al., 2014). 
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The ramp function is a type of linear interpolation in which the generated data 
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preceding patch to the left, and the first value in the succeeding patch to the right. 

For a gap-length of NG 1-minute values, the ith interpolated value, Eint,i, is given by 

equation (4.7). 
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 𝐸𝑖𝑛𝑡,𝑖 =  𝐸𝑖𝑛𝑡,𝑖−1 + 
𝐸𝑅,1 −  𝐸𝐿,𝑁𝐿

𝑁𝐺 + 1
                   𝑖 = 2, … , 𝑁𝐺 (4.7) 

For i = 1, the first term on the right becomes 𝐸𝐿,𝑁𝐿
. An example is given in Figure 

4.7. 

4.8.2 1-minute, 10-minute and 20-minute averaging 

The 1-minute average interpolation scheme is weighted in favour of the measured 

irradiance values immediately preceding and succeeding the data gap. All 

interpolated data assume the same value, generated from the last measurement in 

the patch to the left of the gap, and the first value in the patch to the right.  

 𝐸𝑖𝑛𝑡,𝑖 =  
𝐸𝐿,𝑁𝐿

+  𝐸𝑅,1

2
                                         𝑖 = 1, … , 𝑁𝐺  (4.8) 

Where the left or right patch is missing at the start or end of the day, the average 

is calculated by setting 𝐸𝐿,𝑁𝐿
 or ER,1 equal to zero. 

The 10-minute averaging scheme uses ten measured values either side of the gap. 

Results will be similar to the 1-minute scheme unless the irradiance trace is highly 

variable in the adjacent patches, in which case the widened range over which 

sampling occurs will bias the result accordingly. All interpolated data assume the 

same value, Eint,i, calculated as follows:  

 𝐸𝑖𝑛𝑡,𝑖 =  
∑ 𝐸𝐿,𝑁𝐿−𝑗

9
𝑗=0 +  ∑ 𝐸𝑅,𝑘

10
𝑘=1

20
                𝑖 = 1, … , 𝑁𝐺  (4.9) 

Where the left or right patch contains fewer than ten values at the start or end of 

the day, the average is calculated from the available data. 

The 20-minute averaging scheme uses twenty measured values either side of the 

gap to calculate an average, further widening the sampling range as compared 

with the 10-minute scheme. All interpolated data assume the same value, Eint,i, 

calculated as follows:  

 𝐸𝑖𝑛𝑡,𝑖 =  
∑ 𝐸𝐿,𝑁𝐿−𝑗

19
𝑗=0 +  ∑ 𝐸𝑅,𝑘

20
𝑘=1

40
                 𝑖 = 1, … , 𝑁𝐺  (4.10) 

The average is calculated from the available data when the left or right patches 

contain fewer than twenty values. Graphical examples of the 1-, 10- and 20-

minute averaging schemes are given in Figure 4.7 for the 7th diffuse irradiance gap 

on 27 July 2011 (NREL data). Measured DHI values are represented by black 

markers and the corresponding reference data are presented as a blue line. The 

interpolated data are shown as discrete markers in red, green, purple and yellow. 
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Since the adjacent patches (Pd7 and Pd8) contain variable data, there is a clear 

difference in the performance of the 1-, 10- and 20-minute averaging schemes. 

Although none of the schemes capture the variability of the reference DHI within 

the gap, the 1-minute scheme appears to provide the best visual performance.  

Determining the relative effectiveness of each interpolation scheme is a statistical 

exercise in which the results for each gap, across all days in the datasets, are 

analysed using appropriate metrics. The overall statistical performance of all 

schemes is described in Section 4.11.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Comparison of the Ramp, 1-minute averaging, 10-minute 

averaging and 20-minute-averaging interpolation schemes applied to a 

diffuse gap. 

 

4.8.3 Spline interpolation 

In the general case, an interpolating polynomial is a unique function, fint(x), 

passing exactly through n known points in a plane, given by (xq, yq), with 

q = 1, …, n. The Lagrangian form of fint(x) is given as follows (Moler, 2004): 

 𝑓𝑖𝑛𝑡(𝑥) =  ∑ (∏
𝑥 −  𝑥𝑟

𝑥𝑞 −  𝑥𝑟

𝑛

𝑟=1
𝑟≠𝑞

) 𝑦𝑞

𝑛

𝑞=1

 (4.11) 

Equation (4.11) is an nth order polynomial of n terms. At each known point xq, (n–

1) terms vanish, reducing the expression to yq and ensuring that the polynomial 

passes through the given data.  
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In the case of spline interpolation, constraints are imposed on the slope of the 

interpolating polynomial. A smooth function is generated by partitioning the 

domain into subintervals defined by common endpoints, called nodes (Kreyszig, 

1988). In this work, the resulting spline function Eint,i is made up of one cubic 

polynomial per subinterval such that the first and second derivatives, Eint,i' and 

Eint,i'', are continuous everywhere. This ensures that the slopes of adjacent 

polynomials are equal at the nodes, and that the resulting spline is smooth.  

The spline scheme is implemented using MATLAB’s “interp1” 1-dimensional 

interpolation function, together with the “spline” option. All measured data from 

the patches to the left and the right of a gap are stored as a column vector along 

with their respective time values. When “interp1” is invoked, Eint,i is generated for 

the interval, along with newly created values for the missing data. These are saved 

to file as the spline interpolants for the given gap.  

When either the left or right patches of measured data are absent at the start or end 

of a day, gap values are extrapolated. A complete description of the governing 

mathematics for MATLAB splines is given by De Boor (1978) and Moler (2004).  

4.8.4  Piecewise cubic Hermite interpolation 

The cubic spline may produce unwanted gradient reversals within a subinterval. 

This is overcome by the piecewise cubic Hermite interpolating polynomial 

(PCHIP), based on the work of Fritsch and Carlson (1980), who imposed a 

condition of monotonicity between nodes. They proposed that the resultant 

function represents physical reality more accurately than a pure spline.  

The spline and PCHIP polynomials are both cubic, but the second derivative of 

the spline, Eint,i'', is continuous at each node, while the PCHIP derivative exhibits 

discontinuities, or jumps. This is illustrated for sample data in Figure 4.8 (Moler, 

2004). The requirement of monotonicity is visible between nodes 1 and 2 where 

the spline function yields a change in gradient sign, while the PCHIP function is 

monotone.  

Piecewise cubic Hermite interpolation is carried out using the MATLAB 

“interp1” function paired with the “PCHIP” option. An example is given in Figure 

4.9, which shows interpolation data for the 7th diffuse irradiance gap, taken from 

the daily file of 27 July 2011 (dataset #1). For comparison, this is given together 

with data obtained using the spline method and three least-squares polynomials of 

order 3, 4 and 5. The monotone nature of the PCHIP function in Gd7 is clear, as 

opposed to the spline which undergoes a change in gradient sign from positive to 

negative. 
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Figure 4.8: MATLAB interpolating functions for spline and PCHIP applied 

to sample data with first and second derivatives, adapted from Moler (2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Comparison of the spline, PCHIP, 3rd order polynomial, 4th order 

polynomial and 5th order polynomial interpolation schemes applied to a 

diffuse gap. 
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4.8.5 3rd, 4th and 5th order polynomial curve-fitting 

For a set of known data, given by (xq, yq), with q = 1, …, n, made up of the 

measured patch-wise irradiance measurements left and right of the gap, curve 

fitting seeks a function fint(x) such that fint(xq) ≈ yq (Kreyszig, 1988). A number of 

different functions can be used, but in this work fint(x) is given by a polynomial of 

degree m = 3, 4, 5:  

 𝑓𝑖𝑛𝑡(𝑥) =  𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑚 𝑥𝑚             where  𝑚 ≤ 𝑛 − 1  (4.12) 

Unlike the spline and PCHIP schemes, fint(x) need not pass exactly through all the 

known points. Rather, the sum of the squares of the distances of all yq from fint(x), 

given by SS, must be a minimum, where: 

  𝑆𝑆 =  ∑(𝑦𝑞 − 𝑓𝑖𝑛𝑡(𝑥𝑞))
2

𝑛

𝑞=1

 (4.13) 

It can be shown that the necessary condition for SS to be a minimum is given by 

the following set of (m + 1) conditions (Kreyszig, 1988): 

 
𝜕𝑆𝑆

𝜕𝑏0
= 0, … ,

𝜕𝑆𝑆

𝜕𝑏𝑚
= 0  (4.14) 

These yield a set of (m + 1) normal equations which are solved for the unknowns 

b0, …, bm, giving the final form of the function. The 3rd, 4th and 5th order 

polynomials used in this work were generated by MATLAB’s “polyfit” function. 

As can be seen in Figure 4.9, the generated data do not transition smoothly to 

measurements in the adjacent patches because there is no requirement for the 

polynomials to pass through the patch values.  

4.8.6 Autoregressive integrated moving average (ARIMA) 

ARIMA models are commonly used in time-series analysis across a wide range of 

fields, including econometrics, environmental science, energy studies, agriculture 

and the social sciences. They can be applied whenever a process of discrete time-

based events occurs at regular intervals, and their primary use is forecasting future 

values of a univariate series based on its past data history. They are particularly 

well-suited to short-term forecasting in stochastic systems that defy conventional 

analytical methods, such as the stock market, and have also been used by several 

authors in solar radiometric studies (Craggs et al., 1999; Dazhi et al., 2012; Paoli 

et al., 2010; Reikard, 2009; Santos et al., 2003).  

The generalised algebraic statement of an ARIMA model links a variable at a 

moment in time (zt) with its own past values (zt-1, zt-2, zt-3,…) (Pankratz, 1983), 

The authoritative text by Box and Jenkins (1976) develops the final form of the 

model by considering three components: an autoregressive (AR) term, a moving 

average (MA) term and a differencing or integrative (I) term, as follows: 
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The autoregressive process, AR(p) 

In an autoregressive process, the value (zt) at time t is the linear sum of p previous 

z-values and a probabilistic shock, or random white noise, component, at: 

 𝑧𝑡 =  𝜑1𝑧𝑡−1 + 𝜑2𝑧𝑡−2  + ⋯ +  𝜑𝑝𝑧𝑡−𝑝 +  𝑎𝑡               (4.15) 

where φ1 , …, φp  are fixed coefficients. Equation (4.15) represents an AR process 

of order p, or AR(p), to indicate the longest time-lag active in the series. 

The moving average process, MA(q) 

A moving average process relates the value, zt, to q previous, time-lagged random 

components, a, also as a linear sum, as follows: 

  𝑧𝑡 =  𝑎𝑡 − 𝜃1𝑎𝑡−1− 𝜃2𝑎𝑡−2 − ⋯ −  𝜃𝑞𝑎𝑡−𝑞             (4.16) 

where θ1 , …, θq are fixed weightings. By convention, equation (4.16) is given 

purely as a function of a, although it can also be written with z values on the right 

hand side, through manipulation.  The given series represents an MA process of 

order q, or MA(q). 

Stationarity and the differencing term (D) 

A series that is stationary has a constant mean, variance and auto-correlation 

function (ACF) with time. When a series is nonstationary, it is possible to 

introduce a differencing term, D, of first order or higher, to transform the series 

from zt to wt, such that: 

 𝑤𝑡 =   ∇𝐷𝑧𝑡     (4.17) 

where ∇𝐷 is a differencing operator. For example, the differencing schemes for D 

= 1 and D = 2 are given by: 

 
𝑤𝑡 =  ∇1𝑧𝑡  =  𝑧𝑡 −  𝑧𝑡−1                                          𝑡 = 2, 3, … , 𝑛 

𝑤𝑡 =   ∇2𝑧𝑡  =  (𝑧𝑡 − 𝑧𝑡−1) −  (𝑧𝑡−1 − 𝑧𝑡−2)     𝑡 = 3, 4, … , 𝑛 

(4.18) 

(4.19) 

In most cases the first difference is sufficient to eliminate nonstationarity, and in 

many cases no differencing is required at all (D = 0). Generally, unnecessary 

differencing results in artificial patterns in the data and reduces the accuracy of the 

forecast (Pankratz, 1983).  

The ARIMA(p,D,q) model 

The “I” in ARIMA is a reference to the integrative, or summation process that is 

followed to generate an ARIMA series, inversely, from a white noise signal, at. 
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The model is properly described as ARIMA(p,D,q) and is extrapolative, that is, it 

forecasts ahead based on a user-defined number of previous values. Using the 

notation from equations (4.17) to (4.19), the final form of the model is as follows: 

 𝑤𝑡 =  𝜑1𝑤𝑡−1 + ⋯ +  𝜑𝑝𝑤𝑡−𝑝 + 𝑎𝑡− 𝜃1𝑎𝑡−1 − ⋯ −  𝜃𝑞𝑎𝑡−𝑞          (4.20) 

Given the range of values that can be assigned to p, D, and q, and the resulting 

combinations, ARIMA(p,D,q) represents a family of models that must be tailored 

to each case for the best results. Although there are many possible combinations, 

high-order ARIMA models are rare and seldom effective. Pankratz (1983) 

suggests that superior results are usually obtained with simpler, low-order models.    

As with the numerical interpolation methods described previously, an ARIMA 

model used to forecast solar irradiance does not explain the underlying physics 

governing variability, but is purely a statistical description of the time-series.  

Conventional modelling procedure 

The development cycle of an ARIMA model comprises of several stages. A 

rigorous description is given by Box and Jenkins (1976), but may be summarised 

thus: 

1. Identification of an appropriate model based on the ACF and partial 

autocorrelation function (PACF) of the series 

2. Estimation of the model coefficients  

3. Diagnostic checking by means of statistics to refine the model 

4. Forecasting of future values 

Both the ACF and PACF are statistical descriptors of autocorrelation; that is, they 

define the relationship between observations separated by a set number of time 

periods, or lags. The degree of autocorrelation is indicated graphically for each 

lag. By estimating the ACF and PACF, it is possible to intuit the most appropriate 

ARIMA(p,D,q) model for the time-series. For example, a single, pronounced 

spike at lag 1 for the ACF would suggest an MA(1) process; that is, q = 1.   

A disadvantage of ARIMA modelling is that the procedure is iterative and 

requires visual inspection of the ACF and PACF. It therefore contains an element 

of subjectivity and is difficult to implement in a fully automated way. Pankratz 

(1983) describes the formulation of a proper ARIMA model as an “art” requiring 

judgement and experience.  

Application of the ARIMA(p,D,q) model to PB data 

With several thousand gaps in datasets #1 and #2, the conventional ARIMA 

procedure, as an iterative approach utilising visual inspection, is not feasible for 

PB data analysis. In this study the visual inspection of autocorrelation functions is 

replaced by a pre-screening exercise aimed at identifying a subset of ARIMA 

models that produce better results for the type of data encountered in the study. 

The approach consists of the following steps:  
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1. Ranking of 25 ARIMA(p,D,q) models, as applied to a subset of PB daily 

data files, graded by clearness index 

2. Selection of five candidate models from the larger group for use with 

datasets #1 and #2 

3. Development of a blended forecasting/backcasting technique to ensure 

smooth transition between gap and patch data  

4. Forecasting by the selected models and analysis of results 

Box and Jenkins (1976) suggest that 50 or more observations should be used to 

generate an ARIMA model, although fewer data can be used if caution is 

exercised. In this work, most of the data patches contain between 25 and 28 

readings; the ranking exercise and selection of candidate models is intended to 

screen out poorly performing options.  

Ranking methodology 

The ranking exercise assumes that ARIMA models perform differently depending 

on the sky condition under which data are generated. This is because cloudiness 

dictates, to a large extent, the type of trace structures that result; whether they are 

smooth and coherent (mainly clear skies) or disrupted and stochastic (overcast or 

partly cloudy).  

Eighty patches of global horizontal irradiance data (N = 2060) were selected 

randomly from files in dataset #1. These were graded such that each patch-wise 

clearness index, kT_patch, fell into one of eight bins covering all possible sky 

conditions, with each bin containing ten patches for even distribution. The bin 

divisions are defined in Table 4.3. Bins 1 and 8 span larger ranges because data 

for 0 ≤ kT_patch < 0.1 and 0.9 ≤ kT_patch < 1.0 rarely occur in practice. 

 

Table 4.3: Bin divisions for analysis of ARIMA(p,D,q) model performance. 

Bin Clearness index limits 

1 0.0 ≤ kT_patch < 0.2 

2 0.2 ≤ kT_patch < 0.3 

3 0.3 ≤ kT_patch < 0.4 

4 0.4 ≤ kT_patch < 0.5 

5 0.5 ≤ kT_patch < 0.6 

6 0.6 ≤ kT_patch < 0.7 

7 0.7 ≤ kT_patch < 0.8 

8 0.8 ≤ kT_patch ≤ 1.0 

 

The raw data were prepared in Excel spread sheet format and processed using 

MATLAB’s ARIMA modelling capability, available in the Econometrics toolbox. 
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The ARIMA(p,D,q) models were implemented using the function  “arima” to 

specify values for p, D, and q , “estimate” to create the model vector and 

“forecast” to generate data for the gap.  

A spectrum of ARIMA models was investigated by varying each of the 

parameters p, D, and q from 0 to 2 inclusive. The ARIMA(2,0,2) and 

ARIMA(0,0,2) models were excluded because of matrix non-invertability during 

processing, giving a total of 25 different sets of ARIMA forecast data, each 

covering all 80 patches and spread across 8 clearness index bins.  

The percentage root mean square difference (%RMSD) between the forecast 

values at 1-minute intervals and the reference GHI data was used to rank the 

models for each bin, from which a hierarchy of ARIMA performers for the full 

dataset was selected. A subset of five candidate models was chosen for use in the 

CdSPM processing software. The results of the ranking exercise are shown in 

Table 4.4.  

The differencing term (D) plays a dominant role in determining the uncertainty of 

the various models. The ARIMA(p,0,q) variants perform best and all return mean 

%RMSD values within 1% of each other, this being nearly 10% lower than the 

best performing ARIMA(p,1,q) variants. Models with two orders of differencing 

return high uncertainties, which may be explained by the relatively short lengths 

of patch-wise data and lack of nonstationarity.  

Bins for which a model was within the top performing group are listed in Table 

4.4. Given the measurement uncertainty of the instruments, any model that 

realises a %RMSD within 5% of the top performer is statistically also in the 

“best” category. It should be noted that the ARIMA(0,0,0) model yields the 

statistically determined constant, at, from equation (4.15).  

Selection of five ARIMA models for use with datasets #1 and #2 

Implementing all 25 ARIMA models on datasets #1 and #2 was neither feasible 

nor warranted. A subset of five ARIMA variants was selected for inclusion in the 

CdSPM processing software: the (1,0,1), (1,0,0), (0,0,1), (0,1,1) and (1,1,1) 

models, highlighted in grey in Table 4.4. The last two did not return especially 

low uncertainties, however they were included for interest; the ARIMA(0,1,1) 

variant is the best performing moving average model that includes differencing, 

and the ARIMA(1,1,1) variant was included because it contains non-zero 

parameters.  

Importantly, the suite of models selected for use in the CdSPM software provides 

at least one top performing option in all eight bins of clearness index. This gives 

the ARIMA models a fair chance to compete against the other interpolation 

methods tested in the study, regardless of sky conditions.  
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Table 4.4: Performance of twenty-five ARIMA(p,D,q) models on a subset of 

NREL GHI data, ranked by decreasing %RMSD. 

ARIMA 

parameters 

Bins where the model is 

within 5% of top 

Mean 

RMSD 

Motivation for use in the 

CdSPM software  

p D q performer (%) 
 

1 0 1 1, 2, 3, 5, 6, 8 49.9 Best overall performer 

1 0 0 1, 3, 5, 6, 7, 8 50.0 Best AR(1) model 

2 0 0 2, 3, 7, 8 50.3 

 2 0 1 2, 3, 5, 7, 8 50.4 

 0 0 0 2, 3, 4, 6, 7, 8 50.6 

 1 0 2 3, 5, 6, 7, 8 50.7 

 0 0 1 2, 3, 4, 6, 7, 8 50.9 Best MA(1) model 

0 1 0 8 60.5 

 0 1 1 2, 8 61.3 Best MA model with D = 1 

0 1 2 2, 8 62.7 

 1 1 0 8 78.2 

 2 1 0 8 78.7 

 1 1 1 

 

79.5 Best model with non-zero terms 

2 1 1 8 85.4 

 1 1 2 2 91.7 

 2 1 2 1, 8 92.2 

 1 2 2 

 

275.1 

 2 2 1 

 

328.3 

 2 2 2 

 

341.0 

 2 2 0 

 

358.4 

 0 2 2 

 

375.8 

 1 2 1 

 

384.2 

 0 2 1 

 

391.7 

 1 2 0 

 

418.5 

 0 2 0 

 

617.8 

 
 

Adaption for transition between ARIMA data and adjacent patches 

ARIMA forecasting is extrapolative. For the PB data, this means that a preceding 

patch of known measurements is used to forecast into the following gap without 

reference to the subsequent patch. In most cases, this creates a mismatch between 

the modelled values at the end of the gap, and the known data that follow it. To 

improve the accuracy of the method, a blended forecasting/backcasting technique 

is employed in this study. In the general case of a centrally located gap of missing 

data, flanked by left and right patches of measured values, the procedure is as 

follows: 

1. Generate ARIMA model values by forecasting ahead into the gap using 

the left patch of known data 
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2. Reverse the order of measurements in the right patch and forecast ahead 

by the same number of time steps using the ARIMA function 

3. Reverse the model values from the right patch so that they represent a 

series of backcast data correctly positioned in the gap 

4. Blend the forecast and backcast sets of data using a weighting factor, fw 

The weighting factor constrains the interpolated values as follows: 1) predicted 

values close to the left patch are dominated by the forecast from the left side, 2) 

values on the right side of the gap are dominated by the backcast values, and 3) at 

the midpoint of the gap, the blended value consists of 50% forecast and 50% 

backcast data. This approach is prudent since ARIMA forecasts grow in 

uncertainty the further forward they are projected.  

Given a projected series of NG values forecast from the left patch (Eint_L,i) and a 

second series generated by backcasting the right patch (Eint_R,i), the final blended 

ARIMA interpolant, Eint,i, is given by: 

   𝐸𝑖𝑛𝑡,𝑖 =  𝑓𝑤𝐸𝑖𝑛𝑡𝐿,𝑖 +  (1 −  𝑓𝑤)𝐸𝑖𝑛𝑡𝑅,𝑖                     𝑖 = 1, … , 𝑁𝐺  (4.21) 

where the weighting factor, fw, is a cosine function such that 0 ≤ fw ≤ 1: 

   𝑓𝑤 =
1

2
(1 + cos (

𝜋(𝑖 − 1)

𝑁𝐺 − 1
))                                (4.22) 

Application of the blending procedure is illustrated in Figure 4.10 for an 11-point 

gap. The upper straight line represents the ARIMA forecast series (Eint_L,i) and the 

lower dashed line is the backcast series (Eint_R,i). The resulting blended function 

(Eint,i) transitions smoothly from the first to the second. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Blended interpolation function (in red) for ARIMA models. 
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Forecasting with the ARIMA models and blending function 

The ARIMA modelling procedure can be applied to GHI and DHI data. Figure 

4.11 shows interpolation data for the 7th diffuse irradiance gap, taken from the 

NREL daily file of 27 July 2011 (dataset #1). It is important to note that the data 

are not the raw ARIMA output, but a blend of the forecast and backcast models, 

combined according to equations (4.21) and (4.22). The blending function, 

together with the underlying statistical nature of ARIMA modelling technique, 

can yield identical results for different variants as evident in Figure 4.11 with the 

(1,0,1) and (0,1,1) models. In the case of the (0,0,1) model, the resulting blended 

function is offset because it is generated from averages of the preceding and 

succeeding data patches. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Comparison of the ARIMA (1,0,1), (1,0,0), (0,0,1), (0,1,1) and 

(1,1,1) models applied to a diffuse gap. 

 

4.9 Data replacement via radiometric modelling  

4.9.1 Clear and cloudy sky models  

Model typology 

Radiometric models can be employed when all or some of the physical sun 

strength measurements are unavailable at a site. Gueymard and Myers (2008b) 

propose a typology of models based on nine classification criteria. These include 

the types of output and input data, the spatial, temporal and spectral resolutions, 
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(physical or empirical), the surface geometry (horizontal surface or tilted plane) 

and the sky type (clear or cloudy).   

Using this approach, the models relevant to this study are those that: 1) enable 

prediction of DHI, GHI and DNI time series, 2) use only solar position data and 

the input from a single pyranometer, 3) offer reasonable uncertainties for the 

NREL and UKZN sites, 4) can be used at 1-minute resolution, 5) are broadband in 

nature, 6) are either deterministic or stochastic, 7) are either physical or empirical, 

8) are concerned with the horizontal plane for DHI and GHI and 9) can cover the 

spectrum of cloud conditions from overcast to clear.  

Clear sky models in perforated band analysis 

Considerable effort has gone into modelling irradiance under clear sky conditions, 

covering both the spectral and broadband regimes. The aim is to predict sun 

strength, usually DNI, with the assumption that attenuation is caused by scattering 

and absorption of sunlight by water vapour, gases and particles, and not by cloud. 

Notable examples are the Hottel model (Hottel, 1976), the Bird model (Bird and 

Hulstrom, 1981), SMARTS2 (Gueymard, 2001), REST2 (Gueymard, 2008) as 

given in equation (1.1) and the Yang model (Yang et al., 2001). In most cases, an 

extinction function is proposed that scales extra-terrestrial DNI through a series of 

transmittances, each tuned to a specific scattering or absorption process in the 

atmosphere. The Bird model for calculating broadband DNI, appears thus: 

   𝐸𝑏𝑛  =  0.9662 𝐸𝑜𝑛𝜏𝑅𝜏𝑜𝜏𝑈𝑀𝜏𝑤𝜏𝐴                        (4.23) 

where Eon is the extraterrestrial direct normal irradiance, and τR, τo, τUM, τw and τA 

are the atmospheric transmittances associated with Rayleigh scattering and 

absorption by ozone, uniformly mixed gases, water vapour and aerosols 

respectively. A number of articles have compared the relative performance of 

clear sky models, including comprehensive studies by Ineichen (2006) and 

Gueymard (2003a; 2003b).  

In this work, the clear sky model of Bird and Hulstrom (1981) is used as a check 

on the results obtained for DNI under high clearness index conditions, as 

described by Gueymard and Myers (2008a). Aside from this, clear sky models 

have a limited role to play in processing PB measurements since most of the data 

are obtained under partly cloudy or overcast conditions and, in any event, the 

clean data curves from clear sky conditions are easily reformed into separate 

traces for DHI and GHI without the need for physical modelling techniques. 

Importantly, clear sky models do not work under partly cloudy conditions because 

there is no accurate way to model cloud transmittance, which is highly variable 

with respect to time (Myers, 2013). Instead, other means must be used to predict 

global, diffuse and direct normal irradiance when the available instrumentation at 

a site is unable to provide these components individually. 
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Decomposition models for cloudy sky conditions 

A decomposition model (DM) can be exploited to replace missing diffuse 

horizontal irradiance values in the output from a perforated band system (Brooks 

and Roberts, 2010). This is achieved by applying the DM to contemporaneous 

GHI measurements, thereby generating predictions for the missing DHI as an 

alternative to conventional interpolation methods.  

Decomposition models are the most common method of modelling irradiance in 

the presence of cloud and are typically empirical in nature. Their underlying 

premise is that the fraction of global solar irradiance due to diffuse sunlight 

(called the diffuse fraction, k) is correlated with the sky clearness index kT. The 1-

minute averaged diffuse fraction at the ith datum is calculated as: 

   𝑘𝑖  =  𝐸𝑓𝑑,𝑖 𝐸𝑓𝑔,𝑖⁄                         (4.24) 

Efg,i is a measured value drawn from the contemporaneous patch of GHI values, 

occurring at the same instant as the unknown quantity Efd,i. The minute-based 

clearness index, kT, can therefore be calculated using Efg,i. This alone is 

insufficient to obtain DHI, but if an independent correlation exists between ki and 

kT, then the artificial diffuse irradiance arising from the perforated band system, 

Efd,i, can be determined as follows:  

 𝐸𝑓𝑑,𝑖 =  𝐸𝑓𝑔,𝑖. 𝑓(𝑘𝑇)|𝑖                                        𝑖 = 1, … , 𝑁𝐺 (4.25) 

where 𝑓(𝑘𝑇)|𝑖 represents ki, the predicted diffuse fraction obtained via the 

decomposition model and evaluated over a 1-minute time interval for a specific 

datum point (i) in the gap of a PB trace. Once the diffuse irradiance is known, 

DNI can be calculated through the closure equation (1.2). The empirical 

relationship between k and kT is shown in Figure 4.12(a), using hourly data 

collected by Kunene et al. (2012) at the UKZN Howard College ground station.  

Developers of a DM fit curves to the data, most of which are simple functions of 

kT and others of which involve additional parameters, such as solar altitude angle. 

The curves are usually split into three separate regimes, each based on the sky 

condition: overcast, mid-range kT and clear skies. Although clearness index and 

diffuse fraction are quite well correlated at very low kT values (for overcast 

conditions DHI is approximately equal to GHI) and under clear skies, the 

dispersion of data points around the mid-clearness index range is problematic and 

leads to high uncertainties in the calculation of diffuse irradiance.  

Decomposition models have two further shortcomings. They can be used to derive 

diffuse irradiance when global irradiance is measured, but are not intended for use 

in the reverse order. They also tend to be location-dependent, therefore a number 

should be tested at a site before one is adopted as a standard processing tool. 

Figure 4.12(b) shows several DM applied to the data in Figure 4.12(a). The Reindl 
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(Reindl et al., 1990) and S&O (Skartveit and Olseth, 1987) models are functions 

of both kT and solar altitude, hence the dispersion of predicted values for a given 

clearness index. The HC model shown in Figure 4.12(b) is a piecewise variant 

developed from UKZN data. 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: (a) The relationship between diffuse fraction and clearness index 

as measured by Kunene et al. (2012), and (b) application of decomposition 

models to the data.    

The variable dispersion of data in Figure 4.12(a) suggests that the uncertainties 

associated with DM-derived data are dependent on the sky condition. This implies 

that there is scope for tailoring the models to different sky conditions as 

determined by the clearness index, whether applied over an entire day or over 

shorter time-scales, such as the individual patches resulting from PB operation.   

Numerous decomposition models have been proposed, five of which are used in 

this study. Named after their originators, they are: 1) Orgill and Hollands (Orgill 

and Hollands, 1977), 2) Erbs, Klein and Duffie (Erbs et al., 1982), 3) Boland, 

Ridley and Brown (Boland et al., 2008), 4) Boland, Ridley and Lauret (Ridley et 

al., 2010) and 5) Reindl, Beckman and Duffie (Reindl et al., 1990). Their 

selection for use in this study was based on factors such as popularity, number of 

inputs, performance and suitability with respect to the perforated band system. For 

conciseness the five models are hereafter referred to as O&H, Erbs, BRB, BRL 

and Reindl, respectively, and are described in detail in the sections that follow. 

Decomposition models are frequently compared to determine relative 

performance. Gueymard (2009) describes the O&H, Erbs and Reindl models as 

widely used and “relatively universal”. Torres et al. (2010) studied 17 models 

using 1-hour averaged data for a 20 month period in Pamplona, Spain. These 

included the O&H, Reindl, Erbs and BRL variants used in this study. Of this 

subset, BRL was the best performer with a percentage RMSD of 31.4% in 

converting GHI to DHI. The overall best performer was the DirInt model of Perez 
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et al. (1992), with uncertainty of 29.4%. DirInt is an adaptation of Maxwell’s 

DISC model (Maxwell, 1987), but requires dew point temperature as an input and 

was omitted from the DM group used here. 

Jacovides et al. (2006) used hourly data from a ground station in Cyprus to 

compare 10 established models, including O&H, Reindl and Erbs. They found 

little difference in performance, with the percentage RMSD for all variants within 

1.7% of the top performer.   

Batlles et al. (2000) tested 7 models, including O&H, Erbs, Reindl and Maxwell 

(1987) on data from six Spanish locations. They do not give uncertainties for the 

resulting DHI, but rather calculate the DNI using predicted diffuse irradiance and 

then report uncertainties for the resulting DNI. Very little difference is noted 

between the percentage RMSD values for all 7 models, although the mean bias 

difference percentage is lower for Reindl than for O&H or Erbs. It is clear from 

these studies that of the models selected for use with the PB system, none stands 

out under all conditions, although the BRL variant, which was not included in 

Figure 4.12, and the Reindl model offer some promise for lowering uncertainty.  

Application of decomposition models to high-resolution data   

As a novel application of decomposition models, this study exploits the 

availability of GHI data when DHI readings are unknown to fill the artificially 

generated gaps in a PB trace. Consideration must be given to the time period over 

which a DM was derived, versus the interval over which it is used in practice, 

which in this case is 1-minute steps. 

Most DM were developed using hourly averaged data and consequently provide 

correlations between the diffuse fraction and KT_hour rather than the minute-based 

index, kT. Their intended output is therefore hourly DHI. Some early models were 

developed using daily values (Orgill and Hollands, 1977). Nevertheless, the use of 

models over shorter time steps is not without precedent and is becoming necessary 

as the need grows for high-resolution data.  

Lanini (2010) compared the diffuse fraction obtained using six decomposition 

models against measured reference data, over time periods of 1, 10, 15 and 60 

minutes. The models included those of Skartveit and Olseth (1987), Ridley et al. 

(2010), Maxwell (1987), Perez et al. (1992) and Reindl et al. (1990). Root mean 

square differences between the model and reference data are not given, however 

the mean bias differences for 1-minute data are only slightly higher than for the 

longer periods. In general, there is little difference in the uncertainties for short 

time steps compared to longer intervals. 

Ineichen (2008) used sub-hourly data at 5-, 10-, 15-, 30- and 60-minute intervals 

with global-to-beam decomposition models, and concluded that they can be used 

on short time-step data without a serious loss in bias or precision. He nevertheless 

argues for adapting models derived from hourly data when used over shorter time 

periods.  
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Gueymard (2009) assessed various transposition models for converting GHI to  

irradiance on a tilted surface using 12 months’ of data from NREL’s Solar 

Radiation Research Laboratory (the same data source as this study). He included 

an analysis of the Erbs and O&H decomposition models. Interestingly, the more 

sophisticated models performed no better than Erbs and O&H. Although the 

transposition models had been developed from hourly averaged data, they 

functioned well at 1-minute resolution.  

The studies referred to above support the use of hourly-derived models at 1-

minute time steps. Details of the decomposition models used in this study are 

given below. In all cases they are described in terms of 1-minute values of diffuse 

fraction and clearness index. 

The use of DM to replace missing data is restricted to those intervals where GHI 

is measured. Since there are zones of transition data interspersed between DHI 

and GHI patches (shown as unshaded regions in the upper pane of Figure 4.5), it 

remains necessary, even when applying a decomposition model, to interpolate for 

the missing transition data. This is done using a simple linear interpolation 

method, similar to that described in 4.8.1. The number of data typically lost 

during transition is about 10 to 12.  

4.9.2 Orgill and Hollands (O&H) 

Based on data from Toronto, this model partitions the curve correlating diffuse 

fraction, k, with the hourly clearness index, KT_hour into three sections for 

predominantly clear, partly cloudy and overcast conditions (Orgill and Hollands, 

1977). The hourly parameters are replaced with minute-based values to yield the 

following: 

 

𝑘 =  1.0 − 0.249𝑘𝑇                                            0 ≤  𝑘𝑇 < 0.35 

𝑘 =  1.557 − 1.84𝑘𝑇                                    0.35 ≤  𝑘𝑇 ≤ 0.75 

𝑘 =  0.177                                                                       𝑘𝑇 > 0.75 

(4.26a) 

(4.26b) 

(4.26c) 

Under high clearness index conditions, k becomes a constant as given in equation 

(4.26c). This is partly to suppress spikes in irradiance that result through 

amplification of DHI.   

4.9.3 Erbs, Klein and Duffie (Erbs)   

The Erbs model was developed using hourly data from four United States cities 

and is similar to O&H in that the k-KT_hour curve is partitioned into three divisions 

(Erbs et al., 1982). Unlike O&H, the central curve is a 4th order polynomial:   

 

𝑘 =  1.0 − 0.09𝑘𝑇                                            0 ≤  𝑘𝑇 ≤ 0.22 

𝑘 =  0.9511 − 0.1604𝑘𝑇 + 4.388𝑘𝑇
2 − 16.638𝑘𝑇

3 + 12.336𝑘𝑇
4
 

                                                                          0.22 <  𝑘𝑇 ≤ 0.80 

𝑘 =  0.165                                                                    𝑘𝑇 > 0.80 

(4.27a) 

(4.27b) 

 

(4.27c) 
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In addition to U.S. measurements, Erbs et al. (1982) tested the model against 

hourly reference data from Highett in the Australian state of Victoria. The model 

hourly values were found to be within 3% of the reference data for measurements 

in the central partition (0.22 < KT_hour ≤ 0.80). Overall, the model displayed some 

seasonal bias and tended to overpredict DHI in autumn and winter.  

4.9.4 Boland, Ridley and Brown (BRB) 

Concerned for the lack of generic decomposition models applicable globally, 

Boland et al. (2008) proposed a logistic model developed with hourly data from 

seven cities: Adelaide, Darwin, Maputo, Bracknell, Lisbon, Uccle and Macao. 

Unlike the piecewise models of O&H and Erbs, the BRB model (equation (4.28)) 

is continuous and does not require partitioning of the data into clearness index 

bins making it easier to work with. In 1-minute form, the BRB model is given as:  

   𝑘 =  1 (1 + 𝑒−5.00+8.60𝑘𝑇)⁄               (4.28) 

4.9.5 Boland, Ridley and Lauret (BRL) 

Although effective, BRB is a single-predictor model, referencing only the 

clearness index. Building on the work of Boland et al. (2008), Ridley et al. (2010) 

expanded BRB into a multi-predictor variant to improve its performance. In 

addition to hourly clearness index, they included parameters for solar altitude 

angle (α), daily clearness index (KT_day), apparent solar time (AST) and a 

persistence factor (ψ). Replacing the hourly clearness index term with the 1-

minute equivalent value gives equation (4.29).   

   𝑘 =  1 (1 + 𝑒−5.38 + 6.63𝑘𝑇 + 0.006𝐴𝑆𝑇 − 0.007𝛼 + 1.75𝐾𝑇_𝑑𝑎𝑦 + 1.31𝜓)⁄     (4.29) 

The apparent solar time is calculated from the hour angle, ω: 

   𝐴𝑆𝑇 =  𝜔 15⁄ + 12 (4.30) 

The solar altitude angle, α, is the complement of the zenith angle, as given in 

equation (2.8). The persistence factor reflects the influence of the clearness index 

values to the left and right of the present value. In the BRL model, which was 

developed for hour-based measurements, ψ is given in terms KT_hour however it 

has been adapted here to reflect the influence of the adjacent minute-based 

clearness index values, immediately prior to and after the ith datum point: 

  𝜓 = {

(𝑘𝑇,𝑖−1 + 𝑘𝑇,𝑖+1) 2⁄                                          1 <  𝑖 < 𝑁𝐺

𝑘𝑇,𝑖+1                                                                     𝑖 = 1

  𝑘𝑇,𝑖−1                                                                   𝑖 = 𝑁𝐺

 

 

     (4.31) 

 

Ridley et al. (2010) validated the BRL model against data from Camborne in the 

United Kingdom and Gillot on the Indian Ocean island of Reunion, and found that 
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it performs well in both hemispheres. Furthermore, the model is noted for its 

relative simplicity in terms of required inputs and computational expense.  

4.9.6 Reindl, Beckman and Duffie (Reindl) 

Reindl et al. (1990) developed a correlation based on four predictors: clearness 

index, solar altitude angle, ambient temperature and relative humidity. The model 

was developed from hourly data gathered at two U.S. stations (Albany and Cape 

Canaveral) and three European sites (Copenhagen, Hamburg and Valencia). In 

places where temperature and humidity data are not available, a simplified version 

can be used. This is a function of clearness index and altitude angle only, and is 

applied in this study. 

 

𝑘 =  1.020 − 0.254𝑘𝑇 + 0.0123 sin (𝛼)          0 ≤  𝑘𝑇 ≤ 0.3 

𝑘 =  1.400 − 1.749𝑘𝑇 + 0.177 sin (𝛼)          0.3 <  𝑘𝑇 < 0.78 

𝑘 =  0.486𝑘𝑇 − 0.182 sin (𝛼)                                       𝑘𝑇 ≥ 0.78 

(4.32a) 

(4.32b) 

(4.32c) 

The Reindl model was validated against an independent dataset from Oslo, 

Norway, and found to perform better than the Erbs model. Some seasonality and 

location dependence were noted (Reindl et al., 1990). The application of the 

O&H, Erbs, BRB, BRL and Reindl models is illustrated in Figure 4.13, which 

shows interpolated data in diffuse gap 7 of the NREL daily file for 27 July 2011. 

The interpolated values include 22 minutes of transition data (12 on the left side 

of the gap and 10 on the right), which are generated using a simple linear 

interpolation scheme. Transition data cannot be replaced using the DM approach 

because the contemporaneous GHI values are absent. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Comparison of the O&H, Erbs, BRB, BRL and Reindl 

decomposition models applied to a diffuse gap. 
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4.9.7 Global equals diffuse (GeD) 

Decomposition models have not been developed to calculate GHI when DHI is 

known. Although it is mathematically possible to invert a conventional DM so as 

to obtain GHI, this is computationally expensive because of their piecewise nature 

and the generation of multiple roots that must be subjected to validation checks 

(Journée and Bertrand, 2011).  

Intuitively, a case can be made for introducing a simplified “reverse” 

decomposition model in this study to enable the generation of GHI when DHI 

values are known. This can be done without recourse to curve-fitting or regression 

analysis; instead, it is proposed to equate GHI with DHI on the understanding that 

the two are equal when direct normal irradiance is zero. This is effectively what 

decomposition models do, as shown in equations (4.26a) and (4.27a), where k 

reduces to unity when kT is zero. The model is designated here as “global equals 

diffuse”, or GeD, and is given as: 

   𝐸𝑓𝑔,𝑖 =  𝐸𝑓𝑑,𝑖                                                               𝑖 = 1, … , 𝑁𝐺 (4.33) 

The GeD model is not a function of clearness index and will perform poorly under 

clear and partly cloudy conditions, however it will generate accurate values of 

GHI when the clearness index is low. This is useful because the GHI data trace 

exhibits a measure of stochasticity under overcast conditions and therefore resists 

accurate interpolation by conventional numerical methods. The GeD model is 

applied to NREL data in Figure 4.14 for global gap 7 on 27 July 2011. 

The interpolated data are shown in red and divided into four zones for 

explanation. Zones I and IV contain transition values generated using a simple 

linear interpolation scheme. The values in zones II and III are generated using 

GeD and illustrate both the success and failure of the model to replicate the 

reference trace, shown in blue. In zone II the sensor is largely occluded by cloud, 

DNI is zero, and the model performs well, tracking the reference GHI trace. In 

zone III the DNI component is non-zero and the GHI trace separates from DHI, 

resulting in poor GeD performance. 

In the absence of kT-dependence, the deployment of GeD must be controlled by 

logic built into the CdSPM software. By limiting the application of the model to 

those gaps where the clearness index is estimated to be low, the resulting 

uncertainties are likely to be reduced. This is achieved with the adaptive 

interpolation scheme, described in 4.11. 
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Figure 4.14: Application of the GeD model to a global irradiance gap. 

 

4.10 Statistical metrics and ranking method 

The effectiveness of individual interpolation methods and the overall performance 

of the CdSPM are determined statistically. This work follows the guidelines of 

Gueymard and Myers (2008b) who proposed several conditions that should be 

satisfied for a radiometric model to be validated convincingly:  

1. The development and validation datasets should be independent  

2. An uncertainty analysis should be carried out on the reference dataset 

3. Datasets should be filtered for errors 

4. Model inputs should possess the same time resolution as the validation 

data and should be obtained at the same site 

5. The best possible ancillary data should be used  

6. Inputs to the model should be measured independently with co-located 

instruments at the necessary frequency and with limited uncertainty 

Root mean square difference and mean bias difference were used to validate the 

interpolation schemes, with formulations as given in section 3.4.1. In this chapter, 

Emod represents the interpolated value of irradiance and Emeas the measured 

reference value for a population size of N. When determining the uncertainty of 

individual interpolation methods in stage 3 of the CdSPM, N becomes NG.  

Percentage root mean square difference is used to rank competing interpolation 

schemes for the purpose of configuring the AIS in stage 3 of the CdSPM. The 

ranking produces clusters rather than a continuous list because the reference 

measurements carry their own uncertainties, which are estimated to be 5% (Table 

0

200

400

600

800

1000

1200

487 497 507 517 527 537 547 557 567 577 587

Ir
ra

d
ia

n
ce

 [
W

/m
2
]

Datum number

Efg_meas

GeD

Eg_ref

Efg

GeD

Eg

I II III IV

Gg7

Pg6

Pg7

Stellenbosch University  https://scholar.sun.ac.za



94 

 

3.3). The method adopted here is similar to that of Gueymard (2012), where 

schemes with uncertainties within a certain percentage of each other receive the 

same ranking, since they are statistically similar to each other.  

In this study, the top cluster is obtained by grouping all schemes that produce a 

percentage RMSD result within 5% of the best performing model. The second 

cluster consists of all schemes within 5% of the top model in the second-best 

group, and so on. A maximum of five clusters is used per bin, with the 5th cluster 

containing all schemes not classified in the first four, regardless of uncertainty. 

In stage 4 of the cloudy sky methodology, %RMSD and %MBD are used to 

characterise PB performance. For completeness, standard deviation and expanded 

uncertainty (U95) are also reported, with definitions given in Appendix D.  

4.11 The adaptive interpolation schemes for DHI and GHI 

4.11.1 Clearness index as functional parameter 

Interpolation techniques are not equally effective under all sky conditions. Their 

success in replacing lost values depends on the structure of the data trace, which 

in turn is influenced by cloud patterns that lead to complex interplay between the 

irradiance components. Conditions can also change over short time intervals 

leading to ineffective interpolation when a single-scheme approach is used over 

an entire day.  

It is therefore proposed to refine the use of interpolation techniques by linking 

their deployment to the prevailing cloud condition. The resulting adaptive 

interpolation scheme, or AIS, seeks to reduce model uncertainty by using the best 

scheme, as determined statistically, on a gap-wise basis for both GHI and DHI 

traces. That is, a daily file with nine DHI gaps may end up with a different 

interpolation scheme in each gap if the conditions so dictate. No attempt is made 

here to apply more than one scheme within a specific gap, since many of the 

interpolation methods are defined over the entire span of missing data.  

Clearness index is the parameter by which the deployment of interpolation 

schemes is controlled in this study. It is a recognised metric in characterising solar 

climate (Gueymard and Myers, 2008a) and provides a convenient, if imperfect, 

method of classifying DHI and GHI data. Importantly, it is one of the few metrics 

available at ground stations operating a single pyranometer. It therefore represents 

a sound choice for interpreting data generated by the PB system and for selecting 

the best interpolation technique for a given gap. 

Within each of the daily files, clearness index is calculated for individual DHI 

gaps from the contemporaneous GHI measurements. This is called the patch-wise 

clearness index, kT_patch, since it is obtained from a patch of known GHI 

measurements coinciding with the missing data. The patch-wise index is then used 

to direct deployment of interpolation schemes in an optimal manner, using 

statistical performance as a guide. The same approach is used for GHI gaps except 

that it is not possible to calculate a clearness index directly since global data are 
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absent. Therefore kT_patch is obtained from the average of the two adjacent DHI 

patches and used to apply the appropriate scheme in a given gap of the GHI trace. 

By using the clearness index, the CdSPM achieves two aims. First, the 

deployment of different interpolation schemes is optimised within individual gaps 

generated by the band. This requires the calculation of clearness index at 1-minute 

or patch-wise intervals, as described above, to service the high-resolution 

requirements of the system.  

Secondly, the statistical uncertainty for a full day’s worth of data can be reported 

as a function of daily clearness index, KT_day from which deployment of the 

system may be determined. This enables potential operators of the perforated band 

to base their decision on quantitative data available at a given site. The clearness 

index limits of each bin division are identical to those described in Table 4.3. 

Overall performance of the PB system is therefore reported as uncertainty 

classified according to daily clearness index. 

4.11.2 Configuration of the AIS for DHI and GHI 

Statistical performance of interpolation schemes 

The interpolation schemes listed in Table 4.2 are tested on datasets #1 and #2 in 

two ways. First, the schemes are applied in blanket fashion without any attempt to 

tailor them to the radiometric condition. This is the ‘single-model’ approach in 

which each interpolation method is applied regardless of patch-wise clearness 

index. There are 15 interpolation schemes applicable to global irradiance data and 

19 applicable to diffuse measurements. Second, the schemes are deployed 

selectively and in combination with each other, according to the configurations of 

the diffuse adaptive interpolation scheme and its global counterpart.  

The diffuse and global adaptive interpolation schemes are referred to as D_AIS 

and G_AIS respectively. They are generated using the results in Tables 4.5 and 

4.6, which indicate the cluster rankings by percentage RMSD in each clearness 

index bin. Light blue denotes cluster 1; these are all schemes that perform within 

5% of the best individual performer in each bin. The remaining clusters are light 

orange, purple, green and brown, in ascending uncertainty.  

Some bins contain fewer than five clusters because of the reduced spread in 

%RMSD values, which is indicative of more consistent performance under the 

given sky conditions. This can be seen in bin 4 for DHI and bin 8 for GHI. 

Certain trends are evident in Tables 4.5 and 4.6. For DHI interpolation, the 

decomposition models easily outperform other schemes for low patch-wise 

clearness index (bins 1 to 3), where they are the sole occupiers of cluster 1. Their 

uncertainties increase relative to other schemes from bin 4 onward, however, and 

they steadily become ineffective as conditions improve from partly cloudy to 

clear. Under clear conditions they are among the worst performers.  

From bin 4 onward, the Ramp and PCHIP schemes are best performers within 

cluster 1, although a number of alternatives yield statistically similar results, 
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including the averaging methods and a number of ARIMA models. Of the least 

squares regression techniques, only the 3rd order polynomial (3OP) consistently 

appears in the top cluster. Spline interpolation is a poor performer throughout.  

It is worth noting that the percentage RMSD values given in Table 4.5 refer only 

to interpolated data. The overall daily uncertainty of the perforated band system is 

much lower since it includes measured values from PB patches, which closely 

track the reference data.  

For GHI interpolation (Table 4.6), the “reverse” decomposition model, GeD, 

performs well under heavily overcast and cloudy conditions (bins 1 to 3), as 

expected. Its performance falls off rapidly as conditions improve. Unlike Table 

4.5, the number of schemes in cluster 1 increases steadily as cloud diminishes, 

with all but three of the fifteen options yielding statistically similar results for bin 

8. The Ramp function once again does well at higher clearness indices, but the 

PCHIP scheme is only effective in bin 8. 

The uncertainty results hold significance beyond the scope of this study. Aside 

from their influence on the way the CdSPM is implemented, Tables 4.5 and 4.6 

give useful insight into the more general problem of lost measurements in 

radiometric datasets – the so-called ‘missing data’ problem.  

Almost all sources of radiometric data, regardless of their origin, suffer from gaps 

in the record due to power outages, equipment failures, maintenance issues and a 

host of other technical problems. There remains no definitive method of replacing 

such measurements and most authors use a simple linear interpolation approach 

(Marion and George, 2001; Muzathik et al., 2010; Zawilska and Brooks, 2011). 

Journée and Bertrand (2011) investigated techniques for replacing missing solar 

measurements at 10-minute time steps, although they limited their analysis to four 

radiometric models, including the Erbs variant. They did not consider numerical 

techniques other than to mention linear interpolation as an option for gaps of only 

a ‘few’ missing measurements.   

The results in Table 4.5 suggest that linear interpolation is indeed a statistically 

good choice for filling in gaps of missing DHI data at high time resolution, but 

only when the clearness index is above 0.4. Below that level, the application of a 

decomposition model yields substantially lower RMSD uncertainties, and linear 

interpolation should be avoided.  

The PCHIP scheme also outperforms linear interpolation in some of the higher 

clearness index bins, although the difference is within the uncertainty of the 

measuring sensor. The 1-minute averaging scheme is equally effective. 

Decomposition models should not be applied for clearness indices exceeding 0.5. 

The results in Table 4.6 for replacing GHI produce a similar result. The GeD 

model reduces RMSD uncertainty compared with linear interpolation at low 

clearness indices under 0.4, but above this level the Ramp function, which is 

identical to linear interpolation, is a safe choice. The 1- and 10-minute averaging 

schemes, 3rd order polynomial and some of the ARIMA variants are equally 

effective throughout bins 3 to 8. 
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Table 4.5: Performance of 19 interpolation schemes applied to missing diffuse horizontal irradiance data (dataset #1). 

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8 

0 ≤ kT_patch < 0.2 0.2 ≤ kT_patch < 0.3 0.3 ≤ kT_patch < 0.4 0.4 ≤ kT_patch < 0.5 0.5 ≤ kT_patch < 0.6 0.6 ≤ kT_patch < 0.7 0.7 ≤ kT_patch < 0.8 0.8 ≤ kT_patch ≤ 1.0 

Scheme 
RMSD 

(%) 
Scheme 

RMSD 

(%) 
Scheme 

RMSD 

(%) 
Scheme 

RMSD 

(%) 
Scheme 

RMSD 

(%) 
Scheme 

RMSD 

(%) 
Scheme 

RMSD 

(%) 
Scheme 

RMSD 

(%) 

Reindl 11.2 Reindl 14.1 Reindl 16.8 Ramp 22.6 PCHIP 22.9 PCHIP 24.8 PCHIP 31.3 Ramp 34.0 

Erbs 11.6 Erbs 14.5 Erbs 18.1 PCHIP 22.7 Ramp 23.2 Ramp 25.5 Ramp 31.5 PCHIP 34.1 

BRL 12.0 BRL 15.4 BRL 18.4 1 min 23.2 1 min 23.7 1 min 26.4 1 min 32.5 1 min 36.1 

BRB 12.6 O&H 16.2 O&H 18.8 10 min 23.5 A100 24.8 A101 26.8 A101 33.7 10 min 37.5 

O&H 13.4 BRB 16.4 BRB 20.5 20 min 24.8 A101 25.2 10 min 28.1 3OP 33.8 3OP 38.4 

PCHIP 60.2 Ramp 34.3 Ramp 23.6 3OP 25.0 10 min 25.6 A011 28.4 10 min 34.1 A001 39.2 

Ramp 62.2 PCHIP 34.8 PCHIP 24.4 A101 25.3 3OP 25.8 3OP 29.3 A011 34.9 20 min 39.4 

1 min 63.3 20 min 34.9 1 min 24.6 Reindl 25.4 20 min 26.8 20 min 30.0 A100 35.0 A101 39.8 

10 min 67.0 A001 35.0 20 min 25.1 A001 26.0 A011 27.0 A100 30.5 20 min 36.1 A011 41.3 

20 min 67.6 10 min 35.5 A001 25.2 BRL 26.2 A001 28.4 A001 31.2 A001 37.8 A100 42.2 

A001 69.3 1 min 35.7 10 min 25.2 A100 26.7 4OP 32.0 5OP 33.1 4OP 42.9 4OP 48.0 

A101 70.1 3OP 40.4 A101 28.9 Erbs 27.6 5OP 32.7 4OP 33.1 5OP 43.9 5OP 48.9 

A011 70.8 A101 40.5 3OP 29.3 O&H 27.9 Reindl 33.0 Reindl 40.5 Erbs 58.8 Erbs 62.8 

3OP 72.7 A011 43.8 A100 30.5 A011 28.6 O&H 37.0 O&H 45.1 BRL 59.1 O&H 65.8 

A100 74.8 A100 44.5 A011 31.6 BRB 30.1 BRL 37.0 Spline 46.2 O&H 59.4 BRL 67.0 

Spline 82.3 4OP 58.6 4OP 35.9 4OP 30.8 Erbs 37.4 BRL 46.3 BRB 65.4 BRB 70.4 

4OP 96.5 5OP 59.5 5OP 36.6 5OP 31.3 BRB 41.6 Erbs 46.6 Reindl 71.7 Spline 75.1 

5OP 97.2 A111 65.1 Spline 48.4 A111 40.0 Spline 42.3 A111 50.8 Spline 72.9 Reindl 107.3 

A111 111.9 Spline 68.5 A111 64.5 Spline 40.1 A111 70.0 BRB 52.2 A111 157.7 A111 133.4 

9
7
 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



98 

 

 

Table 4.6: Performance of 15 interpolation schemes applied to missing global horizontal irradiance data (dataset #1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8 

0 ≤ kT_patch < 0.2 0.2 ≤ kT_patch <0.3 0.3 ≤ kT_patch < 0.4 0.4 ≤ kT_patch < 0.5 0.5 ≤ kT_patch < 0.6 0.6 ≤ kT_patch < 0.7 0.7 ≤ kT_patch < 0.8 0.8 ≤ kT_patch ≤ 1.0 

Scheme 
RMSD 

(%) 
Scheme 

RMSD 

(%) 
Scheme 

RMSD 

(%) 
Scheme 

RMSD 

(%) 
Scheme 

RMSD 

(%) 
Scheme 

RMSD 

(%) 
Scheme 

RMSD 

(%) 
Scheme 

RMSD 

(%) 

GeD 51.5 GeD 39.7 GeD 52.1 Ramp 47.6 Ramp 37.5 A100 32.4 A101 15.8 A001 11.5 

A101 66.1 Ramp 52.6 A100 53.8 A100 50.4 A100 39.0 A101 32.5 20 min 16.2 10 min 11.5 

A011 67.8 A101 54.3 Ramp 54.3 1 min 50.8 A101 40.0 20 min 33.0 10 min 16.3 20 min 11.7 

Ramp 68.5 A100 54.5 A101 55.5 A101 51.0 1 min 40.8 10 min 33.3 A100 16.3 Ramp 11.7 

PCHIP 69.6 1 min 56.0 1 min 57.2 10 min 51.8 A001 42.3 A001 33.6 A001 16.5 A100 11.9 

4OP 69.6 A001 57.3 10 min 57.7 3OP 52.0 10 min 42.3 Ramp 33.7 Ramp 16.8 PCHIP 11.9 

1 min 70.8 10 min 59.5 A001 58.2 20 min 53.7 20 min 43.1 1 min 34.9 3OP 17.0 3OP 11.9 

5OP 71.6 20 min 60.1 20 min 58.5 A001 54.4 3OP 44.4 3OP 36.7 1 min 17.7 A101 12.2 

A100 71.7 A011 62.3 3OP 59.6 GeD 56.4 A011 47.4 A011 43.8 A011 21.9 1 min 12.3 

10 min 75.9 3OP 62.9 A011 64.1 A011 59.0 GeD 59.3 4OP 55.0 4OP 24.8 4OP 13.6 

A001 77.4 4OP 71.7 PCHIP 72.9 4OP 68.4 4OP 59.6 5OP 58.7 5OP 28.3 5OP 13.6 

20 min 78.3 5OP 80.1 A111 84.5 5OP 123.3 5OP 70.3 A111 61.1 PCHIP 58.6 A011 14.6 

3OP 78.6 PCHIP 94.1 4OP 86.6 A111 158.6 A111 103.5 GeD 64.2 A111 60.2 Spline 69.9 

A111 80.3 A111 127.3 5OP 104.6 PCHIP 814.2 PCHIP 276.0 PCHIP 98.5 GeD 73.3 GeD 72.9 

Spline 120.9 Spline 314.7 Spline 270.8 Spline 1431.0 Spline 331.1 Spline 170.7 Spline 361.5 A111 84.8 

9
8
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Formulation of the G_AIS and D_AIS 

The results in Tables 4.5 and 4.6 present two challenges. First, it is not possible to 

identify a single scheme in every bin that outperforms the others, therefore 

multiple AIS configurations are possible. Secondly, the AIS is configured using 

the patch-wise clearness index, which is a good but imperfect descriptor of sky 

conditions. It cannot be assumed that an AIS configured with the best statistical 

performers will necessarily give the lowest uncertainty when tested across days 

with different daily clearness indices. There are three reasons for this:  

1) Clearness index is usually calculated as an average, therefore a day may 

contain periods for which kT_patch differs substantially from the average daily 

clearness index, KT_day. For example, a daily clearness index of 0.5 may result 

from consistent, partly cloudy conditions with a repetitive trace structure, or it 

may result from a day with a cloudless morning (high kT_patch values) and a sudden 

switch to heavily overcast conditions in the afternoon (low kT_patch values). 

2) Interpolation schemes are sensitive not only to the bulk value of clearness 

index, but also to high-resolution features of the underlying trace structure, such 

as stochasticity, which depend on cloud type and distribution.  

3) Data trace structures are not evenly distributed with daily clearness index. 

Therefore, when days are classified in bins according to KT_day, a weaker 

secondary grading also takes place related to the structural morphology of the 

irradiance graph. That is, data with a patch-wise index of 0.2 from a day with 

KT_day of 0.3 may, on average, appear structurally different to data with the same 

patch-wise index, but for which KT_day is 0.7.  

Because high-resolution structural features are not well captured by kT_patch, and 

given that interpolation schemes do not work equally well for all trace 

morphologies, it is possible that a single AIS will not be the top performer on days 

with different daily clearness indices. This is true even though the AIS can 

allocate schemes within individual gaps at short time intervals. This result seems 

counter-intuitive since the intention of the AIS, in theory, is to respond to local 

conditions, and therefore any variation should be accounted for. In practice 

though, structural effects such as stochasticity are imperfectly correlated with 

kT_patch and so the deployment of interpolation schemes may well be sub-optimal.  

A solution to these challenges is to configure a number of AISs in the 

development dataset using Tables 4.5 and 4.6, test them and confirm their 

effectiveness in the validation dataset. If the results are consistent, then the best 

performing adaptive schemes can be adopted with confidence. It is likely that 

more than one AIS will be specified for use, depending on the daily clearness 

index. The formulations of the diffuse and global adaptive schemes are given in 

Tables 4.7 and 4.8, which can be read horizontally for each variant. There are 21 

variants in the diffuse scheme and 18 in the global scheme. Colour-coding has 

been retained from Tables 4.5 and 4.6.  
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Table 4.7: Configuration of 21 diffuse adaptive interpolation schemes (D_AIS) by patch-wise clearness index. 

D_AIS Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8 

1 Reindl Reindl Reindl Ramp PCHIP PCHIP PCHIP Ramp 

2 Erbs Erbs Erbs PCHIP Ramp Ramp Ramp PCHIP 

3 BRL BRL BRL 1 min 1 min 1 min 1 min 1 min 

4 O&H BRB BRB Erbs A011 3OP 20 min 3OP 

5 Reindl Reindl Reindl Ramp Ramp Ramp Ramp Ramp 

6 Reindl Reindl Reindl PCHIP PCHIP PCHIP PCHIP PCHIP 

7 Erbs Erbs Erbs Ramp PCHIP PCHIP PCHIP Ramp 

8 BRL BRL BRL Ramp PCHIP PCHIP PCHIP Ramp 

9 O&H O&H O&H Ramp PCHIP PCHIP PCHIP Ramp 

10 BRB BRB BRB Ramp PCHIP PCHIP PCHIP Ramp 

11 Reindl Reindl Reindl 1 min 1 min 1 min 1 min 1 min 

12 Reindl Reindl Reindl 10 min 10 min 10 min 10 min 10 min 

13 Reindl Reindl Reindl 20 min 20 min 20 min 20 min 20 min 

14 BRL BRL BRL Ramp Ramp Ramp Ramp Ramp 

15 Erbs Erbs Erbs Ramp Ramp Ramp Ramp Ramp 

16 PCHIP Ramp Ramp O&H A001 20 min A001 A001 

17 1 min 1 min 10 min 5OP Reindl 4OP A001 A100 

18 10 min 3OP A101 A111 O&H Reindl 4OP 4OP 

19 A011 A100 A011 Spline BRB O&H 5OP 5OP 

20 3OP 4OP 4OP Spline Spline Spline Erbs Erbs 

21 BRL BRL BRL BRL BRL BRL BRL BRL 

1
0
0
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Table 4.8: Configuration of 18 global adaptive interpolation schemes (G_AIS) by patch-wise clearness index. 

G_AIS Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8 

1 GeD GeD GeD Ramp Ramp A100 A101 A001 

2 GeD GeD A100 A100 A100 A101 20 min 10 min 

3 GeD GeD Ramp 1 min A101 20 min 10 min 20 min 

4 GeD GeD A101 3OP 10 min 3OP 1 min A011 

5 GeD GeD Ramp Ramp Ramp Ramp Ramp Ramp 

6 GeD GeD GeD A101 A101 A101 A101 A101 

7 GeD GeD GeD A100 A100 A100 A100 A100 

8 GeD GeD GeD A001 A001 A001 A001 A001 

9 GeD GeD GeD 1 min 1 min 1 min 1 min 1 min 

10 GeD GeD GeD 10 min 10 min 10 min 10 min 10 min 

11 GeD GeD GeD 20 min 20 min 20 min 20 min 20 min 

12 GeD GeD GeD 3OP 3OP 3OP 3OP 3OP 

13 GeD GeD GeD 4OP 4OP 4OP 4OP 4OP 

14 A101 Ramp 1 min 20 min 20 min A011 A011 Spline 

15 1 min A001 3OP GeD A011 A011 4OP GeD 

16 5OP 10 min A011 A011 GeD 4OP 5OP A111 

17 10 min 3OP A011 A011 4OP 5OP 5OP A111 

18 A001 4OP PCHIP 4OP 5OP A111 PCHIP A111 

 

 

1
0
1
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The diffuse and global adaptive schemes are configured to cover as wide a range 

of combinations without being exhaustive. In the diffuse case, the first three 

variants (D_AIS 1 to 3) represent the top three combinations of interpolation 

methods, taken directly from the rankings in Table 4.5. The fourth variant 

represents the worst combination from the top cluster.   

D_AIS 5 and 6 represent the best DM but with Ramp and PCHIP schemes 

dominating the higher clearness index bins. A reason for testing these variants is 

that some schemes are computationally easier to apply and yet may still give good 

overall results. D_AIS 7 to 10 maintain the best combinations for the higher order 

bins, but investigate the use of different decomposition models for cloudier 

conditions. These test the relative performance of one DM versus the others. 

D_AIS 11 to 13 utilise the averaging schemes for higher clearness indices. These 

are of interest since averaging is sometimes used for replacing missing data in 

radiometric studies and is simple to apply. D_AIS 16 to 20 represent the best and 

worst combinations from their respective clusters in Table 4.5. They are included 

to test for an increase in uncertainty that is expected from sub-optimal 

interpolation techniques. D_AIS 21 is a test scheme used to confirm that the 

MATLAB coding functions correctly. The results for scheme 21 should be 

identical to those for the single-model BRL scheme.  

In total there are 39 diffuse irradiance interpolation schemes tested, comprising 19 

single-model variants and 20 adaptive schemes. In the G_AIS variants, the GeD 

model is unchallenged in bins 1 and 2 and is used throughout G_AIS 1 to 13. 

G_AIS 1 to 3 represent the top three combinations from Table 4.6 and the fourth 

variant represents the worst combination from the top cluster.   

G_AIS 5 tests the use of the computationally simpler Ramp function in 

combination with GeD. G_AIS 6 to 13 retain GeD for the lower clearness index 

bins but test the uniform application of ARIMA, averaging and polynomial 

schemes for the higher clearness index bins. Schemes 14 to 17 represent the best 

and worst of clusters 2 and 3, and G_AIS 18 is the best combination from the 

fourth cluster in Table 4.6. There are 33 GHI interpolation schemes tested in this 

study, comprising 15 single-model variants and 18 adaptive schemes. 

4.12 Implementation of the CdSPM: MATLAB code 

The processing architecture of the CdSPM makes use of MATLAB for all data 

manipulation and Microsoft Excel spread sheets for displaying results. This 

enabled visual inspection of the outputs as the code was developed and helped 

with debugging. In studies of this nature the datasets are very large and rigorous 

checking is necessary as new models or analytical features are added.  

The cloudy sky processing methodology is implemented through two custom-

written MATLAB programmes. “CloudInterp” creates daily files from the 

unprocessed NREL radiometric data according to the format described in Tables 

Stellenbosch University  https://scholar.sun.ac.za



103 

 

C-1 and C-2. Each daily file is written in Excel spreadsheet format to facilitate 

inspection of the data for errors.  

The bulk of data processing occurs in CdSPM stages 3 to 5 using a second 

MATLAB programme called “CloudAnalyser”. This concatenates data from the 

individual daily files into cumulative analysis matrices (CAM), segregated 

according to radiometric component (DHI, GHI or DNI), interpolation scheme 

and clearness index bin.  A statistical analysis can then be carried out to 

characterise performance of the perforated band system in each category.  

There are 23 CAM files, each addressing a different aspect of PB performance. 

CAMs 3 to 6 deal only with interpolated data for DHI, while CAMs 7 to 11 do the 

same for GHI. CAMs 12 to 20 assess the performance of pure decomposition 

models at different time intervals. CAM 21 analyses the ability of the system to 

measure diffuse horizontal irradiance on a daily basis and so includes all PB data, 

both measured and interpolated. This includes a further subdivision according to 

the daily clearness index. CAM 22 does the same for GHI and CAM 23 combines 

the results and gives overall performance results for the DNI component. 

Concatenation of the daily data is necessary because statistical metrics, such as 

RMSD and MBD, must be determined from the full dataset.  

4.13 Summary 

A five-stage methodology has been presented to enable the processing of data 

generated by the PB system under partly cloudy and overcast conditions. The 

CdSPM uses the ray trace model of pyranometer exposure to separate DHI and 

GHI data fragments for each daily trace, from which two reconstituted curves can 

be obtained. The methodology proceeds by comparing the curves with radiometric 

measurements from collocated reference instruments. Performance can then be 

described in terms of %RMSD, %MBD and other metrics. 

The CdSPM considers a wide range of numerical and model-based techniques for 

filling gaps generated by the band. The required inputs to the methodology are 

discussed, including two independent datasets comprising more than 268 000 

rows of information gathered at 1-minute intervals, and spanning 3 years.  

Cloud structure and distribution have a strong effect on the signal output from a 

pyranometer under a perforated band, therefore clearness index has been adopted 

as a means of classifying data. The chapter introduces a novel, adaptive 

interpolation scheme to direct the deployment of different data-generation 

techniques, using the statistical uncertainty (RMSD) and the clearness index as 

governing parameters. The configuration of the AIS is described for both the DHI 

and GHI components.  

The CdSPM is instituted via two MATLAB programmes and generates a series of 

spreadsheet files to enable visual inspection of the results. 

The results of the CdSPM are given in Chapter 5, including a description of the 

overall performance of the PB system.   
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5. CLOUDY SKY CONDITIONS: RESULTS 

5.1 Introduction 

This chapter describes the performance of the perforated shadow band system in 

measuring DHI, GHI and DNI under partly cloudy and overcast conditions. 

Results are given from the application of the cloudy sky processing methodology 

to two temporally independent datasets using the methods described in Chapter 4.  

Performance is expressed mainly in terms of root mean square difference between 

the PB output and collocated reference instruments, as well as the mean bias 

difference, standard deviation and an expanded uncertainty parameter. The daily 

clearness index parameter is used to classify performance throughout the analysis. 

This work focuses on high temporal resolution data with measurements at 1-

minute intervals. Compared to more commonly used protocols that utilise hourly 

or daily interval values, this produces substantially greater variability in data 

structures making the processing task more complex. Importantly, the high-

resolution analysis subjects the perforated band system to a rigorous test. This is 

necessary to establish its baseline performance against which alternate 

measurement schemes, such as the SPN1 and silicon diode radiometer, can be 

compared.  

5.2  Perforated band uncertainty in the modelling of DHI 

The accuracy of the perforated band system was determined separately for DHI 

and GHI as described in Stages 4 and 5 of the CdSPM flow chart (Figure 4.4). 

Direct normal irradiance was then obtained by combination of the modelled DHI 

and GHI components. For brevity, this section contains the key graphs and tables 

quantifying CdSPM performance, with Appendix E containing additional 

uncertainty information per bin for all schemes in graph form. For consistency, all 

results given in sections 5.2, 5.3 and 5.4 are for zenith angles less than 70°.  

5.2.1 DHI: Dataset #1   

For dataset #1, the perforated band was able to generate continuous DHI traces 

with RMSD uncertainties that varied between 19.4 and 43.0 W/m2 (Table 5.1). 

The equivalent percentage uncertainties were relatively constant at 16 to 23% of 

the mean reference DHI in each KT_day bin. The values in Table 5.1 represent the 

best interpolation schemes for each bin and were obtained by ranking the 

techniques in order according to the following criteria: percentage RMSD, 

percentage MBD, percentage standard deviation and expanded uncertainty.  

Mean bias differences, which are indicative of systematic error in prediction, 

varied between –4.6% and 7.8% for dataset #1. These are negative under cloudier 

conditions (PB underestimates the reference DHI), becoming positive as skies 

clear (PB overestimates the DHI). The expanded uncertainties were between 

44.8% and 62.1%.  
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Table 5.1: Statistical parameters for best performing DHI interpolation 

schemes by daily clearness index (NREL, Z < 70°).  

Bin Ave. Scheme RMSD MBD SD U95 |MBD| 

 KT_day  [W/m2] [%] [W/m2] [%] [W/m2] [%] [%] [%] 

1 0.14 BRL 27.6 22.6 -5.6 -4.6 27.0 22.2 62.1 4.6 

2 0.25 D_AIS_14 32.9 16.5 -8.4 -4.2 31.8 15.9 44.9 4.2 

3 0.36 D_AIS_8 43.0 17.4 -6.0 -2.4 42.5 17.2 48.0 2.4 

4 0.45 D_AIS_6 40.9 16.2 -2.9 -1.2 40.8 16.2 44.8 1.2 

5 0.55 D_AIS_1 37.2 18.1 1.6 0.8 37.2 18.0 50.0 0.8 

6 0.65 D_AIS_6 32.2 17.7 4.9 2.7 31.8 17.5 48.8 2.7 

7 0.75 Ramp 19.6 20.6 4.2 4.4 19.1 20.1 56.3 4.4 

8 0.81 D_AIS_1 19.4 21.2 7.2 7.8 18.1 19.8 56.8 7.8 

 

It is important to note that although several adaptive schemes appear as best 

performers, many of them are configured similarly. For example, D_AIS_1 and 

D_AIS_6 both deploy the same interpolation techniques for 0 ≤ kT_patch < 0.4 and 

0.5 ≤ kT_patch < 0.7, with the only differences appearing in bins 4 and 8 where 

D_AIS_1 uses the Ramp function and not PCHIP. D_AIS_8 is identical to 

D_AIS_1 except for the type of decomposition model used in bins 1 to 3 (see 

Table 4.7). The success of the decomposition models under cloudy skies is 

evident, while the Ramp function is clearly effective under clear skies.    

The statistics in Table 5.1 include all PB data for which Z < 70°, both interpolated 

and measured. It is evident that the performance of the perforated band system is a 

function of clearness index, and thus should not be reduced to a single uncertainty 

measurement, either RMSD or MBD. In this respect Table 5.1 represents an 

expanded but appropriate description of how well the CdSPM performs in 

generating DHI from a broken PB system trace at the NREL site.  

Figures 5.1 and 5.2 enable comparison of the AISs with single-scheme 

interpolation methods in dataset #1 and decomposition models. In most bins the 

adaptive interpolation scheme outperforms a single-method approach with respect 

to RMSD and MBD. Interestingly, the single-scheme BRL model performs best in 

bin 1, probably because decomposition models handle short-lived spikes in 

irradiance under overcast conditions better than Ramp or PCHIP methods that are 

normally invoked by the AIS for gaps with mid-range clearness indices.    

The blue markers in Figures 5.1 and 5.2 represent the uncertainty of the best 

performing decomposition model per bin, obtained primarily with NREL 

reference data gathered from a ventilated Kipp and Zonen CM22 radiometer. 

These permit comparison of the PB-generated DHI with that obtained using a 

single unshaded pyranometer together with the models described in sections 4.9.2 

to 4.9.6. As an alternate measurement approach, the DM technique is less 

expensive than the perforated band because it relies only on a single unshaded 

pyranometer, however the RMSD uncertainties of the best performing models 
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grow considerably under partly cloudy and clear skies, making them less accurate 

for all conditions except heavily overcast. A similar trend is evident for the MBD 

uncertainty (Figure 5.2). Further details on the implementation of the 

decomposition models are given in section 5.6. 

 

 

 

 

 

 

 

 

Figure 5.1: Root mean square difference for best adaptive, best non-adaptive 

and best overall DHI interpolation schemes in dataset #1 by daily clearness 

index, including best decomposition model performance (Z < 70°). 

 

 

 

 

 

 

 

 

Figure 5.2: Mean bias difference for best adaptive, best non-adaptive and 

best overall DHI interpolation schemes in dataset #1 by daily clearness index, 

including best decomposition model performance (Z < 70°). 
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(#2). Three analyses of the RMSD and MBD metrics were conducted: 

1. The best performing schemes from dataset #1, as given in Table 5.1, were 

compared with the best schemes from dataset #2 on a bin-by-bin basis. In 

three of the bins the same schemes were top performers for both #1 and 
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#2, otherwise they differed. This aimed to establish whether the overall 

magnitudes of RMSD and MBD statistics changed appreciably and 

addresses the fundamental effectiveness of the PB system, rather than the 

consistency of specific interpolation methods. Results can be seen in 

Figures 5.3 and 5.4 where the circular black markers (best in #2) and 

circular red markers (best in #1) track each other reasonably well. The 

average difference between the RMSD values across all bins is 2.5% and 

 –0.3% for MBD. 

2. The best performing schemes in dataset #1 were compared with results for 

the same schemes in #2. This aimed to establish inconsistencies in the 

performance of those specific interpolation methods across independent 

datasets. Results can be seen by comparing the red markers in Figures 5.3 

and 5.4 with the green circles (best of #1 in #2). The average difference 

between the RMSD values across all bins is 2.3% and –0.2% for MBD. 

3. The best performers in dataset #2 were compared with the best performing 

schemes from #1 in dataset #2. This aimed to establish the overall 

effectiveness and reproducibility of the CdSPM by examining whether the 

differences in the types of schemes making up the top performers in each 

dataset set made any appreciable difference to the statistical uncertainty in 

modelling DHI. This is illustrated by comparing the black markers (best in 

#2) in Figures 5.3 and 5.4 with the green circles (best of #1 in #2).  

This is arguably the most important test of the CdSPM. It matters less that 

the identical schemes perform best across different datasets however it is 

crucial that the CdSPM should yield similar uncertainties regardless of the 

exact mix of schemes that provide them. In this case, the best performing 

schemes from dataset #1 give almost identical uncertainties to the best 

performers in dataset #2 when transferred to dataset #2, with an average 

difference in RMSD across all bins of just 0.2% and MBD of 0.1%. 

 

 

 

 

 

 

 

Figure 5.3: Comparative root mean square difference of best overall and best 

non-AIS schemes for DHI in datasets #1 and #2, by daily clearness index, 

including best decomposition model performance (Z < 70°). 
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Figure 5.4: Comparative mean bias difference of best overall and best non-

AIS schemes for DHI in datasets #1 and #2, by daily clearness index, 

including best decomposition model performance (Z < 70°). 

 

These results confirm that the CdSPM is a robust and statistically reproducible 

processing methodology for generating DHI from a perforated band system at the 

NREL SRRL site. 

5.3  Perforated band uncertainty in the modelling of GHI 

The GHI analysis follows a similar approach to the diffuse, with uncertainties 

calculated against reference values for all PB data, interpolated and measured. The 

number of interpolation schemes is reduced due to the absence of decomposition 

models (Table 4.8). 

5.3.1 GHI: Dataset #1   

As Table 5.2 indicates, the magnitude and variability of the RMSD uncertainties 

for GHI across most bins were higher than for DHI. The CdSPM returned a 

minimum RMSD of 6.7% (bin 8) and a maximum of 35.2% (bin 3), with 

G_AIS_1 dominating in half of the bins. Unlike the DHI results which were 

relatively constant regardless of the sky condition, Figure 5.5 shows a pronounced 

rise in uncertainty over the mid-clearness index range, which may be explained by 

the greater sensitivity of global irradiance to fluctuations in DNI.  

Under partly cloudy conditions DNI is ‘switched’ on and off frequently by the 

cloud field and the stochasticity of the GHI trace increases, registering greater 

extremes than the DHI. Under these conditions, the gaps in the perforated band 

output trace are more difficult to fill accurately by interpolation. Under clear sky 

conditions (bins 7 and 8) the data trace cleans up considerably and the PB values 

track the reference measurements closely. 

The mean bias difference is negative throughout all bins, meaning that the PB 

system underestimates global irradiance. MBD values range between –1.2% and  

–6.7%, with the greatest variance in the mid-KT_day range.  
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The adaptive schemes once again outperform the best single-scheme interpolation 

techniques for RMSD and MBD in most bins, although there is little difference 

between the two approaches under clear conditions (Figures 5.5 and 5.6). In bin 7, 

for example, G_AIS_6 returns identical uncertainties for RMSD, MBD, SD and 

U95 as the A101 scheme, which is expected given the composition of G_AIS_6. 

Decomposition models do not apply to the calculation of GHI from DHI, 

therefore no graphical comparison is made as in Figures 5.5 and 5.6.          

 

Table 5.2: Best performing GHI interpolation schemes by bin (NREL,  

Z < 70°). 

Bin Ave. Scheme RMSD MBD SD U95 |MBD| 

 KT_day  [W/m2] [%] [W/m2] [%] [W/m2)\] [%] [%] [%] 

1 0.14 G_AIS_1 29.0 22.9 -6.2 -4.9 28.3 22.3 62.7 4.9 

2 0.25 G_AIS_9 49.1 22.6 -13.2 -6.1 47.3 21.8 61.6 6.1 

3 0.36 G_AIS_1 113.4 35.2 -21.2 -6.6 111.4 34.6 96.7 6.6 

4 0.45 G_AIS_1 128.6 31.7 -27.0 -6.7 125.7 31.0 87.0 6.7 

5 0.55 G_AIS_1 145.2 29.1 -25.3 -5.1 143.0 28.7 80.1 5.1 

6 0.65 G_AIS_2 129.5 22.0 -15.9 -2.7 128.5 21.8 60.7 2.7 

7 0.75 G_AIS_6 74.7 11.9 -10.8 -1.7 73.9 11.8 32.8 1.7 

8 0.81 G_AIS_5 46.0 6.7 -8.4 -1.2 45.3 6.6 18.5 1.2 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Root mean square difference for best adaptive, best non-adaptive 

and best overall GHI interpolation schemes in dataset #1 by daily clearness 

index (Z < 70°). 
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Figure 5.6: Mean bias difference for best adaptive, best non-adaptive and 

best overall GHI interpolation schemes in dataset #1 by daily clearness index 

(Z < 70°). 

 

5.3.2 GHI: Dataset #2 

Reproducibility of the CdSPM was demonstrated as follows, with respect to the 

generation of GHI in datasets #1 and #2: 

1. The best performing schemes from dataset #1, given in Table 5.2, were 

compared with the best schemes from dataset #2. Results are shown in 

Figures 5.7 and 5.8 where the circular black markers (best in #2) and 

circular red markers (best in #1) are closely aligned, although a difference 

exists under overcast conditions for MBD. The average difference between 

the RMSD values across all bins is 2.3% and for MBD the difference is 

1.1%. Interestingly, in bins 1, 2, 6 and 8 the same schemes were top 

performers for both datasets. 

2. The uncertainties of the best performing schemes in dataset #1 (red 

markers) were compared with those generated by the same schemes in #2 

(green circles). This would highlight inconsistencies in the performance of 

those specific interpolation methods. The average difference between the 

RMSD values across all bins in the two datasets is 1.8% and 0.9% for 

MBD. 

3. A comparison of the best performing schemes from dataset #2 (black 

markers) with the set of best performing schemes from dataset #1 

operating in #2 (green circles), was undertaken. As with the DHI analysis, 

very little difference in results was observed, with an average difference in 

RMSD across all bins of just 0.4% and –0.1% for MBD. 

A similar conclusion can be drawn for GHI as for DHI, namely that the 

uncertainties change very little across independent datasets and consequently the 

CdSPM is confirmed as a reproducible processing methodology for generating 

GHI using the perforated band. 
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Figure 5.7: Comparative root mean square difference of best overall and best 

non-AIS schemes for GHI in datasets #1 and #2, by daily clearness index (Z < 

70°). 

 

 

 

 

 

 

 

 

Figure 5.8: Comparative mean bias difference of best overall and best non-

AIS schemes for GHI in datasets #1 and #2, by daily clearness index (Z < 

70°). 
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referred to as B_AIS_x, where x is a designation from 1 to 38. Table 5.3 gives the 

components for each of the B_AIS variants.  

A total of 36 DNI variants were tested in each of the eight daily clearness index 

bins of datasets #1, consisting of the following: 

 14 matched single-scheme methods, derived from the DHI and GHI 

components listed in Table 4.2. These are the non-AIS methods pairing 

like with like. 

 20 adaptive combinations (B_AIS_1 to 20) from Table 5.3. B_AIS_1 to 6 

combine a selection of the best DHI performers on a gap-wise basis with 

the best gap-wise performer for GHI (G_AIS_1). This is repeated for 

B_AIS_7 to 12 using G_AIS_2 as the global component, and again for 

schemes B_AIS_13 to 18 using G_AIS_3. 

 B_AIS_19 and 20 are identical to B_AIS_1 except that the adaptive 

scheme for DHI is suspended on days when KT_day is less than 0.2, and the 

BRL and Reindl decomposition models are applied instead regardless of 

the intraday patch-wise index. This was done because results for DHI 

indicated that under heavily overcast conditions the decomposition models 

yielded lower RMSD uncertainties than the adaptive approach (Table 5.1). 

 B_AIS_ 21 to 28 combine the best performing DHI schemes from Table 

5.1 with the best performing GHI schemes from Table 5.2. These are 

determined according to their performance in dataset #1, after 

classification according to the daily clearness index, and not the patch-

wise index. B_AIS_29 to 36 are determined the same way, but apply to 

results for dataset #2 and are necessary to enable a comparison between 

the datasets. Since schemes 21 to 36 are determined from specific bins, 

they are not applied universally for all daily clearness index conditions, 

but only for the bin in which they excelled. Thus B_AIS_21 was tested 

only for KT_day < 0.2, B_AIS_22 was tested for 0.2 < KT_day ≤ 0.3, and so 

on. These schemes were expected to give low uncertainties since they 

combine the best performers for diffuse and global irradiance.  

 B_AIS_37 was tested for interest, and represented the combination of best 

DHI and GHI performers by ABS(%MBD) as found for dataset #1  

(Z < 70°) across all clearness index bins and without segregation according 

to KT_day. B_AIS_38 does the same for dataset #2. These schemes were 

expected to perform poorly because the resulting DNI was determined 

from DHI and GHI components that do not exploit the advantage provided 

by classifying data according to KT_day.      

The total number of DNI schemes tested therefore rose to 38 in dataset #2 as 

B_AIS 29 and B_AIS_38 were added to the existing group, for comparison 

purposes. 
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Table 5.3: Configuration of direct normal irradiance adaptive interpolation 

schemes (B_AIS).   

B_AIS DHI Scheme GHI Scheme 
 

B_AIS DHI Scheme GHI Scheme 

1 D_AIS_1 G_AIS_1 
 

21 BRL G_AIS_1 

2 D_AIS_5 G_AIS_1 
 

22 D_AIS_14 G_AIS_9 

3 D_AIS_6 G_AIS_1 
 

23 D_AIS_8 G_AIS_1 

4 D_AIS_7 G_AIS_1 
 

24 D_AIS_6 G_AIS_1 

5 D_AIS_8 G_AIS_1 
 

25 D_AIS_1 G_AIS_1 

6 D_AIS_14 G_AIS_1 
 

26 D_AIS_6 G_AIS_2 

7 D_AIS_1 G_AIS_2 
 

27 Ramp A101 

8 D_AIS_5 G_AIS_2 
 

28 D_AIS_1 Ramp 

9 D_AIS_6 G_AIS_2 
 

29 BRL G_AIS_1 

10 D_AIS_7 G_AIS_2 
 

30 D_AIS_2 G_AIS_9 

11 D_AIS_8 G_AIS_2 
 

31 D_AIS_6 G_AIS_8 

12 D_AIS_14 G_AIS_2 
 

32 D_AIS_6 G_AIS_5 

13 D_AIS_1 G_AIS_3 
 

33 D_AIS_6 G_AIS_5 

14 D_AIS_5 G_AIS_3 
 

34 D_AIS_6 G_AIS_2 

15 D_AIS_6 G_AIS_3 
 

35 D_AIS_1 G_AIS_5 

16 D_AIS_7 G_AIS_3 
 

36 D_AIS_4 Ramp 

17 D_AIS_8 G_AIS_3 
 

37 O&H G_AIS_12 

18 D_AIS_14 G_AIS_3 
 

38 D_AIS_3 G_AIS_12 

19 D_AIS_1* G_AIS_1 
 

C Denotes corrected by Bird 

20 D_AIS_1** G_AIS_1 
    

*    suspension of AIS for KT_day < 0.2 and use of BRL for DHI regardless of kT_patch 

**  suspension of AIS for KT_day < 0.2 and use of Reindl for DHI regardless of kT_patch 

 

In theory, B_AIS schemes 19, 20 and 21 might be expected to give the same 

uncertainties for days in bin 1, since the BRL model is implemented uniformly 

whenever KT_day < 0.2. In practice the uncertainties are different because the PB 

system measures daily clearness index using only patches of known GHI values 

and not the full day’s record, as done for the NREL reference instruments. 

Therefore, a misclassification of daily data can occur if, for example, the PB 

system determines that the KT_day exceeds 0.2 but the reference data determines 

that it does not. This is rare but possible because in the calculation of statistical 

uncertainty, data are necessarily classified according to reference-derived KT_day 

values, while the internal processing of data is done using only output from the 

PB system.  
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The DNI outputs produced by equation (1.2) can exceed physical limits and even 

become negative because of inaccuracies in the component DHI and GHI values. 

As a quality-control measure, the Bird clear sky model (Bird and Hulstrom, 1981) 

was used to monitor each DNI value produced by the PB system, Efbn, and impose 

limits to prevent non-physical results, as follows:  

 𝐸𝑓𝑏𝑛 = {
𝐸𝑏𝑛_𝐵𝑖𝑟𝑑                                     𝐸𝑓𝑏𝑛  >  1.3𝐸𝑏𝑛_𝐵𝑖𝑟𝑑  

  0                                                   𝐸𝑓𝑏𝑛 <  0                         
 

 

     (5.1) 

 

Schemes subjected to the correction procedure were given the same names as their 

unrestricted counterparts, however the letter ‘C’ was appended to indicate 

correction by the Bird model. The number of variants tested in datasets #1 and #2 

thus doubled from 36 and 38 to 72 and 76 respectively.  

Setting the upper DNI limit at 130% of the predicted Bird value allowed for 

possible underprediction of DNI by the clear sky model. No attempt was made to 

optimise this value, however it can be seen from the results that the 

implementation of the limit improves performance in most of the bins. 

5.4.1 DNI: Dataset #1   

Table 5.4 gives bin-based results for DNI obtained by the combination of DHI and 

GHI, according to Table 5.3. These results should be interpreted with care since 

the percentage RMSD values become amplified under overcast conditions when 

the reference DNI drops close to zero. For this reason, additional graphs are 

provided for RMSD and MBD showing the absolute values in [W/m2]. 

Several trends are evident in Table 5.4. The CdSPM returns absolute uncertainties 

that balloon noticeably in the mid-clearness index range, similar to the GHI 

results. Under partly cloudy conditions (0.3 ≤ KT_day < 0.7) the PB system 

performs poorly, with RMSD values of between 142.9% and 31.1%. Bias is 

consistently negative at values between –3.5 and –5.0%, meaning that the direct 

normal component is underestimated by the CdSPM.  

The adaptive schemes composed of the best performing DHI and GHI 

components generally returned the lowest, or close to the lowest uncertainties. 

The Ramp function (pairing Ramp DHI with Ramp GHI) generally performed 

well. It is also clear that the application of the Bird model to restrict the direct 

normal component at its upper and lower limits gives better results than the 

uncorrected schemes, except in bin 8. This is most likely because the data in bin 8 

are nearly cloud-free, thus the advantage provided by the Bird model in dealing 

with extreme values is neutralised for data traces that are structurally coherent.  

Under the clearer conditions of bins 7 and 8, considerably lower RMSD 

uncertainties in the region of 10% are obtained. This confirms that the perforated 

band is best deployed in areas where the daily clearness index exceeds 0.7, if DNI 

is the component of interest.  
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The adaptive interpolation schemes generally perform better than non-AIS 

variants, although there is little difference under clearer conditions (Figures 5.9 to 

5.12). This was to be expected given that similar trends were observed for each of 

the constituent GHI and DHI components. 

 

Table 5.4: Best performing DNI interpolation schemes per bin (NREL,  

Z < 70°). 

Bin Ave. Scheme RMSD MBD SD U95 |MBD| 

 KT_day  [W/m2] [%] [W/m2] [%] [W/m2] [%] [%] [%] 

1 0.14 B_AIS_21C 28.0 516.2 1.7 31.5 27.9 515.2 1429.4 31.5 

2 0.25 B_AIS_6C 63.9 244.5 -0.3 -1.2 63.9 244.5 677.8 1.2 

3 0.36 B_AIS_23C 145.8 142.9 -3.6 -3.5 145.8 142.9 396.0 3.5 

4 0.45 RampC 172.0 78.4 -10.9 -5.0 171.6 78.2 217.0 5.0 

5 0.55 RampC 193.2 45.4 -20.4 -4.8 192.1 45.2 125.5 4.8 

6 0.65 A100C 182.7 31.1 -20.6 -3.5 181.5 30.9 85.9 3.5 

7 0.75 B_AIS_27C 119.4 13.7 -16.1 -1.8 118.3 13.6 37.9 1.8 

8 0.81 Ramp 89.4 9.4 -13.5 -1.4 88.4 9.3 25.9 1.4 

 

Figures 5.9 to 5.12 permit comparison of the CdSPM data with output from 

decomposition models implemented mainly with reference GHI measurements. 

The decomposition models return lower RMSD uncertainties throughout, 

although the difference becomes small for bins 7 and 8.  

Interestingly, the decomposition models perform quite poorly in terms of mean 

bias difference, as compared to the perforated shadow band system. Other than in 

bins 5 and 7, the PB system yields lower bias differences for the top performing 

schemes listed in Table 5.4. The DM bias difference is consistently positive up to 

bin 7, indicating that the decomposition models overestimate DNI. 

 

 

 

 

 

 

 

 

Figure 5.9: Percentage root mean square difference for best adaptive and 

non-adaptive schemes in dataset #1 by daily clearness index (Z < 70°). 
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Figure 5.10: Root mean square difference in [W/m2] for best adaptive and 

non-adaptive schemes in dataset #1 by daily clearness index (Z < 70°). 

 

 

 

 

 

 

 

 

Figure 5.11: Percentage mean bias difference for best adaptive and non-

adaptive schemes in dataset #1 by daily clearness index (Z < 70°). 

 

 

 

 

 

 

 

 

Figure 5.12: Mean bias difference in [W/m2] for best adaptive and non-

adaptive schemes in dataset #1 by daily clearness index (Z < 70°). 
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A more detailed discussion of decomposition model performance versus that of 

the perforated band is provided in section 5.6. Appendix E provides additional 

RMSD uncertainty results for dataset #1, comprising a graphical comparison 

between the best performing schemes described here and those that performed 

poorly. The comparison covers DHI, GHI and DNI interpolation results. 

5.4.2 DNI: Dataset #2 

The implementation of the CdSPM in dataset #2 confirmed the reproducibility of 

the results with regard to DNI. For readability, the DNI uncertainties in Figures 

5.13 and 5.14 are given in [W/m2] rather than percentages. 

As with dataset #1, the top performing schemes in dataset #2 were generally those 

combining the best performing DHI and GHI components and, in two bins, the 

Ramp interpolation function. The best performing schemes from dataset #1 and 

the best schemes from dataset #2 (black markers and red markers respectively) 

follow a similar trend and return very similar root mean square differences.  

As before, RMSD uncertainties are pronounced in the mid-range of clearness 

index. As in dataset #1, the decomposition models yield lower uncertainties, 

although the mean bias difference for the models is higher in half of the bins. 

There is little to choose between the AIS and non-AIS schemes at higher clearness 

indices, however the adaptive schemes tend to perform better in bins 1 and 2. 

Significantly, the interpolation methodologies that performed best in dataset #1 

also returned low RMSD uncertainties when instituted in dataset #2. The average 

difference in RMSD across all bins between the transferred list of schemes from 

dataset #1 and the best schemes in #2 is 1.8%. This is shown graphically in 

Figures 5.13 and 5.14, where the black markers and the green circles are largely 

coincident.  

 

 

 

 

 

 

 

 

 

Figure 5.13: Comparative root mean square difference of best overall and 

best non-AIS schemes for DNI in datasets #1 and #2, by daily clearness index 

(Z < 70°). 
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Figure 5.14: Comparative mean bias difference of best overall and best non-

AIS schemes for DNI in datasets #1 and #2, by daily clearness index (Z < 70°). 

 

These results confirm that the schemes identified in dataset #1 as most effective in 
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results at the NREL site. 

5.5 Visualisation of CdSPM results for daily data 

The statistical analyses of the preceding sections identified superior interpolation 

schemes based on two substantial datasets. In this section, the CdSPM is applied 

to three daily data files as an example of how the methodology produces 

irradiance curves in practice. The resulting traces are presented graphically. 

The days reflect three different average daily clearness indices of 0.14 (heavily 

overcast), 0.33 and 0.49 (mixed conditions). In each case, irradiance traces from a 

selection of the interpolation schemes are provided along with the reference 

measurements for comparison. Since the CdSPM was shown to perform in a 

robust, reproducible manner across different datasets, it should be expected to 

yield RMSD and MBD uncertainties approaching those described in Tables 5.1, 

5.2 and 5.4, when applied to individual daily files from the two datasets.  

5.5.1 Mixed conditions 

Figures 5.15, 5.16 and 5.17 show the CdSPM’s attempts to reproduce a reference 

trace for DHI, GHI and DNI curves, respectively, using data recorded at NREL 

SRRL on 2 June 2012. The day represents an interesting test case since it 

transitions from a cloudless morning to an overcast afternoon, and therefore 

contains intraday extremes in the clearness index. The average daily clearness 

index was 0.33 with the transition to overcast occurring just after 10:00 hours.  

Figure 5.15 gives the results for DHI reconstruction, with the uppermost pane 

showing the reference diffuse irradiance in grey (Ed) and the measured DHI from 
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the PB system in red (Efd). Gaps in the trace for which no DHI measurements 

were recorded, are clearly visible and include periods with high irradiance ramp 

rates, which represent a challenge for the interpolation process.  

The second, third and fourth panes contain a selection of interpolation schemes 

together with the percentage RMSD for each technique. It should be noted that the 

uncertainties are calculated for the entire day and not for a subset of the data for 

which Z < 70°. This is done to illustrate the actual %RMSD that would result for a 

PB system run under these conditions. The lowest pane contains the most 

successful scheme for the given data (D_AIS_14), as well as the scheme 

identified by the CdSPM as the best statistical option for the given clearness index 

(D_AIS_8), taken from Table 5.1. In this case, D_AIS_8 performs slightly worse 

than D_AIS_14 by 0.5%.  

Importantly, Figure 5.15 shows that the adaptive scheme works very well in 

dealing with highly variable conditions. Had a pure Ramp interpolation approach 

been used throughout the day, the resulting RMSD percentage would have risen to 

29.9% as shown in the lowest pane. Conversely, the use of a decomposition model 

such as BRL throughout to deal with the overcast patches would have returned an 

uncertainty of 40.1%. The adaptive schemes successfully deploy both of these 

techniques in a selective manner to reduce the uncertainty.   

The results for GHI can be seen in Figure 5.16. The Spline and PCHIP schemes 

are configured to pass only through the measured data and therefore deviate 

considerably from the reference trace at high zenith angles (second pane). The 

reverse decomposition model (GeD) works well under overcast conditions, but is 

a poor performer in the absence of cloud, giving the saw-tooth waveform typical 

of PB output under clear skies (pane 3). G_AIS_1 utilises both GeD and other 

schemes, as dictated by the patch-wise clearness indices, returning a daily RMSD 

uncertainty of 39.5%. G_AIS_9 makes use of 1 minute average interpolation for 

the clearer part of the day and does marginally better. This is mainly due to its 

superior performance in the 4th gap around 10:00, where the difference between 

the reference trace and the interpolated data becomes large. RMSD is particularly 

sensitive to such differences because of the exponential nature of its formulation.    
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Figure 5.15: Application of the CdSPM to DHI data on 2 June 2012 for 

mixed cloud conditions and KT_day = 0.33. Uncertainties are given in %RMSD. 
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Figure 5.16: Application of the CdSPM to GHI data on 2 June 2012 for 

mixed cloud conditions and KT_day = 0.33. Uncertainties are given in %RMSD. 
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The DNI results for 2 June 2012 are given in Figure 5.17. The top pane includes 

both the global irradiance (Efg) and the diffuse component (Efd) from the PB 

pyranometer, together which must recreate the reference DNI trace. 

The effectiveness of the Bird model as a correction tool is evident in the early 

hours of the day up to about 06:30 where non-physical results are obtained for the 

3rd order polynomial, PCHIP and Spline schemes. In this case a reasonable clear-

sky curve is created by imposing the Bird correction on the data. Overall, the 

B_AIS_23C adaptive scheme returns the lowest uncertainty for the day. 

Figures 5.18 to 5.20 show the CdSPM at work for 7 July 2011, for which the 

average clearness index is 0.49. Once again the morning is relatively clear 

however the afternoon reflects a partly cloudy sky with considerable stochasticity 

in the data traces. In fact, the day contains DHI gaps with clearness index values 

that fall into seven different bins.  

In the four panes of Figure 5.18 a selection of interpolation schemes and their 

associated uncertainties are given. The Spline scheme over- and undershoots the 

reference DHI as the mathematics enforces continuity of the first and second 

derivatives at the nodes. The model uncertainties improve with the 1-minute 

average scheme in pane 3, although averaging generates plateaus that appear 

highly non-physical.  

The application of a pure linear interpolation approach (Ramp) produces a daily 

RMSD uncertainty of 24.4%, but the Ramp function misses the short-lived spike 

in DHI that occurs at 16:00. The Reindl decomposition model detects and tracks 

the spike because the clearness index within that gap drops to 0.16, the diffuse 

fraction approaches unity and the DHI is set approximately equal to the 

contemporaneously measured global data. The Reindl model shows its weakness 

between 06:30 and 09:00 where there are two gaps in the trace whose clearness 

indices are 0.64 and 0.73, representing almost clear conditions. In the absence of 

cloud the DM yields a series of irregular bumps in the trace.  

The effectiveness of the D_AIS_6 adaptive scheme can be seen as it selectively 

deploys interpolation methods according to the local, patch-wise clearness index, 

making use of both the decomposition model and other techniques. In this way the 

uncertainty is reduced to 17.5%. 

In Figure 5.19, the GHI reference trace exhibits considerable high-frequency 

fluctuation and represents a particular challenge for data regeneration efforts. 

Schemes G_AIS_1 and 2 do better than the Ramp function and return 

uncertainties of 34.2% and 32.6% respectively, but much of the afternoon trace 

volatility defies accurate tracking. This illustrates the weakness of the perforated 

band system and underscores its suitability for clearer sky conditions. 

In Figure 5.20 the most successful DNI interpolation approach is the B_AIS_8C 

scheme, which gives an RMSD uncertainty of 45.1% for the day. None of the 

schemes performs particularly well, although the morning period is more 

effectively dealt with since the DNI reference trace is largely coherent between 

sunrise and 10:00 hours.  
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Figure 5.17: DNI resulting from the application of the CdSPM to DHI and 

GHI data on 2 June 2012 for mixed cloud conditions and KT_day = 0.33.  
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Figure 5.18: Application of the CdSPM to DHI data on 7 July 2011 for mixed 

cloud conditions and KT_day = 0.49. Uncertainties are given in %RMSD. 

0

100

200

300

400

500

600

700

800

4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00

Ir
ra

d
ia

n
ce

 [
W

/m
2
]

Time

Ed
Efd
Ed

Efd

0

100

200

300

400

500

600

700

800

4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00

Ir
ra

d
ia

n
ce

 [
W

/m
2
]

Time

Ed

Spline

5OP

Ed

Spline: 57.2%
5OP: 33.7%

0

100

200

300

400

500

600

700

800

4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00

Ir
ra

d
ia

n
ce

 [
W

/m
2
]

Time

Ed

1 min ave

A101

3OP

Ed

1 min: 33.1%
A101: 32.2%
3OP: 31.0%

0

100

200

300

400

500

600

700

800

4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00

Ir
ra

d
ia

n
ce

 [
W

/m
2
]

Time

Ed
Ramp
Reindl
D_AIS_6

Ed

Ramp: 24.4%
Reindl: 21.2%
D_AIS_6: 17.5%

Stellenbosch University  https://scholar.sun.ac.za



125 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19: Application of the CdSPM to GHI data on 7 July 2011 for mixed 

cloud conditions and KT_day = 0.49. Uncertainties are given in %RMSD. 
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Figure 5.20: DNI resulting from the application of the CdSPM to DHI and 

GHI data on 7 July 2011 for mixed cloud conditions and KT_day = 0.49. 
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5.5.2 Overcast conditions 

The application of the CdSPM to an overcast day is shown in Figures 5.21 to 5.23. 

On 12 September 2012 there was considerable stochasticity in the DHI and GHI 

traces which are largely identical due to the complete absence of direct normal 

irradiance. The average daily clearness index was 0.14.  

The top pane of Figure 5.21 shows DHI output data from the perforated band 

system together with the reference trace. Within most of the DHI gaps, there are 

high ramp rates and data fluctuations to which the PB system is blind. The use of 

curve-fitting techniques, such as the Spline, polynomial and PCHIP methods, 

yields relatively poor results with uncertainties ranging from 21.3 to 63.1%. The 

Ramp function returns an RMSD uncertainty of 20.5%. 

The use of decomposition models to interpolate under overcast conditions reduces 

uncertainty by half compared with the Ramp approach on the given day. Two 

examples are given in the lowest pane of Figure 5.21, namely the BRL and Erbs 

models which yield uncertainties of 11.4% and 11.2% respectively. The adaptive 

schemes making use of DM techniques (not shown) also return similar 

uncertainties.      

Figure 5.22 gives results for GHI interpolation. Since the trace is almost identical 

to the diffuse data, similar uncertainties result for the polynomial, Spline and 

Ramp functions. In this case there is no applicable decomposition model, but the 

GeD function is deployed by adaptive scheme G_AIS_1 with excellent effect, 

reducing the RMSD uncertainty for the day to 10.4%.  

The direct normal irradiance results are shown in Figure 5.23, with uncertainties 

given in [W/m2] fore readability rather than percentages. In this case the reference 

DNI trace is a flat line on the zero axis. As shown in the second, third and fourth 

panes, some of the interpolation schemes generate false DNI values by combining 

DHI and GHI data for the day, even when data are corrected by the Bird model. 

The adaptive schemes that deploy decomposition models and the GeD function 

operate correctly and produce very low uncertainties on the order of a few watts 

per square metre.   

The visualisation of the CdSPM in Figures 5.15 to 5.23 illustrates an important 

point: the interpolation problem for 1-minute resolution data is complex because it 

varies in nature depending on the sky conditions under which the measurements 

are generated. Under clear conditions ordinary linear or polynomial functions 

perform well, but not so under cloudy or overcast skies. An adaptive approach in 

which clearness index is continuously monitored and alternate strategies such as 

decomposition modelling employed, is therefore crucial to reducing RMSD 

uncertainty for the perforated shadow band system.  
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Figure 5.21: Application of the CdSPM to DHI data on 12 September 2012 

for overcast conditions and KT_day = 0.14. Uncertainties are given in %RMSD. 
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Figure 5.22: Application of the CdSPM to GHI data on 12 September 2012 

for overcast conditions and KT_day = 0.14. Uncertainties are given in %RMSD. 
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Figure 5.23: DNI resulting from the application of the CdSPM to DHI and 

GHI data on 12 September 2012 for overcast conditions and KT_day = 0.14. 

Uncertainties are given in [W/m2].  
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5.6 Perforated band performance versus decomposition models 

The use of a single, unshaded pyranometer measuring GHI in conjunction with 

radiometric decomposition models to derive DHI represents an alternative to the 

perforated band system for ground station operators. In order to quantify the 

difference between these two approaches, uncertainty data from the 

decomposition models of sections 4.9.2 to 4.9.6 were shown graphically in 

Figures 5.1 to 5.4 for DHI and Figures 5.9 to 5.14 for DNI. (Data for GHI were 

omitted because an unshaded pyranometer measures the global component 

directly, and therefore the model uncertainty is zero.) This section expands on the 

methods used to generate the decomposition model data against which PB 

performance was compared. 

5.6.1 Diffuse horizontal irradiance 

To assess the decomposition models as alternatives to the PB system, 1-minute 

GHI and clearness index values were obtained from the collocated reference 

pyranometer used in datasets #1 and #2. For the BRL model, the daily clearness 

index parameter (KT_day) was taken from the perforated band algorithm in the 

CdSPM, together with the solar altitude angle, where required. The models were 

then implemented to yield DHI values for comparison.  

It is worth noting that models are typically derived using hour-averaged input 

data, as discussed in section 4.9.1. In this study the decomposition models were 

run using input data with averaging periods of 10, 30 and 60 minutes in addition 

to the standard 1-minute interval. The input irradiance thus remained constant for 

the averaging period as did the output values.  

In all cases the uncertainty was calculated by comparing the modelled irradiance 

with the contemporaneous 1-minute reference measurement of DHI. This was 

done to ensure a fair comparison between the DM approach and the PB system, 

whose performance is determined against 1-minute reference values throughout 

this study.   

Table 5.5 gives the uncertainties of the best performing models for converting 

GHI to DHI in both datasets. These data are represented in Figures 5.1 to 5.4 as 

blue markers. The naming convention includes the time period over which model 

input irradiance was averaged. For example, the DM in bin 3 with the lowest 

RMSD uncertainty was BRL10, indicating that the model values were averaged 

over 10 minutes rather than 1 minute.  

The BRL model is the top performer in most bins for both datasets. The Reindl 

model also does well for mid-range clearness indices. Interestingly, there is a mix 

of averaging periods in the top performers ranging from 1-minute intervals mainly 

in the cloudier categories to 60 minutes under clearer sky conditions. This is 

significant and confirms that decomposition models do not necessarily yield their 

lowest uncertainties when used over hourly periods. They may indeed be used 

over shorter periods and in some cases perform better at higher temporal 

resolutions.       
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Table 5.5: Statistical parameters for best performing decomposition models 

in generating DHI from GHI in datasets #1 and #2 (Z < 70°).  

Dataset #1 Dataset #2 

Bin Scheme RMSD MBD Bin Scheme RMSD MBD 

  [%] [%]   [%] [%] 

1 BRL1 17.5 -2.0 1 BRL1 15.3 -2.8 

2 BRL10 18.4 -5.0 2 BRL10 17.6 -6.7 

3 BRL10 27.4 -10.2 3 BRL10 27.6 -5.9 

4 BRL30 32.2 -7.6 4 Reindl1 30.4 -10.0 

5 Reindl1 36.4 -0.3 5 Reindl1 33.6 -2.0 

6 O&H1 42.8 -7.3 6 Reindl1 40.9 4.0 

7 BRL60 51.0 -6.3 7 BRL60 45.0 -9.9 

8 BRB60 64.6 -16.9 8 BRB10 38.2 -1.4 

 

5.6.2 Direct normal irradiance 

Direct normal irradiance was calculated by combining GHI values from the 

reference pyranometer with DHI values obtained from decomposition models. 

The Bird model was again used to limit extreme values arising during the 

calculation. Uncertainties were determined by comparing the model-derived DNI 

with 1-minute measurements from NREL’s collocated Kipp and Zonen CH1 

pyrheliometer. The results in Table 5.6 are given in [W/m2], and are shown in 

Figures 5.9 to 5.14 with blue markers. Although decomposition models perform 

poorly compared with the perforated band in estimating DHI, they return lower 

uncertainties for DNI because the direct normal component is a combination of 

DHI and GHI, which has a zero error. Under clear sky conditions there is little 

difference between the PB and decomposition model approach.    

 

Table 5.6: Statistical parameters for best performing decomposition models 

in generating DNI from GHI in datasets #1 and #2 (Z < 70°).  

Dataset #1 Dataset #2 

Bin Scheme RMSD MBD Bin Scheme RMSD MBD 

  [W/m2] [W/m2]   [W/m2] [W/m2] 

1 BRL10C 22.9 4.4 1 BRL30 31.5 3.9 

2 BRL1C 61.3 24.4 2 BRL10 70.8 29.0 

3 BRL1C 111.6 55.3 3 BRL1C 94.5 33.7 

4 BRL1C 142.2 67.9 4 BRL1C 126.9 50.5 

5 RnB1C 119.4 16.5 5 RnB1C 122.5 24.8 

6 OH1C 125.6 33.5 6 RnB1 129.7 7.2 

7 BRB1C 81.3 -7.1 7 BRB1C 78.7 1.0 

8 E1C 87.2 -33.7 8 BRB1C 57.3 1.2 
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5.7 Perforated band performance versus other radiometric methods 

Apart from the use of an unshaded pyranometer, other measurement options 

represent competitive alternatives to the perforated shadow band system. These 

include the use of satellite data and alternate radiometer configurations.  

5.7.1 Satellite data 

Satellite-derived solar data can be obtained from a number of providers, including 

the National Aeronautics and Space Administration (NASA), the Solar Radiation 

Data Service (SoDa), SOLEMI and GeoModel Solar. Most of the measurements 

come from instruments on the METEOSAT and Geostationary Operational 

Environmental Satellite (GOES) spacecraft, operated by a European consortium 

and the United States National Oceanic and Atmospheric Administration (NOAA) 

respectively (Myers, 2013).   

A direct comparison of PB uncertainty versus satellite-derived predictions is not 

possible because satellite providers do not offer 1-minute time-series. 

Furthermore, the uncertainties for satellite-based data are not classified according 

to clearness index, as in this study, but are generally reported as a single value, 

either RMSD in [W/m2] or as a percentage of the mean recorded irradiance. 

Therefore, to enable meaningful comparison three subsets of PB measurements 

were randomly selected from dataset #1 (2011) and used to generate hourly 

averages for DHI, GHI and DNI components. The subsets each comprise 80 days 

worth of measurements for which Z < 70°, distributed between all eight clearness 

index bins, with ten days per bin.  

The effect of integrating 1-minute readings over longer periods is to reduce the 

RMSD uncertainty, as shown in Figure 5.24. The DHI data comprised 39 014 

minute-averaged values for the D_AIS_1 scheme, generated by the perforated 

band and reintegrated over successively longer periods from 15 minutes to 1 hour.  

The reduction in uncertainty between 1-minute and hourly periods varies from 4% 

to 8.2%, depending on the clearness index bin. The overall RMSD average for the 

hourly period, as determined from the full data subset, is 11.3% which may be 

used when comparing PB uncertainty with that of satellite-based measurements. A 

similar reduction in uncertainty occurs for other interpolation schemes like the 

Ramp function.  

These results are consistent with trends reported by Zelenka (1999) where 

reductions in the uncertainty of GHI occurred for integrating periods increasing 

from 10 minutes to one month. Mean bias differences remain largely unchanged 

with averaging period. 
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Figure 5.24: Reduction in %RMSD for DHI adaptive scheme D_AIS_1 

generated by the perforated band, with increasing period of integration. 

 

GHI and DNI uncertainties are published for the HelioClim-3 database (SoDa) 

and for the SolarGIS database version 1.8 from GeoModel Solar (SolarGIS, 

2013). When compared against these products, the perforated band RMSD 

uncertainties compare favourably for hourly intervals, which is the most 

commonly reported, sub-daily interval, as shown in Figures 5.25 and 5.26.   

For global horizontal irradiance, the perforated band system yields an average 

hourly RMSD of 12.3% using the G_AIS_1 adaptive scheme. The equivalent 

uncertainty for the Ramp scheme is 12.7%. The averaged hourly satellite-derived 

uncertainty for SolarGIS version 1.8, compared to ground station measurements 

where the mean GHI values are given, is approximately 19% (SolarGIS, 2013). 

The RMSD for HelioClim-3 is 22.0% based on a minimum threshold value of  

10 W/m2, although this figure drops to 16.3% when the threshold is raised to  

200 W/m2 (SoDa, 2013). The uncertainty quoted for HelioClim-3 by Espinar et al. 

(2012) is “around 20%”.  

The mean bias difference for PB hourly data, based on the G_AIS_1 scheme, is  

–3.5%, compared with –1.1% for HelioClim-3 and a value of 1.1% reported by 

SolarGIS for European stations.  

It should be noted that the satellite uncertainties are averages derived from a 

comparison with ground station data. They are represented in Figures 5.25 and 

5.26 as constants because variability as a function of KT_day is not provided in the 

HelioClim-3 or SolarGIS specifications. Nevertheless, both SoDa and GeoModel 

Solar list the stations against which their databases are compared and it appears 

that uncertainty is generally lower in arid regions. For example, the HelioClim-3 
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RMSD for GHI is lowest over Tamanrasset (10.3%), De Aar (11.4%) and Sede-

Boqer (11.5%). Conversely, the European stations in cloudier regions produce 

higher uncertainties, for example 18.2% (Geneva) and 27.8% (Bergen). The same 

trend applies to the SolarGIS database. This variability in RMSD and MBD arises 

from factors such as the cloud condition, topography and vegetation. It suggests a 

need for the publication of uncertainty as a function of clearness index to clarify 

the applicability of satellite-based measurements and to permit greater confidence 

in the results.    

The mean measured GHI at stations used by HelioClim-3 for their analysis is  

326 W/m2 with a 10 W/m2 minimum threshold (SoDa, 2013). The measured GHI 

at SolarGIS ground stations, where available, averages to approximately  

353 W/m2 (SolarGIS, 2013). The mean measured GHI for the PB subset of data is 

433.5 W/m2 and the data are drawn from NREL’s SRRL site in Colorado. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.25: Hourly RMSD uncertainty of PB-derived global irradiance 

using the G_AIS_1 and Ramp schemes, with reported uncertainties for the 

HelioClim-3 and SolarGIS databases. 
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B_AIS_1C scheme is almost identical. Uncertainties are given in [W/m2] rather 

than percentages for readibility. 
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between 16% and 22% for six South African ground stations. Data from the 

UKZN Howard College ground station were provided to GeoModel Solar by the 

author of this study to validate the SolarGIS database. The RMSD for Durban is 

32.2% (SolarGIS, 2013). No classification of DNI uncertainty is given versus 

clearness index in the SolarGIS specification. SoDa does not provide DNI 

uncertainty values for HelioClim-3 in their specifications, nor do they give 

uncertainties pertaining to diffuse horizontal irradiance. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26: Hourly RMSD uncertainty of PB-derived direct normal 

irradiance using the RampC and B_AIS_1C schemes, with reported 

uncertainty for the SolarGIS database. 

 

5.7.2 Commercial radiometers 
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intervals. Minute-averaged statistics are rare, and the general lack of detailed data, 

or of a standard reporting method, makes it difficult to compare instruments. 

Furthermore, sensors exhibit seasonal, spatial and temporal variations in 

uncertainty that are not usually reported on technical data sheets. Drawing 

definitive conclusions about comparative sensor performance is therefore 

dependent on measurement campaigns in which multiple instruments are tested 

simultaneously at a common location.   

Wilcox and Myers (2008) conducted one of the few studies detailing run-off trials 

at high temporal resolution between different, collocated sensors. They report 
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pyrheliometers, and two diffuse pyranometers from a 12-month monitoring 

programme at NREL SRRL. Data have been drawn from their study to compare 

the PB system’s performance against alternate, commercial radiometers. An 

exhaustive description of all commercially available instruments is beyond the 

scope of this work, but the following sections serve to contextualise the PB 

system’s performance against two popular types of instrument: the Delta-T SPN1 

radiometer and the Rotating Shadowband Radiometer (RSR) by Irradiance Inc.   

Delta-T Devices Ltd. describes the overall accuracy of GHI and DHI outputs as 

±5% for daily totals, ±5% ± 10 W/m2 for hourly averages and ±8% ± 10 W/m2 for 

individual readings. The figures are given for 95% confidence limits but it is not 

clear whether they represent measurement uncertainty, or model uncertainty 

derived from comparison with reference radiometers. No uncertainties are quoted 

for DNI. 

Table 5.7 gives bias and standard deviation uncertainties for SPN1, RSR2 and LI-

200 instruments tested at NREL SRRL in a separate trial over periods of  

4 months, 12 months and 11 months respectively (Wilcox and Myers, 2008). Both 

the SPN1 and the RSR2 instruments contain correction algorithms in their 

software to mitigate spectral selectivity and cosine error. 

 

Table 5.7: Uncertainty results of Wilcox and Myers (2008) for SPN1, RSR2 

and LI-200 instruments at 1-minute time intervals and zenith angles of up to 

80°. 

Instrument Bias max/min  

[%] 

Standard deviation 

[%] 

SPN1 (GHI)  -0.3 to -3.7 4 to 7 

SPN1 (DNI)  +8.1 to +3.0 19 to 24 

SPN1 (DHI)  -13.8 to -4.3 7 to 11 

LI-200 (GHI)  +2.8 to -2.0 3 to 8 

RSR2 (GHI)  +1.0 to -1.2 4 to 6 

RSR2 (DNI)  -3.5 to -7.5 16 to 19 

RSR2 (DHI)  -0.2 to +3.0 5 to 6 

 

Measurements from an RSR2 were not available from NREL during this study, 

however SPN1 and LI-200 instruments were generating 1-minute data over the 

same time period as dataset #1, permitting comparison with the PB system. 

Figures 5.27 to 5.29 illustrate comparative uncertainties for DHI, GHI and DNI 

respectively, determined for zenith angles less than 70°. The LI-200 device 

provides GHI only, while the SPN1 provides DHI and GHI from which DNI has 

been calculated without correction of the resulting data.  

The PB system produces higher percentage RMSD uncertainties than the SPN1 

for all components and across all clearness index bins. In the case of DHI, the 
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difference is approximately constant at around 10%, while the difference is 

considerably higher for GHI and DNI in the mid-clearness index range. Under 

very clear conditions the differences are smaller. Standard deviations for the LI-

200 and SPN1 instruments obtained in this study are consistent with the results 

given in Table 5.7 by Wilcox and Myers (2008). Interestingly, the inexpensive LI-

200 sensor produces the lowest %RMSD of all three systems for GHI, from mid-

range clearness index through to clear sky conditions.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27: DHI uncertainties of the PB system and collocated SPN1 sensor, 

classified by daily clearness index for dataset #1 and Z < 70°. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.28: GHI uncertainties of the PB system and collocated SPN1 and LI-

200 sensors, classified by daily clearness index for dataset #1 and Z < 70°. 
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Figure 5.29: DNI uncertainties of the PB system and collocated SPN1 sensor, 

classified by daily clearness index for dataset #1 and Z < 70°. 

 

The PB system produces a lower mean bias difference than the SPN1 for DHI 

measurements up to a clearness index of about 0.6. Thereafter the PB system 

performs worse, recording a MBD percentage above 7% under the clearest 

conditions. The SPN1 consistently under-predicts DHI across all sky conditions 

but generally over-predicts GHI. The LI-COR sensor exhibits very low bias 

versus the reference data for global horizontal irradiance. Mean bias differences 

for DNI are considerably higher for the SPN1 than for the PB system across all 

sky conditions. 

In general, the random uncertainty of the SPN1 and LI-200 sensors is 

considerably lower than for the perforated band system, however the PB setup 

shows less bias than the SPN1 in predicting DHI and DNI. 

5.8 The effect of non-classification by clearness index 

The performance of the perforated band in predicting GHI and DNI is strongly 

related to cloud conditions, with increased uncertainty in the mid-KT_day range. 

When the analysis is done without classifying data by KT_day, the result provides a 

useful indication of the device’s accuracy over time versus reference data for the 

location at which measurements were taken, in this case Golden, Colorado.  

Table 5.8 gives MBD, RMSD and SD percentages for selected perforated band 

interpolation schemes when applied to datasets #1 and #2 without consideration of 

the cloud conditions. The results are average statistical uncertainties for all 1-

minute data (Z < 70°) and are obtained by concatenating data to form a continuous 

record, irrespective of KT_day, from which statistical parameters are determined.  
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Table 5.8: PB performance disregarding classification according to clearness 

index, including data for collocated SPN1 and LI-200. 

 
MBD RMSD SD 

 
[%] [%] [%] [%] [%] [%] 

Dataset #1 #2 #1 #2 #1 #2 

PB Diffuse horizontal irradiance 

D_AIS_1 1.0 0.5 19.4 17.2 19.3 17.2 

D_AIS_6 1.1 0.6 19.4 17.1 19.3 17.1 

D_AIS_8 0.7 0.3 19.5 17.4 19.5 17.3 

D_AIS_14 0.4 0.1 19.7 17.5 19.7 17.5 

Ramp 3.2 2.3 22.9 20.3 22.7 20.1 

A101 4.1 2.7 25.3 21.9 25.0 21.7 

1 min 3.0 2.1 26.0 23.1 25.8 23.0 

BRL -6.1 -6.3 29.9 29.1 29.3 28.4 

4OP 4.0 3.2 32.7 28.6 32.4 28.4 

SPN1 -2.8 
 

9.5 
 

9.0 
 

PB Global horizontal irradiance 

G_AIS_1 -3.4 -3.8 21.0 20.3 20.7 20.0 

G_AIS_2 -2.9 -3.3 21.6 20.2 21.4 19.9 

G_AIS_5 -3.4 -3.6 21.6 19.9 21.3 19.6 

G_AIS_6 -3.1 -3.1 21.7 20.4 21.4 20.1 

Ramp -3.6 -3.7 21.9 20.2 21.6 19.9 

A101 -3.0 -3.3 22.2 20.8 22.0 20.6 

G_AIS_9 -3.8 -4.0 22.5 21.2 22.1 20.8 

1 min -3.9 -4.0 23.1 21.8 22.8 21.4 

4OP -3.6 -3.7 32.7 28.8 32.5 28.5 

SPN1 2.7 
 

5.3 
 

4.6 
 

LI-200 -0.1 
 

3.7 
 

3.7 
 

PB Direct normal irradiance 

B_AIS_1C -3.2 -4.6 28.2 29.2 28.0 28.8 

RampC -2.4 -3.8 28.5 28.6 28.3 28.3 

B_AIS_1 -3.6 -4.9 28.8 29.7 28.6 29.3 

A101C -1.8 -3.3 29.3 29.5 29.3 29.3 

Ramp -5.0 -5.7 30.2 29.9 29.8 29.3 

1 min C -2.8 -4.1 31.2 31.5 31.0 31.2 

1 min -5.2 -6.1 32.9 32.9 32.5 32.3 

4OPC -1.6 -3.1 34.8 34.2 34.8 34.1 

SPN1 7.9 
 

10.9 
 

7.5 
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The uncertainties necessarily reflect the weighting of the clearness conditions 

making up the archive. In other words, they are representative of conditions at 

NREL between 2009 and the end of 2012, but are likely to vary at other sites.  

For comparison, the measured average uncertainties for the SPN1 and the LI-200, 

as determined from dataset #1, are also given in Table 5.8. These are consistent 

with results from the study by Wilcox and Myers (2008), given in Table 5.7 and 

the superior performance of the alternate measurement sensors is again evident. 

There is little difference between the perforated band results for datasets #1 and 

#2, although mean bias difference is higher for DNI predictions in dataset #2. 

Aside from this, there is consistency of the PB interpolation methods across 

independent datasets. 

5.9 The effect of zenith angle on performance 

For most interpolation schemes, relaxing the upper zenith angle limit of 70° so as 

to include data for Z < 90° has a relatively small effect on the RMSD and MBD 

metrics. Figures 5.30 and 5.31 illustrate this by comparing the percentage RMSD 

and MBD uncertainties for DHI, GHI and DNI across a range of schemes.  

The uncertainties were calculated for the entire dataset #1 without segregation 

according to clearness index. For the schemes shown, the average increase in 

RMSD uncertainty when the upper limit is extended from 70° to 80° is 1.4%. It 

increases by 4.2% when the zenith angle limit is extended to 90°. The average 

changes in percentage mean bias difference are –0.4% and –0.5% when extending 

the limits to 80° and 90° respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.30: Comparative %RMSD uncertainty of selected interpolation 

schemes from dataset #1 as a function of upper zenith angle limit. 
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In the case of schemes which are not anchored to the horizontal axis at sunrise and 

sunset, such as the spline and PCHIP, the uncertainties can increase dramatically 

for data close to Z = 90° although this is purely an artefact of the mathematics. 

Generally, high zenith angle pyranometric data are disregarded in radiometric 

studies because of inaccuracies arising from the instrument cosine effect. It should 

also be noted that the uncertainties of the GeD scheme in Figures 5.30 and 5.31 

are high because it functions effectively under overcast conditions only, while the 

graph data cover all conditions, including clear sky measurements. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.31: Comparative %MBD uncertainty of selected interpolation 

schemes from dataset #1 as a function of upper zenith angle limit. 

 

5.10 The CdSPM applied to clear sky data 
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Table 5.9 gives uncertainty metrics for a selected group of interpolation schemes 

as applied to a subset of 11 cloud-free days (N = 4272) in dataset #1, processed 

using the CdSPM software. The average daily clearness index for the data subset 

is 0.77. The methodology is able to generate DNI values with RMSD uncertainties 

of just a few per cent, similar to those obtained by manual processing and reported 

in Table 3.5 of Chapter 3. The percentage DHI uncertainties are somewhat higher 

because of the low level of diffuse irradiance prevalent on clear days. The general 

performance of the PB system is very good in the absence of clouds, mainly 

because of the structurally coherent data traces that result for all three components 

of sun strength. 
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Table 5.9: Performance of selected CdSPM schemes under cloud-free 

conditions for 11-day subset from dataset #1 (Z < 70°). 

Scheme RMSD MBD SD U95 

 [W/m2] [%] [W/m2] [%] [W/m2] [%] [%] 

PB Diffuse horizontal irradiance 

4OP 8.8 13.4 2.7 4.2 8.4 12.8 36.3 

Ramp 8.2 12.6 1.7 2.6 8.1 12.3 34.5 

PCHIP 8.4 12.9 2.1 3.2 8.2 12.5 35.2 

A101 8.6 13.0 2.3 3.5 8.2 12.6 35.5 

D_AIS_1 8.4 12.9 2.1 3.2 8.2 12.5 35.2 

1 min 8.4 12.7 1.6 2.4 8.2 12.5 35.0 

Spline 10.3 15.8 4.0 6.2 9.5 14.5 42.0 

PB Global horizontal irradiance 

4OP 15.4 2.6 -7.2 -1.2 13.6 2.3 6.9 

Ramp 16.5 2.8 -8.7 -1.5 14.0 2.4 7.3 

PCHIP 17.3 3.0 -9.1 -1.5 14.7 2.5 7.6 

A101 16.2 2.8 -4.6 -0.8 15.5 2.7 7.5 

G_AIS_1 18.6 3.2 -7.5 -1.3 17.0 2.9 8.4 

1 min 27.2 4.6 -9.3 -1.6 25.6 4.4 12.5 

Spline 30.0 5.1 -12.1 -2.1 27.5 4.7 13.6 

PB Direct normal irradiance 

4OP 20.0 2.1 -11.5 -1.2 16.4 1.7 5.3 

Ramp 21.8 2.3 -12.6 -1.3 17.8 1.9 5.8 

PCHIP 25.3 2.7 -14.1 -1.5 21.0 2.2 6.8 

A101 24.4 2.6 -6.0 -0.6 23.7 2.5 7.0 

B_AIS_1 28.6 3.0 -10.9 -1.2 26.4 2.8 8.0 

1 min 53.2 5.6 -12.1 -1.3 51.8 5.4 15.3 

Spline 60.2 6.3 -24.4 -2.6 55.1 5.8 16.8 

 

5.11 Summary 

The cloudy sky processing methodology was applied to two independent 

radiometric datasets to characterise the performance of the perforated shadow 

band system. Performance was defined primarily in terms of the root mean square 

difference and the mean bias difference between the modelled irradiance from the 

PB system and data from collocated reference radiometers. The uncertainties were 

presented as a function of the average daily clearness index parameter since the 

system is heavily influenced by the cloud condition under which it operates. This 

approach allows potential operators of the perforated band to judge the suitability 

of installing the instrument, based on known conditions at a given site. 

The CdSPM was first applied to the primary dataset (#1) and yielded a set of 

optimal interpolation schemes for disaggregating a composite PB trace into 

separate DHI,  GHI  and DNI curves. When repeated with the validation dataset 
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(#2), results were similar, both with respect to the magnitude of the uncertainties 

and the types of schemes that yielded the best results. Although an exact match 

between the best performing schemes in datasets #1 and #2 was not achieved in 

every clearness index bin, the optimal schemes from #1 yielded almost identical 

statistical results in dataset #2. It can be concluded that the CdSPM is a robust and 

reproducible means of generating separate diffuse, global and direct normal 

irradiance curves from the single output trace of an Eppley PSP pyranometer 

operated under a perforated band. The recommended configuration of the CdSPM 

is given in Table 5.10 together with expected statistical uncertainties for each 

average daily clearness index bin.  

 

Table 5.10: Summary of recommended interpolation methods for processing 

data from a PB system and expected uncertainties by average daily clearness 

index.    

Bin Average Scheme RMSD MBD Ramp RMSD 

 KT_day  [W/m2] [%] [W/m2] [%] [W/m2] [%] 

Diffuse horizontal irradiance 

1 0 ≤ KT_day < 0.2 BRL 27.6 22.6 -5.6 -4.6 46.3 38.0 

2 0.2 ≤ KT_day < 0.3 D_AIS_14 32.9 16.5 -8.4 -4.2 44.2 22.1 

3 0.3 ≤ KT_day < 0.4 D_AIS_8 43.0 17.4 -6.0 -2.4 56.8 23.0 

4 0.4 ≤ KT_day < 0.5 D_AIS_6 40.9 16.2 -2.9 -1.2 49.9 19.8 

5 0.5 ≤ KT_day < 0.6 D_AIS_1 37.2 18.1 1.6 0.8 46.1 22.4 

6 0.6 ≤ KT_day < 0.7 D_AIS_6 32.2 17.7 4.9 2.7 34.2 18.9 

7 0.7 ≤ KT_day < 0.8 Ramp 19.6 20.6 4.2 4.4 19.6 20.6 

8 0.8 ≤ KT_day ≤ 1.0 D_AIS_1 19.4 21.2 7.2 7.8 20.0 21.8 

Global horizontal irradiance 

1 0 ≤ KT_day < 0.2 G_AIS_1 29.0 22.9 -6.2 -4.9 47.8 37.7 

2 0.2 ≤ KT_day < 0.3 G_AIS_9 49.1 22.6 -13.2 -6.1 63.8 29.4 

3 0.3 ≤ KT_day < 0.4 G_AIS_1 113.4 35.2 -21.2 -6.6 127.1 39.4 

4 0.4 ≤ KT_day < 0.5 G_AIS_1 128.6 31.7 -27.0 -6.7 132.6 32.7 

5 0.5 ≤ KT_day < 0.6 G_AIS_1 145.2 29.1 -25.3 -5.1 150.7 30.2 

6 0.6 ≤ KT_day < 0.7 G_AIS_2 129.5 22.0 -15.9 -2.7 132.5 22.5 

7 0.7 ≤ KT_day < 0.8 G_AIS_6 74.7 11.9 -10.8 -1.7 78.0 12.4 

8 0.8 ≤ KT_day ≤ 1.0 G_AIS_5 46.0 6.7 -8.4 -1.2 46.0 6.7 

Direct normal irradiance 

1 0 ≤ KT_day < 0.2 B_AIS_21C 28.0 516.2 1.7 31.5 78.9 >1000 

2 0.2 ≤ KT_day < 0.3 B_AIS_6C 63.9 244.5 -0.3 -1.2 102.8 393.2 

3 0.3 ≤ KT_day < 0.4 B_AIS_23C 145.8 142.9 -3.6 -3.5 181.3 177.6 

4 0.4 ≤ KT_day < 0.5 RampC 172.0 78.4 -10.9 -5.0 190.1 86.6 

5 0.5 ≤ KT_day < 0.6 RampC 193.2 45.4 -20.4 -4.8 206.2 48.5 

6 0.6 ≤ KT_day < 0.7 A100C 182.7 31.1 -20.6 -3.5 189.3 32.2 

7 0.7 ≤ KT_day < 0.8 B_AIS_27C 119.4 13.7 -16.1 -1.8 124.0 14.3 

8 0.8 ≤ KT_day ≤ 1.0 Ramp 89.4 9.4 -13.5 -1.4 89.4 9.4 
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In general, the adaptive interpolation schemes yielded lower uncertainties than the 

single-scheme techniques, validating their use. Nevertheless, in many of the bins 

the simple linear interpolation function (Ramp) performed well and operators of 

the perforated band may therefore opt to simplify the processing methodology by 

reverting to Ramp interpolation throughout. In that case the expected RMSD 

uncertainties increase according to the data given in the last two columns of Table 

5.10, which are provided for comparison. Under heavily cloudy and overcast 

conditions (0 ≤ KT_day < 0.4) a linear interpolation approach is not recommended. 

In comparison with alternate radiometric measurement approaches, the perforated 

band delivered mixed results. Against satellite data it returned lower hourly 

average RMSD and MBD uncertainties for global horizontal and direct normal 

irradiance.  

When compared to alternate commercial radiometers such as the SPN1, the PB 

system generally produced higher RMSD uncertainties for DHI and GHI 

measurement across all sky conditions. Under clear skies the perforated band 

system was competitive with the SPN1 for the generation of direct normal 

irradiance. The PB system yielded lower mean bias differences across all sky 

conditions than the SPN1 in this study.  

No performance assessment of the RSR2 radiometer was done in this study, 

however a comparison with published data suggests that it yields lower RMSD 

and MBD uncertainties than the perforated band system. The LI-200 sensor, 

which is used with the RSR2, was assessed and returned an RMSD lower than 

that of the PB system in the measurement of global horizontal irradiance. The 

same is true of MBD values except under clear sky conditions.  

The use of decomposition models in conjunction with an unshaded pyranometer 

measuring GHI offers an inexpensive alternative to multi-instrument measurement 

schemes. Compared to the perforated band system, decomposition models 

generally yielded higher RMSD and MBD uncertainties when measuring DHI in 

this study, except under heavily overcast skies. The PB system is thus a better 

candidate for measuring diffuse irradiance than an unshaded pyranometer used 

with a model.  

With respect to DNI, the PB system was less accurate than an unshaded 

pyranometer paired with a decomposition model, except under clear skies where 

the difference between the approaches was negligible. In general, the CdSPM 

results indicate that the perforated shadow band system performs best in 

conditions where the average daily clearness index is greater than 0.7.  
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6. LOCATION DEPENDENCE AND DEPLOYABILITY 

6.1  Introduction 

Solar radiometric schemes may require modification depending on their 

geographic location. For example, many radiometric models contain location-

specific parameters such as geographic latitude or elevation.  

In the case of the perforated band, several features of the physical setup and data 

processing methodology must be adjusted when the latitude, φ, changes: 

1. The polar mount of a shadow band in the southern hemisphere is inclined 

upwards to the north, rather than the south, affecting the way in which the 

equipment is installed.  

2. In the ray trace model of Chapter 2, the sensor exposure state, Es, is a 

function of hour angle, ω, but not of the day number, n, or latitude (Figure 

2.11). The only exception is for apertures 1 and 9, and zones 1 and 10, at 

high zenith angles. Limited location dependence is therefore expected with 

respect to the hour angle values of the ray trace model in Table 2.1. 

However, the zenith angle itself is a function of latitude, therefore the 

graphs of Z versus n in Figure 2.12 must be recalculated by location. This 

can be done using equation (2.9) without recourse to the ray tracing 

software itself. 

3. At high zenith angles (applicable to apertures 1 and 9 and shading zones 1 

and 10) the exposure state of the pyranometer sensor varies as a function 

of n and φ (Figures 2.11 and 2.12). If a priori knowledge of these changes 

is required at a site, the ray tracing model must be rerun to determine the 

limits of sensor exposure. Alternately, the band can be operated for a 

period and the limits can be obtained experimentally from clear sky data, 

avoiding the ray trace analysis. 

4. The correction factor for structural deformation of the band will vary by 

location and must be updated on a regular basis. This can be done by post-

processing experimental data from clear sky days. 

5. The shadow band correction factor is latitude dependent and must be 

adjusted accordingly.  

6. The CdSPM utilises radiometric models that are location dependent and 

must therefore also be adjusted.   

      

This chapter, which is drawn partly from the conference paper by Brooks and 

Roberts (2009) addresses the location-dependence of the PB system by assessing 

its performance at a southern hemisphere ground station. The cloudy sky 

processing methodology is adjusted accordingly and applied to data generated by 

a perforated band installed at the University of KwaZulu-Natal in Durban, South 

Africa. Results are compared to those generated at NREL SRRL. 

Recommendations are then made regarding the geographic deployment of the 

band, with particular reference to the African continent. 
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6.2  Southern hemisphere test results 

6.2.1 The UKZN HC ground station and dataset  

Radiometric measurements have been recorded at the University of KwaZulu-

Natal’s Howard College (HC) campus in Durban since 2009, when the author 

established a solar monitoring capability (Brooks and Roberts, 2009). The UKZN 

HC station is now part of a cluster of three ground stations in the greater Durban 

area that includes Mangosuthu University of Technology’s STARlab facility 

(Brooks and Harms, 2005) and the UKZN Westville campus. The stations are 

located within 18 km of each other, deliver high temporal resolution 

measurements of DNI, GHI and DHI at 1-minute intervals with thermopile 

sensors, and all belong to the SAURAN network.  

UKZN HC is located at 29.87°S 30.98°E, 151 m above sea level on the roof of a 

university building with largely clear horizons and excellent exposure. The 

original instrument suite, comprising Eppley PSP and NIP radiometers, was 

upgraded in 2013 to include Kipp & Zonen sensors (a CH1 and two CMP11 

pyranometers) on a SOLYS tracker, as illustrated in Figures 1.6 and 1.7.  

At commissioning, the facility was equipped with a perforated shadow band 

operating under an Eppley PSP to provide research data for this study. Table 6.1 

gives the instrument serial numbers and sensitivity factors for the radiometers 

used in deriving PB test data for this study. For budgetary reasons, there are no 

pyrgeometers installed at UKZN HC therefore it is not possible to apply a 

correction for thermal offset to data from the PSP sensor as was done for the 

NREL PSP.  

The UKZN instruments were calibrated in January 2009 before installation and 

the measurement uncertainties applicable to this study are on the order of 5 to 

10% for the PSP (Gueymard and Myers, 2009) and under 1% for the NIP (Wilcox 

and Myers, 2008). With higher uncertainties and unventilated radiometers, the 

measurement scheme at UKZN HC is inferior to that at NREL SRRL. To some 

extent this hampers a direct comparison of PB performance between the two sites, 

but there is still value in analysing the trends in perforated band performance to 

see if they are repeated at the southern hemisphere location.   

 

Table 6.1: Instruments used at UKZN HC to characterise PB performance.  

Component Instrument Serial Sensitivity Date 

 configuration number [W/m2/mV] installed 

Perforated band Unventilated PSP 35663F3 108.93 30 Jan 2009 

GHI (reference) Unventilated, unshaded PSP 35622F3 113.75 30 Jan 2009 

DHI (reference) Unventilated, shaded PSP w/band 35662F3 114.55 16 Jan 2009 

DNI (reference) Tracking Eppley NIP 35649E6 123.15 30 Jan 2009 
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Table 6.2 provides metadata for the UKZN HC measurements, referred to as 

dataset #3. In the absence of calibration facilities at the UKZN ground station, a 

limited set of 114 days between August 2010 and April 2011 was used to ensure 

the quality of the measurements and limit the effect of instrument drift. All daily 

data files were filtered using the exclusion criteria given in equations (4.1) to 

(4.6). The average daily clearness index is 0.50, somewhat lower than the values 

for datasets #1 (0.59) and #2 (0.61) from NREL. This was caused in part by fewer 

winter months in the dataset than summer months when rainfall is generally 

higher in Durban. There is also a difference in elevation between Golden and 

Durban, which is an industrial city at sea level and therefore subject to a higher 

average air mass. One can expect the maximum clear index values to be lower for 

the UKZN station than NREL SRRL.  

 

Table 6.2: Southern hemisphere radiometric dataset #3 used with the 

CdSPM (φ = –29.87°). 

Description UKZN HC dataset #3 

No. of daily files 114 

Time span 
August 2010 to 

April 2011 

Total number of data rows 

for Z < 70°, N 
63 134 

No. of DHI data 

interpolated 
22 764 (36.1%) 

No. of GHI and transition 

data interpolated 
40 370 (63.9%) 

Average daily clearness 

index, KT_day 
0.50 

 

 

6.2.2 The ray trace model applied to a southern hemisphere site 

Data relating ω, Z and n to the exposure state of a sensor in the southern 

hemisphere at φ = –29.87° are given in Figures 6.1 (a) and (b). These are 

analogous to the NREL ray trace model of Figures 2.11 (a) and (b). For each 

aperture or zone, the lower set of markers represents the values of ω at which full 

exposure or occlusion of the sensor first occurs and the upper markers represent 

the end of full exposure or occlusion. In the case of Figure 6.1 (a), the starting 

hour angles for apertures 1 and 9 do not apply for 122 ≤ n ≤ 220 because the band 

is adjusted to where the lower edges lie beneath the horizon. Under these 

conditions, shading zones 1 and 10 fall below the level of the pyranometer and 

have no influence on the sensor exposure state (Figure 6.1 (b)). Apart from this 

anomaly, the hour angle remains constant for a given aperture or zone throughout 
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the year. The linear regions of Figures 6.1 (a) and (b) are similar to the NREL 

model but the variable parts are reversed with respect to day number because of 

the inversion of seasons from the northern to southern hemispheres.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Ray tracing-derived hour angle limits for (a) full sensor exposure 

(Es = 1), and (b) full sensor shading (Es = 0) as a function of day number at φ 

= –29.87° (Brooks and Roberts, 2009).  

 

Table 6.3 gives average hour angle values applicable to the beginning and end of 

exposure and shading phases for the linear regions of Figure 6.1. These represent 

the ray trace model of pyranometer exposure for a perforated band in the southern 

hemisphere at φ = –29.87°.  

As was done for the NREL version of the model, equivalent zenith angle values 

are calculated using equation (2.9) for each aperture and zone and represented in 
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Figures 6.2 (a) and (b). For UKZN HC, K1 = –0.498 and K2 is given in Table 6.3 

as a function of hour angle. Both ω and K2 vary for the start of shading zone 1 and 

the end of shading zone 10 as a result of seasonal changes in band height relative 

to the pyranometer.          

 

Table 6.3: Annual hour angle limits for onset and completion of full 

pyranometer exposure (Es = 1) and shading (Es = 0) at UKZN HC (Brooks 

and Roberts, 2009). 

Es = 1 (Exposure) Es = 0 (Shading) 

Aper

-ture 

Start 

ω 
K2 End ω K2 

Shad. 

zone 

Start 

ω 
K2 End ω K2 

1 -79.94* 0.15 -71.71 0.27 1 Variable -81.45* 0.13 

2 -60.43 0.43 -52.65 0.53 2 -70.06 0.30 -62.23 0.40 

3 -41.27 0.65 -33.83 0.72 3 -50.71 0.55 -43.33 0.63 

4 -22.30 0.80 -15.15 0.84 4 -31.64 0.74 -24.59 0.79 

5 -3.49 0.87 3.49 0.87 5 -12.77 0.85 -5.94 0.86 

6 15.15 0.84 22.30 0.80 6 5.94 0.86 12.77 0.85 

7 33.83 0.72 41.27 0.65 7 24.59 0.79 31.64 0.74 

8 52.65 0.53 60.43 0.43 8 43.33 0.63 50.71 0.55 

9 71.71* 0.27 79.94 0.15 9 62.23 0.40 70.06 0.30 

     

10 81.45* 0.13 Variable 

Limits are valid approximately as:  
*
122 ≤ n ≤ 220 

 

A comparison between Tables 2.1 and 6.3 permits a check on the location-

dependence of the ray trace model. This shows a maximum absolute variation in 

the hour angle exposure start and end limits for any single aperture of 0.14° and 

an average absolute difference for all apertures of 0.05°.  

For shading zones, the maximum difference in predicted hour angle limits 

between the sites is 0.23° and the average absolute difference is 0.07°. The results 

confirm that for latitudes in the 30° to 40° range (northern or southern 

hemisphere) the ray trace model is latitude-independent with respect to hour 

angle. This invariability is a useful feature of the perforated band’s operation 

since no recalculation is required when deploying the system. The only difference 

between sites is the variation peculiar to the first and last apertures as they fall 

below the sensor level in winter. Since pyranometric data obtained at high zenith 

angles are generally treated with caution, or disregarded completely, the 

variability of the model at sunrise and sunset is of limited consequence.  
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Figure 6.2: Annual zenith angle start (s) and end (e) limits at φ = –29.87°: (a) 

by band aperture for pyranometer exposure (Es = 1) and (b) by shading zone 

(Es = 0) (Brooks and Roberts, 2009). 

 

As with the NREL test article, data from the UKZN HC station were corrected to 

account for structural deformation of the band and for the shadow band blocking 

effect, as described in section 2.5. The correction factor for structural deformation 

was determined empirically for the UKZN site, based on the difference between 

the ray trace model described in Table 6.3 and clear-sky data extracted from the 

dataset.  
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6.2.3 Dataset #3: PB uncertainties for GHI, DHI and DNI 

Uncertainties for the southern hemisphere PB system are presented similarly to 

those for NREL SRRL. Performance is assessed via the RMSD and MBD, with 

some additional metrics provided including the SD and expanded uncertainty, U95. 

These are calculated with reference to irradiance data from collocated sensors that 

independently record GHI, DHI and DNI. The adaptive interpolation schemes are 

numbered according to the same configuration as listed in Tables 4.7 and 4.8. As 

before, the root mean square difference is considered the primary metric for 

comparative purposes, followed by mean bias difference. 

Diffuse horizontal irradiance 

The statistical uncertainties of the PB system in recreating DHI are given in Table 

6.4, partitioned by clearness index. Although dataset #3 contains several days in 

which little cloud is present, no data for bin 8 were available (KT_day ≥ 0.8). This is 

due to the coastal sub-tropical climate of Durban and the limited period over 

which useable measurements were available. In addition, there is a higher average 

air mass above Durban and a consequent reduction in maximum clearness index 

for the site versus the high-altitude, clearer conditions at NREL. Root mean 

square differences for dataset #3 vary between 20.3 W/m2 for bin 1 and  

49.8 W/m2 for bin 4. The RMSD percentage is consistent with that of NREL, 

except in bin 6 where it rises to 27.6%. Figure 6.3 enables comparison of the 

Durban results with those from NREL (datasets #1 and #2).  

 

Table 6.4: Statistical parameters for best performing DHI interpolation 

schemes in dataset #3 by daily clearness index (φ = –29.87°, Z < 70°).  

Bin Ave. Scheme RMSD MBD SD U95 |MBD| 

 KT_day  [W/m2] [%] [W/m2] [%] [W/m2] [%] [%] [%] 

1 0.15 BRL 20.3 16.1 9.1 7.2 18.1 14.4 42.3 7.2 

2 0.25 RnB 30.6 15.6 11.6 5.9 28.3 14.4 41.6 5.9 

3 0.35 RnB 43.8 19.0 13.9 6.0 41.6 18.0 51.2 6.0 

4 0.45 D_AIS_9 49.8 21.7 27.2 11.9 41.8 18.2 55.5 11.9 

5 0.55 D_AIS_9 47.1 23.7 28.0 14.1 37.8 19.1 59.7 14.1 

6 0.64 D_AIS_5 39.4 27.6 23.8 16.6 31.4 22.0 69.1 16.6 

7 0.71 PCHIP 20.5 20.6 10.4 10.4 17.7 17.7 53.2 10.4 

8 
 

No data         

 

Figures 6.3 and 6.4 permit a comparison of the southern hemisphere data with 

NREL SRRL results. In bins 1, 2 and 3 there is little difference in percentage 

RMSD between the three datasets, but under clearer skies the Durban data exhibit 

uncertainties somewhat higher than at NREL. In Figure 6.3, the best non-AIS 

uncertainties for Durban are mainly equivalent to those of the adaptive schemes, 
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except in bin 5 where they are slightly higher. Interestingly, there is little 

difference between the performance of the best schemes transferred from #1 into 

#3, and that of the best schemes in #3, meaning that the superior schemes 

identified using NREL data performed consistently well for DHI generation, even 

at a different location and latitude. The same can be said of the MBD uncertainties 

(Figure 6.4) where the better performing schemes from #1 continue to do well in 

#3 (green circles versus blue circles). Bias differences are, however, higher for the 

southern hemisphere site than for the NREL data. Given that the reference scheme 

at the UKZN station is inferior to NREL’s sensors, it is likely that the bias values 

reported here are affected by the reference data at UKZN. The scheme used for 

this study employs a shadow band to generate DHI and not a tracking ball that 

yields lower measurement uncertainties. 

 

 

 

 

 

 

 

 

Figure 6.3: Root mean square difference for best DHI interpolation schemes 

in dataset #3 (φ = –29.87°, Z < 70°) by daily clearness index, with comparative 

results from datasets #1 and #2. 

 

 

 

 

 

 

 

 

 

Figure 6.4: Mean bias difference for best DHI interpolation schemes in 

dataset #3 (φ = –29.87°, Z < 70°) by daily clearness index, with comparative 

results from datasets #1 and #2. 
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Global horizontal irradiance 

Table 6.5 gives uncertainty data for GHI, while Figures 6.5 and 6.6 compare 

RMSD and MBD uncertainties for dataset #3 with those of #1 and #2. Four points 

are worth noting: 

1. The trends in the percentage RMSD and MBD curves are very similar for 

datasets #1 and #3. Root mean square differences balloon in the mid-KT_day 

range where partly cloudy conditions give rise to stochasticity in the GHI 

curves and interpolation becomes less effective. In the case of dataset #3, 

there is a compression of the RMSD curve towards the overcast side of the 

graph that is likely caused by differences in air mass and quality above the 

Durban station. 

2. In absolute terms, the RMSD and MBD percentages are very similar for 

datasets #1 and #3. Biases are negative throughout the bins, indicating that 

the PB system underestimates GHI, regardless of location. A slight increase 

in MBD can be observed for partly cloudy conditions in all three sets and 

the PB system operates more effectively under clear conditions. 

3. The best performing schemes from dataset #1 continue to perform well in 

dataset #3, as shown by the green circles tracking the blue. All but one of 

the best performing schemes in Table 6.5 utilise the GeD or Ramp functions 

for overcast or heavily cloudy conditions (bins 1 to 3). For the higher bins, 

adaptive schemes 6 and 11 deploy either ARIMA or averaging methods 

(Table 4.8).  

4. The adaptive schemes generally perform better than their non-adaptive 

competitors throughout, except in bin 8. Although the differences between 

AIS and non-AIS results are quite small, there is enough consistency in the 

data to confirm the value of using adaptive interpolation.  

 

Table 6.5: Statistical parameters for best performing GHI interpolation in 

dataset #3 (φ = –29.87°, Z < 70°). 

Bin Ave. Scheme RMSD MBD SD U95 |MBD| 

 KT_day  [W/m2] [%] [W/m2] [%] [W/m2)\] [%] [%] [%] 

1 0.15 G_AIS_1 20.5 14.2 -7.1 -4.9 19.3 13.3 38.2 4.9 

2 0.25 G_AIS_11 68.8 28.0 -16.5 -6.7 66.8 27.1 76.4 6.7 

3 0.35 G_AIS_5 112.2 32.4 -33.2 -9.6 107.2 31.0 87.9 9.6 

4 0.45 G_AIS_6 127.4 27.7 -42.1 -9.2 120.3 26.1 74.6 9.2 

5 0.55 G_AIS_11 122.9 22.8 -29.0 -5.4 119.4 22.2 62.4 5.4 

6 0.64 G_AIS_6 88.4 13.4 -25.1 -3.8 84.7 12.9 36.5 3.8 

7 0.71 3rd OP 44.2 6.1 -12.0 -1.7 42.6 5.9 16.7 1.7 

8  No data         
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Figure 6.5: Root mean square difference for best GHI interpolation schemes 

in dataset #3 (φ = –29.87°, Z < 70°) by daily clearness index, with comparative 

results from datasets #1 and #2. 

 

 

 

 

 

 

 

 

 

Figure 6.6: Mean bias difference for best GHI interpolation schemes in 

dataset #3 (φ = –29.87°, Z < 70°) by daily clearness index, with comparative 

results from datasets #1 and #2. 

 

Direct normal irradiance 

Table 6.6 provides the configuration of additional DNI schemes for dataset #3. 

These comprise the DHI and GHI components that yielded the lowest RMSD 

uncertainties for the UKZN HC ground station in each clearness index bin. For 

example, B_AIS_3_1 is comprised of BRL and G_AIS_1, since they were the 

best performers as shown in Tables 6.4 and 6.5. It should be noted that G_AIS_1 

yielded identical uncertainty to the non-AIS GeD for bin 1, which is to be 

expected since the GeD scheme is deployed under overcast conditions for that 

adaptive approach (Table 4.8). By including these additional combinations, it is 

possible to compare the best schemes from dataset #3 with the top performers in 
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sets #1 and #2, as shown in Figures 6.7 and 6.8. This enables the identification of 

differences in overall system performance, apart from differences in the 

performance of specific schemes carried over from the NREL site to UKZN 

Howard College.   

  

Table 6.6: Configuration of direct normal irradiance adaptive interpolation 

schemes (B_AIS) for southern hemisphere dataset #3.   

B_AIS DHI Scheme GHI Scheme 
 

B_AIS_3_1 BRL G_AIS_1 
 

B_AIS_3_2 RnB G_AIS_11 
 

B_AIS_3_3 RnB G_AIS_5 
 

B_AIS_3_4 D_AIS_9 G_AIS_6 
 

B_AIS_3_5 D_AIS_9 G_AIS_11 
 

B_AIS_3_6 D_AIS_5 G_AIS_6 
 

B_AIS_3_7 PCHIP 3OP 
 

 

Table 6.7 provides the DNI performance results for the perforated shadow band 

system at UKZN HC. Because DNI levels drop close to zero in the lower bins, it 

is more useful to consider the uncertainties in units of [W/m2] rather than 

percentages. Other than for overcast conditions (bin 1) and clear-sky days (bin 7), 

the schemes corrected using the Bird model performed best in each bin. As with 

the NREL results, this reflects the positive effect of ‘damping’ excessive 

fluctuations in DNI caused by the combination of the global and diffuse 

components.  

 

Table 6.7: Statistical parameters for best performing DNI interpolation 

schemes per bin in dataset #3 (φ = –29.87°, Z < 70°). 

Bin Ave. Scheme RMSD MBD SD U95 

 KT_day  [W/m2] [%] [W/m2] [%] [W/m2] [%] [%] 

1 0.15 B_AIS_21 7.0 263.5 -0.1 -2.0 7.0 263.5 730.5 

2 0.25 B_AIS_3_2C 81.6 282.0 1.8 6.2 81.6 282.0 781.6 

3 0.35 B_AIS_3_3C 131.1 134.5 -1.5 -1.6 131.1 134.5 372.8 

4 0.45 B_AIS_5C 149.4 61.4 -32.7 -13.5 145.8 59.9 168.1 

5 0.55 RampC 159.2 39.8 -21.9 -5.5 157.7 39.4 109.8 

6 0.64 RampC 128.7 19.7 -31.7 -4.9 124.8 19.1 53.8 

7 0.71 Ramp 75.5 9.0 -28.6 -3.4 69.9 8.3 23.9 

8  No data        
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Figures 6.7 and 6.8 provide a graphical comparison of PB performance across the 

three datasets. As with the GHI data, the trend in root mean square difference for 

dataset #3 is similar to that of the northern hemisphere data, increasing in the mid-

range bins where GHI uncertainties are also higher, and decreasing under overcast 

and clear-sky conditions. In bins 1 to 3, the mean bias difference is close to zero, 

becoming negative as skies clear and where the PB system tends to underestimate 

DNI. Again, the trend in dataset #3 is much the same as for the other two sets. 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Root mean square difference for best DNI interpolation schemes 

in dataset #3 (φ = –29.87°, Z < 70°) by daily clearness index, with comparative 

results from datasets #1 and #2. 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Mean bias difference for best DNI interpolation schemes in 

dataset #3 (φ = –29.87°, Z < 70°) by daily clearness index, with comparative 

results from datasets #1 and #2. 
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As before, the DNI uncertainty data for RMSD are somewhat compressed versus 

datasets #1 and #2, reflecting a reduction in maximum measured clearness index. 

This suggests that the results presented here are conservative with respect to 

clearness index, since NREL SRRL is known to possess an exceptionally clean 

atmosphere. At lower elevations or at sites where atmospheric conditions are poor 

due to non-cloud related turbidity, the uncertainty results will shift to the left with 

respect to KT_day (as in Figure 6.7). The system will thus return similar 

uncertainties but at lower values of clearness index. Since the perforated band is 

more effective at higher values of KT_day (that is, for clear skies), the threshold 

value of clearness index at which the system becomes attractive to station 

operators may be lower than the values reported here. In this sense, the 

uncertainties given in Chapter 5 are conservative with respect to KT_day. 

6.3  Deployment of the perforated shadow band 

Having described the performance of the perforated shadow band in Chapters 3 

and 5 (see Tables 3.5 and 5.10 for summaries) it remains to be established how 

these results influence the deployment of the system. A qualitative summary of 

PB performance is first provided and then two questions are addressed: 

1. What advantages does the PB system offer over existing radiometric 

schemes? 

2. Where should the PB system be deployed to exploit any advantages 

identified in its operation?  

6.3.1  Characteristics of PB system performance 

The general characteristics of the perforated band system, established in the 

previous chapters, can be summarised as follows: 

1. The system decomposes GHI so as to obtain diffuse and direct normal 

components at 1-minute intervals, according to the statistical uncertainties 

reported in Chapters 2 and 5, and its performance is related to the daily 

average clearness index under which it operates. 

2. Compared to optimal schemes and those making use of independent 

radiometers for the measurement of GHI, DHI and DNI, there is a penalty 

to be paid in using the PB system which returns higher RMSD and MBD 

uncertainties. 

3. The system is most effective under clear sky conditions where occlusion 

of the pyranometer sensor due to transitory cloud fields is minimal.  

4. Under overcast conditions the cloudy sky processing methodology is able 

to exploit the equivalence of global and diffuse irradiance to constrain 

RMSD and MBD uncertainties. 

5. The system is least effective under partly cloudy conditions characterised 

by transitory cloud fields and intermittent occlusion of the sensor. 

6. Tests at a southern hemisphere location show very similar performance 

trends to the primary NREL test site.  As the system does not suffer from 

any terminal flaw in its operation within the 30° to 40° degree latitude 
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band, or between hemispheres, it is reasonable to assume that it will return 

similar uncertainties at latitudes bounded by the polar circles (between 

+66° and –66°). This has not been verified experimentally.  

Advantages of the PB system 

A broad range of solar radiometers exists for equipping stations, leading to a 

spectrum of possible measurement schemes varying in cost from a few hundred to 

many thousands of dollars. A small selection of these was given in Table 1.2. 

Within the cost-performance spectrum, measurement uncertainty is generally 

inversely proportional to cost, such that at one end there exist inexpensive but less 

accurate sensors, while at the opposite end one finds research-grade, optimal 

measurement schemes with multiple radiometers and full redundancy. The 

spectrum includes an extensive set of options varying as a function of sensor cost, 

accuracy and scheme complexity, with the perforated band system positioned 

closer to the inexpensive end. Before drawing conclusions about the deployment 

of the PB, a brief summary of its performance versus that of alternate 

configurations is appropriate:   

Versus the optimal measurement scheme and those measuring three components 

independently (schemes 1 and 2 in Table 1.2): 

There is a performance disadvantage compared to optimal radiometric schemes 

but the PB system is considerably less expensive than installations employing 

multiple radiometers for independent measurement of DHI, GHI and DNI. As 

possible candidates for deployment in a radiometric project, the two schemes are 

some distance apart on the spectrum.  

Versus sub-optimal schemes measuring one component (DHI or GHI only): 

Under predominantly cloud-free skies (bins 7 and 8 with average clearness index 

exceeding 0.7) the PB system returns RMSD uncertainties of around 12% or 

lower versus a single, unshaded secondary standard pyranometer measuring GHI 

only (Figure 5.5). Importantly, the perforated band can also measure DHI while 

the unshaded pyranometer must rely on decomposition models, the best of which 

returned RMSD uncertainties of 50% or higher for bins 7 and 8 in this study 

(Figure 5.1). At the NREL site, the PB system consistently measured DHI with an 

uncertainty of approximately 20%, regardless of the sky condition.  

It can be argued that the perforated band offers an advantage over single unshaded 

pyranometers where more than one component is required and the clearness index 

is above 0.7. The capability of the system to measure GHI and DHI also 

represents an advantage over installations intended for moderate or low quality 

data generation where a single pyranometer is fitted with a solid shadow band to 

measure DHI only. This is especially true where a shaded pyranometer is already 

in operation and the scheme can be modified by replacing the solid band with its 

perforated counterpart for virtually no cost. 
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Versus the SPN1 and RSR2 sensors: 

The SPN1 instrument is marginally more expensive than the PB system, but it 

returns substantially lower uncertainties for DHI and GHI (Figures 5.27 and 5.28). 

Experimental data for the RSR2 sensor were not available during this study, but 

the performance of the LI-200 sensor on which it is based suggests that the 

Rotating Shadowband Radiometer would perform better than the PB system, and 

it costs marginally less. The PB system is, however, mechanically simpler than 

the RSR2 which needs a constant power supply for its moving arm mechanism. 

The mechanical complexity of the RSR2 may represent a disadvantage at remote 

locations where monitoring of the arm mechanism is not possible.  

 

6.3.2  Opportunities for PB deployment 

The many options that exist for configuring a station makes it difficult to draw 

definitive conclusions about which sensor is best since much depends on the 

specifications and resources of a particular project. Nevertheless, Gueymard and 

Myers (2009) have identified three categories into which radiometric projects 

generally fall:  

1. Installations with inexpensive sensors to provide local data at least cost; 

2. Installations for provision of long-term data by organisations like weather 

services, where proven technology is used and innovation is avoided; 

3. Installations utilising state-of-the-art sensors for research grade data 

generation (an example is the installation of a new BSRN station). 

In practice, the perforated band does not occupy the same part of the cost-

performance spectrum as optimal schemes and cannot compete with them where 

research-grade data are specified. It is therefore not a candidate for equipping 

high-quality stations of the third project type, where proportionally higher budgets 

are available. The question of sensor selection becomes more complex in project 

type 1 where budget constraints play a more significant role in the decision-

making process.  

For installations where higher uncertainties are tolerable, the PB system may 

represent better value than a single pyranometer measuring GHI, but only where 

skies are largely clear. Since this work has linked performance of the band to 

cloud conditions through the KT_day parameter, the geographic deployment of the 

band may be informed by studies of clearness index. An advantage of this 

approach is that clearness index is a widely used and well-understood descriptor 

of cloudiness, and information exists about its variation globally. In this study, the 

variation of KT_day across the African continent is considered. 

Diabate et al. (2004) used data from 62 sites across Africa to generate a map of 

the continent’s solar radiation climate. Using Ward’s clustering method, they 

divided the continent into 20 zones based on the behaviour of the monthly average 

daily clearness index throughout the year (Figure 6.9). Within each zone, the 

average daily clearness index varies as a function of the month. Predictably, 

clearness index is generally higher in the Sahara desert regions (zones IV, XII, 
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XIII, XIV and XVIII), in the horn of Africa (III) and in the south-western parts of 

the continent (XVI). According to their study no part of the continent experiences 

values of KT_day that exceed 0.7 throughout the year, but there are regions where 

the clearness index exceeds this value or closely approaches it for part of the year. 

These include zones III, IV, XIII and XIV. The perforated band might therefore 

compete with alternate measurement schemes in these parts of the African 

continent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Division of continental Africa into 20 solar radiation climate 

zones by Diabate et al. (2004). 

 

For the purposes of this study, satellite-derived maps of the monthly average daily 

clearness index for Africa were commissioned from GeoModel Solar (2014). The 

variation in KT_day is shown in Figures 6.10 and 6.11, with the yellow to red 

regions indicating a clearness index of 0.7 or greater. The colour maps were 

generated from raster data for zenith angles less than 70° to eliminate errors 

associated with high angles of incidence. Figures 6.10 and 6.11 indicate trends 

similar to those reported by Diabate et al. (2004).    
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Figure 6.10: Satellite-derived monthly average daily clearness index for 

Africa from January to June (GeoModel Solar, 2014). 
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Figure 6.11: Satellite-derived monthly average daily clearness index for 

Africa from July to December (GeoModel Solar, 2014). 
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The central parts of Africa, represented in blue on the colour maps and 

characterised by a tropical climate and lush vegetation, typically experience lower 

values of clearness index year-round. The PB system would return relatively high 

uncertainties if used here and alternate radiometric schemes using an unshaded 

pyranometer, a rotating shadow band, or the SPN1 sensor should be preferred. 

The same applies to the eastern coastal regions down into Mozambique and South 

Africa. Of greater interest to this study are the yellow-to-red regions that vary in 

size through the year but which typically occupy substantial portions of north and 

south-western Africa. The potential for deploying the perforated shadow band in 

these parts is favourable since uncertainties are expected to be low. 

Coupled to the above, there are two further considerations impacting the band’s 

deployment. First, the daily clearness index is a bulk parameter averaged over 

each month. Therefore the data in Figures 6.10 and 6.11 comprise the average of 

some cloudy or overcast days and some that are cloud-free. Even in zones where 

the average daily values are closer to 0.7 than 0.75 there will be many days in any 

given month that are cloud-free. This means that a station operator can, if present 

on site, implement the perforated shadow band system in response to prevailing 

weather conditions. This is not ideal since the band must then be replaced or 

removed when periods of cloud prevail, however the approach does offer a 

potential method of improving the quality of data from a station already operating 

a solid band in high-KT_day regions. 

Second, the PB results for Durban (Figures 6.5 and 6.7) show that a small 

leftwards compression in the uncertainty curves occurs with KT_day when a site is 

located at lower elevation than the primary test site at Golden, Colorado. This is 

because of higher air mass values that prevail as elevation drops, and not 

necessarily because of cloud. In a similar way, dry desert areas often experience 

dust that manifests as evenly distributed atmospheric particulates. Under such 

conditions, the suppression of clearness index will not be accompanied by the data 

stochasticity associated with transient cloud fields. In other words, if atmospheric 

turbidity increases as a result of evenly distributed dust then PB uncertainties are 

likely to remain low because the sky is still largely cloud-free, even if the 

clearness index is suppressed. It is therefore likely that the perforated band would 

find greater potential for deployment in the arid regions of Africa than is 

suggested even by the results of Diabate et al. (2004) and those presented in 

Figures 6.10 and 6.11. It should be noted that the augmentation of clearness index 

with other parameters, such as average sunshine hours, could assist in establishing 

patterns of deployment. 

The data in Figures 6.10 and 6.11, taken together with the uncertainty results of 

Chapters 5 and 6, suggest favourable opportunity for PB deployment on the 

African continent. The system should compete well against alternate radiometric 

schemes at the lower end of the cost-performance spectrum across substantial 

parts of the arid south-western and northern regions. The PB system is therefore 

most likely to find application in the 1st and 2nd project categories mentioned 

above where moderate or low quality data are required at locations experiencing a 

high clearness index, either at new or existing ground stations. Although this 
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analysis was confined to Africa, a similar approach can be applied to other regions 

globally where clearness index data are available.  

6.4 Summary 

Those aspects of the perforated band’s operation that are affected by changes in 

location were addressed in this chapter. A revised ray trace model of pyranometer 

exposure for Durban, South Africa, was presented and discussed. 

As part of a test on location-dependence, the PB system was evaluated at a ground 

station in Durban, South Africa, with the intention of characterising its 

performance under different conditions to NREL.  The resulting dataset (#3) 

consists of 114 days of 1-minute averaged radiometric data from a PB system 

identical to that installed at the NREL SRRL site. Reference instruments are more 

limited at the Durban site and do not permit the application of a correction for 

thermal offset due to the absence of pyrgeometers. 

With respect to diffuse horizontal irradiance, the southern hemisphere results 

show very similar RMSD percentages to the NREL data, with values of between 

15% and 28%. Bias differences are somewhat higher for Durban than for NREL, 

rising as high as 16.6%. Importantly, when the best performing schemes from 

dataset #1 are transferred into dataset #3, they once again do well versus the other 

interpolation schemes. This is significant and suggests that performance of the PB 

system is consistent regardless of changes in location. 

For the GHI results, dataset #3 once again gives similar percentage uncertainties 

to #1, and the trends in uncertainty variation are almost identical, with an increase 

in RMSD percentage in the mid-range clearness index range. Transferring the best 

processing schemes from dataset #1 into #3 again shows consistency in the 

performance of the best interpolation methodologies.  

Direct normal irradiance uncertainties are similar for the southern hemisphere site 

as compared to those of the northern hemisphere site, increasing in the mid-range 

bins and declining under overcast and clear-sky conditions. All told, the outcome 

of the Durban-based test confirms that the performance of the PB system is 

universal and not tied to a specific location. 

The deployment of the perforated band as an operational system was addressed by 

first considering its performance advantages over competing radiometric schemes. 

Based on this, the study addressed the practical question of where in Africa it 

might offer better value than sensors such as the SPN1 and the rotating shadow 

band system.  

The PB system cannot compete with optimal measurement schemes requiring the 

highest quality data and redundancy. This would preclude its use in most 

bankability studies for large-scale CSP installations. For those projects where 

moderate to low data quality are tolerable, however, the system may offer an 

advantage provided that it is deployed where the daily average clearness index is 

around 0.7 or higher. As an illustration of the connection between PB 
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performance and available clearness index data, a set of satellite-derived maps of 

the variation of KT_day with month of the year for Africa was presented. These 

maps make it possible to identify areas of the continent where the perforated band 

system may be deployed to ensure that the resulting statistical uncertainties are 

constrained to the values presented in chapters 5 and 6. The areas of interest 

comprise large parts of northern African desert, portions within the horn of Africa 

and sections of south-western Africa, including areas within the Northern Cape 

province of South Africa and Namibia. Since clearness index is a function of 

climate, KT_day varies seasonally and therefore the PB system may not be equally 

effective throughout the year at a given location, depending on the weather 

conditions experienced. 

As perforated band performance is better understood with expanded deployment, 

it may be possible to refine the uncertainty analysis by accounting for air mass 

variation between sites. One possibility is the introduction of a normalised 

clearness index parameter so that differences in air mass are eliminated when the 

system is run at different elevations, as was done in this study.  

In addition, it is worth considering the inclusion of other parameters such as the 

number of sunshine hours in future analyses of PB uncertainty. This may assist in 

clarifying the relationship between statistical uncertainty and the suppression of 

clearness index, which can be caused both by transient cloud fields, and by evenly 

distributed dust in the atmosphere. Since uncertainty is primarily a function of 

trace stochasticity, it would be helpful to distinguish between reductions in KT_day 

that are caused by cloud, and those caused by dust or haze. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

7.1  Overview 

The harnessing of solar energy is an increasingly popular alternative to 

conventional power sources as the world contends with environmental challenges 

and a growing appetite for energy. With the accelerated deployment of 

photovoltaics, solar water heaters and CSP systems the need for improved solar 

resource data has increased substantially. Numerous endeavours now rely on 

accurate radiometric measurements. Governments seek data to inform policy, 

developers require on-site measurements for the techno-economic analysis of 

power plant projects and environmental scientists need reliable solar data to 

model the earth’s climate, to name a few. 

In response to the growing need for ground-based measurements, the literature has 

expanded dramatically over the past few decades as researchers seek better ways 

of gathering, processing and interpreting sun strength data. A review of the global 

radiometric enterprise suggests three distinct priorities:  

 to improve the quality of radiometric datasets by reducing statistical 

uncertainty and refining modelling techniques  

 to improve the technical performance of radiometric sensors while 

reducing their cost 

 to expand spatial coverage of stations and the resulting database of 

available sun strength information 

This study potentially impacts all three of the above priorities, with particular 

emphasis on the second and third points. It proposes a novel adaptation of the 

shadow band method to generate estimates of global horizontal, diffuse horizontal 

and direct normal irradiance from a single pyranometer. The perforated shadow 

band is a low-cost radiometric measurement scheme that quantifies global 

horizontal and diffuse horizontal irradiance directly when paired with a 

thermopile pyranometer. Under clear sky conditions, it returns DHI, GHI and DNI 

uncertainties that are comparable to many commercially available, sub-optimal 

schemes especially those employing a single shaded or unshaded pyranometer. It 

therefore offers an inexpensive option to ground station operators with the caveat 

that it should be deployed in predominantly sunny regions where a high clearness 

index prevails. 

7.2 Conclusions 

Conclusions are presented with reference to the technical objectives of the study 

given in Chapter 1: 

Objective 1: Define the geometry of a perforated shadow band  

The geometry of a novel, perforated shadow band has been described to enable 

the decomposition of a composite radiometric trace into constituent GHI and DHI 
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components. The interaction between the band’s geometry and key solar 

parameters such as azimuth, declination angle and zenith angle was described.  

The band is installed on a polar mount over an Eppley Laboratory Precision 

Spectral Pyranometer, such that the thermopile sensor is intermittently shaded and 

exposed. The resulting shading pattern is described by means of a ray-trace 

derived model that associates the state of pyranometer exposure to the hour angle 

of the sun. A key finding of the study is that the model is location-independent 

aside from minor variations in the shading pattern at sunrise and sunset. The 

operation of the model was demonstrated using experimental data and a correction 

was included to account for structural deformation resulting from in situ distortion 

of the band. The system functions effectively in both the northern and southern 

hemispheres.    

Objective 2: Establish a test programme in which the performance of the PB 

system is rigorously assessed 

The performance of the perforated shadow band has been characterised through an 

extensive test programme conducted over five years at two sites, one in the United 

States and a second at the University of KwaZulu-Natal in South Africa.  

The primary test site was NREL’s Solar Radiation Research Laboratory in 

Golden, Colorado where the system was maintained by laboratory staff who 

provided the data online through NREL’s publicly accessible website. 

Performance was assessed by comparing the PB-derived solar components with 

data from collocated, research grade reference instruments using recognised 

statistical metrics. A set of rigorous quality control checks was performed on all 

data files throughout the study. 

Objective 3: Characterise the performance of a PB system under all sky 

conditions  

This study has demonstrated that a perforated shadow band, used in conjunction 

with a thermopile pyranometer, can generate a composite output signal that may 

be decomposed into independent components of global horizontal and diffuse 

horizontal irradiance at 1-minute time steps. Furthermore, the resulting GHI and 

DHI fragments may be reconstituted using a variety of interpolation techniques to 

yield continuous traces of each component. Once separated and reformed, the DHI 

and GHI components may serve as inputs to calculate direct normal irradiance as 

an additional output of the system. 

A key finding of this work is that the accuracy with which the fragmented data 

from the radiometer are reconstituted into continuous curves depends strongly on 

the underlying stochasticity of the data. This stochasticity is a direct function of 

the frequency and duration of occlusion of the pyranometer sensor due to cloud 

fields present during measurement. It may further be concluded that not all 

interpolation techniques function equally effectively in reconstituting the GHI and 

DHI traces. In this study over 21 approaches were tested and it was found that 

many techniques exhibit a functional dependence on the clearness index. It was 

concluded that an adaptive interpolation scheme that deploys specific techniques 
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in response to the prevailing clearness index is generally more effective in filling 

data gaps than a single-scheme method. This approach is particularly useful when 

clearness index is moderate to low and the associated stochasticity increases.  

It may be concluded that the PB band system is able to function under all sky 

conditions but this conclusion requires qualification. The statistical uncertainties 

of the irradiance measurements derived using the band are affected by the type of 

cloud present. Therefore the test programme was structured to consider both clear 

and cloudy sky conditions, and the performance of the system is reported in terms 

of clearness index, which served as a descriptor of cloud presence.  

In the absence of cloud the pyranometer output signal may be decomposed by 

manual separation of the trace into GHI and DHI fragments and reconstitution of 

the fragments by curve-fitting. The PB system can be expected to return RMSD 

uncertainties versus research-grade reference data of approximately 3% for GHI, 

14% for DHI and 2% for DNI.  

Partly cloudy and overcast conditions present a greater challenge because of the 

aforementioned chaos in the data traces. Under these conditions, uncertainties 

must be reported as a function of clearness index, rather than as constants. These 

were provided in Chapter 5 of the study. For global irradiance, the RMSD 

uncertainties range between 6% for high clearness indices and around 36% for 

indices between 0.3 and 0.4. Bias is typically negative, indicating that the PB 

system underestimates GHI by between 1% (clear skies) and 7% (partly cloudy 

skies). Adaptive interpolation schemes generally perform best in reconstituting 

GHI curves under all sky conditions. For KT_day values below 0.5, a highly 

effective approach is to equate GHI with DHI using the ‘GeD’ interpolation 

technique proposed in this work. 

Diffuse horizontal irradiance shows less dependence on the clearness index than 

GHI and DNI. Generally speaking, the use of decomposition models is 

recommended for replacing missing diffuse data under heavily cloudy and 

overcast conditions. Root mean square differences of around 20% can be expected 

for DHI measurements obtained with the band. Bias varies between –5% for 

overcast conditions and +8% for clear skies versus reference data.   

The DNI results are obtained by combining DHI and GHI values and therefore 

carry uncertainties through from the constituent measurements. Root mean square 

differences for DNI are highest in the middle of the clearness index range under 

partly cloudy skies, reaching a peak of about 200 W/m2. They drop to around  

30 W/m2 under heavily overcast conditions and around 90 W/m2 for KT_day values 

of 0.8 or higher. This equates to about 10% of the mean measured DNI.  

As part of the PB characterisation study, a second test campaign was run using 

data from a southern hemisphere ground station in Durban, South Africa. Similar 

trends were observed in the performance of the system, suggesting that the 

perforated band does not suffer any meaningful location-dependence. A 

significant finding is that the uncertainty curves generated as a function of 

clearness index may shift somewhat when the system operates at lower elevations 
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than the primary test site in Colorado. This is due to the effects of a higher air 

mass located above sea-level ground stations. 

Lastly, the study considered opportunities for deployment of the PB system. A 

number of conclusions may be drawn in this regard: first, the PB system is a low-

cost alternative to optimal measurement schemes and cannot compete against 

sensors intended to provide research-grade data. Given the uncertainties reported 

here, one could not recommend the approach in commercial resource assessment 

studies for evaluating the location and predicted performance of large-scale 

concentrating solar power plants, for example. Second, there are categories of 

radiometric project in which higher uncertainties can be tolerated and budgets are 

constrained, such that alternate measurement schemes at the lower-cost end of the 

cost-performance continuum become viable.  

Based on the uncertainty results of this study, the PB system should be seen as a 

niche option best suited to applications where single radiometers are required or 

are already in use. It provides lower uncertainties than hourly averaged satellite-

derived measurements and may compete against instruments like the rotating 

shadow band radiometer and the SPN1 instrument provided that it is deployed in 

regions where the average daily clearness index is high and cloudy conditions do 

not predominate. Mostly though, it offers potential value to station owners already 

operating solid shadow bands in sunny regions, since the cost of retrofitting the 

perforated band is negligible, and the resulting uncertainties will be suppressed by 

a lack of stochasticity in the data.  

The performance of the band is described in terms of the daily clearness index 

parameter, therefore a set of monthly averaged daily clearness index maps for the 

continent was commissioned from a European satellite data supplier. It may be 

concluded that there are substantial areas of Africa where the daily clearness 

index exceeds 0.7, and where the PB system might find application. Seasonal 

variation in the clearness index means that the system may not be deployable 

permanently in all such locations, but there is potential for it to be used over 

specific parts of the year to yield better quality radiometric data than would be 

obtainable from a single pyranometer and other low-cost radiometric schemes. 

7.3 Recommendations for future work 

As the inaugural study on a novel radiometric scheme, this work was intended to 

provide the first comprehensive analysis of the perforated shadow band system. It 

was also intended to lay the groundwork for future improvements to the data 

processing methodologies described in Chapters 2 to 5. In this regard, the 

following shortcomings and opportunities for further work have been identified: 

Refining interpolation techniques 

The extent to which the PB system is able to measure sun strength accurately rests 

largely on the effectiveness of the interpolation methods used to fill gaps in the 

fragmented DHI and GHI traces. Although many approaches were evaluated here, 

including numerical, regression, statistical and radiometric, there are other options 
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that remain to be tested. Notably, the problem of PB data interpolation is similar 

to that experienced in short-term solar forecasting, which is a subject of growing 

interest mainly due to concerns about the impact of PV plants on electrical grid 

stability. In this regard, Voyant et al. (2013) provide a useful review of irradiance 

time-series modelling approaches. Methodologies such as Kalman filtering, 

artificial neural networks and Markov chains are gaining popularity in forecasting 

(Chaabene and Ben Ammar, 2008; Ngoko et al., 2014; Paoli et al., 2010) and 

could potentially reduce uncertainties in PB-generated data.  

Clearness index as controlling parameter in the analysis 

In this study clearness index was used as the fundamental parameter on which the 

uncertainty analysis was based, and for good reason. It is a recognised metric in 

characterising solar climate and can be calculated at ground stations where a 

single pyranometer is used, therefore it works well with the perforated band 

configuration. It has shortcomings, however, since it is a bulk average and 

therefore cannot characterise intraday variation in irradiance. For example, it may 

yield the same value for a day with consistent levels of sunshine as for one on 

which the morning is clear and the afternoon overcast.  

Since adaptive interpolation has been shown to be effective, it would be helpful if 

the controlling parameter used in deploying interpolation schemes carried more 

information about the stochasticity present in the data before allocating a method. 

The clearness index parameter does this to some extent, but it is only weakly 

correlated with stochasticity and is therefore limited. Improvements to the AIS 

concept are likely through better definition of underlying data structural types, for 

example through correlation of stochasticity with additional parameters beyond 

KT_day. The use of sunshine hours derived from Campbell-Stokes recorders offers 

potential but would require additional sensors on site. Better prospects include the 

morphological methods and structuring classification of Gastón-Romeo et al. 

(2011) that seek to characterise the intraday dynamics of irradiance, and the 

fractal analysis proposed by Harrouni (2008). If better characterisation of 

stochasticity is possible, it is likely that the interpolation results will improve and 

yield lower uncertainties for DHI and GHI data. 

Lower cost sensor 

The perforated band setup employs a PSP thermopile radiometer which is in 

common use, but far cheaper sensors are available. For example, a perforated 

shadow band could be paired with a LI-200 silicon sensor, lowering the cost of 

the installation. This would require a repeat of the ray-tracing analysis to update 

the model of pyranometer exposure, but is a worthwhile avenue of future research.  

Cost versus performance analysis of radiometric schemes 

This study emphasised the technical performance of the PB system, but there is 

scope for further investigation of the economics of broadband radiometry and the 

role of low-cost schemes, like the perforated band system. More generally, work 

is needed to systematise the selection and configuration of radiometric sensors 

available on the cost-versus-performance spectrum. What is required by 
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developers of ground stations is a robust methodology that accounts for data 

quality, budgetary constraints, the range of data required, temporal resolution, 

spatial coverage and integration with existing networks.   
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APPENDIX A: Reference instrument histories 

 

Tables A-1 to A-3 provide details of the sensors used over the course of the PB 

test programme at NREL’s Solar Radiation Research Laboratory (NREL, 2014). 

Table A-1: Instrument history of NREL SRRL reference sensors for GHI.  

Kipp & Zonen CM22 Sensitivity Date installed Date removed 

(GHI) serial number [W/m2/mV] 

  10034 91.776  05/31/2006 06/13/2007 

10046 107.52  06/13/2007 05/23/2008 

10034 91.660  05/23/2008 07/06/2009 

10046 107.19  07/06/2009 06/30/2010 

10034 91.905  06/30/2010 - 

10034 92.018 07/27/2010 (recalibration) 

10034 91.871 05/05/2011 (recalibration) 

10034 91.630 05/04/2012 (recalibration) 

Table A-2: Instrument history of NREL SRRL reference sensors for DHI.  

Kipp & Zonen CM22 Sensitivity Date installed Date removed 

(DHI) serial number [W/m2/mV] 

  10046 108.45  08/04/2001 05/27/2005 

10034 91.673  05/27/2005 05/31/2006 

10046 107.72  05/31/2006 06/13/2007 

10034 91.704  06/13/2007 05/23/2008 

10046 107.56  05/23/2008 07/06/2009 

10034 91.905  07/06/2009 06/30/2010 

10046 107.19  06/30/2010 05/26/2011 

100174  102.92  05/26/2011 06/07/2012 

10046 107.61  06/07/2012 08/27/2013 

Table A-3: Instrument history of NREL SRRL reference sensors for DNI.  

Kipp & Zonen CH1 Sensitivity Date installed Date removed 

(DNI) serial number [W/m2/mV] 

  10256 91.797  08/04/2001 05/27/2010 

80033 111.82  05/27/2010 08/02/2010 

10256 91.927 08/02/2010 - 

10256 92.472 05/05/2011 (recalibration) 

10256 92.241 05/04/2012 (recalibration) 
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APPENDIX B: Extract of NREL perforated shadow band maintenance log 

Routine maintenance was performed on the PB system by staff of the Solar 

Radiation Research Laboratory throughout this study to ensure data quality. All 

actions were logged and are available online through NREL’s Baseline 

Measurement System website.  An extract of the log from June 2010 is given in 

Figure B-1, indicating the date and time of each inspection, the state of the 

instrument and band, the shading pattern observed, the name of the NREL staff 

member responsible for the inspection and the action taken. The NREL 

designation for the perforated band is ZEBRA, derived from ‘Zonal Exposure to 

BRoadband RAdiation’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-1: Extract from NREL’s perforated band maintenance log for June 

2010 (NREL, 2014). 
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APPENDIX C: Data file format 

The radiometric data files used in datasets #1 and #2 include three types of 

information: i) text headers in row 1; ii) information used to process the file in 

rows 2 and 3 and iii) measurement data at 1 minute intervals from row 4 onwards. 

A sample is given in Table C-1 below.  

With respect to the measurement data, columns A to K are obtained from the 

NREL Baseline Measurement System archive, while columns M to R are 

generated by the NREL Solar Position Algorithm (Reda and Andreas, 2008) and 

comprise geometric data needed for implementation of the ray trace model. An 

explanation of the contents of the spread sheet for length of Ns rows is given in 

Table C-2. Sample files from both datasets are available on request from the 

author.   
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Table C-1: Extract from 18-column NREL data file for 26 November 2011 in spread sheet format. 

 J K L M N O P Q R 

1 

Zenith 

Angle 

[degrees] 

Azimuth 

Angle 

[degrees] 

TO 

[W/m^2] 
Date Time 

Topocentric 

zenith angle 

[degrees] 

Top. azimuth angle 

(westward from S) 

[degrees] 

Topocentric local 

hour angle 

[degrees] 

Hour angle 

(-E/+W) 

[degrees] 

2 
         

3 
         

4 89.85 117.56 -7.04 2009/11/26 07:01:00 89.85 -62.44 288.22 -71.78 

5 89.70 117.71 -7.13 2009/11/26 07:02:00 89.70 -62.29 288.47 -71.53 

6 89.55 117.87 -7.01 2009/11/26 07:03:00 89.55 -62.13 288.72 -71.28 

7 89.40 118.03 -6.98 2009/11/26 07:04:00 89.40 -61.97 288.97 -71.03 

 A B C D E F G H I 

1 DATE MST 

Global 

CM22 Vent 

[W/m^2] 

Global 

Extraterrestrial 

(calc) [W/m^2] 

Direct CH1 

[W/m^2] 

Direct 

Extraterrestrial 

(calc) [W/m^2] 

Diffuse 

CM22 Vent 

[W/m^2] 

Zebra PSP 

[W/m^2] 

Atmos Net 

Infrared PIRs 

[W/m^2] 

2 330 144 
   

116.68 1.027 
  

3 39.74 440 482.0 0.76 969.2 0.000635 52.4 
  

4 40143 07:01 7.24 3.64 0.00 1403.6290 5.10 2.67 -95.07 

5 2009/11/26 07:02 8.84 7.27 0.00 1403.6290 5.63 3.10 -96.20 

6 2009/11/26 07:03 10.19 10.93 0.00 1403.6290 6.16 3.61 -94.62 

7 2009/11/26 07:04 11.23 14.61 0.00 1403.6310 6.68 3.86 -94.22 

1
8
7
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Table C-2: Daily data file content for spread sheet of Ns rows.  

Cell range Description Use 

A4:ANs Date (C4 is in number format) Date-stamp 

B4:BNs Mountain Standard Time Time-stamp 

C4:CNs DNI from Kipp and Zonen CH1 Reference DNI 

D4:DNs Extra-terrestrial GHI (calculated) Data filter and calculation of ktday 

E4:CNs DHI from Kipp & Zonen CM22 Reference DHI 

F4:FNs Extra-terrestrial DNI (calculated) Data filter 

G4:CNs GHI from Kipp & Zonen CM22 Reference GHI 

H4:HNs Eppley PSP under PB Source of perforated band data 

I4:INs Atmospheric net infrared irradiance Calculation of thermal offset 

J4:JNs Zenith angle Solar position 

K4:KNs Azimuth angle Solar position 

L4:LNs Thermal offset (calculated) Reduce uncertainty in PB data 

M4:MNs Date Date-stamp (from SPA; repeat) 

N4:NNs Mountain Standard Time Time-stamp (from SPA; repeat) 

O4:ONs Zenith angle From SPA; repeat 

P4:PNs Azimuth angle From SPA; alternate convention 

Q4:QNs Hour angle Ray trace model 

R4:RNs Hour angle Alternate convention 

A2 Day number Shadow band correction factor 

A3 Geographic latitude Bird clear sky model 

B2:B3 Start and end row for Z < 70° For information 

C3, E3, G3 Averages for GHI, DNI and DHI For information 

D3 Daily clearness index, KT_day For information 

F2:F3 Eppley PSP calibration factor and 

sensitivity factor 

Calculation of thermal offset 

G2 Shadow band correction factor Adjust for sky blocking effect 
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APPENDIX D: Statistical metrics 

Standard deviation 

Standard deviation (SD) is the square root of the variance, and although similar to 

RMSD is less commonly used. It permits the expression of confidence intervals of 

a measurand’s estimate about the population mean, and is calculated as follows 

(Joint Committee for Guides in Metrology, 2008): 

   SD =  √
1

(𝑁 − 1)
∑[𝐸𝑚𝑜𝑑 −  �̅�𝑚𝑒𝑎𝑠]2

𝑁

𝑖=1

 (D-1) 

For a normally distributed dataset, the SD may be combined with the mean Ē to 

give the confidence interval of the estimated irradiance, Emod, as follows: 

   𝐸𝑚𝑜𝑑 =  �̅�𝑚𝑜𝑑 +  𝑘. 𝑆𝐷 (D-2) 

For a normally distributed sample, the confidence intervals of 68%, 95% and 

99.7% correspond to k values of 1, 2 and 3 respectively. In this study, the 

Lilliefors test was performed to determine whether the irradiance data created by 

the interpolation schemes conformed to a normal distribution. Tests for kurtosis 

and skewness were also performed. 

Expanded uncertainty 

Gueymard (2012) uses standard deviation and RMSD to calculate a combined 

uncertainty, uc, from which an expanded uncertainty with 95% confidence level 

for radiometric models can be determined: 

   𝑈95 =  𝑘𝑥√SD2 + RMSD2  (D-3) 

In equation (D-3), kx is a coverage factor that equals 1.96 for large datasets (Reda, 

2011). SD and RMSD are calculated in percentages. The smaller the value of U95, 

the better the model performs.  
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APPENDIX E: Additional data: Cloudy sky conditions  

Chapter 5 focused on the statistical uncertainty of the best performing PB 

interpolation schemes, but omitted the results for those that do poorly. As addenda 

to Tables 5.1, 5.2 and 5.4, Figures E-1 to E-4 provide a qualitative indication of 

the relative performance of all interpolation schemes tested for DHI, GHI and 

DNI respectively. The data are taken from dataset #1 and classified according to 

clearness index in each chart. Uncertainty is given in terms of root mean square 

difference as a percentage for DHI and GHI, and in [W/m2] for DNI.  

Certain trends are noteworthy. In Figure E-1 the decomposition models, which are 

grouped to the left of the graph, are effective in generating diffuse horizontal 

irradiance at low clearness indices as stated in the main text. The gradual rise in 

their uncertainties as cloud levels decline is noticeable looking towards the rear of 

the graph.   

The low plateau located to the left of centre of the Figure E-1 corresponds to the 

suppression of uncertainty by the adaptive interpolation schemes, most of which 

do well across the full range of sky conditions. Most of the ARIMA models 

perform well throughout but particularly so under clearer conditions.  

In Figure E-2, the adaptive schemes once again give rise to a low area on the 

graph that indicates their good performance in filling data gaps for global 

horizontal irradiance. To the far left the GeD interpolation technique returns low 

uncertainties in bins 1 and 2 but loses its effectiveness as KT_day increases. 

Figures E-3 and E-4 are representations of the same data, viewed from two sides 

for readability. For most schemes there is a clear rise in DNI uncertainty over the 

mid-clearness index bins, with lower values recorded under clear and overcast 

skies. This was also seen in the ‘hump-back’ shapes of Figures 5.5 and 5.10. As 

with the GHI results, the adaptive methodology reduces RMSD uncertainty. Since 

DNI is composed of DHI and GHI data, the B_AIS_Best scheme positioned 

between B_AIS_20 and 37 represents the results for B_AIS schemes 21 to 28 

respectively, given in Table 5.3. These result from the combination of the best 

DHI and GHI results from each clearness index category and are graphed here as 

one result per bin, that is B_AIS_21 is B_AIS_Best applied to bin 1, 22 applies to 

bin 2 and so on. In most cases, the use of the Bird clear sky model (denoted with a 

C appended to scheme name) reduces uncertainty, although this effect is reduced 

somewhat for the adaptive schemes that already benefit from the use of better-

performing GHI and DHI components.  
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