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Abstract

Imaginaries in dense pairs of real-closed fields

Tsinjo Odilon Rakotonarivo

Department of Mathematical Sciences,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc

March 2017

Imaginaries are definable equivalence classes, which play an important
role in model theory. In this thesis, we are interested in imaginaries of
dense pairs of real-closed fields. More precisely, we consider the follow-
ing problem: is acleq equal to dcleq in dense pairs of real-closed fields?
To answer this question, we first present some results about real-closed
fields, which are basically completeness, quantifier elimination and elimi-
nation of imaginaries. Then, we concentrate on the completeness and near
model-completeness for the theory of dense pairs of real-closed fields. And
finally, we present the key point of the thesis. Namely, we demonstrate that
acleq(∅) = dcleq(∅) but there exists A such that acleq(A) 6= dcleq(A).
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Uittreksel

Imaginêres in dig pare van reël-geslote liggame

Tsinjo Odilon Rakotonarivo

Departement Wiskundige Wetenskappe,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc

Maart 2017

Imaginêres is definiëerbare ekwivalensieklasse, wat ’n belangrike rol in
modelteorie speel. In hierdie tesis stel ons belang in imaginêres in dig
pare van reël-geslote liggame. Meer spesifiek beskou ons die volgende
probleem: is acleq gelyk aan dcleq in dig pare van reël-geslote liggame?
Om hierdie vraag te beantwoord, begin ons met ’n paar resultate oor reël-
geslote liggame, namelik volledigheid, kwantoreliminasie en eliminasie
van imaginêres. Daarna behandel ons die volledigheid en byna-model-
volledigheid vir die teorie van dig pare van reël-geslote liggame. Uitein-
delik behandel ons die hoofresultat van hierdie tesis, d.w.s. ons bewys dat
acleq(∅) = dcleq(∅) maar dat daar A bestaan sodat acleq(A) 6= dcleq(A).
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Chapter 1

Introduction

Model theory is a branch of mathematical logic which studies classes of
structures. A structure may be defined as a set together with a collection
of symbols which are interpreted in it. We call this collection a language.
We study the first-order theory of a structure with respect to its language.
The language plays an important role in the study of structures and the-
ories. Depending on its choice, a specific theory might or might not have
certain properties, such as quantifier elimination. For example, the theory
of real-closed fields with the language of rings does not have quantifier
elimination, while with the language of ordered rings, it admits quantifier
elimination.
For some theory, having quantifier elimination is also giving control over
definable sets. For example, if an o-minimal theory T has quantifier elimi-
nation, then it helps to prove o-minimality. A theory T is o-minimal if any
definable subsets of the underlying set are finite unions of intervals and
points.
Another important property in model theory is the elimination of imag-
inaries. Imaginaries are definable equivalence classes, namely they are
quotient of elements of Mn by ∅-definable equivalence relations. Imagi-
naries are elements of the structure Meq. However these imaginaries can
be eliminated for some theories. In fact, elimination of imaginaries helps in
determining canonical parameters for the identification of definable sets.
In this thesis, we focus on the theory of dense pairs of real-closed fields, and
study its different properties, including the relative quantifier elimination,
the completeness property and the imaginaries. Our main contribution is
to answer the following question: is acleq = dcleq for dense pairs of real-

1
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CHAPTER 1. INTRODUCTION 2

closed fields? This question was raised in 2015 at a LYMOTS meeting in
Manchester.
The remainder of this document is organised as follows.
In chapter 2, some basic definitions and important properties in model the-
ory are reviewed. The notion of imaginaries and definable sets are outlined
accordingly.
The quantifier elimination as well as the completeness of the theory of real-
closed fields are reviewed in chapter 3. The elimination of imaginaries of
this theory is presented as well.
In chapter 4, we first present the near model-completeness for the theory of
(R, R ∩Q), using back and forth property. Then, we generalize this result
for the theory of dense pairs of real-closed fields and prove completeness
of that theory.
The last chapter contains the main results of this thesis, which concern the
imaginaries of dense pairs of real-closed fields. Results in [3] are reviewed
first, in order to understand the behaviour of imaginaries in the case of
dense pairs. Thereafter, the results related to the relation between acleq

and dcleq are shown. We first show that acleq(∅) = dcleq(∅), and then
demonstrate that there exists A ⊆ Meq such that acleq(A) 6= dcleq(A) for
any dense pair of real-closed fields.
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Chapter 2

Basic Model Theory

In this chapter, we are reviewing basic model theory. We are giving some
definitions, propositions and theorems that will be useful in the rest of the
chapters. Most of the properties are well-known. They can be found in any
standard book on model theory. For more details about this chapter, refer
to [10] and [13].

2.1 Structures

The first definitions allow us to be more familiar with the technical terms
of model theory. We begin by introducing the definitions of languages and
structures.

Definition 2.1.1. A language or signature L is a collection of constant sym-
bols, function symbols and relation symbols where functions and relations
are equipped with arity.

Definition 2.1.2. An L-structure is a pair (M, I) where M is a non-empty
set that is called the underlying set or domain and I is the interpretation
of the language L in the set M. A function with n-arity is interpreted as a
function from Mn to M, and a relation of m-arity is interpreted as a subset
of Mm.

Let us illustrate the two first definitions by an example.

Example 2.1.3. Let L = {0, 1, ·,+}. The constant symbols of L are 0, 1, the
function symbols are ·,+ with arity 2, then (R, 0, 1, ·,+) is an L-structure

3
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CHAPTER 2. BASIC MODEL THEORY 4

where R is the underlying set and 0, 1, ·,+ are interpreted in R as usual.
In this case, L is called the language of rings.

We also need to know about many sorted structures, which plays an im-
portant role in the studies of imaginaries.

Definition 2.1.4. Given a language L, a many sorted L-structure is just an
L-structure with many underlying sets. Fix a non-empty set J where each
element j ∈ J corresponds to one sort, and let M be the many sorted
structure associated to J, which is defined as follows:

• For each j ∈ J, a non empty set Mj is the underlying set associated to
sort j.

• Each constant symbol c of the sort j is interpreted as an element cM

of Mj.

• Each function symbol f of the sorts (j1, · · · , jn, j) is interpreted as a
function

fM : Mj1 × · · · ×Mjn −→ Mj,

• Each relation symbol R of the sorts (j1, · · · , jn) is interpreted as a
relation

RM ⊆ Mj1 × · · · ×Mjn .

Example 2.1.5. Let M = (K, V, 0K, 1K,+K, ·K, 0V ,+V , ·K,V) be a structure
where K is a field and V is a vector space over the field K. In fact,
{0K, 1K,+K, ·K} is the language related to the field K, {0V ,+V} is the lan-
guage for vector spaces and {·K,V} is the part of the language involving
both.

From now on, we are using one sorted structure but all the results extend
naturally to the many sorted setting. Let us continue with the definition of
definable sets.

Definition 2.1.6. Let L be a language andM be an L-structure with under-
lying set M. We say that X ⊆ Mn is definable inM if and only if there exist
a first-order L-formula ϕ(x1, . . . , xn, y1, . . . , ym) and (b1, . . . , bm) ∈ Mm such
that X = {(a1, . . . , an) ∈ Mn :M |= ϕ(a1, . . . , an, b1, . . . , bm)}.
Furthermore, let A be a fixed subset of M. We say that X ⊆ Mn is definable
in M with parameters from A, or A-definable, if and only if there exist a
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CHAPTER 2. BASIC MODEL THEORY 5

first-order L-formula ϕ(x1, . . . , xn, y1, . . . , ym) and (b1, . . . , bm) ∈ Am such
that X = {(a1, . . . , an) ∈ Mn : M |= ϕ(a1, . . . , an, b1, . . . , bm)}. The set X is
∅-definable if m = 0.

It is also natural to relate structures to one another. We are going to see
some of these relations in the following definitions.

Definition 2.1.7. Let M,N be two L-structures with underlying set M, N
respectively. We say M is a substructure of N if M ⊆ N and the inter-
pretation of each symbol in M is the restriction of each symbol in N, or
equivalently, the quantifier free formulas with parameters in M have the
same interpretation in both structures. We denote it byM≤ N .
We say thatM is an elementary substructure of N , and denote it byM≺ N ,
ifM is a substructure of N and for all first order L-formulas φ(x1, . . . , xn)

and a1, . . . , an ∈ M, we have M |= φ(a1, . . . , an) if and only if N |=
φ(a1, . . . , an).

Definition 2.1.8. Let M be an L-structure. The full theory of M is the set
of all first-order L-sentences which are true of the L-structure M. Denote
by Th(M) the full theory of M. Recall that L-sentences are L-formulas
without free variables.

Definition 2.1.9. Let M and N be two L-structures. If Th(M) = Th(N ),
thenM and N are elementarily equivalent and we denoteM≡ N .

Example 2.1.10. Let L = {0, 1,+, ·,<}. The set of all real algebraic numbers
R ∩Q is an elementary substructure of R considered as L-structures. This
is due to quantifier elimination that we will define later. Recall that Q is
the algebraic closure of Q.

We keep using one-sorted structures so, from now on, structure and un-
derlying set are denoted as the same.

2.2 Saturation and homogeneity

This section is dedicated to the notions of saturation and homogeneity.
These are tools that we will strongly use later. Definitions and facts can be
found in all basic model theory books, such as [10], [13] and [15].
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CHAPTER 2. BASIC MODEL THEORY 6

Definition 2.2.1. A type over A ⊆ M is a set p(x) of formulas in the lan-
guage L(A) such that for every finite subset p0(x) ⊆ p(x) there is some
b ∈ Mn, with M |= p0(b). We also say that p0(x) is realised by b.

Definition 2.2.2. An L-structure M is κ-saturated for a cardinal κ if, for
every subset A ⊆ M such that |A| < κ and type Σ(x) of L(A)- formulas, Σ
is realised in M. Note that L(A) is L together with a new constant symbol
for each a ∈ A.

Definition 2.2.3. An L-structure M is said to be strongly κ-homogeneous if
whenever a, b are tuples from M of length less than κ having the same type
over the empty set, then there is some automorphism of M which sends a
to b.

Lemma 2.2.4. For every cardinal κ, every structure has an elementary ex-
tension which is both κ-saturated and strongly κ-homogeneous, see [10]
and [13].

This lemma is proved using the compactness theorem.

Definition 2.2.5. Let Σ be a set of L-sentences. Then Σ is consistent if there
is some structure M such that M |= Σ.
Let T be a set of L-sentences, T is finitely consistent if any finite subset of
T has a model.

Now we are stating the compactness theorem. One of the basic theorems
in model theory. We are not giving any proof of the theorem here but more
details can be seen in [6], [7] and [10].

Theorem 2.2.6 (Compactness Theorem). Let Σ be a set of L-sentences. Then Σ
is consistent if and only if Σ is finitely consistent.

2.3 Quantifier elimination and completeness

In this section, we define quantifier elimination and completeness for struc-
tures.

Definition 2.3.1. An L-theory is a consistent set of L-sentences.

The next definition is a formal definition of quantifier elimination. There
will be an equivalent definition that we will state as a proposition.
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CHAPTER 2. BASIC MODEL THEORY 7

Definition 2.3.2. Let T be an L-theory. The theory T has quantifier elimi-
nation if for every φ(x̄) there is a quantifier free L-formula ψ(x̄) such that
T |= ∀x̄ (φ(x̄)←→ ψ(x̄)).

Definition 2.3.3. An L-theory T is complete if for any models M and N of T
then M ≡ N.

Completeness allows us to study any model of T and deduce the same
properties for all models.

Definition 2.3.4. Let T be a complete theory. T is model complete if any
substructure of a model M of T is an elementary substructure of M.

Proposition 2.3.5. Let T be a theory. Assume T is complete and has quan-
tifier elimination. Then it is model-complete.

Proof. This proof is from [10]. Suppose T has quantifier elimination and let
M, N be two models of T such that M is substructure of N. We have to
show that M is an elementary substructure of N. By quantifier elimination
of T, for a first-order L-formula φ(x̄), there is a quantifier free formula
ψ(x̄) such that M |= ∀x̄(φ(x̄)←→ ψ(x̄)). Since ψ is quantifier free then for
ā ∈ M, M |= ψ(ā) ⇐⇒ N |= ψ(ā). Then we have

M |= φ(ā) ⇐⇒ M |= ψ(ā) ⇐⇒ N |= ψ(ā) ⇐⇒ N |= φ(ā).

Therefore M is an elementary substructure of N.

In fact, a complete theory T is model complete if and only if every formula
is equivalent to an existential formula.

Definition 2.3.6. A theory T is called near model complete if every formula is
equivalent to a boolean combination of existential formulas in any model
of T.

Definition 2.3.7. Let M and N be two L-structures. We say M, N have
the back and forth property if, for any finite tuples a from M and b from N
such that q f tp(a) = q f tp(b) and c ∈ M, then there is d ∈ N such that
q f tp(a c) = q f tp(b d), and dually.

Note that q f tp is quantifier free type, and the quantifier free type over a set
A is the set of quantifier free formulas that are true using only parameters
from the set A.
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The following proposition is a strong result in model theory since it allows
to determine completeness for some theories. It is as well one of the most
important propositions used in this thesis. For more information about it,
see [10] and [13].

Proposition 2.3.8. Let T be a theory. T is complete and has quantifier
elimination if and only if for any two sufficiently saturated models M, N
of T

(i) q f tpM(∅) = q f tpN(∅) and

(ii) M and N have the back and forth property.

Note that a theory T which is complete does not necessarily have quantifier
elimination.

Example 2.3.9. The theory of real closed fields in the language of rings
does not have quantifier elimination but is complete, see [9] and [13].

Example 2.3.10. The theory of real closed ordered fields in the language of
ordered rings has quantifier elimination and is complete.

Example 2.3.11. The theory of algebraically closed fields has quantifier
elimination and is complete for a given characteristic, see [13].

Before we move to next section, let us introduce the notion of algebraic
closure and definable closure in the two following definitions.

Definition 2.3.12. Let A ⊆ M and a ∈ M. We say a is algebraic over A if
there is an L-formula φ(x) with parameters from A satisfied by a and only
finitely many other elements of M.
The algebraic closure of A, denoted by acl(A), is the set of all a ∈ M such
that a is algebraic over A.

Definition 2.3.13. Let A ⊆ M. An element a ∈ M is in the definable closure
of A if {a} is definable over A.

2.4 Imaginaries and Meq construction

In this section, we consider a language, a complete theory of that language
and a model of this theory. By defining some equivalence relations, we
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CHAPTER 2. BASIC MODEL THEORY 9

will be able to obtain new structures that are called the equivalence rela-
tion structures. Here we will give the construction and some results about
the equivalence relation structures. Notions of imaginaries were first intro-
duced by Shelah in [18] in 1979. Here we closely follow the note [11] of
Rahim Moosa.
Let L be a language, let T be a complete L-theory and let M |= T. We
describe the many sorted language Leq in the following way:

• Each ∅-definable equivalence relation E corresponds to a sort SE in
Leq.

• The symbols of L are interpreted as relations, functions and constants
to the sort S=.

• For any n-ary ∅-definable equivalence relation E, there is a function
fE which sends an n-tuple of the sort S= to elements of the sort SE.

We define the theory Teq to be the Leq-theory which consists of all the T-
sentences and the following axioms:

• The function fE is surjective.

• fE(x) = fE(y) iff E(x, y).

The Leq-structure Meq can be obtained from M as follows:

• For each ∅-definable equivalence relation, the elements correspond-
ing to the sort SE in Meq are equivalence classes a/E where a ∈ Mn

and n is the arity of E. These elements are called imaginaries.

• S= in Meq is M and the symbols of Leq that are from L are interpreted
in Meq on the sort S= as in M.

• fE is interpreted as the quotient map Mn −→ Mn/E and it is surjec-
tive.

Remark 2.4.1. If M |= T then Meq |= Teq, moreover if N |= Teq then N ≡
Meq. So Teq is complete.

Let M be a “monster" model of T. It means κ-saturated and strongly κ-
homogeneous for some large cardinal κ. There will be many propositions
that we are going to prove here. First, let us see how the formulas are
related between a structure and its equivalence relation structure.
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CHAPTER 2. BASIC MODEL THEORY 10

Proposition 2.4.2. Let φ(x) be an L-formula and a be a tuple from M. Then
M |= φ(a) is equivalent to Meq |= φ(a).

Proof. By the construction of Meq, M is embedded in Meq as the sort S=

which is M itself and the symbols of L are exactly interpreted in Meq as
they are in M.

The next proposition will be one of the properties of automorphisms that
an equivalence relation structure keeps from the original structure.

Proposition 2.4.3. Any automorphism of M has a unique extension to an
automorphism of Meq.

Proof. Uniqueness. Let a ∈ Meq. Then for some ∅-definable equivalence
relation E and for some tuple a from M, a = a/E. Let σ be an au-
tomorphism of M and let σ1, σ2 be two extensions of σ to Meq. Then
σ1(a) = σ1(a/E) = σ1(a)/E = σ(a)/E = σ2(a)/E = σ2(a/E) = σ2(a), so
σ1 = σ2.
Existence. Let a = a/E = fE(a) ∈ Meq and define σ′(a) = σ(a)/E. We
first need to prove that σ′ is well defined. We have a = a/E = b/E =

b ⇐⇒ aEb ⇐⇒ σ(a)Eσ(b) ⇐⇒ σ(a)/E = σ(b)/E ⇐⇒ σ′(a) = σ′(b).
We proved that σ′ is well defined and one to one at the same time. By
construction σ′ is surjective and preserves the function fE and maps any
sort to itself. It is also clear that σ′ extends σ and so preserves all the
functions and relations of Leq that are from L. Thus σ′ is an automorphism
of Meq and σ′ extends σ.

Previously we have seen properties of formulas and automorphisms. Now
using some of these properties and the property of strong homogeneity, we
have the following.

Proposition 2.4.4. Let a1, . . . , an, b1, . . . , bn be tuples from M and let E1, . . . ,
En be ∅-definable equivalence relations such that a1/E1 , . . . , an/En , b1/E1 , . . .
, bn/En ∈ Meq. If tpL(a1 · · · an) = tpL(b1 . . . bn), then

tpLeq(a1/E1 , . . . , an/En) = tpLeq(b1/E1 , . . . , bn/En).

Proof. Using the fact that M is strongly κ-homogeneous, there is an au-
tomorphism σ of M such that σ(a1, . . . , an) = (b1, . . . , bn). By Proposi-
tion 2.4.3, there is an automorphism σ′ of Meq which extends σ and so
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CHAPTER 2. BASIC MODEL THEORY 11

σ′(a1/E1 , . . . , an/En) = (b1/E1 , . . . , bn/En). Since σ′ preserves the type then
tpLeq(a1/E1 , . . . , an/En) = tpLeq(b1/E1 , . . . , bn/En).

Definition 2.4.5. Let M be a structure which is sufficiently saturated and
strongly homogeneous. A tuple ē from Meq is a canonical parameter or code
for a definable set X if and only if for all automorphisms σ of Meq,

σ(X) = X ⇐⇒ σ(ē) = ē.

In fact, every definable set has a code in Meq but sometimes a definable set
has one in Mn for some n.
The following example illustrates obviously the existence of codes for cer-
tain structures.

Example 2.4.6. For a field K, every finite subset has a canonical parameter.
In fact, let X = {a1, . . . , an} and consider the polynomial

(x− a1) · · · (x− an) = xn + en−1xn−1 + · · ·+ e1x + e0,

then e = (e0, . . . , en−1) ∈ Kn is a canonical parameter for X.

Definition 2.4.7. A theory T has elimination of imaginaries if and only if
every definable set has a canonical parameter in Mn for some n.

We are now giving some examples of theories that have elimination of
imaginaries.

Example 2.4.8. The theory of real closed fields has elimination of imaginar-
ies. We will give more details about it in the next chapter.

Example 2.4.9. The theory of algebraically closed fields for a given charac-
teristic has elimination of imaginaries.
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Chapter 3

Real-closed Fields

This chapter concerns the study of the theory of real-closed fields. First of
all, we will give some definitions illustrated by helpful examples. Then,
we will prove that the theory of real-closed fields with the language of
ordered rings has quantifier elimination and is complete using Proposition
2.3.8. In the final part of the chapter, we consider notions of o-minimality
and sketch the proof of elimination of imaginaries for real-closed fields.

3.1 Definitions and examples

Let us start with some definitions from algebra.

Definition 3.1.1. An ordered field (F,≤) is a field with a total ordering sat-
isfying the following axioms:

• If x ≤ y then x + z ≤ y + z.

• If 0 ≤ x and 0 ≤ y then 0 ≤ xy.

Example 3.1.2. The rational numbers and the real numbers are ordered
fields, the ordering is the usual inequality.

Definition 3.1.3. A field F is real-closed if it is an ordered field satisfying the
following properties:

• Every positive element of F has a square root in F.

• Every odd degree polynomial has a zero in F.

The next properties are equivalents for an ordered field, see [12].

12
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CHAPTER 3. REAL-CLOSED FIELDS 13

(1) F is a real-closed field.

(2) F(
√
−1) is algebraically closed.

(3) For any polynomial p(x) over F, if a, b ∈ F, a < b and p(a) < 0 and
p(b) > 0, then there is c ∈ F in the interval (a, b) such that p(c) = 0.

Example 3.1.4. The real algebraic numbers and the real numbers are real-
closed fields.

We are now ready to state the axioms of the theory of real-closed fields in the
language of ordered rings.

• Axioms for ordered fields.

• ∀x∃y(x > 0 =⇒ y2 = x)

• For each n ≥ 0, ∀x0 · · · x2n∃y(y2n+1 + ∑2n
i=0 xiyi = 0).

We define the theory of real-closed ordered fields (RCOF) to be the deduc-
tive closure of these axioms.
Before going into further details on RCOF, we will require two more no-
tions. The first is that of pregeometry, which will highlight nice properties
of closure, especially the exchange property that is useful to prove our re-
sults. The second is o-minimality, which will help to describe definable
sets.

Definition 3.1.5. Let M be a set and let cl : P(M)→ P(M) be an operator.
Then (M, cl) is a pregeometry if:

(i) A ⊆ M implies A ⊆ cl(A),

(ii) for A, B ⊆ M such that A ⊆ B, then cl(A) ⊆ cl(B),

(iii) cl(cl(A)) = cl(A),

(iv) for A ⊆ M and a, b ∈ M, if a ∈ cl({b} ∪ A) \ cl(A) then b ∈ cl({a} ∪
A). This is called the exchange property.

(v) If A ⊆ M and a ∈ cl(A), then there is a finite subset B of A such that
a ∈ cl(B).
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Proposition 3.1.6. For real-closed fields, a ∈ acl(A) means there is some
non-zero polynomial p(x) with coefficients from the field generated by A
such that p(a) = 0.

This definition is equivalent to the definition of algebraic closure in chapter
2. The proof of this equivalence uses quantifier elimination.

Example 3.1.7. Algebraic closure in RCOF has the exchange property, so it
defines a pregeometry, see [19] and [20].

Definition 3.1.8. Let K be an ordered field. A real-closed field R is a real
closure of K if R is algebraic over K and the ordering of R extends the
ordering of K, see [8], [10] and [17].

Definition 3.1.9. Let (M,<, . . . ) be a structure where < defines a total or-
dering. The structure (M,<, . . . ) is o-minimal if the only definable subsets
of the underlying set are finite unions of intervals and points.

O-minimality is a very nice tool for generalizing ideas from real algebraic
geometry. In fact, it is inspired by the properties of semialgebraic sets on
real-closed fields. More details can be found in [5].

Example 3.1.10. (R,<, 0, 1, ·,+) is o-minimal. This is because it has quan-
tifier elimination. We will see quantifier elimination of RCOF in general in
the next section.
(R,<, 0, 1, ·,+, sin) is not o-minimal. In fact, the set of solutions to sin(x) =
0 is infinite and discrete.

3.2 Quantifier elimination of RCOF

The following theorem is one of the most important theorems that was
proved in the theory of real-closed fields. In fact, many more results have
been deduced from quantifier elimination. To know more about these re-
sults, see [10].
Before introducing the theorem, let us state some well known algebraic
facts, that we can find in Chapter XI of Lang’s Algebra [8].
Fact 1 : (Artin-Schreier) Let (F,<) be an ordered field. Then there exists a
real closure R of F.
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Moreover if R and R′ are two real closures of F, then they are isomorphic
over F.
Fact 2 : Let (F,<) be an ordered field and let (S,<) be a real-closed field
such that (F,<) ≤ (S,<). Then there is a unique real closure (R,<) of
(F,<) such that (F,<) ≤ (R,<) ≤ (S,<). Furthermore F is dense in R.
Now denote by rclS(F) the real closure of F in the field S. Remark that

rclS(F) = aclS(
√
−1)(F) ∩ S.

Theorem 3.2.1. The theory of real-closed fields has quantifier elimination and is
complete in the language of ordered rings.

Proof. To prove this result, we present the standard back and forth argu-
ment. See, for example, Section 3 of [13].
We will use Proposition 2.3.8 to show quantifier elimination and complete-
ness for real-closed fields.
Let M and N be two sufficiently saturated models of RCOF. Let us show
first that q f tpM(∅) = q f tpN(∅). By definition, q f tpM(∅) and q f tpN(∅)

are the set of all quantifier-free sentences that can be formed from the
language {0, 1, ·,+,<} and are true respectively in M and N. These are
just statements about rational numbers. Besides Q ⊆ M and Q ⊆ N. So
q f tpM(∅) = q f tpN(∅).
Let a, b be finite tuples, respectively from M and N, and let c ∈ M. Assume
q f tp(a) = q f tp(b). We want to show that there is some d ∈ N such that
q f tp(ac) = q f tp(bd). Two cases can be considered.
Case (1) : c ∈ aclM(a)
Let c ∈ aclM(a). We want d ∈ aclN(b) such that q f tp(ac) = q f tp(bd). Let
Q(a) be the field generated by a. By the Fact 2 there is a real closure of Q(a)
and denote it by rclM (Q(a)) and such that Q(a) ≤ rclM(Q(a)) ≤ M ≤
M(
√
−1). Recall M(

√
−1) is an algebraically closed field. By assumption,

q f tp(a) = q f tp(b), then Q(a) ' Q(b) via an isomorphism which sends a
to b.
We can extend this isomorphism to the respective real closures by Fact 1.
Then we have rclM(Q(a)) ' rclN(Q(b)).
So, by Fact 2, aclM(

√
−1)(Q(a)) ∩M ' aclN(

√
−1)(Q(b)) ∩ N via an isomor-

phism which sends a to b. Therefore, there is some d ∈ aclN(b) such that
q f tp(ac) = q f tp(bd).
Case (2) : c /∈ aclM(a)
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Let c /∈ aclM(a). We want d /∈ aclN(b) such that q f tp(ac) = q f tp(bd). Let
Q(a) be the field generated by a. By saturation, we can find d ∈ N such
that the cut of c over Q(a) corresponds to the cut of d over Q(b). Since Q(a)
is dense in rclM(Q(a)) then by saturation we can find d ∈ N such that the
cut of c over rclM(Q(a)) corresponds to the cut of d over rclN(Q(b)). Then
d /∈ aclN(b) and q f tp(ac) = q f tp(bd).
To conclude, M and N have the back and forth property and q f tpM(∅) =

q f tpN(∅). By Proposition 2.3.8, RCOF has quantifier elimination and is
complete.

Note that for RCOF, definable sets are boolean combinations of polynomial
equalities and inequalities. This is due to quantifier elimination. So RCOF
is o-minimal.

3.3 Elimination of imaginaries

This section will be allocated to elimination of imaginaries for RCOF.
These results are already known. See [4] , [6] and [19] for more details.

Definition 3.3.1. A theory T has definable Skolem functions if for every for-
mula φ(x, y) there is a ∅-definable function f (y) such that whenever M |=
T, b ∈ M and φ(Mn, b) is non-empty, then f (b) ∈ φ(Mn, b). Recall that
φ(Mn, b) = {a ∈ Mn : M |= φ(a, b)}.
Note that functions are said to be definable if their graphs are definable
sets.

Theorem 3.3.2. [4] RCOF has definable Skolem functions.

Claim 3.3.3. [19] Let M |= RCOF and let X ⊆ Mn+m be a ∅-definable set.
There is a definable function f : Mn −→ Mm such that f (a) ∈ Xa if Xa 6= ∅,
where Xa = {b ∈ Mm : (a, b) ∈ X}, for all a ∈ Mn.

Proof of Claim 3.3.3. The proof follows the one in [19]. It is an induction
proof. Assume that m = 1.Then by o-minimality, Xa is a finite union of
points and intervals. If Xa = ∅ or Xa = M then we can take f (a) = 0.
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Now assume Xa is non-empty. We define f (a) as follows:

f (a) = b if Xa = {b},
f (a) = b− 1 if Xa = (−∞, b),

f (a) = b + 1 if Xa = (b, ∞),

f (a) =
b + c

2
if Xa = (b, c).

If the set Xa is a finite disjoint union of such cases, then we could take the
interval with the lowest upperbound.
Now assume the claim is true for m and let X ⊆ Mn+m+1. By induction
hypothesis there is a definable function f : Mn+1 −→ Mm such that if
a1, . . . , an, b ∈ M and Xa1...anb 6= ∅ then we have (a, b, f (a, b)) ∈ X. By the
base case there is a definable function g : Mn −→ M such that (a, g(a)) is in
the projection π(X) of X to the n+ 1 first coordinates, provided π(X)a 6= ∅.
Let h : Mn −→ Mm+1 such that h(x) = (g(x), f (x, g(x))). If a ∈ Mn then
(a, h(a)) = (a, g(a), f (a, g(a))). By construction g, f are ∅-definable and
(a, g(a), f (a, g(a))) ∈ X, provided Xa 6= ∅. Then h is ∅-definable and
(a, h(a)) ∈ X, provided Xa 6= ∅.

In [14], Poizat defines uniform elimination of imaginaries as follows. We
state it now and later we will prove that uniform elimination implies elim-
ination of imaginaries as defined in Chapter 2.

Definition 3.3.4. Let T be an L-theory with at least two constant sym-
bols. Let M |= T. T admits uniform elimination of imaginaries if for every
∅-definable equivalence relation E on Mn, there is a ∅-definable function
f : Mn −→ Mm such that aEb if and only if f (a) = f (b).

The next results and proofs are taken from [6].

Theorem 3.3.5. Assume T |= RCOF. T has Definable Skolem function implies
T has uniform elimination of imaginaries.

Proof. Let E ⊆ Mn+n be a ∅-definable equivalence relation. Let f be a
∅-definable function as in Claim 3.3.3. So for a ∈ Mn, (a, f (a)) ∈ E.
We may assume f is such that f (a) depends on Xa and not the choice of
a. This is clear in the base case of the proof of Claim 3.3.3 and can be
preserved in the induction.
So f (a) = f (b) if and only if aEb.
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Theorem 3.3.6. Uniform elimination of imaginaries implies elimination of imag-
inaries.

Proof. Let X be a definable set, defined by the formula φ(x, a). Let E be a
∅-definable equivalence relation such that yEy′ ≡ ∀x(φ(x, y)←→ φ(x, y′)).
There is a ∅-definable function f such that yEy′ if and only if f (y) = f (y′).
We can now define X by the formula ∃y(φ(x, y) ∧ f (y) = f (a)).
Let σ ∈ Aut(M), if σ( f (a)) = f (a) then we get σ(X) = X.
Now, let σ ∈ Aut(M) such that σ(X) = X. σ(X) is defined by φ(x, σ(a)).
Since σ(X) = X, then aEσ(a). Thus f (a) = f (σ(a)), and then f (a) =

σ( f (a)).
So f (a) is a code for X.
Since any definable set of (M, B) has a code, if we have uniform elimination
of imaginaries, then we obtain elimination of imaginaries.
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Chapter 4

Completeness of dense pairs of
real-closed fields

In 1958, the completeness of the theory of pairs (M, B), where M is a real-
closed field and B is a proper dense real-closed subfield, has been proved
by Abraham Robinson in [16]. His method consists of constructing a se-
quence of extension fields and uses algebra, i.e. properties of real-closed
fields, especially the notions of algebraic independence and basis.
In 1998, Lou Van den Dries in his paper [4] generalised the work of Robin-
son and gave descriptions of definable sets. This chapter is based on this
paper. Most of the study of the theory depends on quantifier elimination
using the back and forth property that is defined in Definition 2.3.7. More
precisely, we are using Proposition 2.3.8 to prove the completeness of the
theory of dense pairs of real-closed fields.

4.1 Definitions

In this section, we give a definition of cut. We also describe the notion of
dense pair of real-closed fields.

Definition 4.1.1. Let M be RCOF. If B is a substructure of M, p(x) is a cut
over B if there exist two sets A, C such that:

(i) A ∩ C = ∅,

(ii) A ∪ C = B,

(iii) a < c for all a ∈ A and c ∈ C,

19
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(iv) p(x) = {a < x < c : a ∈ A, c ∈ C}.

Definition 4.1.2. Let A and B be two models of the theory of real-closed
ordered fields. A dense pair is a pair (B, A) such that A is an elementary
substructure of B, A 6= B and A is dense in B.

4.2 Quantifier elimination

Let L = {+, ·, 0, 1,<} be the language of ordered rings, and L∗ = {+, ·, 0,
1,<, U, Dϕ} the language of the structure (R, R ∩Q) where U is an unary
predicate such that (R, R ∩Q) |= U(a) if and only if a ∈ R ∩Q and, for
each L-formula ϕ(x1, . . . , xn, y1, . . . , yk), (R, R∩Q) |= Dϕ(a1, . . . , an) if and
only if there exist b1, . . . , bk ∈ R ∩Q such that R |= ϕ(a1, . . . , an, b1, . . . , bk).
Note that the underlying set of the structure (R, R∩Q) is R.
Let us start by some lemmas concerning the set of real numbers which will
be useful later to prove theorems.

Lemma 4.2.1. For all i, j ∈ R, i < j, and any finite C ⊆ R, the interval
(i, j) is not contained in aclL(C ∪ (R ∩Q)). Recall aclL to be the algebraic
closure in sense of L that we have defined in the previous chapter.

Proof. Assume the interval (i, j) is contained in aclL(C ∪ (R ∩Q)). Since
C is finite and R ∩Q is countable then C ∪ (R ∩Q) is countable. Hence
aclL(C∪ (R∩Q)) is also countable. However the interval (i, j) is not count-
able. We have contradiction. Then the interval (i, j) is not contained in
aclL(C ∪ (R∩Q)).

Let (M, B) be such that (R, R ∩ Q) ≺ (M, B) and (M, B) is sufficiently
saturated.

Lemma 4.2.2. For all i, j ∈ M, i < j, and any finite C ⊆ M, the interval (i, j)
is not contained in aclL(C ∪ B).

Proof. We are going to write the Lemma 4.2.1 in terms of formulas.
Let F = {P1, . . . , Pk} be a set of polynomials over Z in the variables x, y
and zi.
Let ϕPi(x, y, zi) be

(
Pi(x, y, zi) = 0∧∃w(Pi(w, y, zi) 6= 0)∧U(zj1) · · · ∧U(zji)

)
where zj1 , . . . , zji are the components of the tuple zi. Now we can translate
the Lemma 4.2.1 as follows:
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Let C be the set {c1, . . . , cn} and let c be the tuple c1, . . . , cn.
Consider

θF(x) ≡
(

i < x < j ∧ ¬∃z1ϕP1(x, c, z1)∧

¬∃z2ϕP2(x, c, z2) ∧ . . . ∧ ¬∃zk ϕPk(x, c, zk)

)
.

Since (M, B) is an elementary extension of (R, R∩Q) and by Lemma 4.2.1,
each such θF(x) is realised in M. Then there is a ∈ M such that M |= θF(a).
Then by saturation there is a ∈ M such that M |= θF(a) for every such
θF(a) . This concludes the proof of the Lemma 4.2.2.

The following result is partly from [16] where model-completeness is shown.
The proof we present is based on the back and forth argument given in [4].

Theorem 4.2.3. The L∗-structure (R, R∩Q) has quantifier elimination.

Proof. Let us first remind ourselves that a subset A ⊆ M is independent if
for every a ∈ A, a /∈ dclL(A \ {a}). Any subset A of M contains a maximal
independent subset and each such set is called basis of A.
Let (M, B) be such that (R, R ∩ Q) ≺ (M, B) and (M, B) is sufficiently
saturated.
Let a′ be aclL-independent over B, and aB a tuple from B. Similarly, let b′

be aclL-independent over B, and bB a tuple from B.

Claim 4.2.4. If c ∈ B then there is some d ∈ B such that if tpL(a′ aB) =

tpL(b′ bB) then
tpL(a′ aB c) = tpL(b′ bB d).

Moreover, by repeated application of this process, we get

q f tpL∗(a′ aB) = q f tpL∗(b′ bB).

Proof of Claim 4.2.4. This claim is proved by considering the following two
cases.
Case (i) : c ∈ aclL(a′ ∪ aB)

Suppose c ∈ aclL(a′ ∪ aB) then c ∈ dclL(a′ ∪ aB).
By quantifier elimination of M as an L-structure, there exists d ∈ M such
that tpL(a′ aB c) = tpL(b′ bB d) and d is unique. Now we need to show that
d ∈ B.
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First let us show that c ∈ aclL(aB). Suppose c /∈ aclL(aB) and let a′′ be a
minimal length subtuple of a′ such that c ∈ aclL(a′′ ∪ aB).
Say a′′ = a′′1 , . . . , a′′k such that c ∈ aclL(aB ∪ { a′′1 , . . . , a′′k−1, a′′k }) \ aclL(aB ∪
{a′′1 , . . . , a′′k−1}). Then by the exchange property,

a′′k ∈ aclL(aB ∪ { a′′1 , . . . , a′′k−1} ∪ {c}).

This is in contradiction with the fact that a′′ is aclL-independent over B.
Therefore c ∈ aclL(aB) = dclL(aB), and thus d ∈ dclL(bB) ⊆ B, because
B ≺ M is an L-structures. Then we have d ∈ B such that

tpL(a′ aB c) = tpL(b′ bB d).

Case (ii) : c /∈ aclL(a′ ∪ aB)

Suppose c /∈ aclL(a′ ∪ aB) and recall tpL(a′ aB) = tpL(b′ bB). By saturation
and the denseness property, we can find d ∈ B realising a cut over dclL(b′ ∪
bB) which corresponds to the cut over dclL(a′ ∪ aB) realised by c. Then

tpL(a′ aB c) = tpL(b′ bB d).

This completes the proof of the Claim 4.2.4.

We are now able to prove the Theorem 4.2.3.
Let a, b ∈ Mn such that q f tpL∗(a) = q f tpL∗(b). Let a′ be an aclL-basis for
a over B and b′ the corresponding subtuple aclL-basis of b over B. We let
aB = a ∩ B and bB = b ∩ B.
Since we only have one structure (M, B) in this section then we are using
the same structure to apply the back and forth argument.
Let c ∈ M. We want to show that there is d ∈ M such that q f tpL∗(a c) =
q f tpL∗(b d).
Three cases can be considered.
Case (1): c ∈ B
Suppose c ∈ B. From the definition of a′, each element of a is in dclL(a′∪ B).
Let c ∈ Bm such that each element of a is in dclL(a′ ∪ c). Using the Claim
4.2.4 m times, we obtain d ∈ Bm such that q f tpL∗(a′ aB c) = q f tpL∗(b′ bB d).
Therefore

q f tpL∗(a c) = q f tpL∗(b d).

We may assume c ∈ c. Then there is a corresponding d ∈ d with
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q f tpL∗(a c) = q f tpL∗(b d).

Case (2) : c /∈ aclL(a ∪ B)
Suppose c /∈ aclL(a ∪ B). Let c, d be as in Case (1). We want to find
d /∈ aclL(b ∪ B) such that tpL(a c c) = tpL(b d d).
By saturation and Lemma 4.2.2, we can find d /∈ aclL(b ∪ B) and which
realises the cut over dclL(b d) corresponding to the cut over dclL(a c) re-
alised by c, which implies tpL(a c c) = tpL(b d d). Since c 6∈ aclL(a ∪ B)
and d 6∈ aclL(b ∪ B), it follows from Claim 4.2.4 that q f tpL∗(c a′ aB c) =

q f tpL∗(d b′ bB d).
We then have

q f tpL∗(a c) = q f tpL∗(b d).

Case (3): c /∈ B but c ∈ aclL(a ∪ B)
Suppose c /∈ B and c ∈ aclL(a ∪ B). Then c ∈ dclL(a ∪ B). Let c ∈ Bm be
such that a c ∈ aclL(a′ ∪ aB ∪ c) = dclL(a′ ∪ aB ∪ c).
By Case (1), there exists d ∈ Bm such that q f tpL∗(a c) = q f tpL∗(b d).
By quantifier elimination for M as L-structure, there is a unique d ∈ M
such that tpL(a c c) = tpL(b d d). By Claim 4.2.4, q f tpL∗(a′ aB c) =

q f tpL∗(b′ bB d). Therefore

q f tpL∗(a c) = q f tpL∗(b d).

This concludes the proof of quantifier elimination.

Remark 4.2.5. Let L′ = {0, 1, ·,+,<, U}. It follows from the quantifier
elimination of the theory ThL∗(R, R ∩Q) that the theory ThL′(R, R ∩Q)

is near-model complete. In fact without the Dϕ predicates, the theory of
dense pairs of real-closed fields does not have quantifier elimination but
any formula can be written as a boolean combination of existential formu-
las.

We have proved that the theory of (R, R∩Q) has quantifier elimination in
the language L∗. Using a similar argument, we are going to give a general
proof of the completeness of the theory of dense pairs of real-closed fields
in the language of dense pairs L′.
Let T be the theory of RCOF and L the language associated with it. Denote
by T∗ the theory of dense pairs of RCOF, and L∗ its language, where L∗
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is an extension of L defined earlier. Remark that in this study, we are still
using a one-sorted approach.

4.3 Completeness

Let T∗ be the set of all logical consequences of axioms expressible as L∗-
sentences which say:

- B and M are RCOF,

- B ≤ M,

- B 6= M,

- ∀i, j ∈ M, i < j, ∃b ∈ B such that i < b < j,

- U and Dϕ are interpreted in (M, B) as in the previous section.

In order to prove the next theorem, we need a variant of Lemma 4.2.2. In
this section, we state again the lemma and give different proof. In fact
we use the axioms of dense pairs of real-closed fields to prove the lemma
instead of using an elementary extension of (R, R ∩Q). This result and
proof are taken from van den Dries paper [4] and we omit some details.

Lemma 4.3.1. For all i, j ∈ M, i < j, and any finite C ⊆ M, the interval (i, j)
is not contained in aclL(C ∪ B).

Proof of Lemma 4.3.1. Let us prove the following claim first.

Claim 4.3.2. Let B, M be two models of RCOF. Let B ⊆ M, let f : Mn+1 −→
M be B-definable in M, and let a ∈ M \ B. Then there exist b0, . . . , bn ∈ B
such that

b0 + b1a + · · ·+ bnan /∈ f (Bn × {a}).

Proof of Claim 4.3.2. We are not giving a full proof of this claim but one can
prove it using dimension. In fact, the set { f (b1, . . . , bn, a) : b1, . . . , bn ∈ B}
is at most n-dimensional and the set {b0 + b1a + · · ·+ bnan : b0, . . . , bn ∈ B}
is an n + 1-dimensional vector space.
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In proving the lemma, it is enough to show that if g : Mn −→ M is defin-
able in M, then g(Bn) 6= M.
Let g : Mn −→ M be definable in M, then there is h : Mn+p −→ M that
is B-definable in M and (a1, . . . , ap) ∈ Mp such that g(x) = h(x, a1, . . . , ap)

for all x ∈ Mn.
By enlarging B if necessary, we may assume M ⊆ aclL({a} ∪ B).
For all i, since ai ∈ aclL({a} ∪ B), then ai = li(a) for some function li :
M −→ M that is B-definable in M. Adopting the notations in the previous
claim, let f : Mn+1 −→ M such that f (x, y) = h(x, l1(y), . . . , lp(y)). It
follows that

f (Bn, a) = h(Bn, l1(a), . . . , lp(a)) 6= M.

So,
g(Bn) 6= M.

As with Theorem 4.2.3, the following result has also been taken from Sec-
tion 2 of [4], although completeness and model-completeness are shown in
[16]. Proofs are still based on the proofs in [4].

Theorem 4.3.3. The theory T∗ has quantifier elimination and is complete.

Proof. The proof of this theorem is very similar to the proof of quantifier
elimination that we have seen in Section 4.2. Instead of working directly
with some saturated elementary extension of (R, R∩Q), we use two mod-
els saturated and homogeneous of the theory of dense pairs of real-closed
fields. It will then follow that T∗ = Th(R, R∩Q).
Let (K, A) and (M, B) be two models of the theory T∗ such that they are
both κ-saturated for some large κ. We know that K, M, A and B are real-
closed fields. Moreover A and B are respectively dense in K and M. We
have K ≡ M as L-structures, K and M have quantifier elimination as L-
structures.
The following claims will be used to prove completeness of dense pairs of
real-closed fields.

Claim 4.3.4. q f tpK
L∗(∅) = q f tpM

L∗(∅).

Proof of Claim 4.3.4. By definition, q f tpM
L∗(∅) and q f tpK

L∗(∅) are just the set
of all sentences that can be formed from the language {0, 1, ·,+,<, U, Dϕ},
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and are true respectively in (K, A) and (M, B). These are equivalent to
L-sentences in the L-structures A and B. Since A ≡ B, we have

q f tpK
L∗(∅) = q f tpM

L∗(∅).

Let a′ be aclK
L -independent over A, and aA a tuple from A. Similarly, let

b′ be aclM
L -independent over B, and bB a tuple from B. The next claim is

basically the same as Claim 4.2.4.

Claim 4.3.5. If c ∈ A then there is some d ∈ B such that if tpK
L (a′ aA) =

tpM
L (b′ bB) then

tpK
L (a aA c) = tpM

L (b bB d).

Furthermore, note that by repeated application of the first part of this claim,
we obtain

q f tpK
L∗(a′ aA) = q f tpM

L∗(b′ bB).

Proof of claim 4.3.5. The proof of this claim contains two cases.
Case (i) : c ∈ aclK

L (a′ ∪ aA)

Suppose c ∈ aclK
L (a′ ∪ aA) then c ∈ dclK

L (a′ ∪ aA). By quantifier elimination
of K and M as L-structures, there exists d ∈ M such that tpK

L (a′ aA c) =

tpM
L (b′ bB d) and d is unique. We need to show that d ∈ B.

First we are showing that c ∈ aclK
L (aA).

Suppose c /∈ aclK
L (aA) and let a′′ be a minimal length subtuple of a′ such

that c ∈ aclK
L (a′′ ∪ aA). Say a′′ = a′′1 , . . . , a′′k such that c ∈ aclK

L (aA ∪
{a′′1 , . . . , a′′k−1, a′′k }) \ aclK

L (aA ∪ {a′′1 , . . . , a′′k−1}). Then by the exchange prop-
erty, we have

a′′k ∈ aclK
L (aA ∪ {a′′1 , . . . , a′′k−1} ∪ {c}).

This is in contradiction with the fact that a′′ is aclK
L -independent over A.

Therefore c ∈ aclK
L (aA) = dclK

L (aA), and so d ∈ dclM
L (bB) ⊆ B, because

B ≺ M as L-structures.
Then we have d ∈ B such that

tpK
L (a′ aA c) = tpM

L (b′ bB d).

Case (ii) : c /∈ aclK
L (a′ ∪ aA)

Suppose c /∈ aclK
L (a′ ∪ aA) and tpK

L (a′ aA) = tpM
L (b′ bB).
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By saturation, we can find d ∈ B realising a cut over dclM
L (b′ ∪ bB) which

corresponds to the cut over dclK
L (a′ ∪ aA) realised by c.

Then
tpK

L (a′ aA c) = tpM
L (b′ bB d).

This concludes the proof of the Claim 4.3.5.

The next step is to prove that (K, A) and (M, B) have the back and forth
property.
Let a ∈ Kn, b ∈ Mn such that q f tpK

L∗(a) = q f tpM
L∗(b). Let a′ an aclK

L -basis
for a over A and b′ the corresponding subtuple aclM

L -basis of b over B. We
let aA = a ∩ A and bB = b ∩ B.
Let c ∈ M. We want to show that there is some d ∈ M such that

q f tpK
L∗(a c) = q f tpM

L∗(b d).

Three cases can be considered as before.
Case (1): c ∈ A
Suppose c ∈ A. We know that each element of a is in dclK

L (a′ ∪ A). Let
c ∈ Am such that each element of a is in dclK

L (a′ ∪ c). Using Claim 4.3.5 m
times, we obtain d ∈ Bm such that q f tpK

L∗(a′ aA c) = q f tpM
L∗(b′ bB d).

Therefore
q f tpK

L∗(a c) = q f tpM
L∗(b d).

We may assume c ∈ c. Then there is a corresponding d ∈ d such that

q f tpK
L∗(a c) = q f tpM

L∗(b d).

Case (2): c /∈ aclK
L (a ∪ A)

Suppose c /∈ aclK
L (a ∪ A). Let c, d be as in Case (1). We want to find

d /∈ aclM
L (b ∪ B) such that tpK

L (a c c) = tpM
L (b d d).

By saturation and Lemma 4.3.1, we can find d /∈ aclM
L (b ∪ B) and which

realises the cut over dclM
L (b d) corresponding to the cut over dclK

L (a c) re-
alised by c, which implies tpK

L (a c c) = tpM
L (b d d). Since c /∈ aclK

L (a ∪ A)

and d /∈ aclM
L (b ∪ B), it follows from Claim 4.3.5 that q f tpK

L∗(c a′ aA c) =

q f tpM
L∗(d b′ bB d).

Then we get
q f tpK

L∗(a c) = q f tpM
L∗(b d).

Case (3): c /∈ A but c ∈ aclK
L (a ∪ A)
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Suppose c /∈ A but c ∈ aclK
L (a ∪ A) = dclK

L (a ∪ A).
Let c ∈ Am be such that a c ∈ aclK

L (a′ ∪ aA ∪ c) = dclK
L (a′ ∪ aA ∪ c).

By Case (1), there exists d ∈ Bm such that q f tpK
L∗(a c) = q f tpM

L∗(b d). By
quantifier elimination for K, M as L-structures, there is a unique d ∈ M
such that tpK

L (a c c) = tpM
L (b d d). By Claim 4.3.5, q f tpL∗(a′ aB c) =

q f tpL∗(b′ bB d). Therefore

q f tpL∗(a c) = q f tpL∗(b d).

We have proved that the theory T∗, the theory of dense pairs of real-closed
fields in the language L∗, has back and forth property. Claim 4.3.4 and back
and forth property ensure completeness and quantifier elimination.

Remark 4.3.6. Let T′ be the theory of dense pairs of real-closed fields in
the language L′ = {+, ·, 0, 1,<, U}. The theory T′ is complete.
This is because the Dϕ predicates are ∅-definable in any model of T′.
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Chapter 5

Imaginaries in dense pairs of
real-closed fields

In this chapter we will study imaginaries in dense pairs of real-closed
fields. There are already interesting results about imaginaries, which can
mostly be found in [1], [2] and [3]. In fact we will introduce first some of
these results in Section 5.2. Then, we will focus on the relations between
acleq and dcleq.

5.1 Definable sets

To better understand the concept of imaginaries, a good comprehension of
definable sets in dense pairs is required. From now on, we are going to
work in a saturated elementary extension (M, B) of (R, R∩Q).
Let L be the language of ordered rings {0, 1,+, ·,<} and L′ the extension
of L with a unary predicate U defined in chapter 4. Recall L∗ to be the lan-
guage of dense pairs of real-closed fields as in chapter 4, having quantifier
elimination.
Let us start with some results taken from [4], which help to describe defin-
able sets.

Lemma 5.1.1. Let c be a tuple such that if c′ is a basis for c over B and
cB = c∪ B then c ∈ aclL(c′ ∪ cB). Let a, b ∈ Bn such that tpL′(c a) 6= tpL′(c b)
where L

′
= {0, 1,+, ·, U,<}. Then tpL(c a) 6= tpL(c b).

Proof. Assume that tpL(c a) = tpL(c b). By quantifier elimination of (M, B)
as an L∗-structure and by Claim 4.2.4, we have tpL∗(c a) = tpL∗(c b). This

29
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implies that tpL′(c a) = tpL′(c b), which is in contradiction to our hypoth-
esis.
Therefore tpL(c a) 6= tpL(c b).

Proposition 5.1.2. Let X ⊆ Bn be definable in (M, B). Then there exists
Y ⊆ Mn definable in M such that X = Y ∩ Bn.

Proof. Let c ∈ Mm be a finite tuple such that X is defined over c, and
assume c is as in Lemma 5.1.1. Let a ∈ X and b ∈ Bn \ X. Then Lemma
5.1.1 says that there is a set Yab definable over c in M such that a ∈ Yab and
b /∈ Yab.
We fix a ∈ X. We have

⋂{Yab ∩ Bn : b ∈ Bn \ X} ⊆ X. Since there are only
countably many Yab, then by saturation there is a finite set Ga ⊆ Bn \ X
such that

⋂{Yab ∩ Bn : b ∈ Ga} ⊆ X. Let Ya =
⋂{Yab : b ∈ Ga}, then

a ∈ Ya ∩ Bn ⊆ X and Ya is definable over c in M.
Consequently X =

⋃{Ya ∩ Bn : a ∈ X}. By saturation again X =
⋃{Ya ∩

Bn : a ∈ F} for a finite set F ⊆ X.
Now let Y =

⋃{Ya : a ∈ F}, then Y is definable over c in M and X =

Y ∩ Bn.

The following definition is about small closure. It is originally described
in [4], however we use notations from [3]. More properties about it can be
found in [1], [2] and [3].
Let (M, B) be a dense pair and A ⊆ M.

Definition 5.1.3. Let b ∈ M. We say that b is in the small closure of A,
denoted by scl(A), if b ∈ aclL(A ∪ B). That is scl(A) = aclL(A ∪ B).

Proposition 5.1.4. scl satisfies the exchange property.

Proof. If a ∈ acl(A ∪ {b}) \ acl(A), then b ∈ acl(A ∪ {a}) by the exchange
property for acl. So for a ∈ aclL(A ∪ B ∪ {b}) \ aclL(A ∪ B), we have
b ∈ aclL(A ∪ B ∪ {a}). Since scl(A) = aclL(A ∪ B) then scl satisfies the
exchange property.

We conclude this section by standard definitions that we may find in model
theory books, such as [10].
Now, we give the definition of interdefinability for real tuples. It can be
extended to imaginary elements.
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Definition 5.1.5. Tuples a and b of length m are said to be interdefinable over
a set A if a ∈ (dcl(b ∪ A))m and b ∈ (dcl(a ∪ A))m.

The next two definitions concern the notions of small set and conjugate
elements.

Definition 5.1.6. Let a ∈ Meq and b ∈ Meq. Let A ⊆ Meq. Then b is a
conjugate of a over A if there is an automorphism σ of Meq, which fixes A
point-wise, such that σ(a) = b.

Definition 5.1.7. Let Y ⊆ Mn be definable in (M, B). We say that Y is small
if there is a finite A ⊆ M such that Y ⊆ (scl(A))n.

We define definable closure in the equivalence relation structure as follows.
It is well known that the next definition is equivalent to the definition of
definable closure in Chapter 2 but for Meq.

Definition 5.1.8. Assume M is sufficiently saturated and strongly homoge-
neous. Let A ⊆ M and denote by Aut(Meq/A) the set of automorphisms
of Meq fixing A pointwise. Then

dcleq(A) = {x ∈ Meq : σ(x) = x for all σ ∈ Aut(Meq/A)}.

5.2 Known results about imaginaries

As we mentioned at the beginning of this chapter, this section is centered
on some of the results about imaginaries from [1], [2] and [3], which will
be helpful for the rest of the chapter. We are just using them to obtain new
results. The proofs can be found in [3].
We extend the notion of small closure to allow imaginary parameters. Since
it is still for real elements, we call it real small closure.

Definition 5.2.1. Let e ∈ (M, B)eq. The real small closure of e is the set
{a ∈ M: there exists a set X small and definable over e such that a ∈ X },
and we denote it by sclM(e).

The following theorem is one of the first results on imaginaries in dense
pairs of real-closed fields. One can prove it by using Proposition 5.1.2.

Theorem 5.2.2. [3] Let Z ⊆ Bn be definable in (M, B). Then the canonical
parameter for Z in (M, B)eq is interdefinable with an element of Meq.
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Theorem 5.2.3. [3] Let e ∈ (M, B)eq and let b be an aclL-basis for sclM(e) over
B. Then e is interdefinable over b with an element of Meq.

These two theorems will be used to prove the main results of this thesis in
the last section. The following theorem is interesting and worth mention-
ing.

Theorem 5.2.4. [1] Let e ∈ (M, B)eq. Then e is a canonical parameter for a small
definable set.

Stronger version of Lemma 4.2.1

From the previous chapter, the theory of dense pairs of real-closed fields is
complete and so any dense pair of real-closed fields is elementarily equiv-
alent to the structure (R, R ∩Q). Let (M, B) be such that (R, R ∩Q) ≺
(M, B) and (M, B) is sufficiently saturated. For more appropriate results,
let us improve the Lemma 4.2.1.

Lemma 5.2.5. For all i1 < i2 < · · · < j2 < j1 in M and any finite C ⊆ M,
the convex set

⋂
n∈N

(in, jn) is not contained in aclL(C ∪ B).

Proof. By adopting the notation used in the proof of Lemma 4.2.2, for some
polynomials P1, . . . , Pk, we consider

θF(x) ≡ ∀y1, . . . , yn∃x
(

i1 < x < j1 ∧ · · · ∧ in < x < jn ∧ ¬∃z1ϕP1(x, y, z1)∧

¬∃z2ϕP2(x, y, z2) ∧ · · · ∧ ¬∃zk ϕPk(x, y, zk)

)
.

Since M is an elementary extension of R then there is a ∈ M such that
M |= θF(a). Then by saturation there is a ∈ M such that M |= θF(a) for any
set of polynomials F. This concludes the proof of the Lemma 5.2.5.

The above lemma plays a significant role in proving the next two theorems.

5.3 Relations between acleq and dcleq

This section contains the principal results of this thesis. In fact, the question
about the relation between acleq and dcleq was raised during an interna-
tional LYMOTS meeting in Manchester in 2015, and here, we are going to
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answer this question by the following theorems. On the one hand, we prove
that for any dense pair of real-closed fields, we have acleq(∅) = dcleq(∅).
However, there is A ⊆ (M, B)eq such that acleq(A) 6= dcleq(A).
In order to prove the equality stated above, we need the following lemma.

Lemma 5.3.1. Let e ∈ acleq(∅) such that sclM(e) ⊆ B then e ∈ dcleq(∅).

Proof. Let e ∈ acleq(∅) and b be an aclL-basis for sclM(e) over B. By Theo-
rem 5.2.3, e is interdefinable over b with some α ∈ Meq.
Since sclM(e) ⊆ B then the basis b = ∅ and so e is interdefinable with
α. Thus α ∈ dcleq(e) ⊆ acleq(e). Moreover, we have e ∈ acleq(∅), then
acleq(e) ⊆ acleq(∅), which implies that α ∈ acleq(∅). By elimination of
imaginaries in M, α is interdefinable with some a ∈ Mn. Say a = a1 . . . an.
Since M is totally ordered then ai ∈ acl(∅) = dcl(∅) and therefore α ∈
dcleq(∅). Since e is interdefinable with α then e ∈ dcleq(∅).

Theorem 5.3.2. Let (M, B) be a dense pair of real-closed fields, then acleq(∅) =

dcleq(∅).

Proof. We may assume that (M, B) is sufficiently saturated. Let e ∈ acleq(∅).
By using Lemma 5.3.1, it is sufficient to prove that sclM(e) ⊆ B.
Let a ∈ sclM(e) and a ∈ M \ B. By Definition 5.2.1, a ∈ sclM(e) if and only
if there exists a set X small definable over e such that a ∈ X. The set X is
small if there is a finite set A ⊆ M such that X ⊆ scl(A) = aclL(A ∪ B).
Let {e1, . . . , en} be the conjugates of e and X1, . . . , Xn be the conjugates of
X associated respectively to {e1, . . . , en}. Then a ∈ X1 ∪ · · · ∪ Xn and the
set X1 ∪ · · · ∪ Xn is small and definable over ∅. By definition of small set
there is a finite set Ã ⊆ M such that X1 ∪ · · · ∪ Xn ⊆ aclL(Ã ∪ B).
We want to find a contradiction.
Define two sequences of rational numbers (in)n∈N and (jn)n∈N such that
in < a < jn for all n ∈ N. This is possible if a is finite. If a is infinite then
we can use the fact that B is dense in M to find some b ∈ B such that a + b
is finite and adapt the following argument accordingly.
Moreover we assume that (in)n∈N increases, (jn)n∈N decreases and jn − in

goes to 0 when n goes to infinity.
By Lemma 5.2.5

⋂
n∈N

(in, jn) 6⊆ aclL(Ã ∪ B). It implies that there exists a′ ∈⋂
n∈N

(in, jn) such that a′ /∈ aclL(Ã ∪ B).
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Furthermore, for any c, d ∈ Q with c < a < d, we can always find a large
N ∈N such that c < iN < a, a′ < jN < d.
Therefore for all c, d ∈ Q, we have the following equivalence:

c < a′ < d ⇐⇒ c < a < d,

which implies that tpL(a/∅) = tpL(a′/∅) by Theorem 4.2.3. Thus a′ /∈ B
implies that tp(a/∅) = tp(a′/∅). Consequently a′ ∈ X1 ∪ · · · ∪ Xn which
tells us that X1 ∪ · · · ∪ Xn 6⊆ aclL(Ã ∪ B). This is contradiction, therefore
sclM(e) ⊆ B.

We are going to prove that generally acleq is different from dcleq. For that,
we will construct a definable set X such that an imaginary element of the
acleq(pXq) does not belong to dcleq(pXq). Here pXq denotes a code for X.
The construction will be as follows. First, we let a /∈ B and prove that we
can choose b /∈ aclL({a} ∪ B) such that tp(a) = tp(b). Second, we show
that for all c ∈ B, a + c /∈ aclL({b} ∪ B). Finally, we have to prove that we
can choose c ∈ B such that tp(b, a) = tp(a + c, b). This will complete the
proof of the theorem.

Proposition 5.3.3. Let a /∈ B. We can choose b /∈ aclL({a} ∪ B) such that
tp(a) = tp(b).

Proof. Let (in)n∈N be an increasing sequence from Q and (jn)n∈N be a de-
creasing sequence from Q such that jn − in goes to 0 when n tends to in-
finity and such that a is contained in the interval (in, jn) for all n ∈ N.
(Otherwise, since B is dense in M, there exists b′ ∈ B such that in + b′ <
a < jn + b′).
By Lemma 5.2.5,

⋂
n∈N

(in, jn) 6⊆ aclL(A∪ B) for any finite subset A of M. We

can choose A to be {a}. So,
⋂

n∈N

(in, jn) 6⊆ aclL({a} ∪ B).

Then there exists b ∈ ⋂
n∈N

(in, jn) such that b /∈ aclL({a} ∪ B).

For any c, d ∈ Q such that c < a < d, we can always find a large N ∈ N

such that c ≤ iN ≤ a, b ≤ jN ≤ d. Then

tpL(a) = tpL(b).

By assumption a /∈ B, and since b /∈ aclL({a} ∪ B), then b 6∈ B. Therefore

tp(a) = tp(b).

by Theorem 4.2.3.
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Fix b /∈ aclL({a} ∪ B) as in Proposition 5.3.3. We have the following propo-
sition.

Proposition 5.3.4. For all c ∈ B, we have a + c /∈ aclL({b} ∪ B).

Proof. We are going to prove this proposition by contradiction. For that we
need the following claim.

Claim 5.3.5. For such b in Proposition 5.3.3, a /∈ aclL({b} ∪ B).

Proof of Claim 5.3.5. Since a /∈ B and B is closed, then a /∈ aclL(B). As-
sume a ∈ aclL({b} ∪ B), then a ∈ aclL({b} ∪ B) \ aclL(B). By the ex-
change property we have b ∈ aclL({a} ∪ B), which contradicts the fact
that b /∈ aclL({a} ∪ B). Therefore a /∈ aclL({b} ∪ B).

Now, let c ∈ B and assume that a + c ∈ aclL({b} ∪ B). So there is a non-
zero polynomial p(x) = enxn + en−1xn−1 + · · ·+ e1x + e0 with coefficients
from Q({b} ∪ B) such that p(a + c) = 0.
Let n be the degree of the polynomial p(x) and let en be the coefficient of
xn. Of course, en 6= 0. Then we can write

p(a + c) = en(a + c)n + en−1(a + c)n−1 + · · ·+ e1(a + c) + e0.

Using the binomial theorem,

(a + c)n =
n

∑
k=0

(
n
k

)
an−kck,

we have

p(a + c) = enan +

[
en

(
n
1

)
c + en−1

(
n− 1

0

)]
an−1

+

[
en

(
n
2

)
c2 + en−1

(
n− 1

1

)
c + en−2

(
n− 2

0

)]
an−2 + . . .

+

[
en

(
n

n− 1

)
cn−1 + en−1

(
n− 1
n− 2

)
cn−2 + · · ·+ e1

(
1
0

)]
a

+ en

(
n
n

)
cn + en−1

(
n− 1
n− 1

)
cn−1 + · · ·+ e1c + e0.
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Let pc(x) = cnxn + · · ·+ c1x + c0 where

cn = en

cn−1 = en

(
n
1

)
c + en−1

(
n− 1

0

)
...

c1 = en

(
n

n− 1

)
cn−1 + en−1

(
n− 1
n− 2

)
cn−2 + · · ·+ e1

(
1
0

)
c0 = en

(
n
n

)
cn + en−1

(
n− 1
n− 1

)
cn−1 + · · ·+ e1c + e0.

So pc(x) = p(x + c).
The polynomial pc(x) is not a zero polynomial for any c ∈ B. In fact, the
degree of the polynomial p is equal to n and the coefficient of xn does not
depend on c and it is not zero.
It is also clear that the coefficients of pc(x) are elements of Q({b} ∪ B). We
have pc(a) = 0 for some c ∈ B. Then a ∈ aclL({b} ∪ B) and we have a
contradiction with the Claim 5.3.5. Therefore a + c /∈ aclL({b} ∪ B).

Theorem 5.3.6. There exists e ∈ (M, B)eq such that acleq(e) 6= dcleq(e).

Proof. We are proving that there is an element of acleq(e) which is not an
element of dcleq(e). We may assume (M, B)eq is sufficiently saturated and
strongly homogeneous.
Let E be the ∅-definable equivalence relation such that for any a, b ∈ M,
aEb if and only if a = b + c for some c ∈ B.

Claim 5.3.7. E is an equivalence relation.

Proof of Claim 5.3.7. Let a, b and c be elements of M. We know that a = a+ 0
and 0 ∈ B. Then we have reflexivity.
By definition aEb if and only if a = b + u for some u ∈ B, then b = a + d
where d = −u and d ∈ B because B is closed. Thus we have bEa, which
proves the symmetry property.
Assume aEb and bEc. We want aEc. We have a = b + u and b = c + v for
some u, v ∈ B which imply a = c+ (u+ v). Since B is closed then u+ v ∈ B
and aEc. We then get transitivity.

Let a, b be two elements of M as in Proposition 5.3.3. Note that a and b are
not related by the equivalence relation E. Let X = [a] ∪ [b] where [a] and
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[b] denote respectively the equivalence classes of a and b. By the definition
of the equivalence relation, [a] ∩ [b] = ∅, so [a] and [b] form a partition of
X.

Lemma 5.3.8. p[a]q ∈ acleq(pXq).

Proof of Lemma 5.3.8. Let σ ∈ Aut(M, B) such that σ(X) = X. We know
that [a] ⊂ X then

σ([a]) ⊆ σ(X) = X

σ([a]) ⊆ [a] ∪ [b].

Since σ preserves the equivalence relation E, then σ([a]) ⊆ [a] or σ([a]) ⊆
[b]. But for any c ∈ [a], [a] = [c] (same reasoning for b). Therefore σ([a]) =
[a] or σ([a]) = [b] and so σ(p[a]q) = p[a]q or σ(p[a]q) = p[b]q.

Lemma 5.3.9. p[a]q /∈ dcleq(pXq).

Proof of Lemma 5.3.9. Now we need to show that tp(a, b) = tp(b, a + c) for
some c ∈ B.
Since tp(a) = tp(b), then there is an automorphism σ of (M, B), such that
σ(a) = b. By Theorem 4.2.3, the type of b over a, denoted by tp(b/a), is
determined by the cut realised by b over the field generated by a, Q(a).
Let I = {i ∈ Q(a) : i < b} and J = {j ∈ Q(a) : b < j}. Then the cut
is {(i, j) : i ∈ I, j ∈ J}. By saturation, the intersection ∩(i, j) contains an
interval.
We also have σ(i), σ(j) ∈ Q(b) for all i ∈ I and j ∈ J. Consider the set
K = {(σ(i), σ(j)) : i ∈ I, j ∈ J}. We can choose c ∈ B such that a + c
realises K. Note that by denseness property, we can always find this c.
We then have that tp(a + c/b) corresponds to tp(b/a). Since tp(a) = tp(b).
Using Theorem 4.2.3 and Proposition 5.3.4, we then have

tp(b, a) = tp(a + c, b)

and hence
tp(a, b) = tp(b, a + c).

Then there is an automorphism σ such that σ(a) = b and σ(b) = a + c.
By Proposition 2.4.3, any automorphism of (M, B) can be extended to an
automorphism of (M, B)eq. Then σ([a]) = [b] and σ([b]) = [a + c] = [a].
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Thus σ(X) = X which is equivalent to σ(pXq) = pXq. However σ(p[a]q) =
p[b]q 6= p[a]q.
Therefore p[a]q /∈ dcleq(pXq)

Lemma 5.3.8 and Lemma 5.3.9 say that there is an element of acleq(pXq)

which is not in dcleq(pXq). We proved the theorem.
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