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ABSTRACT

Runoff is generally regarded as one of the most important routes of nonpoint source

pesticide pollution in agricultural surface waters. Of major concern is the fact that

low, sub-lethal levels of pesticide exposure are responsible for negative

ecotoxicological effects, stressing the need for methods capable of identifying

problem areas where populations could be at risk. Predicted average losses of three

pesticides in tributaries of nine sub-catchments of the Lourens River were calculated

through use of a GIS-based runoff model. There was a significant (p < 0.005) positive

correlation between the predicted average loss and mean measured concentrations of

the insecticides both in water and suspended sediments (R2 between 0.75 and 0.9),

indicating that the model could serve as a powerful tool for the risk assessment and

management of surface waters in South African orchard areas. Based on field relevant

exposure scenanos, the potential effects of azinphos-methyl on macroinvertebrate

communities were evaluated in a combined microcosm and field approach.

Microcosms were contaminated for 1 h with AZP (control, 0.2; 1,5and 20 ug/L;

three replicates each) and acute effects on survival were evaluated 6 days after

exposure. The sensitivity or tolerance of 12 core taxa was determined based on their

response to the exposure scenarios and compared to field tolerance/sensitivity as was

established by a field investigation at a control and contaminated site of the Lourens

River. The sensitivity/tolerance of ten of the 12 taxa corresponded to that which was

found in the field. Thus microcosm studies employing a field relevant design can be

successfully linked to field studies and indicate that transient pesticide contamination

affects the aquatic communities of the Lourens River.
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OPSOMMING

Afloop word oor die algemeen beskou as een van die belangrikste roetes van nie-

puntbron pestisiedbesoedeling in landbou oppervlakwaters. Die feit dat lae, sub-letale

vlakke van pestisiedblootstelling negatiewe ektoksikologiese gevolge kan hê, is van

groot belang. Dit beklemtoon die behoefte aan metodes om probleemgebiede te kan

identifiseer waar bevolkings aan risiko onderhewig is. 'n GIS-gebaseerde

afloopmodel is gebruik om die gemidddelde verlies van drie pestisiede in die sytakke

van nege sub-opvangsgebiede van die Lourensrivier te voorspel. Daar was 'n

beduidende (p < 0.005) positiewe korrelasie tussen die voorspelde gemiddelde verlies

en gemete konsentrasies van insektisiede in beide die water en sediment (R2 between

0.75 and 0.9) fases, wat aandui dat die model as 'n kragtige hulpmiddel vir

risikobestuur van oppervlakwaters in Suid Afrikaanse boord-gebiede kan dien. Die

potensiële gevolge van azinfos-rnetiel (AZP) op makroinvertebraat gemeenskappe is

deur middel van 'n gekombineerde mikrokosmos (wat op veldrelevante blootstellings

gebaseer is) en veldbenadering bepaal. Mikrokosmosse is vir 1 h met AZP

gekontamineer (kontrole; 1; 0.2; 1; 5 en 20 ~g1L; drie replikate elk), en die akute

gevolge op oorlewing is ge-evalueer na ses dae van blootstelling. Die sensitiwiteit of

toleransie van 12 sleutel taksa is deur middel van hulle respons op die

blootstellingsreeks bepaal, en met hulle veldtoleransie/sensitiwiteit vergelyk wat in 'n

veldstudie by 'n kontrole- en gekontamineerde gebied in die Lourensrivier bepaal is.

Die sensitiwiteit/toleransie van 10 van die 12 taksa in die mikrokosmos eksperimente

het ooreengestem met die wat in die veld gevind is. Mikrokosmosstudies wat op 'n

veldrelevante ontwerp gebaseer is, kan dus suksesvol aan veldstudies gekoppel word,

en dui aan dat oorgedraagde pestisiedkontaminasie die akwatiese gemeenskap van die

Lourensrivier beinvloed.
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Chapter 1 1

INTRODUCTION

Nonpoint source pollution in surface waters

Nonpoint source agricultural pollution is generally considered one of the major

threats to surface water quality in rural areas (Loague et al., 1998). Nutrients, sediments

and pesticides potentially enter aquatic environments and thus pose a risk to the

communities that inhabit them (Cooper, 1993). Of all nonpoint source pollutants,

insecticides are among the most crucial chemical stressors, simply because of their

extremely high toxicity to many non-target aquatic organisms (Baier et al., 1985).

In comparison to point sources, our knowledge of the extent of nonpoint-source

pollution is still quite restricted (Line et aI., 1997). The main factors contributing to this

situation are presumably the number and characteristics of variables (land use,

meteorology, soil types) that must be taken into account to understand and predict the

occurrence and extent of nonpoint-source pollution (Walklate, 1992; Wauchope, 1996).

Non-point source pesticide pollution can enter streams and rivers via three main

routes; leaching, spray drift and runoff (Antonious and Byers, 1997; Fawell, 1991;

Merkle and Bovey, 1974). Since many insecticides have a relatively low water solubility,

their transport via leaching is negligible (Flury, 1996). Moreover, leaching would
,

contribute preferentially to contamination of ground water and thus might affect surface

waters only under specific geological conditions (Squillace et al., 1996; Zullei-Seibert

and Skark, 1993).

Spray drift and edge-of-field runoff are the most important routes of entry for

agricultural nonpoint source insecticide pollution into surface waters (Groenendijk et al.,
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1994) and may result in considerably different exposure scenanos (Erstfeld, 1999).

Whereas spray drift leads to input of pesticides dissolved in the water phase, the

contamination during runoff is sometimes largely as a result of pesticides associated with

suspended particles (Mian and Mulla, 1992). Although pesticides dissolved in the water

phase pose more of an immediate toxicological threat, sediment associated pesticides

have also been shown to adversely affect macro invertebrate communities (Schulz and

Liess, 2001).

Importance of runoff

Because of the direct input and bio-availability of pollutants so introduced, spray

drift is commonly regarded as the worst case scenario for pesticide exposure in aquatic

risk assessment (AEDG, 1992; Ganzelmeier et al., 1995; Gilbert and Bell, 1988). In the

few studies that have however directly compared these routes of entry in the same

catchment, runoff has been shown to be the most important source of nonpoint pollution

(Kreuger, 1998; Schulz, 2001a) and is regarded as the most important factor in terms of

contamination of surface waters in arid areas (Everts, 1997).

One potential reason is related to land use factors and the fact that the spatial and

temporal scale of runoff contamination is far greater than spray drift (Schulz, 2001a).

Many pesticides have long half-life times and previous studies (Kreuger, 1998; Williams

et al., 1995) have shown that runoff-induced pesticide loading can occur long after the

previous application, indicating that runoff integrates chemical input over a large time

span. Runoff can also influence an entire catchment simultaneously and as such, a river

can collect surface runoff from a large geographical area. In comparison, spray drift is
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instantaneous and contamination can only occur during application, in combination with

specific meteorological requirements (downwind orientation of surface waters to the

point of application), which further restricts the potential for contamination (Schulz,

2001a). Furthermore spray deposition in surface waters is considerably reduced with

increasing distance from the point of application (Ganzelmeier et al., 1995; USEPA,

1999)

The quantity of pesticides that enter surface waters via runoff are dependent on a

number of factors and include the time interval between the application of pesticides and

the first heavy rainfall event, the slope and soil types of the catchment, the quantity of

applied pesticide and the size and characteristics of buffer strips (Cole et al., 1997;

Merkle and Bovey, 1974). Furthermore, runoff is highly dependent on the physico-

chemical properties of the pesticides themselves as they determine the amount of

pesticide available to surface runoff (Capel and Larson; 2001; Blanchard and Lerch,

2000). For instance, pesticides with low water solubilities or high Koe (tendency of

chemicals to bind to organic carbon) values will tend to be more associated with

sediments as opposed to dissolved in the water phase. Thus, when evaluating the risk of

runoff, it is important to sample for pesticides in both the water and suspended sediment

phases.

Runoff induced pesticide input in South Africa

Previously only a few studies have dealt with pesticide levels in farm dams

(Davies and Peall, 1997; Hassett et al., 1987), river ecosystems (Greichus et al., 1977;

Grobler, 1994; Roux et al., 1994) or groundwater (John Weaver, CSIR, pers.
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communication) in South Africa. None of these studies attempted to establish a direct

link between agricultural use of chemicals and contamination of the aquatic environment.

Moreover, they have not addressed the problem of runoff as a potential route of entry into

the freshwater ecosystem. A factor that has contributed to the lack of research is the

shortage of laboratories with the equipment and expertise to carry out complex analyses

(Dallas and Day, 1993).

The Laurens River, South Africa

More recently, extensive research has focused on nonpoint source pollution by

pesticides in the Lourens River, Western Cape, South Africa. After leaving a naturally

vegetated fynbos area, the river runs through intensive farming areas (orchards and

vineyards) in its middle reaches before flowing through the town of Somerset West. The

upper reaches of the river are in a relatively pristine state and are currently under a Class

2 conservation status (Tharme et al., 1997). During recent decades a decrease in water

quality in Western Cape rivers has been observed. This shift has also occurred in the

middle and lower reaches of the Lourens River, and is attributed to intensified

agriculture, sediment input and loss of indigenous vegetation (Tharme et al., 1997).

However, no information exists about the extent to which toxic substances from the

orchard plots in the surroundings are responsible for the degradation of the Lourens

River.

It has now been established that runoff is the most important source of nonpoint

pesticide pollution in this catchment (Schulz, 2001a) and that most contamination of the
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Lourens River mainstream is as a result of runoff activity in the tributaries (Dabrowski et

al., 2001; Schulz, 200 1b).

Studies have shown that the first heavy rainfall after application results in the

highest quantity of pesticides in surface waters (Domagalski et al., 1997). Thus, in the

context of the Western Cape, important periods for determining runoff-related

contamination are at the beginning of April, when the first heavy rains normally fall after

the end of the spraying season in late February (Dabrowski et al., 2001; Schulz et al.,

2001; Schulz, 2001a), and after heavy rainfall events during intense spraying (October to

December) (Schulz, 2001a; Schulz, 2001b).

Modelling runoff induced pesticide input

As evidence of the detrimental effects of pesticides in aquatic environments

accumulates, so the need to predict areas of risk becomes more and more urgent (Black et

al., 2000). While extensive sampling in river catchments can identify 'hotspots' and areas

of concern, the ability to predict problem areas is very valuable in implementing and

prioritising mitigation strategies and in cutting costs associated with the analysis of

samples.

Studies have linked agricultural land use to pesticide contamination in surface

waters (Munn and Gruber, 1997), but few have attempted to predict problem areas

encompassing agricultural land use only. Assessment of potential side effects of pesticide

use includes an estimation of exposure, which is usually based on predicted

environmental concentrations (PEC) (Bascietto et al., 1990). However, it has also been

pointed out that modelling approaches in exposure assessment should also be validated
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through measurement of real contamination in the field (Solomon et al., 1996;

Wauchope, 1996). Such was the main aim of the first part of this thesis, which is

described in detail in Chapter 2.

Because of the combination of land use, meteorological and chemical factors, the

prediction of runoff requires a great number of input variables, and complex models such

as GLEAMS, PRZM and AGNPS have been developed for this purpose (Donigian Jr. and

Huber, 1991). These models have been validated in the field with varying degrees of

success (Solomon et al., 1996; Donigian Jr. and Huber, 1991; Grunwald and Norton,

2000), but have disadvantages in that they are complicated and normally require a large

amount of input variables that may not be generally available (Adriannse et al.; 1997).

Minimal data requirements and ease of application are the main advantages of simpler

simulation methods (Donigian Jr. and Huber, 1991).

Based on previous studies of runoff-induced pesticide pollution in the Lourens

River catchment (Dabrowski et al., 2001; Schulz, 2001 a; Schulz, 2001b; Schulz et al.,

2001) a modelling approach was implemented using a runoff formula by Reus et al.

(1999). This formula is designed as a simple tool for prediction of pesticide loss in runoff

and has been proposed as a risk indicator for runoff by the OECD.

Assessment of effects

From the lack of information about the extent of agricultural nonpoint-source

pollution it follows that the resulting effects on aquatic communities are also not fully

understood (Cooper, 1993; Willis and McDowell, 1982). It has been stated by many

authors that conventional toxicity testing is often based on exposure scenarios with
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questionable field relevance, since concentrations and/or exposure times are not based on

conditions in the field (Brent and Herricks, 1998; Hosmer et al., 1998; Liess and Schulz,

1996). Moreover, type and composition of test species do not necessarily reflect the

complexity that prevails in the field (Breneman and Pontasch, 1994; Pontasch and Cairns,

1991).

Ecotoxicological investigations can be classified according to their level of

complexity: experimental micro- and mesocosm studies in laboratory and field systems,

purposeful contamination of natural streams, in situ bioassays and field studies about the

effects of the "natural" contamination (Buikema Jr. and Voshell Jr., 1993). Studies

including experimental insecticide input into surface waters (Davies and Cook, 1993;

Dermott and Spence, 1984; Dosdall and Lehmkuhl, 1989; Kreutzweiser and Sibley, 1991;

Lugthart et al., 1990; Yasuno et al., 1981) or the use of in situ bioassays (Baughman et

al., 1989; Matthiesen et al., 1995) reveal a distinct correlation of contamination and

biological effect. When investigations are based on the determination of abundance and

drift in the stream itself, the relationship can only be assumed or approximately assessed

(Heckman, 1981; Lenat and Crawford, 1994; Sallenave and Day, 1991; Sályi and Csaba,

1994; Tada and Shiraishi, 1994).

To sum up these studies, it can be concluded that correlation between

contamination by insecticides applied at commonly used rates and effects on the aquatic

communities in headwater streams is rarely investigated or established. As can be seen

from various review articles (Cooper, 1993; Willis and McDowell, 1982), very little

information is available about the impact of insecticide contamination on aquatic

communities in the field. It can be concluded that although a considerable amount of
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general ecotoxicological information has been published, field studies of relevant

contamination and their biological effects on aquatic communities are very scarce.

The regulatory assessment of pesticide effects is generally based on experimental

investigations in laboratory or outdoor microcosms and mesocosms (Setae, 1991; Setae,

1993; Setae, 1998; Setae, 1999). As a consequence, there is an obvious conflict between

chemical testing in an experimental system and the derivation of proper risk assessment

for the conditions in the field (Cairns Jr. et al., 1994; Crossland, 1994; Koeman, 1982;

Pontasch et al., 1989).

One concern is that the duration of exposure and observation periods in

ecotoxicological studies do not always reflect field-relevant conditions. For example, the

episodic nature of pollution events cannot adequately be addressed by conventional

toxicity testing methods with fixed-duration continuous exposure (Hosmer et al., 1998).

To obtain toxicity data relevant to the field situation, different short-term exposure

scenarios must be compared and assessed (Abel, 1980; Parsons and Surgeoner, 1991).

Furthermore, recent ecotoxicological studies have increasingly emphasized the

importance of long-term observations of effects after short-term contamination (Liess and

Schulz, 1996; Woin, 1998).

The release of pesticides into aquatic ecosystems generally impacts entire

communities. As a result, multispecies tests have been developed to reduce uncertainties

when extrapolating from the laboratory to the field (Crane, 1997; Pontasch and Cairns,

1991). In addition to direct lethal effects, sublethal and indirect reactions play an

important role, and the resulting ecological effects are often difficult to assess (Anderson,

1989; Day, 1989; Hurlbert, 1975). In nature the dynamics of invertebrate populations are

Stellenbosch University http://scholar.sun.ac.za



Chapter 1 9

influenced by a number of environmental factors simultaneously (Peckarsky and I., 1980;

Townsend et al., 1983). However, studies of these environmental factors have usually

been single-factor studies. In nature, the population dynamics are likely to be influenced

by many factors simultaneously. The input of pollutants into aquatic surface waters also

produces a potential for combined effects of introduced chemicals and already existing

biological interactions, such as predation or competition (Schulz and Dabrowski, 2001).

In conclusion, experimental studies form an important part of the effect

assessment within an ecotoxicological risk assessment. However it is important that they

are field relevant in terms of length and concentration of exposure and represent the

communities that occur naturally in the field. Chapter 3 of this thesis addresses this

aspect.

Objectives of this study

A typical ecotoxicological risk assessment includes an assessment of exposure

and biological effect, both of which are encompassed by the following two chapters of

this thesis. The two main objectives are:

1. An assessment of exposure, based on the prediction and field-based validation of

levels of runoff induced pesticide contamination in sub-catchments of the Lourens

River (Chapter 2).

2. An assessment of biological effect, based on ecotoxicological studies at the

microcosm level on multispecies communities at concentration and exposure

UNIVERSITEIT STELLENBOSCH
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scenarios relevant to field conditions (1 hour exposure at concentrations previously

reported in field studies) (Chapter 3).
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Abstract-An urgent need exists for applicable methods to predict areas of risk of

pesticide contamination within agricultural catchments. As such, an attempt was made to

predict and validate contamination in nine separate sub-catchments of the Lourens River,

South Africa, through use of a GIS-based runoff model, which utilizes land use and

physico-chemical characteristics of applied pesticides as its variables. The results of the

prediction were compared with measured contamination in water and suspended sediment

samples collected during runoff conditions in tributaries discharging these sub-

catchments. The most common insecticides applied and detected in the catchment over a
,

3-year sampling period were azinphos-methyl (AZP), chlorpyrifos (CPF) and endosulfan

(END). AZP was preferably found in water samples, while CPF and END were detected

at higher levels in the suspended particle samples. Significant (p < 0.005) positive

correlations were found between the predicted average loss and the concentrations of the

three insecticides both in water and suspended sediments (R2 between 0.75 and 0.9). Two

sites in the sub-catchment were identified as posing the greatest risk to the Lourens River

mainstream. It is assumed that lack of buffer strips, presence of erosion rills and high

slopes are the main variables responsible for the high contamination at these sites. It can

be concluded that this approach to predict runoff related surface water contamination may

serve as a powerful tool for risk assessment and management in South African orchard

areas.
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INTRODUCTION

Much attention has focused on the impact of insecticides in aquatic ecosystems as

evidence accumulates of their detrimental effects to community structure and

reproductive and developmental processes in several taxa, including macroinvertebrates

(Schulz and Liess, 1999; Leonard et al., 2000), amphibians (Berrill et al., 1998), birds,

fish and other wildlife (Alho and Vieira, 1997; Gruber and Munn, 1998). Of major

concern is the fact that low, sub-lethal levels of pesticide exposure are responsible for

negative ecotoxicological effects, stressing the need for methods capable of identifying

problem areas where populations could be at risk.

A few studies have attempted to evaluate and predict the impact of different land

uses on pollution in stream systems, and many have linked agricultural land use to poor

water quality as a result of nutrient (Heidtke and Auer, 1993; Basnyat et al., 2000) and

bacterial contamination (Gilliland and Baxter-Potter, 1987). Munn and Gruber (1997) and

Black et al. (2000) showed that the presence of organochlorine pesticides in streambed

sediment and fish tissue was correlated to agricultural land use. All of these studies

focused on a large-scale regional level and compared different types of land use such as

forestry, urban and agriculture and correlated these practices to contamination in stream

systems. This research is valuable in comparing large areas for risk mitigation but do not

identify 'hotspots' within a catchment area encompassing one type of land use. As

agriculture has been shown to be responsible for much of the pollution occurring in river

systems, this study focuses specifically on the investigation of an agricultural area and

identifying problem areas within this specific land use.
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Runoff has been shown to be a major nonpoint source of pesticides to surface

waters in agricultural areas (Kuivila and Foe, 1995; Domagalski et al., 1997; Schulz,

2001a) and is dependent on the application and physico-chemical properties (such as

half-life and KOC) of the pesticides and the land use characteristics of the surrounding

catchment (Merkle & Bovey, 1974). Land use factors influencing runoff include, the

gradient of the lands on which pesticides have been sprayed, crop type, organic carbon in

the soil, the size of the cropped area and the type and density of buffer strips that lie

between agricultural lands and water bodies (Cole et al., 1997).

Several attempts have been made at predicting the level of runoff induced

pesticide contamination in surface waters, but few of these have ever been validated in

the field. This is the main objective of this present study, which was performed in the

Lourens River catchment, in the Western Cape of South Africa. This catchment has been

intensely studied since 1998 till present, over which time much research has been

dedicated to the occurrence of pesticides in the river and its tributaries. Contamination of

the mainstream is primarily as a result of runoff activity in the tributaries (Dabrowski et

al., 2001; Schulz, 2001a) and in comparison to spray drift, has been shown to be

responsible for the majority of pesticide contamination in this catchment (Schulz, 200 1b).

The aim of the present study was to predict relative runoff induced insecticide loss

from sub-catchments of the Lourens River using a GIS-based runoff formula (Reus et al.,

1999) and to validate the results by comparison to measured levels from field samples

taken in the tributaries of the sub-catchments. Through using the formula the intention

was not to accurately predict the concentration of pesticides in the tributaries. Rather, it

was to determine whether the formula predicts differences in the average loss of
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pesticides during a runoff event, based on land use and the physico-chemical

characteristics of applied pesticides in the sub-catchments (which are incorporated into

the formula), and whether these differences are reflected in water samples taken at all of

the sites.

MATERIALS AND METHODS

Study Area

The Lourens River originates at an altitude of 1080 m in the Hottentots Holland

Mountain range and flows in a south-westerly direction for about 20 kilometers before

discharging into False Bay at Strand (34° 06' S; 18° 48' E). After leaving a naturally

vegetated fynbos area, the river runs through intensive forestry (pine plantations) and

farming areas (orchards and vineyards) in its middle reaches before flowing through the

town of Somerset West. The study area has a total catchment area of approximately 44

krrr', consisting of eight sub-catchments (LLI to LL6, VI and V2), each of which is

drained by a tributary that discharges into the Lourens River mainstream (Fig. I). LRI

represents the Lourens River upstream of any agricultural activity, which was considered

as the ninth sub-catchment for prediction, and LR2 represents the site comprising the

entire catchment of the study area. The annual mean rainfall is 915 mm most of which

occurs during the winter months between April and October (Tharme et al., 1997), as is

characteristic of the region's Mediterranean climate. A more detailed description of the

study area can be viewed in Dabrowski et al. (2001).
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Agricultural crops consist exclusively of pear, plum and apple orchards (total

growing area: 4 km"), on which pesticide application takes place between August and

mid February before fruit harvest. The three pesticide active ingredients predominantly

applied on the orchards and studied are endosulfan (END), chlorpyrifos (CPF) and

azinphos-methyl (AZP) (Table 1). CPF and AZP are used frequently between October

and February on pears and plums, up to about one application every two weeks on each

single plot. END is applied mainly onto apple and plum orchards.

Table 1. Physico-chemical properties and application rates of the most commonly used

pesticides in the Laurens River catchment.

Azinphos-methyl Chlorpyrifos Endosulfan

Water Solubility (mglLt 28 (20DC) 1.2 (25DC) 0.32 (22DC)

DTsosoil (days)" 10 30 50

Kocb 1000 6070 12400
Application rate (g/nr')" 0.0525 0.1008 1.425

a USDA ARS database, 1989.

b Hornsby et al. 1995

C Application rates represent the amount applied in one application and were calculated according to the

local farmers spraying programme.

Sampling Programme

The sampling area comprised an approximately 6-km stretch of the Laurens River

and its side streams running between two farms (Fig. I). The orchard plots are separated
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from the Lourens River itself by a strip of vegetation (Eucalyptus trees, shrubs and

grasses) between 30 and 100 m in width, making direct input of edge-of-field runoff into

the river highly unlikely. In contrast, most of the tributaries (eight in total) are directly

adjacent to orchard plots (distance: about 5 m). Ten sampling sites (nine sub-catchments

plus LR2) were selected for measurement of aqueous and particle-associated pesticide

levels (Fig. I). Samples were collected at the end of each tributary, ensuring that the

streams were well mixed at the point of collection and that the samples were

representative of the land use in the respective sub-catchments. Three sub-catchments

contained no agricultural activity and acted as reference sites (VI, LLI and LRl), while

all of the other sub-catchments contained some degree of agricultural activity. All water

and sediment samples were collected during runoff conditions according to the methods

described in Schulz et al. (1998); Dabrowski et al. (2001); Schulz (2001a) and Liess et al.

(1996), respectively.

Sampling took place from December 1998 until May 2001 and represented

varying application scenarios (Fig. 2). The first heavy rainfall events of the season have

been shown to be very important for the entry of pesticides into the river (Schulz et al.,

2001), and as such, samples were collected from 1999 until 2001 during this period.

Samples collected during November and December of 1998 and 1999, were taken during

intensive spraying in the catchment, while those samples taken from July till October

1999, represented the beginning of the spraying season, when application is less

intensive.
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Water and sediment samples were extracted and analysed for the selected pesticides used

in the study area according to the methods described in Dabrowski et al., (200 1) and

Schulz et al. (2001). Analysis was performed by the Forensic Chemistry Laboratory of

the Department of National Health, Cape Town. Water samples (500 to 900 ml) were

solid-phase extracted (SPE) within 10 h after sampling, usmg C18 columns

(Chromabond). Pesticides from suspended sediment samples were extracted with

methanol and concentrated using Cl8 columns. The columns were air-dried for 30

minutes and kept at -18°C until analysis. Measurements were done using gas-

chromatographs (HP 5890' s) fitted with standard HP electron-capture, nitrogen-

phosphorus and flame-photometric detectors. The following detection limits were

obtained for water and suspended sediments: 0.01 ug/l and 0.1 ug/kg dry wt. Spiked

recovery efficiencies were between 79 and 106%.

Land use

Geographical and land use features of the study area were digitised from 1:10 000

orthophoto maps, converted to shapefiles and analysed in the ArcView 3.1 Geographical

Information Systems (GIS) programme (ESRI™). A detailed shapefile of slope

categories (%) was provided by the Department of Geography, University of

Stellenbosch, and a contour line shapefile was provided by Stewart Scott Consulting

Services, Cape Town. The entire catchment was divided into sub-catchments based on

the contour line shapefile (Fig. 1) and orchards were identified according to their crop

type and slope category and assigned to their respective sub-catchments. The following
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land use information (for every sub-catchment) was then extracted using GIS: area of

different fruit types; area of slope categories of each fruit type; length of tributary; and

length of tributary bordered by orchards. Buffer strip width and the number of erosion

rills adjacent to each tributary was determined through field-based measurements.

Prediction

A GIS-based runoff model (Reus et al., 1999) was used to attempt to predict

contamination in the tributaries of each sub-catchment based on land use, pesticide

application characteristics and physico-chemical properties of applied pesticides. This

formula is designed as a simple method for predicting indirect runoff induced pesticide

loading in surface waters, as existing runoff formulas or models are very complex for the

purposes of indicating risk and comparison of sub-catchments on a relative basis. The

formula is as follows:

L%runoff=(QIP) x fx exp(-3 x In2lDT50soil)x 100/(1+Kd)

where:

L% runoff = Percentage of application dose being available in run-off water as a

dissolved substance.

= Runoff amount (mm) calculated according to the model of Lutz (1984)

and Maniak (1992).

Precipitation amount (mm)

Q

P
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DT50soil Half-life time of active ingredient in soil.

Correction factor, with f = fl x f2 x f3

Factor that reflects the influence of field slope on L% if slope is <

f

fl

20%, where: fl = 0.02153 x slope + 0.001423 x s24

f2 = Factor that reflects the influence of plant interception (PI) percentage on

L%, where: f2 = I-PV100

f3 = Factor that reflects the influence of a densely covered buffer zone on

L%, where: f3 = 0.83wBZ and WBZ is the width of buffer zone

(meters); if the buffer zone is not densely covered with plants, in which

case the width is set to zero.

= Koe x %OCII 00 where Koe is the sorption coefficient of the active

ingredient to organic carbon and OC% is the organic carbon content of the

soil

Kd

For every pesticide the L%runoffwas calculated for each slope category in each

sub-catchment and an average loss (%) was then obtained. The loss of contaminated

sediment in surface runoff was predicted by adapting the last expression of the formula to

100/[I-(I+Kd)]. This assumes that contamination of sediments is equal to the difference

between the total pesticide in runoff and the amount lost as a dissolved substance in

surface runoff (predicted by the original version of the formula). When calculating the

predicted average loss values, a rainfall value (P) of 18 mm (the average rainfall for all of

the measured runoff events) was used with a corresponding Q value of 1.83 (Reus et al.,
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1999). The formula was applied to predict the average loss of AZP, CPF and END in

each sub-catchment for the water and suspended sediment phases.

Data analysis and model validation

T-tests were performed on the mean frequency of detection for each of the

pesticides in the water and sediment phase to determine whether significant differences

exist in the partitioning of pesticides, as would be assumed from their physico-chemical

properties. For each sub-catchment the mean concentration of each pesticide detected in

the tributary over the entire study period was calculated so as to compare contamination

between sites. Although both isomers of END and the breakdown product END-sulphate

were detected in samples, only the u- and p- isomers of END were used in the calculation

of the mean concentration, ensuring that the calculated concentrations represent input of

recently applied END into the tributaries. Linear regression analyses were used to

determine whether the pesticide losses calculated by the GIS-based runoff model could

predict the observed mean concentration of pesticides measured in the tributaries of the

nine sub-catchments. This validation procedure was performed on all of the three

pesticides, for water and suspended sediment samples.
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RESULTS

Land use

All of the sub-catchments were analysed in detail through GIS and field-based

measurements. In all sub-catchments containing fruit orchards, the dominant land use is

still forest or fallow (76 to 95%). LL5 and V2 contain the lowest percentage orchard area

« 5%), while LL4 has the highest (24%). All of the other catchments have similar

percentage orchard land utilization (13 to 15%). LL2 has the largest area covered by fruit

orchards and contains the largest covered area of apples in the entire catchment (Table 2).

LL6 is the only sub-catchment that contains every fruit type and contains the largest area

of pears and plums out of all the sub-catchments. The average slope of land covered by

orchards in the entire catchment is 4%, with LL2 and LL6 having the highest average

slopes of 5.4 and 4.9% respectively. In general apple orchards are associated with high

slopes, up to 5.2 and 7.7% in LL2 and LL6 respectively. All sub-catchments containing

orchards are extensively bordered by the orchards along their banks, except for V2. LL5

and V2 have no buffer strips between orchards and tributaries and LL5 and LL6 have the

highest number of erosion rills in terms of meter bank length per erosion rill.

Pesticide contamination

Over the three-year sampling period AZP, CPF and END were frequently

detected in water and sediment samples. AZP was detected at the significantly highest
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frequency of detection in the water phase. CPF was detected at significantly higher

frequencies in the sediment phase than the other two insecticides (Fig. 3). At 81%

detection in the sediments, CPF was the most frequently detected pesticide during the

study period. For all pesticides, in both the water and sediment phases, LL6 and LL5

were generally the most heavily contaminated sub-catchments (Table 3), while LLI, VI

and LRI were the least contaminated. Sub-catchments LL2, LL3, LL4 and V2 showed

intermediate to moderately high contamination. Site LR2, which encompasses the entire

catchment, showed high levels of contamination for all of the studied pesticides.
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Table 2. Land use characteristics for the six sub-catchments of the Lourens River containing orchards and for LR2 representing the

land use of the entire catchment. No values are given for LL1, VI and LR1, since these catchments are not containing any orchards.

Sub- Orchard Orchard Composition Ave. Max. Ave. slope per fruit type Buffer Bank length Bank Length

Catchment Area Apple Pear Plum Slope Slope Apple Pear Plum Width bordered by Per

(km2) (km2) (%) (%) (%t (m) orchards (%) Erosion Rill (m)

LL2 0.9 0.5 0.4 0 5.0 12.5 5.2 4.7 - 5 93 340.8

LL3 0.5 0.3 0.2 0 4.3 7.0 3.8 5.5 - 5 68 340.8

LL4 0.2 0 0.2 0 1.8 7.0 - 3.4 - 6 100 312.3

LL5 0.6 0.1 0.5 0 3.7 12.5 5.2 3.3 - 0 94 68.9

LL6 0.7 0.2 0.5 0.1 5.4 17.5 7.7 5.1 4.5 1 73 93.4

V2 0.3 0 0.2 0.1 1.0 2.0 - 2.0 2.0 0 32 221.1

LR2 3.2 1.0 1.9 0.3 4.0 17.5 5.0 3.5 1.7 30-100b 64b b

a Sub-catchments denoted with a "_" do not contain these orchard types and as such have no slope values.

b Refers to the Lourens River main channel. w
-..)
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Table 3. Mean concentrations (± standard error) of the most common insecticides detected in water and sediment samples taken during

runoff conditions in the Lourens River (LR2) and the surface water discharging the nine sub-catchments from December 1998 to May

2001 (n = number of samples taken during the study period; n.d. = not detected).

Sample Water (J.!g/L) Sediment (ug/kg)

Site Azinphos-methyl Chlorpyrifos Endosulfan n Azinphos-methyl Chlorpyrifos Endosulfan n

LL1 n.d. n.d. n.d. 6 n.d. n.d. n.d. 8

LL2 0.13 (0.06) n.d. n.d. 10 2.28 (1.3) 11.4 (3.9) 6.2 (3.7) 12

LL3 0.01 (0.003) n.d. n.d. 3 2.7 12.9 n.d. 3

LL4 n.d. n.d. n.d. 3 n.d. 5.9 (3.8) n.d. 7

LL5 0.19(0.09) 0.02 (0.02) 0.05 (0.02) 11 5.23 (3.7) 11.4 (3.9) 5.63 (3.0) 10

LL6 0.13 (0.08) 0.02 (0.01) 0.05 (0.03) 9 19.46 (17.8) 43.6 (19.0) 34.75 (18.4) 12

VI n.d. n.d. n.d. 8 n.d. 2.0 (1.0) n.d. 8

V2 0.03 (0.02) n.d. 0.01 (0.01) 12 3.3 4.3 (2.3) n.d. 13

LR 1 0.01 (0.01) n.d. n.d. 13 n.d. 1.4 (0.7) n.d. 12

LR2 0.2 (0.13) 0.03 (0.02) 0.3 (0.25) 13 27.9 (22.0) 21.8 (6.5) 21.1 (13.4) 11

(jj

00
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Fig. 3: Mean frequency of detection (± standard error) for azinphos-methyl (AZP), chlorpyrifos (CPF) and endosulfan (END) in water

(white bars) and suspended sediment (grey bars) samples. Bars with different letters are significantly different (t-test; d.f. = 9; p <

0.05).
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Validation of the GIS-based runoffmodel

For all three of the studied pesticides, in both the water and sediment phases, the

GIS-based runoff model predicted LL5 and LL6 as being the most heavily contaminated

sub-catchments (Fig. 4), while LRI, LLI and VI were predicted as being those sites

where contamination would be zero due to the lack of orchards. Of the sub-catchments

containing orchards, LL4 and V2 were predicted as having a low contamination.

Regression analysis showed a significant positive correlation between measured

concentrations and predicted average loss (%) in each sub-catchment for AZP, CPF and

END in the water and sediment phase. The squared regression co-efficients (R2) were

between 0.75 and 0.9, indicating strong correlations between predicted loss and measured

concentration levels.
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Fig. 4: Correlation of the measured mean concentration and the predicted average loss of azinphos-methyl (AZP), chlorpyrifos (CPF)

and endosulfan (END) in sub-catchments of the Lourens River (n = 9). Seperate correlations are given for water (left) and sediment ~

phase (right)
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DISCUSSION

Land use and pesticide contamination in the sub-catchments

All of the sub-catchments are dominated by forest, fallow or fynbos. With the

exception of LL4, the percentage orchard land use was always the least dominant of the

present land uses. In spite of this relationship, pesticides are detected at high

concentrations in both the water and sediment phases at LR2 (Table 3), highlighting the

impact that a small percentage agricultural land use can have on a running water system.

Munn and Gruber (1997) found that the presence of agriculture rather than the percentage

of agricultural land use determines the concentrations of organochlorines in bed sediment

or fish tissue, further indicating that rivers in catchments with a small percent agricultural

land use can still be exposed to high concentrations of pesticides.

In most cases, land use and differences in pesticide application could explain the

difference in the level of contamination between sub-catchments. The results clearly

indicate that LL5 and LL6 are the most heavily contaminated sites in the study area, and

all of the studied pesticides were detected at these sites at high mean concentrations in the

water and suspended sediment phases (Table 3). In LL5 the main parameter contributing

to this high contamination is most probably as a result of the absence of any vegetated

buffer strip, which together with high average slopes, promotes rapid access of surface

runoff into the tributary (Table 2). A combination of narrow buffer strip width and a high

average slope of cropped land (with a maximum slope of 17.5 %) are the most likely

cause of high contamination levels in the tributary of LL6 (Table 2). More importantly,
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these two tributaries have the smallest amount of bank length per erosion rill, resulting in

a high number of entry points for the direct entry of surface runoff.

LL2 and V2 are similar to LL6 and LL5 respectively, in that orchards in LL2 are

associated with high average and maximum slopes and V2 lacks a buffer strip (Table 2).

However, LL2 is well buffered and orchards in V2 are situated on relatively flat slopes

(maximum 2% slope), resulting in the comparatively low contamination detected at these

two sites. All of the studied pesticides were detected at V2 in both phases, but at low

mean concentrations (Tables 4). This indicates that there is relative easy access for runoff

water into the tributary, but that the low slope percentage prevents excessive high

contamination.

Of all the sub-catchments containing fruit orchards, LL4 was the least

contaminated, with only CPF being detected at a low mean concentration In the

suspended sediment phase. The presence of only one fruit type, a dense buffer strip, and

low number of erosion rills are presumably responsible for the low contamination in this

sub-catchment.

As was expected, no contamination, or at the most, very low levels of

contamination were detected in those sub-catchments where no orchards were present -

LL1, VI and LRl. It is unexplainable at this stage as to why low levels of END and CPF

were detected at some of these sites.

The high frequency of detection of AZP in water and CPF in the sediment phase

(Fig. 3) reflects the different Koe values for both pesticides (Table I). Studies of single

runoff events in this catchment (Dabrowski et al., 200 I; Schulz, 200 I) and other

catchments (Kuivila and Foe, 1995) showed similar partitioning of pesticides according
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to their water solubility. Out of all the pesticides, CPF was detected in sediments at the

highest frequency of 81%. This may be partly due to the fact that this pesticide is applied

to all orchard types, and is thus applied in all agricultural sub-catchments at very high

quantities. Kreuger (1998) found that the occurrence of pesticides in runoff samples in

Southern Sweden was correlated to the amounts used in the catchment.

Validation of GIS-based runoff model

Regression analysis showed a significant positive correlation between the

predicted average loss and the observed mean concentration for all pesticides in both the

water and sediment phase in each sub-catchment (Fig. 4). This indicates that the loss of

pesticides calculated by the formula is well linked to the level of contamination in the

tributaries of the sub-catchments. For all sub-catchments containing orchards, LL5 and

LL6 had the highest predicted values for all pesticides, while LL4 and V2 had the lowest,

which correlates well to observed mean concentrations. Therefore the formula predicts

differences in the loss of pesticides associated with surface runoff and assumes that these

losses are ultimately responsible for the concentrations detected in the tributaries of the

sub-catchments, despite other differences in the sub-catchments that may also influence

concentration, such as the hydrology of the tributaries. The physico-chemical properties

of the pesticides are ubiquitous to all of the sub-catchments, and as such it is ultimately

the differences in the land use variables that are responsible for the observed differences

in contamination of the sub-catchments. Thus, results from this study have validated the

use of the selected GIS-based runoff model, indicating that the land use variables utilized
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in the formula are suitable for predicting differences in runoff induced contamination

between sub-catchments.

Such a direct link between predicted loss and real contamination resulting from

runoff in agricultural sub-catchments has not been documented for pesticides so far. A

few other studies have attempted to predict the influence of land use on contamination of

agricultural surface waters. Fisher et al. (2000) were able to determine which of a number

of large-scale agricultural practices (such as grazing land, dairy and poultry operations)

were responsible for poor water quality in the Oconee Watershed of Georgia, based on

analysis of land use through GIS. Munn and Gruber (1997) used a Geographical

Information and Analysis Retrieval System (GIRAS), and showed that organochlorine

contamination of streambed sediment and fish was directly linked to the presence of

dryland farming. More predictive models have also been developed. Huber et al. (1998)

developed a model based on land use characteristics and application scenarios to predict

the loss of pesticides in surface runoff in the whole of Germany. Fuzzy expert systems

have also been developed to predict the potential environmental impact of the application

of a particular pesticide in a field crop (van Der Werf and Zimmer, 1998). However

validation of these models is required before they can be utilized as a predictive risk

assessment tool. Furthermore, most of these models are very complex and require a large

amount of input variables that are quite difficult to obtain on a national or supranational

level.

Most importantly, our results show that a simple GIS-based runoff model is able

to predict differences in the degree of contamination of surface runoff between sub-

catchments, which is then validated by samples taken in the field during runoff events.
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Such an approach would be very valuable in the planning and execution of mitigation

measures in agricultural catchments. The amount of time and money spent on

determining real contamination in sub-catchments is great and could be greatly reduced

by use of such a formula. All that is required is a detailed analysis of the land use and

pesticide application regimes, and problem areas can then be identified, speeding up and

prioritising mitigation measures. The formula can be used to predict concentrations in

tribuatries by using the L%runoff to calculate the amount of pesticide lost (g) according to

how much is applied in the sub-catchment and combining this with discharge data.

However, this would require measurement of TSS and discharge with high temporal

resolution over the course of a runoff event for each tributary as well as the length (in

time) of the runoff event. While the formula used in this manner does not predict

concentrations of pesticides in the tributaries, it is very useful for the relative comparison

of sub-catchments, which can then aid farmers or environmentalists in management

planning and in identifying areas of risk. The original use of the formula is intended to

predict the loss of insecticide during a specific event at a specific site, but in the context

of this study it was used as a general predictive tool for comparisons between sub-

catchments.

The two most important land use variables utilized in this formula are the slope

and vegetated buffer width. Slope has been shown to be the most important factor

influencing runoff but can be greatly modified by the presence of vegetation (Wilcox and

Wood, 1989). Vegetated buffer strips bordering agricultural plots have been shown to be

effective at reducing the level of pesticides in surface runoff (Patty et al., 1997) and help

improve the water quality and remove sediment from surface runoff by stabilizing
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stream-banks and promoting infiltration (Castelle et al., 1994). The vegetation helps to

resist the formation of channels (erosion rills), resulting in low flow rate sheet-flow as

opposed to rapid channelised flow, which allows more time for the settling of sediments

and infiltration. This is reflected in this study, where high-average slope sub-catchments

with a narrow buffer width « 1m) such as LL5 and LL6 had a high number of erosion

rills per bank length (Table 2). In comparison, LL2 and LL3 both have large orchard

areas situated on steep slopes and wider buffer strips (5 m), but have a low number of

erosion rills per bank length and show relatively lower contamination.

The formula predicted a high average loss for AZP and lower values of average

loss for CPF and END (END having the lowest predicted loss per sub-catchment) in the

water phase (Fig. 4). This is in agreement with the partitioning of AZP according to the

samples taken during runoff and to the low Koe of this pesticide. The predictions for the

sediments were generally much lower than the measured levels in the field. However, for

a direct comparison, TSS and discharge values with high temporal resolution would be

necessary, as discussed above.
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Abstract- Potential ecotoxicological effects of the orchard insecticide azinphos-methyl

(AZP) were evaluated in a combined microcosm and field approach. The upper regions of

the Lourens River, South Africa are free of contamination (control site), while the

subsequent stretches flowing through a 400-ha orchard area receive transient insecticide

pollution (e.g. 0.82 ug/L AZP, 344 ug/kg chlorpyrifos) following spray drift and runoff

(contaminated site). Stones taken from the control site were transferred to outdoor

microcosms (1.5 x 0.2 x 0.2 m) resulting in 12 core species and approximately 350

individuals per microcosm. Microcosms were contaminated for 1 h with AZP (control,

0.2; 1, 5 and 20 ug/L; three replicates each) and acute effects on survival were evaluated

6 days following exposure. The two highest treatments led to a significant (ANOV A,

Fisher's PLSD) reduction in abundance of various insect groups, such as Demoreptus sp.,

Castanophlebia sp., Simuliidae and Chironomidae. In contrast, Aeshna sp., Dugesia sp.,

Ceratopogonidae and Cheumatopsyche sp. were not affected. In parallel, a quantitative

macro invertebrate survey was conducted at the control site and the contaminated site of

the Lourens River. Both sites contained a similar number of species but differed

considerably in their species composition. Six out of the eight species that reacted

sensitively to AZP in the microcosm study occurred in the field at significantly lower

densities or were absent at the contaminated site in comparison to the control site. All of

the four species that were tolerant in the microcosm occurred at significantly higher

densities at the contaminated field site. Two out of the twelve species reacted differently

in the microcosm and the field study. It can be concluded that microcosm studies

employing a field relevant design could be linked successfully to field studies and that

transient pesticide contamination affects the aquatic communities of the Lourens River.
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INTRODUCTION

Nonpoint source agricultural pollution is regarded as the greatest threat to

contamination of surface waters in rural areas (Loague et al., 1998). Of all nonpoint

source pollutants, insecticides are among the most crucial chemical stressors, because of

their extremely high toxicity to many non-target aquatic organisms (Baier et al., 1985).

While present knowledge of ecotoxicological effects of pesticides is based largely on

standardised single species toxicity tests, their field relevance is questionable, as the type

and composition of test species does not necessarily reflect the complexity that prevails in

the field (Breneman and Pontasch, 1994; Pontasch and Cairns, 1991). Furthermore, the

episodic nature of nonpoint source pollution events cannot be adequately addressed by

conventional toxicity testing methods with fixed-duration continuous exposure (Brent and

Herricks, 1998; Hosmer et al., 1998).

The release of pesticides into aquatic ecosystems generally impacts entire

communities and therefore evaluating the effects of pesticides on aquatic communities is

difficult to assess due to the ecological complexity at higher levels of organisation (Shaw

and Manning, 1996). As a result, multi-species microcosm tests have been developed to

reduce uncertainties when extrapolating from the laboratory to the field (Crane, 1997;

Pontasch and Cairns, 1991). Only a few of these studies have employed field relevant

exposure scenarios typical of nonpoint source pollution events (Liess et al., 1999; Schulz

and Liess, 2001 a; Schulz and Liess, 2001b). Runoff and spray drift are the most

important routes of nonpoint source pesticide pollution (Groenendijk et al., 1994) and

typically result in brief periods of exposure (Liess et al., 1999) at concentrations which
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are normally not acutely toxic to aquatic fauna (Schulz and Liess, 1995). Short-term

exposure can result in long-term effects which are apparent only after an extended period

of time (Liess and Schulz, 1996; Woin, 1998), necessitating the need to compare different

short-term exposure scenarios (Abel, 1980; Parsons and Surgeoner, 1991). Most

importantly, despite the increased ecological relevance of multi-species microcosm

experiments, very few studies have been able to establish a causal link between field

relevant microcosm studies and community structure in the field.

Such was the aim of this study, which was to establish the long-term effects of

different field relevant AZP exposures on the structure of microcosm communities. The

community structure of the microcosms was then compared to that which prevails in the

Lourens River, South Africa, which is frequently contaminated by nonpoint source

pollution events. The main objective of the study was thus to link the microcosm and

field-based studies in an attempt to establish a causal relationship between nonpoint

source pesticide pollution and its effect on macroinvertebrate communities.

Azinphos-methyl is an organophosphate insecticide with a high water solubility

and has been shown to be highly prevalent in surface waters as a result of runoff and

spray drift activity in the Lourens River (Dabrowski et al., 2001; Schulz, 2001 a; Schulz et

al., 2001 b; Schulz et al., 2001c) and other surface waters (Granovsky et al., 1996; Smith

et al., 1983). This is the most commonly applied pesticide in the catchment and the

biological effects of this pesticide on aquatic communities has so far not been

demonstrated.
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MATERIALS AND METHODS

Study area and sampling sites

The Lourens River originates at an altitude of 1080 m in a naturally

sclerophyllous vegetation area (fynbos) and flows in a southwesterly direction for approx.

20 kilometres before discharging into False Bay at Strand (S34°06'; EI8°48'). The

catchment region is characterized by intensive farming, with orchards and vineyards in its

middle reaches. The Lourens River has a total catchment area of approx. 92 km2 and

receives an annual mean rainfall of 915 mm. Approximately 87% of its 35xl06 rrr' mean

annual discharge occurs during the winter months between April and October, as is

characteristic of the region's Mediterranean climate. The 400-ha orchard area consists

mainly of pears, plums and apples. The pesticide application period in the study area's

orchards proceeds from early August and continues until end of March.

Organophosphorous insecticides, such as azinphos-methyl and chlorpyrifos, are applied

between October and February quite frequently to pears and plums (Schulz, 200la).

Two sites were selected for this study. The control site was situated upstream of

all agricultural activity and is free of pesticide contamination (Schulz et al., 200 1b). A

second site situated in the orchard area approximately 1500 m downstream of the control

site was chosen. This site is exposed to pesticides that are transported to the Lourens

River via the tributaries (Dabrowski et al., 2001) as a result of runoff (Schulz et al.,

200la) and spray drift (Schulz et al. 2001b). Transient peak levels measured at this site

reached 0.82 ug/L AZP in water and 344 ug/kg chlorpyrifos in suspended particles

(Schulz et al., 2001a; Unpublished Data). Both sites were characterized by rocky
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substrate and were similar in structural and physico-chemical water quality parameters

(Table I).

Table 1. Mean (± standard error, n = 4) of structural characteristics in riffle areas and

physico-chemical water quality parameters measured at the two study sites in the Lourens

River

Parameter Control site Contaminated site

Bottom substrate composition

Rocks, > 2cm (%)

Sand, < 2 cm (%)

Silt, > 0.6 mm (%)

Current velocity (mis)

Nitrite (mg/L)

Ammonium (mg/L)

Orthophosphate (mg/L)

pH

Oxygen (mg/L)

Temperature (OC)

Total suspended solids (mg/L)

65.0±5.4 66.2±5.1

32.5±4.3 26.2±6.6

2.5±1.4 7.5±3.2

0.18±0.01 0.16±0.02

0.004±0.004 0.006±0.003

O±O 0.00 1±0.00 1

0.07±0.05 0.12±0.09

7.0±0.05 7.0±0.1

9.5±0.2 9.4±0.1

19.8±0.2 20.9±0.2

3.7±2.2 19.1±2.6

Outdoor stream microcosms

The open outdoor artificial stream system consisted of 15 stainless steel

microcosms (1.5 x 0.2 x 0.2 m). Each microcosm contained a longitudinal middle wall
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forming two channels, each 10 cm in width (Schulz and Dabrowski, 2001). Water taken

from the control site in the Lourens River was used in the microcosms. Each stream

contained a volume of 30 L. Current (0.2 ± 0.05 mis) was provided by a 100-Welectric

motor turning stainless steel paddlewheels attached to a rod.

Experimental procedure

The stream microcosms were established two days before introduction of test

organisms. Each stream was equipped with 18 rocks taken randomly from shallow (water

depth: 25 to 30 cm) riffle areas at the control site in the Lourens River and containing the

associated macroinvertebrate fauna. Each rock (diameter: 8-10 cm) was removed from

the stream bed and macroinvertebrates drifting downstream were caught in a handnet

(mesh size: 500 urn) that was placed downstream of the rock. Each set of 18 rocks were

transported in seperate plastic containers and the rocks and animals were transferred into

the microcosms within 3 hours. Temperature remained constant at 20 ± 2°C during

transport. The rocks were orientated in the microcosms in the same way as in the stream

with the upper side covered by algae. They were entirely submerged in water. Following

introduction into the microcosms, the current was stopped for 30 minutes to allow the

invertebrates to settle on the rocks.

On the 22.2.2001, one day after introduction of the rocks we exposed the

microcosms to the pesticide. Azinphos-methyl [O,O-dimethyl-s-[(4-oxo-l,2,3-

benzotriazin-3( 4H)-yl)methyl)]phosphorodithioate] was applied as an emulsifiable

concentrate (Azin 200SC®, Sanachem, Durban, South Africa) containing 20%

(weight/volume) of active ingredient. Apart from the active ingredient the emulsifiable
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concentrate contains emulsifier and water. All concentrations given here refer to the

active ingredient. The emulsifiable concentrate was used rather than the pure substance

(technical grade) in order to approximate the conditions in the field.

The nominal concentrations of AZP (0, 0.2, 1, 5, and 20 ug/L) were obtained by

serial dilution of a stock solution with 1 g/L of AZP. Each of the five treatments was

replicated three times, giving a total of 15 microcosms. One hour following the start of

the exposure, the water of each microcosm was replaced with 30 L of pesticide- free water

of the same temperature.

During the experiment, the microcosms were covered with gauze (I-mm mesh) to

catch emerging insects. Emergent adult insects were aspirated from emergence traps

every 24 h and preserved in 70% ethanol. Six days following exposure, the rocks were

removed from the microcosms and all animals attached to the rocks were counted. The

contents of each microcosm were washed through a sieve (500 urn), and all animals were

counted as well. The macro invertebrates were sorted out in white plastic tubs, preserved

in 70% ethanol and identified. Survival data for all species was obtained by summing up

the surviving larvae with the emerged adults. Only very few individuals emerged during

the short-term experimental period (less than 5% of total density).

Water Quality and Toxicant Analyses

Physico-chemical parameters of the microcosm water were measured with test

kits from Macherey & Nagel, Duren, Germany or electronic meters from

Wissenschaftliche Technische Werkstaetten, Weilheim, Germany. The means (±SE, n =

6) for pH, temperature, and oxygen were 7.2±0.8, 21.4±0.4 oe, and 8.7±0.I mg/L,
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respectively. Nitrite and ammonium levels never exceeded 0.1 mg/L. The metal content

of the test water (aluminium, copper, zinc, mercury and lead) was below detection limits

(0.005-0.25 mg/L), as were the pesticide (fenvalerate, deltamethrin, chlorpyrifos,

azinphos-methyl, prothiofos and endosulfan) levels (0.01 ug/L), All measured water

quality parameters would be expected to have no deleterious effects on the test species.

Real exposure concentrations were measured at the Forensic Chemistry

Laboratory, Department of Health, Cape Town. Water samples (0.5 L) were solid-phase

extracted with Cl8-columns (Chromabond). The measurements were made with gas

chromatographs (Hewlett Packard 5890) fitted with standard Hewlett Packard electron-

capture, nitrogen-phosphorus and flame-photometric detectors, with a quantification limit

of 0.1 ug/L, and spiked recovery efficiencies were between 79 and 106%. The results for

the analytical measurements taken at different times during the experiment are

summarized in Table 2. In the following, nominal concentrations are used.

Table 2. Mean azinphos-methyl levels (ug/L) in the stream microcosms (nd = not

detectable)

Nominal concentration

Time Control 0.2 ug/L 1 1lg!L 5 ug/L 20 Ilg/L

During exposure (± standard error, n = 3)

24 h following water exchange (n = 1)

6 d following water exchange (n = 1)

nd 0.2±0.0 1 1.0±0.08 4.9±0.3

nd nd nd 0.11

nd

19.2±1.0

0.91

ndnd nd nd
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Field sampling

Between the 27.2.2001 and the 5.3.2001 a quantitative macro invertebrate survey

was performed at the control site and at the contaminated site of the Lourens River. A

total of 103 rocks of the same size as those used for the microcosms were investigated at

the control site and a total of 83 rocks at the contaminated site. Sampling took place at

both sites in shallow riffle areas. The same procedure for sampling and identification of

invertebrates as described in the experimental section above was used for the field

sampling. Macroinvertebrate densities are expressed in number of individuals per 18

rocks to allow direct comparison of densities from field samples with those in the

microcosms.

Data analysis

Differences in the survival of macroinvertebrates in the rrucrocosms were

analysed using oneway analysis of variance (ANOVA) followed by Fisher's protected

least significant difference test (PLSD). Differences In the abundance of

macroinvertebrates at the control site and the contaminated site of the Lourens River were

analysed using t-Tests. Data was transformed using lntx + 1) prior to statistical analysis

to satisfy the assumptions of the tests.
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RESULTS

Microcosm experiment

Samples taken from the microcosms contained 17 taxa, representing 9 orders.

Analysis including all 17 taxa revealed a significant reduction in the mean number of

species from 14 in the control microcosms to 9.7 in the 20-Jlg/L treatment (p = 0.0018).

Total mean densities were significantly reduced from 279.3 individuals in the control

microcosms to 141.3 and 49.7 in the 5-Jlg/l (p = 0.042) and in the 20-Jlg/L (p = 0.003)

treatment, respectively. The 12 core taxa with a mean density greater than or equal to one

in the control treatment were included in the following analysis. They represent 99% of

the total macroinvertebrate density in the microcosms. The number and kinds of these 12

core taxa present in the stream microcosms were very similar to those present in the

source ecosystem (R2 = 0.86, p < 0.0001; df= 11), at the control site of the Lourens River

(Fig. land Table 3).

Various taxa were present at significantly reduced densities in the 20-JlglL

treamtent (Fig. I). Simuliidae (Fig. la) were present at significantly decreased densities

even in the 5-Jlg/L treatment. Eight out of the total of 12 species were classified as

"sensitive" with respect to the applied contamination scenario (Fig. la to lh). Four of

these species (Fig. la to 1 d) showed a concentration dependent decline in densities over

a range of at least the three highest treatments (1- to 20-Jlg/L). Demoreptus sp.,

Castanophlebia sp. and Chironomidae (Fig. 1e to 1g) were all significantly reduced in the

highest treatment and Petrothrincidae (Fig.lh) showed a concentration-dependent decline
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in the two highest treatments, however the abundances were not significantly different

from the control.

In contrast, we classified Aeshna sp., Dugesia sp., Ceratopogonidae and

Cheumatopsyche sp. (Fig. 1i to 11) as "tolerant" species with respect to the applied

contamination scenario. They neither showed any concentration dependent decline, nor

any significant alterations of densities in comparison to the control

Field investigation

The total species richness was 15 at the control site and 13 at the contaminated

site. The same twelve core taxa that were analysed in the microcosms represented 98% of

the total macroinvertebrate densities at the control site and 91% at the contaminated site

(Table 3). Six out of the 12 species showed a significantly lower density at the

contaminated site than at the control site (Table 3a to 3c and 3f to 3h). Baetis sp., Aeshna

sp., Dugesia sp., Ceratopogonidae and Cheumatopsyche sp. (Table 3e and 3i to 31)

occurred at significantly increased densities at the contaminated site in comparison to the

control site. Noteridae (Table 3d) were present at lower densities at the contaminated site,

however the differences were not significant.

Combination of microcosm and field results

We directly compared the reaction of macroinvertebrates in the microcosm

experiment with their abundances at the two sites in the Lourens River (Table 4). To do

so, we classified taxa, that occurred at significantly lower densities at the contaminated
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site as "sensitive" and taxa that occurred at similar or significantly higher densities at the

contaminated site as "tolerant".

Ten out of the 12 core taxa showed a corresponding reaction in the microcosm

and distribution in the field. Six out of these ten taxa were classified as "sensitive" in both

microcosm and field approach (Table 4a to 4c and 4f to 4h) and for all of the four taxa

classified as "tolerant" (Table 4i to 41), this classification was in agreement between

microcosm and field. Only two taxa that were classified as "sensitive" in the microcosm,

represented "tolerant" taxa in the field samples (Table 4d and 4e).
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Table 3. Mean (individuals per 18 rocks ± SE) density of the 12 core taxa at the control

site (n = 103 rocks) and at the contamianted site (n = 83 rocks) of the Lourens River,

South Africa. Asterisks indicate significant (t-test: * p < 0.05; ** P < 0.01; *** P < 0.001)

differences between the two sites. The order of the taxa is the same as used in Fig. 1 for

the microcosms.

Taxa Control Contaminated Significance

+

a. Simuliidae 68.7 ± 18.0 21.7 ± 7.9 *

b. Demoreptus sp. 105.4 ± 17.3 31 ± 5.6 **

c. Aphanicerca sp. 6.3 ± 1.35 0 ***

d. Noteridae 4.0 ± 1.2 2.6 ± 0.9 ns ns

e. Baetis sp. 42.6 ± 3.7 114.5 ± 8.1 ***

f. Castanophlebia sp. 19.2 ± 3.3 0 ***
g. Chironomidae 56.5 ± 5.2 24.5 ± 3.1 ***
h. Petrothrincidae 8.6 ± 1.3 0 ***
1. Aeshna sp. 2.1 ± 0.7 5.2 ± 1.0 **

J. Dugesia sp. 2.8 ± 0.95 10.2 ± 2.1 ***

k. Ceratopogonidae 20.2 ± 1.8 30.6 ± 3.3 **

1. Cheumatospyche sp. 1.2 ± 0.45 3.9 ± 1.1 *
+: significant increasing abundance

-: significant decreasing abundance
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Table 4. Classification of the 12 core taxa according to their reaction in the microcosm

experiment and their distribution in the field samples taken from the Lourens River. Taxa

were classified as "sensitive" in the microcosm study if their density is either reduced

significantly at higher treatments or showed a concentration-dependent decrease over at

least three concentrations. Taxa were classified as "sensitive" in the field samples if their

abundance at the contaminated site was significantly lower than at the control site. The

order of the taxa is the same as used in Fig. 1 for the microcosms.

Taxa Microcosm Field

a. Simuliidae sensitive sensitive

b. Demoreptus sp. sensitive sensitive

c. Aphanicerca sp. sensitive sensitive

d. Noteridae sensitive tolerant

e. Baetis sp. sensitive tolerant

f. Castanophlebia sp. sensitive sensitive

g. Chironomidae sensitive sensitive

h. Petrothrincidae sensitive sensitive

1. Aeshna sp. tolerant tolerant

J. Dugesia sp. tolerant tolerant

k. Ceratopogonidae tolerant tolerant

1. Cheumatospyche sp. tolerant tolerant
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DISCUSSION

Microcosm experiment

Reduction in species abundance is regarded as one of the most sensitive endpoints

in multi-species microcosm toxicity tests (Niederlehner and Cairns Jr., 1994). The 20

ug/L and 5 ug/L treatment significantly reduced the total mean densities and number of

species (20 ug/L only) and of the 12 core taxa, 8 reacted sensitively to the applied

contamination scenario as a result of significant or concentration dependant increases in

mortality (Fig. I). The results thus indicate that short-term pesticide exposure typical of

nonpoint source pollution events can lead to long-term acute effects on macroinvertebrate

community structure and species composition. Similar long-term effects have been

established based on single species tests (Liess and Schulz, 1996), as well as multi

species tests (Schulz and Liess, 2001b; Woin, 1998). Furthermore, while studies have

been able to show a correlation between decreased abundance and diversity as a result of

pesticide contamination in microcosms (Breneman and Pontasch, 1994; Brock et al.,

1993; Van den Brink et al., 1995), only a few have been able to show the same structural

changes following exposure scenarios typical of nonpoint pollution events (Liess and

Schulz, 1999; Schulz and Liess, 2001a; Schulz and Liess, 2001b).

In general the tolerance or sensitivity of taxa to the exposure scenario can be

explained by results of previous studies. Of the eight taxa sensitive to the pesticide

exposures, four showed concentration dependant decline in densities, indicating that

short-term azinphos-methyl exposure can potentially disrupt community structure from as

Stellenbosch University http://scholar.sun.ac.za



Chapter 3 71--~-----------------------------------------------------
low as 1 ug/L. It has been well established that ephemeropterans and plecopterans are

highly sensitive to pesticide pollution (Fischer and Hall Jr., 1992; Sibley et al., 1991;

Siegfried, 1993) and of the eight sensitive taxa, four belonged to these orders (3 mayfly

species and 1 stonefly species), of which two, Demoreptus sp. and Aphanicerca sp.,

showed concentration dependant declines. Caddisfly species have been shown to be

generally very sensitive to pesticide pollution (Heckman, 1981; Liess and Schulz, 1996;

Schulz and Liess, 1995), which was exhibited by the concentration dependant decline of

the family Petrothrincidae. However Cheumatopsyche sp. was not affected by any AZP

exposure, indicating that sensitivity of Trichoptera to pesticides is species specific.

Dugesia sp. are regarded as being tolerant of pesticide pollution, whereas Coleoptera

(which includes the Noteridae) are generally in the sensitive category (Heckman, 1981;

Schulz, 1998). In contrast to this study, Simuliidae and Chironomidae have been shown

to be more tolerant of pesticides than other macro invertebrate taxa (Kreutzweiser and

Sibley, 1991), however, sensitivity may also be dependant on the type of pesticide used

(Phippis et al., 1995; Taylor et al., 1991).

Assuming microcosm experiments are representative of field situations one would

expect to find similar macroinvertebrate community distributions in natural systems that

are affected by nonpoint AZP pollution.

Field investigation

As expected, the downstream Lourens River site, R2, showed a decrease in

species richness and abundance of six of the 12 core taxa in comparison to the control site
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Rl (Table 3). Noteridae were also present at lower densities, although the difference was

not significant, while the other 5 taxa were present at significantly higher densities.

Biodiversity is generally higher in less intensely cultivated habitats (Duelli et al., 1999)

and field studies have been able to link decreased species abundance and biodiversity to

runoff induced pesticide contamination (Leonard et al., 2000a; Leonard et al., 2000b;

Liess and Schulz, 1999; Tada and Shiraishi, 1994). Runoff induced pesticide

contamination has been shown to occur at R2 (Schulz et aI., 2001a, Unpublished Data),

however it is impossible to draw a clear causal relationship between pesticide

contamination and changes in community structure based on the field data of this study

alone. Other biological stressors associated with agricultural nonpoint source pollution,

such as nutrients and sediments have been shown to occur at this site (Schulz et al.,

2001a), and can also negatively influence macro invertebrate diversity and community

structure (Carpenter et al., 1998; Chessman et al., 1987; Schulz, 1996; Taylor and Roff,

1986).

The fact that certain species were present at increased densities is typical of

contaminated sites where a small number of tolerant species tend to thrive under such

conditions (Heckman, 1981). Aphanicerca sp (Plecoptera) and Castanophlebia sp.

(Ephemeroptera) comprised two of the three taxa that did not occur at R2, which is

indicative of their sensitivity towards poor water quality (Fischer and Hall Jr., 1992;

Sibley et al., 1991; Siegfried, 1993). In contrast to Demoreptus sp., Baetis sp. increased

in abundance at R2, indicating that the latter species may be more tolerant to pesticide

pollution than the former.
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Combination of microcosm and field results

The main objective of the microcosm experiments was to employ a design that

was relevant to conditions that macro invertebrate communities experience during typical

exposure scenarios associated with nonpoint source AZP pollution. The number and type

of core taxa used in the microcosm experiments were very similar to those that were

present at the control site in the Lourens River, indicating that the community structure of

the microcosms was representative of that in the field. Concentrations of AZP applied in

the microcosm experiments were similar to concentrations reported in field studies.

Runoff induced transient AZP concentrations between 1.5 and 2.3 ug/L have been

measured in the Lourens River (Schulz, 2001b) and other surface waters (Smith et al.,

1983; Wan et al., 1995), while Scott et al. (1999) measured as much as 7 ug/L AZP in an

estuary. The same studies showed that sediment associated AZP concentrations ranged

from 216 to as much as 1247 ug/kg.

The sensitivity or tolerance of the taxa in the microcosms was closely linked to

that of the taxa in the field at R2 (Table 4). All four taxa that showed tolerance in the

microcosm study occurred at higher densities at the contaminated site, while six of the

eight sensitive taxa occurred at significantly lower densities at the same site. Thus the

results strongly indicate that field relevant microcosm studies can be successfully linked

to field studies and demonstrates a causal relationship between nonpoint source pesticide

pollution events and their deleterious consequences to the aquatic macroinvertebrate

communities of the Lourens River. Potential increases in mortality of key species due to

short-term, sub-lethal pesticide exposure have already been demonstrated in this
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catchment (Schulz and Dabrowski, 2001), however a direct link between pesticide

contaminated multi-species microcosm experiments and the prevailing community in a

natural environment has so far not been shown.

Liess and Schulz (1999) were able to show a similar relationship between field

relevant pesticide exposure in microcosms and communities in a stream in Germany,

although the microcosms contained only two different macroinvertebrate species. Based

on responses to a complex effluent, Niederlehner et al. (1990) used multi-species

microcosm tests to predict decreases in species richness in a stream in the mid-Atlantic,

USA. The results of this study highlight the importance of microcosms for use in

regulatory assessment of pesticides (Harrass and Sayre, 1989).
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CONCLUSION

Once potential for contamination by an ecological toxicant has been identified,

the assessment of exposure and biological effect are the most important factors in

determining its risk to the environment (Landis and Yu, 1995). Owing to the high

toxicity of pesticides and their relatively high persistence in the field, much attention

has been focused on the presence of pesticides in natural environments; particularly in

aquatic ecosystems. Surface runoff has been established as possibly the most

important route of entry for pesticides in agricultural surface waters (Schulz, 200la).

Thus, models which can identify areas responsible for high levels of runoff induced

pesticide pollution are extremely important in risk assessment scenarios.

Recent developments in geographic information systems (GIS) provide useful

techniques for handling large amounts of spatial data for modeling nonpoint source

pollution problems (Tim and Jolly, 1994). The GIS-based runoff model utilised in this

study could be of great benefit in the implementation of mitigation strategies and

management of agricultural orchard areas in South Africa. The model successfully

identified three tributaries (LL6, LL5 and LL2) as being responsible for the high

concentrations of the three most commonly used pesticides in the Lourens River

catchment (azinphos-methyl, chlorpyrifos and endosulfan), which was validated via

field based sampling. Although the model predicted losses of pesticides as a

percentage of what was applied on orchards, it did not predict concentrations in the

tributaries themselves. Thus, field-based measurements are important to supplement

the predictions of the model and highlights the importance of using a variety of

methods in assessing the risk of exposure in an aquatic environment (Wauchope,

1996). The concentrations of pesticides are the most ecotoxicologically relevant
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parameters with respect to the model and future research should focus on an attempt

to predict in-stream concentrations based on a single event or average annual basis. In

this respect, azinphos-methyl is probably the most relevant pesticide to model in this

catchment as it is often detected at relatively high concentrations in the water phase

during runoff conditions (Schulz, 2001b; Schulz et al., 2001). By comparison,

chlorpyrifos and endosulfan were detected at very low concentrations in all tributaries

making it more difficult to do a relative comparison based on measured and predicted

concentrations. The model does still however have a very valuable application in

management practices as it can identify problem areas in a catchment encompassing

agricultural land use only and can thus prioritise these areas for further investigation.

While the model was very successful in predicting contamination in the

Lourens River catchment, it remains to be seen whether the same model can be

applied to other orchard dominated catchments in South Africa, and this aspect

requires further investigation.

The microcosm experiments performed in this study addressed many of the

emerging trends in ecotoxicological testing. Most importantly, in the microcosms a

multi-species design was used, which comprised of communities directly comparable

to those which occur naturally in the Lourens River. Furthermore, exposure levels of

azinphos-methyl in the microcosms were field relevant in terms of duration and

concentration of exposure. The field relevance of the tests makes them more

comparable to situations in the field and also enables easier and more reliable

extrapolation from the laboratory to the field. Accordingly, the results of this study

strongly suggest that field relevant microcosm studies can be successfully linked to

field studies and demonstrate a causal relationship between nonpoint source pesticide
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pollution events and their deleterious consequences to the macro invertebrate

communities of the Lourens River.

Based on the pesticide concentrations measured so far at the contaminated site

of the Lourens River, it is not possible to simply interpret the differences in

community composition soley as a result of the effects of azinphos-methyl. Based on

measurements in the field, surface runoff commonly results in the input of

chlorpyrifos and endosulfan as well as azinphos-methyl. Thus macroinvertebrate

communities can be potentially exposed to a multiple number of pesticides

simultaneously. As a result synergistic, additive or antagonistic effects can possibly

occur depending on which pesticides are present and how they interact with each

other (Bocquene et al., 1995; Kungolos et al., 1999; Pape-Lindstrom and Lydy, 1997;

Thompson, 1996). Although research has focused on mixed toxicity using

standardised single species toxicity tests, further similar work using more field

relevant microcosm experiments is still required. In particular, microcosm

experiments based on exposure scenarios using a combination of azinphos-methyl,

chlorpyrifos and endosulfan would further improve our knowledge of the effects of

current use pesticides on the macroinvertebrate structure in the Lourens River.

Apart from pesticides associated with the water phase, runoff also leads to

input of sediment, much of which can be contaminated by current use pesticides.

Although sediment associated pesticides are generally less bio-available (Mian and

Mulla, 1992), studies have indicated that their presence can also lead to negative

changes in macroinvertebrate community structure (Schulz and Liess, 2001a; Schulz

and Liess, 200 1b). Thus the high levels of pesticides associated with the sediment

could also lead to the change in community structure observed downstream in the
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Lourens River. Once again, potential synergistic effects could occur as a result of

simultaneous multiple contamination by different sediment associated pesticides.

To conclude, this study highlights the importance of modelling approaches and

microcosm experiments as being valuable tools for the risk assessment of runoff-

induced pesticide exposure in agricultural surface waters. The results of this study

strongly indicate that runoff induced insecticide input poses a risk to aquatic insect

communities and lays the foundations for the implementation of appropriate

mitigation strategies. As such, mitigation measures should focus primarily on

preventing excessive runoff, with special attention being paid to the tributaries

responsible for the highest level of contamination.

Contour cropping as opposed to up-down slope cropping has been shown to

successfully reduce excessive runoff (Felsot et al., 1990) and can thus reduce the

transport of pesticides towards surface waters. However, this fact should be

considered in the process of establishing orchards. Once orchards have been

established, mitigation measures should focus firstly on reducing the amount of

pesticide entering tributaries and secondly on reducing the amount of pesticide that

has entered a tributary from reaching the mainstream.

The lack of well vegetated buffer strips between the orchards and the tributary

in sub-catchments LL5 and LL6 was discussed as being one possibility for high levels

of pesticide contamination and this aspect demands attention. Once appropriate

prevention measures have been introduced, methods can be applied to reduce the

amount of pesticide that eventually enters a tributary before entering the Lourens

River mainstream itself. In this respect, wetlands constructed in the tributaries, prior

to their junction with the mainstream have been shown to be very effective in
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retaining nonpoint pesticide pollution in this (Schulz and Peall, 2001) and other (Brix,

1994; Moore et al., 2000; Rodgers Jr. and Dunn, 1993) catchments.
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