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INTRODUCTION
The optimisation of sewer networks typi-
cally consists of two sub-problems. The 
first is to determine the layout of network 
elements and the second to determine all 
hydraulic parameters – such as diameters, 
slopes, etc – of the network components. 
The two sub-problems of the optimisation 
are strongly linked – for each layout a 
unique set of hydraulic parameters exists. 
Consequently, if an optimal design is to 
be found, the sub-problems have to be 
solved simultaneously. However, this does 
not mean that a single selection strategy 
or algorithm has to be used for both sub-
problems. Rather, the fitness of a solution 
should be determined based on both layout 
and component sizes simultaneously. Due 
to the complexity of such algorithms, most 
research has been done on one of the sub-
problems, while the other remains static, 
usually the layout (Lejano 2006).

There are three approaches to 
simultaneous layout and element sizing 
optimisation:

1.	 Complete enumeration
�In this approach all feasible layouts 
are generated and the hydraulic design 
of each is completed individually 
(Diogo et al 2000; Diogo & Graveto 
2006). While this approach is very 
useful for finding the best layout, 
its application is only practical for 
small-scale problems.

2.	 Separated design
�This approach separates the two design 
problems, either through manual layout 
design or by using individual objec-
tive functions for each sub-problem. 
Once the optimal layout is found, the 
optimal hydraulic parameters for this 
layout is determined by a separate 
algorithm (Pan & Kao 2009; Haghighi 
2013). While this approach is useful 
for large problems, it is difficult to 
determine true optima (Haghighi & 
Bakhshipour 2015).

3.	 Simultaneous design
�The layout and element size problems 
are optimised simultaneously (Li & 
Matthew 1990; Moeini & Afshar 2012; 
Haghighi & Bakhshipour 2015). While 
this approach is the most promising 
in finding true global optima for large 
solutions its implementation is the most 
complex and requires complex formula-
tion and specific design algorithms 
(Haghighi & Bakhshipour 2015). The 
fitness of a solution is calculated taking 
both layout and hydraulic parameters 
into account simultaneously.

In this work the third approach (simultane-
ous design) is used to develop a hybrid Ant 
Colony Optimisation (ACO) algorithm by 
which the layout and all hydraulic para
meters are simultaneously optimised. For 
each individual layout created by the ACO 
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algorithm the set of hydraulic parameters 
is optimised. The two sub-problems of 
sewer network optimisation are very differ-
ent mathematically. The hydraulic design 
problem is a non-linear discrete program-
ming problem, while the layout problem is a 
variant of the degree-constrained Minimum 
Spanning Tree (d-MST) problem in graph 
theory. In this article development of the 
layout optimisation algorithm and combin-
ing of the algorithm with the heuristic 
hydraulic optimisation procedure proposed 
by De Villiers et al (2017) to create a hybrid 
algorithm capable of solving both sub-
problems simultaneously, are addressed.

MODELLING SEWER NETWORKS 
USING GRAPH THEORY
In this investigation graph theory is used 
to model the layout of sewer networks. 
Layout design of sewer networks is again a 
two-part problem. The first is to determine 
the spatial location of manholes and pipes. 
The second is to determine the direction of 
flow of each pipe. A full network layout is 
only found once both parts of the problem 
have been solved.

Spatial design of the network
Referring to Figure 1, the nodes, represent-
ing manholes labelled 1, 2, 3 and 4 respec-
tively, are connected by edges, representing 
pipes labelled 1, 2, 3, 4 and 5 respectively.

In this example the spatial positions of 
the manholes and pipes have already been 
determined, i.e. the first part of the design 
is complete. However, it may have been 
equally feasible to place the manholes at 
different locations and to connect them 
differently, for example by placing pipe 3 
between manholes 1 and 4 rather than 2 
and 3. This part of the design, deciding 
on the spatial location of manholes and 
how to connect them with pipes, is most 
often governed by existing or planned 

infrastructure, such as roads or buildings, 
and topographical considerations, such 
as hills or steep inclines. In this paper it 
is assumed that the positioning of man-
holes and pipes is completed prior to the 
optimisation process aimed at minimising 
the installation cost of the sewer network. 
The positioning of manholes and pipes 
is referred to as the base layout, or base 
graph of the layout. All pipes and manholes 
included in the base graph must be present 
in the final solution. The base layout is 
modelled mathematically as an undirected 
graph where the vertices represent man-
holes and the edges pipes:

Gbase = (V, E)

Where:
	Gbase	 =	 the base graph
	 V	 =	� the vertex set, whose elements 

are the vertices of Gbase which 
represent manholes of the sewer 
network

	 E	 =	� the edge set, whose elements are 
the edges of Gbase which represent 
pipes of the sewer network. As 
the graph Gbase is undirected, the 
individual edges are unordered 
pairs (u, v) where u and v are 
vertices in V.

Directional design of the network
The second part of the layout design is to 
determine the direction of flow for each 
pipe. This part of the layout design is 
deceptively complex, and the number of 
possible permutations grows exponentially 
as the number of vertices and edges in 
the base graph increases. This part of the 
layout design is the concern of the optimi-
sation procedures which are discussed in 
detail in the section below titled “Objective 
function” on page 9. A brief overview of 
the required decisions to complete the 

directional design is given here. Figure 2 
shows two directional graphs (directions 
are indicated by arrows).

Figure 2 shows two feasible final layouts 
of a possible 52 = 25 of the base layout 
shown in Figure 1. The choice of flow 
directions can heavily influence the final 
capital investment cost of the completed 
sewer network, especially when adverse 
topographical conditions are present. If, 
for example, manhole 2 has a much lower 
elevation than manhole 3, then using 
sound engineering intuition we can readily 
observe that the design of Figure 2(a) 
requires less excavation than that of 
Figure 2(b). This reduction in required 
excavation can be expected to lead to a 
reduction in capital expenditure. However, 
the problem becomes increasingly difficult 
as the size of the base graph increases, 
since the change in flow direction of a 
single pipe may have significant effects 
on the cumulative downstream flow rates 
within pipes, and therefore their required 
diameters and slopes.

Notice that in both designs in Figure 2, 
cycles are present in the final layout 
designs. For Figure 2(a) the cycle 2-4-3 
exists and for Figure 2(b) the cycle 2-3-4 
exists. In this investigation only gravity 
sewer networks are considered, with no 
special structures present, such as diver-
gence structures, pumping stations or ris-
ing mains. This implies that all manholes 
may only have a single outgoing pipe, often 
referred to as the single out-degree con-
straint. These assumptions drastically sim-
plify the hydraulic analysis of the network.

Moeini and Afshar (2012) propose 
disconnecting pipes from their upstream 
manholes and creating what they term 
adjacency nodes, which are created artifi-
cially at the same location as the existing 
upstream manhole. The practical implica-
tion of this is that the pipe has no upstream 

Figure 1 Layout design example
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inflow from the manhole, and cycles are 
removed from the network. Referring to 
Figure 3, the networks shown are similar 
to those in Figure 2. In this case, however, 
some pipes have been disconnected from 
their upstream manholes and adjacency 
nodes created, indicated by perpendicular 
lines on the upstream end of the pipe.

Constraints on the 
optimisation problem
De Villiers et al (2017) provide an overview 
of sewer network design, and all con-
straints and equations described there are 
applicable to this paper. When construct-
ing a network layout, however, the single 
out-degree constraint, described above, 
has to be considered. This avoids cycles 
and diversion structures, and the resulting 
layout is a simple branched gravity sewer 
network with no special structures.

To ensure that any proposed layout 
adheres to these simplifications, only 
branched network layouts are selected from 
the power set of the base layout, which 
contains all possible looped and branched 
layouts. Mathematically the restrictions 
for a branched layout in a network with M 
manholes are (Moeini & Afshar 2012):

	Xjl + Xlj	 =	 1	 ∀ j, l ∈ {1, …, M}

	
M
Σ
l=0

Xjl	 =	 1	 ∀ j ∈ {1, …, M}� (1)

Where:

Xjl	 =	
⎧⎪
⎨
⎪⎩

	� 1	� if and edge with flow from j to l 
exists

			   0	 otherwise

This constraint is augmented with the con-
tinuity requirement at each node j:

M
Σ
l=0

Xjl Qi
lj – 

M
Σ
l=0

Xjl Qi
lj = 0

∀ j, l ∈ {1, …, M} ∧ j ≠ s� (2)

Where:
	Qi

lj	=	� flow rate in pipe i between nodes l 
and j with either node as source or 
target

	 s	=	 the outlet node

The network is defined with a single outlet 
in this paper. The continuity equation is 
not enforced at the outlet, since only the 
inflow is modelled for the outlet node. 
Note that this restriction does not affect 
the generality of the proposed method, 
since the same method may be applied for 
multiple outlets simultaneously.

ANT COLONY OPTIMISATION
ACO algorithms have been successfully 
applied to various constrained optimisa-
tion problems, and achieve state-of-the-art 
results for several important problem classes, 
such as the Quadratic Assignment Problem 
(QAP) and scheduling and routing (Dorigo & 
Stützle 2004) to name a few. The precursor 
algorithm to all ACO algorithms, Ant System 
(AS), was inspired by observing the phero-
mone-based trail-laying-trail-following of 
real ants (Dorigo et al 1996). Though modern 
ACO algorithms have come a long way from 
the initial AS model, the analogy of a colony 
of foraging ants is still useful in understand-
ing the behaviour of the algorithm.

In ACO a number of individual ants 
each generates solutions independently and 
in parallel, over many iterations. The ants 
make decisions using a so-called ‘phero-
mone-value’, which models the fitness of 
an eligible decision at a decision point. 
The best solution in an iteration is used 
for trail-laying, i.e. the pheromone value is 
increased along the best trail, while some 
pheromone on all other trails is evapo-
rated. Through this process of pheromone 
deposition and evaporation the search near 
good solutions is intensified over time, 

while initially maintaining diversity within 
the search space. The steps of a general 
ACO algorithm are now described (Dorigo 
et al 1996):

1.	 Select a suitable size for the set of ants 
{A}k for each generation k and set initial 
pheromone values on all available selec-
tions to some suitable, but equal, value. 
Set generation count k = 0.

2.	 Starting from either a predetermined 
or randomly selected point, construct 
a solution for each individual ant, 
a ∈ {A}‌k of the current generation, using 
the standard transition rule to make 
a decision:

	 pk
ij	  = 

[τk
ij]α [nij]β

Σj ([τk
ij]α [nij]β)

� (3)

Where:
	 k	 =	 the generation number
	pk

ij	 =	� probability of decision j at deci-
sion point i, hereafter “decision ij” 
in generation k

	τk
ij 	 =	� pheromone value of decision ij in 

generation k
	nij 	 =	� heuristic influence value at deci-

sion ij
	 α	 =	� relative pheromone influence 

factor
	 β	 =	� relative heuristic influence factor

3.	 Using a problem-specific objective func-
tion, determine the fitness f(a) of each 
ant’s solution, a ∈ {A}k.

4.	 Acquire the generation-best solution 
f(best)k. Compare acquired generation 
best solution to current global best solu-
tion f(best)global, replacing the global best 
if the generation best solution is better.

5.	 Perform pheromone evaporation on all 
paths and increase the pheromone along 
the path selected by the generation-best 
solution, using the following update rule:

	 τij
k+1 = τk

ij(1 – ρ) + ∆τij� (4)

�with ρ the evaporation rate and ∆τij the 
pheromone increase of the generation-
best solution, defined as:

	
∆τij	=	

⎧
⎪
⎪
⎨
⎪
⎪
⎩

	�

C

f(best)k 	�
�if decision ij was made 
by the generation-best 
solution

				    0	 otherwise� (5)

Figure 3 Directional layout design examples with no cycles
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Where:
C  =  a constant real number

6.	 Check convergence of the algorithm. 
Usually convergence is accepted if a 
minimum number of generations have 
been completed, and for a number of 
generations thereafter the global-best 
solution has not improved. Alternatively, 
if all individuals of a generation produce 
the same solution, the algorithm has 
converged. If the algorithm has con-
verged, accept current global-best solu-
tion as final solution, otherwise return 
to step 2 and repeat the process.

Many modifications have been proposed 
in the literature to improve the behaviour 
of the ACO algorithm. The modifications 
used in this implementation and their 
effects are now described.

■■ Changing the evaporation rate. The 
evaporation rate ρ determines the 
convergence speed of the algorithm. 
In general, when a large search space 
is to be investigated a low value of ρ is 
beneficial, since the algorithm will be 
allowed more time to explore the dif-
ferent regions of the search space before 
focusing on a small region (Merkle 
et al 2002). Merkle et al (2002) found 
that, when the maximum number of 
iterations is restricted, a higher value of 
ρ usually performs better. Therefore it 
is proposed by Merkle et al (2002) that 
two different values of ρ be used during 
the run of an ACO algorithm. Initially, 
a low ρ is used which remains constant 
for the majority of the generations. For 
the last generations of the algorithm a 
high ρ value is used to perform a final 
intensive search near the best solution 
that has been found.

■■ Modified elitist strategy. Using an elit-
ist strategy is a common modification 
to ACO algorithms. This entails using 
a pheromone update from both the 
generation-best and current global-best 
solution at the end of each generation. 
The pheromone update rule is modified 
to reflect this:

	 τij
k+1 = τk

ij(1 – ρ) + ∆τij + ∆τij
global� (6)

�The elitist strategy has the advantage 
that the search is intensified around the 
current global-best solution. However, 
if the global-best solution remains 

unchanged for many generations it has 
a great influence on the pheromone val-
ues which may, during long runs, cause 
the algorithm to converge prematurely 
to the current global-best solution 
(Merkle et al 2002). This is especially 
true if the current global-best solution 
is a single good solution, with no other 
good solution in the neighbourhood. 
It is therefore proposed (Merkle et al 
2002) to set a maximum number of 
generations, gmax, during which an 
elitist solution is allowed to remain 
unchanged. When the elitist solution 
has exceeded its maximum number of 
generations it is replaced by the cur-
rent generation’s best solution, even if 
this solution is worse than the current 
global-best. The replacement is only in 
terms of pheromone updates; the solu-
tion is, however, retained as the current 
best solution of the optimisation. When 
an elitist solution has good solutions 
in its neighbourhood it is likely the 
ants will discover it within reasonable 
time. Otherwise it does not matter that 
the elitist solution has been discarded, 
as no improved solutions are in its 
neighbourhood.

LAYOUT OPTIMISATION
Layout optimisation of a sewer network is 
one part of the two-part network optimisa-
tion problem, in which the flow direction 
of pipes has to be determined for a given 
base layout. This part of the problem 
has been studied less than the hydraulic 
optimisation problem. However, some 
researchers have proposed algorithms for 
the simultaneous solution of both sub-
problems. Walters (1985) used Dynamic 
Programming (DP) for simultaneous layout 
and size optimisation, and his method 
could be used to drain a set of sources 
with fixed positions. Li and Matthew 
(1990) used Discrete Differential Dynamic 
Programming (DDDP), which utilised an 
iterative procedure to generate the layout, 
and then to size the sewers and pumps 
while keeping the layout fixed. DDDP has 
some significant drawbacks – it restricts 
the search space and reduces the prob-
ability of locating the global optimum. The 
DDDP stages must be manually divided for 
each individual problem and this reduces 
its practicability. Pan and Kao (2009) used 
a Genetic Algorithm (GA) combined with 
Quadratic Programming (QP). In their 
approach a majority of the constraints 

were formulated in QP, while other para
meters, such as layout and pipe diameters, 
were determined by the GA. Moeini and 
Afshar (2012) proposed an Ant Colony 
Optimisation (ACO) algorithm combined 
with a Tree Growing (TG) algorithm which 
performs both the layout construction 
and selects diameters simultaneously. In 
their approach it is assumed that all pipe 
flow rates are at maximum relative flow 
depth, allowing for the calculation of pipe 
slopes. Haghighi and Bakhshipour (2015) 
combined previous works, namely the 
loop-by-loop cutting algorithm (Haghighi 
2013) and an Adaptive Genetic Algorithm 
(Haghighi & Bakhshipour 2012), with a 
Tabu Search (TS) algorithm to create an 
effective hybrid algorithm for simultaneous 
layout and element size optimisation.

Despite the suitability of ACO 
algorithms to the layout optimisation 
problem of sewer networks they have seen 
limited use. The main reason for this is 
the two-part nature of the problem. ACO 
algorithms require a significant number 
of function evaluations, for each of which 
both layout and hydraulic optimisation 
have to be performed simultaneously if the 
best results are to be obtained. Because of 
this the algorithm can be extremely com-
putationally expensive. To overcome this 
problem Moeini and Afshar (2012) in their 
ACO-TG algorithm use the ants to simul-
taneously select both layout and diameter. 
This strategy, of using a single algorithm 
for both layout and diameter selections, is 
also employed by Pan and Kao (2009) in 
their GA-QP algorithm. The major disad-
vantage of this is the potential for fitness 
warping. If a very good layout is produced 
early on in the iterations, it is very likely 
that a poor set of diameters will be selected 
with it, and consequently the fitness of 
the entire network is compromised and 
the algorithm is unable to identify that a 
good layout has been found. In order to 
overcome fitness warping a separate opti-
misation algorithm is employed for each 
sub-problem in this paper. This approach, 
also used by Haghighi and Bakhshipour 
(2015) in their hybrid Tabu-Search algo-
rithm, can be extremely computationally 
expensive. Haghighi and Bakshipour (2015) 
overcome the computational restrictions 
of this approach by using an efficient 
layout-generating algorithm combined 
with a relatively efficient meta-heuristic for 
element size optimisation. In this work, the 
computationally expensive ACO algorithm, 
combined with a TG algorithm as proposed 
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by Moeini and Afshar (2012), is used to 
determine layouts and then combined with 
the computationally efficient heuristic 
optimisation algorithm developed by De 
Villiers et al (2017).

In this implementation the networks 
are restricted to gravity sewer networks. 
Additionally no cycles nor diversion struc-
tures are allowed within the network. This 
is achieved by restricting the out-degree, 
the number of outlet pipes, of each node 
to one. This assumption creates a variant 
of the d-MST problem, not simply because 
only the out-degree is constrained, but also 
because no clear definition of a minimum 
exists. The lack of a minimum defini-
tion means that traditional graph theory 
algorithms for minimum spanning tree 
construction, such as Prim’s or Kruskal’s 
algorithms, cannot be used without signifi-
cant modifications. Bui and Zrncic (2006) 
showed that ACO algorithms perform well 
for the solution of d-MST problems. These 
applications offer valuable insights which 
may assist in understanding the nature of 
optimal layouts of sewer networks. Bau 
et al (2008) compared Prim’s algorithm, 
which uses node-based selection, and 
Kruskal’s algorithm, which uses edge-based 
selection, and found Kruskal’s algorithm 
to be superior. Both node-based and 
edge-based layout creation strategies are 
developed and compared:

1.	 Edge-based selection which directly 
queries the base graph to construct a 
spanning tree, similar to Moeini and 
Afshar (2012) – henceforth referred to 
as the “direct-edge” strategy.

2.	 Node-based selection which directly 
queries the base graph to construct a 
spanning tree – henceforth referred to 
as the “direct-node” strategy.

3.	 Constructing a spanning tree using 
a permutation of unique edge identi-
ties – henceforth referred to as the 
“permutation-edge” strategy.

4.	 Constructing a spanning tree using 
a permutation of unique node identi-
ties – henceforth referred to as the 
“permutation-node” strategy.

For all the selection strategies above the 
hydraulic optimisation is performed by 
the Heuristic Optimisation Algorithm 
developed by De Villiers et al (2017). The 
hydraulic optimisation algorithm is deployed 

for each individual layout created by the 
layout creation algorithm to determine the 
optimal set of hydraulic parameters. Once 
the layout creation and hydraulic design are 
complete the fitness of the solution may be 
calculated using Equation 7.

Figure 1 shows a small example net-
work’s base layout, which will be used to 
describe the spanning tree construction 
strategies. The base layout, alternatively 
referred to as the base graph, of the net-
work shows the position of all the man-
holes and all the pipes that are required in 
the network. Additionally, the elevations 
and design inflow rates at each manhole 
are known. The layout optimisation algo-
rithm does not move the pipe around, but 
is rather used to determine the flow direc-
tion of pipes. In this example node 1 is the 
outlet node.

Figure 4 shows all the possible paths of 
nodes and edges for the example network 
in Figure 1. The nodes are shown in circles, 
while the edges which would result in the 
addition of the next node are shown in 
square brackets.

Figure 4 is not determined by using 
any of the selection strategies. This simply 
shows all the possible paths to follow to 
construct a spanning tree of this network. 
The selection strategies are employed to 

determine which decisions are eligible and 
decide how to present the eligible decisions 
at each point to the layout creation algo-
rithm. For example, at the start the layout 
creation algorithm could be presented 
with either the eligible edges 1, 2, or the 
eligible nodes 2, 3. If edge 1, or node 2, was 
selected, then the eligible set of edges and 
nodes at the following iteration are 2, 3, 4 
and 3, 4 respectively.

In an ACO that uses a single pheromone 
matrix, the ants can only make one choice 
based on the pheromone. If another choice 
has to be made, some mechanism, usually 
a heuristic, is required to resolve it. For the 
sewer network layouts, a useful parameter 
proposed my Moeini and Afshar (2012) is 
the hop-rank. This parameter ranks nodes 
based on the number of preceding nodes 
in its branch. Referring to Figure 1, if a 
spanning tree consisting of edges 1, 3 and 
5 is assumed, the hop-ranks of nodes 1 
through 4 are respectively 0, 1, 2 and 3. The 
hop-rank parameter can be used to favour 
selections which do not increase the length 
of already long branches. If required, the 
hop-rank parameter can be used to make a 
heuristic selection. In all cases no heuristic 
influence value nij is used, since that would 
render direct comparison of the effective-
ness of the strategies impossible.

Figure 4 Example network iteration selections
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Direct-edge layout creation
This strategy mimics the edge selection 
behaviour of the algorithm proposed 
by Moeini and Afshar (2012). The tree-
growing algorithm compiles a set of eligible 
edges, always starting from the static 
sink node. An edge is considered eligible 
for selection if only one of its vertices is 
already included in the growing spanning 
tree. The edge selection procedure is 
shown below.

1.	 Define:
	 T	 =	 the spanning tree
	TN	 =	� the set of nodes in the spanning 

tree
	 E	 =	� the set of currently eligible edges
	 nt	 =	� the target node of the new edge
	 ns	 =	� the source node of the new edge

2.	 Initiate T and TN . Insert the sink node 
into TN .

3.	 Compile E, the set of all eligible edges; 
an edge is considered eligible if TN con-
tains one of its nodes.

4.	 Select the next edge e of T from E using 
the transition rule described in the sec-
tion titled “Ant Colony Optimisation” 
on page 4.

5.	 Identify nt and ns of e. Select nt, the tar-
get node, as the node already contained 
in TN and the other as ns.

6.	 Add e to T, add ns to TN .

7.	 If TN contains all nodes, stop. Or else 
return to 3.

Referring to Figure 4, if in the first iteration 
edge 1 was selected and in the second edge 
2, then the set of eligible edges for iteration 
three would be E = {4; 5}. Edge 3 is not 
eligible since both its nodes are elements 
of TN and it would introduce a cycle into 
the network. The way in which edge 3 
will be added to the network is described 
further down in the section titled “Layout 
completion” on page 8. Determining the 
source (upstream) and target (downstream) 
nodes of a selected edge is done simply by 
checking which node of the edge is already 
contained in TN and assigning that as 
the target.

Direct-node layout creation
In this strategy the tree-growing algo-
rithm constructs sets of eligible source 

and target nodes. A node is considered 
to be an eligible source if any edge con-
nected to it has a node which is already 
included in the growing spanning tree. 
This is best achieved by using the nodes 
already contained in the spanning tree as 
potential target nodes and finding their 
adjacency nodes, using the base graph 
that can serve as potential source nodes. 
The direct-node strategy is formally 
described below.

1.	 Define:
	 N	 =	 set of all nodes
	 T	 =	 the spanning tree
	TN	 =	 set of nodes in the spanning tree
	 ei	 =	 eligible node i
	 E	 =	 set of currently eligible nodes
	 Ai	 =	 set of nodes adjacent to node i
	 ni	 =	� node being added to the span-

ning tree at current iteration

2.	 Initiate T and TN . Insert the sink node 
into TN .

3.	 Compile the set of eligible source nodes 
E. A node ei is considered eligible for 
selection if it is not already contained 
in TN and its set of adjacent nodes Ai 
contains at least one node already con-
tained within TN .

4.	 Select the next node to be added to the 
growing spanning tree ni from E using 
the transition rule described in the sec-
tion titled “Ant Colony Optimisation” 
on page 4. Add ni to TN .

5.	 Find the eligible target nodes for the 
new edge, with ni as its source node. 
Compile Ani , the set of nodes adjacent 
to node ni . Compile the set of eligible 
target nodes E. A node is considered 
eligible to be a target node if it is both 
an adjacent node of ni , i.e. an element of 
Ani , and currently contained in TN .

6.	 If E contains more than one element, 
select ei from E with the lowest hop-
rank as the target node. If nodes have 
equal hop-ranks, make a random 
choice between them. Alternatively 
take the single element of E as the 
target node.

7.	 Add a new edge from the source node to 
the target node to T.

8.	 If TN contains all nodes, stop. Or else 
return to step 3.

The direct node strategy places some 
limitations on the networks that can be 
produced by the algorithm. Referring to 
Figure 1, if only edges 2 and 5 have been 
included in the growing spanning tree, only 
node 2 is eligible as the next source node. 
The set of eligible target nodes of node 2 is 
E = {1, 3, 4}. Due to the hop-rank heuristic 
it would only ever be possible to select 
node 1 as the target node.

Permutation-edge layout creation
The permutation strategies are used as alter-
natives to the previous methods in which the 
base graph is queried directly. In this case an 
ant colony algorithm is used to construct a 
permutation of unique edge identities from 
which a spanning tree of the base graph is 
eventually created. The steps that create the 
edge permutation are listed below.

1.	 Compile the set N of all base graph 
edges. Initialise permutation P = Ø, the 
empty set.

2.	 Compile set of eligible edges E. An 
edge is considered eligible if it is not 
contained in P. If E = Ø, stop.

3.	 Using the transition rule described in the 
section titled “Ant Colony Optimisation” 
on page 4, select the next edge ei from 
E to be added to the permutation. 
Concatenate ei to the end of P.

4.	 Return to 2.

Once a permutation has been composed it 
can be used to construct a layout by simply 
using the order of the edges in the permu-
tation as the order in which to add edges to 
a growing spanning tree. The permutation-
edge layout construction, which is very 
similar to its direct-edge counterpart, is 
described below.

1.	 Define:
	 T	 =	 the spanning tree
	 P	 =	 the permutation
	TN	 =	� the set of nodes in the spanning 

tree
	 E	 =	 set of currently eligible edges
	 nt	 =	� the target node of the new edge
	 ns	 =	� the source node of the new edge

2.	 Initiate T and TN . Insert the sink node 
into TN .

3.	 Compile E, the set of eligible edges. 
Similar to the direct-edge strategy, an 
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edge is considered eligible if TN con-
tains one of its nodes.

4.	 Iterate P. The first edge encountered in 
P which is also in E is selected as the 
next edge to add the T; however, it is not 
added to T at this point as its direction 
is only determined during the next step.

5.	 Identify the source node ns and target 
node nt of the new edge by selecting nt 
as the node which is already in TN . Now 
add the ns to TN .

6.	 Add e to T.

7.	 If TN contains all nodes, stop. Or else 
return to 3.

Assume P = {12345}. Then, referring to 
Figure 1, after two iterations both edges 
1 and 2 have been added and E = {4, 5}. 
Iterating through P encounters edge 4 prior 
to 5, so edge 4 is the next one to be added 
to the spanning tree.

Permutation-node layout creation
In this case spanning tree layouts are 
constructed using permutations of unique 
node identities. An ant colony algorithm 
is used to create the node permutations as 
described below.

1.	 Compile the set N of all base graph 
nodes. Initialise permutation P = Ø, the 
empty set.

2.	 Compile set of eligible nodes E. A node 
is considered eligible if it is not con-
tained in P. If E = Ø, stop.

3.	 Using the transition rule described in the 
section titled “Ant Colony Optimisation” 
on page 4, select the next node ei from 
E to be added to the permutation. 
Concatenate ei to the end of P.

4.	 Return to 2.

From the node permutation a spanning 
tree can be constructed by adding nodes 
to the spanning tree in the same order 
that they appear in the permutation, as 
described below.

1.	 Define:
	 N	 =	 set of all nodes
	 T	 =	 the spanning tree
	 P	 =	 the permutation
	TN	 =	 set of nodes in the spanning tree

	 ei	 =	 eligible node i
	 E	 =	 set of currently eligible nodes
	Ai	 =	 set of nodes adjacent to node i
	 ni	 =	� node being added to the span-

ning tree in the current iteration

2.	 Initiate T and TN . Insert the sink node 
into TN .

3.	 Compile the set of eligible source nodes 
E. A node ei is considered eligible if it is 
not already contained in TN and its set 
of adjacent nodes Ai contains at least 
one node already contained in TN .

4.	 Iterate P. The first node ni encountered 
in P, which is also in E, is selected as 
the next source node to be added to the 
growing spanning tree. Add ni to TN .

5.	 Determine the target node for the new 
edge. Compile Ani , the set of nodes 
adjacent to node ni. Compile the set of 
eligible target nodes E. A node is con-
sidered eligible as the target node if it is 
contained in both TN and Ani .

6.	 If E contains more than one ele-
ment, iterate over P. The first node nj 
encountered in the iteration, such that 
nj is in E, is taken as the target for the 
new edge. Alternatively take the single 
element of E as the target node. Add nj 
to TN .

7.	 Add a new edge from the source node ni 
to the target node nj to T.

8.	 If TN contains all nodes, stop. Or else 
return to step 3.

Note that in the direct-node method, the 
hop-rank heuristic was used to select the 
target node, while in this case the permuta-
tion is used to choose the target node by 
selecting the first node encountered in 
P which is also in E. This heuristic deci-
sion again places some restriction on the 
spanning trees that can be produced, as 
demonstrated using Figure 5. Figure 5(a) 
shows the base layout of a network, while 
Figure 5(b) shows a spanning tree of this 
network which cannot be created by the 
permutation-node approach. This is due 
to the fact that for node 4 to connect to 
node 3, rather than node 2, node 3 has to 
appear before node 2 in the permutation. 
Then, however, node 5 will also connect 
to node 3. The opposite is also true – if 
node 2 appeared before node 3 in the 
permutation, then both nodes 4 and 5 will 
connect to node 2.

Layout completion
Once a spanning tree has been created, all 
edges of the base graph that are not includ-
ed in the spanning tree have to be added 
to complete the network. These edges 
have to be reintroduced in such a way that 
cycles are not formed. The adjacency node 
technique described in the section titled 
“Directional design of the network” on 
page 3 is used to avoid cycle formation. 
The source and target node selection of 
an edge is performed using the hop-rank 
heuristic, choosing the target node as the 
one with the lowest hop-rank. If the hop-
ranks of the nodes are equal, the direction 
of the edge is determined randomly. This 
technique is used for all the strategies 
investigated in this paper.

Figure 5 Node permutation restriction example
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Objective function
It should be noted that under certain 
conditions an infeasible solution may be 
obtained. Most notably, the maximum 
allowable cover depth may be exceeded 
if a layout which results in excessive 
excavation is produced. For this reason a 
Penalty Function formulation of the objec-
tive function is used to guide the ants 
away from the infeasible solution space as 
much as possible. The objective function 
is then:

Minimize P = C + αΣ
i

gi� (7)

Where:
	P	=	 the penalised fitness value
	C	=	 cost of the sewer network
	gi	=	� violation of constraint i, 0 if unviolated
	α	=	� a sufficiently large constant to ensure 

feasible solutions have a better fitness 
than infeasible solutions

The network cost C is obtained using the 
following cost function:

C = 
N
Σ
i=0

LiKi(di , Ei
ave) + 

M
Σ
j=0

Kj(hj)� (8)

Where Ki is a unit cost function for pipes 
and Kj  is a unit cost function for manholes. 
The unit cost functions used in this study 
are as proposed by Afshar et al (2011):

Ki	 = 1.93e3.43di + 0.812Ei
1.53 + 0.437diEi

1.47

Kj	= 41.46hj

and

	 Li	 =	 the length of pipe i
	 di	 =	 the diameter of pipe i
	 Ei	 =	 the average cover depth of pipe i
	 hj	 =	 the height of manhole j
	 N	 =	 the number of pipes in the network
	M	 =	� the number of manholes in the 

network

If a feasible solution is found, the value of 
the second term in Equation 7 will be zero.

In all the algorithms described above 
the sink node is static. However, the 
algorithms can be modified to allow for 
dynamic sink node placement with relative 

ease. The required modifications are sum-
marised below:

■■ Direct-edge: Modify the spanning tree 
construction algorithm to have the ants 
initially select any edge, and assume its 
end with the lowest ground elevation is 
the sink node.

■■ Direct-node: Add an additional initial 
decision for the ants where a sink node 
has to be selected from the list of all 
nodes.

■■ Permutation-edge: Similar to the 
direct-edge case, modify the spanning 
tree construction algorithm to use the 
first edge in the permutation as the 
starting edge, again using its lowest end 
as the sink node.

■■ Permutation-node: Use the first node 
in the permutation as the sink node.

RESULTS
Three example networks with varying size 
and topology characteristics were created 
to test the effectiveness of the proposed 
layout optimisation strategies. The four 
proposed ACO strategies combined with 
the heuristic hydraulic optimisation 
algorithm of De Villiers et al (2017), as 
well as the ACO-TG algorithm of Moeini 
and Afhsar (2012), are used to solve each 
example network. The example networks 
proposed by Moeini and Afshar (2012) all 
have the same topology and only vary in 
size and specify multiple outlet nodes. It is 
the intention of this study to investigate the 
effects different topology and network sizes 
have on the performance of different layout 
creation strategies, which the examples 
of Moeini and Afshar (2012) do not allow. 
Furthermore, the multiple outlet nodes are 
not supported here. This does not affect 
the generality of the algorithm, as the same 
layout creation strategy can be applied 
from multiple outlets simultaneously 
without any modifications. The inclusion 
of multiple outlets does have the undesired 
effect of effectively reducing the size of the 
network under consideration, as, with two 
outlet nodes, two entirely independent sub-
networks of the base graph are produced of 
approximately equal size due to the single 
outlet constraint and acyclic nature of the 

layout creation algorithms. Consequently, 
their example problems are not employed. 
Instead their algorithm is reproduced and 
applied to the three example networks 
proposed here for comparison.

Algorithm parameters for the ACO-
TG algorithm are as used by Moeini and 
Afshar (2012) for examples of a similar 
size. The proposed ACO algorithms were 
calibrated using 500, 1 000, 2 500, 5 000 
and 10 000 for potential generation limits 
with population sizes of 10, 20, 50 and 100, 
and the values which resulted in the best 
average fitness selected. Evaporation rates 
were chosen which resulted in a gradual 
convergence of the optimisation, to avoid 
rapid convergence to local optima. The 
proposed example networks are all grids of 
varying size and topological characteristics. 
The sink node is static and marked with 
a dark fill in Figures 6, 9 and 12. Relevant 
elevations are shown and all slopes are 
assumed to be linear. In all three cases 
inflow hydrographs are defined at each 
manhole as if serving 250 very high income 
residential units, of which the unit hydro-
graph is shown in Table 1. The peak value 
is used to scale the unit values listed in the 
table and leakage value added to provide a 
base flow rate.

In all cases the evaporation rate ρ is 
changed after 80% of the generation limit 
is reached. The current best solution 
is allowed to persist for a maximum of 
25% of the generation limit, after which 
it is no longer eligible for pheromone 
deposit and instead the current genera-
tion’s best solution, regardless of its fit-
ness, is used for pheromone deposit. The 
initial pheromone is always taken as 5.0. 
Computations were performed using 
Stellenbosch University’s Rhasatsha HPC: 
http://www.‌sun.‌ac.‌za/‌hpc. The results are 
averaged over 20 randomly initialised runs 
for each case. The heuristic optimisation 
method described in De Villiers et al (2017) 
is seeded with the following constraint 
values:

■■ Minimum allowed cover depth Emin = 
1.2 m.

■■ Maximum allowed cover depth Emax = 
10 m.

■■ Minimum allowed slope Smin = 0.01.

Table 1 Very high income residential unit hydrograph

Hour Peak
(ℓ/min)

Leakage
(ℓ/min)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0.15 0.08 0.06 0.05 0.05 0.11 0.67 1.00 0.87 0.85 0.82 0.71 0.56 0.50 0.46 0.44 0.41 0.38 0.45 0.49 0.45 0.50 0.40 0.29 1.69 0.26
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■■ Minimum allowed velocity vmin = 
0.7 m/s.

■■ Maximum allowed velocity vmax = 
5.0 m/s.

■■ Minimum required spare capacity 
SCmin = 30%.

■■ The set of commercially available pipe 
diameters {D} = {150 mm, 200 mm, 
250 mm, 315 mm, 355 mm, 400 mm, 
450 mm, 525 mm, 600 mm, 675 mm, 
750 mm, 825 mm, 900 mm, 1 050 mm, 
1 200 mm, 1 350 mm, 1 500 mm, 
1 650 mm, 1 800 mm}. PVC is used for 
pipes with diameters below 450 mm, 
with a Manning coefficient n = 0.009. 
For all other pipes concrete is used with 
a Manning coefficient n = 0.02.

■■ α in Equation 7 is taken as 1e8.
■■ The value of γ (De Villiers et al 2017) 

was calibrated beforehand.

The layout of the final best solution obtained 
for each example problem is included. Flow 
directions of the pipes are shown with arrows. 
Adjacency nodes are indicated by straight 
lines at the end of a pipe. The numbers are 
identities assigned during the optimisation to 

the elements. Example 3's solutions contours 
are not shown for each solution.

Example Network 1
The first example network, shown in 
Figure 6, is a small network on a flat surface. 

Figure 6 Example Network 1
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Figure 7 Fitness progression of Example 1
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Table 2 Example Network 1 – parameters and results

Algorithm Parameters

Algorithm Generation limit Population size ρinitial ρfinal C γ

ACO-TGA 1 000 100 0.05 – 1 000 –

Direct-node 1 000 20 0.01 0.02 25 0.15

Direct-edge 1 000 20 0.0125 0.025 25 0.35

Permutation-node 1 000 20 0.01 0.02 25 0.35

Permutation-edge 1 000 20 0.0125 0.025 100 0.15

Algorithm Results

Algorithm
Average 
final cost

Standard 
deviation

Best cost Worst cost
Average 

computation 
time (s)

Average 
infeasible 

solutions (%)

ACO-TGA 18 880.67 569.86 18 662.45 19 362.00 21 0.32

Direct-node 18 829.87 172.44 18 758.40 18 955.44 18 0

Direct-edge 18 707.55 74.23 18 673.90 18 756.22 11 0

Permutation-node 18 715.46 115.83 18 695.22 18 810.33 16 0

Permutation-edge 18 842.32 70.91 18 835.59 18 937.63 12 0
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The main purpose of this example problem 
is to demonstrate that all algorithms are 
performing correctly and comparably when 
the space for heuristic influences is minimal. 
Table 2 shows the algorithm parameters 
used during analysis and averaged results 
for this network. Figure 7 shows the fitness 

progress with function evaluations of the 
best result produced by each of the five 
algorithms. The node strategies have slower 
computation time than their edge counter 
parts, as is expected due to the additional 
target-node decision required by these algo-
rithms. The ACO-TGA has the slowest 

computation time of all, if only slightly 
worse than the node algorithms for such a 
small problem. On average the algorithms 
perform very similarly, while the node 
strategies and ACO-TGA are less consistent 
in their final results. The permutation edge 
approach had the worst final best solution of 
all the algorithms. While the ACO-TGA did 
find the overall best solution, it is only 0.05% 
better than its nearest competitor. It also had 
the worst overall final solution. Even for such 
a small example fitness warping is present 
in the ACO-TGA, as on average 0.32% of its 
total solutions were infeasible designs due to 
poor diameter selections. Figure 8 refers.

Example Network 2
The second example, shown in Figure 9, is a 
medium-size network. The elevation topo
logy mimics a hill with a flat surrounding 
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Figure 8 ACO-TGA solution of Example 1
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Figure 9 Example Network 2
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Table 3 Example Network 2 – parameters and results

Algorithm Parameters

Algorithm Generation limit Population size ρinitial ρfinal C γ

ACO-TGA 2 000 200 0.05 – 1 000 –

Direct-node 5 000 20 0.003 0.01 25 0.0

Direct-edge 5 000 20 0.003 0.02 25 0.1

Permutation-node 5 000 20 0.003 0.02 25 0.05

Permutation-edge 5 000 20 0.003 0.01 25 0.15

Algorithm Results

Algorithm
Average 
final cost

Standard 
deviation

Best cost Worst cost
Average 

computation 
time (s)

Average 
infeasible 

solutions (%)

ACO-TGA 39 054.99 4 009.44 36 902.78 42 730.31 6 m 34 s 0.07

Direct-node 34 033.83 679.15 33 756.53 34 432.89 3 m 34 s 0

Direct-edge 33 853.14 347.12 33 648.58 34 157.08 2 m 26 s 0

Permutation-node 34 739.67 800.67 34 203.41 35 130.76 3 m 7 s 0

Permutation-edge 34 106.28 611.90 33 738.79 34 504.63 2 m 32 s 0
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area. The algorithm parameters during 
analysis and averaged results for Example 
Problem 2 are shown in Table 3.

The ACO-TGA performs significantly 
worse on average, and in its best run, than 
the other algorithms, while having four 
times as many function evaluations. It is 
also far less consistent. The ACO-TGA 
is again the only algorithm to produce 
infeasible solutions. On average the direct-
edge strategy performs the best, while the 
three other newly proposed algorithms 
show comparable average performance. 
The overall best solution was found by the 
direct edge-strategy, while the best solu-
tion obtained by the ACO-TGA is worse 
than the worst solution obtained by any 
of the algorithms. Again, the ACO-TGA 
requires the most computation and the node 
strategies are slightly slower than their edge 
counter parts. The progress of the best solu-
tions is shown in Figure 10. The secondary 
X-axis shows the function evaluations for 
the ACO-TGA. The effect of fitness warp-
ing can be observed on the ACO-TGA, as 
for approximately the first 50 000 function 
evaluations its current solution is worse 
than the solutions obtained by the other 
algorithms within 100 function evaluations. 
The convergence of the ACO-TGA stagnates 
in this example. This is similar to the results 
presented by Moeini and Afshar (2012).

Figure 11 shows the direct-edge solution 
of Example 2.

Example Network 3
The final example, shown in Figure 12, is 
a large network with a gradual 1% slope. 
Table 4 shows the algorithm parameters 
and results for this example. The perm-edge 
algorithm performs the best of all algo-
rithms. It obtained the best overall solution, 
has the best average final solution cost, and 
its worst solution obtained across the 20 
runs is better than the best solution obtained 
by algorithms other than the direct-node. 
Fitness warping is again observed in the 
ACO-TGA during its early trials. The ACO-
TGA performs significantly worse than the 
other algorithms on average and it is the 
most inconsistent in producing final costs. 
The computation time of the ACO-TGA is 
again the highest, while the other algorithms 
have comparable computation times. The 
rapid improvement in the ACO-TGA, where-
after it plateaus, is consistent with the results 
of Moeini and Afshar (2012).

Figure 13 shows the perm-edge solution 
of Example 3, while Figure 14 shows the 
fitness progression of Example 3.Figure 11 Direct-edge solution of Example 2
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To further demonstrate the effect of 
fitness warping, ten trial solutions from the 
early stages of the ACO-TGA were random-
ly selected from Example Problem 1. The 
heuristic hydraulic optimisation algorithm 
of De Villiers et al (2017) was then used to 
perform the optimisation of the layouts of 
these ten trial solutions. Figure 15 shows 
the fitness of the ten solutions – on the left 
obtained by the heuristic method and on 
the right the fitness obtained by the ACO-
TGA. The severity of the fitness warping is 
observed. A trial solution of the ACO-TGA 
with a cost of 71 303 024 produces a cost 
of 31 260 when the heuristic optimisation 
method (De Villiers et al 2017) is used to 
perform the hydraulic optimisation of its 
layout. This extreme warping of the layout’s 
fitness due to poor diameter selections is 
seen in all ten cases, even for such a small 
example problem.

CONCLUSION
In this paper the optimisation of sewer net-
work layout is investigated in combination 
with simultaneous hydraulic optimisation 
of the two-part sewer network design prob-
lem. Specifically, the concept of attaching 
a tree-growing algorithm, as proposed 
by Moeini and Afshar (2012), to ACO 
algorithms to produce feasible layouts was 
advanced. Four selection strategies relying 
on either edge-based or node-based selec-
tion were investigated. The node-based 
strategies require an additional decision 
during network construction and these 

decisions were resolved heuristically, but 
with the consequence that the network 
layouts that can be created are restricted. 
The edge-based strategies do not have 
this drawback and were expected to yield 
superior results.

Three example problems were solved 
using the four proposed spanning tree cre-
ation strategies as well as the original ACO-
TGA proposed by Moeni and Afshar (2012) 
for comparison. The ACO-TGA produced, 
on average, the worst results for all three 

Figure 12 Example Network 3
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Table 4 Example Network 3 – parameters and results

Algorithm Parameters

Algorithm Generation limit Population size ρinitial ρfinal C γ

ACO-TGA 2 000 200 0.05 – 1 000 –

Direct-node 5 000 50 0.004 0.01 100 0.3

Direct-edge 5 000 50 0.005 0.02 100 0.25

Permutation-node 5 000 50 0.003 0.01 100 0.1

Permutation-edge 5 000 50 0.004 0.01 100 0.35

Algorithm Results

Algorithm
Average 
final cost

Standard 
deviation

Best cost Worst cost
Average 

computation 
time (s)

Average 
infeasible 

solutions (%)

ACO-TGA 110 660.85 69 775.71 86 981.20 180 721.21 19 m 41 s 1.576

Direct-node 81 998.65 2 849.34 80 819.48 84 292.63 10 m 23 s 0.002

Direct-edge 85 418.28 3 064.40 83 365.34 88 133.87 9 m 45 s 0.011

Permutation-node 87 047.27 9 560.85 83 828.32 96 908.87 11 m 8 s 0.002

Permutation-edge 80 690.40 3 914.31 78 349.31 82 616.73 11 m 11 s 0.031
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examples. The method used in the ACO-TGA 
of simultaneous layout and element size selec-
tion led to severe fitness warping in the initial 
trial solutions. It is difficult to say definitively 
that this is the only or dominant factor for the 
poor performance of the ACO-TGA, especial-
ly in the larger examples, but it is certainly a 
significant drawback which warrants caution 
in development of future algorithms.

For the other layout creation strategies, 
combined with the heuristic optimisa-
tion method of De Villiers et al (2017), 
performance depended on the example in 
question and no clear winner emerged. The 
edge-strategies, while not always the best 
option, consistently produced results at 

least comparable to the best strategy for all 
examples, making them attractive options. 
The most important outcome of the results 
is the importance of the effects the minor 
changes in selection strategy had on the 
final result. The permutation-edge strategy 
performed significantly better than any 
other for the large example problem, while 
performing the worst for the small problem. 
This can only be ascribed to the heuristic 
differences in the algorithms and makes a 
strong case for further investigation into 
alternative heuristics, specifically specialised 
heuristics coupled to terrain topology and 
problem size. It is recommended that at 
this stage no method be discarded from the 

investigation and, where possible, further 
alternatives be developed. This is due to 
the observed importance of heuristics and 
the ability to apply different heuristics to 
different selection strategies, which may lead 
to significantly improved results.

Although no clear indicator as to which 
selection strategy is more effective has been 
found in this study, the results have offered 
valuable insight into network optimisa-
tion in general, and indicate that further 
investigation into sewer network layout 
optimisation is warranted. Further, it has 
been demonstrated that the strategy where 
a single algorithm is used for both layout 
and element size selection simultaneously 

Figure 13 Perm-edge solution of Example 3
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leads to fitness warping of early trial solu-
tions. The set of eligible element sizes could 
be limited in an intelligent way, for example 
using the diameters of the heuristic method 
of De Villiers et al (2017) to reduce eligible 
diameter sizes to those around the size 
obtained heuristically, to reduce the severity 
of the fitness warping in, especially but not 

limited to, the early trial solutions. The 
alternative approach (of using a separate 
algorithm for each sub-problem) does not 
suffer from this drawback and should, if the 
challenge of computational efficiency can 
be overcome as with the proposed hybrid 
algorithms presented in this article, be 
favoured in future work.
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Figure 15 Effect of fitness warping
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Figure 14 Fitness progression of Example 3
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