
2

	 DR NICO-BEN DE VILLIERS obtained a degree
in Civil Engineering in 2011 from
Stellenbosch University, and immediately
commenced postgraduate studies in Civil
Engineering Informatics at the same
institute, in 2018 obtaining a PhD focused
on sewer network design and analysis. He is
the Head of Software of Convirt (Pty) Ltd, a

software company specialising in cloud-based engineering and
construction management solutions for the global market.

Contact details:
Department of Civil Engineering
Stellenbosch University
Private Bag X1, Matieland 7602, South Africa
T: +27 83 609 9323
E: ndevilliers@lulabuild.com
E: ndv@sun.ac.za

	 Dr GC van Rooyen studied science and
engineering at the Universities of the
Orange Free State, Pretoria and
Stellenbosch, obtaining a PhD from the
latter. He is currently responsible for Civil
Engineering Informatics in the Department
of Civil Engineering at Stellenbosch
University. Before joining the lecturing staff

at Stellenbosch in 1992 he worked as construction engineer for the
Department of Water Affairs, and as researcher at the Institute for
Structural Engineering and the Bureau of Mechanical Engineering at
Stellenbosch University.

Contact details:
Department of Civil Engineering
Stellenbosch University
Private Bag X1, Matieland 7602, South Africa
T: +27 21 808 4437
E: gcvr@sun.ac.za

	 PROF DR MARTIN MIDDENDORF received the
Diploma degree in Mathematics and the
Dr. rer. nat. degree from the University of
Hannover, Germany, in 1988 and 1992
respectively, and the Professorial
Habilitation degree from the University of
Karlsruhe, Germany, in 1998. He has worked
at the University of Dortmund and the

University of Hannover as Visiting Professor, and was Professor at the
Catholic University of Eichstätt. He is currently Professor of Swarm
Intelligence and Complex Systems at the Leipzig University, Germany. His
research interests include swarm intelligence, algorithms from nature,
optimisation and bioinformatics.

Contact details:
Department of Mathematics and Computer Science
University of Leipzig
Postfach 10 09 20, D-04009 Leipzig, Germany
T: +49 341 97 32275
E: middendorf@informatik.uni-leipzig.de

Keywords: �gravity sewer network, ant colony optimisation, tree-growing
algorithm, layout optimisation, graph theory

De Villiers N, Van Rooyen GC, Middendorf M. Sewer network design layout optimisation using ant colony algorithms.
J. S. Afr. Inst. Civ. Eng. 2018:60(3), Art. #1773, 14 pages. http://dx.doi.org/10.17159/2309-8775/2018/v60n3a1

TECHNICAL PAPER
Journal of the South African
Institution of Civil Engineering
ISSN 1021-2019
Vol 60 No 3, September 2018, Pages 2–15, Paper 1773

INTRODUCTION
The optimisation of sewer networks typi-
cally consists of two sub-problems. The
first is to determine the layout of network
elements and the second to determine all
hydraulic parameters – such as diameters,
slopes, etc – of the network components.
The two sub-problems of the optimisation
are strongly linked – for each layout a
unique set of hydraulic parameters exists.
Consequently, if an optimal design is to
be found, the sub-problems have to be
solved simultaneously. However, this does
not mean that a single selection strategy
or algorithm has to be used for both sub-
problems. Rather, the fitness of a solution
should be determined based on both layout
and component sizes simultaneously. Due
to the complexity of such algorithms, most
research has been done on one of the sub-
problems, while the other remains static,
usually the layout (Lejano 2006).

There are three approaches to
simultaneous layout and element sizing
optimisation:

1.	 Complete enumeration
�In this approach all feasible layouts
are generated and the hydraulic design
of each is completed individually
(Diogo et al 2000; Diogo & Graveto
2006). While this approach is very
useful for finding the best layout,
its application is only practical for
small-scale problems.

2.	 Separated design
�This approach separates the two design
problems, either through manual layout
design or by using individual objec-
tive functions for each sub-problem.
Once the optimal layout is found, the
optimal hydraulic parameters for this
layout is determined by a separate
algorithm (Pan & Kao 2009; Haghighi
2013). While this approach is useful
for large problems, it is difficult to
determine true optima (Haghighi &
Bakhshipour 2015).

3.	 Simultaneous design
�The layout and element size problems
are optimised simultaneously (Li &
Matthew 1990; Moeini & Afshar 2012;
Haghighi & Bakhshipour 2015). While
this approach is the most promising
in finding true global optima for large
solutions its implementation is the most
complex and requires complex formula-
tion and specific design algorithms
(Haghighi & Bakhshipour 2015). The
fitness of a solution is calculated taking
both layout and hydraulic parameters
into account simultaneously.

In this work the third approach (simultane-
ous design) is used to develop a hybrid Ant
Colony Optimisation (ACO) algorithm by
which the layout and all hydraulic para
meters are simultaneously optimised. For
each individual layout created by the ACO

Sewer network design
layout optimisation using
ant colony algorithms
N de Villiers, G C van Rooyen, M Middendorf

The optimal design of sewer networks typically comprises two sub-problems. The first is to
determine an optimal layout of the network elements, and the second to optimally design the
network components. In this article the focus is on the optimisation of gravity sewer network
layouts, which requires simultaneous optimisation of hydraulic design. The layout is optimised
using ant colony algorithms with four proposed node and edge-based selection strategies,
while a heuristic optimisation algorithm is used for the hydraulic optimisation. The resulting
simultaneous optimisation algorithm is shown to perform very well. The selection strategies are
shown to be effective, but no clear best strategy is identified, as the performance of the layout
algorithms is shown to depend heavily on characteristics of the network under consideration.
However, some strategies are shown to perform inconsistently and worse than others
on average.

Journal of the South African Institution of Civil Engineering  Volume 60  Number 3  September 2018 3

algorithm the set of hydraulic parameters
is optimised. The two sub-problems of
sewer network optimisation are very differ-
ent mathematically. The hydraulic design
problem is a non-linear discrete program-
ming problem, while the layout problem is a
variant of the degree-constrained Minimum
Spanning Tree (d-MST) problem in graph
theory. In this article development of the
layout optimisation algorithm and combin-
ing of the algorithm with the heuristic
hydraulic optimisation procedure proposed
by De Villiers et al (2017) to create a hybrid
algorithm capable of solving both sub-
problems simultaneously, are addressed.

MODELLING SEWER NETWORKS
USING GRAPH THEORY
In this investigation graph theory is used
to model the layout of sewer networks.
Layout design of sewer networks is again a
two-part problem. The first is to determine
the spatial location of manholes and pipes.
The second is to determine the direction of
flow of each pipe. A full network layout is
only found once both parts of the problem
have been solved.

Spatial design of the network
Referring to Figure 1, the nodes, represent-
ing manholes labelled 1, 2, 3 and 4 respec-
tively, are connected by edges, representing
pipes labelled 1, 2, 3, 4 and 5 respectively.

In this example the spatial positions of
the manholes and pipes have already been
determined, i.e. the first part of the design
is complete. However, it may have been
equally feasible to place the manholes at
different locations and to connect them
differently, for example by placing pipe 3
between manholes 1 and 4 rather than 2
and 3. This part of the design, deciding
on the spatial location of manholes and
how to connect them with pipes, is most
often governed by existing or planned

infrastructure, such as roads or buildings,
and topographical considerations, such
as hills or steep inclines. In this paper it
is assumed that the positioning of man-
holes and pipes is completed prior to the
optimisation process aimed at minimising
the installation cost of the sewer network.
The positioning of manholes and pipes
is referred to as the base layout, or base
graph of the layout. All pipes and manholes
included in the base graph must be present
in the final solution. The base layout is
modelled mathematically as an undirected
graph where the vertices represent man-
holes and the edges pipes:

Gbase = (V, E)

Where:
	Gbase	 =	 the base graph
	 V	 =	� the vertex set, whose elements

are the vertices of Gbase which
represent manholes of the sewer
network

	 E	 =	� the edge set, whose elements are
the edges of Gbase which represent
pipes of the sewer network. As
the graph Gbase is undirected, the
individual edges are unordered
pairs (u, v) where u and v are
vertices in V.

Directional design of the network
The second part of the layout design is to
determine the direction of flow for each
pipe. This part of the layout design is
deceptively complex, and the number of
possible permutations grows exponentially
as the number of vertices and edges in
the base graph increases. This part of the
layout design is the concern of the optimi-
sation procedures which are discussed in
detail in the section below titled “Objective
function” on page 9. A brief overview of
the required decisions to complete the

directional design is given here. Figure 2
shows two directional graphs (directions
are indicated by arrows).

Figure 2 shows two feasible final layouts
of a possible 52 = 25 of the base layout
shown in Figure 1. The choice of flow
directions can heavily influence the final
capital investment cost of the completed
sewer network, especially when adverse
topographical conditions are present. If,
for example, manhole 2 has a much lower
elevation than manhole 3, then using
sound engineering intuition we can readily
observe that the design of Figure 2(a)
requires less excavation than that of
Figure 2(b). This reduction in required
excavation can be expected to lead to a
reduction in capital expenditure. However,
the problem becomes increasingly difficult
as the size of the base graph increases,
since the change in flow direction of a
single pipe may have significant effects
on the cumulative downstream flow rates
within pipes, and therefore their required
diameters and slopes.

Notice that in both designs in Figure 2,
cycles are present in the final layout
designs. For Figure 2(a) the cycle 2-4-3
exists and for Figure 2(b) the cycle 2-3-4
exists. In this investigation only gravity
sewer networks are considered, with no
special structures present, such as diver-
gence structures, pumping stations or ris-
ing mains. This implies that all manholes
may only have a single outgoing pipe, often
referred to as the single out-degree con-
straint. These assumptions drastically sim-
plify the hydraulic analysis of the network.

Moeini and Afshar (2012) propose
disconnecting pipes from their upstream
manholes and creating what they term
adjacency nodes, which are created artifi-
cially at the same location as the existing
upstream manhole. The practical implica-
tion of this is that the pipe has no upstream

Figure 1 Layout design example

3 4

1 2

5

1

2 4

3

Figure 2 Directional layout design examples

3 4

1 2

5

1

2 4

3

3 4

1 2

5

1

2 4

3

(a) (b)

Volume 60  Number 3  September 2018  Journal of the South African Institution of Civil Engineering4

inflow from the manhole, and cycles are
removed from the network. Referring to
Figure 3, the networks shown are similar
to those in Figure 2. In this case, however,
some pipes have been disconnected from
their upstream manholes and adjacency
nodes created, indicated by perpendicular
lines on the upstream end of the pipe.

Constraints on the
optimisation problem
De Villiers et al (2017) provide an overview
of sewer network design, and all con-
straints and equations described there are
applicable to this paper. When construct-
ing a network layout, however, the single
out-degree constraint, described above,
has to be considered. This avoids cycles
and diversion structures, and the resulting
layout is a simple branched gravity sewer
network with no special structures.

To ensure that any proposed layout
adheres to these simplifications, only
branched network layouts are selected from
the power set of the base layout, which
contains all possible looped and branched
layouts. Mathematically the restrictions
for a branched layout in a network with M
manholes are (Moeini & Afshar 2012):

	Xjl + Xlj	 =	 1	 ∀ j, l ∈ {1, …, M}

	
M
Σ
l=0

Xjl	 =	 1	 ∀ j ∈ {1, …, M}� (1)

Where:

Xjl	 =	
⎧⎪
⎨
⎪⎩

	� 1	� if and edge with flow from j to l
exists

			 0	 otherwise

This constraint is augmented with the con-
tinuity requirement at each node j:

M
Σ
l=0

Xjl Qi
lj –

M
Σ
l=0

Xjl Qi
lj = 0

∀ j, l ∈ {1, …, M} ∧ j ≠ s� (2)

Where:
	Qi

lj	=	� flow rate in pipe i between nodes l
and j with either node as source or
target

	 s	=	 the outlet node

The network is defined with a single outlet
in this paper. The continuity equation is
not enforced at the outlet, since only the
inflow is modelled for the outlet node.
Note that this restriction does not affect
the generality of the proposed method,
since the same method may be applied for
multiple outlets simultaneously.

ANT COLONY OPTIMISATION
ACO algorithms have been successfully
applied to various constrained optimisa-
tion problems, and achieve state-of-the-art
results for several important problem classes,
such as the Quadratic Assignment Problem
(QAP) and scheduling and routing (Dorigo &
Stützle 2004) to name a few. The precursor
algorithm to all ACO algorithms, Ant System
(AS), was inspired by observing the phero-
mone-based trail-laying-trail-following of
real ants (Dorigo et al 1996). Though modern
ACO algorithms have come a long way from
the initial AS model, the analogy of a colony
of foraging ants is still useful in understand-
ing the behaviour of the algorithm.

In ACO a number of individual ants
each generates solutions independently and
in parallel, over many iterations. The ants
make decisions using a so-called ‘phero-
mone-value’, which models the fitness of
an eligible decision at a decision point.
The best solution in an iteration is used
for trail-laying, i.e. the pheromone value is
increased along the best trail, while some
pheromone on all other trails is evapo-
rated. Through this process of pheromone
deposition and evaporation the search near
good solutions is intensified over time,

while initially maintaining diversity within
the search space. The steps of a general
ACO algorithm are now described (Dorigo
et al 1996):

1.	 Select a suitable size for the set of ants
{A}k for each generation k and set initial
pheromone values on all available selec-
tions to some suitable, but equal, value.
Set generation count k = 0.

2.	 Starting from either a predetermined
or randomly selected point, construct
a solution for each individual ant,
a ∈ {A}‌k of the current generation, using
the standard transition rule to make
a decision:

	 pk
ij	 =

[τk
ij]α [nij]β

Σj ([τk
ij]α [nij]β)

� (3)

Where:
	 k	 =	 the generation number
	pk

ij	 =	� probability of decision j at deci-
sion point i, hereafter “decision ij”
in generation k

	τk
ij 	 =	� pheromone value of decision ij in

generation k
	nij 	 =	� heuristic influence value at deci-

sion ij
	 α	 =	� relative pheromone influence

factor
	 β	 =	� relative heuristic influence factor

3.	 Using a problem-specific objective func-
tion, determine the fitness f(a) of each
ant’s solution, a ∈ {A}k.

4.	 Acquire the generation-best solution
f(best)k. Compare acquired generation
best solution to current global best solu-
tion f(best)global, replacing the global best
if the generation best solution is better.

5.	 Perform pheromone evaporation on all
paths and increase the pheromone along
the path selected by the generation-best
solution, using the following update rule:

	 τij
k+1 = τk

ij(1 – ρ) + ∆τij� (4)

�with ρ the evaporation rate and ∆τij the
pheromone increase of the generation-
best solution, defined as:

	
∆τij	=	

⎧
⎪
⎪
⎨
⎪
⎪
⎩

	�

C

f(best)k 	�
�if decision ij was made
by the generation-best
solution

				 0	 otherwise� (5)

Figure 3 Directional layout design examples with no cycles

3 4

1 2

5

1

2 4

3

3 4

1 2

5

1

2 4

3

(a) (b)

Journal of the South African Institution of Civil Engineering  Volume 60  Number 3  September 2018 5

Where:
C  =  a constant real number

6.	 Check convergence of the algorithm.
Usually convergence is accepted if a
minimum number of generations have
been completed, and for a number of
generations thereafter the global-best
solution has not improved. Alternatively,
if all individuals of a generation produce
the same solution, the algorithm has
converged. If the algorithm has con-
verged, accept current global-best solu-
tion as final solution, otherwise return
to step 2 and repeat the process.

Many modifications have been proposed
in the literature to improve the behaviour
of the ACO algorithm. The modifications
used in this implementation and their
effects are now described.

■■ Changing the evaporation rate. The
evaporation rate ρ determines the
convergence speed of the algorithm.
In general, when a large search space
is to be investigated a low value of ρ is
beneficial, since the algorithm will be
allowed more time to explore the dif-
ferent regions of the search space before
focusing on a small region (Merkle
et al 2002). Merkle et al (2002) found
that, when the maximum number of
iterations is restricted, a higher value of
ρ usually performs better. Therefore it
is proposed by Merkle et al (2002) that
two different values of ρ be used during
the run of an ACO algorithm. Initially,
a low ρ is used which remains constant
for the majority of the generations. For
the last generations of the algorithm a
high ρ value is used to perform a final
intensive search near the best solution
that has been found.

■■ Modified elitist strategy. Using an elit-
ist strategy is a common modification
to ACO algorithms. This entails using
a pheromone update from both the
generation-best and current global-best
solution at the end of each generation.
The pheromone update rule is modified
to reflect this:

	 τij
k+1 = τk

ij(1 – ρ) + ∆τij + ∆τij
global� (6)

�The elitist strategy has the advantage
that the search is intensified around the
current global-best solution. However,
if the global-best solution remains

unchanged for many generations it has
a great influence on the pheromone val-
ues which may, during long runs, cause
the algorithm to converge prematurely
to the current global-best solution
(Merkle et al 2002). This is especially
true if the current global-best solution
is a single good solution, with no other
good solution in the neighbourhood.
It is therefore proposed (Merkle et al
2002) to set a maximum number of
generations, gmax, during which an
elitist solution is allowed to remain
unchanged. When the elitist solution
has exceeded its maximum number of
generations it is replaced by the cur-
rent generation’s best solution, even if
this solution is worse than the current
global-best. The replacement is only in
terms of pheromone updates; the solu-
tion is, however, retained as the current
best solution of the optimisation. When
an elitist solution has good solutions
in its neighbourhood it is likely the
ants will discover it within reasonable
time. Otherwise it does not matter that
the elitist solution has been discarded,
as no improved solutions are in its
neighbourhood.

LAYOUT OPTIMISATION
Layout optimisation of a sewer network is
one part of the two-part network optimisa-
tion problem, in which the flow direction
of pipes has to be determined for a given
base layout. This part of the problem
has been studied less than the hydraulic
optimisation problem. However, some
researchers have proposed algorithms for
the simultaneous solution of both sub-
problems. Walters (1985) used Dynamic
Programming (DP) for simultaneous layout
and size optimisation, and his method
could be used to drain a set of sources
with fixed positions. Li and Matthew
(1990) used Discrete Differential Dynamic
Programming (DDDP), which utilised an
iterative procedure to generate the layout,
and then to size the sewers and pumps
while keeping the layout fixed. DDDP has
some significant drawbacks – it restricts
the search space and reduces the prob-
ability of locating the global optimum. The
DDDP stages must be manually divided for
each individual problem and this reduces
its practicability. Pan and Kao (2009) used
a Genetic Algorithm (GA) combined with
Quadratic Programming (QP). In their
approach a majority of the constraints

were formulated in QP, while other para
meters, such as layout and pipe diameters,
were determined by the GA. Moeini and
Afshar (2012) proposed an Ant Colony
Optimisation (ACO) algorithm combined
with a Tree Growing (TG) algorithm which
performs both the layout construction
and selects diameters simultaneously. In
their approach it is assumed that all pipe
flow rates are at maximum relative flow
depth, allowing for the calculation of pipe
slopes. Haghighi and Bakhshipour (2015)
combined previous works, namely the
loop-by-loop cutting algorithm (Haghighi
2013) and an Adaptive Genetic Algorithm
(Haghighi & Bakhshipour 2012), with a
Tabu Search (TS) algorithm to create an
effective hybrid algorithm for simultaneous
layout and element size optimisation.

Despite the suitability of ACO
algorithms to the layout optimisation
problem of sewer networks they have seen
limited use. The main reason for this is
the two-part nature of the problem. ACO
algorithms require a significant number
of function evaluations, for each of which
both layout and hydraulic optimisation
have to be performed simultaneously if the
best results are to be obtained. Because of
this the algorithm can be extremely com-
putationally expensive. To overcome this
problem Moeini and Afshar (2012) in their
ACO-TG algorithm use the ants to simul-
taneously select both layout and diameter.
This strategy, of using a single algorithm
for both layout and diameter selections, is
also employed by Pan and Kao (2009) in
their GA-QP algorithm. The major disad-
vantage of this is the potential for fitness
warping. If a very good layout is produced
early on in the iterations, it is very likely
that a poor set of diameters will be selected
with it, and consequently the fitness of
the entire network is compromised and
the algorithm is unable to identify that a
good layout has been found. In order to
overcome fitness warping a separate opti-
misation algorithm is employed for each
sub-problem in this paper. This approach,
also used by Haghighi and Bakhshipour
(2015) in their hybrid Tabu-Search algo-
rithm, can be extremely computationally
expensive. Haghighi and Bakshipour (2015)
overcome the computational restrictions
of this approach by using an efficient
layout-generating algorithm combined
with a relatively efficient meta-heuristic for
element size optimisation. In this work, the
computationally expensive ACO algorithm,
combined with a TG algorithm as proposed

Volume 60  Number 3  September 2018  Journal of the South African Institution of Civil Engineering6

by Moeini and Afshar (2012), is used to
determine layouts and then combined with
the computationally efficient heuristic
optimisation algorithm developed by De
Villiers et al (2017).

In this implementation the networks
are restricted to gravity sewer networks.
Additionally no cycles nor diversion struc-
tures are allowed within the network. This
is achieved by restricting the out-degree,
the number of outlet pipes, of each node
to one. This assumption creates a variant
of the d-MST problem, not simply because
only the out-degree is constrained, but also
because no clear definition of a minimum
exists. The lack of a minimum defini-
tion means that traditional graph theory
algorithms for minimum spanning tree
construction, such as Prim’s or Kruskal’s
algorithms, cannot be used without signifi-
cant modifications. Bui and Zrncic (2006)
showed that ACO algorithms perform well
for the solution of d-MST problems. These
applications offer valuable insights which
may assist in understanding the nature of
optimal layouts of sewer networks. Bau
et al (2008) compared Prim’s algorithm,
which uses node-based selection, and
Kruskal’s algorithm, which uses edge-based
selection, and found Kruskal’s algorithm
to be superior. Both node-based and
edge-based layout creation strategies are
developed and compared:

1.	 Edge-based selection which directly
queries the base graph to construct a
spanning tree, similar to Moeini and
Afshar (2012) – henceforth referred to
as the “direct-edge” strategy.

2.	 Node-based selection which directly
queries the base graph to construct a
spanning tree – henceforth referred to
as the “direct-node” strategy.

3.	 Constructing a spanning tree using
a permutation of unique edge identi-
ties – henceforth referred to as the
“permutation-edge” strategy.

4.	 Constructing a spanning tree using
a permutation of unique node identi-
ties – henceforth referred to as the
“permutation-node” strategy.

For all the selection strategies above the
hydraulic optimisation is performed by
the Heuristic Optimisation Algorithm
developed by De Villiers et al (2017). The
hydraulic optimisation algorithm is deployed

for each individual layout created by the
layout creation algorithm to determine the
optimal set of hydraulic parameters. Once
the layout creation and hydraulic design are
complete the fitness of the solution may be
calculated using Equation 7.

Figure 1 shows a small example net-
work’s base layout, which will be used to
describe the spanning tree construction
strategies. The base layout, alternatively
referred to as the base graph, of the net-
work shows the position of all the man-
holes and all the pipes that are required in
the network. Additionally, the elevations
and design inflow rates at each manhole
are known. The layout optimisation algo-
rithm does not move the pipe around, but
is rather used to determine the flow direc-
tion of pipes. In this example node 1 is the
outlet node.

Figure 4 shows all the possible paths of
nodes and edges for the example network
in Figure 1. The nodes are shown in circles,
while the edges which would result in the
addition of the next node are shown in
square brackets.

Figure 4 is not determined by using
any of the selection strategies. This simply
shows all the possible paths to follow to
construct a spanning tree of this network.
The selection strategies are employed to

determine which decisions are eligible and
decide how to present the eligible decisions
at each point to the layout creation algo-
rithm. For example, at the start the layout
creation algorithm could be presented
with either the eligible edges 1, 2, or the
eligible nodes 2, 3. If edge 1, or node 2, was
selected, then the eligible set of edges and
nodes at the following iteration are 2, 3, 4
and 3, 4 respectively.

In an ACO that uses a single pheromone
matrix, the ants can only make one choice
based on the pheromone. If another choice
has to be made, some mechanism, usually
a heuristic, is required to resolve it. For the
sewer network layouts, a useful parameter
proposed my Moeini and Afshar (2012) is
the hop-rank. This parameter ranks nodes
based on the number of preceding nodes
in its branch. Referring to Figure 1, if a
spanning tree consisting of edges 1, 3 and
5 is assumed, the hop-ranks of nodes 1
through 4 are respectively 0, 1, 2 and 3. The
hop-rank parameter can be used to favour
selections which do not increase the length
of already long branches. If required, the
hop-rank parameter can be used to make a
heuristic selection. In all cases no heuristic
influence value nij is used, since that would
render direct comparison of the effective-
ness of the strategies impossible.

Figure 4 Example network iteration selections

4

2

3

4

[1]

[2, 3]

[4]

[1, 3]

[5]

2

3

4

3

2

4

[4, 5]

[2, 3, 5]

[4, 5]

[1, 3, 4]

[2]

1

Journal of the South African Institution of Civil Engineering  Volume 60  Number 3  September 2018 7

Direct-edge layout creation
This strategy mimics the edge selection
behaviour of the algorithm proposed
by Moeini and Afshar (2012). The tree-
growing algorithm compiles a set of eligible
edges, always starting from the static
sink node. An edge is considered eligible
for selection if only one of its vertices is
already included in the growing spanning
tree. The edge selection procedure is
shown below.

1.	 Define:
	 T	 =	 the spanning tree
	TN	 =	� the set of nodes in the spanning

tree
	 E	 =	� the set of currently eligible edges
	 nt	 =	� the target node of the new edge
	 ns	 =	� the source node of the new edge

2.	 Initiate T and TN . Insert the sink node
into TN .

3.	 Compile E, the set of all eligible edges;
an edge is considered eligible if TN con-
tains one of its nodes.

4.	 Select the next edge e of T from E using
the transition rule described in the sec-
tion titled “Ant Colony Optimisation”
on page 4.

5.	 Identify nt and ns of e. Select nt, the tar-
get node, as the node already contained
in TN and the other as ns.

6.	 Add e to T, add ns to TN .

7.	 If TN contains all nodes, stop. Or else
return to 3.

Referring to Figure 4, if in the first iteration
edge 1 was selected and in the second edge
2, then the set of eligible edges for iteration
three would be E = {4; 5}. Edge 3 is not
eligible since both its nodes are elements
of TN and it would introduce a cycle into
the network. The way in which edge 3
will be added to the network is described
further down in the section titled “Layout
completion” on page 8. Determining the
source (upstream) and target (downstream)
nodes of a selected edge is done simply by
checking which node of the edge is already
contained in TN and assigning that as
the target.

Direct-node layout creation
In this strategy the tree-growing algo-
rithm constructs sets of eligible source

and target nodes. A node is considered
to be an eligible source if any edge con-
nected to it has a node which is already
included in the growing spanning tree.
This is best achieved by using the nodes
already contained in the spanning tree as
potential target nodes and finding their
adjacency nodes, using the base graph
that can serve as potential source nodes.
The direct-node strategy is formally
described below.

1.	 Define:
	 N	 =	 set of all nodes
	 T	 =	 the spanning tree
	TN	 =	 set of nodes in the spanning tree
	 ei	 =	 eligible node i
	 E	 =	 set of currently eligible nodes
	 Ai	 =	 set of nodes adjacent to node i
	 ni	 =	� node being added to the span-

ning tree at current iteration

2.	 Initiate T and TN . Insert the sink node
into TN .

3.	 Compile the set of eligible source nodes
E. A node ei is considered eligible for
selection if it is not already contained
in TN and its set of adjacent nodes Ai
contains at least one node already con-
tained within TN .

4.	 Select the next node to be added to the
growing spanning tree ni from E using
the transition rule described in the sec-
tion titled “Ant Colony Optimisation”
on page 4. Add ni to TN .

5.	 Find the eligible target nodes for the
new edge, with ni as its source node.
Compile Ani , the set of nodes adjacent
to node ni . Compile the set of eligible
target nodes E. A node is considered
eligible to be a target node if it is both
an adjacent node of ni , i.e. an element of
Ani , and currently contained in TN .

6.	 If E contains more than one element,
select ei from E with the lowest hop-
rank as the target node. If nodes have
equal hop-ranks, make a random
choice between them. Alternatively
take the single element of E as the
target node.

7.	 Add a new edge from the source node to
the target node to T.

8.	 If TN contains all nodes, stop. Or else
return to step 3.

The direct node strategy places some
limitations on the networks that can be
produced by the algorithm. Referring to
Figure 1, if only edges 2 and 5 have been
included in the growing spanning tree, only
node 2 is eligible as the next source node.
The set of eligible target nodes of node 2 is
E = {1, 3, 4}. Due to the hop-rank heuristic
it would only ever be possible to select
node 1 as the target node.

Permutation-edge layout creation
The permutation strategies are used as alter-
natives to the previous methods in which the
base graph is queried directly. In this case an
ant colony algorithm is used to construct a
permutation of unique edge identities from
which a spanning tree of the base graph is
eventually created. The steps that create the
edge permutation are listed below.

1.	 Compile the set N of all base graph
edges. Initialise permutation P = Ø, the
empty set.

2.	 Compile set of eligible edges E. An
edge is considered eligible if it is not
contained in P. If E = Ø, stop.

3.	 Using the transition rule described in the
section titled “Ant Colony Optimisation”
on page 4, select the next edge ei from
E to be added to the permutation.
Concatenate ei to the end of P.

4.	 Return to 2.

Once a permutation has been composed it
can be used to construct a layout by simply
using the order of the edges in the permu-
tation as the order in which to add edges to
a growing spanning tree. The permutation-
edge layout construction, which is very
similar to its direct-edge counterpart, is
described below.

1.	 Define:
	 T	 =	 the spanning tree
	 P	 =	 the permutation
	TN	 =	� the set of nodes in the spanning

tree
	 E	 =	 set of currently eligible edges
	 nt	 =	� the target node of the new edge
	 ns	 =	� the source node of the new edge

2.	 Initiate T and TN . Insert the sink node
into TN .

3.	 Compile E, the set of eligible edges.
Similar to the direct-edge strategy, an

Volume 60  Number 3  September 2018  Journal of the South African Institution of Civil Engineering8

edge is considered eligible if TN con-
tains one of its nodes.

4.	 Iterate P. The first edge encountered in
P which is also in E is selected as the
next edge to add the T; however, it is not
added to T at this point as its direction
is only determined during the next step.

5.	 Identify the source node ns and target
node nt of the new edge by selecting nt
as the node which is already in TN . Now
add the ns to TN .

6.	 Add e to T.

7.	 If TN contains all nodes, stop. Or else
return to 3.

Assume P = {12345}. Then, referring to
Figure 1, after two iterations both edges
1 and 2 have been added and E = {4, 5}.
Iterating through P encounters edge 4 prior
to 5, so edge 4 is the next one to be added
to the spanning tree.

Permutation-node layout creation
In this case spanning tree layouts are
constructed using permutations of unique
node identities. An ant colony algorithm
is used to create the node permutations as
described below.

1.	 Compile the set N of all base graph
nodes. Initialise permutation P = Ø, the
empty set.

2.	 Compile set of eligible nodes E. A node
is considered eligible if it is not con-
tained in P. If E = Ø, stop.

3.	 Using the transition rule described in the
section titled “Ant Colony Optimisation”
on page 4, select the next node ei from
E to be added to the permutation.
Concatenate ei to the end of P.

4.	 Return to 2.

From the node permutation a spanning
tree can be constructed by adding nodes
to the spanning tree in the same order
that they appear in the permutation, as
described below.

1.	 Define:
	 N	 =	 set of all nodes
	 T	 =	 the spanning tree
	 P	 =	 the permutation
	TN	 =	 set of nodes in the spanning tree

	 ei	 =	 eligible node i
	 E	 =	 set of currently eligible nodes
	Ai	 =	 set of nodes adjacent to node i
	 ni	 =	� node being added to the span-

ning tree in the current iteration

2.	 Initiate T and TN . Insert the sink node
into TN .

3.	 Compile the set of eligible source nodes
E. A node ei is considered eligible if it is
not already contained in TN and its set
of adjacent nodes Ai contains at least
one node already contained in TN .

4.	 Iterate P. The first node ni encountered
in P, which is also in E, is selected as
the next source node to be added to the
growing spanning tree. Add ni to TN .

5.	 Determine the target node for the new
edge. Compile Ani , the set of nodes
adjacent to node ni. Compile the set of
eligible target nodes E. A node is con-
sidered eligible as the target node if it is
contained in both TN and Ani .

6.	 If E contains more than one ele-
ment, iterate over P. The first node nj
encountered in the iteration, such that
nj is in E, is taken as the target for the
new edge. Alternatively take the single
element of E as the target node. Add nj
to TN .

7.	 Add a new edge from the source node ni
to the target node nj to T.

8.	 If TN contains all nodes, stop. Or else
return to step 3.

Note that in the direct-node method, the
hop-rank heuristic was used to select the
target node, while in this case the permuta-
tion is used to choose the target node by
selecting the first node encountered in
P which is also in E. This heuristic deci-
sion again places some restriction on the
spanning trees that can be produced, as
demonstrated using Figure 5. Figure 5(a)
shows the base layout of a network, while
Figure 5(b) shows a spanning tree of this
network which cannot be created by the
permutation-node approach. This is due
to the fact that for node 4 to connect to
node 3, rather than node 2, node 3 has to
appear before node 2 in the permutation.
Then, however, node 5 will also connect
to node 3. The opposite is also true – if
node 2 appeared before node 3 in the
permutation, then both nodes 4 and 5 will
connect to node 2.

Layout completion
Once a spanning tree has been created, all
edges of the base graph that are not includ-
ed in the spanning tree have to be added
to complete the network. These edges
have to be reintroduced in such a way that
cycles are not formed. The adjacency node
technique described in the section titled
“Directional design of the network” on
page 3 is used to avoid cycle formation.
The source and target node selection of
an edge is performed using the hop-rank
heuristic, choosing the target node as the
one with the lowest hop-rank. If the hop-
ranks of the nodes are equal, the direction
of the edge is determined randomly. This
technique is used for all the strategies
investigated in this paper.

Figure 5 Node permutation restriction example

4 5

3 2

(a) (b)

1

4 5

3 2

1

Journal of the South African Institution of Civil Engineering  Volume 60  Number 3  September 2018 9

Objective function
It should be noted that under certain
conditions an infeasible solution may be
obtained. Most notably, the maximum
allowable cover depth may be exceeded
if a layout which results in excessive
excavation is produced. For this reason a
Penalty Function formulation of the objec-
tive function is used to guide the ants
away from the infeasible solution space as
much as possible. The objective function
is then:

Minimize P = C + αΣ
i

gi� (7)

Where:
	P	=	 the penalised fitness value
	C	=	 cost of the sewer network
	gi	=	� violation of constraint i, 0 if unviolated
	α	=	� a sufficiently large constant to ensure

feasible solutions have a better fitness
than infeasible solutions

The network cost C is obtained using the
following cost function:

C =
N
Σ
i=0

LiKi(di , Ei
ave) +

M
Σ
j=0

Kj(hj)� (8)

Where Ki is a unit cost function for pipes
and Kj is a unit cost function for manholes.
The unit cost functions used in this study
are as proposed by Afshar et al (2011):

Ki	 = 1.93e3.43di + 0.812Ei
1.53 + 0.437diEi

1.47

Kj	= 41.46hj

and

	 Li	 =	 the length of pipe i
	 di	 =	 the diameter of pipe i
	 Ei	 =	 the average cover depth of pipe i
	 hj	 =	 the height of manhole j
	 N	 =	 the number of pipes in the network
	M	 =	� the number of manholes in the

network

If a feasible solution is found, the value of
the second term in Equation 7 will be zero.

In all the algorithms described above
the sink node is static. However, the
algorithms can be modified to allow for
dynamic sink node placement with relative

ease. The required modifications are sum-
marised below:

■■ Direct-edge: Modify the spanning tree
construction algorithm to have the ants
initially select any edge, and assume its
end with the lowest ground elevation is
the sink node.

■■ Direct-node: Add an additional initial
decision for the ants where a sink node
has to be selected from the list of all
nodes.

■■ Permutation-edge: Similar to the
direct-edge case, modify the spanning
tree construction algorithm to use the
first edge in the permutation as the
starting edge, again using its lowest end
as the sink node.

■■ Permutation-node: Use the first node
in the permutation as the sink node.

RESULTS
Three example networks with varying size
and topology characteristics were created
to test the effectiveness of the proposed
layout optimisation strategies. The four
proposed ACO strategies combined with
the heuristic hydraulic optimisation
algorithm of De Villiers et al (2017), as
well as the ACO-TG algorithm of Moeini
and Afhsar (2012), are used to solve each
example network. The example networks
proposed by Moeini and Afshar (2012) all
have the same topology and only vary in
size and specify multiple outlet nodes. It is
the intention of this study to investigate the
effects different topology and network sizes
have on the performance of different layout
creation strategies, which the examples
of Moeini and Afshar (2012) do not allow.
Furthermore, the multiple outlet nodes are
not supported here. This does not affect
the generality of the algorithm, as the same
layout creation strategy can be applied
from multiple outlets simultaneously
without any modifications. The inclusion
of multiple outlets does have the undesired
effect of effectively reducing the size of the
network under consideration, as, with two
outlet nodes, two entirely independent sub-
networks of the base graph are produced of
approximately equal size due to the single
outlet constraint and acyclic nature of the

layout creation algorithms. Consequently,
their example problems are not employed.
Instead their algorithm is reproduced and
applied to the three example networks
proposed here for comparison.

Algorithm parameters for the ACO-
TG algorithm are as used by Moeini and
Afshar (2012) for examples of a similar
size. The proposed ACO algorithms were
calibrated using 500, 1 000, 2 500, 5 000
and 10 000 for potential generation limits
with population sizes of 10, 20, 50 and 100,
and the values which resulted in the best
average fitness selected. Evaporation rates
were chosen which resulted in a gradual
convergence of the optimisation, to avoid
rapid convergence to local optima. The
proposed example networks are all grids of
varying size and topological characteristics.
The sink node is static and marked with
a dark fill in Figures 6, 9 and 12. Relevant
elevations are shown and all slopes are
assumed to be linear. In all three cases
inflow hydrographs are defined at each
manhole as if serving 250 very high income
residential units, of which the unit hydro-
graph is shown in Table 1. The peak value
is used to scale the unit values listed in the
table and leakage value added to provide a
base flow rate.

In all cases the evaporation rate ρ is
changed after 80% of the generation limit
is reached. The current best solution
is allowed to persist for a maximum of
25% of the generation limit, after which
it is no longer eligible for pheromone
deposit and instead the current genera-
tion’s best solution, regardless of its fit-
ness, is used for pheromone deposit. The
initial pheromone is always taken as 5.0.
Computations were performed using
Stellenbosch University’s Rhasatsha HPC:
http://www.‌sun.‌ac.‌za/‌hpc. The results are
averaged over 20 randomly initialised runs
for each case. The heuristic optimisation
method described in De Villiers et al (2017)
is seeded with the following constraint
values:

■■ Minimum allowed cover depth Emin =
1.2 m.

■■ Maximum allowed cover depth Emax =
10 m.

■■ Minimum allowed slope Smin = 0.01.

Table 1 Very high income residential unit hydrograph

Hour Peak
(ℓ/min)

Leakage
(ℓ/min)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0.15 0.08 0.06 0.05 0.05 0.11 0.67 1.00 0.87 0.85 0.82 0.71 0.56 0.50 0.46 0.44 0.41 0.38 0.45 0.49 0.45 0.50 0.40 0.29 1.69 0.26

Volume 60  Number 3  September 2018  Journal of the South African Institution of Civil Engineering10

■■ Minimum allowed velocity vmin =
0.7 m/s.

■■ Maximum allowed velocity vmax =
5.0 m/s.

■■ Minimum required spare capacity
SCmin = 30%.

■■ The set of commercially available pipe
diameters {D} = {150 mm, 200 mm,
250 mm, 315 mm, 355 mm, 400 mm,
450 mm, 525 mm, 600 mm, 675 mm,
750 mm, 825 mm, 900 mm, 1 050 mm,
1 200 mm, 1 350 mm, 1 500 mm,
1 650 mm, 1 800 mm}. PVC is used for
pipes with diameters below 450 mm,
with a Manning coefficient n = 0.009.
For all other pipes concrete is used with
a Manning coefficient n = 0.02.

■■ α in Equation 7 is taken as 1e8.
■■ The value of γ (De Villiers et al 2017)

was calibrated beforehand.

The layout of the final best solution obtained
for each example problem is included. Flow
directions of the pipes are shown with arrows.
Adjacency nodes are indicated by straight
lines at the end of a pipe. The numbers are
identities assigned during the optimisation to

the elements. Example 3's solutions contours
are not shown for each solution.

Example Network 1
The first example network, shown in
Figure 6, is a small network on a flat surface.

Figure 6 Example Network 1

0 m 0 m

0 m 0 m

75
 m

75 m

Figure 7 Fitness progression of Example 1

Direct edge
Direct node
Permutation
edge

Permutation
node
ACO-TGA

19 900

Function evaluation

Pe
na

liz
ed

 s
ol

ut
io

n
co

st

20 00015 00010 0005 0000

19 700

19 500

19 300

19 100

18 900

18 700

18 500

Table 2 Example Network 1 – parameters and results

Algorithm Parameters

Algorithm Generation limit Population size ρinitial ρfinal C γ

ACO-TGA 1 000 100 0.05 – 1 000 –

Direct-node 1 000 20 0.01 0.02 25 0.15

Direct-edge 1 000 20 0.0125 0.025 25 0.35

Permutation-node 1 000 20 0.01 0.02 25 0.35

Permutation-edge 1 000 20 0.0125 0.025 100 0.15

Algorithm Results

Algorithm
Average
final cost

Standard
deviation

Best cost Worst cost
Average

computation
time (s)

Average
infeasible

solutions (%)

ACO-TGA 18 880.67 569.86 18 662.45 19 362.00 21 0.32

Direct-node 18 829.87 172.44 18 758.40 18 955.44 18 0

Direct-edge 18 707.55 74.23 18 673.90 18 756.22 11 0

Permutation-node 18 715.46 115.83 18 695.22 18 810.33 16 0

Permutation-edge 18 842.32 70.91 18 835.59 18 937.63 12 0

Journal of the South African Institution of Civil Engineering  Volume 60  Number 3  September 2018 11

The main purpose of this example problem
is to demonstrate that all algorithms are
performing correctly and comparably when
the space for heuristic influences is minimal.
Table 2 shows the algorithm parameters
used during analysis and averaged results
for this network. Figure 7 shows the fitness

progress with function evaluations of the
best result produced by each of the five
algorithms. The node strategies have slower
computation time than their edge counter
parts, as is expected due to the additional
target-node decision required by these algo-
rithms. The ACO-TGA has the slowest

computation time of all, if only slightly
worse than the node algorithms for such a
small problem. On average the algorithms
perform very similarly, while the node
strategies and ACO-TGA are less consistent
in their final results. The permutation edge
approach had the worst final best solution of
all the algorithms. While the ACO-TGA did
find the overall best solution, it is only 0.05%
better than its nearest competitor. It also had
the worst overall final solution. Even for such
a small example fitness warping is present
in the ACO-TGA, as on average 0.32% of its
total solutions were infeasible designs due to
poor diameter selections. Figure 8 refers.

Example Network 2
The second example, shown in Figure 9, is a
medium-size network. The elevation topo
logy mimics a hill with a flat surrounding

6

16 14 17 18 22

6 11 12 15 19

3 7 9 13 20

2 4 5 8 21

0 1 10 24 23

13

15 31 32 33

16 17 21

381411105

2 6 8

1 9

2928 30 18

191226 27

3736

20743

34
35

0 24 23 25

Figure 8 ACO-TGA solution of Example 1

22

Figure 9 Example Network 2

0 m 0 m

0 m 0 m

60
 m 60 m

2 m

4 m

6 m

Table 3 Example Network 2 – parameters and results

Algorithm Parameters

Algorithm Generation limit Population size ρinitial ρfinal C γ

ACO-TGA 2 000 200 0.05 – 1 000 –

Direct-node 5 000 20 0.003 0.01 25 0.0

Direct-edge 5 000 20 0.003 0.02 25 0.1

Permutation-node 5 000 20 0.003 0.02 25 0.05

Permutation-edge 5 000 20 0.003 0.01 25 0.15

Algorithm Results

Algorithm
Average
final cost

Standard
deviation

Best cost Worst cost
Average

computation
time (s)

Average
infeasible

solutions (%)

ACO-TGA 39 054.99 4 009.44 36 902.78 42 730.31 6 m 34 s 0.07

Direct-node 34 033.83 679.15 33 756.53 34 432.89 3 m 34 s 0

Direct-edge 33 853.14 347.12 33 648.58 34 157.08 2 m 26 s 0

Permutation-node 34 739.67 800.67 34 203.41 35 130.76 3 m 7 s 0

Permutation-edge 34 106.28 611.90 33 738.79 34 504.63 2 m 32 s 0

Volume 60  Number 3  September 2018  Journal of the South African Institution of Civil Engineering12

area. The algorithm parameters during
analysis and averaged results for Example
Problem 2 are shown in Table 3.

The ACO-TGA performs significantly
worse on average, and in its best run, than
the other algorithms, while having four
times as many function evaluations. It is
also far less consistent. The ACO-TGA
is again the only algorithm to produce
infeasible solutions. On average the direct-
edge strategy performs the best, while the
three other newly proposed algorithms
show comparable average performance.
The overall best solution was found by the
direct edge-strategy, while the best solu-
tion obtained by the ACO-TGA is worse
than the worst solution obtained by any
of the algorithms. Again, the ACO-TGA
requires the most computation and the node
strategies are slightly slower than their edge
counter parts. The progress of the best solu-
tions is shown in Figure 10. The secondary
X-axis shows the function evaluations for
the ACO-TGA. The effect of fitness warp-
ing can be observed on the ACO-TGA, as
for approximately the first 50 000 function
evaluations its current solution is worse
than the solutions obtained by the other
algorithms within 100 function evaluations.
The convergence of the ACO-TGA stagnates
in this example. This is similar to the results
presented by Moeini and Afshar (2012).

Figure 11 shows the direct-edge solution
of Example 2.

Example Network 3
The final example, shown in Figure 12, is
a large network with a gradual 1% slope.
Table 4 shows the algorithm parameters
and results for this example. The perm-edge
algorithm performs the best of all algo-
rithms. It obtained the best overall solution,
has the best average final solution cost, and
its worst solution obtained across the 20
runs is better than the best solution obtained
by algorithms other than the direct-node.
Fitness warping is again observed in the
ACO-TGA during its early trials. The ACO-
TGA performs significantly worse than the
other algorithms on average and it is the
most inconsistent in producing final costs.
The computation time of the ACO-TGA is
again the highest, while the other algorithms
have comparable computation times. The
rapid improvement in the ACO-TGA, where-
after it plateaus, is consistent with the results
of Moeini and Afshar (2012).

Figure 13 shows the perm-edge solution
of Example 3, while Figure 14 shows the
fitness progression of Example 3.Figure 11 Direct-edge solution of Example 2

29 27 25 38 36 43 44

42393524222118

10 11 23 45 47 48 41

3734334619406

2 4 15 32 20 30 31

26171314781

0 3 5 9 12 16 28

27

30

36

40

81

8342

80

78

70

29

33

35

46

77

32

19

1269

72

73

76

44

8224

22

75

18

14

668

71

39

74

79

2628

17

9

5

1

0

2 4 8 11 15 48

25161350497

3 51 52 31 53 54

595857455655

10 60 61 62 63 47

413834232120

64 65 37 66 67 43

Figure 10 Fitness progression of Example 2

40 000

Function evaluation

Pe
na

liz
ed

 s
ol

ut
io

n
co

st

100 00075 00050 00025 0000

39 000

38 000

37 000

36 000

35 000

33 000

Function elevation ACO-TGA
400 0000 100 000 200 000 300 000

34 000

Direct edge
Direct node
Permutation
edge

Permutation
node
ACO-TGA

Journal of the South African Institution of Civil Engineering  Volume 60  Number 3  September 2018 13

To further demonstrate the effect of
fitness warping, ten trial solutions from the
early stages of the ACO-TGA were random-
ly selected from Example Problem 1. The
heuristic hydraulic optimisation algorithm
of De Villiers et al (2017) was then used to
perform the optimisation of the layouts of
these ten trial solutions. Figure 15 shows
the fitness of the ten solutions – on the left
obtained by the heuristic method and on
the right the fitness obtained by the ACO-
TGA. The severity of the fitness warping is
observed. A trial solution of the ACO-TGA
with a cost of 71 303 024 produces a cost
of 31 260 when the heuristic optimisation
method (De Villiers et al 2017) is used to
perform the hydraulic optimisation of its
layout. This extreme warping of the layout’s
fitness due to poor diameter selections is
seen in all ten cases, even for such a small
example problem.

CONCLUSION
In this paper the optimisation of sewer net-
work layout is investigated in combination
with simultaneous hydraulic optimisation
of the two-part sewer network design prob-
lem. Specifically, the concept of attaching
a tree-growing algorithm, as proposed
by Moeini and Afshar (2012), to ACO
algorithms to produce feasible layouts was
advanced. Four selection strategies relying
on either edge-based or node-based selec-
tion were investigated. The node-based
strategies require an additional decision
during network construction and these

decisions were resolved heuristically, but
with the consequence that the network
layouts that can be created are restricted.
The edge-based strategies do not have
this drawback and were expected to yield
superior results.

Three example problems were solved
using the four proposed spanning tree cre-
ation strategies as well as the original ACO-
TGA proposed by Moeni and Afshar (2012)
for comparison. The ACO-TGA produced,
on average, the worst results for all three

Figure 12 Example Network 3

1%
 in

cr
ea

sin
g

sl
op

e

6.75 m 13.5 m

1% increasing slope
6.75 m0 m

75
 m 75 m

Table 4 Example Network 3 – parameters and results

Algorithm Parameters

Algorithm Generation limit Population size ρinitial ρfinal C γ

ACO-TGA 2 000 200 0.05 – 1 000 –

Direct-node 5 000 50 0.004 0.01 100 0.3

Direct-edge 5 000 50 0.005 0.02 100 0.25

Permutation-node 5 000 50 0.003 0.01 100 0.1

Permutation-edge 5 000 50 0.004 0.01 100 0.35

Algorithm Results

Algorithm
Average
final cost

Standard
deviation

Best cost Worst cost
Average

computation
time (s)

Average
infeasible

solutions (%)

ACO-TGA 110 660.85 69 775.71 86 981.20 180 721.21 19 m 41 s 1.576

Direct-node 81 998.65 2 849.34 80 819.48 84 292.63 10 m 23 s 0.002

Direct-edge 85 418.28 3 064.40 83 365.34 88 133.87 9 m 45 s 0.011

Permutation-node 87 047.27 9 560.85 83 828.32 96 908.87 11 m 8 s 0.002

Permutation-edge 80 690.40 3 914.31 78 349.31 82 616.73 11 m 11 s 0.031

Volume 60  Number 3  September 2018  Journal of the South African Institution of Civil Engineering14

examples. The method used in the ACO-TGA
of simultaneous layout and element size selec-
tion led to severe fitness warping in the initial
trial solutions. It is difficult to say definitively
that this is the only or dominant factor for the
poor performance of the ACO-TGA, especial-
ly in the larger examples, but it is certainly a
significant drawback which warrants caution
in development of future algorithms.

For the other layout creation strategies,
combined with the heuristic optimisa-
tion method of De Villiers et al (2017),
performance depended on the example in
question and no clear winner emerged. The
edge-strategies, while not always the best
option, consistently produced results at

least comparable to the best strategy for all
examples, making them attractive options.
The most important outcome of the results
is the importance of the effects the minor
changes in selection strategy had on the
final result. The permutation-edge strategy
performed significantly better than any
other for the large example problem, while
performing the worst for the small problem.
This can only be ascribed to the heuristic
differences in the algorithms and makes a
strong case for further investigation into
alternative heuristics, specifically specialised
heuristics coupled to terrain topology and
problem size. It is recommended that at
this stage no method be discarded from the

investigation and, where possible, further
alternatives be developed. This is due to
the observed importance of heuristics and
the ability to apply different heuristics to
different selection strategies, which may lead
to significantly improved results.

Although no clear indicator as to which
selection strategy is more effective has been
found in this study, the results have offered
valuable insight into network optimisa-
tion in general, and indicate that further
investigation into sewer network layout
optimisation is warranted. Further, it has
been demonstrated that the strategy where
a single algorithm is used for both layout
and element size selection simultaneously

Figure 13 Perm-edge solution of Example 3

79 82 91 92 86 87 88 89 97 98

78 81 83 84 86 90 93 75 70 96

96696853996122218077

16 18 19 62 60 51 52 65 66 94

56555449485958571712

10

9

6

11

8

7

42

41

5

63

43

20

64

44

25

46

45

26

47

32

31

50

76

33

72

71

34

73

74

35

40

39

67

30

37

29

36

28

38

27

24

23

15

14

4

13

3

2

1

0
1

3

12 13 22 26 27 28 29 38

3637

6 25

42 43 44

30 32

75

34

73

33

55

72

65

5453

49

51

46

58

63

57

62

18

56

10

79

80 82

90

83

91

84

21

89

86

92

87

98

88

68

96 97

95

94

93

3966

7031

3523

2419

14

4

40

2

7

0

5

8

9

11

15 17

16

61 59 50

47

45

48

64

71

6752

74 69

85

60

81

20

78

77

76

99 100 101 102 103 104

107106105

108 109 110 111

114113112

115

118

124

119

116 117

120 121

125 126 127

122 123

128

131130129

132 133

134 135

137 138

143 144 145 146

140139

136

142

147

153

159

179

162

158157

152

161

151

156

150

155

14941

160

154

148

163

167 168

173

169

174

164

170 171

175

172

176 177

165 166

178

141

Journal of the South African Institution of Civil Engineering  Volume 60  Number 3  September 2018 15

leads to fitness warping of early trial solu-
tions. The set of eligible element sizes could
be limited in an intelligent way, for example
using the diameters of the heuristic method
of De Villiers et al (2017) to reduce eligible
diameter sizes to those around the size
obtained heuristically, to reduce the severity
of the fitness warping in, especially but not

limited to, the early trial solutions. The
alternative approach (of using a separate
algorithm for each sub-problem) does not
suffer from this drawback and should, if the
challenge of computational efficiency can
be overcome as with the proposed hybrid
algorithms presented in this article, be
favoured in future work.

REFERENCES
Afshar, M H, Shahidi, M, Rohani, M & Sargolzaei,

M 2011. Application of cellular automata to sewer

network optimization problems. Scientia Iranica A,

18(3): 304–312.

Bau, Y, Ho, C & Ewe, H 2008. Ant colony optimization

approaches to the degree-constrained minimum

spanning tree problem. Journal of Information

Science and Engineering, 24: 1081–1094.

Bui, T N & Zrncic, C M 2006. An ant-based algorithm

for finding degree-constrained minimum spanning

tree. Computer Science Program. Middletown, PA:

Pennsylvania State University at Harrisburg.

De Villiers, N, Van Rooyen, G C & Middendorf, M

2017. Sewer network design: Heuristic algorithm for

hydraulic optimization. Journal of the South African

Institution of Civil Engineering, 59(3): 48–56.

Diogo, A F, Walters, G A, Sousa, E R & Graveto, V M

2000. Three-dimensional optimization of urban

drainage systems. Computer-Aided Civil and

Infrastructure Engineering, 15(6): 409–426.

Diogo, A & Graveto, V 2006. Optimal layout of sewer

systems: A deterministic versus a stochastic model.

Journal of Hydraulic Engineering, 132(9): 927–943.

Dorigo, M & Stützle, T 2004. Ant Colony Optimization.

Cambridge, MA: MIT Press.

Dorigo, M, Maniezzo, V & Colorni, A 1996. Ant

system: Optimization by a colony of cooperating

agents. IEEE Transactions on Systems, Man, and

Cybernetics, Part B, 26(1): 29–41.

Haghighi, A & Bakhshipour, A E 2012. Optimization of

sewer networks using an adaptive genetic algorithm.

Water Resources Management, 26(12): 3441–3456.

Haghighi, A 2013. Loop-by-loop cutting algorithm to

generate layouts for urban drainage systems. Journal

of Water Resources Planning and Management,

139(6): 693–703.

Haghighi, A & Bakhshipour, A 2015. Deterministic

integrated optimization model for sewage collection

networks using Tabu Search. Journal of Water

Resources Planning and Management, 141(1): 0401404.

Lejano, R P 2006. Optimizing the layout and design

of branched pipeline water distribution systems.

Irrigation and Drainage Systems, 20: 125–137.

Li, G & Matthew, R 1990. New approach for

optimization of urban drainage systems. Journal of

Environmental Engineering, 116(5): 927–944.

Merkle, D, Middendorf, M & Schmeck, H 2002. Ant

colony optimization for resource-constrained

project scheduling. IEEE Transactions on

Evolutionary Computation, 6(4): 333–346.

Moeini, R & Afshar, M H 2012. Layout and size

optimization of sanitary sewer network using

intelligent ants. Advances in Engineering Software,

51: 49–62.

Pan, T & Kao, J 2009. GA-QP model to optimize

sewer system design. Journal of Environmental

Engineering, 135(1): 17–24.

Walters, G A 1985. The design of the optimal layout for a

sewer network. Engineering Optimization, 9(1): 37–50.

Figure 15 Effect of fitness warping

H
eu

ri
st

ic
 fi

tn
es

s

80 000

70 000

60 000

50 000

40 000

30 000

20 000

10 000

0

Trial solution
10

A
CO

-T
G

A
 fi

tn
es

s

450 000 000

400 000 000

350 000 000

300 000 000

250 000 000

200 000 000

150 000 000

100 000 000

50 000 000

0
9876543210

396 283 114

63 208

38 982

1 437 061

71 301 024 103 958 744

31 260 134 161 002
130 585 047

43 575

62 327

68 142

51 778

44 148

238 247 551

44 130

142 389 768

31 908

55 170 165

105 199

ACO-TGA Heuristic

Figure 14 Fitness progression of Example 3

125 000

Function evaluation

Pe
na

liz
ed

 s
ol

ut
io

n
co

st

100 00075 00050 00025 0000

115 000

95 000

75 000

Function elevation ACO-TGA
400 0000 100 000 200 000 300 000

105 000

85 000

Direct edge
Direct node
Permutation
edge

Permutation
node
ACO-TGA

	Sewer network design layout optimisation using ant colony algorithms
	N de Villiers, G C van Rooyen, M Middendorf
	Uncertainties in the South African wind load design formulation
	J Botha, J V Retief, C Viljoen
	Reliability assessment of the South African wind load design formulation
	J Botha, J V Retief, C Viljoen
	Factors influencing the quality of design documentation on South African civil engineering projects
	E Akampurira, A Windapo
	A numerical investigation on hydro-mechanical behaviour of a high centreline tailings dam
	M Naeini, A Akhtarpour
	The influence of health and safety practices on health and safety performance outcomes in small and medium enterprise projects in the South African construction industry
	J N Agumba, T C Haupt

