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Summary 

 
Quantum mechanics is the method of choice when it comes to the accurate modeling of single 

molecules and clusters. The correlation energy is the single most important aspect when 

studying clusters computationally, and reproducing the correlation energy accurately poses a 

bigger challenge to the computational chemist than in the modeling of single molecules. Very 

high levels of theory and large basis sets need to be used.  

    Nevertheless, since the calculation of large systems, such as crystals and biological 

systems, is generally beyond the capacity of quantum mechanics, molecular mechanics is 

generally used for these systems. Unfortunately due to its nature, molecular mechanics cannot 

model important quantum effects, but this problem can be solved by a hybrid system in which 

one part of the system is treated by quantum mechanics and the remaining part by molecular 

mechanics.  

    In order to combine quantum mechanics with molecular mechanics one needs to optimize 

the parameters for the molecular mechanics part to allow it to function with the quantum 

mechanics. The research described in this work is based on the ONIOM-EE method, which is 

such a hybrid method.  

    In this work we investigate the applicability of the ONIOM-EE method in modeling 

hydrogen fluoride, carbon monoxide and CO/HF clusters. Most of the clusters’ geometries in 

this work are not experimentally or computationally known. We therefore perform a 

computational analysis of all of the clusters by using various methods including Atoms in 

Molecules, Natural Bond Orbital analysis, Mulliken population analysis and the analysis of 

delocalized molecular orbitals to obtain information for the development of hybrid systems. 

During this process we look at different charge derivation schemes and at two different 

methods of optimizing force field parameters for these clusters. We develop a method to 

make force field optimization faster and better for specific hybrid systems. This method 

showed that in all cases the optimized parameters were an improvement on those of the 

Universal Force Field. We show the importance of an accurate description of the electrostatic 

interactions in HF, CO and CO/HF clusters and that this is the Achilles heel when attempting 

to optimize van der Waals parameters for force fields. We further show that atomic point 

charges are not a good approximation of a molecules’ charge density in hybrid methods. In 

addition, we make suggestions on how the present method for ONIOM-EE can be improved 

to make the modeling of van der Waals clusters feasible.    
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Opsomming 
 

Kwantum meganika is die metode van keuse wanneer enkele molekule en molekulêre sisteme 

op rekenaar gemodeleer moet word. Dit is egter bekend dat die modelering van molekulêre 

sisteme ’n groter uitdaging stel aan die molekulêre modeleerder, aangesien baie hoë vlakke 

van teorie en groot basisstelle gebruik moet word om die korrelasie-energie, rekenkundig te 

produseer. Die akkurate herprodusering van die korrelasie-energie is seker die heel 

belangrikste vereiste waaraan voldoen moet word as molekulêre sisteme d.m.v. ’n rekenaar 

gemodeleer word.     

    Nietemin is dit onprakties om kwantum meganiese metodes te gebruik vir groot sisteme 

soos kristalle of biologiese molekule en juis om dié rede word molekulêre meganika meestal 

ingespan vir sulke gevalle. Molekulêre meganika is egter ondoeltreffend om belangrike 

kwantumeffekte te modeleer. Tog is daar ’n oplossing vir hierdie probleem in die vorm van ’n 

hibried sisteem waar een deel van die sisteem met kwantum meganika en die oorblywende 

deel van die sisteem met molekulêre meganika behandel word.  

    Om dit moontlik te maak om molekulêre meganika met kwantum meganika te kombineer, 

moet parameters vir die molekulêre meganika deel geoptimiseer word sodat dit saam met die 

kwantum meganiese deel kan funksioneer. Die navorsing wat in hierdie studie beskryf word is 

gebaseer op so ’n hibriedmetode wat bekend staan as ONIOM-EE.  

    In hierdie studie bestudeer ons die moontlikheid om ONIOM-EE te gebruik vir die 

modelering van molekulêre sisteme van waterstoffluoried, koolstofmonoksied en CO/HF 

sisteme. Die meeste van die sisteme, wat in hierdie studie behandel word, se strukture is 

onbekend, beide in terme van eksperimentele gegewens en molekulêre modelering. Ons voer 

dus ’n volledige analise van al die sisteme uit deur van verskeie metodes soos “Atoms in 

Molecules”, “Natural Bond Orbital” analise, Mulliken populasie analise en die analise van 

gedelokaliseerde molekulêre orbitale, gebruik te maak. Dit stel ons in staat om ’n 

hibriedsisteem te ontwikkel vir die molekulêre sisteme. Gedurende die proses ondersoek ons 

ook die gebruik van verskillende ladingsafleidings-sisteme en twee metodes word ondersoek 

waarop ’n kragveld vir ’n hibriedsisteem geoptimiseer kan word. Ons toon aan dat die 

geoptimiseerde parameters beter resultate lewer as die van die “Universal Force Field” en lig 

ook die belangrikheid daarvan uit dat die elektrostatiese interaksies se beskrywing ’n 

hibriedsisteem se Achilles hiel is indien van der Waals parameters geoptimiseer moet word. 

Ons toon aan dat die gebruik van puntladings op atome om die ladingsdigtheid in molekulêre 

sisteme te beskryf, ’n onakkurate benadering is. Sekere aanbevelings hoe om die ONIOM-EE 

metode sodanig te verbeter, dat dit wel gebruik kan word om van der Waals sisteme suksesvol 

te modeleer, word ook gemaak.  
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Chapter 1 

 

Introduction 

 
1.1 Background 

 

In 1978 the Nobel Prize winner Jean-Marie Lehn said, “Just as there is a field of molecular 

chemistry based on the covalent bond, there is a field of supramolecular chemistry, the 

chemistry of molecular assemblies and of the intermolecular bond” [Lehn, 1978]. The 

previous era of theoretical chemistry focused on the interactions between atoms and the 

formation of covalent bonds. The field Lehn pioneered goes beyond the molecule and 

emphasizes the need for a theoretical understanding of nonbonded interactions. An in-depth 

understanding of nonbonded interactions will lead to ultimate control at a molecular level, 

which will give us the ability to design molecular structures that can fulfill specific purposes.  

    When it comes to designing molecular structures for specific functions, Nature is a few 

steps ahead of us. Enzymes and proteins are realities where Nature utilizes nonbonded 

interactions to create fascinating “molecular machines”.  

    To understand and embrace this “new” era, we need sufficient models to explain and 

predict these nonbonded interactions. Progress in this field is unfortunately hampered by our 

limited computer technology, and the fact that most tools in quantum chemistry were 

originally designed for single molecules rather than systems of molecules. 

    There are many models to explain nonbonded interactions, especially models for hydrogen 

bonds, but every now and then, these models need to be modified as new experimental 

discoveries add to our understanding of intermolecular interactions. It is therefore 

understandable that new models need to be developed to comprehend the world beyond the 

molecule in order to lead us eventually to a unified theory of all nonbonded interactions. 

Computational chemistry can make a significant contribution in this field.  

    To model large molecular systems such as crystals, clusters and bio-molecules, theoretical 

chemists turn towards Newtonian physics for answers. They fit parameters to empirical 

equations in order to reproduce experimentally obtained data. This method of modeling large 

systems is called molecular mechanics (MM). This approach is reasonably accurate, but still, 

even if the fit to the experimental data is reasonable, quantum effects are not properly 

accounted for. Bond breaking and formation of bonds cannot be modeled by Newtonian 

physics; it is purely quantum mechanical in nature. On the one hand we can model small 

molecules, say up to a 100 atoms, reasonably accurately with quantum mechanics, but for 
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larger systems we have to turn to molecular mechanics. It seems as if we have reached a dead 

end. However, when it is known beforehand that a specific part of a system will form or 

partake in the breaking of bonds or exhibit other quantum effects, there is a partial solution to 

the problem – Quantum Mechanics/Molecular Mechanics (QM/MM).  

    In such a hybrid system, one part of the system is treated with a quantum mechanical 

method and the remaining part with molecular mechanics. In an enzyme, for example, a 

substrate and active site may be treated by quantum mechanics whereas the remaining part of 

the enzyme, by molecular mechanics. The only problem, of course, is combining these two 

totally dissimilar methods so that the lack of accuracy in the one does not influence the 

accuracy of the other too significantly. It can be compared to grafting a bamboo to a tree.     

    In 1976 [Warshel and Levitt, 1976], the first QM/MM system was constructed. It was 

remarkably good considering the technology at that point in time. We have come a long way 

since then, and according to a simple analysis by SciFinder Scholar 2006  of the results for the 

number of QM/MM method publications per year, last year (anno 2005) 312 articles were 

published with respect to 99 in 2000.     

    To enable the system treated with quantum mechanics (QM) to interact with the MM 

system, four factors should be considered: 

 

1. The MM system should be able to polarize the QM system accurately; 

2. The QM system should in return be able to polarize the MM system accurately; 

3. The empirical equations and parameters for the MM system should be 

reparameterized for the specific QM system; 

4. The boundary problem, where a plane between the QM and MM systems cuts a 

covalent bond, needs to be treated accurately so that overpolarization of the QM 

system does not take place. 

 

Standard force fields are not optimized for QM/MM systems and therefore they always need 

to be optimized, therefore point 3 is crucial in all cases where the accurate use of QM/MM is 

required. Point 1 is default with most QM/MM systems except for ONIOM, vide infra and 

point 2 above has only been attempted by a limited number of researchers [Bakowies and 

Thiel, 1996; Jensen et al., 2003, Kongsted et al., 2003]. Most models for hybrid systems 

currently ignore this point as it slows down geometry optimizations tremendously.   

     In 1996, Morokuma and coworkers [Svensson et al., 1996] developed a new way of doing 

a QM/MM calculation. The methodology they used to do QM/MM is part of their general 

methodology called ONIOM that stands for “Our own N-layered Integrated molecular 

Orbital molecular Mechanics” method. ONIOM is more general than QM/MM as it can 

easily be expanded to include more than two layers leading to variations such as 
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QM/QM/MM systems, which is very difficult or impossible with the QM/MM methodology. 

The problem with ONIOM, in terms of QM/MM systems, is that the QM system is not 

polarized as is done by default in most other QM/MM calculations. Although this might seem 

a problem at first, this approach makes geometry optimizations simpler as the QM and MM 

systems can be treated separately and stationary point charges can be used for the description 

of the interaction of two or more charge distributions. However, although this method is 

simpler it is not the preferred way to do QM/MM calculations. Therefore, in actual fact the 

original ONIOM method did not contribute much to the execution of QM/MM calculations in 

general, but contributed more to the extension of QM/MM systems to QM/QM and 

QM/QM/MM systems that were previously very difficult or impossible with the original 

QM/MM methodology.  

    In 2003, ONIOM-EE (ONIOM with electronic embedding) was developed whereby the 

QM system can now be polarized by point charges on the molecules in the MM system. In 

order to make this work, new optimization algorithms were also developed. One can predict 

that with the advent of ONIOM-EE methodology, this methodology will pave the way in 

developing better QM/MM methods rather than the original QM/MM methodology. 

Developments in QM/MM methodology can also be used in the ONIOM-EE methodology 

and vice versa so one expects to see synergy between the two methodologies.  

    Terminology might become confusing, so we emphasize that in this work we will use the 

ONIOM-EE methodology to do QM/MM calculations. ONIOM-EE is simply another way of 

doing a QM/MM calculation, but it can also be used for other variations as mentioned above 

for which the original QM/MM methodology cannot be used.   

      As mentioned already, in order to use QM together with MM, one should always optimize 

the force field for a specific QM system. To the best of our knowledge, a classical force field 

has never been optimized to use together with a correlated QM method to model HF, CO and 

CO/HF gas phase van der Waals clusters with QM/MM. Furthermore, the ONIOM-EE 

methodology has never been used for such a system. Combining QM with MM to model 

systems so challenging as van der Waals clusters will be insightful into what is needed to 

make the modeling of QM/MM systems as accurate as the modeling of pure QM systems. 

What would make such a study further challenging is the fact that very little is known, both 

experimentally and computationally, about CO and CO/HF clusters and that computationally 

it is very difficult to model these clusters accurately with standard methods. HF clusters are 

better known and simpler to model. 
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1.2 Aims 

 

In light of the preceding background information the aims of this work are the following: 

 

1. To have a sound theoretical understanding of all the methods used, especially 

ONIOM; 

2. To generate ab initio data and geometries of reliable accuracy for CO, HF and 

CO/HF gas phase clusters; 
3. To analyze and characterize these clusters in order to add to the understanding of 

the bonding in these clusters, which will hopefully aid in developing better hybrid 

methods; 
4. To derive and validate atomic point charges for all the clusters to be used in 

QM/MM calculations;  

5. To optimize force field parameters for the clusters to give quantitative data and 

good geometries when a force field is used for the molecular mechanics part in a 

QM/MM method; 
6. To suggest improvements to the present ONIOM-EE methodology as applied to 

QM/MM systems, in order to make the modeling of clusters with this method more 

accurate in the future.   
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Chapter 2 

 

Theoretical background on modeling 

methods for clusters 

 

2.1 Introduction 

 

As mentioned in Chapter 1, clusters pose a bigger challenge to the computational chemist 

than the modeling of single molecules. The phenomenon of electron correlation plays an 

important role in vdW forces and therefore simple theories such as Hartree-Fock (HF) are 

inadequate for the modeling of clusters.  

    We start this chapter with Section 2.2 by introducing the current theory of intermolecular 

forces. In Section 2.3, we will give a brief introduction to computational chemistry and in 

Section 2.4 we will discuss problems encountered when studying intermolecular forces 

utilizing limited basis sets. In Section 2.5, we will give an introduction to post-HF methods 

used in studying intermolecular interactions, while in Section 2.6 two methods to calculate 

the interaction energy of a cluster will be discussed. This will conclude our review for the 

modeling of vdW clusters. Building up to our discussion of hybrid methods, this will be 

followed by a general introduction to molecular mechanics (MM) in Section 2.7 and a 

discussion of a variety of schemes to derive charges from quantum mechanical data in 

Section 2.8. In Section 2.9, hybrid methods will be discussed with a special focus on 

information pertaining to our study. In order to graft the proverbial bamboo to the tree, it is 

necessary, as mentioned in Chapter 1, to optimize the parameters for force fields when using 

them in the context of hybrid systems. This will be discussed in Section 2.10. Section 2.11 

will give a brief overview of the literature pertaining to the optimization of Lennard-Jones 

parameters for hybrid methods. The chapter will be concluded with Section 2.12 in which a 

summary of the chapter will be given.  

    Before we start, it is important to define some terminology since there is not always 

consensus about the meaning of some terms in the literature. In this work van der Waals 

(vdW) forces are regarded as the dispersion and exchange forces, whereas the term 

nonbonded interactions or intermolecular forces also includes the electrostatic and induction 

interactions. The term, “a vdW cluster”, includes both hydrogen bonded and other nonbonded 

clusters.   
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2.2 Intermolecular forces 

 

2.2.1 The four fundamental intermolecular forces 

 

When scientists attempt to discuss intermolecular forces, they are keen to abandon the 

difficult theory of quantum mechanics for classical models. This is understandable, as 

classical models have proved good in explaining many phenomena in the universe, such as 

gravity. However, sometimes things are different to what they seem. Taking gravity as an 

example, Einstein showed that gravity is a result of the bending of space-time rather than a 

classical force acting over a distance.  

    Common methods used to discuss intermolecular forces, use classical electrostatics to 

explain electrostatic phenomena and augment this further by accounting for quantum 

phenomena such as exchange and dispersion interactions, vide infra.  

    Intermolecular interactions are generally accepted to consist of the following individual 

interactions [Havenith, 2001]:    

     

► The electrostatic interaction: 

This interaction between monomers is caused by the interaction of the electron charge 

densities of permanent dipole or multipole moments. The interaction can be attractive 

or repulsive depending on the signs of the charges. 

► The induction interaction: 

If a permanent dipole or multipole moment on one monomer induces a dipole or 

multipole moment on another monomer in the cluster, it is called induction 

[Chałasiński and Szcześniak, 1994]. Induction is an attractive interaction and it is 

represented by the polarizability, a second-order electric quantity. The polarizability 

is defined in terms of a transition moment from one quantum state to a new quantum 

state and an excitation energy [Magnasco, 2004]. 

► The dispersion interaction: 

The dispersion energy has no classical analogue and is purely a quantum mechanical 

phenomenon due to long-range electron-electron correlation. If two molecules 

approach each other, instantaneous dipoles or multipoles can arise in both. This is 

called the dispersion interaction. It is not directed, such as is the case with the 

induction interaction, but if a multipole arises in one molecule the multipole in the 

other molecule will be directed towards the other molecule’s multipole. The 

dispersion interaction is weakly attractive.  
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► The exchange interaction: 

To counteract the dispersion interaction, there is the exchange interaction. The 

exchange interaction is a result of a quantum effect. Because the Pauli-exclusion 

principle must be obeyed, electrons with the same spin will repel each other and 

electrons with opposite spin will attract each other. The exchange interaction arises 

due to the repulsion of electrons with the same spin.  

 

According to Magnasco [Magnasco, 2004], an intermolecular bond is formed when the small 

Pauli-repulsion, decreasing exponentially with the intermolecular distance, is offset by 

attractive interactions such as distortion interactions related to the electric properties of 

interacting molecules. These electric properties can include permanent or induced electric 

moments and polarizabilities. 

 

2.2.2 Many-body interactions 

 

In clusters, many-body interactions play a fundamental role in stabilization. Many-body 

interactions are interactions that are caused by the combination of the nonbonded interactions 

between molecules. For example, many-body interactions lead to a term called the  

dispersion-exchange interaction in weakly bonded trimers. Understanding bonding in large 

clusters becomes more and more difficult due to the many-body interactions.  

    According to Chałasiński and Szcześniak [Chałasiński and Szcześniak, 2000], the binding 

energy of a cluster can be written as: 

 
          ΔE(binding) = ΔE(1-body) + ΔE(2-body) + ΔE(3-body) + ... + ΔE(N-body)                 (2.1) 
 

The interaction energy is defined as the sum of the above terms while omitting the 1-body 

energy. The 1-body energy is equal to the distortion of the monomers’ geometries from their 

gas phase geometries. Some authors call the binding energy the interaction energy, but it has 

been argued [Chałasiński and Szcześniak, 2000] that only the terms from the 2-body energy 

onwards should be seen as the interaction energy. In this work we call ΔE(binding) the 

binding energy and ΔE(binding) without ΔE(1-body), the interaction energy. 
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2.3 General introduction to computational methods for modeling   

clusters 

 

2.3.1 Ab initio methods 

 

Ab initio methods attempt to approximate the exact solution of the many-electron Schrödinger 

equation for the ground state energy of a molecule or molecular system by deriving results 

from first principles without the use of explicit experimental data. However, most ab initio 

methods used, can only give approximate results that are not necessarily comparable to the 

results obtained by experiment. It is therefore important to understand these methods on a 

theoretical basis in order to make intelligent choices for modeling the system under study. 

Some methods are known to be better than others, but still the final litmus test is the 

reproduction of experimental results and trends.   

 

2.3.2 The Schrödinger equation     

 

The basis for quantum chemistry is the Schrödinger equation. Although simpler and more 

applicable to computational chemistry, this equation does not account for relativistic effects 

such as the Dirac equation does, but can nevertheless be used for the lighter atoms up to 

atomic number 36 on the periodic table1. It also does not recognize electron spin directly, but 

the Pauli-exclusion principle, which states that the wave function should be anti-symmetric 

with an exchange of two electrons, provides for the incorporation of spin in an indirect 

manner. This simplifies the solution of the Schrödinger equation, as the Hamiltonian does not 

have an effect on the spin and spin can therefore be removed from the equation and treated 

separately as an ad hoc function. The Schrödinger equation can be written as in equation 2.2, 

 

ˆ ( ) ( , )

ˆ( ) ( , ) ( ) ( , )

H E

s H s E

   

   





R,r, R,r

R r R r  (2.2) 

where Ĥ is the Hamiltonian operator and E the energy of the wave function. ( , ) R,r  

denotes a spin orbital. A spatial orbital is denoted by ( ) R,r  where r are the coordinates of an 

electron and R the coordinates of a nucleus. ( )s  is a spin function with either equal to α or 

β spin functions or linear combinations of them. In this study, we will always make use of 

spin orbitals.  

                                                 
1Relativistic effects for heavier atoms can be incorporated in an ad hoc manner by making use of 
effective core potentials (ECP’s)  
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    Although reasonably simple, the Schrödinger equation cannot be solved exactly for 

molecular systems larger than the hydrogen atom or H2
+. One can however separate the 

movement of an electron from a nucleus if one assumes that nuclei, because of their heavier 

weight, will not move as much as electrons for a specific nuclear configuration. This is called 

the Born-Oppenheimer approximation. This approximation makes solving the Schrödinger 

equation for many-electron systems simpler, although an exact solution is still impossible due 

to the effect of electron correlation.  

 

2.3.3  Hartree-Fock theory  

 

Hartree-Fock (HF) theory is the simplest ab initio method and totally unsuitable for the 

accurate modeling of clusters; however for understanding the origin of the other methods used 

to model vdW clusters, a brief introduction is in order.  

    Hartree-Fock theory assumes that each electron in a many-electron atom or molecule only 

interacts with an average potential caused by all the other electrons in the atom or molecule. 

The direct interaction of one electron with another is therefore not accounted for. The 

interaction of electrons with each other is known as electron correlation. It has been shown 

that electrons are usually further apart in atoms and in molecules than predicted by the HF 

theory [Jensen, 2001]. When studying weak interactions such as intermolecular interactions, 

electron correlation needs to be accounted for as accurately as possible.  

    The HF theory approximates the true wave function of an atom or molecule with a single 

Slater determinant. Although a Slater determinant has the necessary anti-symmetry with 

respect to row and column exchange, it gives a quadratic form (see Fig. 2.1) of the wave 

function, which is not the true form for a many-electron atom or molecule.  
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Fig. 2.1: Diagram illustrating the difference between the HF wave function’s behavior with respect to the 
interelectronic distance, compared to the exact wave function’s behavior. In this figure both electrons 
have the same x and y coordinates, only their z coordinates vary.  
 

Although the HF wave function is a poor approximation of the true wave function, this 

difference is actually quite small and therefore HF theory is reasonably accurate for single 

molecules. However, quantitative work will require that the Coulomb cusp is accounted for 

more precisely [Knowles et al., 2000]. This can be done by using many Slater determinants in 

the expansion of the true wave function, which is the essence of post-HF methods. Another 

problem with the true wave function is that it is discontinuous when the interelectronic 

distance is zero. Other than the singularity in the wave function, the Schrödinger equation in 

2.2 does not contain any singularities on the right hand side. Therefore, the only singularity on 

the left hand side should be a singularity in the wave function. However, the left hand side 

contains another singularity, namely 1/r12 where r12 is the interelectronic distance. Therefore, 

this singularity should be cancelled on the left hand side by another singularity to make both 

sides of 2.2 equal. This singularity can be shown to originate from the kinetic energy. This 

simply means that as electrons come very close to each other, their kinetic energy will 

increase to infinity leading to a fast movement of one electron away from another [Knowles et 

al., 2000]. A method able to generate a wave function in the limit of a complete basis set that 

is linear when moving in any direction from r12=0, will solve the Schrödinger equation 

exactly.    

 

2.3.4 Generating approximate wave functions 

 

As the true wave function of a poly-electronic molecule or atom is not known, these wave 

functions should be approximated with linear combinations of other functions. Usually the 

wave functions are expanded in terms of one-electron basis functions. By expanding the true 

wave function, any arbitrary basis can be chosen and the wave function transformed to that 

Coulomb cusp/hole 

HF wave function

Exact wave 
function 

Interelectronic distance on z-axis

http://scholar.sun.ac.za/



11 

basis. Common basis functions that are used are Gaussian Type Orbitals (GTO’s) and Slater 

Type Orbitals (STO’s). A GTO can be written as follows, 

 
2r l m n

GTO Ne x y z   (2.3) 

where N is the normalization constant,   is a constant known as the exponent and x, y and z 

are Cartesian coordinates. l, m and n are integral exponents of the Cartesian coordinates. The 

sum of l, m and n is used analogously to the angular momentum quantum number for atoms. 

Therefore, if the sum is zero, it denotes an s-orbital. If the sum is 1, then it denotes a p-orbital 

etc. GTO’s account both for the radial and angular components of a wave function. Another 

characteristic of GTO’s is that they are all real functions whereas a wave function can be 

complex as well. However, taking linear combinations of complex functions can give real 

functions that are also solutions to the Schrödinger equation.  

    A single GTO cannot account for the increase in nodes in higher angular momentum wave 

functions or the correct form of an orbital. However, linear combinations of these GTO’s can.  

A basis function, created by combining a series of GTO’s in a linear combination, is known as 

a contraction. In most software, using GTO’s as a basis for the expansion of molecular 

orbitals, all the exponents and coefficients defined for each GTO, also called a primitive, have 

been pre-optimized and cannot change during a calculation. Only the normalization constants 

in front of basis functions are allowed to change. Sometimes single GTO’s are also used as 

basis functions, but this increases the number of constants that need to be determined.  

    Some basis sets are specifically optimized to converge quickly to the correlated wave 

function with addition of basis functions, such as the correlation consistent basis sets of 

Dunning [Woon and Dunning Jr., 1993; Kendall et al., 1992; Dunning Jr., 1989; Peterson et 

al., 1994; Wilson et al., 1997].  The split valence (SV) sets of Pople and coworkers [Hehre et 

al., 1972; Krishnan et al., 1980; Frisch et al., 1984] use a contraction of different numbers of 

primitives for core orbitals than for valence orbitals. For example, in the 6-31G basis set, 6 

primitives are used for the core orbitals and a contraction of 3 primitives and another single 

primitive are used for the valence orbitals. To illustrate the notation for the Pople-type SV 

basis sets, we will give an example. In this work we used a basis set denoted by 6-

311+G(d,p). This means that 6 GTO’s are used to describe the core orbitals of the atom, while 

a contraction of 3 GTO’s and two separate GTO’s are used for the valence orbitals. The 

addition sign indicates that each orbital is augmented with a diffuse function of the same 

angular momentum. For example, a p-function, will be augmented with a p diffuse function. 

The terms in the parenthesis state that  d-type polarization functions that are equal to 5 

uncontracted d-type GTO’s, must be added for the heavy atoms  and p-type polarization 

functions that are equal to 3 uncontracted p-type GTO’s, must be added to the hydrogen 
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atoms after the addition of the diffuse functions. In the notation used above, a comma always 

separates the polarization functions for the heavy atoms from the hydrogen atoms.  

    When modeling vdW clusters, it is important to include both polarization functions and 

diffuse functions [Chałasiński and Szcześniak, 1994]. Polarization functions are functions of 

higher angular momentum that can be added to the current basis set, to gear it towards the 

recovery of correlation energy. They cannot be derived from HF calculations. Diffuse 

functions are functions with small exponents and therefore decay slowly with the distance 

from the nucleus. Table 2.1 compares the two basis sets that were mainly used in this study 

for the carbon monoxide monomer.  

Table 2.1: Information for the carbon monoxide monomer for the two basis sets used in this study. The 
contents of the parenthesis are read as follows: (s-type GTO’s, p-type GTO’s, d-type GTO’s). For each p-
type, 3 basis functions are added and for each d-type, 6 basis functions in the case of 6-31G(d) and 5 
basis functions in the case of 6-311+G(d) are added. The numbers in the parenthesis are the number of 
primitives used in each contraction. 

 Carbon Oxygen 

Atomic orbitals 1s, 2s, 2p 1s, 2s, 2p 

6-31G(d)   

Approximation by GTO’s (631,31,1) (631,31,1) 

Total basis functions 15 15 

Total GTOs 28 28 

6-311+G(d)   

Approximation by GTO’s (63111,3111,1) (63111,3111,1) 

Total basis functions 22 22 

Total GTOs 35 35 

 

Basis sets can also be optimized based on the type of calculation to be performed. For 

example a basic basis set such as STO-3G will not be suitable for correlated calculations, due 

to the lack of polarization basis functions. In general, a good basis set should have the 

following features [Dunning Jr. et al., 1998]: 

1. It should be geared towards the recovering of the correlation energy. 

2. It should converge quickly with the addition of polarization functions (vide infra). 

3. It should satisfy the demands of all four fundamental interaction energy components: 

the exchange, dispersion, induction and electrostatic interactions [Chałasiński and 

Szcześniak, 1994]. 

4. It should have a small basis set superposition error (BSSE) when used for the 

modeling of vdW clusters [Chałasiński and Szcześniak, 1994]. 

5. The basis set must be as compact as possible. 

6. The basis set must cover both the angular and radial spaces of the wave function in a 

consistent manner.  
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2.4  Basis set problems 

 

The problem with basis sets is that they are centered on atoms. This means that intermolecular 

interactions involving larger distances than bond distances are not effectively reproduced, or, 

in other words, the convergence towards the true wave function is very slow with addition of 

basis functions. One way to remedy this is to make use of basis functions centered between 

molecules in addition to the basis functions centered on the atoms. This has been shown to 

give a faster convergence [Chałasiński and Szcześniak, 2000]. Another problem with basis 

sets is the so-called BSSE and basis set saturation error. These errors will now be briefly 

discussed.  

 

2.4.1 Basis Set Superposition Error (BSSE) 

 

As mentioned above, basis functions are usually centered on atoms. Unfortunately, if the basis 

sets used for the monomers are too small, errors can arise in the calculation of the interaction 

energy of a cluster. In order to minimize the energy, basis functions on one atom in a 

monomer can form linear combinations with basis functions on one atom in another 

monomer, resulting in the use of more primitives for the description of the wave function 

between the two monomers than should actually be the case. This gives rise to more 

stabilization and artificially lowers the interaction energy.  

    Simply stated, the BSSE is caused when a larger basis set is used to describe a system as a 

whole, than the basis set used to describe each monomer of the system individually. If a basis 

function on one atom is orthogonal to another basis function on another atom, which is not 

necessarily the case, they would not be able to “mix” and form direct products of nonzero 

value.    

    To correct for this error, a counterpoise (CP) correction can be attempted [Jensen, 2001]. In 

this correction, all the monomers’ energies are calculated with the basis set of the whole 

cluster. The sum of these energies is then subtracted from the energy calculated with the basis 

set of the whole cluster. This is then supposed to give an approximation of the error. The 

value so obtained is an upper limit of the true BSSE.   

    According to Chałasiński and Szcześniak [Chałasiński and Szcześniak, 1994], it is 

important when using the CP correction, that the magnitudes of the BSSE should not be used 

to judge the quality of the interaction energy. The BSSE calculated with the CP method is not 

related to the error in the interaction energy, but is purely an effect of a too small basis set for 

the problem at hand.   
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2.4.2 Basis set saturation error 

 

The interelectronic Coulomb cusp condition, mentioned in Section 2.2.3, is very slowly 

reproduced by an expansion of one-electron basis functions [Chałasiński and Szcześniak, 

2000]. This effect is very serious for the dispersion interactions and demands high 

polarization functions. Even large correlation consistent basis sets such as d-aug-cc-V6Z2 are 

not good enough. As mentioned earlier, one can remedy this problem by using bond functions 

in the middle of the vdW bond. A bond function is a basis function that is centered on a vdW 

bond rather than on an atom. One can also make the basis functions dependent on the 

interelectronic distance by explicitly including terms that are linear in the interelectronic 

distance. Methods incorporating the interelectronic distance directly such as MP2-R12 also 

exist [Chałasiński and Szcześniak, 2000]. 

 

2.4.3 Obtaining the approximate equations of the molecular orbitals 

 

In HF theory, molecular orbitals (MO’s) are approximated by canonical orbitals. These 

canonical orbitals are pseudo-eigenfunctions of the Fock-operator. When the Fock-operator is 

applied to a canonical orbital, the corresponding eigenvalue is the molecular orbital energy of 

the corresponding canonical orbital. The energies of the canonical orbitals are minimized 

using undetermined Lagrange multipliers and chosen to be orthogonal and normalized. The 

optimization of these orbital functions is complete when the change in the energy is as close 

as possible or equal to zero.  

    HF theory works by diagonalization3 of the Fock-matrix, containing Fock-operators and 

wave functions for each electron, to give a set of energies and molecular orbital coefficients. 

The new coefficients are substituted again in the equation of the wave function on which the 

Fock-operator operates to give a new energy and molecular orbital coefficients. This is done 

iteratively until the energy does not change significantly any more. As the equations must be 

solved self-consistently, the method is also known as self-consistent field (SCF).  

    Each eigenvalue in the diagonal matrix is the energy of a canonical orbital. When using 

basis functions the method is somewhat modified in the form of Roothaan-Hall equations that 

also need the overlap matrix of the basis functions in order to compute the energy. We will 

not discuss this in more detail here, but the theory can be found in any good textbook on 

computational chemistry, such as the book by Jensen [Jensen, 2001]. The Fock-operator is an 

                                                 
2 This basis set is doubly augmented with diffuse functions, has six basis functions for each electron’s 
description and is considered as extremely large. 
3 This is done by a unitary transformation by which the Fock matrix is diagonalized by multiplying 
with a unitary coefficient matrix on one side of the operator and by its inverse on the other side. 
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effective one-electron operator and can be written for a closed shell system where electrons 

are all paired as: 

 
/ 2

ˆˆ ˆ ˆ(2 )
N

i i j j
j

F h J K    (2.4) 

where ˆ
ih  is a sum of the average kinetic energy of the electron and the Coulomb interaction 

between the electron and all nuclei. N is the number of electrons. ˆ
jJ  and ˆ

jK  are the Coulomb 

and exchange operators respectively for electron  j. The exchange operator has no classical 

analogue and arises out of the constraint of the Pauli-exclusion principle on the wave 

function.     

    In computational chemistry, the canonical orbitals are usually expanded in GTO’s. In a 

closed shell system, spin is incorporated as an ad hoc function, but for open shell systems, 

where basis functions are used to describe each spin orbital separately, spin functions can 

make a large difference to the energy.   

    The eigenvalues and canonical orbitals are determined based on the variation theorem. 

According to the variation theorem, the eigenvalue so obtained will be larger or equal to the 

true eigenvalue of the Hamiltonian when operating on this wave function. Configuration 

Interaction (CI) is another method based on the variation theorem.  

 

2.5 Post-HF methods for approximately solving the Schrödinger 

equation 

 

As quantum mechanics is based on probabilities instead of certainties, one can also say that 

there will always be a certain non-zero probability that an electron will be excited to an orbital 

with a higher main quantum number than the original one or that two electrons will be excited 

to orbitals due to electron correlation. When one electron is excited, it is called a single 

excitation or a single, for two electrons it is known as a double and for three it is known as a 

triple and so on. All of these excitations can be represented by Slater determinants that differ 

from the ground state Slater determinant. The sum of these different Slater determinants will 

therefore account for all the probabilities and so will reproduce a wave function that, if 

optimized, that incorporates all electron correlation in the best possible way in the limit of the 

basis set. This is how full-CI is done. It is important to know that even full-CI, with a 

complete basis set, will not give the exact electronic energy for a system, as the general CI 

wave function is not linear in r12, but it will give the best answer for a specific one-electron 

basis set that can be obtained [Knowles et al., 2000]. As can be expected, it is impractical to 

do full-CI for chemically significant systems. Therefore, other approximate methods were 
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developed that can give good results by attempting to use the most “important” Slater 

determinants in the expansion of an approximate wave function.     

    Perturbation theory attempts to approximate the energy and wave function by using Taylor 

expansions around a point where the energy and wave function are known. Perturbation 

theory is much more suitable to use for the description of molecular clusters since the energy 

term of each intermolecular interaction can be expanded individually, giving rise to zero, first 

and second-order perturbations (see Section 2.6).  

    In perturbation theory, we deal with an infinite series.  Depending on where the series is 

truncated, will determine the value for the energy obtained.  If the series is truncated wrongly, 

it might lead to divergence of the series for a specific problem [Olsen et al., 1996; Leininger 

et al., 2000]. An infinite expansion will give the exact energy and wave function. General 

perturbation theory is also known as Rayleigh-Schrödinger (RS) perturbation theory.  

 

2.5.1  Møller-Plesset perturbation theory 

 

In this study we made extensive use of the Møller-Plesset perturbation theory (MP-theory) 

developed by Møller and Plesset in 1934 [Møller and Plesset, 1934]. They proposed a 

perturbation treatment of atoms and molecules using the zero-order HF wave function as the 

unperturbed wave function. In this section we will briefly derive the equations illustrating this 

theory, but before we continue it would be important to clarify the terminology that we will 

use. With the term, HF wave function, we explicitly mean any Slater determinant that can be 

an eigenfunction of the Fock-operator. When we talk about the zero-order HF wave function 

it specifically means the lowest energy Slater determinant that is an eigenfunction of the 

Fock-operator or the wave function obtained when performing a HF calculation.       

    To illustrate MP-theory, consider the Schrödinger equation in equation 2.5 once again. The 

true wave function can be expanded into HF wave functions, i , of different order. A 

(1)
i wave function denotes the first-order of a HF wave function for example. It is important 

to realise that these higher-order wave functions are all linear combinations of different Slater 

determinants generated from the zero-order HF wave function, by operators, vide infra. The 

energy can also be expanded into energy contributions of different order where (0)
iE is the 

zero-order energy. This energy is not equal to the HF energy.  

 (0) (1) 2 (2) 3 (3) 4 (4)

(0) (1) 2 (2) 3 (3) 4 (4)

ˆ

...

...

i i i i i

i i i i i

H E

E E E E E E

 

        

   



     

     

 (2.5) 
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The Hamiltonian can also be expanded in terms of the zero-order Hamiltonian, (0)Ĥ , and a 

perturbation Hamiltonian, ˆ 'H .   

                                                    (0)ˆ ˆ ˆ 'H H H                                                                   (2.6) 

λ is a coefficient in the linear expansions and is usually set to equal 1 for a full perturbation.  

    In MP theory certain assumptions are made. First the (0)Ĥ  is set equal to the sum of Fock- 

operators which, if operating on the zero-order HF wave function, will give the energy 

eigenvalues of all the canonical orbital wave functions. ˆ 'H  is set equal to the difference 

between the true Hamiltonian and (0)Ĥ . Therefore, 

 

(0)

1

(0)

12

ˆ ˆ ( )

1ˆ ˆ ˆ

N

i
m

ee

H F m

H H V
r





    


 (2.7) 

where îF  is the Fock-operator and m shows that it is the Fock-operator of electron m. N is the 

number of electrons. êeV is the electron repulsion operator and incorporates both the 

Coulomb and exchange interactions between two electrons in an average fashion. 12r is the 

distance between two individual electrons.  

    Now we can substitute the assumptions in 2.5 and 2.6 into the left hand side of the 

Schrödinger equation to obtain: 

( ) (1) ( ) 2 (2) (1)

1 1 1

ˆ ˆ ˆ ˆ ˆ( ) ( ( ) ) ( ( ) ) ...
N N N

HF HF
i i i i ee i i i ee i

m m m

F m F m V F m V      
  

                              (2.8) 

To make this equation simpler we explicitly showed that the zero-order wave function is the 

Hartree-Fock wave function, ( )HF
i . To simplify the equation further and obtain the various 

corrections to the energy, we can multiply with the complex conjugate of ( )HF
i throughout 

and integrate over all space. This is a trick as we actually multiply with the complex conjugate 

of a different HF wave function, HF
j , but only terms that have i=j will survive.  

( ) ( ) ( ) (1) 2 ( ) (2)

1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ( ( ) ) ( ( ) ) ( ( ) ) ...
N N N

HF HF HF HF
i i ee i i i ee i i i ee i

m m m

F m V F m V F m V          
  

       
              (2.9) 

We can simplify the equation above even further by using a method called intermediate 

normalization. Let ( )HF
i be the unperturbed wave function and  be the solution to the  

many-electron Schrödinger equation. When using intermediate normalization, we assume that 

1HF
i   . All the other corrections to the zero-order HF wave function are therefore 

orthogonal to this wave function. It does not matter if our assumption is wrong initially, as the 

integral above can be normalized by adding a constant. A constant will not influence the 
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solution of the Schrödinger equation. This simplifies equation 2.9 tremendously as now some 

terms will vanish. For example the first, second and third matrix element4 and so on can be 

simplified significantly. As an example, we will show this for the second matrix element in 

equation 2.9. 

( ) (1) ( ) (1) ( ) (1)

1 1

*(1) ( ) ( ) (1)

1

** (1) ( ) ( ) (1) ( ) (1)

ˆ ˆ ˆ ˆ( ( ) ) ( ( )

ˆ ˆ( ( )

ˆ ˆ0

N N
HF HF HF

i i ee i i i i i ee i
m m

N
HF HF

i i i i ee i
m

HF HF HF
i i i ee i i ee i

F m V F m V

F m V

V V

       

    

        

 



  

 

   

 

                      (2.10) 

The first matrix element in this expansion is zero due to intermediate normalization as both 

(1)
i and ( )HF

i are eigenfunctions of the Fock-operator and hence orthogonal to each other.  

Using these results, we can now simplify the equation in 2.9 to give: 

                                    ( ) ( ) (1) ( ) (2)ˆ ˆ ...HF HF HF
i i ee i i ee iE V V                                     (2.11) 

 
Here we used the fact that the first matrix element in 2.8 is equal to the HF energy. The first 

matrix element in equation 2.11 is the matrix element for the second-order correction to the 

energy. The second matrix element is the third-order correction to the energy etc. Correcting 

the HF energy with a second-order correction is called MP2, which was the method 

predominantly used in this work. A correction to the third-order is called MP3, a fourth-order 

correction, MP4 and so on. For the rest of this derivation we will focus on the second-order 

correction to the HF energy. In this matrix element, there is one unknown wave function. This 

wave function can be expanded in terms of the zero-order HF wave function as follows: 

                                               (1) ( ) ˆ ˆ( )HF HF
i i ee m i

m

V a T                                            (2.12) 

where am is a coefficient in the expansion and T̂ is the coupled cluster operator. This operator 

generates all the excited determinants from the zero-order HF wave function.  

It can be written as: 

 1 2 3
ˆ ˆ ˆ ˆ ˆ... nT T T T T      (2.13) 

where 1̂T  generates all singles from the HF wave function, 2̂T  generates all doubles etc. This 

only means that occupied orbitals in the HF determinant are replaced by virtual orbitals. 

These virtual orbitals have no physical meaning, are generated purely as linear combinations 

of the basis functions, and are not occupied with electrons. These linear combinations still 

conform to the symmetry point group of the system. They can be seen as analogous to 
                                                 
4 A matrix element is an integral in bra-ket notation. Bra-ket notation is a short way of saying that the 
functions in the bra-ket should be integrated over all space for each function in the bra-ket. The left side 
of the bra-ket contains the complex conjugate of the function and the right hand side the function.  
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antibonding molecular orbitals; however, they are not real molecular orbitals. The larger the 

basis set, the larger the number of these orbitals and the more excitations that are possible and 

the better the possibility of approximating the electron correlation accurately. As these virtual 

orbitals are unoccupied, they will not contribute to the energy, unless they are forced to be 

occupied, such as when the coupled cluster operator operates on the HF wave function.  

    For a single excitation, one spin orbital is replaced by a virtual unoccupied spin orbital and 

for a double excitation two occupied spin orbitals are replaced by two virtual spin orbitals. 

Therefore, many single, double and third excitation Slater determinants etc. are generated by 

application of this operator. It can be shown that am is equal to: 

                                               
ˆ ˆ

ˆ ˆ ˆ

HF HF
i ee i

m HF HF HF
i i i

T V
a

E T H T

 

 





                                             (2.14) 

Substituting am into equation 2.12 and then substituting this equation for (1)
i in the matrix 

element for the second-order correction to the energy in 2.11 we obtain,  

                                          

( )

2

ˆ ˆ
ˆ ˆ( )

ˆ

HF HF
i ee iHF HF

i ee iHF ex
i i

ex HF
i ee i

HF ex
i i

T V
V T

E E

V

E E

 
 

 









                                (2.15) 

where ex
iE is equal to the total energy of all the excited determinants and ex

i is equal to the 

sum of all the Slater determinants that can be generated by the coupled cluster operator from 

the HF wave function. This equation can actually be simplified again as Condon-Slater rules 

state that only Slater determinants, which differ by at most 2 spin orbitals from the HF wave 

function can contribute to the energy [Levine, 2000]. Therefore, only doubles need to be 

incorporated in the equation and this gives, 

                                                    

2

2

2 2

ˆ ˆ

ˆ ˆ ˆ

HF HF
i ee i

HF HF HF
i i i

T V

E T H T

 

 
                                               (2.16) 

For the rest of the derivation we will convert to explicit spin orbitals, i and j, for the 

unperturbed Slater determinant, and a and b for all of the doubly excited determinants.  

                                                  

2

2

2

12 12

ˆ

1 1

occ vir
ee

HF ex
i j a b i i

occ vir

i j a b i j a b

ij V ab

E E

ij ab ij ba
r r

   

 

 






  



                                      (2.17)  
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In equation 2.17 the double summations are over all the occupied and virtual orbitals. 2ex
iE is 

the total energy of all the doubly excited Slater determinants. In 2.17, we also substituted for 

the electron-electron repulsion operator. The ε-values in the denominator in equation 2.17 are 

the eigenvalues of each orbital denoted by the subscripts. The denominator is simply equal to 

the difference in the energies of two Slater determinants.  

    The correction of the energy to the second-order can therefore be obtained by the following 

steps: 

 
► Determine the ground state Hartree-Fock Slater determinant. 

► Generate all the double excitations from this Slater determinant. 

► Calculate the energy from the ground state Hartree-Fock Slater determinant by 

solving for the energy in the Schrödinger equation. 

► Calculate the energies of all the doubly excited determinants. 

► Work out the two-electron integrals between the Molecular orbital (MO) in the 

Hartree-Fock determinant and each MO in the doubly excited determinants. This is 

the most time consuming part of the MP2 method as two-electron integrals over the 

atomic orbitals should first be known [Jensen, 2001]. 

► The values obtained from the calculations above can then be substituted in equation 

2.17 to determine the second-order correction to the HF energy.  

 

In MP2 theory the Fock-operator is applied many times for various Slater determinants. MP 

theory is size extensive, which means that the method scales properly with the number of 

interacting fragments. As shown in Table 2.2, divergence can be the largest problem with 

higher order MP methods.  
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Table 2.2: The advantages and disadvantages of MP theory 

ADVANTAGES OF MP theory DISADVANTAGES OF MP theory 

Size extensive (See text) 
HOMO-LUMO gaps must be relatively large to avoid 

divergence [Knowles et al., 2000] 

Affordable incorporation of electron correlation 

Divergence for higher MP-theories than MP2 must 

be monitored by a method such as CCSD(T) 

[Chałasiński and Szcześniak, 2000] 

 

Lower order MP-methods sometimes overbind van 

der Waals clusters [Jensen, 2001; Hopkins and  

Tschumper,2004]. 

 

Convergence can take extremely long if the HF 

wave function is far from the optimized wave 

function [Jensen, 2001]. 

 
Basis set dependent. Can be divergent for some 

basis sets and for others not [Jensen, 2001]. 

 
Parallel computing is not supported by all 

commercial software.  

 
The theory is not variational since the MP energy is 

not necessarily larger or equal to the true energy   

 

 

2.5.2 Coupled Cluster (CC) theory 

 

Truncated CC methods are used as a benchmark when calculating interaction energies for 

vdW clusters. They are all based on CC theory. CC theory is slightly different in its approach 

to MP theory. In truncated CC theory the corrections to the wave function in equation 2.5 

only include specific excitations, such as doubles or singles. Equation 2.5 can be written as: 

 (0) (0) (1) 2 (0) (2)
1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ[ ( ... ) ] [ ( ... ) ] ...i N i N it T T T t T T T                (2.18) 

where t stands for each coefficient with which each excited Slater determinant need to be 

multiplied. The t variables are also called amplitudes. The zero-order wave function is usually 

chosen as in MP theory as the Hartree-Fock wave function.   

    MP theory truncates the series in equation 2.18 at a specific order, whereas truncated CC 

theory truncates the sum of the CC operators at a specific excitation. Coupled Cluster with 

Singles and Doubles (CCSD) is a common CC method that truncates the sum of the CC 

operators at the single and double excitations. CC theory always uses the series in 2.18 to 

infinity. CC theory is size-extensive due to the way in which the CC operators are used. The 

CC wave function is written as: 

       

ˆ

2 3
ˆ ˆ ˆ

ˆ1 ...
2! 3!

CC T HF
i i

T

e

T T
e T

 

    
                            (2.19) 
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If only singles and doubles are considered, one obtains: 

                                     1 2
ˆ ˆˆ ( ) 2

1 2 1 2

1ˆ ˆ ˆ ˆ1 ( ) ( ) ...
2

T TTe e T T T T                                           (2.20) 

where T̂ is equal to the sum of all the operators used to generate the excited Slater 

determinants from the HF wave function.  

    The CCSD energy, or any other CC energy, can be written as in equation 2.21 [Jensen, 

2001]: 

ˆ ˆ( )
occ vir occ vir

CCSD HF a HF a ab a b b a HF ab
i i ij i j i j ij

i a i j a b

E E t H t t t t t H   
 

                 (2.21)     

where a
i means a single excitation, where the occupied orbital i in the zero-order HF Slater 

determinant was replaced by a virtual orbital a to create a new determinant. ab
ij is a double 

excitation where occupied orbitals, i and j in the zero-order HF Slater determinant are 

replaced by the virtual orbitals a and b. In this equation, we denote the zero-order HF wave 

function as HF and the HF energy as EHF. The t-variables are the amplitudes for each 

excitation.  

    As can be deduced from equation 2.19, the T̂e -operator does not generate only these 

excitations and amplitudes. The number of amplitudes generated by T̂e is dependent on the 

truncation of the CC operator. Each amplitude is dependent on the other. Nonlinear equations, 

containing many other amplitudes for various excitations as generated from the zero-order HF 

wave function, can be written for each amplitude. In principle, the number of amplitudes to be 

determined is equal to the number of nonlinear equations [Levine, 2000]. Iterative methods 

are used to solve for the amplitudes. After all the amplitudes are solved, only those in 

equation 2.21 are substituted back to determine the energy and the wave function. The more 

excitations allowed, the better the accuracy of the amplitudes and eventually the energy and 

wave function.  

      The most common truncated CC theory used for vdW clusters is CCSD(T), which means 

that single excitations and double excitations are included for each occupied orbital, and triple 

excitations are approximated usually by an MP4 calculation [Levine, 2000]. The CC method 

is a large improvement over MP methods, but its applications are limited to small systems 

only such as single molecules or diatomic dimers. In Table 2.3 we list the advantages and 

disadvantages of CC theory.  
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Table 2.3: Advantages and disadvantages of the Truncated Coupled Cluster method 

ADVANTAGES OF CC theory DISADVANTAGES OF CC theory 

CCSD(T) is seen as the benchmark method for 

determining accurate electronic energies 
Very expensive in terms of hardware requirements 

Size-extensive (See text on MP theory for 

definition) 
Extremely long calculation times 

 
The theory is not variational since the CC energy is 

not necessarily larger or equal to the true energy 

 Basis set dependent 

 

2.5.3 Density functional theory (DFT) 

 

Density functional theory (DFT) uses a different approach than the ab initio5 methods 

discussed above. The theory of DFT comes from Hohenberg and Kohn [Hohenberg and 

Kohn, 1964] who proved in 1964 that the ground-state electronic energy of a molecule or 

atom is determined completely by its total electron density. The electron density at a point r is 

according to the Born-interpretation, equal to the sum of the squares of all the spin orbitals at 

that point. The ground-state electronic energy for a system can be expanded into different 

energy terms, their values all dependent on the electron density of the ground-state. If we 

consider the system under study as nuclei suspended in a uniform electron gas (UEG) where 

electrons are not correlated and where electron exchange is not allowed, we can compute both 

the total kinetic energy and the total Coulomb energy for such a system. Fast multipole 

methods (FMM) make the scaling of the computation of the Coulomb energy directly 

proportional to the number of electrons [Jensen, 2001]. However, to obtain the total energy of 

the system, we still need to relate the electron density to the electron exchange and correlation 

energy in the exact system. To do this we need to derive functionals, or functions of the 

electron density that when the electron density is substituted into these functionals, will give 

the exchange and correlation energies exactly. This is the ultimate aim of DFT. If this is 

accomplished, we will be able to compute the exact energy or the exact solution to the many-

electron Schrödinger equation by only knowing the system’s electron density. This is the 

reason why Hohenberg and Kohn received the Nobel Prize for Chemistry in 1998. At present 

we are only able to approximate these functionals and there are a multitude of functionals, 

such as B3LYP available, that can be used for DFT calculations.  

    Similar to HF theory, DFT theory also employs a single Slater determinant for the total 

ground state wave function, but the canonical orbitals are of course different and are known as 

                                                 
5 Some computational chemists regard DFT as an ab initio method. We will regard it as a method in its 
own class.  
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Kohn-Sham (KS) orbitals. The KS orbitals are eigenfunctions of the ˆ
KSh  operator and can be 

expanded in one-electron basis functions:  

   2 ( )1ˆ ˆ( )
2

j k
KS i j xc

k ii j

Z
h d V


     


r

r r
R rr r

            (2.22)  

The first term on the right hand side of the equation is equal to the kinetic energy of an 

electron i at position r. Its position is therefore denoted by ri . The integral following this term 

is an integral over another electron j’s coordinates. This integral is equal to the Coulomb 

operator in HF theory except that here the electron density, ρ for electron j, is used instead of 

the wave function. The next term in the equation is the Coulomb interaction between electron 

i and a nucleus k. Zk is the atomic number of that nucleus. Vxc is chosen as the derivative of the 

exchange-correlation energy with respect to the electron density of the KS orbital. The KS 

orbitals are solved just as with HF theory, by using undetermined Lagrange multipliers, to 

minimize the energy of the KS orbitals with the constraint that they should be orthogonal and 

normalized. To obtain the energies of the KS orbitals, equation 2.23 needs to be solved: 

     ˆ
KS i i ih                  (2.23) 

In this equation, i is a KS orbital and εi is the energy of the KS orbital. This equation must 

be solved self-consistently, as the x̂cV operator is dependent on the electron density of the KS 

orbital.     

    In general, two approximations of the exchange and correlation functionals exist. In the 

Local Density Approximation (LDA), the electrondensity is seen as a UEG. In the General 

Gradient Approximation (GGA), the electron density is seen as a nonuniform electron gas and 

the exchange and correlation energies are made dependent not only on the electron density, 

but also on the derivatives of the electron density with respect to position. Exchange and 

correlation functionals can also be paired [Jensen, 2001].  

    To attempt to model vdW interactions with DFT, we note that the correlation and exchange 

components in the Hamiltonian are dependent on the interelectronic distance r12. In the 

Hamiltonian this interelectronic distance can be expanded as: 

 12 12

12 12 12

1 ( ) ( )1 erf r erf r

r r r

 
   (2.24) 

where erf  is the standard error function. This separates the two-electron operator r12 into a 

short-range and long-range part. μ is a parameter determining the ratio of these parts [Kamiya 

et al., 2002]. The exchange functional can therefore also be separated into a long-range and 

short-range part.    
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With addition of a vdW correlation functional, the above approach is remarkably accurate for 

rare-gas dimers. The details are too complicated to discuss here, so the reader is referred the 

account by Sato and coworkers [Sato et al., 2005]. They suggested that the reason why DFT 

fails to reproduce vdW bonds accurately is not so much the inadequate account of the electron 

correlation by vdW correlation functionals such as the ALL-functional [Andersson et al., 

1996], but the inadequate reproduction of the long-range exchange interactions that together 

with the short-range exchange interactions should counteract the correlation contribution. This 

may be the reason why standard DFT functionals cannot reproduce dispersion interactions 

and are unfortunately unsuitable for the modeling of vdW clusters. For the modeling of vdW 

clusters, we are therefore limited to ab initio methods such as MP2, which needs a significant 

number of computer memory and hard disk space, even for small systems. Table 2.4 

summarizes the advantages and disadvantages of DFT for modeling intermolecular 

interactions and molecules. 

    DFT is size-consistent, meaning that one would obtain the same energy when calculating 

the energy of an H2-molecule, for example, and multiply that with 2, as when calculating the 

energy of 2 H2-molecules separated by 100 Å [Jensen et al., 2001]. However, DFT is not 

necessarily size-extensive as it is usually accepted not to be able to model weakly bonded 

vdW clusters.  

Table 2.4: Advantages and disadvantages of DFT 

ADVANTAGES OF DFT DISADVANTAGES OF DFT 

Size-consistent (see text). 
The functionals to use are dependent on the 

specific problem at hand. 

Can be applied to large molecules and clusters. 
Some functionals need to be parameterized for 

different atoms. 

Not as basis set dependent as other methods. 
Sometimes new functionals must be developed for 

new problems and this can take time. 

Affordable incorporation of electron correlation and 

exchange. 

Currently no functional exists that can be used 

routinely for the modeling of van der Waals 

clusters. 

Can give results, comparable to higher level  

correlation consistent methods, in a much shorter 

time. 

 

Not as expensive as other correlated methods in 

terms of hardware specifications. 
 

Can be run in parallel.  
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2.5.4 Quantum Monte Carlo (QMC) methods 

 

Quantum Monte Carlo can be used to derive a many-body wave function for a cluster, solid or 

molecule and should be used to add correlation to a wave function with insufficient 

correlation. It is also used to derive functionals for DFT. A trial wave function, subjected to 

insufficient correlation, can be obtained from an ab initio calculation with a basis set. This 

wave function is then used as the starting wave function for QMC, which will improve this 

wave function by adding the necessary correlation.  

    QMC is usually used for condensed media and solids, but has also recently been used to 

find the ground state wave function of He clusters [Bressanini et al., 2000] and the HF dimer 

solvated in He [Sarsa et al., 2002]. QMC scales better with size than CC theory, but 

incorporates almost all of the correlation energy. Currently QMC can be performed for 

systems with a thousand or more electrons. We will discuss one type of QMC briefly, namely 

Diffusional Quantum Monte Carlo (DQMC).  

    In DQMC, the imaginary time dependent Schrödinger equation (see equation 2.25) is 

solved. 

   2( , ) 1
( ( , ) ) ( , )

' 2 T

t
V t E t

t

 
     


R

R R             (2.25) 

t  is a real variable measured in imaginary time. TE  is an energy offset determined by the 

state of the system at a particular time. It is important to note that in equation 2.25 the anti-

symmetry principle is not obeyed and needs to be approximated with a postiori methods, vide 

infra. 

    The idea is to solve the imaginary time dependent Schrödinger equation by making use of a 

Monte Carlo method whereby random walkers move in a 3N coordinate electron and nucleus 

wave function space and diffuse randomly based on a diffusion equation.  As they diffuse, 

they multiply or die out according to certain previously set rules that are based on the ratio of 

the probability density of the present step with the probability density of the previous step. 

This can be determined from the Boltzman distribution. The tempo at which the walkers 

multiply is proportional to V(R), the potential energy at position R. After an infinite time, it is 

expected that the walkers will move towards the density of the ground state wave function 

that is a solution to the imaginary time dependent Schrödinger equation. The Schrödinger 

equation is solved for each wave function at a specific timestep by Monte Carlo integration. 

When after several trials the energy cannot be lowered any further, the resulting energy is the 

exact solution of the many-electron time dependent Schrödinger equation without  the use of 

the Born-Oppenheimer approximation. The only problem is that the Schrödinger equation 

does not recognize spin and so the Pauli-exclusion principle is not obeyed. Therefore, an 

approximation of the sign of the wave function has to be made a postiori. One of the 
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approximations that can be used is the fixed node approximation [Foulkes et al., 2001]. This 

however does not have a large influence on the final energy. Other properties such as accurate 

vibrational modes can also be determined. In Table 2.5 the advantages and disadvantages of 

DQMC are summarized. 

 

Table 2.5: Advantages and Disadvantages of DQMC [Foulkes et al., 2001] 
ADVANTAGES OF DQMC DISADVANTAGES OF DQMC 

It gives an accurate wave function treatment of 

many-body effects. 

If the starting guess wave function is too far off 

from the “correct” wave function then it will take 

longer for the walkers to accumulate towards the 

“correct” electron density. 

It is a very general approach, which is applicable to 

solids and molecules and can determine almost any 

ground state expectation value. 

Because the wave function does not obey the anti-

symmetry principle, approximations need to be 

made, such as the fixed node approximation. 

The computational cost scales with N 3, where a 

method such as CCSD(T) scales with N 7. N is the 

number of electrons. 

It is demanding to calculate first and second 

derivatives of the total energy with respect to the 

atomic positions. 

It has low storage requirements and it benefits 

from being run on parallel architectures. 

The results are obtained with a statistical error bar 

that decays with the inverse of the square root of 

the calculation time. 

The DQMC method does not suffer from basis set 

effects, as no basis sets are used. 

 

The fixed-node approximation may bias the results 

in some cases. 

When tested on a C
10

-cluster DQMC recovered circa 

95% of the correlation energy, whereas CCSD(T) 

only recovered about 75%.   

Only limited information about excited states is 

available. 

There is QMC-software available such as zori6. 
For solids the results may suffer from finite size 

errors. 

 

For more information, see Foulkes et al., 2001. 

 

2.5.5 Other methods 

 

In the above discussion, we discussed a few well known and promising methods for the 

modeling of van der Waals clusters. There are also other methods to study intermolecular 

interactions such as the localized-MP2 (LMP2) [Saebo et al., 1993; Schutz et al., 1998] 

method that will probably compete with DFT in modeling vdW clusters in the future 

[Chałasiński and Szcześniak, 2000]. Due to lack of space and time, it is not possible to go into 

all of these methods or even discuss them in detail.  

 

                                                 
6 Zori is open source and can be obtained from the Lester-group. 
http://www.cchem.berkeley.edu/~walgrp/ 
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2.6 Methods specifically pertaining to van der Waals clusters and 

intermolecular interactions 

 

The methods discussed in Section 2.5 are standard methods that have been used for the 

modeling of vdW clusters before. When one models vdW clusters, it is of little value to 

compare electronic energies of clusters. The interaction energy and binding energy are usually 

used to give some insight into the stabilization of vdW clusters.7  

    In this section, we will discuss two methods that are specifically designed for determining 

the electronic interaction energies of clusters as accurately as possible within the limits of the 

basis set and method used.   

 

2.6.1 The many-body supermolecular perturbation theory (MBPT) 

 

According to the many-body supermolecular perturbation theory (MBPT), one can calculate 

the electronic interaction energy of a cluster by subtracting the electronic energies of the 

individual monomers at infinite separation, constrained to their geometries in the cluster, from 

the overall electronic energy of the cluster and then correct this interaction energy for BSSE 

[Chałasiński and Szcześniak, 2000].         

    An approximate correction can be done by using a counterpoise correction [Boys and 

Bernardi, 1970]. To apply the many-body perturbation theory, no special software is needed; 

standard ab initio computational software can be used.  In Table 2.6 the advantages and 

disadvantages of MBPT are summarized. 

                                                 
7 This can also be used as a criterion for force field optimization. 
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Table 2.6: Advantages and disadvantages of many-body supermolecular perturbation theory 

ADVANTAGES OF SUPERMOLECULAR 

PERTURBATION THEORY 

DISADVANTAGES OF SUPERMOLECULAR 

PERTURBATION THEORY 

Simple implementation 
Basis set superposition error can only be 

approximated 

No special software needed 
The many body interaction can not be expanded in 

separate components 

In general it gives good results  

 

2.6.2 Symmetry Adapted Perturbation theory (SAPT or I-MP) 

 

Symmetry Adapted Perturbation Theory (SAPT) [Rybak et al., 1991], is another method that 

is used for the determinination of accurate interaction energies. Instead of writing the 

interaction energy as the difference between the energy of the cluster and the individual 

monomers, one can write it directly as the sum of individual terms for the different energy 

contributions.  

   (1) (1) (2) (2)
int ...pol exch pol exchE E E E E                  (2.26) 

(1)
polE is the classical electrostatic interaction energy. (2)

polE  is a sum of  classical induction and 

quantum mechanical dispersion energies. (1)
exchE is the first-order exchange correction and 

(2)
exchE  is the second-order exchange correction. Both these terms are defined in the context of 

SAPT [Rybak et al., 1991]. The true or total Hamiltonian for two molecules A and B can be 

expanded by using perturbation theory: 

    ' 'ˆ ˆ ˆ ˆ ˆ
A BH F V H H                   (2.27) 

where F̂ is the Fock-operator operating on the zero-order HF wave function and V̂ is the 

interaction operator and is defined as the difference between the true Hamiltonian and the true 

Hamiltonians of the composite monomers of the cluster. 'ˆ
AH  and 'ˆ

BH is the perturbations on 

the HF energies of molecules A and B respectively and can both be expanded into a series 

containing different orders of the wave functions of the monomers.   and   are simply 

constants determining the number of perturbation and can be set to one for full perturbation. 

The interaction operator does not preserve the anti-symmetry principle, as electrons between 

the monomers are not forced to obey the anti-symmetry rule.  

    To create a space in which the operator can function, we therefore need a larger space. The 

tensor product can therefore be taken between the two Hilbert spaces of molecules A and B to 

give a space in which the interaction operator can operate. This is why SAPT is a symmetry 
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adapted perturbation theory.  The Hilbert spaces for each molecule are subspaces of the new 

Hilbert space.  

    Taking all of this into consideration, all the different components of the interaction energy 

at the Hartree-Fock level and corrections to the energies of these interactions can be written as 

in equation 2.27. Each component can be expanded with respect to Rayleigh Schrödinger 

perturbation theory. As an example, the polarization energy can be written as: 

    ( )

0 0

n nij
pol pol

i j

E E
 

 

               (2.28) 

where ( )nij
polE is of the nth order in V̂ and the ith order in 'ˆ

AH and jth order expansion in 'ˆ
BH .  

SAPT has advantages over other ab initio methods such as the traditional MBPT method, but 

is also not foolproof, as convergence of the series still contributes to failures in some cases. It 

is therefore important to test the results with a supermolecular method [Chałasiński and 

Szcześniak, 2000]. Table 2.7 summarizes the advantages and disadvantages of SAPT. SAPT 

is usually used when very accurate quantum mechanically based potentials are derived for 

vdW clusters such as for the CO dimer [Vissers et al., 2005].  
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Table 2.7  Advantages and disadvantages of SAPT [Rybak et al., 1991] 

ADVANTAGES OF SAPT DISADVANTAGES OF SAPT 

The interaction energy is calculated directly as the 

sum of physical contributions. 

Divergence can take place as is general with 

perturbation theory. 

The interaction energy so obtained is free from 

BSSE. 

Special software is needed and the theory behind 

the method is complicated. 

The components of the interaction energy are 

size extensive; therefore, it can be applied to 

polyatomic molecules. 

 

Different energy corrections exhibit different 

angular and radial dependencies so it would be 

possible to obtain excellent analytical fits in terms 

of physical interpretable parameters. 

 

The individual energy corrections show 

different basis set requirements and can 

therefore be calculated separately. 

 

The overall computational effort is smaller 

than in the case of the many-body 

supermolecular perturbation theory. 

 

Free software is available on the internet.  

 

2.7 Molecular mechanics (MM)  

 

It would have been ideal if all computational problems could be solved by quantum 

mechanics. However, most systems are still too large today to be considered by this. When a 

computational problem is too large to be treated with quantum mechanics (QM), it is 

generally modeled by using molecular mechanics (MM).  

    MM is based on a Newtonian physics approach and makes use of force fields. It is a 

method whereby quantum mechanics are approximated with classical mechanical calculations 

in order to speed up calculations. MM makes extensive use of the Born-Oppenheimer 

principle discussed in Section 2.3, as the change in energy of a molecular system is made 

dependent only on the change in nuclear coordinates [Leach, 2001].  

    In QM, electrons experience different forces dependent on their environments. For 

example, a hydroxyl oxygen atom will interact differently to a carbonyl oxygen atom. As MM 

cannot account for the movement of individual electrons, various atom-types are used. In the 

above case, separate atom-types will be used for the hydroxyl oxygen and carbonyl oxygen 

atoms.       

    In this work, the Universal Force Field (UFF) [Rappé et al., 1992] was used extensively. In 

UFF, the atom-types are written in the following way. The first two characters correspond to 

the chemical symbol. If only one character is used, it is followed by an underscore. The 
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chemical symbol is followed by a description of the hybridization or geometry: 1 = linear (sp- 

hybridized), 2 = trigonal (sp2-hybridized), R = resonant, 3 = tetrahedral (sp3-hybridized), 4 = 

square planar (dsp2-hybridized), 5 = trigonal bipyramidal (dsp3-hybridized) and 6 = octahedral 

(d2sp3-hybridized). Indicators such as the formal oxidation state or indicators that the atom is 

part of a zeolite lattice etc may follow this. To illustrate this; in this study, we used C_1 as an 

atom-type in the carbon monoxide monomer, as this atom is sp-hybridized in the monomer 

[Rappé et al., 1992]. 

    Next, the interaction of the atom-types with each other must be defined. For each atom-type 

a number of parameters are derived based on experimental information or quantum 

mechanical calculations. These parameters are used as the reference values in the force field. 

The energy of the interaction between atom-types (also called steric energy) can be written in 

MM as the sum of a number of contributions:  

                           steric stretch bend tors inv el vdw crossE E E E E E E E                  (2.29) 

where Estretch is the sum of all the energies for bond stretches from the  reference value. Ebend  is 

the sum of all the energies for all the angle bends from a reference angle. Etors is the sum of all 

the torsional energies when dihedral angles are changed from a reference value. Einv is the 

sum of all the inversion potentials of some molecules and corresponds to an out of plane 

deformation of an atom from a reference value. Eel is the electrostatic interaction and usually 

has no previously defined reference value in the force field. EvdW is the vdW interaction 

between nonbonded atoms and is again based on the change from reference values. The last 

term in 2.29 is the energy for the cross-terms.  

    If the cross-terms are omitted, then the internal coordinates, are treated independently of 

each other, which is a severe approximation as there are, for example, molecules where a 

change in the valence angle can result in valence bond lengthening. The energy associated 

with the  

cross-terms is the energy for the coupling between the internal coordinates. By including 

cross-terms, the force field’s accuracy, in determining the steric energy, is increased. The 

derivatives of the energy with respect to the nuclear coordinates of the molecule(s) also 

become more accurate.  

    The terms in equation 2.29 have different mathematical expressions that are chosen to 

model the specific interaction considered. For example, a bond stretch can be modeled by 

either a Morse-potential, a Taylor expansion around the reference bond length or sometimes 

even the simple Hook’s equation [Leach, 2001]. Parameters for these mathematical 

expressions are chosen to mimic experimental results or quantum mechanical results.     

    In this work, we are only concerned with the Eel and EvdW terms. Therefore, in the rest of 

this section we will look in detail at these two terms.  
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2.7.1 The van der Waals term 

 

The van der Waals term is based solely on two of the four intermolecular interactions 

discussed earlier in Section 2.2. The first is a repulsive interaction due to the effect of the 

electron-electron exchange and the second is an attractive interaction due to the dispersion 

interaction. The vdW interaction energy for the interaction between atoms A and B, can be 

written as in equation 2.30:   

   repulsive 6
( ) ( )

( )

AB
AB AB

vdW AB

C
E R E R

R
               (2.30) 

The positive constant ABC is fitted to the attractive term of the van der Waals interaction 

between the two atoms based on quantum mechanical calculations and shows the same  

power-law relationship as a model such as the Drude model [Leach, 2001]. The repulsive 

term cannot be derived in a classical way, as it is solely based on a quantum effect with no 

classical analogue.  

    Many functions have been proposed to approximate this function. For example, one 

approximation for the repulsive part is an exponential function. The only problem that will be 

encountered with such a function is when the user places molecules accidentally too close to 

each other in their starting geometries. Then the vdW forces between the molecules will be 

too large and make them fly apart.  The Buckingham type potential uses an exponential as the 

repulsive term. One can also use a Morse-potential [Jensen, 2001]. 

    As these potentials cannot be calculated quickly, their calculation can slow down the 

calculation of the steric energy. Therefore, the Lennard-Jones potential is usually used. This 

potential is less accurate, but much quicker to calculate. Two flavors of the Lennard-Jones 

potential are most often used, as shown in equations 2.31 and 2.32:   

    

12 6

0 0
12 6 ( ) 2LJ R R

E R
R R



         
                  (2.31) 

    
9 6

0 0
9 6 ( ) 2 3LJ R R

E R
R R



         
     

            (2.32) 

where   is the reference well depth or the dissociation limit in kcal/mol and 0R is the 

reference van der Waals distance in Å between two atoms. R  is the distance between the 

atoms at any time during the optimization or simulation. The 12-6 Lennard-Jones potential 

rises more quickly for short intermolecular distances than the 9-6 potential.  
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2.7.2 The electrostatic energy 

 

In standard force fields the electrostatic energy is determined by the Coulomb interaction 

between point charges centered on atoms or in some force fields by the interaction between 

dipole moments of molecules. The use of stationary atomic point charges to represent a 

charge distribution is in most cases a severe approximation, as two approaching charge 

distributions will influence each other and lead to a change in the initial atomic point charges. 

Furthermore, charge distributions of polar molecules are anisotropic and not entirely 

spherically symmetrical and can therefore not be accurately represented by atomic point 

charges.   

    For clusters, the electrostatic interaction term should incorporate the remaining two of the 

four nonbonded interactions, which are the induction and electrostatic interactions. To include 

the induction interaction, the charges used in the force field should be allowed to polarize 

other atoms, changing their charges or dipoles to minimize the energy. Force fields that are 

able to do this are called polarizable force fields and may play an important role in the 

development of better QM/MM methods. See, for example, [Kaminski et al., 2002] for 

information on a polarizable force field. The charge equilibration method of Goddard and 

coworker [Rappé and Goddard III, 1991] is a way of polarizing classical force fields; 

however, it is not as accurate as polarizable force fields. 

     

2.8 Ways to represent a charge-distribution 

 

2.8.1 Merz-Kollman-Singh (MKS) charges 

 

The well-known Mulliken charges are not accurate in describing a charge distribution, as they 

are basis set dependent. Mulliken charges depend on the square of the coefficients of the 

constituting basis functions of the molecular orbitals and the overlap populations of the basis 

functions as described by the overlap matrix [Levine, 2000; Jensen, 2001]. A more accurate 

representation of charges is based on the electrostatic potential (ESP). The ESP at a point is 

defined as the force acting on a unit of positive charge placed at that specific point. The 

electrostatic potential is a property of the wave function.  

    The ESP is determined at a set of chosen points. Which points are chosen depends on the 

charge derivation scheme used. A least squares fitting procedure is employed to determine the 

set of partial atomic charges that will reproduce the ESP at the specific chosen points. The 

error between the true electrostatic potential at a point and the electrostatic potential 
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calculated at that point, is minimized under the constraint that only charges that sum to the 

charge of the entire system, are used  [Leach, 2001]. In this way charge is conserved. 

    In order to choose the points on the ESP to be sampled for the determination of point 

charges, the Merz-Kollman-Singh (MKS) [Singh and Kollman, 1984] charge-scheme first 

determines the overlap surface of the vdW radii of all the atoms in the system. Then points are 

sampled either on the border of this surface or outside the surface. The region outside the 

surface is divided into layers determined by creating several  surfaces around the overlap 

surface of the vdW radii. Usually the layers are obtained by scaling the vdW radii of the 

atoms. CHELPG charges [Breneman and Wiberg, 1990] are also based on the ESP, but this 

will not be discussed here.  

       

2.9 QM/MM and the ONIOM hybrid methods 

 

In this study, we made extensive use of the “Our own N-layered Integrated molecular Orbital 

molecular Mechanics” (ONIOM) method developed by Keiji Morokuma and co-workers in 

1996 [Svensson et al., 1996] to do QM/MM calculations. This method is more versatile than 

other methods to do QM/MM, and can for example be extended to calculations not only 

incorporating a QM and MM region, but also 2 QM regions. In this section we will mainly 

discuss the theory behind performing a QM/MM calculation utilizing the ONIOM 

methodology. However, for completion, we will also include a brief discussion of other 

hybrid methods and their applications and show the versatility of the ONIOM methodology in 

extending the QM/MM system to more complicated hybrid systems. 

 

2.9.1 Introduction to QM/MM 

 

The aim of QM/MM is to treat one part of a molecular system with quantum mechanics (QM) 

and another that may be too large for QM, with MM. In general, the total energy of a system 

can therefore be written as: 

    /total QM MM QM MME E E E                (2.33) 

 where totalE  is the total energy of the entire system. QME  is the energy for the part of the 

system treated with a QM method and MME is the energy of the system treated with a MM  

method. /QM MME  is the energy of the interaction between the MM and QM systems. A 

QM/MM calculation can be done with the original QM/MM methodology or in the 

framework of the ONIOM methodology.  
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2.9.2 The original  QM/MM methodology  

 

In the original QM/MM methodology the term EQM/MM  is written as in equation 2.34  [Cui and 

Karplus, 2000].  

                                    /
1 1 1 1

| |
N m n m

j j k
QM MM i i vdW

i j k jij jk

q q Z
E E

R R
 

   

                             (2.34) 

The first double sum in 2.34 is a summation over N electrons in the QM system and m point 

charges on the atoms in the MM system. The QM wave function ψi, is polarized by the point 

charges in the MM system, each one denoted by qj. Rij is the distance between an electron and 

a point charge. vdWE  is the van der Waals interaction between the two systems, described by a 

potential such as the Lennard-Jones potential. The last term in 2.34 is the interaction between 

the charge of a nucleus, k, in the QM system and a point charge jq  in the MM system. There 

are n nuclei in the QM system and Zk is the atomic number of nucleus k. Rjk is the distance 

between a nucleus in the QM system and a point charge in the MM system. Although 2.34 is 

by default used for QM/MM calculations based on the original methodology, we will see that 

this type of calculation can be regarded in the ONIOM methodology as ONIOM utilizing 

electronic embedding, since the MM atoms are allowed to polarize the wave function of the 

QM system.  

    The first QM/MM hybrid method was described in 1976 [Warshel and Levitt, 1976]. This 

was applied to a very simple system, using a semi-empirical method for the QM part, and its 

covalent linkages, and a force field for the MM part. The vdW interactions and electrostatic 

interactions were modeled with a 6-12 Lennard-Jones potential and a Coulomb sum 

respectively. As technology improved, Hartree-Fock and later DFT methods were used to 

describe the QM part. There are few literature accounts where other ab initio methods such as 

MP2 or CCSD were used for the QM part [Kongsted et al., 2003; Osted et al., 2004; Muños-

Losa et al., 2003].  

    QM/MM calculations are usually done by interfacing a QM program with an MM program. 

The QM program does the QM calculations while the MM program does the MM 

calculations. The EQM/MM part is computed by a separate program or by additional code to an 

existing program. Problems with the QM/MM methodology starts to arise when one wants to 

determine properties such as NMR chemical shifts for the QM system and normal modes of 

vibration for the entire system. We will later see that using the ONIOM framework for 

QM/MM can solve all of these problems efficiently.  
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2.9.3 “Our own N-layered Integrated molecular Orbital molecular Mechanics” (ONIOM)  

method 

     

The ONIOM method can be regarded as an extrapolation scheme. For a QM/MM system this 

extrapolation can be seen as a way to approximate the total energy of the system at the QM 

level of theory by adding the energy, for the QM system only, to an energy correction that is 

determined at the MM level of theory. However, due to the nature of ONIOM the lower-level 

of theory need not necessarily be MM. All of these concepts will become clearer as we 

progress with this discussion. 

    The framework of ONIOM divides the system under consideration into a set of N layers, 

rather than just 2 layers as in the original QM/MM methodology. The layers are treated with 

different levels of theory. Usually N is equal to two or three. The user can choose these layers 

arbitrarily. Whereas QM/MM systems treat the EQM/MM term in equation 2.33 as a separate 

term, in ONIOM this term is divided between the calculations of the energies of the different 

layers. ONIOM has a unique way of defining these layers and in Fig. 2.2 we illustrate a three 

layered ONIOM scheme.   

 

Fig. 2.2: ONIOM explained graphically: A=model system, A+B=intermediate model system, A+B+C=real 

system. 

     In ONIOM terms, if the word “high” appears next to a term or property, it means the 

highest-level calculation of the chosen methods must be performed on this part of the system. 

If the word “medium” appears next to a term, it means that a medium-level calculation should 

be used, i.e. a method that is less accurate than the method used in the previous part of the 

system. If the word “low” appears, it means a low-level method should be used or a method 

less accurate than in the part of the system treated with a medium-level calculation. For 

example, the term low
modelE means a low-level calculation on the model system or A in Fig. 2.2.     

    Before attempting an ONIOM calculation, one must first decide which methods are going 

to be used. For example, one can use CCSD(T) for the high-level calculation, MP2 for the 

A 

B 

C 
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medium-level calculation and UFF for the low-level calculation. The ONIOM extrapolated 

energy for a three-layered system is defined as: 

   high med med low low
model intermed model real intermed( )E ONIOM E E E E E                (2.35) 

ONIOM(2) with a QM method in one layer and a MM method in another layer is similar to 

performing a QM/MM calculation. The energy for such a system can simply be written as: 

                                         high low low
model real model( )E ONIOM E E E                                               (2.36) 

In the general ONIOM framework, also called ONIOM with mechanical embedding, 

stationary charges are used for the QM and MM atoms. The user can specify the charges for 

the atoms in the QM and MM systems in the input or can utilize charge equilibration charges 

[Rappé and Goddard III, 1991]. ONIOM with mechanical embedding for QM/MM is known 

as IMOMM (Integrated molecular orbital molecular mechanics) [Masseras and Morokuma, 

1995]. In 2003 a new development, ONIOM-EE or ONIOM with electronic embedding was 

introduced in the ONIOM framework. This allows the atomic point charges on the atoms in 

the MM system to polarize the QM wave function.  

    To compute the ONIOM extrapolated energy for a QM/MM system, three calculations are 

necessary, one calculation for each of the terms in equation 2.36. Depending on the use of 

mechanical or electronic embedding, the calculations for the energy for the terms will vary. 

As we only used electronic embedding in this work, we will discuss the calculations based on 

the ONIOM-EE scheme. For ONIOM-EE we can write for the model system calculated at the 

high-level of theory:  

                                   high
model

1 1 1 1

ˆ ˆ( )
N m n m

j j k
i i i

i j k jij jk

q q Z
H H

R R
  

   

                                      (2.37) 

where Ĥ is the standard electronic Hamiltonian for an isolated QM system, ψi is the wave 

function, N is the number of electrons in the QM system and m is the number of point 

charges, qj  in the MM system. Rij is the distance between electron i and MM atom j. n is the 

number of nuclei in the QM system and Rjk is the distance between a nucleus in the QM 

system and a point charge in the MM system. Now we multiply with the complex conjugate 

of ψj  and integrate over all space. Only the terms where i=j will survive to give: 

                          

high
model

1 1 1 1

1 1 1 1

ˆ
N m n m

j j k
i i i i

i j k jij jk

N m n m
j j k

i i i
i j k jij jk

q q Z
E H

R R

q q Z
E

R R

   

 

   

   

  

  

 

 
                           (2.38) 

where Ei is the electronic energy obtained when the electronic Hamiltonian operates on the 

polarized wave function. The interaction between a charge of a nucleus and a point charge in 

the MM system does not depend on the wave function and is therefore a constant for a 

specific geometry.   
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    Turning our attention to the other terms in equation 2.36, we can write: 

                                                      low MM
real elvdWE E E                                                          (2.39) 

                                                      low MM MM
model model el( )E E E                                                    (2.40) 

where EvdW is the total van der Waals interaction energy of the entire system and MM
elE is the  

electrostatic interaction energy based on the initial point charges given for the QM atoms and 

the MM atoms in the input. For ONIOM-EE and general ONIOM, equation 2.39 is the same, 

but for ONIOM-EE the term in parenthesis in equation 2.40 also need to be added. The reason 

for this is that if charges are given for the QM atoms in the input, MM
elE  need to be subtracted 

from the total energy when applying equation 2.36. If it is not subtracted the electrostatic 

energy between the QM and MM systems will be counted twice - first at a QM level of theory 

and second at the MM level of theory. 

  

2.9.4 Geometry optimizations for QM/MM 

 

One of the big problems currently encountered for QM/MM systems is how to optimize such 

a system in an efficient time [Vreven et al., 2003]. Optimizing the whole system in Cartesian 

coordinates will be laborious as the quantum mechanical system will not be able to be 

optimized quickly in Cartesians.8 Optimizing the whole system in redundant internal 

coordinates will also be inefficient, since the MM system that may contain thousands of 

atoms, will be impossible to optimize in a reasonable time. Therefore, today, most QM/MM 

methods by default use separate optimization algorithms for both systems. Although this 

complicates the optimization of a QM/MM system, this approach to geometry optimizations 

is well known to be more efficient [Vreven et al., 2003] than otherwise. When the systems are 

optimized separately, the optimization of the QM system is known as macro-iterations and the 

optimization of the MM system is known as micro-iterations. When one system is optimized, 

the other system is held stationary. This is how ONIOM optimizations are done in Gaussian 

03 [Frisch et al., 2003].     

    We will discuss 3 types of optimization strategies, from the literature, in order to explain 

the optimization algorithms implemented in Gaussian 03. Before we continue, we should note 

that optimization algorithms are applicable to both the original QM/MM methodology and the 

ONIOM methodology.  

    Assuming we use micro-iterations for the MM system, we can divide the entire system’s 

coordinates into two sets of coordinates: coordinates for the QM system and coordinates for 

the MM system. The total first derivative (gradient) of the energy for an entire system can 

                                                 
8 Calculating the energy for a QM system can take a long time and Cartesian coordinate optimizers use 
more optimization steps than redundant internal coordinate optimizers do. 
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therefore be determined for the coordinates (qm)9 of the QM system where all the derivatives 

involving MM coordinates (ql) therefore becomes equal to zero. This calculation can be 

repeated for the MM coordinates where the derivatives involving the QM coordinates will of 

course vanish. This is illustrated in equation 2.41. 

                                                 

/

/

0

0

QM QM MMtotal

m m m

QM MMtotal MM

l l l

E EE

q q dq

EE E

q q q

 
  

 

 
  

  

                                           (2.41) 

As can be expected when the MM system is optimized in the micro-iterations, the total 

gradient with respect to ql  should be determined for each optimization step. This will slow 

down the micro-iterations since Cartesian optimization algorithms, as already mentioned, use 

much more steps for a geometry optimization than redundant internal coordinate optimizers 

do. As QM/MM is usually used for large systems that cannot be optimized with general ab 

initio methods, this will create problems depending on how large the MM system is. 

Therefore, in order to speed up the micro-iterations, approximations of the gradient need to be 

made, of which the approximation of Yang and coworkers [Yang et al., 2000] is the most 

severe, although, according to them, was still very efficient for their purposes. Instead of 

using the exact gradient in the micro-iterations, they removed the part of the exact gradient 

involving the forces between the MM and QM atoms, due to the polarization of the MM point 

charges on the wave function, and replaced this with a new gradient containing an 

approximation of the electrostatic energy. To approximate the electrostatic energy they 

derived ESP atomic point charges based on the polarized QM systems’ electron density and 

calculated the Coulomb energy for the interaction between these charges and the charges in 

the MM system. When the QM system was optimized, the exact gradient was used, but when 

the MM system was optimized, the approximate gradient was used. This is only a good 

approximation if one assumes that the MM system does not move significantly during the 

micro-iterations with respect to the QM system. Vreven et al. [Vreven et al., 2003] 

commented that this method is inaccurate as the potential energy surface (PES) for optimizing 

the QM system and the PES for optimizing the MM system is not the same. Friesner and 

coworkers, [Murphy et al., 2000] used a better method for optimizing the MM system in the 

micro-iterations. They used the exact gradient or force with respect to the MM coordinates 

both to optimize the QM and the MM systems, but instead of calculating the exact forces for 

the MM system at each optimization step while it moved with respect to the QM system in the 

micro-iterations, they used an approximation. They derived the ESP point charges as based on 

the electron density of the QM system and used the change in the Coulomb energy between 

                                                 
9 Note that q is now used for coordinates rather than charges as previously. 
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these charges and the stationary charges on the atoms in the MM system to approximate the 

change in the exact force during the micro-iterations. The original gradient at step n in the  

micro-iterations is therefore perturbed as illustrated in equation 2.42: 

                      
* *

/ [ ( )] [ (0)]
( ) (0) (0) ( )

( ) (0)
QM MMtotal el elMM

l l l

EE E n EE
n

q q q R n R

 
   

  
                        (2.42) 

where the terms in parenthesis are an approximation of how the original force should change 

from step 0 or at the start of the micro-iterations to step n in the micro-iterations. *
elE is the 

electrostatic energy as determined by a Coulomb interaction between the stationary charges 

on the MM atoms and the ESP charges on the QM atoms. R is the distance between the ESP 

derived charge and a stationary charge in the MM system. Eventually as the electrostatic force 

on the MM atoms exerted by the QM system becomes zero, the force of the QM system on 

the MM system becomes exact. However, there is one problem with this method. When the 

exact electrostatic force exerted by the QM system on the MM system initially differs largely 

from the approximated electrostatic force that should direct the optimization, the approximate 

change in the exact force will be negligible and the force of the QM system on the MM 

system will not become exact. We will discuss this further in Chapter 9. In Friesners’ scheme 

[Murphy et al., 2000] one optimization step is taken for the QM system after which the MM 

system is optimized with a stationary QM system. The process is then repeated until the two 

systems are self-consistent. Vreven and coworkers, [Vreven et al., 2003] suggested that this 

method can be improved since the MM system will not be optimized when another 

optimization step is taken for the QM system. The new method is implemented in Gaussian 

03. They suggested that after the micro-iterations the wave function should be reevaluated to 

see how the charges of the QM system should be updated after the micro-iterations and then a 

new set of micro-iterations should follow. An optimization step for the QM system is only 

taken after the MM system is optimized. Before an optimization step can be taken for the QM 

system, the Hessian (second-derivative matrix) has to be updated with the derivative of the 

forces of the optimized MM system on the unoptimized QM system. After an optimization 

step is taken in the QM system, a new set of micro-iterations is employed unless the MM 

system is still optimized after the optimization step in the QM system. The process is repeated 

for each step in the QM system until the QM and MM systems are self-consistent and the net 

force on the entire system is as close to zero as possible. Sometimes it might be that the QM 

optimization step takes the system out of the potential energy well obtained after the MM 

optimization. Gaussian 03 makes sure that the QM optimization step stays in the correct 

potential energy well. For more information, the reader is referred to the article by Vreven and 

coworkers [Vreven et al., 2003].  
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    It is still possible to use a redundant internal coordinate optimization algorithm in Gaussian 

03 for ONIOM-EE geometry optimizations, but this optimization algorithm has not been 

adapted to include proper electronic embedding. A proper treatment is only available when 

separate optimization algorithms are used for the QM and the MM systems.  

 

2.9.4 QM/MM system optimizations with constraints  

 

Since Gaussian 03 allows the user to use constraints in redundant internal coordinates for the 

optimization of the QM system and constraints in Cartesian coordinates for the optimization 

of the MM system, one is allowed flexibility in the optimization of the QM system, but not 

much flexibility in the optimization of the MM system. In the optimization of the QM system, 

modified redundant internal coordinates can be added, redundant internal coordinates can be 

stepped to find transition states and internal coordinates can be frozen. In the MM system 

however, there are only two options: the Cartesian coordinates can either be frozen or a 

specified set of Cartesian coordinates can be made to behave as a rigid block. We will now 

briefly discuss these two options as both have been used in this work.   

   When the Cartesian coordinates of atoms in the MM system are frozen, the optimization 

should be slightly modified. When systems are optimized without any frozen atoms in the 

MM system, the whole QM system is usually frozen while the MM system is optimized. 

However, when atoms in the MM system are frozen these atoms can no longer position 

themselves with respect to the QM system as is generally done during the micro-iterations. In 

this case the QM system should be allowed to move to position itself with respect to the MM 

system. Vreven et al. [Vreven et al., 2003] discuss various methods in how to approach this 

problem. They suggest three solutions to the problem: 

1. The frozen Cartesians can be added to the coordinate system of the QM system and 

the optimization for the QM system can be performed in Cartesians, which would 

take very long.  

2. The QM system’s internal coordinates can be added to the MM system in the micro-

iterations and the micro-iterations performed in redundant internal coordinates, which 

would also be laborious and inefficient. 

3. One can convert the internal coordinates of the QM system to Cartesians and add 

these coordinates, together with the coordinates of the mass center or geometrical 

center of the QM system in Cartesians, to the MM system. The micro-iterations are 

then used to position the QM system, treated as a rigid block, with respect to the 

frozen MM atoms as well as the relaxed MM atoms. The QM system is then later 

optimized as usual.   
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Method 3 is used in Gaussian 03 and it can be represented by Scheme A in Fig. 2.3. 

Fig. 2.3: Diagram illustrating two schemes when using frozen coordinates in the MM system.  

 

    It is also possible to make selected atoms in the MM system behave as rigid blocks. This is 

illustrated in Scheme B in Fig. 2.4. However, the larger the number of rigid blocks, the longer 

the optimization will take. The reason is that mass centers or geometrical centers, need to be 

added to the Cartesian coordinate system in the micro-iterations for each of these blocks. In 

an optimization, these blocks will each have to position themselves with respect to the QM 

system while simultaneously positioning themselves with respect to the other rigid blocks in 

the MM system. When mechanical embedding is used the optimization is not that difficult, 

but with electronic embedding, the force on the MM atoms by the QM system will have to be 

evaluated and updated each time a rigid block moves for all the atoms in the rigid block. The 

movement of the rigid blocks is usually scaled with respect to their translation and their 

rotation. The limitations of this method are that the MM rigid blocks are not fully optimized 

as no internal coordinates are available that would make the MM blocks rotate around their 

geometrical center or mass center. Therefore, the MM rigid blocks are limited to only basic 

movements. For our work we had to use rigid block movement, as most of our monomers in 

our clusters were restricted to the MM system. Gaussian 03 does not provide a solution for 

this problem and according to Dr Thom Vreven [Vreven, personal communication], an 

optimization algorithm will not be available soon, although he said that in the meantime it is 

reasonable to attempt to do the optimizations by using rigid blocks.  

 

2.9.5 Problems at the boundary 

 

Optimization with frozen coordinates in the MM system 

Whole QM system is frozen and added as a rigid 
block in the micro-iterations (See text) 

MM system frozen 

Rigid block 

QM is frozen  
Parts of the MM system are allowed rigid block movement 
with respect to each other. In each rigid block  
the atoms are frozen. (See text) 
 

A B
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When a covalent bond stretch from an atom in the QM system to an atom in the MM system, 

it may be difficult to model as the QM and the MM systems will have dangling bonds at the 

boundary between the two systems. The boundary is much better defined in the ONIOM 

methodology than in other QM/MM methodologies and it is therefore here that ONIOM 

outperforms standard QM/MM methodologies. Various schemes to solve the boundary 

problem have been developed for QM/MM systems based on the traditional QM/MM 

methodology, but they are much more complicated than in the case of the ONIOM 

methodology.  

    In ONIOM, the whole system under study is defined in one coordinate system; the 

coordinate system of the real system, see Fig. 2.2. Therefore using link atoms, vide infra to 

partially solve this problem, is well defined in the real system. For example, for 1-

phenylethanone in Fig. 2.4 the real system is defined as the entire molecule and the model 

system is defined as acetaldehyde. The model system is treated with quantum mechanics and 

the MM system, which is the remaining part of the real system, with a force field. The link 

atom is shown surrounded by a red circle in Fig. 2.4 and has coordinates r2. The link atom can 

be chosen to be any atom that can represent the part of the bond in the QM system, but is 

usually chosen to be a hydrogen atom or to be isolobal to the substituent in the MM system 

[Dapprich et al., 1999]. 

 

O

CH3 H

O

CH3

 

Fig. 2.4: Diagram illustrating the use of a link atom in an ONIOM calculation where a bond is partially QM 

and partially MM.  

In Gaussian 03 the position of link atoms can be scaled with respect to the distance of the 

bond between the MM and QM systems. In Fig. 2.4 we give labels to each of the atoms 

involved to describe the bond between the MM and QM systems. The position of r2 can be 

scaled by varying g in equation 2.43.  

                                                                r2=r1+g(r3-r1)                                                      (2.43) 

Using the ONIOM methodology, all of the atoms in the entire system are defined in terms of 

the coordinates of the real system, which makes it very simple to determine normal modes of 

vibrations, as well as infrared (IR) and Raman intensities for the whole system under study. 

With other QM/MM methodologies such calculations can be very difficult and too time 

consuming for large systems. The calculation of derivatives for ONIOM will be discussed in 

Section 2.9.6.  

Real system 

Model system Model system 

r1(carbon atom) 

r3 

r2 
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    The link atom method is not foolproof and for the ONIOM-EE methodology much research 

is being done to improve the electrostatics of a system containing link atoms. The main 

problem seems to be the overpolarization of the QM system by the link atom. Truhlar and 

coworkers have developed new methods to make the treatment of electrostatics in systems 

using link atoms more accurate [Truhlar et al., 2005]. Other methods used to saturate the 

boundary in QM/MM systems are the Generalized hybrid orbital (GHO) [Pu et al., 2004] 

method and frozen orbitals [Murphy et al., 2000]. 

 

2.9.6 ONIOM vs other QM/MM methodologies 

 

Regarding our discussion above, the reader will now appreciate the advantage that ONIOM 

has over traditional QM/MM methods. As also mentioned earlier, to derive properties for a 

system treated with ONIOM, even with link atoms, is very simple. The computation of the 

second derivative or Hessian matrix for the entire system can be written as [Dapprich et al., 

1999]: 

                    
2 2 high 2 low 2 low

model real model
2 2 2 2

[ ] [ ]T Ttotd E d E d E d E
J J J J

dq dq dq dq
                                        (2.44) 

where Etot is the total ONIOM energy of the real system and q are the Cartesian coordinates of 

a specific subsystem such as the model system. In the first bracket, J (JT) is the Jacobian 

(transpose of the Jacobian) necessary to project the second derivatives for the link atoms in 

the model system at the high-level of theory to the Hessian of the model system at the high-

level of theory. In the third bracket, the Jacobian and its transpose project the second 

derivatives of the link atoms in the model system at the low-level of theory to the Hessian of 

the model system at the low-level of theory. Equation 2.44 then gives a Hessian that has the 

correct degrees of freedom as the link atoms are defined in the real system [Dapprich et al., 

1999].  

When the QM and MM sytems are not bonded, the Jacobian is a unit matrix. This procedure 

is implemented in both Gaussian98 and Gaussian 03.   

    To derive second derivatives for an entire system, not even including link atoms, based on 

the traditional QM/MM methodologies, can be cumbersome. When the QM method is 

Hartree-Fock or DFT, the second derivatives can be derived based on the general second 

derivatives for these energies. To compute these derivatives the coupled perturbed Hartree-

Fock (CPHF) or coupled perturbed Kohn Sham equations (CPKS) need to be solved for the 

entire system including the MM system [Cui and Karplus, 2000] and this complicates the 

derivation of the Hessian for such systems, especially when the systems are very large. 

Another advantage of ONIOM or  
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ONIOM-EE is that it is much more versatile than traditional QM/MM methodologies. For 

example, all the principles to derive derivatives, NMR chemical shifts etc. are in the ONIOM 

methodology not only possible for QM/MM systems, but also for QM/QM and QM/QM/MM 

and QM/QM/QM systems. In a CCSD/MP2 system for example, the interaction between 

molecules in the CCSD layer and the molecules in the MP2 layer is treated at the MP2 level 

of theory. We are not certain if ONIOM-EE has been applied for such systems, but using 

ONIOM with mechanical embedding has been done for a multitude of systems. There are still 

many improvements necessary before ONIOM and ONIOM-EE can be accepted as standard 

methods. We will list six:  

 

1. Sometimes the QM wave function is overpolarized by the link atom and, as 

mentioned, has received attention in the literature [Truhlar et al., 2005].  

2. The treatment of the electronic embedding in ONIOM-EE can be made more 

accurate (see Chapter 9). 

3. The MM system should not only be able to polarize the QM wave function, but the 

QM wave function needs to be able to polarize the MM system. This has been 

achieved based on the traditional QM/MM methodology, either by including 

induced dipoles [Bakowies and Thiel, 1996] in the QM/MM equation, or by using 

the Discrete Reaction Field (DRF) [Jensen et al., 2003] method. Geometry 

optimizations are however not feasible for the systems of interest. 

4. It is essential to develop better optimization algorithms, to incorporate mixed 

redundant and Cartesian coordinates in the micro-iterations so that bonds, valence 

angles and torsion angles can be restrained in the MM system.  

5. Polarizable force fields can be used to incorporate the polarization of the molecules 

in the MM system.  

6. As far as we know, molecular dynamics (MD) has not been applied for a system 

described by the ONIOM methodology. MD has been performed for QM/MM 

systems based on the traditional QM/MM methodology. See for example the article 

by Martín et al. [Martín et al., 2002].  

 

Despite these problems with the ONIOM and ONIOM-EE methodologies, both 

methodologies have been applied to solve many problems that would otherwise have been 

impossible to solve due to the size of the systems. Some applications for ONIOM/ONIOM-

EE are: 
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► The modeling of enzyme catalysis [Sklenak et al., 2004]. 

► The modeling of host-guest systems [Casadesùs et al., 2003]. 

► Surface adsorption [Martins et al., 2004]. 

► Nanotechnology [Ricca and Drocco, 2002; Froudakis, 2001]. 

► Molecular dynamics such as ONIOM-ADMP (ONIOM Atom centered density matrix 

propagation [Rega et al., 2004].  

► ONIOM(XS) (ONIOM with exchange of solvents) [Kerdcharoen and Morokuma, 

2001].  

► ONIOM-PCM (ONIOM with a polarizable continuum model) [Vreven et al., 2001]. 

► Organometallic chemistry [Yamanaka and Mikami, 2002]. 

► RAFT polymerization [Izgorodina and Coote, 2006].  

► Reactions in zeolites [Sangthong et al., 2005]. 

 

As far as we know, the ONIOM methodology has never been used to study gas phase van der 

Waals clusters as in this work. In fact, the only study that we could find is where HF and 

other halides solvated in Ar were studied with a hybrid method. For the QM system the 

researchers used MP2 and for the MM system, Diatomics-in-molecules (DIM) [Bochenkova, 

2004]. This hybrid system should be regarded as a QM/SE (quantum mechanical semi-

empirical) system rather than a pure QM/MM system. 

 

2.9.7  The accuracy of hybrid methods 

     

ONIOM and QM/MM methods are reasonably well developed, but no hybrid calculations and 

geometry optimizations can be blindly accepted as being accurate and have to be verified 

against experimental results if available. In the literature, it is also evident that one program’s 

answer might differ from another program’s answer, purely because different algorithms are 

implemented in different software packages [Friesner and Guallar, 2005]. When using 

methods such as IMOMO [Humbel et al., 1996], the S-value test [Morokuma et al., 2001] 

should aid in choosing good combinations of methods for the layers.  

 

http://scholar.sun.ac.za/



48 

2.10 Force field parameterization for QM/MM 

 

As far as we could ascertain, force fields have never been optimized for the ONIOM-EE 

scheme, since this option only became available in 2003 with the release of Gaussian 03, but 

there are accounts in the literature for force field optimizations utilizing the original QM/MM 

methodology. In this section we will look at various ways in which force fields can be 

optimized for QM/MM systems. 

    To modify a force field, such as UFF, to be used for QM/MM calculations and 

optimizations, the nonbonded interactions usually receive priority. Only when a brand new 

force field is developed, should one parameterized torsions, angle bends and bond stretches.      

    In UFF [Rappé et al., 1992], the electrostatic interaction is a simple Coulomb interaction 

and therefore there are no parameters that can be optimized. The Coulomb interaction will 

depend on the charges of the MM and QM atoms. The vdW parameterization will be 

dependent on the electrostatic interactions.  

    When optimizing any force field one needs a reference system. One then parameterizes the 

force field to reproduce data that is known for the reference system, such as its geometry, its 

thermodynamical properties etc. The data can either be determined by experiment or when 

experimental data is lacking, by ab initio calculations [Leach, 2001].  

    The vdW equation is nonlinear and therefore methods of solving linear equations cannot be 

used. It can be extremely time-consuming to optimize a new force field, depending on the 

method and reference data used [Leach, 2001]. Force field optimization strategies can be 

divided into two groups: manual and automatic methods. Depending on the method and the 

criteria used for optimizing the parameters of the force field will determine if geometry 

optimizations are necessary or not. 
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2.10.1 Manual force field optimization methods 

 

2.10.1.1 Trial and error 

 

The name says it all. This method is extremely time consuming and involves a significant 

number of human intervention. Parameters for the force field are intelligently guessed or 

based on previously optimized parameters. If the force field optimization method includes a 

geometry optimization, the computational chemist can specify these parameters in an input 

file for the computational software package that can then perform a geometry optimization 

after which the chemist can change the parameters and perform another geometry 

optimization. This process is then continued until the geometry is as close as possible to the 

reference geometry. The trial and error method was one of the methods that we attempted in 

this work to optimize force field parameters.    

    The quality of the force field can be assessed by making use of a root mean square 

deviation (RMSD), vide infra. The trial and error method might be unsuitable for some 

systems where geometry optimizations can be laborious.  

 

2.10.1.2 Automatic methods 

 

The easiest way of optimizing force field parameters is by using a force field optimization 

program to vary the parameters. However, such a program should be able to perform 

QM/MM geometry optimizations or it should be able to interface with a separate program, 

such as Gaussian 03 that can perform the optimizations. The latter is of course the most 

convenient option. By stepping the force field parameters by a line search and using 

numerically calculated derivatives, the force field optimization program should be able to 

optimize the force field parameters without human intervention. Such a program was not 

available during this work, unfortunately.  

    The majority of force fields for QM/MM systems are optimized for biological systems. In 

one account [Riccardi et al., 2004] the hydrogen bond energy and bond length for several 

peptide dimers were used as a reference system in the optimization of force field parameters 

by an automatic optimization method. This group made use of a genetic algorithm (GA), vide 

infra, where they gave certain priorities to the fitting of various data. For example, they gave a 

higher priority to reproducing the hydrogen bond energy than to reproducing the hydrogen 

bond length.  

    In our work we also used a GA under certain circumstances, which will be described in the 

appropriate chapters. Other methods can also be used, such as simulated annealing or general 

derivative based methods. The advantage of using nonderivative-based methods is that these 
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methods are designed not to get stuck on a local minimum as is the case with general 

derivative based methods such as Newton-Raphson or quasi-Newton methods. The 

nonderivative-based methods can be used to find a global minimum on an optimization 

surface.  

 

2.10.2 Genetic algorithms (GA’s) 

 

GA’s are based on genetics and the principle of Darwin’s survival of the fittest. In GA’s, 

random models are generated and stored as so-called chromosomes. For example, if one 

wants to optimize 4 vdW parameters, then a set of chromosomes, the number that is specified 

by the user, will contain “genetic” sequences representing each of these parameters. The 

random parameters are encoded in binary bits. For example if a parameter is 9 it will be 

represented by 1001 in binary notation. These chromosomes are then allowed to “crossover” 

meaning that they exchange bits to form hybrid chromosomes that form the next generation. 

A fitness function is used to give a certain “fitness” to each chromosome in each generation. 

The fitness function is based on the ability to reproduce the reference model’s results. Only 

the chromosomes with the highest “fitness” in a generation are allowed to “crossover” to form 

the new generation. The user can also allow a certain percentage of mutations and the type of 

crossover can also be specified. The process is repeated with the new generation and is 

continued for a certain number of generations that can be set by the user. Eventually as the 

generations progresses, some models die out and after a certain number of generations, set by 

the user, the chromosome with the highest “fitness” is given as the output. This is then the set 

of optimized parameters.  

    Results obtained with GA’s should always be reoptimized with a gradient optimization 

algorithm [Jensen, 2001]. A GA can only move into a global minimum well, but to step 

towards the global minimum, gradient optimization algorithms should be used. The other 

problem with GA’s are that they take much longer than gradient optimization methods to find 

minima and if all the GA’s parameters, such as mutation probability, are not specific for a 

particular optimization under study, then GA’s might give worse results than with gradient 

optimization methods. GA’s can find both minima, maxima and can be set to optimize 

parameters to obtain a specific value such as the energy, for example. All variables can be 

constrained to certain limits.    
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2.10.3 Force field quality assessment 

 

In order to assess the quality of a force field, statistical methods can be used. One of the 

simplest, and also the choice in our work, is the root mean square deviation (RMSD), which is 

defined as: 

                                  
2

reference estimated( )
RMSD

N

 
                                                     (2.45) 

where reference is the value for a property of the  reference model, estimated is the value obtained 

for the same property after a trial run with the force field and N is the number of values for a 

properties being measured. For example, in our work we used nonbonded distances 

determined through a MP2-optimization as reference and measured the nonbonded distances 

obtained with our force field as estimated .  

 

2.11 Accounts from the literature for the optimization of  

        Lennard-Jones parameters for QM/MM 

 

There are relatively few reports in the literature regarding the optimization of Lennard-Jones 

parameters for hybrid methods. Martín and coworkers [Martín et al., 2002] optimized 

Lennard-Jones parameters for the simulation of water molecules. They made use of an ASEP 

(Average Solvent Electrostatic Potential) approach for QM/MM/MD (quantum mechanics- 

molecular mechanics-molecular dynamics) simulations and were able to improve previous 

results for liquid water obtained with this method.     

    Murphy and coworkers [Murphy et al., 2000] optimized the Lennard-Jones parameters for 

the twenty natural amino acids. They managed to improve the QM/MM binding energies to 

within 0.6 kcal/mol of the desired target, which showed a significant improvement in the 

binding energies with respect to the default Lennard-Jones parameters, which gave grossly 

incorrect binding energies.  

    Lennard-Jones parameters were optimized for the modeling of bimolecular systems 

representing hypothetical interactions between a QM active site of a protein and a MM 

protein environment [Freindorf et al., 2005].  

    Lennard-Jones parameters were developed for the interaction of Na+ and Cs + with 

calix[4]arene-bis-crown-6 (BC6) in a QM/MM molecular dynamics simulation [Golebiowski 

et al., 2001]. Lennard-Jones parameters were also optimized for the QM/MM simulation of 

liquid hydrogen fluoride, which was simulated by using a QM/MM molecular dynamics 

method [Wierzchowski et al., 2003].  
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2.12 Summary and conclusions  

 

As is evident from the discussion in this chapter, the task of eventually optimizing force field 

parameters for UFF to be used with ONIOM-EE for vdW clusters is challenging. The coin has 

two sides. The modeling of nonbonded interactions using ab initio methods is a challenge on 

its own. This is evident from the literature, which states that to obtain results comparable to 

what we know about these systems from experiments, large correlation consistent basis sets 

and high levels of theory such as CCSD(T) should be used. Modeling hydrogen bonds is 

simpler and methods to model hydrogen bonds include DFT, which yields good to excellent 

results when using a large correlation consistent basis set such as the triple zeta aug-cc-pVTZ 

basis set of Dunning. We also mentioned the importance of using post-HF methods when 

doing calculations on clusters.   

    Other than with the optimization of single molecules, the electronic energy for a cluster 

does not give valuable information and in the literature the binding energy or interaction 

energy is almost always quoted. We saw that in order to report accurate interaction energies 

or binding energies it is important to correct for the BSSE. One can use either MBPT theory 

or SAPT. The main advantage of SAPT is that no BSSE is included in the calculation of the 

interaction energy. The advantage of the supermolecular theory is its simplicity.  

    The vdW clusters used in this study are usually studied computationally as very little 

experimental information, giving insight in their geometries and properties, exists. In Section 

2.5 we mentioned many methods that can be used in modeling vdW clusters. During this 

study MP2, DFT and QMC were all considered as possible methods for modeling large vdW 

clusters quickly and accurately.  

    In this chapter, we also discussed CC theory, which is used as a benchmark for vdW 

clusters if no experimental information is available. We also briefly mentioned other methods 

that are used to optimize vdW clusters, such as the localized-MP2 method, which is a 

promising method in giving accurate answers in a quicker time than conventional MP2. It is 

however not used by many in the field. 

    The other side of the coin is the use of a hybrid method to model the clusters. Hybrid 

methods should be able to decrease the optimization time of larger clusters and even crystals 

significantly. We reviewed the background information necessary to understand our 

application of the ONIOM-EE methodology in this work. We also compared the standard and 

more well known QM/MM methods with the ONIOM methodology of Morokuma and 

coworkers and discussed the advantages and limitations of utilizing the ONIOM-EE method 

compared to achievements in the field of QM/MM, for example the mutual polarization of the 
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MM and QM systems. We briefly mentioned optimization algorithms that can be used to 

optimize a hybrid system in order to explain the addition of geometry constraints as used in 

this work. We discussed methods in which force fields can be optimized for application in 

hybrid methods. Finally, we reviewed a selection of literature regarding optimization of 

Lennard-Jones parameters for various hybrid systems.  

    It should be evident from this chapter, that many strides have been made towards 

developing hybrid methods since 1976, and that we are getting closer and closer by the day to 

developing quick and robust hybrid methods able to model systems that are too large for 

general ab initio calculations.    
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Chapter 3 

 

Preparations for the molecular modeling 

of clusters for ab initio calculations and 

ONIOM  
  

3.1 Introduction 

 

In order to do hybrid calculations of van der Waals clusters, various preparations have to be 

done and various decisions have to be made. The quality of the results will depend on these 

preparations and decisions. In this chapter we will concentrate on these.   

    Usually a variety of methods and different basis sets can be used to model different 

molecular clusters. Therefore, to model hydrogen fluoride clusters, a DFT functional would 

be more efficient, for example, in terms of the time needed for optimizations than post-HF ab 

initio methods. For the modeling of carbon monoxide clusters, however, standard DFT cannot 

be used due to its well-known inability to model dispersion interactions, and we are left with 

ab initio methods. In addition, hydrogen fluoride clusters can be modeled with smaller basis 

sets than in the case of carbon monoxide clusters, because the correlation energy does not 

play such an important role in the interaction energy of hydrogen fluoride clusters than in 

carbon monoxide clusters. When developing a force field for a hybrid system that should be 

able to model both these systems as accurately as possible, one needs to decide on a suitable 

method and basis set that is applicable for the modeling of both HF and CO clusters.    

    The chapter is divided as follows: In Section 3.2 we will give a list of the software used in 

this work. In Section 3.3 and Section 3.4 we will illustrate the strategy used to find a suitable 

method and basis set. In Section 3.5 we will discuss the design of the hybrid systems in this 

work. Section 3.6 will conclude this chapter with a general summary and conclusions.   

 

3.2 Software used in this work 

 

In this work we made use of a variety of software. Instead of specifying the software used for 

each application, we thought it more appropriate to list them in this section together with their 

references. Therefore, at any time, if the reader is interested in knowing how certain 
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calculations were performed, he/she can consult this section. In the following chapters we will 

not give the references to the software again in order to make the text simpler to read.   

 

3.2.1 Ab initio calculations, geometry optimizations, and vibrational analysis  

 

Gaussian 03 [Frisch et al., 2003] and Gaussian98 [Frisch et al., 1998] are well-known 

commercial computational chemistry packages able to do mainly ab initio and DFT types of 

calculations. Gaussian98 is also able to do ONIOM with mechanical embedding. Gaussian98 

was mainly used in this work to optimize some of the smaller hydrogen fluoride and carbon 

monoxide clusters.  

    Gaussian 03 is the newest version of the Gaussian software and is able to do ONIOM-EE. 

It also allows the user to modify force field parameters in the input. It has three built-in force 

fields, namely UFF [Rappè et al., 1992], AMBER [Cornell et al., 1995] and Dreiding [Mayo 

et al., 1990]. We used UFF due to its general applicability to molecules and molecular 

systems. Dreiding could also have been used, but it is not as versatile as UFF has atom-types 

for almost all the atoms on the periodic table. AMBER is a force field for the modeling of 

large biological systems such as proteins.  

    Gaussian 03 was used for the optimization of the larger clusters and for ONIOM-EE 

calculations. It is also possible to do force field single point calculations and optimizations 

with this software. In some cases, Gaussian 03 was therefore also used for general force field 

optimizations. Gaussian 03 also allows the user to estimate the BSSE of a calculation as 

determined by the counterpoise correction [Boys and Bernardi, 1970]. For clusters containing 

many monomers, such as in this work, this feature is very helpful.  

 

3.2.2 Visualization of results 

 

In order to visualize optimized molecules and animate optimizations and normal modes, 

Gaussview [Dennington II et al., 2003] was used. Molden 4.0 [Schaaftenaar and Noordik, 

2000] was also used to visualize some of the optimizations and normal modes of vibrations. 

Gaussview was also used to visualize molecular orbitals and plots of the electrostatic potential 

(ESP) mapped onto the electron density.   
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3.2.3 Analysis of wave functions 

 

3.2.3.1 Atoms in Molecules (AIM) 

 

For the Atoms in Molecules method, used in some cases in this work, AIMPAC 9510 was used. 

This set of programs made it possible to calculate atomic charges, draw contours of the 

electron density and second derivatives of the electron density, determine gradient paths of 

the electron density and determine critical points and their properties.  

 

3.2.3.2 Natural Bond Orbital (NBO) analysis  

 

NBO 3.0 [Glendening et al., 2001] was used in the analysis of the wave functions of selected 

clusters and to obtain atomic charges for comparison to charges derived by other charge 

derivation schemes.  

 

3.2.3.3 Force field geometry optimizations 

 

Cerius2 [MSI, 1998] was used to do basic force field based geometry optimizations and 

general calculations. It gives a decomposition of the steric energy, whereas Gaussian 03 does 

not. Cerius2 was also used to assess the force field results obtained with Gaussian 03.   

 

3.2.3.4 Graphical representation 

 

Images in this work were generated by Gaussview, Molekel 4.3 [Flükiger et al., 2000] and 

WebLab ViewerLite 4 [MSI, 2000].  

   

3.3 Choice of method  

 

In order to obtain accurate geometries for the clusters, it was necessary to use post-HF 

methods. Our first choice was Møller-Plesset perturbation theory with energy corrections to 

the second order (MP2) as it is known as a method that incorporates electron correlation in an 

affordable way. However, it is known that DFT can be used to optimize systems in times 

comparable to that taken for HF theory optimizations while incorporating electron correlation. 

We therefore investigated the use of DFT for weakly bonded clusters such as CO clusters and 

found one outstanding account in the literature where functionals were designed that gave 

                                                 
10 www.chemistry.mcmaster.ca/aimpac/ 
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very good results for rare-gas clusters [Sato et al., 2005]. However, in investigating the 

possibility of using these functionals in our work, rather than MP2, we learned that since they 

are brand new, they have not been incorporated into Gaussian 03.   

    After reading about Quantum Monte Carlo in an article on the modeling of large hydrogen 

clusters [Carmichael et al., 2004], we investigated this method and learned that it is a faster 

method than CCSD, and can generate correlated wave functions of extremely high accuracy. 

Furthermore, no Slater determinants need to be stored on disk, making the hardware 

requirements much less severe than for ab initio methods. The other advantage is that it does 

not use basis sets, so BSSE and other basis set problems are absent with this method. To 

perform QMC however, one needs a dedicated parallel architecture of sufficient size, and this 

was not available at the time of this work.   

    On this basis we eventually opted for MP2. It was therefore necessary to choose a suitable 

basis set for the calculations.  

 

3.4 Choice of basis set 

 

In order to decide which basis set to use, certain criteria were set: 

 

1. MP2 optimizations using the basis set had to be able to reproduce experimentally 

determined geometries, which had to be energy minima. For CO clusters, for 

example, it is currently accepted that there are two stable dimers and both are slipped 

antiparallel. The C-bonded one is the global energy minimum dimer [Surin et al., 

2003]. It was also important that the values for the bond lengths of the monomers for 

the energy minima structures had to be reasonably close to experiment. 

2. The basis set had to have a minimum number of BSSE, as predicted by the 

counterpoise method [Boys and Bernardi, 1970].  

3. The basis set had to perform well for both hydrogen fluoride and carbon monoxide 

clusters. We assumed that if this were the case, the basis set would also be suitable for 

CO/HF clusters.  

4. The basis set size had to be suitable for the calculations that had to be done in the 

time frame for this project and suitable for the available hardware at our disposal. 

 

Priority was given to criteria 1, 3 and 4, as criterion 2 is usually difficult to accomplish unless 

extremely large correlation consistent basis sets are used. In order to incorporate as much of 

the electron correlation as possible, polarization functions are recommended [Jensen, 2001]. 

After priorities 1, 3, 4 and possibly 2 were satisfied, we compared the bond lengths of an 
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optimized monomer in the gas phase with the experimental values. All the optimizations were 

done under very tight optimization conditions. For the HF dimer and CO dimers, no 

symmetry constraints were placed on the optimization. All the dimers were evaluated for 

being energy minima by doing a vibrational analysis and confirming that no imaginary 

frequencies were found.  

    Table 3.1 gives a summary of the properties of the HF dimer obtained by using a variety of 

basis sets. For the definition of the geometrical parameters used in Table 3.1, the reader is 

referred to Fig. 3.1. 

 

H

F F

H

Angle 1

Angle 2

RFF

 
Figure 3.1 : Definitions for the geometrical parameters used in Table 3.1. R

FF
 is the distance between the 

two fluorine atoms. 

Table 3.1: Results for the optimization of the HF dimer with MP2 utilizing a variety of basis sets. See Fig. 
3.1 for the definition of the geometrical parameters.   

 

 

From Table 3.1 we can make a number of observations: 

1. The BSSE corrected interaction energy of the split valence (SV) basis sets 

seems strongly dependent on the number of Gaussian primitives (GTO’s) 

used to describe the valence shell. The Dunning correlation consistent double 

Basis set 

Interaction 

energy with 

BSSE-

correction 

(kcal/mol) 

Interaction 

energy without 

BSSE –correction

(kcal/mol) 

BSSE 

(kcal/mol)
%BSSE 

Angle 1 

(o) 

Angle 2 

(o) 
RFF  (Å) 

6-31++G(d) -4.4 -5.6 1.2 21.4 114.4 7.0 2.76 

6-31+G(d,p) -4.2 -5.0 0.7 14.9 115.5 7.4 2.78 

6-31++G(d,p) -4.2 -5.0 0.8 15.0 115.1 7.7 2.78 

6-311G(d) -4.5 -7.1 2.6 36.8 100.2 17.7 2.68 

6-311G(d,p) -3.8 -6.3 2.5 39.4 98.3 15.5 2.71 

6-311+G(d,p) -3.8 -4.7 0.9 19.8 121.3 6.1 2.79 

6-311++G(d,p) -3.8 -4.8 1.0 20.3 121.6 6.0 2.79 

Aug-cc-pVDZ -4.0 -4.7 0.7 14.4 110.2 6.5 2.75 

6-31++G(2d,2p) -4.1 -4.9 0.8 16.1 111.3 5.8 2.73 

Experimental 

[Howard et al.,1984] 
    117±6 10±6 2.72±0.03
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zeta (DZ) basis set [Dunning et al.,1993; Kendall et al., 1992; Peterson et al., 

1994] with augmented diffuse functions, Aug-cc-pVDZ, gives a smaller 

BSSE corrected interaction energy than the SV basis sets. This is because this 

basis set is much larger than the SV basis sets. One must however still 

remember that it is only DZ.  

2. With the addition of s and p diffuse functions on the fluorine atom, the BSSE 

decreases. When diffuse functions are added to the hydrogen atoms however, 

the BSSE increases slightly in value. Also note that the values for the RFF 

distance and the two angles, listed in Table 3.1, get closer to the experimental 

values.  

3. From the experimental results in Table 3.1 it is evident that it is important to 

add higher order angular momentum polarization functions to both the 

fluorine and hydrogen atoms. It seems that the distance between the 

monomers gets closer to the experimental results if more polarization 

functions on the fluorine and hydrogen atoms are added to a SV basis set. 

This is probably a sign that correlation energy plays a large role in 

determining the experimental geometry of the HF dimer. 

  

Based on our results, the following basis sets were accepted as suitable to model the hydrogen 

fluoride dimer: 6-31++G(d,p), 6-31++G(2d,2p), 6-311+G(d,p), aug-cc-pVDZ, 6-

311++G(d,p).  

 

Nevertheless, it is well known that post-HF methods other than DFT are expensive for large 

clusters. The augmented DZ basis set of Dunning11 as well as the 6-311++G(d,p) basis set 

were therefore discarded and only used as a standard for comparing to the results obtained 

with the smaller basis sets. In any case, the 6-311++G(d,p) basis set also did not improve 

much on the percentage BSSE and the interaction energy of the 6-311+G(d,p) basis set. From 

these results we conclude that hydrogen does not play such a significant role in binding the 

two monomers together, and that fluorine is the major player.  

    The next step was to find a suitable basis set from our selected set, vide supra, to model the 

CO clusters. As we mentioned earlier, according to the literature there are two antiparallel 

dimers for carbon monoxide. It is accepted that the C-bonded dimer is the global minimum 

and the O-bonded dimer the local minimum. The O-bonded dimer is expected to have a larger 

BSSE than the C-bonded dimer because oxygen has more valence electrons than carbon and 

                                                 
11 In Gaussian 03 the Dunning correlation consistent basis sets have had redundant functions removed 
and have been rotated [Davidson et al., 1996] in order to make calculations faster.  
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the basis set should therefore be less suitable for the description of the valence shell in oxygen 

than in carbon, leading to a higher BSSE.  

 

Table 3.2: Table of the energies and percentage BSSE for the optimized CO dimer. See text.  

Basis set 

Energy in hartree 

(not BSSE 

corrected) 

BSSE 

(kcal/mol)

Interaction 

energy with BSSE 

correction 

(kcal/mol) 

Interaction energy 

without  BSSE 

correction (kcal/mol) 

%BSSE 

Distance 

between 

mass 

centers of 

monomers

(Å) 

6-31++G(d,p) -226.059160 0.4 -0.2 -0.6 71.7 3.72 

6-311+G(d,p) -226.157205 0.4 -0.1 -0.5 78.7 3.64 

6-

31++G(2d,2p) 
-226.125357 0.3 -0.3 -0.6 51.2 3.70 

Experiment 

[Surin et al., 

2003] 

     4.0 

 

The first observation from Table 3.2 is that the BSSE is alarmingly high for the 6-311+G(d,p) 

basis set. However, the size of the BSSE estimated with the counterpoise method is only an 

upper limit. It is possible that the true BSSE is less than this approximation. BSSE should also 

not be used as a measure of the error in the interaction energy [Chałasiński and Szcześniak, 

1994]. The only way to determine the correct number of BSSE would be to do the same 

calculations with SAPT. This however, is beyond the scope of this study.  

    As the valence-TZ basis set used is designed to give a better representation of the valence 

shell, than valence-DZ basis sets, this basis set was not discarded. We eliminated the 6-

31++G(d,p) basis set as it gave a T-shaped O-bonded local energy minimum instead of the 

accepted antiparallel local energy minimum. Since the 6-31++G(2d,2p) basis set gave the 

correct local energy minimum, basis sets that were therefore chosen were 6-31++G(2d,2p) 

and 6-311+G(d,p). 

    In a final elimination round, we tested these two basis sets by optimizing the C-bonded 

dimer with each of these basis sets to yield local energy minima. We found the 6-31++(2d,2p) 

basis set to be inadequate as it gave a T-shaped structure as a local energy minimum. The  6-

311+G(d,p) basis set, on the other hand gave a C-bonded slipped antiparallel structure as a 

local energy minimum with a distance between its monomers’ mass centers of 4.37 Å. This is 

in very good agreement with the experimental value of 4.4 Å [Surin et al., 2003]. Based on 

our results we have to conclude that 6-311+G(d,p) is the best for our application amongst the 

basis sets tested. It satisfies 3 of the 4 criteria set previously. However, it was necessary to do 

one more test. Although the 6-31++G(2d,2p) basis set gave a T-shaped C-bonded dimer, it 

might also have been that the antiparallel geometry might just be another local minimum on 
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the PES and that the optimization just did not converge to this minimum. In order to obtain 

certainty about this, the final optimized geometry obtained with the 6-311+G(d,p) basis set 

was used as the starting conformation for a single point calculation of the normal modes of 

vibration with the 6-31++G(2d,2p) basis set. This calculation confirmed that the antiparallel 

dimer is a first order transition state, rather than a minimum, with the 6-31++G(2d,2p) basis 

set.  

    In the literature we also found accounts where the 6-311+G(d,p) basis set was used with 

MP2 for both the modeling of carbon monoxide dimers [Han and Kim, 1997] and hydrogen 

fluoride clusters [Chandler et al., 1995] as well as for CO/HF mixed clusters [Seung-Hoon, 

1998].  

    We are reasonably sure that the reason for the poor performance of some of the tested basis 

sets is BSSE, however for us it is more important to reproduce experimentally determined 

geometries than to have a low estimate for the BSSE. At one stage during our research we did 

do a few optimizations of the dimers on a counterpoise corrected PES with the 6-31G(d) basis 

set. The geometries changed significantly from their original 6-31G(d) optimized geometries 

during the optimizations, proving that when modeling these clusters, it is important to use 

adequate basis sets.   

    As we mentioned earlier, we did do optimizations of both the HF and CO isolated 

monomers in the gas phase and the values for their calculated bond lengths agree well with 

the literature values. See Table 3.3.  

 

Table 3.3: Comparison between bond lengths determined with MP2/6-311+G(d,p) and the experimental 

bond lengths of isolated CO and HF monomers. 

 MP2/6-311+G(d,p) Experimental 

Bond length CO (Å) 1.1400 1.1280 (a) 

Bond length HF (Å) 0.9167 0.9168 (a) 

a) Huber and Herzberg, 1979 

 

 

http://scholar.sun.ac.za/



62 

3.5 General design of the QM/MM hybrid systems 

 

Other than in one case in Chapter 5 (Section 5.3), all the hybrid QM/MM systems in this 

work were designed in a specific manner. Atoms 1 and 2 were always chosen as the monomer 

in the QM system and the rest of the monomers were confined to the MM system. The 

molecule in the QM system was the only one allowed to change its bond length. Each 

monomer in the MM system was allowed to move as a rigid block with respect to the 

monomer in the QM system and the other monomers in the MM system. In this way it was 

possible to freeze all the bond lengths of the MM molecules.  

    The high-level method for the QM system was MP2 with the 6-311+G(d,p) basis set. The 

low-level method for the MM system was UFF [Rappé et al., 1992]. The QM system was 

allowed to be polarized by point charges on the MM molecules as according to the ONIOM-

EE methodology, see Section 2.9. Charges for both the QM and MM atoms were given in the 

input.12 All the atomic point charges used in the input files for Gaussian 03 were determined 

from single point calculations of the MP2 optimized geometries of the clusters. Although in 

some cases, other charge-schemes were also used to derive point charges, Merz-Kollman-

Singh (MKS) charges based on the MP2 density were mainly used for the charges on the QM 

and MM atoms in the ONIOM-EE calculations. The convergence criterion for the energy of 

the self-consistent field (SCF) was set to 1×10-12 for the single point calculations that were 

used to derive the point charges.    

     Gaussian 03 allows one to chose between two types of atomic point charges for the 

charges that are derived by the software for the QM system during the ONIOM-EE 

calculation. These charges are Mulliken and MKS charges. We used MKS charges, which are 

also the default for ONIOM-EE calculations. For all MKS charges the default radii for charge 

fitting were used. MKS charges based on the MP2 electron density are used by default when 

MP2 is the high-level method. The MKS charges could not be constrained to the dipole 

moment during the ONIOM-EE calculations. 

    The internal set of UFF parameters was used, but the vdW parameters were given in the 

input for each force field type. Leaving the setting of the parameters to the program did not 

yield the same answers as when it was explicitly specified in the input.13 All ONIOM-EE 

                                                 
12 It is not necessary to put any charges on the QM atoms. These charges are only used in the MM 
parameter definition and eventually will play no role in the energy calculation or the optimizations, due 
to the way in which ONIOM-EE is designed (see Chapter 2).   
13 These discrepancies are related to the ONIOM-EE method as implemented in Gaussian 03. We 
confirmed this by doing general MM single point calculations with Gaussian 03 with and without 
explicitly setting the van der Waals parameters in this regard and obtained the expected answers for the 
force field energy. When doing the same for an ONIOM-EE calculation, different answers were 
obtained for the force field energy in each of the two above scenarios.  It was not possible to obtain 
helpful assistance in this regard when a question was posted on CCL. 
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optimizations were performed with the micro-iteration scheme for ONIOM-EE. No symmetry 

constraints were used on the ONIOM-EE optimizations. This was necessary, as the point 

group of the model system in each case was not the same as the point group of the real 

system.14 At one stage, we considered using periodic boundary conditions (PBC) similarly to 

Treeusekol and coworkers [Treeusekol et al., 2001] in order to simplify the calculations of the 

hybrid systems, but Gaussian 03 does not allow PBC to be used with ONIOM. PBC has been 

used in QM/MM molecular dynamics simulations of liquid hydrogen fluoride before [Muñoz-

Losa et al., 2003]. Cartesian coordinates were used throughout for all ONIOM-EE 

optimizations and calculations.15 Great care was taken to make sure that these Cartesian 

coordinates were the same as the coordinates for the MP2 optimized clusters.16  

 

3.6 Conclusion and summary 

 

We started this chapter by giving an overview of all the software that was used in our study. 

In this chapter we also reported our strategy in choosing a method for the modeling of the 

hydrogen fluoride, carbon monoxide and mixed hydrogen fluoride and carbon monoxide 

clusters, and gave reasons for deciding on MP2. In addition, we reported the strategy in 

finding a suitable basis set. This resulted in deciding on the 6-311+G(d,p) basis set. We then 

reported the setup of the hybrid systems and software related problems that had to be taken 

care of. In order to make our work reproducible we kept to some simple rules, such as 

specifying the van der Waals parameters explicitly in the input and using the exact 

coordinates of the MP2 optimized geometries for all our ONIOM-EE calculations and 

geometry optimizations.  

 

 

 

                                                 
14 Gaussian 03 does a symmetry check and switches off the symmetry constraints automatically if the 
point group of the model system does not conform to the real system’s point group.   
15 When working with a two atom QM system in Gaussian 03 it is not possible to give the input as a Z-
matrix, as Gaussian 03 automatically assumes that the first three atoms will be in the QM system. 
16 During the process of ONIOM-EE optimizations, it seemed that if the starting coordinates differed at 
the fifth decimal number, slightly different answers were obtained. We are not sure if this is a problem 
in the software or is related to the fact that we used rigid body motion for all the MM monomers in the 
micro-iterations. More information on this and other Gaussian-related problems can be found in 
Appendix B. 

http://scholar.sun.ac.za/



64 

Chapter 4 

 

Ab initio calculations and analysis of 

hydrogen fluoride clusters  
 

4.1 Introduction 

 

The aim of this chapter is to report the optimization and analysis of several energy minima of 

hydrogen fluoride clusters. Most of the data reported here is used to setup a QM/MM hybrid 

system. This hybrid system will be described in detail in Chapter 5.    

    In order to optimize the clusters, the second order Møller-Plesset perturbation theory (MP2) 

is utilized. The optimization of the clusters to their energy minima with this method will be 

described in Section 4.2. The optimized geometries are then analyzed in terms of their 

structural properties (Section 4.3) and energies (Section 4.4) and compared to results found in 

the literature, where applicable. In the next part of this chapter, the bonding of the clusters 

will be analyzed (Section 4.5) and in Section 4.6 the electrostatic properties based on the ESP 

will be analyzed in terms of their Electrostatic Potential (ESP) and atomic point charges will 

be determined based on this ESP. These charges will be used to represent the charge 

distribution of the molecular mechanical system (MM) in the QM/MM calculations and 

optimizations. A new way of looking at hydrogen bonding, described in this chapter, might 

aid the development of better hybrid methods. The chapter will, as usual, be concluded with 

the most important results, conclusions and the scope for future work in Section 4.7.  

     

4.2. Obtaining local minima on the Potential Energy Surface (PES) 

 

4.2.1 General computational details 

 

Gaussian98 and Gaussian 03 were used to optimize HF clusters at the MP2 level of theory 

using both the 6-31G(d) and 6-311+G(d,p) basis sets. All the geometries of the HF clusters 

were optimized by using a modified version of the original Berny optimization algorithm 

[Shlegel, 1982] as incorporated in the Gaussian software. In difficult geometry optimization 

cases, the Geometry Directed Inversion in the Iterative Subspace (GDIIS) optimization 

algorithm was also utilized. The optimized structures obtained with the 6-31G(d) basis set 

were used as starting points for final geometry optimizations of the clusters with the larger 6-

http://scholar.sun.ac.za/



65 

311+G(d,p) basis set. This was done to ensure that a slow convergence in energy, with respect 

to each optimization step, was avoided. The MP2 series is notorious for slow convergence 

when the reference wave function differs too much from the correct optimized MP2 wave 

function for a specific set of nuclear coordinates [Jensen, 2001]. 

 

4.2.2 Pre-optimization of clusters with the 6-31G(d)  basis set 

 

The starting points for the pre-optimization of the HF clusters were obtained from an article 

by Hodges and coworkers [Hodges et al., 1998]. Twelve energy minima17 were chosen and 

reoptimized with the 6-31G(d) 18 basis set under very tight optimization conditions19  as 

specified in the software. GDIIS was used for the tetramers, pentamers and hexamers. See 

Appendix A.1. Geometry optimizations were done by constraining the symmetry of each 

cluster during the calculations to its lowest symmetry point group. No further constraints on 

the geometries of the clusters were applied. Energy minima were confirmed by a lack of 

imaginary frequencies in the vibrational analysis20. If imaginary frequencies were found, the 

eigenvector of the specific mode of vibration was added or subtracted from the Cartesian 

coordinates of the transition state and the cluster reoptimized.  

    Transition state structures were obtained in the case of the HF trimer. The linear trimer (see 

Appendix A.1) converted to a chain structure and after reoptimization, where force constants 

were explicitly recalculated at each optimization step, to a cyclic structure. In all other cases, 

the very tight optimization conditions were effective enough to eliminate transition states. In 

some cases, such as the trimer discussed above, the geometries converged to indistinguishable 

structures, reducing the original number of clusters to nine. These nine clusters, consisting of 

one dimer, one trimer, two tetramers, two pentamers and three hexamers were used as the 

starting points for the optimization with the larger 6-311+G(d,p) basis set.  

                                                 
17 The starting geometries can be found in Appendix A.1 
18 The 6-31G(d) basis set usually makes use of six d Cartesian Gaussian primitives (See Section 2.3) 
instead of five. The consequence of this “error” is an addition of an extra s-type function to the basis 
set. [Jensen, 2001] This error is not of much concern. 
19 Very tight optimization conditions aim to keep the net force on a molecule to 0.000002 hartrees/bohr 
or less. 
20 The normal modes of vibration are derived from a mass weighted Cartesian Hessian matrix. An 
imaginary vibration occurs when the eigenvalue of this specific vibrational mode is negative, indicating 
a maximum for the energy of this mode. 
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4.2.3 Final optimization of clusters 

 

The same optimization conditions were used as with the 6-31G(d) basis set. Symmetry 

constraints were used for all clusters during the optimizations. Only for the HF dimer was it 

necessary to remove symmetry constraints on the cluster during the optimization in order to 

achieve convergence. Two of the pre-optimized hexamers converged to distinct structures and 

eventually eight distinct minima were obtained, as confirmed by the lack of imaginary 

frequencies in their vibrational analysis. These structures can be found in Appendix A.1. 

 

4.3 Structural properties 

 

The optimized structures for the 6-311+G(d,p) basis set are shown in Fig. 4.2. Some of the 

structural parameters for each cluster are summarized in Table 4.1. The angles mentioned in 

Table 4.1 refer to the angles defined in Fig. 4.1. We will refer to these angles again when 

discussing the geometries of the clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1: Diagram defining Angle 1 and 2 and R
FF 

as used hereafter. (This diagram was given in Chapter 3, 

but is given here for convenience.) 
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Table 4.1: Structural properties of the HF-clusters optimized with 6-311+G(d,p). Bonds in Ångström and angles in degrees. The experimental gas phase value of the 

HF monomer is 0.9168 Å [Collins et al., 1995]. 

 

 I II III IV V VI VII VIII 

MP2/6-

311G+(d,p) 

        

F-H 
 
 

F1-H2 : 0.921  
F3-H4 : 0.920  
 

All: 0.929 All: 0.937  
 

F1-H2 : 0.925  
F3-H4 : 0.935  
F5-H6 : 0.930  
F8-H7 : 0.921  
 

All: 0.941 F1-H2    : 0.932 
F3-H4    : 0.946 
F5-H6    : 0.939 
F8-H7    : 0.936 
H9- F10 : 0.921 

All:0.942 
 

F1-H2     :  0.942 
F3-H4     :  0.942 
F5-H6     :  0.942 
F7-H8     :  0.942 
F9-H10   :  0.942 
H12-F11 :  0.918 
 

RFF All:2.788 All: 2.668 All: 2.583 F1-F3: 2.803 
F1-F5: 2.667 
F3-F5: 2.593 
F8-F3: 2.756 
 

All: 2.548 F1-F8:2.600 
F8-F5:2.565 
F5-F3:2.519 
F3-F1:2.653 
F10-F3:2.772 

All:2.535 All in ring: 2.547 
F11-F7:     3.013 

FH…F All:1.874 All:1.865 All: 1.681 F1-H6: 1.861 
F5-H4: 1.730 
H2-F3: 2.135 

All: 1.616 F3-H2:1.777 
H4-F5:1.595 
H6-F8:1.659 
H7-F1:1.704 
H9-F3:1.852 

All:1.595 All in ring: 1.612 

Angle 1 All:121.3 All:84.8 All: 102.6 F1F3H4: 77.3 
F3F5H6: 88.8 
F5F1H2: 93.0 
F8F3H4: 127.6 

All: 114.4 F1F3H4:99.7 
F3F5H6:104.0 
F5F8H7:103.7 
F8F1H2:104.0 

All:122.6 All in ring: 112.7 
 

Angle 2 All:6.1 All:24.8 All: 12.6 F1F3H2: 36.5 
F5F3H4: 18.3 
F1F5H6: 24.4 

All: 6.4 F5F3H4:9.6 
F8F5H6:12.3 
F1F8H7:13.4 
F3F1H2:16.1 

All:2.6 All in ring: 5.5 
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MPW1PW91/aug-
cc-pVDZ [Guedes 
et al., 2003] 

        

F-H  0.927 0.943 0.958  0.963  0.964  
F-F 2.723 2.561 2.487  2.459  2.459  
FH…F 1.804 1.712 1.548  1.548  1.482  
Experimental 
[Collins et al., 
1995] 

        

F-F  2.72±0.03        
Angle 1 117±6        
Angle 2 10±6        
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Cluster I: Cs Cluster II: C3h 

 

 

 

 

Cluster III: C4h Cluster IV: Cs 

 

Fig. 4.2 Continued… 
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Cluster V: C5h Cluster VI: Cs 

 

Cluster VII: C6h Cluster VIII: Cs almost C5 (very slightly 

out of plane) 

 

Fig. 4.2: Optimized geometries of (HF)2-6 clusters with  MP2/6-311+G(d,p). The symmetry point group is 

also shown. 
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HF vapor contains many clusters of different sizes, but the stable clusters larger than the 

dimers such as clusters II, III, V and VII, in Fig. 4.2, are well-established by experiment to be 

cyclic and planar [Quack and Suhm, 1997]. The less stable clusters are usually not stable 

enough under the experimental conditions to be detected; however, by growing the clusters in 

helium nano-droplets, metastable species can be formed and detected by infrared laser 

spectroscopy. Cluster IV was recently detected in this way, but cluster VI could not be 

stabilized in helium nano-droplets [Douberly and Miller, 2003], although it has been 

calculated in various ab initio studies before [Abu-Awwad, 2002; Douberly and Miller, 2003; 

Suhm, 1995]. Cluster VIII, to the best of our knowledge, has not yet been found 

experimentally, and computationally there is only one account where it was optimized with 

Hartree-Fock with the 6-31G  basis set, which is highly inferior to MP2 theory (see Chapter 

2), and no detailed account was given for this cluster [Abu-Awwad, 2002].    

    Based on the available literature and experimental results, we conclude that our structural 

results, reported in Table 4.1, are very good. For clusters such as IV and VI, where one 

monomer interacts with a cyclic cluster, or where the monomer hovers above a cyclic cluster, 

such as in cluster VIII, the bond lengths differ significantly from each other. In cluster IV, for 

example, the bond length of the external monomer is identical to a monomer in the HF dimer 

(Cluster I), whereas the other bond lengths vary between 0.925 and 0.935 Å. The same type of 

behavior is found in cluster VI, but in cluster VIII the bond length of the external monomer is 

convincingly shorter than the bond length of the monomer in the HF dimer and borders on the 

bond length of the HF monomer of 0.9167Ǻ1. Another reason why Cluster VIII is different 

from the other clusters is that the bond lengths of all the monomers in the ring of this cluster 

are almost identical to the bond lengths of the cyclic pentamer (cluster V). This is evidence 

that the interaction between the external monomer and each monomer in the ring in this 

cluster are of a weak vdW nature. It is also important to mention that in the original pre-

optimized cluster (see Appendix A.2) the monomer was lying horizontally above the cyclic 

cluster and therefore had a chance to form a hydrogen bond with one of the fluorine atoms in 

the ring. Instead, it deliberately “chose” to form several weak interactions by positioning the 

fluorine atom of the external monomer in such a way that its lone pairs are available to the 

ring. As we discussed previously (see Section 4.2) we used very tight optimization conditions 

and therefore we expect that this cluster is the closest local minimum to the starting geometry 

(see Appendix A.2) on the PES.  

      Lastly, it is worth mentioning that Chandler and coworkers [Chandler et al., 1995] 

obtained the same geometries for the cyclic HF clusters (II, III, V and VII) as we did when 

using exactly the same level of theory and basis set. They also optimized the dimer, but our 

                                                 
1 This value was obtained at the MP2 level of theory with the 6-311+G(d,p) basis set. See Chapter 3 
(Table 3.3). The experimental value is 0.9168 Å.  
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results do not agree with their hydrogen bond length of 1.827Å and it is unclear how this 

value was obtained. We confirmed that except for this hydrogen bond length, all their 

structural parameters are identical to ours. We should note that the dimer was recalculated by 

Seung-Hoon [Seung-Hoon, 1998] with the same basis set and method and their results agree 

with ours.  

     

4.4 Electronic interaction and binding energies  

 

As the definition of binding and interaction energies were already discussed in Section 2.1, 

we will only briefly explain how these parameters are defined. 

    The binding energy is defined as the energy that is gained by distorting monomers from 

their gas phase bond lengths and associating them with other monomers to form a cluster. The 

interaction energy is the sum of all the many-body energies in the cluster and does not involve 

the destabilization of stretching the bond lengths from the monomers’ gas phase values. The 

difference between the binding energy and the interaction energy is called the one-body 

energy [Chałasiński and Szcześniak, 2000] as the two-body, three-body etc. energies are 

incorporated in the interaction energy. In Table 4.2 we summarize the energies and the 

frequencies of the stretching vibrational modes as obtained for each HF cluster. 
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Table 4.2: Energies (kcal/mol) and selected vibrations (cm-1) of the clusters as calculated with MP2/6-311+G(d,p). Zero-point vibration energy* corrections were not 

applied. All the energies except the electronic energy were corrected for BSSE by the counterpoise method [Boys and Bernardi, 1970]. 

Cluster I II III IV V VI VII VIII 

Electronic 

interaction energy 

(kcal/mol) 

-3.8 -11.6 -21.6 -15.0 -30.1 -24.6 -37.4 -32.1 

Electronic binding 

energy (kcal/mol) 

-3.8 

(-3.04,-4.6)(a)  

-11.3 
 -20.5 

 

-14.6 
 

-28.2 -23.3 -34.9 -30.0 

BSSE 0.9 2.8 5.5 3.9 7.9 6.7 9.9 9.6 

MP2 one-body 

energy 

( b) 

0.0 0.3 1.1 0.4 2.0 1.4 2.5 2.1 

H-F Stretching 

vibrations 

(Scaled by 

0.9502)(c) 

ν1:  3901 

ν2: 3954 

ν1: 3718  

ν2: 3796  

ν3: 3796 

 

ν1:3493  

ν2 :3622 

ν3 :3622 

ν4 :3678 

 

 

ν13629 

ν2 3772 

ν3 3864 

ν4 3898 

 

 

ν1 3380 

ν2 3519 

ν3 3519 

ν4 3609 

ν5 3609 

ν1 3393 

ν2 3566 

ν3 3648 

ν4 3734 

ν5 3910 

 

ν1 3347 

ν2 3473 

ν3 3473 

ν4 3575 

ν5 3575 

ν6 3607 

ν1 3355 

ν2 3499 

ν3 3499 

ν4 3593 

ν5 3593 

ν6 3971 
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Cluster I II III IV V VI VII VIII 

Experimental 

stretch vibrations 

HF in He 

nanodroplets(d) 

3862 3709 3438 N/A  

ν1 3174 

ν2 3385 

ν3 3489 

ν4 3593 

ν5 3876 

 

 

* Due to Heisenberg’s uncertainty principle, molecules never have zero energy at their vibrational ground states. The electronic energy determined by ab initio software 

does not include this energy and to obtain a more accurate binding or interaction energy, the electronic energy should be corrected for this. Keeping it simple, we did not 

correct for this explicitly.   

a) The first value in parenthesis is the experimental binding energy (D
0
). The second value is the experimental binding energy without the zero-point vibration correction 

(D
e
)  [Quack and Suhm, 1995]. 

b) The one-body energy is the difference between the binding and interaction energies 

c) No scaling factor for the exact basis set could be found. This scaling factor is the one determined for the 6-311G(d,p) basis set. [NIST Computational Chemistry 

Comparison and Benchmark Database, 2005]  
(d) [Douberly and Miller, 2003] 
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A reasonably good value, compared to the experimental value for the binding energy, was 

obtained. The reason why the value for the binding energy is not better is mainly because of 

the method and basis set used and the fact that the binding energy was not corrected for the 

zero-point vibration energy.   

    We also see that the experimental stretching vibrational modes are not in the same range as 

the calculated ones. This is because the scaling factor that we used might not be accurate, as it 

is based on a different basis set. Another problem can be that molecular vibrations are 

approximated by a harmonic oscillator function and in real life molecular vibrations show 

some level of anharmonicity. QMC can be used to correct for the anharmonicity in the 

vibrational modes. However, the difference in each experimental and smallest computational 

frequency varies at most by 55 cm-1, a difference of circa 0.2 kcal/mol in energy.   

    In Fig 4.4 we plot the average interaction energy obtained for a monomer in each cluster 

against the cluster size in order to show the influence of cluster size on the interaction energy, 

and therefore the average many-body interactions on each monomer in the 

clusters.
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Fig. 4.4: Graph showing the trend of the average BSSE-corrected interaction energy per monomer with the 

increase in the cluster size. A third order polynomial can be fitted to the data representing the global 

minima obtained in the optimizations.  

 

We can see from Fig. 4.4 that the change in interaction energy per monomer declines 

gradually with an increase in cluster size. The clusters above the trend line in Fig. 4.4 are the 

clusters with monomers attached to rings above or in the same plane of the rings, such as 

cluster IV, VI and VIII.  Note that the interaction energy per monomer for the clusters with  

monomers attached to rings gets increasingly closer to the interaction energy per monomer for 

the same size cyclic clusters. Based on these results, we therefore conclude that the chance of 
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monomer insertion into a cyclic structure declines with cluster size. Work by Douberly and 

coworker agrees with this statement [Douberly and Miller, 2003]. 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5 : Graph showing 

the change in average MP2 one-body energy per monomer with an increase in cluster size.  The data 

points not on the trend line represent the average one-body energies of the local energy minima.  A 

fourth order polynomial can be fitted to the data. 

 

Fig. 4.5 illustrates the trend in the average MP2 one-body energy per monomer with an 

increase in cluster size. It is evident from our results that in the case of HF clusters the one-

body energy plays a fundamental role in the binding energies of the clusters.1 This one-body 

energy is well balanced by the many-body interactions in the clusters, resulting in an overall 

increase in stability of the monomers in the cluster relative to when they are isolated in the 

gas phase. To investigate this, a many-body interaction analysis of clusters (MBAC) 

[Kulkarni et al., 2004] can be done or SAPT can be used to obtain more information, 

however, a detailed analysis is not relevant to this work.     

    The trend in the one-body energies with respect to cluster size differs from the trend in the 

many-body energies with respect to cluster size since the curve drawn in Fig. 4.5 shows a 

sigmoidal relationship instead of a hyperbolic relationship with cluster size. We see that a 

similar flattening in the curve for the average one-body energies of the dimer and hexamer are 

responsible for this.  Taking into consideration data from Table 4.1 it might be able to show 

that the one-body energies are related to the size of Angle 1 (see Fig. 4.1), since in the dimer 

                                                 
1 We will see later with CO clusters that one-body energies for these clusters are insignificantly small 
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(Cluster I) and the cyclic hexamer (Cluster VII), this angle is similar. For the clusters with 

external monomers, we see that as the cluster size increases, their one-body energies become 

very similar in magnitude to their cyclic analogues, except for cluster VIII, which shows a 

significant decrease in average one-body energy from its cyclic pentamer analogue. This is 

due to the almost insignificant bond stretch of the external monomer from the bond length for 

an isolated monomer in the gas phase.  

  

4.5 Analysis of bonding 

 

A common theory of hydrogen bonding is based on results obtained with Natural Bond 

Orbital (NBO) [Reed and Weinhold, 1988] analysis. According to this theory, a donor atom 

has a lone pair, which is donated into an antibonding molecular orbital on the molecule 

containing the acceptor atom. Chemically this is not a poor model, but we found that NBO 

analysis failed to describe the bonding, based on the MP2 density in cyclic and other clusters 

of HF2. When the SCF density was used there were no problems so we figured that this might 

have something to do with the more localized nature of the SCF density compared to the MP2 

density. NBO uses a localized approach to bonding. This does not mean that NBO analysis 

cannot describe correlated wave functions, as it is indeed possible to do an NBO analysis on 

the MP2 density of the HF monomer. It simply means that the only way to apply the tools of 

NBO analysis to the HF cyclic clusters is by using the SCF density.  

    When we did a second-order perturbation analysis of the energy of off-diagonal elements in 

the Fock-matrices of some of the cyclic HF clusters based on the SCF density, we obtained 

the expected result: a donation of electrons from the fluorine lone pairs into the σ* 

antibonding orbital on the adjacent monomer. There was no difference in this behavior as the 

cluster size is increased, except for a larger stabilization due to a larger charge transfer. This 

effect is identified as the cooperative hydrogen bond effect due to delocalization of the 

electron density [Rincón et al., 2001]. However, we have found other effects related to 

electron delocalization that cannot be described by NBO analysis, forcing us to adopt a new 

model based on a correlated, rather than a single, determinant wave function.  

   To design such a model we make use of the MP2 wave function. In single molecules, this 

wave function does not lend itself to a simple chemical explanation in terms of bonds, due to 

its delocalized nature, and NBO analysis is indispensable for such cases. For delocalized 

clusters however, we found that the delocalized wave function can give a new perspective on 

hydrogen bonds and probably also on other nonbonded interactions.  

                                                 
2 Doing an NBO analysis and explicitly specifying that the density to be used should be MP2, failed. 
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    Delocalized molecular orbitals are totally constructed from quantum mechanical 

calculations and give the wave function with the lowest energy in the limits of the method and 

basis set used. Another reason why we prefer to analyze the exact delocalized wave function 

is that we are of the opinion that molecules should not be treated as consisting out of atoms; 

rather as individual entities. We think that a projection of the intramonomer electron density 

onto atoms of a monomer, such as is done in NBO analysis, is unnatural. Atoms in Molecules 

(AIM), another method by which molecules are divided into atoms, has recently been 

criticised as being a noumenon3 [Parr et al., 2005]. In this section, we propose a new way of 

understanding hydrogen bonds. We hope that in the future this model will be able to explain 

proper, improper, and other types of hydrogen bonding as well. We will show that the 

topology of the electron density obtained by the well known method of Atoms in Molecules 

supports the idea.  

 

4.5.1 Intermolecular orbitals 

 

The nature of the hydrogen bond and weak van der Waals bonds is still not completely 

understood. Galvez et al. [Galvez et al., 2001], for example, commented that in the hydrogen 

fluoride dimer stabilization is caused by interpenetration of the electron densities of the two 

monomers, rather than charge transfer, a mainstream idea [van der Vaart and Merz, 2002; 

Weinhold, 1997]. This comment by Galvez et al. was made based on Atoms in Molecules 

results. Upon bringing one monomer closer to the other they showed that electron densities 

interpenetrate. Some researchers such as Espinosa and coworkers [Espinosa et al., 2002] have 

shown that a type of electron-sharing interaction takes place when two HF monomers are 

brought closer together to form the dimer. Dunitz and Gavezzotti [Dunitz and Gavezzotti, 

2005] summarize the dilemma of the nature of the intermolecular bond as follows: “What, 

then, should one do about distinguishing genuine intermolecular bonds from indiscriminate 

atom-atom contacts? Where should one stop talking and thinking about bonds?” Although 

we are not absolutely confident that we have the answers to these questions, we believe that 

going back to the basis of quantum mechanics, namely the wave function, is a logical choice 

to start looking for them.  

   When the MP2 wave function of the HF dimer is visualized (see Fig. 4.6) one clearly 

observes what we would like to call for convenience, bonding and antibonding 

intermolecular orbitals. We will use these terms throughout this work and we emphasize that 

it should not be mistaken to mean bonding and antibonding MO’s. We define a bonding 

                                                 
3The Oxford English dictionary defines a noumenon as, “An object knowable by the mind or intellect, 
not by the senses; specifically (in Kantian philosophy) an object of purely intellectual intuition”. 
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intermolecular orbital as a molecular orbital that has no nodes in the intermonomer space and 

an antibonding intermolecular orbital as an MO that has one node in the intermonomer space.  

The use of these terms will become clearer later. When talking about an entire wave function, 

we will refer to these orbitals as molecular orbitals, however when explicitly talking about 

the intermonomer space between two monomers, we will call these orbitals, intermolecular 

orbitals.   

    An antibonding intermolecular orbital can be interpreted as an effect of the Pauli-exchange 

repulsion effect between the electron densities of the monomers in the intermonomer space. 

The bonding intermolecular orbitals can be interpreted as the result of the distortion 

(electrostatic and induction) and dispersion interactions of the electron densities of the 

monomers. Also, observe that the bonding intermolecular orbitals are in pairs of antibonding 

and bonding intermolecular orbitals, similar to molecular orbitals for single molecules, except 

that there is “slight bonding” character in HOMO-1. In Chapter 8 we will give a possible 

reason why such extra bonding intermolecular orbitals occur.  
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HOMO 
Bonding intermolecular orbital  
Energy eigenvalue: -0.627  

HOMO-1 
Antibonding intermolecular orbital 
with “slight bonding” character 
Energy eigenvalue: -0.627  
 

HOMO-2 
Antibonding intermolecular orbital 
Energy eigenvalue: -0.690  

HOMO-3  
Bonding intermolecular orbital 
Energy eigenvalue: -0.695  
 

HOMO-4 
Bonding intermolecular orbital 
Energy eigenvalue: -0.751  

HOMO-5 
Bonding intermolecular orbital   
Energy eigenvalue: -0.821  

 

 

HOMO-6 
Antibonding intermolecular orbital 
Energy eigenvalue: -1.578  

HOMO-7 
Bonding intermolecular orbital 
Energy eigenvalue: -1.648  

 

Fig. 4.6: Bonding and antibonding intermolecular orbitals as found in the HF dimer. The orbitals are 
arranged from highest to lowest with respect to their energy. The calculations were done with 6-
311+G(d,p) as basis set. All molecular orbitals were visualized with a wave function cutoff of 0.004 a.u. 
The nonbonding orbitals centered on the fluorine atoms are not shown. Energy eigenvalues are given in 
a.u. 
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In Fig. 4.7 and 4.8 we show selected delocalized orbitals for clusters II and VII. 

 

 
Fig. 4.7: Selected delocalized orbitals visualized for the HF trimer.  

 

 

Fig. 4.8 Selected intermolecular orbitals for the cyclic HF hexamer. The point group is C
6h
 and we therefore 

expect degenerate states (shown here with frames of the same color) similar to that found for benzene with 

symmetry D
6h
. The orbitals are arranged to decrease in energy as one moves clockwise from the top.  

 

The wave functions that we derive are all time independent; therefore we cannot directly 

observe wave function evolution by general ab initio calculations. By looking at how the 

electron populations change from a single monomer wave function to the the wave function 

for a monomer in a cluster, we can however obtain some idea of the movement of electron 

 

  

HOMO-4 
Out of the plane π-π 

overlap 
Energy eigenvalue:  

-0.686 

HOMO-5 
π-π overlap 

Energy eigen value: 
-0.693 

HOMO-6 
σ -σ overlap 

Energy eigenvalue: 
-0.794 

HOMO-11 
Completely delocalized 

orbital  
Energy eigenvalue:  

-1.640 
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density. For convenience that will become clear later, we define the relative electron 

population as the change in the electron population from one quantum state to another. Here 

specifically the relative electron population is calculated as the difference between the 

electron population for a specific monomer in a cluster and the electron population for an 

isolated monomer. For example, if the electron population is 1.2 a.u. in a specific orbital in a 

monomer and in the cluster it is 0.8 a.u., then the relative electron population is equal to -0.4 

a.u. for this orbital. We will use this term often throughout this work and its definition will 

therefore not be repeated again. We will call the method of determining the relative electron 

populations, relative electron population analysis. To obtain the electron population for the 

isolated monomer and the monomer in a cluster in order to compute the relative electron 

populations, we use Mulliken population analysis. In computational chemistry Mulliken 

population analysis is known to give erroneous electron populations in some cases such as 

when using diffuse functions as we did [Jensen, 2001], however it was used here as it is solely 

based on the basis functions and can give an indication of how the basis functions are divided 

amongst the molecule(s) in a cluster compared to the isolated molecules. NBO analysis, for 

example, uses natural atomic orbitals and is more localized so that the nature of the MP2 

density is not reproduced efficiently. In order to obtain useful information, we decided to 

determine only the electron populations of each single shell.   

    As basis functions are centered on atoms, and because we are working with molecules, we 

would not expect to find similar electron populations in the “atomic centered orbitals” 

compared to those in the isolated atoms. In our analysis, the “atomic centered orbitals” are 

divided into s and sp shells. This division is similar to the division in some basis sets. The d-

orbitals are treated separately. Each sp or s-shell has a different main quantum number. In Fig. 

4.5 we show the relative electron populations for the fluorine atom in an HF monomer in a 

selected number of clusters. The shells and the 3d orbitals are shown separately. In Fig. 4.6 

we repeat this analysis for the hydrogen atom in the HF monomer. Notice that here, due to the 

simplicity of this part of the wave function, we decided to treat the 2s and 2p orbitals 

separately instead of treating it as one shell.  

http://scholar.sun.ac.za/



83 

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6

Monomer number

R
el

at
iv

e 
el

ec
tr

o
n

 p
o

p
u

la
ti

o
n

 (
el

ec
tr

o
n

s)

2sp shell

3sp shell

4sp shell

5sp shell

3d orbitals

Core

 
Fig. 4.5: Relative electron populations for the F-atoms found in each selected cluster. The monomer 
numbers are designated as follows: 
1 refers to the acceptor monomer in the HF dimer, 2 refers to the donor monomer in the HF dimer and 3, 
4 and 5 refers to a monomer in the cyclic trimer (II), the cyclic tetramer (III) and the cyclic pentamer (V) 
respectively.
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Fig. 4.6: Relative electron populations for the H-atoms found in each selected cluster. The monomer 
numbers are designated as follows: 
1 refers to the acceptor monomer in the HF dimer, 2 refers to the donor monomer in the HF dimer and 3, 
4 and 5 refers to a monomer in the cyclic trimer (II), the cyclic tetramer (III) and the cyclic pentamer (V) 
respectively.  
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It is clear from both Fig. 4.5 and Fig. 4.6 that the relative electron populations in the clusters 

are slightly different to that in an isolated HF monomer, otherwise all the data points would 

lie on the ordinate axis. Therefore, there is definitely a change in the population of energy 

levels when the monomer finds itself in the electric field of another monomer, such as in a 

cluster. This is a beautiful illustration of polarization in action. In Section 2.2 we mentioned 

that polarization can be defined in terms of the transition moment from one quantum state to 

another and an excitation energy. We see similar behavior with metal complexes where the 

field of the ligands changes the population of the electrons in such a way as to give rise to 

different terms at different field strengths.4 

    Using correlated wave functions, the mixing of atomic orbitals with atomic orbitals of 

higher main quantum numbers results in a lowering of the energy of the orbitals. The hybrids 

formed in this way contain a larger contribution by higher lying spin orbitals to their character 

than in Hartree-Fock theory. These orbitals are more diffuse (larger) and can overlap better 

with orbitals on adjacent monomers in clusters. We see that the fluorine atom donates electron 

density to the acceptor monomer’s 2p orbitals on the hydrogen atom when the acceptor and 

donor monomers are compared. This is in accordance with the NBO analysis discussed at the 

start of Section 4.5, where a lone pair is donated to an antibonding orbital centered mainly on 

the hydrogen of the acceptor monomer. However, when thinking in terms of orbitals 

delocalized over various monomers, we can no longer discuss molecular orbitals as each 

belonging entirely to a single monomer. According to the delocalized intermolecular orbital 

hypothesis5, suggested earlier it would be incorrect to say that electrons are transferred from 

one molecular orbital on one monomer to another on a different monomer. We have to 

explain this behavior based on the donation of electrons into a new bonding delocalized 

orbital that is delocalized over all the atoms in the system. The electron density is just higher 

around the accepting monomer than if it was isolated. We also see that for clusters larger than 

the dimer, more and more electrons are removed from the core orbitals of the hydrogen atom 

into higher shells on the hydrogen atom. It therefore seems as if both the fluorine and the 

hydrogen atoms play a role in the donation in a delocalized orbital that is delocalized over the 

entire cluster. The movement of valence and sometimes core electrons (see relative electron 

population analysis in Fig. 4.6 for the hydrogen atom) to the intermolecular orbitals is 

controlled by the amount of polarization that one monomer’s electric field effects on another 

monomer’s wave function, as well as electron correlation. This should result in the weakening 

of the valence bonds of the monomers as we indeed found earlier (compare Table 4.1). 

    When studying the graphs in Fig. 4.5 and 4.6 we see that there are a significant change in 

the relative electron population of the 4sp and 5sp shells of the fluorine atom between the 

                                                 
4However, relativistic effects also play a role in metal ligand bonding.   
5 It is only a hypothesis as it has not been proven except by an indirect method. 
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trimer, tetramer and pentamer. In the trimer the 4sp and 5sp shell almost have the same 

relative electron populations, but in the tetramer and pentamer it is different as if these two 

shells are reversed and also “unbalanced”6 with respect to the isolated monomer. It might be 

that for the clusters larger than the trimer the electrons in the 5sp-shell, which are lower in 

energy than the electrons in the 4sp-shell (relative to an isolated monomer) in these clusters, 

are excited into the 4sp-shell. This would lead to a slight destabilization in the larger cyclic 

clusters. The significance of these results will become clear, but first we have to draw a 

comparison between the arrangement of the electrons in the HF trimer and the arrangement of 

electrons in benzene. Benzene has a strong ring current and is regarded as aromatic, whereas 

cyclobutadiene is known to be anti-aromatic [Rehaman et al., 2006]. When one studies the 

electron configuration of benzene, one sees that all the bonding π-orbitals are filled and this is 

most probably the reason for its aromaticity, as other monocyclic systems not having 4n+2 π-

electrons are not aromatic [Cotton, 1990]. In the HF trimer, the 4sp and 5sp-shells have more 

electrons than in the monomer, whereas the other cyclic clusters have “unbalanced” electron 

configurations such as in cyclobutadiene. It is therefore possible that this is the reason for the 

weak ring current7 that is known to be present in the HF trimer [Rehaman et al., 2006] and not 

in the other cyclic HF clusters. The ring current might be related to the fact that fewer 

electrons need to be excited from the 5sp-shell to the 4sp-shell or vice versa, depending on the 

energies of the shells, as the 4sp and 5sp-shells already contains sufficient electrons. The 

electron-flow will therefore not be interrupted by an excitation as might be possible in the 

larger cyclic clusters. Again, this shows the usefulness of the intermolecular orbital model for 

describing bonding in HF cyclic clusters. The reader might argue that these electrons are not 

π-electrons such as in benzene. However, it is now realized that aromaticity might include 

sigma-delocalized systems as well [Rehaman et al., 2006].     

    Our model can also explain cooperativity, just as in the NBO theory for hydrogen bonding, 

as we see in both Fig. 4.5 and 4.6 that with cluster size the electron density donated from the 

donor to the acceptor monomer increases and the “back-donation” is also more significant. 

Back-donation is again a localized concept. According to our intermolecular orbital 

explanation, it should rather be explained as a donation of the acceptor monomer’s electron 

density into the delocalized intermolecular orbital. Both the polarizability of the atoms in the 

monomers and their electron negativity will influence their interaction with each other.  

                                                 
6 They are “unbalanced” as the one shell loses more electrons than in the isolated monomer and the 
other gains much more electrons than in the isolated monomer. In the trimer both the 4sp and 5sp shells 
have on average more electrons than in the isolated monomer irrespective of when the measurement is 
done. 
7 NICS (Nuclear independent chemical shift) values are calculated by determining the chemical shift of 
a ghost atom containing only basis functions and no nucleus, in the magnetic field of a molecule. These 
values can be used as a sign of aromaticity or anti-aromaticity in molecules. 
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    The effect of basis set/atomic orbital superposition, described so far, is well known but as 

far as we know have never been used to describe intermolecular interactions; only valence 

bonds.     

    Thinking in terms of intermolecular orbitals, strange hydrogen bonds such as the hydrogen 

bond between HF and acetylene [Wojtulevski and Grabowski, 2002] can be easily explained 

as a π-orbital on the acetylene overlapping with molecular orbitals, probably σ, on the HF 

monomer.     

    By plotting the molecular orbitals of all the other clusters it was evident that the molecular 

orbitals show delocalization of both π and σ electron density. In clusters IV, VI and VIII the 

wave functions are delocalized from the external monomers to the cyclic rings.   

 

4.5.2 Atoms in Molecules (AIM)   

 

To complete our understanding of the bonding in these clusters, we made use of the theory of 

Atoms in Molecules (AIM) [Biegler-König et al., 1982]. AIM is a method where the wave 

function of a molecule is used to derive its electron density. The electron density is a three-

dimensional function and has many maxima, minima and saddle points. One of the aims of 

AIM is to find critical points on this hyper-surface. These critical points are all maxima in one 

or two directions on the electron density hyper-surface. A Newton-Raphson optimization 

algorithm is used to find these maxima on the surface of the electron density. Nuclear 

attractors are points in the electron density that are three-dimensional maxima on the hyper-

surface. They represent the core electrons or the K-shell electrons. By taking the second 

derivatives of the electron density with respect to position, the signature of the local  maxima 

can be determined on the electron density hyper-surface. The signature gives us information 

on the nature of the local maxima. For example a bond critical point (BCP) has a signature of 

(3,-1) meaning that there are 3 directions of local curvature and two of these local curvatures 

have a negative second derivative and one a positive second derivative. The electron density 

is therefore a maximum in 2 directions and a minimum in one at this critical point. 

    To investigate the movement of electrons in the clusters we used AIM to determine the 

electron densities (ρ) at various critical points.  These results are reported in Table 4.3. We do 

not report the values for the Laplacians or second derivatives as all of them, except for cluster 

VIII, are negative as typical for hydrogen bonds. 

 

http://scholar.sun.ac.za/



87 

         Table 4.3: AIM analysis of the HF clusters. BCP stands for Bond Critical Point and RCP stands for Ring Critical Point. Mon denotes: monomer. 

 Single 

Monomer 
I II III IV V VI VII VIII 

ρ of BCP 

(e.bohr-3) 

0.370 0.362 

0.364 

0.350 0.337 External:0.362 

Mon1:0.339 

Mon2:0.349 

Mon3:0.356 

 

0.331 External:0.3

63 

Mon1:0.333 

Mon2:0.323 

Mon3:0.344 

Mon4:0.338 

 

 

0.329 

 

Mon in ring: 0.330 

External Mon: 0.366 

 

Relative shift 

in BCP away 

from fluorine 

atom in 

monomer (%) 

 

0.00 0.34 

0.25  

 

0.57 0.80 External 0.36 

Mon1 : 0.48 

Mon2: 0.79 

Mon 3:0.66 

0.87 External: 

0.32 

Mon1:0.72 

Mon2:0.91 

Mon3:0.86 

Mon4:0.80 

0.90 External Mon: 0.16 

All monomers in ring: 

0.88 

RCP  of  

( e.bohr-3) 

  
0.008 0.002 0.007 0.0005 0.002 0.0001 0.004 

a) The relative position is calculated by dividing the distance of the critical point from a hydrogen atom by the bond length of the monomer and multiplying by 

100 and subtracting this result from the result obtained for the same calculation for a single monomer. It is therefore the percentage movement of the BCP 

from its position in the monomer.  
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Table 8.5: ESP-maps including charges derived with various charge schemes. All the values are in a.u.  

ESP –maps SCF density 
based MKS 

charges 

MP2 density based 
MKS charges [AIM 

charges] 

MP2 density based 
NAO charges 

ESP-maps SCF 
density 

based MKS 
charges 

MP2 density based 

MKS charges [AIM 

charges] 

MP2 density based NAO 

charges 

F1:-0.374 
H2:0.256 
O3:0.110 
C4:0.009 

F1:-0.350[-0.721] 
H2:0.231[0.718] 

O3:0.233[-1.131] 
C4:-0.114[1.134] 

 

F1:-0.546 
H2:0.544 

        O3:-0.463        
         C4:0.464 

F1:-0.387 
H2: 0.225 
C3: 0.364 
O4:-0.202 

F1 : -0.369[-0.740] 
H2 :0.210[0.714] 
C3 :0.231[1.101] 

O4 :-0.072[-1.075] 
 

F1:-0.562 
H2:0.544 
C3:0.397 

O4:-0.379 

 

O1:0.116 
C2 :0.017 
H3:0.244 
H4:0.430 
F5:-0.333 
F6:-0.474 

O1:0.058 
C2:-0.049 
H3:0.296 
H4:0.253 
F5:-0.282 
F6:-0.275 

O1:-0.478 
C2:0.481 
H3:0.563 
H4:0.552 
F5:-0.555 
F6:-0.563 

F1:-0.380 
H2:0.246 
C3:0.296 

O4:-0.183 
C5:0.126 

O6:-0.105 

F1:-0.358 
H2:0.224 
C3:0.173 

O4:-0.058 
C5:0.006 
O6:0.014 

F1-0.565 
H2:0.536 
C3:0.400 

O4:-0.381 
C5:0.409 

O6:-0.409 

 

 
O1:0.057 
C2:-0.001 
C3:-0.001 
O4:0.058 
C5:0.006 
O6:0.047 
H7:0.184 
F8:-0.350 

O1:0.169 
C2:-0.114 
C3:-0.113 
O4:0.168 
C5:-0.108 
O6:0.160 
H7:0.159 
F8:-0.321 

O1:-0.445 
C2:0.444 
C3:-0.445 
O4:0.444 
C5:0.444 

O6:-0.445 
H7:0.548 
F8:-0.546 

F1:-0.437 
H2:0.412 

O3:-0.009 
C4:0.038 
H5:0.292 
F6:-0.363 
C7:0.034 
O8:0.033 

            F1:-0.416 
H2:0.389 
O3:0.105 
C4:-0.077 
H5:0.261 
F6:-0.330 
C7:-0.083 
O8:0.151 

 

F1:-0.565 
H2:0.552 

O3:-0.447 
C4:0.446 
H5:0.562 
F6:-0.549 
C7:0.467 

O8:-0.467 
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F1:-0.458 
H2:0.449 
F3:-0.463 
H4:0.453 
H5:0.448 
F6:-0.461 
O7:-0.002 
C8:0.033 

F1:-0.433 
H2:0.425 
F3:-0.438 
H4:0.429 
H5:0.424 
F6:-0.436 
O7:0.120 
C8:-0.090 

F1:-0.568 
H2:0.568 
F3:-0.568 
H4:0.568 
H5:0.568 
F6:-0.567 
O7:-0.432 
C8:0.430 

F1:-0.386 
H2:0.481 

O3:-0.117 
C4:0.101 
H5:0.254 
F6:-0.278 
C7:0.156 

O8:-0.210 

F1:-0.369 
H2:0.447 
O3:0.039 
C4:-0.058 
H5:0.249 
F6:-0.272 
C7:0.016 

O8:-0.052 

 

 

 
H1:0.167 
F2:-0.319 
C3:0.052 

O4:-0.026 
F5:-0.434 
H6:0.388 
C7:0.375 

O8:-0.204 

H1:0.144 
F2:-0.294 
C3:-0.072 
O4:0.097 
F5:-0.413 
H6:0.365 
C7:0.246 

O8:-0.073 

 

C1:0.130 
O2:-0.107 
O3:-0.017 
C4:0.130 

F5: -0.383 
H6: 0.279 
C7:0.227 

O8:-0.169 

C1:0.011 
O2:0.011 
O3:0.011 
C4:0.011 
F5:-0.356 
H6:0.248 
C7:0.113 

O8:-0.047 

 

 

H1: 0.408 
F2:-0.461 
H3:0.137 
F4:-0.253 
F5:-0.456 
H6:0.4000 
C7:0.420 

O8:-0.195 

H1:0.382 
F2:-0.439 
H3:0.106 
F4:-0.217 
F5:-0.433 
H6:0.373 
C7:0.294 

O8:-0.065 
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Again as in both Chapters 5 and 7, the ε-values were not changed. To save time, only the 

first six clusters were used. We believe that this is still adequate for a force field optimization.  

 

8.9 Transferability of force field parameters and optimization for 

CO/HF clusters 

 

In Table 8.6 we show how transferable the different force field parameters, as optimized for 

the CO and HF clusters, are to the CO/HF clusters. It is an important feature of good force 

field parameters that they are transferable to other systems containing the same atom-types 

[Leach, 2001]. We use the RMSD’s for the fitting of the ONIOM steric energies to the MP2 

BSSE corrected interaction energies as a measure of the quality of the force field parameters.  

 

Table 8.6: Table illustrating the transferability of force field parameters. The  quality of the force field is 

assessed based on ONIOM steric energies. See text. 

 MP2 
interaction 
energies 

(kcal/mol) 

Energies 
obtained for 

the 
geometrically 
optimized CO 

and HF 
parameters as 

reported in 
Chapters 5 and 

7 
(kcal/mol) 

Energies for 
parameters 
obtained for 

the atom-types 
in Chapters 5 
and 7 with a 

frozen 
geometry 
method 

(kcal/mol) 

Energies for 
best optimized 

force field 
parameters for 
CO/HF clusters 
as reported in 
this chapter 
(kcal/mol) 

Energies 
obtained for 

the  
default UFF  
parameters 
(kcal/mol) 

I -1.05 3.75 3.34 3.33 7.03 

II -3.03 3.92 4.04 3.82 17.03 

III -5.25 -1.04 -1.50 -1.90 25.62 

IV -3.91 2.81 3.08 2.70 18.01 

V -2.11 10.84 -1.63 1.75 0.11 

VI -5.42 1.34 -3.44 -2.78 -3.93 

R0-values (Å) N/A F_: 3.340 

H_ :1.280 

C_1: 3.700 

O_1:4.500 

F_  : 3.386 

H_  :0.481 

O_1:3.687 

C_1:2.948 

F_   : 2.936  

H_  : 1.454 

O_1:  3.403 

C_1: 3.446 

F_ : 3.364 

H_ : 2.886 

C_1:3.851 

O_1:3.500 

 

Total RMSD 

(kcal/mol) 
N/A 7.61 4.77 4.53 17.84 

 

Studying the RMSD’s of the ONIOM steric energies with respect to the MP2 BSSE corrected 

interaction energies, we see clearly that the default UFF parameters are not suitable for the 

force field, as only cluster VI gives a negative ONIOM steric energy for the MP2 optimized 
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geometry. Using the parameters optimized with geometry optimizations (Chapters 5 and 7), 

we obtain a slightly better result; probably because the H_ and F_ R0-values have already 

been shown to give excellent results (see Chapter 5). When parameters optimized with a 

frozen geometry method (Chapters 5 and 7) are used to calculate the ONIOM steric energies 

of the selected CO/HF clusters, we see that the values for the ONIOM steric energies are 

slightly closer to the MP2 BSSE corrected interaction energies than those obtained when 

using geometry optimizations to obtain the force field parameters (see column 4 in Table 8.6). 

When the parameters for F_, H_, O_1 and C_1 are optimized independently, specifically for 

the six CO/HF clusters as described earlier in this chapter, we find that the RMSD in the total 

ONIOM steric energy is only slightly improved. In Fig. 8.4 we see that the ONIOM steric 

energies for each cluster are still not a good fit to the MP2 BSSE corrected interaction 

energies for each respective cluster.  
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Fig. 8.4: The ONIOM steric energies/MP2 interaction energies shown for the first six CO/HF clusters.  A 

cluster number of 3 refers to cluster III etc.  
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Even when the optimization was performed for the two dimers (Cluster I and II) and the van 

der Waals energy was explicitly minimized to a global minimum1, the ONIOM steric energies 

were still positive, as the electrostatic energy is too positive to be cancelled out by the van der 

Waals energy. Therefore, for the dimers it would only be possible to obtain a negative energy 

if the electrostatic energy was negative, which is not the case when MKS point charges are 

used on the MM atoms. We see that the trend for the optimized parameters is basically the 

same as for the transferred parameters, except for cluster V and VI. The parameters for 

Cluster V and VI are better for the values obtained in Chapter 5 and 7 than for the newly 

optimized values. The best solution to the optimization of the force field, in terms of energy at 

least, is therefore not adequate. The main, and possibly the only, reason is the inadequate 

reproduction of the electrostatic energy for these clusters, because point charges are used 

instead of a more elaborate description of the electrostatic interactions.  

 

8.10 Summary, conclusions and future work 

 

In this chapter we reported the optimization of eleven CO/HF clusters with the 6-311+G(d,p) 

basis set at the MP2 level of theory. Various energies and geometrical parameters were 

determined and can be found in Table 8.1 and 8.2. Bonding was briefly analyzed for the O···H  

and C···H bonded dimers, based on AIM analysis and a delocalized molecular orbital model. 

An AIM analysis shows a larger interpenetration of the electron densities of the two 

monomers in the C···H bonded dimer than the O···H bonded dimer and this might be the main 

reason why the O···H bonded dimer is the local energy minimum and the C···H bonded dimer 

the global energy minimum. During the force field optimizations for the QM/MM hybrid 

system, we could not find an adequate fit of the ONIOM steric energies to the BSSE corrected 

MP2 interaction energies. There are two possible reasons for this: the atomic point charges 

alone are not sufficient to fully describe the electrostatic energy in the clusters and other 

methods are necessary; or the values of the point charges are inaccurate. Future work could 

include analyzing the different nonbonded interactions in the other CO/HF clusters by using 

AIM analysis, and the optimization of the force field using a more elaborate description of the 

electrostatic interactions in the clusters. In the next chapter we will discuss ways in which the 

hybrid method as a whole can be improved, to be suitable for the accurate modeling of 

clusters. A detailed vibrational analysis at the MP2 level of theory of all the CO/HF clusters 

might also prove valuable.  

                                                 
1 When a UFF force field geometry optimization was performed with the optimized parameters while 
excluding electrostatic interactions, the geometry did not change from the geometry of the energy 
minimum at the MP2 level of theory.    
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CHAPTER 9 

 

The ONIOM-EE method under the 

looking glass 

 

9.1 Introduction 

 

The combination of quantum mechanics with molecular mechanics is an artificial way to 

allow for accurate calculations on systems that are usually considered too large for standard 

quantum mechanical methods. However, in the case of small clusters as discussed in this 

work, QM/MM might not be the ideal choice as certain quantum effects such as electron 

correlation cannot be taken into consideration for both the QM and MM systems and, as we 

have illustrated especially in Chapter 6, electron correlation may play a significant role in 

intermolecular interactions. Therefore it would be better to use a QM/QM method where the 

interaction between the two QM systems can be calculated at a low level of theory.  Hydrogen 

bonds in alcohol dimers, for example, have been studied by IMOMO [Tschumper and 

Morokuma, 2002]. However, as this work specifically entails using QM/MM we will try to 

give suggestions on how QM/MM can be modified to make calculations for clusters more 

accurate. All our assumptions in this chapter are based on ONIOM-EE as implemented in 

Gaussian 03.  

    During the use of ONIOM-EE in this work, we experienced several problems related to 

electronic embedding. In Section 9.2 we will describe these problems and finally give 

possible reasons for them. In Section 9.3 we will give reasons for the need for a better charge 

density description of the MM system. In Section 9.4 we will discuss problems with 

geometry optimizations for systems utilizing rigid blocks in the MM system and how these 

problems can be solved, and in Section 9.5 we will show that Gaussian does not necessarily 

derive suitable ESP charges for ONIOM-EE. In Section 9.6 we will discuss the difference in 

hydrogen bond distances for QM-QM and QM-MM interactions. In Section 9.7 we will 

present a novel method of increasing the accuracy for the modeling of clusters with ONIOM-

EE and Section 9.8 will conclude this chapter.   
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9.2 The electronic embedding procedure  

 

During this work we noticed when modeling the HF clusters with ONIOM-EE that the energy 

at the high level of theory for the model system was much larger in absolute value than is 

obtained when the same monomer, in the model system, was isolated and its energy 

calculated at the MP2 level of theory. This result was found when either MKS or NAO 

charges were used on the atoms in the MM system. To simplify the following discussion we 

will define two terms. The ONIOM electrostatic energy is defined as the sum of el
MME and 

ΔP. These terms are defined in Section 5.6. The classical electrostatic energy is the same as 

Eel that was also defined in Section 5.6. We report the results for both MKS and NAO point 

charges on the atoms in the MM system as well as the MP2 interaction energies in Table 9.1.   

 

Table 9.1: Results for the calculations of the ONIOM electrostatic energies and classical electrostatic 

energies for six of the HF clusters. The results are reported for both MKS and NAO charges on the MM 

atoms. The MP2 interaction energies (BSSE-corrected) are also shown. 

 MKS charges NAO charges 
 

HF clusters 
Total ONIOM 
electrostatic 

energy (kcal/mol) 

Total 
classical 

electrostatic 
energy 

(kcal/mol) 

Total 
ONIOM 

electrostatic 
energy 

(kcal/mol) 
 

Total 
classical 

electrostatic 
energy 

(kcal/mol) 

MP2 interaction 
energy 

(kcal/mol) 

I -78.7 -4.7 -117.6 -6.5 -3.8 

II -149.5 -13.4 
 

-270.0 -20.6 -11.6 

III -210.2 -24.4 
 

-413.1 -41.5 -21.6 

IV -234.6 -17.7 -390.3 -27.5 -15.0 

V -282.3 -35.1 -567.4 -62.4 -30.1 

VI -285.7 -26.6 -542.0 -48.2 -24.6 

 

In Table 9.1 we see that the ONIOM electrostatic energies are always much larger than either 

the classical electrostatic energies or the MP2 interaction energies, no matter which charge 

scheme was used. We also see that the trend in the ONIOM electrostatic energies with cluster 

size is different from the trend for the MP2 interaction energies when MKS charges are used, 

whereas when NAO charges are used, it is the same. For example, when MKS charges are 

used, Cluster IV is lower in absolute ONIOM electrostatic energy than Cluster III, which does 

not correspond to the trend in the MP2 interaction energies, but when NAO charges are used, 
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then Cluster III is more stable than Cluster IV. We conclude that in this particular case NAO 

charges should be a better option as they give a more accurate description of all the clusters’ 

charge densities. We also plotted the ONIOM electrostatic energies and classical electrostatic 

energies for the CO clusters as they vary with cluster size and this is presented in Fig. 9.1. For 

these calculations, we only used MKS charges on the MM atoms. 
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Fig. 9.1: The ONIOM electrostatic energy for each cluster is shown on the primary axis and the classical 

electrostatic energy is shown on the secondary axis. The cluster numbers are in the order in which the 

clusters were presented in Chapter 6. The cluster numbers for Cluster I and Cluster VII for example are 1 

and 7 respectively.  

 

In Fig. 9.1 we see that the trend in ONIOM electrostatic energies and classical electrostatic 

energies are only similar for Clusters IV to VII. This result shows that approximating the 

polarized QM wave function’s density by ESP charges is not always a good approximation. In 

this case the approximation seems to be better for the larger clusters. 
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9.3 The need for a better charge density description 

 

In Section 9.2 we reported that the absolute ONIOM electrostatic energy is too large in 

magnitude when compared to the MP2 interaction energies. In this section we will try to 

elucidate the reason for this.  

    We attempted to obtain an output file containing the polarized wave function of the QM 

system for AIM analysis, but to no avail and instead had to use another method to obtain 

information on the polarized QM wave function. We used a method that we introduced in 

Chapter 4, which we coined relative electron population analysis. We did relative electron 

population analysis for the monomer in the QM system in the QM/MM system and for the 

same monomer in a dimer calculated with MP2. The latter will be called the MP2 dimer. In 

both the ONIOM single point and MP2 single point energy calculations, the MP2 energy 

minimum geometries were used. 

    The relative electron populations for the fluorine atom are shown in the first graph (Fig. 

9.2) and those for the hydrogen atom are shown in the second (Fig. 9.3). Note that the z-axis 

is in the plane of the main Cs symmetry axis, therefore it is almost in line with the hydrogen 

bond and the x and y-axes are arranged as in a right-handed coordinate system. 
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Fig. 9.2: Graph showing the difference in the relative populations of the electrons in each orbital for the 
fluorine atom in the QM system. The orbitals are numbered in the sequence of their main quantum 
numbers. The graph therefore starts with the 1s-orbital and ends with the 5pz-orbital. The relative 
electron populations for the monomer in the MP2 optimized dimer are shown on the primary axis and the 
relative electron populations for the monomer in the QM system in the QM/MM hybrid are shown on the 
secondary axis. 
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Fig. 9.3: Graph showing the difference in the relative electron populations of the electrons in each orbital 

for the hydrogen atom in the QM system. The orbitals are numbered in the sequence of their main 

quantum numbers. The graph therefore starts with the 1s-orbital and ends with the 3s-orbital.  

 

Regarding both Fig. 9.2 and 9.3, we see that the perturbation of the point charges on the QM 

system is inaccurate compared to a pure MP2 calculation of the HF dimer. When we consider 

that the decrease in relative electron populations is related to the increase in the energy of the 

energy levels of the orbitals,2 we can make the following assumption: if an atomic orbital is 

highly occupied it means that it is stable and if it is not, then it is unstable. For example, if we 

find a positive relative electron population for an atomic orbital then it means that this orbital 

is lower in energy and hence more stable than in the monomer.  

    If the wave function was perturbed “correctly” by the point charges of the MM system, the 

relative electron populations for the QM system and for the monomer in the MP2 dimer 

should be similar. However, they definitely differ significantly, as can be seen in Fig. 9.2 and 

Fig 9.3 for the fluorine and hydrogen atoms respectively.  

    In Fig. 9.2 we see that the 2pz, 3pz, 4pz and 5pz-orbitals show a similar trend in the hybrid 

system to the MP2 dimer. For the fluorine atom, we see a different trend in the relative 

electron populations for the orbitals with a maximum electron density in the y-direction with 

respect to the same orbitals of a monomer in the MP2 dimer. These orbitals are the py-orbitals. 

                                                 
2 This can also be seen when the energy values for the orbitals are compared to an isolated monomer. 
The orbitals are in general higher in energy than in the monomer. 
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In the MP2 dimer these orbitals clearly show a destabilization, but we do not see this 

destabilization for the monomer in the QM/MM system. Putting negative charges in line with 

the lobes of the py-orbitals on the fluorine atom in the QM system will result in the movement 

of more electrons into the pz-orbitals and so the perturbation of the QM system will be more 

like in the MP2 dimer. If the electrons move into the pz-orbitals, they will be repelled by the 

negative point charge on the fluorine atom in the MM system. This will result in the electrons 

mainly spending time as far away as possible from the point charge on the fluorine atom in 

the MM system, which will lead to a larger bulging of the electron cloud on the right of the 

fluorine atom in the QM system. From Fig. 9.2 this also seems to be the case for the fluorine 

atom in the MP2 dimer.3     

    We can now give a possible explanation for the ONIOM electrostatic energy being 

unrealistically large in absolute value. The reason might be that because there are more 

electrons in the y-direction for the fluorine atom in the QM system than in the MP2 dimer, 

these electrons are closer to the positive point charge on the hydrogen atom in the MM 

system. The attractive interaction between these electrons and the positive charge can 

therefore lead to an unrealistic stabilization energy. If there were more electrons in the z-

direction then there would have been a larger repulsive interaction between the negative point 

charge on the fluorine atom in the MM system and the electrons, which will lead to a 

destabilization. This in turn might lead to a more realistic ONIOM electrostatic energy value.  

    For the hydrogen atom, we see that the relative electron populations do not follow the same 

trend as in the MP2 dimer. We see that the 2py, 2pz and 3s-orbitals on the hydrogen atom have 

different electron populations in the hybrid system to the MP2 dimer, but other than for the 

fluorine atom, they are more comparable and a secondary axis is not necessary when 

presenting these values graphically in Fig. 9.3. The difference in the relative electron 

populations with the 2py-orbitals of the hydrogen atom show that two positive point charges 

should be added above  and beneath the hydrogen in the QM system in order to attract 

electrons towards these orbitals. The magnitude of these charges should be small, as the 

correction that should be applied to the QM/MM system to make the hydrogen atom behave 

more as it does in the monomer in the MP2 dimer, is very subtle.  

    A possible solution to correct for both the relative electron population for the fluorine and 

the hydrogen atom is to add a quadrupole to the MM system. In Fig. 9.4 we show the two 

atomic point charges and the quadrupole that need to be added to the MM system. It is 

important that all the point charges on the MM system should be constrained so that the net 

charge of zero for the entire system is conserved.   

                                                 
3 We see that in the MP2 dimer the fluorine atom in the monomer has a larger stabilization in the z-
direction than the fluorine atom in the monomer in the QM system. This can only mean that more 
electrons are found on the right of the fluorine atom in the MP2 dimer. 
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Fig. 9.4: Superposition of 2 monopoles and a quadrupole in the MM system to improve the polarization of 

the QM wave function. 

 

The two negative point charges in the quadrupole should be chosen to have a significant 

repulsive effect on the electrons in the py-orbitals on the fluorine atom in the QM system. The 

positive charges of the quadrupole should be small in magnitude, as they will attract electrons 

into the py-orbitals of the hydrogen atom.  

    We have deliberately said nothing about the large difference in the relative electron 

populations for the 3s-orbital on the hydrogen atom in the QM system compared to that of 

this atom in the MP2 dimer. The reason why this difference is obtained is due to charge 

transfer. In the MP2 dimer, charge is transferred from the fluorine atom in the donating 

monomer to the hydrogen atom in the accepting monomer, but in the QM/MM system this is 

of course not possible. There would also be a certain amount of energy associated with this 

charge transfer, but we believe that this might not have such a large effect on the ONIOM 

electrostatic energy.  

    Based on our results in this section we conclude that there are possibly two reasons for the 

absolute values of the ONIOM electrostatic energy being so large. The reasons are: 

 

1. The polarization of the wave function cannot be accurate without using a better 

charge density description for the MM system, such as using a quadrupole in addition 

to the two atomic point charges; 

2. Charge transfer cannot be modeled by QM/MM systems and the lack of proper 

charge transfer will have an effect on the electron density in the QM system. 
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9.4 Problem with the ESP derived charges 

  

When we compare the MKS charges that are derived to represent the QM system’s charge 

density for Cluster IV of the HF clusters during the first set of micro-iterations, we see that 

we obtain a zero total charge for the QM system when taking the sum of the derived charges.  

See Table 9.2. However, when we add all the charges for the entire system, including the 

point charges on the MM atoms, we do not obtain a total charge of zero for the system. Our 

results were obtained by performing ONIOM and MP2 single point calculations.    

 

Table 9.2: Results for the point charges derived for the QM system (F1 and H2) and the true MKS charges 

for these atoms in the same cluster calculated with MP2. The charges are given in au.  

 MKS (ONIOM) MKS (true) 

F1 -0.488 -0.430 

H2 0.488 0.449 

F3 -0.451 -0.451 

H4 0.437 0.437 

F5 -0.419 -0.419 

H6 0.441 0.441 

H7 0.430 0.430 

F8 -0.457 -0.457 

Total: -0.019 0.000 

 

Therefore, according to our results in Table 9.2, when ESP charges are derived the system is 

not neutral anymore. We suggest that the constraint on the charges should rather be that the 

total charge of the system should be conserved. We do not know what effect this might have 

on the optimization of the MM system but it might be subtle. Due to the particular way in 

which the charges for the QM system are derived, one should not expect by default that the 

charges are a good representation of the true charge density of the QM system. 
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9.5 ONIOM-EE optimizations with rigid blocks 

 

The micro-iterations for ONIOM-EE optimizations are currently done by using the GDIIS 

method and converting to the Conjugate Gradient (CG) method when the forces are very 

small [Vreven et al., 2003]. In Section 2.9 we described how a geometry optimization is 

performed for a QM/MM system. We will briefly recap the important details. Electronic 

embedding is currently done by adding the interaction of the point charges on the MM atoms 

to the QM Hamiltonian. This leads to an energy, which is then used to compute the exact 

electrostatic forces between the QM and MM systems. The sum of this and the force for the 

van der Waals interactions between all the nonbonded atoms in the entire system is then used 

when the force is computed during the micro-iterations. During the micro-iterations time is 

saved by instead of computing the exact force at every step, the change in the exact force is 

rather updated by an approximation based on the change in the interaction between the ESP 

derived charges and the stationary charges on the MM atoms as the atoms in the MM system 

move.  

    Having a very large negative electrostatic energy for the interaction between the QM and 

MM systems will also lead to a large electrostatic force, since the magnitude of the force in 

atomic units is just the energy in hartree divided by the distance in bohr between an atom in 

the QM system and an atom in the MM system. Approximating the change in the exact 

electrostatic force between the QM and MM systems by using point charges will result in a 

far smaller change in the exact force than should be the case. This will then lead to the MM 

system experiencing a large attractive force pulling it towards the QM system that will not 

change much as the MM atoms move. Using rigid blocks in the MM system will make the 

optimization more difficult, as the atoms of a monomer are not allowed to turn around the 

center of mass of the monomers or stretch their bond lengths. The only course for the MM 

system to follow is to plunge into the QM system. This would eventually lead to an enormous 

increase in the van der Waals interaction, which will make the QM and MM systems move as 

far away as possible from each other. The optimizer will break down since GDIIS is known to 

behave erratically when far from a minimum [Schlegel, 2003]. In Appendix B.2 we illustrate 

this behavior for Cluster V of the HF clusters. When we removed the rigid block constraint, 

for some of the clusters, the QM and MM systems did not show this behavior, but the bond 

lengths in the MM system definitely stretched during the optimization.  

    A possible way to freeze internal coordinates in the MM system might be to use penalty 

functions [Leach, 2001], such as is done to freeze bond lengths, angles and torsion angles in 

normal restrained force field optimizations, however this has not been implemented in 

Gaussian 03. We however expect that by using penalty functions geometry optimizations, 
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where the user specifically wants to restrain the MM molecules’ bond lengths, will be more 

efficient.   

    The reader might have noticed that so far we did not mentioned the CO/HF clusters. The 

problem with the CO/HF clusters was already encountered when point charges were derived 

earlier in Chapter 8.  The charge schemes used gave erroneous results such as positive 

charges for both a carbon and a hydrogen atom that are known to both participate in a 

hydrogen bond. Using these charges in QM/MM calculations would have been a waste of 

time. This emphasizes the need for more accurate charge derivation schemes and the use of 

higher multipoles in charge density approximations.   

     

9.6 QM-QM interactions vs QM-MM interactions 

 

Previously in Chapter 5 we used two different hybrid systems in an attempt to minimize the 

time needed for the optimization of the force field. By using two QM molecules and only one 

MM molecule in the HF trimer, we could determine the difference in the hydrogen bond 

distances in the hybrid system with respect to the MP2 results. We found that adding an MM 

molecule to a QM system weakened all of the hydrogen bonds in the system, resulting in a 

distortion of the geometry. MM point charges and van der Waals forces were therefore not 

adequate to give the correct hydrogen bond distances between the QM molecules in the QM 

system. Studying the difference in the hydrogen bond distances between two QM atoms and 

the hydrogen bond distance between a QM and MM atom in such a hybrid system, we found 

that the QM-QM hydrogen bond distance is shorter than the QM-MM hydrogen bond 

distance. We also found that in comparing the results for the optimization of the force field 

for the hybrid system containing only one MM molecule with the hybrid system containing 

one QM molecule, the R0-values for H_ and F_ are 3.52 Å and 1.28 Å and 3.34 Å and 1.28 Å 

for the two systems respectively. The reason for this result is probably that the interaction 

between an MM fluorine atom and a QM hydrogen atom is more repulsive than between two 

MM atoms. This is related to an inaccurate description of the electrostatic interactions due to 

an inaccurate polarization of the QM wave function by the atomic point charges on the MM 

atoms, and also due to charge transfer effects from the QM to the MM system that of course 

cannot be described by molecular mechanics. 
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9.7 A possible solution for problems encountered with ONIOM-EE 

 

We showed that the use of point charges could lead to errors and even optimizations failing. 

In this section, we suggest a method to improve the present ONIOM-EE method to obtain 

results for clusters that are more accurate. For this method to be successful, it should be able 

to: 

 

1. Produce a more accurate perturbation on the QM Hamiltonian; 

2. Incorporate multipole moments as far as possible; 

3. Allow the MM system to be polarized by the QM system as well; 

4. Keep the charge of the total system constant. 

 

9.7.1 Presenting the anisotropy of a charge distribution 

 

Before we discuss a possible solution to the problem, we need to review methods that are able 

to give more accurate representations of the charge-density. One of these methods is the 

central multipole expansion.  

 

9.7.1.1 The central multipole expansion 

 

The central multipole expansion is based on the electric moments or multipoles of molecules. 

The multipole expansion contains the monopole or charge, the dipole, the quadrupole, the 

octupole etc. By using an expansion of all of these moments to a specific order, the anisotropy 

of a system’s charge distribution can be accurately accounted for. A dipole can be represented 

by placing two charges an appropriate distance apart, a quadrupole by placing four charges 

appropriate distances apart, an octupole by using eight charges and so on.  

    Electrical multipole moments higher than the dipole are all tensor properties. A tensor is 

useful when the x-component of one vector influences not only the x-component of another 

vector, but also its y and z components and when the y-component of one vector influences 

not only the y-component of another vector but also its x and z components. The same applies 

to the z-component. Tensors are not matrices, but quantities that can be represented by 

appropriate matrices. The quadrupole tensor can be written as: 

 

2

2

2

i i i i i i i i

i i i i i i i i

i i i i i i i i

q x q x y q x z

q y x q y q y z

q z x q z y q z

 
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   
 
 

  
  
  

                  (9.2) 
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where qi is the charge and xi, yi and zi are the coordinates [Leach, 2001]. 

  

9.7.1.2 Distributed Multipole Analysis (DMA)  

 

The well-known DMA method [Leach, 2001] calculates the multipoles from a quantum 

mechanical wave function in terms of Gaussian primitives. As we mentioned in Chapter 2, in 

general ab initio calculations use basis functions that are centered on atoms. DMA uses the 

product of basis functions that corresponds to a charge density at the atoms. This charge 

density is written as a multipole expansion at the site of the atoms. Then the multipole 

expansion for the same charge density at the atoms is expanded at various sites around the 

molecule leading to the creation of multipole moments at these sites. These multipole 

moments automatically incorporate the anisotropy of the charge distribution. It is also 

possible to obtain only the multipole moments of the charge density at the atomic sites by 

making use of AIM. AIM can be used to calculate the higher multipole moments on atoms 

based on an integration of the electron density over atomic basins.  

 

 9.7.2 A new method for ONIOM-EE optimizations of vdW clusters 

 

All the details regarding how ONIOM-EE calculations and geometry optimizations are 

performed in Gaussian 03 can be found in Section 2.9 and will not be repeated.  We would 

like to suggest modifications to this scheme: 

 

1. Instead of using an atomic point charge perturbation, it would be better to use many 

point charges on selected sites. These point charges can be incorporated as dummy 

atoms to represent dipoles, quadrupoles and higher multipoles for the molecules in 

the MM system. Instead of using only atomic point charges the perturbation on the 

QM wave function will now include multipole contributions, making it more 

accurate.  

2. Instead of using the exact force in the micro-iterations, the force can be approximated 

by deriving point charges for the atoms or on other selected sites for the QM system. 

If the QM system is large, fast multipole methods (FMM) can be used to incorporate 

the electrostatic force in the micro-iterations.  

3. In order to create a charge polarization of the QM system’s charges on the MM 

system, we can use an approximation. Instead of only fitting charges to the QM 

system based on the electron density, it would also be possible to fit charges on the 
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atoms and sites in the MM system to give the same ESP at points between the MM 

and QM systems. The ESP is related to the electric field by a simple equation: 

                                                   
( )

( )
dESP

E
d

 
r

r
r

                                                        (9.3) 

where E is the electric field at coordinate r. The charges on the MM and the QM 

system should reproduce the same electric field at the selected points, which would 

lead to a resultant electric field of zero.  The sites selected for point charges on each 

molecule can be on the atoms themselves, positioned an appropriate distance above or 

beneath the bonds, or they can be positioned on the bonds. The charges should be 

fitted to a quantum mechanically computed ESP for each molecule. For very large 

MM systems, such as in biological systems, fitting ESP charges to a large MM 

system used to be very difficult, but recently a method was developed whereby this 

could be done [Gascon et al., 2006]. For sites not on atoms, dummy atoms need to be 

used. The addition of these dummy atoms can be done by means of a graphical user 

interface (GUI).  In Table 9.3 we summarize the possible advantages and 

disadvantages of our proposed new method. 

 

Table 9.3: Possible advantages and disadvantages of new method 

Advantages Disadvantages 

Easy to use Wrong determination of sites for charges can lead 
to the condition where some molecules are well 
described electrostatically and others not 

Should be simple to program and incorporate in the 
Gaussian source code 

Possible longer calculation times 

The method can make use of FMM methods to 
incorporate the electrostatic perturbation of the QM 
on the MM as the MM moves with respect to the 
QM.  

It might be that a new optimization algorithm will 
have to be designed for the method 

Polarization of the QM on the MM and vice versa is 
consistent 

The method will probably not be applicable when a 
very large molecule is used as the MM system 

 

9.7.3 The problem of charge transfer 

 

In HF clusters we found that charge transfer plays an important role. We already touched 

briefly on charge transfer in Section 9.2. To simulate charge transfer in a QM/MM system 

might be difficult and therefore we suggest rather using a QM/QM method when charge 

transfer is significant. There have been attempts to simulate charge transfer for QM/MM 

systems. One method is the Generalized Hybrid Orbital (GHO) method [Pu et al., 2004] 

mentioned in Chapter 2, where an sp3-hybrid orbital is used for each MM atom at the 

boundary. The QM system can then interact with this hybrid orbital and charge transfer can 
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take place. This method was designed as a substitute to link atoms for systems where covalent 

bonds cross the barrier between the MM and QM systems, but to our knowledge this and 

similar ideas have not been applied to nonbonded QM/MM systems.    

 

9.8  Summary, conclusions and future work 

 

In this chapter we emphasized various problems with the present way in which the ONIOM-

EE method is incorporated in Gaussian 03, for the modeling of clusters. The problems and 

possible solutions can be summarized as follows: 

 

Problem: Point charges on atoms are not a good description of the charge distribution. 

Solution: When deriving point charges for a charge distribution we suggest that multipoles 

should also be derived. As we have seen, an addition of multipoles might give a better 

description of the charge density of a system.  

 

Problem: The electronic perturbation is not very accurate.   

Solution: We have seen for the HF dimer at least that using multipoles in terms of many point 

charges for the description of the MM system might solve this problem. 

 

Problem: Because it is accepted by Gaussian 03 that only the QM system should have a zero 

charge, one sometimes obtains weakly charged systems. This is of course unnatural and 

chemically incorrect. See Table 9.2. 

Solution: The charge constraint should be on the whole system, not just the QM system. The 

QM system is not necessarily neutral.   

 

Problem: The QM system is polarized by the MM system, but not vice versa, leading to 

incorrect interactions between the MM and QM systems.  

Solution: The charges on the MM system should be modified in relation to the charges that 

are derived for the QM system. See Section 9.6.2. 

 

Problem: Micro-iterations, when using electronic embedding, converge extremely slowly 

when the molecules in the MM system (with frozen bond lengths) move significantly with 

respect to the QM system. Under certain conditions, the optimizer can also behave erratically.  

Solution: Instead of adding possible extra coordinates to the MM system, one could use 

penalty functions, such as are used to constrain bond lengths and other internal coordinates in 

general force field optimizations.  
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CHAPTER 10 

 

Final conclusions and a summary of 

possible future work 

 
10.1 Introduction 
 

In this chapter, we will summarize our main conclusions in Section 10.2 and possible future 

work that might lead to interesting research, in Section 10.3.  

 

10.2 Main conclusions and brief summary 

 

1. Reviewing the current literature made it clear that CO and CO/HF clusters are more 

of a challenge to model computationally than HF clusters. According to the 

literature reviewed, very little is known about CO and CO/HF clusters 

experimentally as well as computationally. The literature emphasizes that large 

basis sets and high levels of theory should be used when modeling vdW clusters, as 

it is only possible to account properly for electron correlation in this way. It was 

also clear from the literature that the carbon monoxide dimers are extremely 

challenging to model quantum mechanically.  

2. We showed that using MP2, utilizing the 6-311+G(d,p) basis set, gives reasonably 

good results for the HF, CO and HF/CO clusters. However, if the aim is to obtain 

very accurate energies, we advise utilizing both a higher level of theory and a larger 

basis set.   

3. In Chapters 4, 6 and 8 we illustrated that because AIM analysis can only give a 3-

dimensional analysis of the electron density topology, and NBO analysis is based 

on a single determinant wave function, it is better to use visualizations of the 

correlated many determinant wave function. This in turn leads to the definition of 

intermolecular orbitals. We showed that intermolecular orbitals could qualitatively 

explain hydrogen bonding in HF and CO/HF clusters and vdW interactions in CO 

clusters.  

4. We gave a possible explanation for the weak ring current in the HF trimer in terms 

of the delocalized intermolecular orbital model and the arrangement of two shells 
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in a monomer in the trimer that are possibly in close proximity to each other in 

energy.  

5. We showed that different charge schemes can give totally different charges both in 

magnitude and in sign for the carbon and oxygen atoms in CO clusters.  

6. For the CO/HF clusters we showed that charge schemes can give erroneous 

charges. For example, for some charge schemes tested, positive charges were put 

on both a hydrogen and a carbon atom, whereas we know from the literature that 

the C···H bonded dimer is a global energy minimum. We suggested that this 

behavior was the result of trying to approximate the anisotropic charge density by 

using atomic centered point charges instead of incorporating higher multipoles. 

7. Reviewing the literature on hybrid methods made it clear that a study such as the 

one described in this work, has to the best of our knowledge, never been performed 

before. Hybrid methods are usually used for large systems such as those of a 

biological nature and it seems that none of the clusters modeled in this work have 

been modeled with any hybrid method before.  

8. Optimizing a force field by trial geometry optimizations while the bond lengths in 

the MM system are frozen by utilizing rigid blocks, results in a very slow 

convergence if the parameters are too far from being optimized. Depending on the 

parameters, such a convergence might take days even for relatively small systems. 

This is due to the way in which the MM bond lengths are frozen. Using rigid blocks 

also has the disadvantage that the atoms in a monomer cannot rotate around their 

center of mass. A better method might be to use penalty functions.   

9. An alternative method for optimizing force field parameters was developed. The 

necessity for this method arose out of two observations: the energies for the 

perturbations of the wave functions of the clusters in the ONIOM-EE calculations 

were not comparable to the MP2 interaction energies; using atom-atom contacts 

was not a good way of assessing the force field quality for the CO clusters. The 

frozen geometry method we developed in Chapters 5, 7 and 8 appears promising in 

this regard. A genetic algorithm is ideal for this case in order to find a global 

minimum.  

10. Another method of force field optimization might be to relax the bond lengths of 

the monomers in the MM system during a geometry optimization. However, then 

the force constants for the bond stretches will probably also need to be reoptimized. 

Nevertheless, the geometry optimizations will be much faster in this case and 

convergence can be established in a much shorter time.  

11. We could not find parameters that fit the MP2 results exactly, but for both the 

hydrogen fluoride and carbon monoxide clusters, we succeeded in obtaining a good 

http://scholar.sun.ac.za/



176 

fit of the ONIOM steric energies to the MP2 BSSE corrected interaction energies 

for the HF and CO clusters. The force field could not be fully optimized for the 

CO/HF clusters. 

12. We established that the main reason for the difficulty in optimizing the force field 

parameters for the CO/HF clusters by our frozen geometry method was the wrong 

signs of the atomic point charges that were used on the MM atoms. We showed that 

in some cases it is impossible to optimize the van der Waals parameters so that the 

positive electrostatic energy can be counterbalanced to give the MP2 interaction 

energy.  None of the charge schemes tested derived the correct charges for the C···H 

bonded CO/HF cluster.  

13. We showed for the HF dimer that approximating the charge distribution of the 

molecules in the MM system by point charges only can give an inaccurate 

perturbation on the QM Hamiltonian. We also showed that the MKS charges 

derived from the ESP based on the perturbed wave function were not always 

efficient enough to be used to approximate the change in the exact electrostatic 

force between the QM and MM systems during the micro-iterations.  

14. We showed that in Gaussian 03 weakly charged systems result from the fact that 

only the QM system was allowed to have a zero charge, instead of the whole 

system including the MM atoms.    

15. We suggested a method to improve the present way in which ONIOM-EE is 

performed to make it more suitable for the modeling of vdW clusters. This method 

is described in detail in Chapter 9.  

16. We believe that it might be easier and more accurate to use a QM/QM method with 

electronic or even mechanical embedding rather than a QM/MM method when 

accurate modeling of clusters, as described in this work, is essential. To accomplish 

this, one would have to determine a specific lower level QM system that could 

function together with a higher level QM system by using the S-value method 

mentioned in Chapter 2. The beauty of a QM/QM system is that no force field 

parameters need to be optimized for a specific system and it can be used in a more 

general way than QM/MM methods. 

17. The intermolecular delocalized orbital model might be more suitable for the 

description of van der Waals and hydrogen bonds than current models and would 

lead to a unified theory of intermolecular interactions. This model for hydrogen 

bonds and van der Waals bonds is given in Chapters 4, 6 and 8.  
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10.3 Future work 

 

Based on our studies, there is still a large scope for work in both the fields of vdW 

clusters and hybrid system development. In this section we will give a list of ideas that 

could be pursued.    

 

1. Before accepting the intermolecular orbital description for intermolecular 

interactions, various other systems should be tested, such as rare-gas systems, 

systems with improper hydrogen bonds and even systems containing dihydrogen 

bonding. One can determine the relative electron populations for the delocalized 

orbitals at various separations of the monomers and see how the relative electron 

populations change. Instead of only viewing the change in electron density with 

respect to the separation between monomers, delocalized molecular orbitals can 

also be viewed at various separations of the monomers.    

2. CO/HF clusters are good models for understanding intermolecular interactions in 

general, as both hydrogen and van der Waals bonds are present in these clusters. 

One could attempt to study these clusters in more depth.   

3. The explanation for the ring current in the HF trimer should be tested on other 

systems to ascertain its validity. These systems could include the HBr trimer, for 

example.  

4. The optimization of the force field for ONIOM-EE by the frozen geometry 

method, developed in this work, should be validated to see if it is adequate for 

applying to other systems as well.  

5. The method mentioned in Chapter 9 to improve ONIOM-EE optimizations for 

vdW clusters could be used as a starting point for a modification to the Gaussian 

03 or Gaussian98 source codes to incorporate better charge density descriptions 

for the MM system in hybrid calculations.  

6. Research could be done into incorporating a polarizable force field for the MM 

system in the hybrid system, together with the method mentioned above.  

7. A vibrational analysis of the CO hexamer is still lacking due to the hardware 

limitations of our system. It might be possible to do this calculation by using 

nodes in parallel. We did not do this in this work, as MP2 is not optimized in 

Gaussian 03 to make use of parallel computing. One could also use a system with 

more memory.  

8. Force fields for other clusters modeled by QM/MM, such as H2O, NH3, BH3 and 

larger molecules, could be optimized.  
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9. Different charge schemes could be tested for the derivation of point charges for 

systems where there is more electron localization (such as CO clusters) to more 

delocalization (such as HF clusters).  

10. The Gaussian 03 and Gaussian98 programs could be modified to make periodic 

boundary conditions (PBC) possible for QM/MM calculations. 

11. The hybrid optimizations in this work can be repeated by utilizing QM/QM 

systems. This will probably lead to a more accurate modeling of the clusters than 

can be obtained with a QM/MM system. For crystals and other periodic systems, 

PBC should be applied.     

   

 

http://scholar.sun.ac.za/



179 

References 
 

Abu-Awwad, F.M., (2002), Chem. Phys. Lett., 360, 340.  

Acevedo, A.J., Caballero, L.M., López, G.E., (1997), J. Chem. Phys., 106(17), 7257.  

Andersson, Y., Langreth, D.C., Lundqvist, B.I., (1996), Phys. Rev. Lett., 76(1), 102. 

Askarpour, V., Kiefte, H., Clouter, M.J., (1989), J. Chem. Phys., 90(12), 7014.  

Bakowies, D., Thiel, W., (1996), J. Phys. Chem., 100, 10580.  

Bernard, S., Chiarotti, G.L., Scandolo, S., Tosatti, E., (1998), Phys. Rev. Lett., 81(10), 2092. 

Biegler-König, F.W., Bader, R.F.W., Tang, T-H., (1982), J. Comput. Chem., 3, 317. 

Bochenkova, A.V., Suhm, M.A., Granovsky, A.A., Nemukhin, A.V., (2004), J. Chem. Phys.   

                    120(8), 3732.  

Boys, S.F., Bernardi, F., (1970), Mol. Phys., 19, 553.  

Breneman, C. M., Wiberg, K. B., (1990), J. Comput. Chem., 11, 361. 

Bressanini, D., Zavaglia, M., Mella, M., Morosi, G., (2000), J. Chem. Phys., 112(2), 717. 

Carmichael, M., Chenoweth, K., Dykstra, C.E., (2004), J. Phys. Chem. A, 108(15), 3143. 

Casadesús, R., Moreno, M., González-Lafont, Á., Lluch, J.M., Repasky, M.P., (2003),  

               J. Comput. Chem., 25, 99. 

Chałasiński, G., Szcześniak, M.M., (1994), Chem. Rev., 94, 1723. 

Chałasiński, G., Szcześniak M.M., (2000), Chem. Rev., 100, 4227. 

Chandler, W.D., Johnson, K.E., Campbell, J.L.E., (1995), Inorg. Chem., 34, 4943. 

Collins, C.L., Morihashi, K.,Yamaguchi, Y., Schaefer III, H.F., (1995), J. Chem. Phys.,                                    

                    103(14), 6051. 

Cornell, W.D., Ciplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M.,                                    

           Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A., (1995), J. Am. Chem. Soc.,    

           117, 5179.  

Cotton, F.A., (1990), Chemical applications of group theory, 3rd Edition, John Wiley and   

            Sons:New York.  

Cui, Q., Karplus, M., (2000), J. Chem. Phys., 112(3), 1133. 

Cunha and Smith, (2005), Observatorio Nacional,  Rio de Janeiro,  Brazil Los Alamos 

National Laboratory, Preprint Archive, Astrophysics. 

Curtiss, L.A., Pochatko, D.J., Reed, A.E., Weinhold, F., (1985), J. Chem. Phys., 82(6), 2679. 

Dapprich, S., Komároni, I., Byun, K.S., Morokuma, K., Frisch, M.J., (1999), J. Mol.                                      

                   Struct.(Theochem), 461, 1. 

Davidson, E.R., (1996), Chem. Phys. Lett., 260, 514.  

Dennington II, R., Keith, T., Millam, J., Eppinnett, K., (2003), GaussView Version 3.09,   

                      Semichem, Inc., Shawnee Mission, KS.                           

http://scholar.sun.ac.za/



180 

Hovell, W.L., Gilliland, R.Desiraju, G.R., Parthasarathy, R.,(1989), J. Am. Chem. Soc., 111, 

8725. 

Douberly, G.E., Miller, R.E., (2003), J. Phys. Chem. B, 107, 4500.  

Dunitz, J.D., Gavezzotti, A., (2005), Angew. Chem. Int. Ed., 44, 1766. 

Dunning Jr, T.H., 1989,  J. Chem. Phys., 90, 1007. 

Dunning Jr, T.H., Peterson, K.A., Woon, D.E, (1998), Basis sets: Correlation Consistent Sets,    

         In Encyclopedia of Computational Chemistry, Schleyer, P.V.R., Allinger, N.L., Clark,             

        T.,  Gasteiger, J., Kollman, P.A., Schaefer III, H.F., Schreiner, P.R., Eds., John Wiley &  

        Sons:  Chichester, UK, 1, 88.  

Espinosa, E., Alkorta, I., Elguoro, J., Molins, E., (2002), J. Chem. Phys., 117(12), 5529.  

Evangelisti, S., (1997), Chem. Phys., 218, 21.  

Foulkes, W.M.C., Mitas, L., Needs, R. J., Rajagopal, G., (2001), Rev. Mod. Phys.,  73(1), 33.  

Fraser, G.T., Pine, A.S., (1988), J. Chem. Phys., 88(7), 4147.  

Freindorf, M., Shao, Y., Furlani, T.R., Kong, J., (2005),  J. Comput. Chem., 26, 1270. 

Friesner, R.A., Guallar, V., (2005), Annu. Rev. Phys. Chem., 56, 389. 

Frisch, M.J., Pople, J.A., Binkley, J.S., (1984), J. Chem. Phys., 80, 3265. 

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R.,  

            Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M.,  

            Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G.,  

            Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K.,  

            Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O.,  

            Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J.B., Adamo, C.,          

            Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A. J.,  

            Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A.,             

            Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D.,     

            Strain, M. C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K.,   

            Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski J.,  

            Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L.,  

            Fox D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A.,  

            Challacombe M., Gill, P.M.W., Johnson B., Chen, W., Wong, M.W., Gonzalez, C.,   

            Pople J. A., (2003), Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh PA. 

 

http://scholar.sun.ac.za/



181 

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R.,  

            Zakrewski, V.G., Montgomery Jr., J.A., Stratmann, R.E., Burant, J.C.,  

            Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O.,  

            Tomasi, J., Barone,  V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C.,  

            Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q.,   

            Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B.,  

            Cioslowski, J., Otiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A.,           

            Piskorz, P., Komaromi, I., Gomperts, R., Martin,R.L., Fox, D.J., Keith, T.,  

            Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe,  

            M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Head-  

            Gordon, M., Replogle, E.S.W., Pople, J.A., (1998), Gaussian98 Revision A.7.,   

            Gaussian, Inc., Pittsburgh PA.  

Froudakis, G.E., (2001), Nano Letters, 1, 179.  

Gálvez, O., Gómez, P.C., Pacios, L.F., (2001), J. Chem. Phys. 115(24), 11166.  

Gascon, J.A., Batista, V.S., (2004), Biophys. J. , 87, 2931.  

Gascon, J.A., Leung, S.S.F, Batista, E.R., Batista, V.S., (2006), J. Chem. Theory Comput., 

2(1),  175. 

Glendening, J. K., Reed, J. E., Carpenter, J.A., and  F. Weinhold, NBO 3.0., (2001), E.D.   

                  Theoretical Chemistry Institute, University of Wisconsin, Madison.  

Golebiowski, J., Lamare, V., Martins-Costa, M.T.C., (2001), Chem. Phys., 272, 47. 

Guedes, R.C., do Couto, P.C., Costa Cabral, B.J., (2003), J. Chem. Phys.,118(3), 1272. 

Hagler, A.R., Wilson, S., (1974), Acta Crystallogr., B30, 1336.  

Han, H.S., Kim, K., (1997), J. Mol. Struct.(Theochem), 418, 1.  

Harcourt, R.D., (1999), J. Phys. Chem. A, 103, 4293.  

Havenith, M., (2001), Infrared spectroscopy of molecular clusters: an introduction to  

       intermolecular forces, Springer:New-York. 

Hehre, W.J., Ditchfield, R., Pople, J.A., (1969), J. Chem. Phys., 51, 2657. 

Hodges M.P., Stone, A.J., Lago, E.C., (1998), J. Phys. Chem. A, 102, 2455. 

Hohenberg P., Kohn, W., (1964), Phys, Rev., 136, B864. 

Hopkins, B.W., Tschumper, G.S., (2004), J. Phys. Chem. A, 108, 2941.  

Huber, K.P., Herzberg, G., (1979), Molecular spectra and Molecular structure:Constants of  

           Diatomic Molecules, Van Nastrand: New York.  

Humbel, S., Sieber, S., Morokuma, K., (1996), J. Chem. Phys., 105(5), 1959. 

Izgorodina, E.I., Coote, M.L., (2006), J. Phys. Chem. A., 110, 2486.  

Jansen, G., Hesselmann, A., (2001), J. Phys. Chem. A., 105, 11156.  

Jensen, F., (2001), Introduction to Computational Chemistry, John Wiley & Sons,                                    

                Chichester:UK. 

http://scholar.sun.ac.za/



182 

Jensen, L.,van Duijnen, P.Th., Snijders, J.G., (2003), J. Chem. Phys., 118(2), 514.  

Jiao, H., Frapper, G., Halet, J.-F., Saillard, J.-Y., (2001), J. Phys. Chem. A., 105, 5945. 

Kaminski, G.A., Stern, H.A., Berne, B.J., Friesner, R.A., Cao, Y.X., Murphy, R.B., Zhou, R.,  

                 Halgren, T.A., (2002), J. Comput. Chem., 23, 1515.  

Kamiya, M., Tsuneda, T., Hirao, K., (2002), J. Chem. Phys., 117(13), 6010.  

Karasawa, N., Dasgupta, S., Goddard, W.A., (1991), J. Phys. Chem., 95, 2260. 

Kanakarajan, K., Czarnik, A.W., (1986), J. Org. Chem., 51(26), 5241-3.     

Kendall, R.A., Dunning Jr., T.H., Harrison, R.J., (1992), J. Chem. Phys., 100, 7410. 

Kerdcharoen, T.,  Morokuma, K., (2002), Chem. Phys. Lett., 355, 257. 

Knowles, P., Schütz, M., Werner, H.-J., (2000), Ab initio methods for electron correlation in   

               molecules, In Modern Methods and Algorithms of Quantum Chemistry 2nd  Edition,   

               Ed., J. Grotendorst, John von Neumann Institute for  computing, 3, 97.  

Kongsted, J., Osted, A., Mikkelsen, K.V., Christiansen, O., (2003), J. Chem. Phys., 118(4),   

               1620.  

Kongsted, J., Osted, A., Mikkelsen, K.V.,Christiansen, O., (2003), J. Phys. Chem. A., 107,  

               2578.  

Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A., (1980), J. Chem. Phys., 72, 650. 

Kulkarni, A.D., Ganesh, V., Gadre, S.R., (2004), J. Chem. Phys., 121(11), 5043.  

Leach, A.R., (2001), Molecular Modeling. Principles and Applications, 2nd Edition, Prentice  

            Hall, Harlow:England. 

Lehn, J.-M., (1978), Pure Appl. Chem., 50, 871. 

Leininger, M.L., Allen, W.D., Schaefer III, H.F., Sherrill, C.D., (2000), J. Chem. Phys.,   

                 112(21), 9213.  

Levine, I.N., (2000), Quantum Chemistry, 5th Edition, Prentice Hall, Englewood Cliffs, New  

            Jersey:USA. 

Li, Q.,Yin, P, Liu, Y., Tang, A.C., Zhang, H., Sun Y., (2003), Chem. Phys. Lett., 375, 470.  

Maerker, C., Schleyer, P.v.R., Liedl, K.R., Ha, T.-K., Quack, M., Suhm, M.A., (1997),  J.   

               Comput. Chem., 18(14),  1695.    

Magnasco, V., (2004), Chem. Phys. Lett., 387, 332. 

Martin, F., Zipse, H., (2005), J. Comput. Chem, 26, 97.  

Martín, M.E., Aguilar, M.A., Chalmet, S., Ruiz-López, M.F., (2002), Chem. Phys., 284, 607.  

Martins, J.B.L., Longo, E., Salmon, O.D.R., Espinoza, V.A.A.,Taft, C.A., (2004), Chem. 

Phys.Lett., 400, 481. 

Masseras, F., Morokuma, K., (1995), J. Comput. Chem., 16(9), 1170. 

Mayo, S.L., Olafson, B.D., Goddard III, W.A., (1990), J. Phys. Chem., 94, 8897. 

McKellar, A.R.W., (2004), J. Mol. Spec., 226, 190. 

Meredith, A.W., Stone, A.J., (1998), J. Phys. Chem. A, 102, 434. 

http://scholar.sun.ac.za/



183 

MOLEKEL 4.0, Flükiger, P., Lüthi, H.P., Portmann, S., Weber, J., (2000), Swiss Center for  

                         Scientific Computing, Manno (Switzerland). 

Molecular Simulations Inc., (1998), Cerius2, Software Environment for Chemical Computing,  

           San Diego. 

Molecular Simulations Inc., (2000), WebLab ViewerLite 4.0. 

Møller, C., Plesset, M.S, (1934), Phys. Rev., 46, 618.  

Montero, L., Roque, R., Rosado, A., Fernandez B.J., (1981), J. Mol. Struct.,THEOCHEM,  

               2(3- 4), 393. 

Morokuma, K., Musaev, D.G., Vreven, T., Basch, H., Torrent, M., Khoroshun, D.V., (2001),  

                   IBM J. Res & Dev., 45, 367. 

Muenter, J.S., (1970), J. Mol. spectrosc., 55, 490. 

Muigg, D., Denifl, G., Stamatovic, A., Echt, O., Märk, T.D., (1998), Chem. Phys., 239, 409. 

Muñoz-Losa, A.I., Fdez.-Galván, M.E., Martín, M.E., Aguilar M.A., (2003), J. Chem. Phys. 

B,  107, 5043. 

Murphy, R.B., Philipp, D.M., Friesner, R.A., (2000), J. Comput. Chem., 21(16), 1442.  

NIST Computational Chemistry Comparison and Benchmark Database, (2005),  

          NIST Standard Reference Database Number 101, Release 12, Aug 2005, Editor: 

Russell  D. Johnson III, http://srdata.nist.gov/cccbdb. 

Olsen, J., Christiansen, O., Koch, H., Jørgenson, P., (1996), J. Chem. Phys., 105(12), 5082. 

Osted A., Kongsted, J., Mikkelsen, K.V., Christiansen, O., (2004), J. Phys. Chem. A,  108,    

           8646. 

Parr, R.G., Ayers, P.W., Nalewajski, R.F., (2005), J. Phys. Chem. A, 109, 3957. 

Peterson, K.A, Woon, D.E., Dunning Jr., T.H., (1994), J. Chem. Phys., 100, 7410. 

Pine, A.S., Howard, B.J., (1986), J. Chem. Phys., 84(2), 590.  

Popelier P., (2000), Atoms in Molecules. An introduction, Prentice Hall, Harlow:England. 

Pu, J., Gao, J., Truhlar, D.G., (2004), J. Phys. Chem. A, 108, 632.  

Quack, M., Stohner, J., Suhm, M.A., (2001), J. Mol. Struct., 599, 381. 

Quack, M., Suhm, M.A., (1995), Chem. Phys. Lett., 234(1-3), 71.  

Rappé, A.K., Goddard III, W.A., (1991), J. Phys. Chem., 95, 3358. 

Rappé, A.K., Casewit, C.J., Collwell, K.S., Goddard III, W.A., Skiff, W.M., (1992), J. Am. 

Chem. Soc., 114, 10024. 

Rega, N., Iyengar, S.S., Voth, G.A., Schlegel, H.B., Vreven, T., Frisch, M.J., (2004), J. Phys.  

          Chem. B., 108, 4210. 

Rehaman, A., Datta, A., Mallajosyula, S.S., Pati, K.S., (2006), J. Chem. Theory Comput., 2, 

30. 

Ricca, A., Drocco, J.A., (2002), Chem. Phys. Lett., 362, 217. 

Riccardi, D., Li, G., Cui, Q., (2004), J. Phys. Chem. B., 108, 6467.  

http://scholar.sun.ac.za/



184 

Rincón, L., Almeida, R., Garciá-Aldea, D., Diez y Riega, H., (2001), J. Chem. Phys., 114(13),  

             5552. 

Rode, M., Sadlej, J., Moszynski, R., Wormer, P.E.S., van der Avoird, A., (1999), Chem. Phys. 

Lett., 314, 326.  

Rode, M., Sadlej, J., Moszynski, R., Wormer, P.E.S., van der Avoird, A., (2001),  

         Chem. Phys. Lett., 334, 424.  

Rybak, S., Jeziorski, B., Szalewicz, K., (1991), J. Chem. Phys., 95(9), 6576.  

Sabzyan, H., Noorbala, M.R., (2003), J. Mol. Struct.(Theochem), 626, 143.  

Saebo, S., Tong, W., Pulay, P., (1993), J. Chem. Phys., 98, 2170. 

Sangthong, W., Probst, M., Limtrakul, J., (2005), J. Mol. Struct., 748, 119. 

Sarsa, A., Bacic, Z., Moskowitz, J.W., Schmidt, K.E., (2002), Phys. Rev. Lett., 88(12),  

          Art. No. 123401.   

Sato, T., Tsuneda, T., Hirao, K., (2005), Mol. Phys., 103(6-8), 1151.  

Schaftenaar, G., Noordik, J. H., (2000), J. Comput. Aided Mol. Design, 14, 123. 

Schlegel, H.B., (1982), J. Comput. Chem., 3, 214. 

Schlegel, H.B., (2003), J. Comput. Chem, 24, 1514.  

Schutz, M., Rauhut, G. Werner, H.-J., (1998), J. Phys. Chem. A, 102, 5997. 

Seung-Hoon, K., (1998), J. Kor. Chem. Soc., 42(6), 629.  

Singh U.C., Kollman, P.A., (1984), J. Comput. Chem., 5, 129. 

Sklenak, S., Yao, Cukier, R.I., Yan, H., (2004), J. Am. Chem. Soc., 126, 14789.  

Suhm, M.A., (1995), Ber. Bunsenges. Phys. Chem., 99, 1159. 

Sun, H.,Watts, R.O., Buck, U., (1992), J. Chem. Phys., 96(3), 1810.  

Surin, L.A., Fourzikov, D.N., Dumesh, B.S., Winnewisser, G., Tang, J., McKellar, A.R.W.,  

         (2004), J. Mol. Spec., 223, 132.  

Surin, L.A., Fourzikov, D.N., Lewen, F., Dumesh, B.S., Winnewisser, G. McKellar, A.R.W.,  

          (2003), J. Mol. Spec., 222, 93.  

Svensson, M., Humbel, S., Froese, R.D.J., Matsubara, T., Sieber S., Morokuma, K., (1996), J. 

Phys. Chem., 100, 19357. 

Tao, J., Perdew, J.P., (2005), J. Chem. Phys. 122(11), 114102.  

Treeusekol, P., Lewis, J.P., Limtrakul, J., Truong, T.N., (2001), Chem. Phys. Lett., 350, 128.  

Tschumper, G.S., Morokuma, K., (2002), J. Mol. Struct.(Theochem), 592, 137. 

Tuma, C., Boese, A.D., Handy, N.C., (1999), Phys. Chem. Chem. Phys., 1, 3939.  

Van der Pol, A., van der Avoird, A., Wormer, P.E.S., (1990), J. Chem. Phys.,  92(12), 7498. 

van der Vaart, A., Kenneth Jr., M.M., (2002), J. Chem. Phys., 116(17), 7380. 

Vissers, G.M.W., Hesselmann, A., Jansen, G., Wormer P.E.S., van der Avoird, A., (2005),   

             J. Chem. Phys.,122(05), 43061. 

Vreven, T., Mennuci, B., da Silva, C., Morokuma, K., Tomasi, J., (2001),  

http://scholar.sun.ac.za/



185 

            J. Chem. Phys., 115(1), 62. 

Vreven, T., Morokuma, K., Farkas, Ö., Schlegel, H.B., Frisch, M.J., (2003),  

            J. Comput. Chem., 24, 760.  

Walker, K.A., Xia, C., McKellar, A.R.W., (2000), J. Chem. Phys., 113(16), 6618.  

Warshel, A., Levitt, M., (1976), J. Mol. Bio., 106(2), 421. 

Weinhold, F., (1997), J. Mol. Struct.(Theochem), 398-399, 181. 

Wierzchowski, S.J., Kofke, D.A., Gao, J., (2003), J. Chem. Phys., 119(14), 7365. 

Wilson, A.K., van Mourik, T., Dunning Jr., T.H., (1997), J. Mol. Struct.(Theochem), 388, 

339. 

Wojtulevski, S., Gabrowski, S.J., (2002), J. Mol. Struct., 605,  235. 

Woon, D.E., Dunning Jr., T.H., (1993), J. Chem. Phys., 98, 1358.  

Wu, Q., Yang, W., (2002), J. Chem. Phys., 116(2), 515.  

Yamanaka, M., Mikami, K., (2002), Organometallics, 21, 5847. 

Yu, Z., Chuang, C-C., Medley, P., Stone, T.A., Klemperer, W., (2004),  

      J. Chem. Phys., 120(15), 6922. 

 

http://scholar.sun.ac.za/



186 

APPENDIX A 
 
Appendix A.1 
 
Starting geometries for the pre-optimization of the HF clusters with 6-31G(d) are shown in 
Fig. A.1 
 

 

 

Cluster i Cluster ii Cluster iii 

 

Use GDIIS 

Cluster iv Cluster v Cluster vi 
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Fig. A.1 Starting geometries for preoptimization with 6-31G(d) 
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Appendix A.2 
 
In Fig. A.2 we show the geometries of the HF clusters as optimized with 6-31G(d). 
 

 
 

Dimer :-200.355526 hartree Trimer: -300.591005 hartree Tetramer 1:-400.801233 hartree 

  

Tetramer 2: -400.782245 hartree Pentamer 1: -500.004473 hartree Pentamer 2: -500.995108 hartree 

  

Hexamer 1: -601.206783 hartree Hexamer 2: -601.206900 hartree Hexamer 3: -601.201436 hartree. 
 
Fig . A.2: HF clusters optimized with MP2 and 6-31G(d)  
 

 
Appendix A.3 
 
For all CO clusters, very tight optimization conditions were used and force constants were 

calculated at each optimization step when possible. At least 100 optimization steps were used 

for each optimization. The clusters are shown in Table A.3. Only clusters i, ii, iii, iv, v, ix, xi 

were completely optimized. See Chapter 6 for details.  
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Cluster i Cluster ii Cluster iii 

 

Cluster iv  
GDIIS was used 
This cluster is tetrahedral 

Cluster v  
Cluster iii was augmented with one 
monomer  

Cluster vi  
GDIIS was used 

  

Cluster vii  
Cluster vi was augmented with one 
monomer  

Cluster viii Cluster ix  
Cluster iii was augmented with 
two monomers on each side of 
the plane 
 

Cluster x:  
Organized specifically so that every pair 
of monomers is arranged in a T 
formation. 

Cluster xi  

Table A.3 Starting geometries of CO clusters for pre-optimization with  6-31G(d) 
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Appendix A.4 

 
In Fig. A.4 the geometries for the pre-optimized CO clusters, optimized with 6-31G(d) are 

shown. 

 

 
 

Cluster I: -226.043661 hartree Cluster II: -226.043389 hartree 

  
Cluster III: -339.067227 hartree Cluster IV: -452.091232 hartree 

 

 
Cluster V: -452.091125 hartree Cluster VI: -565.115256 hartree 

 

 

Cluster VII: -678.140113 hartree  
 

Fig. A.4 : CO clusters optimized with 6-31G(d) 
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All of these clusters have been shown to be minima on the PES by vibrational analysis. No 

imaginary frequencies were found.  

 

Appendix A.5 

In Fig. A.5 we show the pre-optimized CO/HF clusters that were optimized with 6-31G(d) 

 

Cluster I Cluster II

 
 

Cluster III Cluster IV

 

Cluster V Cluster VI

Fig. A.5 continued … 

 

 
 

http://scholar.sun.ac.za/



191 

 

Cluster VII Cluster VIII

 

 

Cluster IX Cluster X

Cluster XI 

Fig. A.5: CO/HF clusters optimized with 6-31G(d). Cluster I: -213.20681848 hartree  
Cluster II: -213.21043766 hartree Cluster III:-313.40491410 hartree Cluster IV:-326.23646521 hartree 
Cluster V:-439.26144251 hartree Cluster VI:-426.43121828 hartree Cluster VII:-413.61576880 hartree 
Cluster VIII: -426.43735043  hartree Cluster IX: -426.43121828 hartree Cluster X:-439.26274252 hartree 
Cluster XI:-413.60411316 hartree 
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APPENDIX B 
 
Appendix B.1 
 
Selected Gaussian 03 inputs 
 
In many cases, we found the Gaussian 03 manual inadequate for our work. Most of the inputs 

were therefore discovered by trial and error. The Gaussian test jobs, as supplied with the 

software package, were more valuable than the manual. There are also mistakes in the manual 

that made it even harder to perform our calculations. All of the inputs given below have been 

tested by us, and should work in all cases. All ONIOM jobs were run on a single node. It is 

however possible to run them in parallel. It would be worthwhile to test the performance on 

parallel nodes. As our molecular systems were small compared to the usual systems treated 

with ONIOM, we did not think this was necessary.    

 
Input for an ONIOM optimization where the force field parameters are explicitly defined in 
the input. Micro-iterations are used. 
  
%mem=512MB 
In order to speed up calculations and optimizations the maximum memory was set to 512 

MB} 

#ONIOM(MP2/6-311+G(d,p):UFF=softfirst)=(MK,Embedcharge)  

opt=(Maxcycle=10, CalcFC, Vtight) nosymm  

 
This line starts with a specification of ONIOM with the methods to be used in each layer 

separated by a semicolon. Instructions for each layer can be given before the semicolon such 

as modified basis sets, ECP’s (Effective core potentials)4 etc. for the QM method and for the 

UFF layer one can specify what force field parameters should have preference. In this case, 

we chose that the soft-parameters or those in the input file, should have preference above the 

hard parameters, which are the internal parameters of the program for the force field. The 

ONIOM setup specification is enclosed in parentheses. After this, the ONIOM options follow 

in a separate parenthesis. This states that MKS charges should be used and that the point 

charges in the MM should be incorporated in the QM Hamiltonian. If the Embedcharge 

keyword is omited, mechanical embedding will be the result. To add more control over the 

charge fitting of the ESP, one can use the keyword pop=(MK,dipole) to constrain the 

charges to the dipole moment of the QM system. The opt keyword contains instructions for 

the QM and MM optimizers. The maxcycle option does not influence the microiteration 

optimizer, only the QM optimizer. The maximum optimization cycles for the QM to optimize 

                                                 
4 ECP’s in ONIOM should be specified by the keyword genECP. 

http://scholar.sun.ac.za/



193 

will therefore be 10. CalcFC is again an option for the QM optimizer and can be omitted. It 

should speed up optimizations of the QM system. Vtight has an effect on the entire 

geometry optimization and also gives instructions to the micro-iteration optimizer to what 

convergence is allowed. The nosymm keyword can be omitted as Gaussian test the symmetry 

of the model and the real systems to see if they are the same. If not, Gaussian removes 

symmetry constraints automatically. Other options as in general ab initio calculations can also 

be given in this line. pop=full will give a full Mulliken population analysis of the QM 

wave function for example. It is not possible however to obtain a proper wave function as in 

general ab initio calculations with the keyword output=wfn. 

--------------------------------------------------- 
 ONIOM optimization 
--------------------------------------------------- 
 0,1,0,1,0,1 
  
This is given in the sequence of: 
 

Charge for low-level calculation on real system, Multiplicity for low-level calculation on real 

system, Charge for high-level calculation on model system, Multiplicity for high-level 

calculation on model system, Charge for low-level calculation on model system, Multiplicity 

for low-level calculation on model system.  

Note that multiplicities need to be specified even if UFF is used in the low-level, otherwise 

the program will not accept the input. 

 
Cartesian coordinates 
 
  F-F_0.0           0      1.29146   1.29146   0.00000       H  
 H-H_0.0           0      1.49594   0.37698   0.00000       H  
 F-F_--0.435      -2      1.29146  -1.29146   0.00000       L  
 H-H_-0.433       -2      0.37698  -1.49594   0.00000       L  
 F-F_--0.423      -3     -1.29146  -1.29146   0.00000       L  
 H-H_-0.421       -3     -1.49594  -0.37698   0.00000       L  
 H-H_-0.438       -4     -0.37698   1.49594   0.00000       L  
 F-F_--0.434      -4     -1.29146   1.29146   0.00000       L  
 
In column one the atom, force field type and point charge are given. The point charge is only 

for the MM parameter definition and if charges on the QM atoms are given, the software is 

supposed to ignore these. In column two are the instructions for the geometry optimizers are 

given. 0 means optimize. All the atoms that are part of rigid blocks have numbers smaller 

than -1. If the number is -1, the specific Cartesian coordinate will be frozen. Therefore, the 

second monomer in this cluster is a rigid block and also the third and fourth. Columns 3,4 and 

5 contains the Cartesian coordinates of the starting geometry. Note that if a Z-matrix is used, 

the program automatically assumes by default that the first three atoms are in the high-layer. 

This cannot be changed. The last column specifies what atoms are part of the high (H) or low 

(L) layers.  
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NonBon 2 1 0.000 0.000 0.000 0.000 0.000 0.000 
VdW F_ 3.364 0.05 
VdW H_ 2.886 0.044 
 
The NonBon function specifies both the type of vdW and electrostatics to be used in the force 

field. 2 means that geometric vdW parameters such as in UFF should be used. This is 

followed by a 1 which means that 1/R electrostatics should be used. Setting one of these 

values to zero instructs the program to “switch off” the vdW or the electrostatic calculation 

and in our case only the bond lengths are then considered. The rest of the terms are cutoff 

terms and is all set to zero for our purposes, as our molecules are simple. 

VdW sets the vdW parameters of the force field type. The first number is the R0-value and the 

second is the ε-value. In the above example, both the F_ and H_ vdW parameters are set in 

the input.  

 
An ONIOM optimization with the default optimizer  
 
In this optimization if ONIOM-EE is used, electronic-embedding is only incorporated at the 

start and then the charges on the QM atoms are kept constant throughout the optimization. 

This is certainly wrong. However, we give the input for such an optimization as well.  

 
%mem=512MB 
#ONIOM(MP2/6-311+G(d,p):UFF=softfirst)=(MK,Embedcharge) 
opt=(Maxcycle=120, CalcFC, Vtight, nomicro, modredun) nosymm  
 
Most terms are the same as the first example except that now the opt-keyword is augmented 

with a nomicro and modredun options. The nomicro keyword instructs the program to 

use one optimizer (the Berny-algorithm) for the QM and MM optimizations. The keyword 

modredun is used to freeze bond lengths or other internal coordinates and is only an 

instruction to the main optimizer, in this case the Berny-algorithm. 
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--------------------------------------------------- 
 ONIOM optimization without micro-iterations 
--------------------------------------------------- 
 0,1,0,1,0,1 
 
The same as in the first example. 
 
 
  F-F_0.0         0    1.29146   1.29146   0.00000     H  
 H-H_0           0    1.49594   0.37698   0.00000     H  
 F-F             0    1.29146  -1.29146   0.00000     L  
 H-H_-0.433      0    0.37698  -1.49594   0.00000     L  
 F-F_--0.423     0   -1.29146  -1.29146   0.00000     L  
 H-H_-0.421      0   -1.49594  -0.37698   0.00000     L  
 H-H_-0.438      0   -0.37698   1.49594   0.00000     L  
 F-F_--0.434     0   -1.29146   1.29146   0.00000     L  
 
The same as in the first example. As no micro-iterations are used, zero is used in column two 

 

  3    4  0.9370  F                                                          
 5    6  0.9370  F                                                          
 7    8  0.9370  F                                                         
 
This states that the bond length between each atom pair in the MM should be frozen to a 

specific value. It is important to add the “F” to freeze these internal coordinates  

 
NonBon 2 1 0.000 0.000 0.000 0.000 0.000 0.000 
VdW F_ 3.364 0.05 
VdW H_ 2.886 0.044 
 
The same as in the first example. 
 

Appendix B.2  
 
Things to look out for when using ONIOM-EE in Gaussian 03: 
  

1. Using rigid blocks in the MM system will make convergence extremely slow, and 

there is not much one can do about it. Sometimes convergence can take a few days 

even for a small system. Micro-iterations can also fail in some cases and the program 

will not give an explanation for this and just aborts in the middle. See Fig. B.1. In 

Chapter 9 we gave a possible reason for the falilure of the micro-iterations. 
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Fig. B.1: Micro-iterations in Gaussian 03 break down for our HF pentamer for the default force field 

parameters (triangles), but not for our optimized parameters(diamonds). MKS charges based on the MP2 

density were used. 

 

2. Never use both modredundant and the flags (-2,-3 etc.) in the input for the same 

atoms. This will lead to erroneous results. Earlier in this work we used 

modredundant and the flags for the same atoms as we thought it would give more 

control over the bond length of the monomer in the rigid block. The program however 

will give a completely different output when modredundant is used together with 

the flags or when only flags are used. We think that this is because modredundant 

changes the MM systems’ coordinates before Gaussian calculates the energy. The 

analytical derivatives of this energy are then used in the micro-iterations for the MM 

optimization, however the flags in the input instruct the micro-iteration optimizer to 

use the coordinates given in the input and not the modified coordinates that were 

determined by modredundant. Therefore, it is possible that the analytical gradient 

used in the MM optimization is the wrong gradient for the coordinates used for the 

MM system in the micro-iterations, leading to a totally inaccurate optimization.  

3. Using Cartesian coordinates differing even at the fifth decimal might lead to a slightly 

different answer after an ONIOM-EE optimization. We therefore used the exact same 

coordinates for each specific cluster when optimizing the force field.  
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4. For short ONIOM optimizations, Molden can be used to view the entire optimization 

including the MM optimization. However, sometimes convergence is so slow that the 

Gaussian log file might be 1 GB in size, which can then only be viewed by 

Gaussview. 

5. A problem with Gaussview is that if the QM system is automatically optimized at the 

start with respect to the optimized MM system, Gaussview will only show the 

geometry of the input structure and not the optimized structure. This might give the 

false impression, when optimizing a force field, that the parameters tested are indeed 

optimized, when the real geometry is completely different. Only if at least two steps 

are taken to optimize the QM system, will Gaussview show the correct final 

geometry. To make Gaussview show the correct geometry the following text can be 

added in the output file after the coordinates for the micro-iterations: 

 

GradGradGrad 

Leave 3 lines open 

GradGradGrad 

 

One can also take the final coordinates after the MM optimization and paste it in a 

.com file which can be viewed by Gaussview. 

6. When comparing default force field calculations for CO clusters in Gaussian 03 with 

the exact same coordinates in Cerius2, we find that Gaussian 03 gives totally different 

results. In order to obtain the same results with Gaussian 03 than with Cerius2 one 

should add the keyword geom=connectivity in the root section and specify the 

connectivity explicitly before the force field parameter description. The force field 

types should also be given in the input as usual.  

7. When looking at the output of a Gaussian ONIOM calculation/optimization the user 

will see that a basis set is mentioned with all MM calculations. This basis set is not 

actually used and it is just a trick to do the MM calculations with the program. This 

basis set is the STO-3G basis set.   

8. Using explicitly defined force field parameters and using internal hard parameters 

might give different answers. We therefore used explicitly defined parameters in all 

cases.  

 

These eight points are not discussed in the Gaussian-manual and so anyone wanting to use 

ONIOM-EE as we did, should familiarize himself/herself with this. We will compile a copy 

of these problems for Gaussian Inc. 
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Appendix B.3 
 

A list of the most important IOps regarding ONIOM-EE 

 

Here is a list of most important IOps that can be used when doing an ONIOM-EE calculation 

with Gaussian 03.  

 

IOp(1/52): Set type of ONIOM  calculation 

IOp(1/53): Instructions on reading from .rwf files and integration of energy, gradient and 

hessian. This integration simply means adding the individual terms as in the ONIOM 

methodology and not calculating integrals. See Chapter 2. 

IOp(1/64): Molecular mechanics force field selection 

IOp(1/65): Control over terms in force field such as torsions, stretches, out of plane etc.  

IOp(1/66): Specify charge-equilibration. This only effects the MM parameter definition and 

was not used in our work to minimize the type of charges used in the optimizations. 

IOp(4/110): This IOp scales rigid fragment steps in the micro-iterations. Scaling rigid 

fragments did not give a significant improvement over optimizations in our work. 

IOp(1/67): Source of the MM parameters. This IOp need to be used when link-1 commands 

are used to do calculations with ONIOM. For example, the calculation of frequencies with 

modified MM parameters after an optimization should be done by using this IOp.  

 

Appendix B.4  

 

Difference between a geometry optimization with the default optimizer and the micro-

iterations optimizer for ONIOM-EE. 

 

We will use the HF pentamer optimization as an example. The R0-value was 3.34 Å for the 

fluorine atom-type and 1.28 Å for the hydrogen atom-type. These parameters were optimized, 

see Chapter 4. In Table B.2 we give information for this optimization for both optimization 

algorithms. 
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Table B.2: Comparison between two optimization algorithms used to optimize the HF pentamer 

 Micro-iterations Default optimizer 

QM-bond length (Å) 0.931 0.923 

CPU-time  16 min. 38.3 s 14 min. 5.8 s 

High/model (hartree) -100.760061 -100.742144 

Low/model (hartree) -0.474296 -0.457432 

Low/real   (hartree) -0.044087 -0.032625 

 

From this example, it is clear that the results for the two optimizers differ significantly when 

doing the same optimization. According to the literature [Vreven et al., 2003], the 

optimization with micro-iterations should be the most accurate. Therefore, even if this 

optimization is slower than for the default algorithm we believe that to obtain accurate results 

the ONIOM-EE with micro-iterations should be used instead of ONIOM-EE with the default 

algorithm. 
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APPENDIX C 

 

Verifying the van der Waals and electrostatic interactions in Gaussian 03. 

 

Gaussian 03 allows one to specify force field parameters in the input. This was not possible 

with Gaussian98. We therefore wanted to verify that the software calculates the correct van 

der Waals energy and electrostatic energy.  

    To verify the UFF Lennard-Jones parameters for the fluorine and hydrogen atoms we did 

electronic embedded singlepoint ONIOM calculations while the calculation of the van der 

Waals interactions and electrostatic interactions are explicitly switched off in the input. (The 

reader is referred to Appendix B.1). We use the HF dimer as model due to its simplicity. This 

allows us to calculate the electrostatic energy, obtained with the Coulomb potential, and the 

van der Waals energy by hand. See Table C.1. 

 

Table C.1: Low/real energy values for different types of calculations to find the van der Waals energy 

 

Calculation type Energy 

Coulomb interaction off (hartrees) 0.036160270216 

Coulomb and van der Waals off (hartrees) 0.005800261488 

Van der Waals energy (hartrees) 0.030360008728 

Van der Waals energy (kcal/mol) 19.1  

 

We use the 6-12 Lennard-Jones equation in Chapter 2 to calculate the van der Waals 

interaction between each atom in the HF dimer. The ε (equilibrium well depth) and R0-values 

are obtained from the UFF article [Rappé et al.,1992]. The van der Waals interaction energy 

is calculated to be 19.1 kcal/mol, the same as predicted by Gaussian 03 if possible rounding 

off errors is taken into consideration.  

     It is of note that we found a slight discrepancy in the geometries obtained when making 

use of the internal Gaussian defined UFF-parameters and when explicitly defining the 

parameters in the input as specified in Appendix B.2 point 8. Further investigation of this 

anomaly seems to point towards an error in the ONIOM method, as full UFF calculations 

with the internal parameters and the external parameters showed no difference.  

    Next, we did another two single point ONIOM calculations where we specify the charges 

on the QM atoms in the input and another calculation where the QM charges are set to zero.  

The difference between these energy values will give the energy for the Coulomb interaction. 

Table C.2 summarizes these results. 
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Table C.2: Table showing the results for the single point ONIOM calculations.Only the Low/Real values are  

are shown.   

System Charges set to MKS-

values 

Charges set to zero Difference 

low
realE (hartree) -0.131575 -0.126158 -0.005417 

 

The difference between the low/real calculations are general UFF calculations and one should 

obtain the same value with a full UFF-calculation of the whole system. The difference of  

-0.00541662 hartree amounts to -3.4 kcal/mol. By using the equation for the Coulomb 

interaction as defined in the UFF-force field [Rappé et al., 1992] and for a dielectric constant 

of 1, (See equation C.1) we calculated the Coulomb interaction as:  

-3.4 kcal/mol. 

   332.0637( )i j
el

ij

q q
E

R
                             (C.1) 

where the qi and qj are the charges on atoms i and j. Rij is the distance between atoms i and j. 

 

The same type of calculation was performed to verify the vdW energy and electrostatic 

energy for the CO dimer. 
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APPENDIX D 

 

In this appendix we list all the nonbonded distances determined by ONIOM-EE and MP2 in 

Ångström for all the clusters. These nonbonded distances were used to optimize the force 

field based on geometrical parameters. 

 

Nonbonded distances determined by ONIOM-EE and MP2 for all the clusters.  

 

Hydrogen fluoride clusters 

 

 

MP2 
nonbonded 
distances 

(Å) 

ONIOM-EE 
nonbonded 
distances  
obtained 

with default 
FF-

parameters 
(Å) 

Square of 
deviation 

ONIOM-EE 
nonbonded 
distances 
obtained 

with 
optimized 
parameters 

(Å) 

Square of 
the 

deviation 

F1-F3 2.7878 2.8428 0.0030   
F1-H4 3.3587 2.5327 0.6823   
H2-F3 1.8745 2.6977 0.6776   
H2-H4 2.5103 2.6967 0.0348   
Dimer 

RMSD (Å) 
  0.591   

 
F1-F5 2.6678 3.1523 0.2349 2.4481 0.0482 
F1-F6 2.6678 3.0994 0.1863 2.5032 0.0271 
F5-F6 2.6678 3.0157 0.1211 2.4942 0.0301 
F1-H4 1.8654 2.4858 0.3850 1.7502 0.0133 
F1-H3 2.7440 3.5677 0.6784 2.7095 0.0012 
H2-F5 1.8654 2.4389 0.3289 1.6345 0.0533 
H2-F6 2.7440 3.2809 0.2882 2.5709 0.0300 
H2-H3 2.1807 3.0267 0.7156 2.1270 0.0029 
H2-H4 2.1807 2.8731 0.4794 2.0998 0.0066 
H3-H4 2.1807 3.0783 0.8057 2.2431 0.0039 
F5-H4 2.7440 3.3620 0.3819 2.6268 0.0137 
H3-F6 1.8654 2.5053 0.4095 1.8166 0.0024 
Trimer 
RMSD (Å)   0.646  0.139 
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F1-F3 2.5829   2.4653 0.0139 
F1-H4 2.9336   3.0849 0.0229 
F1-F5 3.6528   3.7930 0.0197 
F1-H6 3.2486   3.4878 0.0572 
F1-F8 2.5829   2.5275 0.0031 
F1-H7 1.6809   71.6793 2.82E-06 
H2-F3 1.6809   1.5828 0.0096 
H2-H4 2.1817   2.3183 0.0186 
H2-F5 3.2483   3.3532 0.0110 
H2-H6 3.0854   3.2777 0.0370 
H2-F8 2.9336   2.7906 0.0204 
H2-H7 2.1817   2.1517 0.0009 
F3-F5 2.5829   2.5116 0.0051 
F3-H6 2.9336   2.8858 0.0023 
F3-F8 3.6528   3.2747 0.1430 
F3-H7 3.2486   3.0560 0.0371 
F5-H4 1.6809   1.7025 0.0005 
H4-H6 2.1817   2.2876 0.0112 
H4-F8 3.2486   3.1451 0.0107 
H4-H7 3.0854   3.2024 0.0137 
F5-F8 2.5829   2.5180 0.0042 
F5-H7 2.9336   3.0674 0.0179 
H6-F8 1.6809   1.6935 0.0002 
H6-H7 2.1817   2.4057 0.0502 
Tetramer 
(III) RMSD 
(Å) 

    0.146 
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F1-F3 2.5475   2.4665 0.0066 
F1-H4 3.0585   3.2568 0.0393 
F1-F5 4.1220   4.4089 0.0823 
F1-H6 4.0393   4.5481 0.2589 
F1-F7 4.1220   4.3833 0.0683 
F1-H8 3.4855   3.7957 0.0962 
F1-F9 2.5475   2.5437 0.0000 
F1-H10 1.6161   1.6588 0.0018 
H2-F3 1.6161   1.5598 0.0032 
H2-H4 2.2202   2.4080 0.0353 
H2-F5 3.4855   3.7257 0.0577 
H2-H6 3.5924   4.0193 0.1823 
H2-F7 4.0393   4.1899 0.0227 
H2-H8 3.5924   3.7851 0.0371 
H2-F9 3.0585   2.8855 0.0299 
H2-H10 2.2202   2.1731 0.0022 
F3-F5 2.5475   2.5225 0.0006 
F3-H6 3.0585   3.1025 0.0019 
F3-F7 4.1220   3.8817 0.0578 
F3-H8 4.0393   3.8386 0.0403 
F3-F9 4.1220   3.6005 0.2720 
F3-H10 3.4855   3.2196 0.0707 
H4-F5 1.6161   1.6495 0.0011 
H4-H6 2.2202   2.3658 0.0212 
H4-F7 3.4855   3.4674 0.0003 
H4-H8 3.5924   3.6497 0.0033 
H4-F9 4.0393   3.8264 0.0453 
H4-H10 3.5924   3.6667 0.0055 
F5-F7 2.5475   2.5353 0.0001 
F5-H8 3.0585   3.1159 0.0033 
F5-F9 4.1220   3.9930 0.0167 
F5-H10 4.0393   4.2189 0.0323 
H6-F7 1.6161   1.6809 0.0042 
H6-H8 2.2202   2.4059 0.0345 
H6-F9 3.4855   3.5798 0.0089 
H6-H10 3.5924   4.0039 0.1694 
F7-F9 2.5475   2.5283 0.0004 
F7-H10 3.0585   3.2659 0.0430 
H8-F9 1.6161   1.6450 0.0008 
H8-H10 2.2202   2.4721 0.0635 
Pentamer 
(V) RMSD 
(Å) 

    0.213 
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F1-F3 2.6534   2.5178 0.0184 
F1-H4 2.9639   2.9936 0.0009 
F1-F5 3.6627   3.5913 0.0051 
F1-H6 3.2569   3.3740 0.0137 
F1-F8 2.6003   2.5291 0.0051 
F1-H7 1.7040   1.6884 0.0002 
F1-H9 4.1916   3.6717 0.2703 
F1-F10 5.0204   4.4053 0.3783 
H2-F3 1.7772   1.6354 0.0201 
H2-H4 2.2580   2.2543 0.0000 
H2-F5 3.2906   3.2114 0.0063 
H2-H6 3.1257   3.2424 0.0136 
H2-F8 2.9673   2.8812 0.0074 
H2-H7 2.2199   2.2356 0.0002 
H2-H9 3.2603   2.7615 0.2488 
H2-F10 4.0963   3.5315 0.3190 
F3-F5 2.5193   2.5231 0.0000 
F3-H6 2.8939   3.0258 0.0174 
F3-F8 3.6467   3.5267 0.0144 
F3-H7 3.2814   3.2676 0.0002 
F3-H9 1.8519   1.6984 0.0236 
F3-F10 2.7722   2.6171 0.0240 
H4-F5 1.5945   1.6694 0.0056 
H4-H6 2.1058   2.3395 0.0546 
H4-F8 3.1885   3.2499 0.0038 
H4-H7 3.0655   3.2513 0.0345 
H4-H9 2.5069   2.4076 0.0098 
H4-F10 3.4023   3.3114 0.0083 
F5-F8 2.5649   2.4967 0.0047 
F5-H7 2.9316   2.9782 0.0022 
F5-H9 4.0269   4.0767 0.0025 
F5-F10 4.8801   4.9764 0.0093 
H6-F8 1.6594   1.6868 0.0008 
H6-H7 2.1740   2.3564 0.0333 
H6-H9 4.6117   4.6908 0.0063 
H6-F10 5.5075   5.6095 0.0104 
F8-H9 5.4981   5.1893 0.0954 
F8-F10 6.4187   6.0850 0.1113 
H7-H9 5.1047   4.8183 0.0820 
H7-F10 6.0123   5.6697 0.1174 
Pentamer 
(VI) RMSD 
(Å) 

    0.222 
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F1-F2 2.5347   2.4749 0.0036 
F1-F3 2.5347   2.5530 0.0003 
F1-F4 4.3902   4.6647 0.0754 
F1-F5 4.3902   4.6546 0.0699 
F1-F6 5.0694   5.5403 0.2218 
F1-H8 3.1434   3.3306 0.0350 
F1-H9 4.5312   5.0898 0.3120 
F1-H10 4.7104   5.3227 0.3749 
F1-H11 3.6323   3.9403 0.0948 
F1-H12 1.5947   1.6491 0.0030 
F2-F3 4.3902   3.8131 0.3330 
F2-F4 2.5347   2.5284 0.0000 
F2-F5 5.0694   4.6766 0.1543 
F2-F6 4.3902   4.3087 0.0066 
F2-H7 1.5947   1.5589 0.0013 
F2-H9 3.1433   3.2420 0.0097 
F2-H10 4.5312   4.5246 0.0000 
F2-H11 4.7104   4.4026 0.0947 
F2-H12 3.6323   3.3307 0.0910 
F3-F4 5.0694   4.7959 0.0748 
F3-F5 2.5347   2.5282 0.0000 
F3-F6 4.3902   4.3783 0.0001 
F3-H7 3.1434   2.9550 0.0355 
F3-H8 4.5312   4.2244 0.0941 
F3-H9 4.7104   4.7326 0.0005 
F3-H10 3.6323   3.7739 0.0201 
F3-H11 1.5947   1.6244 0.0009 
F4-F5 4.3902   4.2072 0.0335 
F4-F6 2.5347   2.5160 0.0003 
F4-H7 3.6323   3.8807 0.0617 
F4-H8 1.5947   1.6280 0.0011 
F4-H10 3.1433   3.1899 0.0022 
F4-H11 4.5312   4.4680 0.0040 
F4-H12 4.7104   4.7979 0.0077 
F5-F6 2.5347   2.5185 0.0003 
F5-H7 4.5312   4.6339 0.0106 
F5-H8 4.7104   4.5581 0.0232 
F5-H9 3.6323   3.6555 0.0005 
F5-H10 1.5947   1.6292 0.0012 
F5-H12 3.1434   3.3481 0.0419 
F6-H7 4.7104   5.0813 0.1375 
F6-H8 3.6323   3.7003 0.0046 
F6-H9 1.5947   1.6276 0.0011 
F6-H11 3.1434   3.2375 0.0089 
F6-H12 4.5312   4.8640 0.1108 
H8-H7 2.2611   2.4484 0.0351 
H7-H9 3.9164   4.4086 0.2422 
H7-H10 4.5223   5.0141 0.2419 
H7-H11 3.9164   4.0674 0.0228 
H7-H12 2.2611   2.1967 0.0042 
H8-H9 2.2611   2.4296 0.0284 
H8-H10 3.9164   4.0841 0.0281 
H8-H11 4.5222   4.4763 0.0021 
H8-H12 3.9164   3.9204 0.0000 
H9-H10 2.2611   2.4073 0.0214 
H9-H11 3.9164   4.0908 0.0304 
H9-H12 4.5223   4.9179 0.1566 
H10-H11 2.2611   2.4413 0.0325 
H10-H12 3.9164   4.3950 0.2291 
H11-H12 2.2611   2.5008 0.0574 
Hexamer 
(VII) RMSD 
(Å) 

    0.248 
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MP2 nonbonded distances  
 
The convergence of the optimization was too slow for either the default UFF parameters or 

the optimized parameters. In this section the MP2 nonbonded distances are listed. See 

Chapter 4.  

 
Tetramer 2 (Cluster IV) 
 
 
F1-F3 2.8059 F3-F5 2.5933 
F1-H4 2.7562 F3-H6 2.7370 
F1-F5 2.6674 F3-H7 1.8345 
F1-H6 1.8606 F3-F8 2.7556 
F1-H7 4.5407 H4-F5 1.7302 
F1-F8 5.4304 H4-H6 2.0830 
H2-F3 2.1345 H4-H7 2.5111 
H2-H4 2.3641 H4-F8 3.4078 
H2-F5 2.8685 F5-H7 4.2322 
H2-H6 2.2809 F5-F8 5.1137 
H2-H7 3.7395 H6-H7 4.5346 
H2-F8 4.6020 H6-F8 5.4501 
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Hexamer 2 (Cluster VIII) 
 
F1-F3 2.5471 F4-F7 3.4641 
F1-H4 3.0378 F7-H8 3.5413 
F1-F5 4.1213 F4-F9 4.0121 
F1-H6 4.0122 F4-H10 3.5413 
F1-F7 4.1213 F4-F11 2.7700 
F1-H8 3.4641 F4-H12 3.5046 
F1-F9 2.5471 F5-H7 2.5471 
F1-H10 1.6122 F5-H8 3.0380 
F1-F11 3.0135 F5-F9 4.1213 
F1-H12 3.7107 F5-H10 4.0122 
F2-F3 1.6122 F5-F11 3.0135 
F2-H4 2.1886 F5-H12 3.7107 
F2-F5 3.4641 H6-F7 1.6122 
F2-H6 3.5413 H6-H8 2.1886 
F2-F7 4.0122 H6-F9 3.4641 
F2-H8 3.5413 H6-H10 3.5413 
F2-H9 3.0380 H6-F11 2.7700 
F2-H10 2.1886 H6-H12 3.5046 
F2-F11 2.7700 F7-F9 2.5471 
F2-H12 3.5046 F7-H10 3.0380 
F3-F5 2.5471 F7-H11 3.0135 
F3-H6 3.0380 F7-H12 3.7107 
F3-F7 4.1213 F8-F9 1.6122 
F3-H8 4.0122 F8-H10 2.1886 
F3-F9 4.1213 F8-F11 2.7700 
F3-H10 3.4641 F8-H12 3.5045 
F3-F11 3.0135 F9-F11 3.0135 
F3-H12 3.7107 F9-H12 3.7107 
F4-F5 1.6122 F10-F11 2.7700 
F4-H6 2.1886 F10-F12 3.5046 
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Carbon monoxide clusters 
 

 

MP2 
nonbonded 
distances 

(Å) 

ONIOM-EE 
Nonbonded 
distances  

obtained with 
default FF-
parameters 

(Å) 

Square of 
deviation 

ONIOM-EE 
nonbonded 
distances 

obtained with 
optimized 
parameters 

(Å) 

Square of the 
deviation 

O1-C3 4.2616 4.0524 0.0438 3.6256 0.4046 
O1-O4 5.1024 4.6320 0.2213 3.6834 2.0138 
C2-C3 3.5899 3.7138 0.0153 3.8974 0.0946 
C2-O4 4.2616 4.0283 0.0544 3.6074 0.4280 
Cluster I  RMSD 
(Å)   0.289  0.857 
 
C1-O4 3.8530   3.4920 0.1303 
C1-C3 4.7000   3.7341 0.9321 
O2-O4 3.1944   4.3486 1.3321 
O2-C3 3.8529   4.3426 0.2398 
     0.6586 
Cluster II RMSD 
(Å)     0.812 

 
O1-C3 3.9608 4.0435 0.0068 3.8651 0.0092 
O1-O4 5.0903 4.5408 0.3020 3.4363 2.7360 
O1-C5 4.7585 4.3596 0.1591 3.9374 0.6743 
O1-O6 5.0903 4.5356 0.3078 3.4656 2.6399 
C2-C3 3.7040 3.7534 0.0024 3.7954 0.0084 
C2-O4 4.7585 4.0509 0.5007 3.7053 1.1092 
C2-C5 3.7040 3.6206 0.0069 3.7921 0.0078 
C2-O6 3.9608 4.0457 0.0072 3.6568 0.0924 
C5-C3 3.7040 3.7211 0.0003 3.7993 0.0091 
C5-O4 3.9608 4.0583 0.0095 3.7708 0.0361 
O6-C3 4.7585 4.0260 0.5366 3.7933 0.9315 
O6-O4 5.0903 4.6207 0.2206 3.4236 2.7779 
Cluster III 
RMSD (Å)   0.414  0.959 
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C1-O3 4.2041 4.6040 0.1599 3.6249 0.3354 
C1-C4 3.5721 3.5429 0.0009 3.8368 0.0700 
C1-O5 3.7989 4.0533 0.0647 4.2663 0.2184 
C1-C6 3.9550 3.7209 0.0548 5.0852 1.2774 
C1-C7 3.5721 3.6242 0.0027 3.8220 0.0624 
C1-O8 4.2041 4.0717 0.0175 3.6141 0.3480 
O2-O3 4.9988 5.6986 0.4898 3.5810 2.0100 
O2-C4 4.2041 4.6547 0.2031 3.6418 0.3162 
O2-O5 3.3202 4.4064 1.1799 3.3286 6.9756E-05 
O2-C6 3.7989 4.1654 0.1343 4.2721 0.2238 
O2-C7 4.2041 4.2820 0.0061 3.6667 0.2888 
O2-O8 4.9988 4.4599 0.2904 3.5959 1.9681 
O3-O5 4.9988 4.4782 0.2710 3.6011 1.9535 
O3-C6 4.2041 4.0402 0.0269 3.6442 0.3134 
O3-C7 3.7989 3.9693 0.0290 4.2733 0.2250 
O3-O8 3.3202 5.0350 2.9405 3.3218 2.6634E-06 
C4-O5 4.2041 4.0981 0.0112 3.6413 0.3168 
C4-C6 3.5721 3.7054 0.0178 3.8141 0.0585 
C4-C7 3.9550 3.6562 0.0893 5.1026 1.3170 
C4-O8 3.7989 4.7113 0.8325 4.2709 0.2227 
O5-C7 4.2041 4.7435 0.2910 3.6374 0.3211 
O5-O8 4.9988 5.0400 0.0017 3.5946 1.9716 
C7-C6 3.5721 3.6815 0.0121 3.8155 0.0592 
C6-O8 4.2041 3.9480 0.0656 3.6413 0.3168 
Cluster IV 
RMSD (Å)   0.547  0.769 

 
 
O1-C3 4.5840 4.5020 0.0067 4.5729 0.0001 
O1-O4 5.0262 4.9837 0.0018 4.5851 0.1946 
O1-C5 4.5840 4.5022 0.0067 4.5727 0.0001 
O1-O6 5.0262 4.9847 0.0017 4.5848 0.1949 
O1-C7 4.0002 3.8967 0.0107 3.6466 0.1250 
O1-O8 5.0700 5.0261 0.0019 4.5738 0.2462 
C2-C3 3.6450 3.5928 0.0027 3.7917 0.0216 
C2-O4 3.9738 4.0122 0.0015 3.6241 0.1223 
C2-C5 3.6447 3.5925 0.0027 3.7918 0.0217 
C2-O6 3.9738 4.0126 0.0015 3.6239 0.1224 
C2-C7 3.6260 3.6426 0.0003 3.6953 0.0048 
C2-O8 4.5673 4.6947 0.0162 4.4017 0.0274 
C3-C5 3.9519 3.6480 0.0923 3.8516 0.0101 
C3-O6 3.8036 4.1853 0.1457 3.7922 0.0001 
C3-C7 3.7532 3.6375 0.0134 3.8123 0.0035 
C3-O8 3.8888 3.9793 0.0082 3.5793 0.0958 
O4-C5 3.8036 4.1861 0.1463 3.7920 0.0001 
O4-O6 3.3318 4.4461 1.2418 3.3958 0.0041 
O4-C7 4.6001 4.7421 0.0202 4.5836 0.0003 
O4-O8 4.6923 5.1121 0.1762 4.4459 0.0607 
C5-C7 3.7532 3.6376 0.0134 3.8122 0.0035 
C5-O8 3.8888 3.9793 0.0082 3.5793 0.0958 
O6-C7 4.6001 4.7423 0.0202 4.5835 0.0003 
O6-O8 4.6922 5.1119 0.1761 4.4459 0.0607 
Cluster V RMSD 
(Å)   0.297  0.243 

 
 

 

MP2 
nonbonded 
distances 

(Å) 

ONIOM-EE 
Nonbonded 
distances  
obtained with 
default FF-
parameters 

(Å) 

Square of 
deviation 

ONIOM-EE 
nonbonded 
distances 
obtained with 
optimized 
parameters 

(Å) 

Square of the 
deviation 

O1-O10 3.4021 4.9930 2.5309 3.4119 0.0001 
C2-O8 4.0033 4.8635 0.7399 3.6419 0.1306 
O1-C9 3.8209 4.6337 0.6607 3.8608 0.0016 
O1-C3 3.8959 4.5093 0.3762 3.4721 0.1796 
O1-O4 4.9890 5.5726 0.3406 3.6421 1.8141 
O1-C7 4.4445 3.8754 0.3238 3.5949 0.7218 
O1-O6 4.8865 4.3574 0.2799 3.7241 1.3512 
C3-O8 4.6295 4.1505 0.2295 4.5726 0.0032 
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O4-O10 4.9555 4.5228 0.1872 3.4856 2.1605 
O8-O10 7.0079 7.4338 0.1814 6.0200 0.9761 
O6-O10 4.7835 5.1820 0.1587 4.1843 0.3591 
O1-C5 4.6653 4.2803 0.1482 4.4981 0.0280 
O4-O8 4.8054 4.4249 0.1448 4.2660 0.2910 
O4-C9 4.4727 4.0976 0.1407 3.5734 0.8086 
O4-C7 3.8779 4.1764 0.0891 3.5896 0.0831 
O6-O8 4.2574 4.5426 0.0814 3.3753 0.7781 
C5-O8 3.7386 3.9895 0.0629 3.7190 0.0004 
O6-C7 4.4550 4.2082 0.0609 3.7474 0.5008 
C7-O10 6.4330 6.6735 0.0578 5.9129 0.2705 
C2-O10 3.7368 3.9557 0.0479 3.6463 0.0082 
C2-C9 3.8234 3.6061 0.0472 3.8897 0.0044 
C2-C7 3.5821 3.7962 0.0458 4.0789 0.2468 
O6-C9 3.9180 4.0904 0.0297 3.5271 0.1528 
C5-C9 3.7274 3.5729 0.0239 3.8717 0.0208 
C3-O6 4.6038 4.7496 0.0212 4.5598 0.0019 
C2-C3 3.6684 3.5513 0.0137 4.4425 0.5992 
O8-C9 6.5474 6.6589 0.0124 5.9426 0.3658 
C3-O10 3.9667 4.0506 0.0070 3.6181 0.1215 
C7-C9 6.0454 5.9701 0.0057 5.9218 0.0153 
C3-C5 3.6226 3.6953 0.0053 4.4871 0.7474 
C3-C7 3.6964 3.6247 0.0051 3.8106 0.0130 
C3-C9 3.6063 3.6760 0.0049 4.0384 0.1867 
C2-O6 3.9479 4.0136 0.0043 3.4566 0.2414 
C2-O4 4.6762 4.6126 0.0040 4.4114 0.0701 
C5-C7 3.7282 3.6674 0.0037 3.8467 0.0140 
C2-C5 3.7446 3.7090 0.0013 4.4333 0.4743 
C5-O10 4.6217 4.6546 0.0011 4.6018 0.0004 
O4-C5 3.9822 3.9552 0.0007 3.4636 0.2690 
O1-O8 5.0036 4.9789 0.0006 3.4738 2.3400 
O4-O6 5.0732 5.0845 0.0001 3.7032 1.8769 
Cluster VI 
RMSD (Å)   0.421  0.675 

 
 
O1-C3 3.8915 4.5553 0.4405 4.4522 0.3143 
O1-O4 4.8569 5.6207 0.5834 3.4624 1.9444 
O1-C5 4.0831 4.0996 0.0003 4.5989 0.2660 
O1-O6 4.9818 4.2796 0.4930 5.1839 0.0409 
O1-C7 4.6972 4.2043 0.2429 5.2298 0.2837 
O1-O8 4.9377 5.3301 0.1540 4.2795 0.4332 
O1-C9 3.8214 4.3960 0.3301 3.9643 0.0204 
O1-O10 3.3448 4.5820 1.5306 3.4484 0.0107 
O1-C11 5.9257 6.1161 0.0362 6.4080 0.2327 
O1-O12 5.9592 6.9791 1.0402 6.3058 0.1201 
C2-C3 3.6797 3.3911 0.0833 4.5263 0.7166 
C2-O4 4.6697 4.5002 0.0287 3.5694 1.2107 
C2-C5 3.5144 3.7541 0.0574 3.7562 0.0584 
C2-O6 4.2423 4.2212 0.0004 4.4108 0.0284 
C2-C7 3.6714 3.5572 0.0130 4.4384 0.5882 
C2-O8 3.8635 4.6925 0.6873 3.4421 0.1775 
C2-C9 3.9760 3.6105 0.1336 4.0467 0.0050 
C2-O10 3.8204 4.0362 0.0466 3.4244 0.1569 
C2-C11 5.3839 5.1759 0.0433 6.0591 0.4560 
C2-O12 5.3062 6.0664 0.5779 5.8205 0.2644 
C3-C5 5.3058 4.9071 0.1590 6.2088 0.8153 
C3-O6 5.6609 5.8719 0.0445 5.9564 0.0873 
C3-C7 3.5868 3.5526 0.0012 3.7815 0.0379 
C3-O8 4.3028 4.2275 0.0057 3.6725 0.3972 
C3-C9 3.6798 3.5265 0.0235 4.5113 0.6914 
C3-O10 3.8913 4.5918 0.4906 3.4773 0.1714 
C3-C11 3.5867 3.5980 0.0001 3.7673 0.0326 
C3-O12 4.3006 4.4828 0.0332 4.4540 0.0235 
O4-C5 6.4017 5.8712 0.2815 5.8184 0.3403 
O4-O6 6.6813 6.8671 0.0345 5.7759 0.8197 
O4-C7 4.1340 4.2506 0.0136 3.7096 0.1802 
O4-O8 4.9927 4.7096 0.0802 3.3996 2.5380 
O4-C9 4.6707 4.3383 0.1106 4.4228 0.0615 
O4-O10 4.8575 5.4306 0.3284 3.3676 2.2199 
O4-C11 4.1348 3.9414 0.0374 4.4692 0.1118 
O4-O12 4.9913 4.7274 0.0697 4.9387 0.0028 
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C5-C7 4.3910 3.5999 0.6259 4.4671 0.0058 
C5-O8 3.6694 4.1708 0.2514 3.4804 0.0357 
C5-C9 3.5147 3.9294 0.1720 3.8404 0.1061 
C5-O10 4.0826 3.9294 0.0235 3.6933 0.1515 
C5-C11 4.3917 3.5183 0.7627 5.1951 0.6455 
C5-O12 3.6690 4.0614 0.1539 4.3057 0.4054 
O6-C7 4.1538 4.0572 0.0093 4.2089 0.0030 
O6-O8 3.2238 4.5801 1.8396 3.3543 0.0170 
O6-C9 4.2434 4.6207 0.1423 3.6133 0.3970 
O6-O10 4.9819 4.7508 0.0534 3.4618 2.3106 
O6-C11 4.1553 4.5589 0.1628 4.3076 0.0232 
O6-O12 3.2243 5.0778 3.4356 3.3216 0.0095 
C7-C9 5.3838 5.2016 0.0332 5.4599 0.0058 
C7-O10 5.9248 6.0428 0.0139 4.4362 2.2159 
C7-C11 3.8993 3.8277 0.0051 3.7758 0.0152 
C7-O12 3.7778 4.9405 1.3517 3.6647 0.0128 
O8-C9 5.3086 5.9943 0.4702 4.5423 0.5873 
O8-O10 5.9603 6.8780 0.8421 3.5591 5.7658 
O8-C11 3.7814 3.8904 0.0119 3.7444 0.0014 
O8-O12 3.3299 4.9521 2.6316 3.4678 0.0190 
C9-C11 3.6722 3.6853 0.0002 4.0975 0.1809 
C9-O12 3.8642 3.9471 0.0069 3.8669 0.0000 
O10-C11 4.6977 4.6212 0.0059 3.4798 1.4835 
O10-O12 4.9378 4.7509 0.0349 3.3718 2.4522 
Cluster VII 
RMSD (Å)   0.595  0.738 

 

CO/HF clusters 
 
MP2 nonbonded atom-atom distances in Ångström 
 

Cluster I 
MP2 nonbonded 

distance  
(Å) 

F1-O3 3.0970 
F1-C4 4.2360 
H2-O3 2.1814 
H2-C4 3.3216 
 

Cluster II 
MP2 nonbonded 

distance 
(Å) 

F1-C3 3.0484 
F1-O4 4.1855 
H2-C3 2.1262 
H2-O4 3.2633 
 

Cluster III 
MP2 nonbonded 

distance 
(Å) 

F6-F5 2.7623 
F6-H3 3.3226 
F6-O1 4.9598 
F6-C2 5.9701 
H4-F5 1.8468 
H4-H3 2.4722 
H4-O1 4.2664 
H4-C2 5.3352 
F5-O1 3.0001 
F5-C2 4.1414 
H3-O1 2.0791 
H3-C2 3.2205 
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Cluster IV 
MP2 nonbonded 
distance 
           (Å) 

F1-C3 3.0260 
F1-O4 4.1602 
F1-C5 3.2543 
F1-O6 3.7267 
H2-C3 2.1026 
H2-O4 3.2376 
H2-C5 3.0828 
H2-O6 3.8127 
C3-C5 3.6207 
C3-O6 4.6939 
O4-C5 4.2639 
O4-O6 5.3928 
 

Cluster V 
MP2 nonbonded 
distance  
          (Å) 

C2-O4 4.0846 

C2-C3 4.9438 

C2-O6 4.0846 

C2-C5 4.9438 

C2-H7 3.5522 

C2-F8 4.1649 

O1-O4 3.1113 

O1-C3 4.0846 

O1-H7 2.4641 

O1-F8 3.1644 

O1-O6 3.1113 

O1-C5 4.0846 

C3-H7 3.5522 

C3-F8 4.1649 

C3-O6 4.0846 

C3-C5 4.9438 

O4-H7 2.4641 

O4-F8 3.1644 

O4-O6 3.1113 

O4-C5 4.0846 

H7-O6 2.4640 

H7-C5 3.5522 

F8-O6 3.1644 

F8-C5 4.1649 
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Cluster VI 

MP2 
nonbonded 
distance 
     (Å) 

Cluster VII 

MP2 
nonbonded 
distance 
      (Å) 

Cluster VIII 

MP2 
nonbonded 
distance 
        (Å) 

F1-F6 2.7348 F1-F3 2.6713 F1-C7 2.9114 
F1-H5 3.0337 F1-H4 2.7422 F1-O8 4.0469 
F1-O8 3.4481 F1-F6 2.6713 F1-C4 3.7423 
F1-C7 3.8840 F1-H5 1.8657 F1-O3 4.6484 
F1-O3 3.2694 F1-O7 3.2273 F1-F6 2.7027 
F1-C4 3.6703 F1-C8 4.2639 F1-H5 1.7845 
H2-F6 1.8478 H2-C3 1.8657 H2-C7 1.9803 
H2-H5 2.2874 H2-H4 2.1742 H2-O8 3.1157 
H2-O8 3.2371 H2-F6 2.7422 H2-C4 3.4027 
H2-C7 3.9166 H2-H5 2.1742 H2-O3 4.4382 
H2-O3 3.1087 H2-O7 3.0878 H2-F6 3.2427 
H2-C4 3.7401 H2-C8 4.1555 H2-H5 2.3970 
F6-O8 2.9959 F3-F6 2.6713 C7-C4 3.5262 
F6-C7 4.0381 F3-H5 2.7422 C7-O3 4.6620 
F6-O3 3.1526 F3-O7 3.2273 C7-F6 4.8257 
F6-C4 4.1480 F3-C8 4.2638 C7-H5 4.1319 
H5-O8 2.2537 H4-F6 1.8657 O8-C4 4.0089 
H5-C7 3.3643 H4-H5 2.1742 O8-O3 5.0911 
H5-O3 2.7674 H4-O7 3.0878 O8-F6 5.8196 
H5-C4 3.8619 H4-C8 4.1554 O8-H5 5.1890 
O8-O3 3.1052 F6-O7 3.2273 C4-F6 3.1594 
O8-C4 3.9964 F6-C8 4.2639 C4-H5 3.2062 
C7-O3 3.7619 H5-O7 3.0878 O3-F6 3.4063 
C7-C4 4.4388 H5-C8 4.1555 O3-H5 3.7399 
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Cluster IX 

MP2 
nonbonded 
distance 
      (Å) 

Cluster X 

MP2 
nonbonded 
distance 
        (Å) 

Cluster XI 

MP2 
nonbonded 
distance 
       (Å) 

F2-C7 2.9179 O2-O3 3.9855 F2-F4 2.7674 
F2-O8 4.0520 O2-C4 3.9843 F2-H3 3.2135 
F2-O4 3.6084 O2-F5 3.6210 F2-C7 4.5994 
F2-C3 4.5022 O2-H6 3.7545 F2-O8 5.5731 
F2-F5 2.7127 O2-C7 4.6565 F2-H6 4.2964 
F2-H6 1.7938 O2-O8 5.3607 F2-F5 5.1966 
H1-C7 1.9877 C1-O3 3.9842 H1-F4 1.8627 
H1-O8 3.1224 C1-C4 3.6570 H1-H3 2.4088 
H1-O4 3.2461 C1-C7 3.6318 H1-C7 3.9937 
H1-C3 4.2770 C1-O8 4.2664 H1-O8 5.0446 
H1-F5 3.2664 C1-F5 3.2356 H1-H6 3.3888 
H1-H6 2.4147 C1-H6 3.0989 H1-F5 4.2964 
C7-O4 3.2727 O3-C7 4.6565 F4-C7 2.8427 
C7-C3 4.4086 O3-O8 5.3607 F4-O8 3.9778 
C7-F5 4.8264 O3-F5 3.6210 F4-H6 1.8627 
C7-H6 4.1296 O3-H6 3.7545 F4-F5 2.7674 
O8-O4 3.7319 C4-C7 3.6318 H3-C7 1.9043 
O8-C3 4.8012 C4-O8 4.2664 H3-O8 3.0394 
O8-F5 5.8058 C4-F5 3.2356 H3-H6 2.4088 
O8-H6 5.1753 C4-H6 3.0989 H3-F5 3.2135 
O4-F5 3.2038 C7-H6 2.0766 C7-H6 3.9937 
O4-H6 3.1716 C7-F5 3.0000 C7-F5 4.5994 
C3-F5 3.3969 O8-F5 4.1310 O8-H6 5.0446 
C3-H6 3.6619 O8-H6 3.2101 O8-F5 5.5731 
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The first observation we can make from Table 4.3 is that electron densities are unevenly 

distributed in the rings of the clusters with external monomers. It is as if some of the 

monomers have a larger electron density at their bond critical points than the others in the 

rings. Cluster VIII differs from the other clusters as we see that the external monomer’s 

electron density at its bond critical point is almost as much as in the case of the isolated 

monomer. This shows that there is only a very weak interaction between the monomer and the 

ring. We investigated this further by plotting the second derivative of the electron density of 

this cluster in Fig. 4.9. The plot is in a plane spanned by the external monomer and a fluorine 

atom in the ring. The plot clearly shows that this interaction is a closed-shell interaction as the 

topology of the second derivative is almost spherical symmetrical around the fluorine atom in 

the external monomer and spherical symmetrical around the fluorine atom in the monomer in 

the ring.  

 
Fig. 4.9: Plot of the second derivative of the electron density of the external monomer and a monomer in 

the ring of cluster VIII. 

 

Earlier we mentioned that the monomer in cluster VIII has a different interaction with the ring 

than in the other clusters with attached monomers.   

    Regarding Table 4.3, we also see an increase in the volume the fluorine occupies in a 

monomer in the cyclic clusters, with respect to a single isolated monomer, with an increase in 

cluster size. This can be deduced from the relative shift of the bond critical point (BCP). 

Although this shift is almost insignificant, it does allow a trend to be observed. This trend can 

be interpreted as a small shift of the electron density towards the hydrogen atom, possibly 

because of a decrease in effective electro-negativity of the fluorine atoms; however, this 

seems not to play a significant role. Our AIM analysis again proves our earlier explanation 

 

External monomer 
Monomer in ring

F

H 
F 
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that electron density moves out of valence bonds during cluster formation. The amplitude of 

maximum electron density in the valence bonds decreases, but its position with respect to the 

two atoms is not significantly affected.    

    With respect to the ring critical points, we see that the cyclic trimer has the largest electron 

density at its ring critical point. The angle at which each monomer is turned with respect to 

the other monomers in cyclic clusters probably determines the degree of overlap of the 

electron densities at the ring critical points and the larger the overlap of the electron densities 

of the monomers in the center of the ring, the larger the magnitude of the electron densities at 

the ring critical points. Following the literature, the trend in the density at the ring critical 

points, for the cyclic clusters with respect to their size, is the same as the trend in Nuclear 

Independent Chemical Shift (NICS) values, which is a measure of the strength of the ring 

current with respect to cluster size [Rehaman et al., 2006, Maerker et al., 1997]. Therefore, 

the electron density at ring critical points might be linked to ring currents. This should, 

however, be confirmed in future work. Note that the ring critical point in cluster VIII is 

between the fluorine atom in the external monomer and two fluorine atoms of the two 

adjacent monomers leading to a total of 5 ring critical points. All the other clusters with ring 

critical points have their ring critical points at the center of their rings. We also see that the 

clusters with external monomers have only a slight decrease in the electron density at the ring 

critical point. For example, adding an external monomer to the cyclic trimer distorts the 

electron density in such a way that the ring critical point still has a larger electron density than 

the cyclic tetramer. We might therefore expect that when adding an external monomer to the 

cyclic HF trimer as in cluster IV, the destabilization should not be that significant and if a ring 

current is present it would not be affected significantly.   

 

4.6 Analysis of the electrostatics of the HF clusters 

 

To develop a hybrid QM/MM system for the HF clusters one needs to approximate the MM 

system’s charge density by atomic point charges. It is important to realize that by putting a 

point charge on an atom, the charge distribution is approximated by a sphere, which can be a 

severe approximation due to the anisotropic nature of the charge density of atoms in 

molecules. The ONIOM-EE method in Gaussian 03 can however only use atomic point 

charges. As charges are a controversial issue [Martin and Zipse, 2005], we determined not 

only the MKS charges, but as a reference for these charges, we also determined the natural 

atomic orbital  (NAO) and the Atoms in molecules (AIM) charges for a few selected clusters.  

    As MKS charges are based on the Electrostatic Potential (ESP) of the electron density, we 

studied the ESP-maps to see if they are comparable to the charges. In Table 4.4, pictorial 
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representations of the ESP-maps, based specifically on the MP2 density of each cluster, are 

given together with the MKS charges based on the SCF and MP2 densities. It is important to 

note that charges derived from the SCF densities are different from charges derived from the 

MP2 densities. The SCF density are based on the ground state Hartree-Fock wave function, 

while the MP2 density is based on a first order corrected wave function, containing second 

excitations of the Hartree-Fock determinant.  

  
Table 4.4: In each case the electrostatic potential mapped onto the total MP2 density is shown on the left side of 

the table and on the right are the Merz-Kollman-Singh (MKS) AIM and NAO charges for the atoms as numbered 

in Fig. 4.2. In this case, blue illustrates a positive potential and red a negative potential.  All the charges are given 

in atomic units. 
ESP mapped on total MP2 electron density MKS charges 

calculated from 

the total SCF 

density 

MKS charges 

calculated from the 

total MP2 density [AIM 

charges] 

NAO charges

Monomer 

 

F1: -0.474  
H2:  0.474  

F1:-0.452  [-0.713] 
H2: 0.452  [0.711] 

F1: -0.540 
H2:  0.540 

I 

 

F1 : -0.484  
H2 :  0.458   
F3 : -0.461 
H4 :  0.487 

F1:  -0.464   [-0.739] 
H2:   0.438   [0.730] 

F3:  -0.438   [-0.718] 
H4:   0.465   [0.728] 

 

F1:-0.561 
H2: 0.551 
F3:-0.549 
H4: 0.558 

II 

 

 

 F1 :  -0.452 
H2 :   0.452 
H3 :   0.454 
H4 :   0.451 
F5 :  -0.454 
F6 :  -0.452 

F1:  -0.427 
H2:   0.428 
H3:   0.430 
H4:   0.426 
F5:  -0.429 
F6:  -0.427 

F1: -0.568 
H2:  0.568 
H3:  0.568 
H4:  0.568 
F5: -0.568 
F6: -0.568 

Table 4.4 continued… 
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III 

 

F1 :  -0.436 
H2 :   0.436 
F3 :  -0.435 
H4 :   0.433 
F5 :  -0.423 
H6 :   0.420 
H7 :   0.438 
F8 :  -0.435 

F1: -0.411 
H2:  0.412 
F3: -0.410 
H4:  0.408 
F5: -0.396 
H6:  0.394 
H7:  0.414 
F8:- 0.409 

 

F1: -0.573 
H2:  0.573 
F3: -0.573 
H4:  0.573 
F5: -0.573 
H6:  0.573 
H7:  0.573 
F8: -0.573 

IV 

 

F1 : -0.455 
H2 :   0.473 
F3 : -0.476 
H4 :   0.463 
F5 : -0.445 
H6 :   0.465 
H7 :   0.455 
F8 : -0.480 

 

F1:-0.430 [-0.730] 
H2:  0.449 [0.740] 
F3:-0.451 [-0.763] 
H4:  0.437 [0.753] 
F5:-0.419 [-0.736] 
H6:  0.441 [0.749] 
H7:  0.430 [0.731] 
F8:-0.457 [-0.741] 

 

F1 :  -0.558 
H2 :   0.568 
F3 :  -0.586 
H4 :   0.574 
F5 :  -0.559 
H6 :   0.572 
H7 :   0.550 
F8 :  -0.562 

V 

 

F1   :  -0.440 
H2   :   0.445 
F3   :  -0.443 
H4   :   0.439 
F5   :  -0.421 
H6   :   0.413 
F7   :  -0.421 
H8   :   0.427 
F9   :  -0.430 
H10   :   0.432 
 

F1:  -0.417 
H2:   0.423 
F3:  -0.419 
H4:   0.414 
F5:  -0.394 
H6:   0.385 
F7:  -0.394 
H8:   0.401 
F9:  -0.405 

H10:   0.407 
 

F1   :  -0.575 
H2   :   0.575 
F3   :  -0.575 
H4   :   0.575 
F5   :  -0.575 
H6   :   0.575 
F7   :  -0.575 
H8   :   0.575 
F9   :  -0.575 
H10   :   0.575 

 

VI 

 

 

F1 :   -0.431 
H2 :    0.439 
F3 :   -0.432 
H4 :    0.424 
F5 :   -0.421 
H6 :    0.438 
H7 :    0.438 
F8 :   -0.429 
H9 :    0.453 

F10 :   -0.480 
 

F1:  -0.405 
H2:   0.414 
F3:  -0.405 
H4:   0.395 
F5:  -0.393 
H6:   0.412 
H7:   0.413 
F8:  -0.402 
H9:   0.430 

F10:  -0.458 
 

F1: -0.566 
H2:  0.574 
F3: -0.593 
H4:  0.577 
F5: -0.565 
H6:  0.576 
H7:  0.575 
F8: -0.568 
H9:  0.548 

F10: -0.559 

Table 4.4 continued … 
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VII 

 

 

 

F1  : -0.445 
F2  : -0.436 
F3 :  -0.436 
F4 :  -0.438 
F5 :  -0.434 
F6 :  -0.432 
H7 :   0.445 
H8 :   0.434 
H9 :   0.438 
H10:    0.431 
H11:    0.433 
H12:    0.440 

F1:  -0.407 
F2:  -0.408 
F3:  -0.414 
F4:  -0.410 
F5:  -0.411 
F6:  -0.422 
H7:  0.405 
H8:  0.408 
F9:  0.415 

H10:  0.421 
H11:  0.409 
H12:  0.413 

 

Not calculated 

VIII 

 

F1: -0.448 
H2:  0.449 
F3: -0.447 
H4:  0.451 
F5: -0.445 
H6:  0.448 
F7: -0.448 
H8:  0.452 
F9: -0.450 

H10:  0.455 
F11: -0.544 
H12:  0.527 
 

F1: -0.421 
H2:  0.423 
F3: -0.420 
H4:  0.425 
F5: -0.418 
H6:  0.422 
F7: -0.422 
H8:  0.426 
F9: -0.424 

H10:  0.429 
F11: -0.523 
H12:  0.504 

 

Not calculated 

                          
 
All the MKS charges conform to their ESP-maps, and no erroneous results were found. 

Obviously all the values for the charges for the different charge schemes are different. The 

main difference between the charge schemes is that MKS samples points of the electron 

density on and further than the overlap of the van der Waals radii of the atoms, whereas both 

NAO charges and AIM charges are based on the total charge of the atom, and therefore 

include the direct contribution of valence electrons to the atomic charge.  

    It is interesting to note that the difference in magnitude of the charges differs for the H2 

and F3 atoms for the HF dimer for the various charge schemes. For the MKS charges based 

on the SCF density there is a slight difference between the absolute values of the charges on 

these two atoms. For the MKS charges based on the MP2 density, the absolute values of these 

charges are identical. The AIM charges show a larger difference in their absolute values. The 

absolute value of the hydrogen’s atomic charge is larger than the absolute value of the 

fluorine’s atomic charge. The NAO charges show a slight difference as well. The hydrogen is 

again more positive than the fluorine is negatively charged. This has to do with the 
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partitioning of the electron density. MKS does not partition the electron density as AIM and 

NAO charge-schemes do. Again, AIM and NAO charge schemes use localized approaches to 

derive the charges whereas MKS uses a more delocalized approach only dependent on the 

ESP of the wave function. For the HF clusters, MKS charges based on the MP2 density seem 

to be the best choice. It might also be that electron correlation leads to electron delocalization 

and this is why the SCF and MP2 charges differ in their absolute values. For the cyclic cluster 

NAO charges conform better to the symmetry point group of the molecule than MKS charges. 

Again, this is probably due to the localization of the correlated wave function onto the HF 

monomers.  

    In the clusters with external monomers attached to rings, there is a slight redistribution of 

charge from the ring to the external monomer. In the spirit of quantum mechanics, the 

likelihood of finding electrons is greater on the external monomer than on the ring or in other 

words there is a charge transfer from the ring to the external monomer. This is confirmed by a 

comparison between the total charge of the monomer and the total charge of the ring in each 

case.           

   

4.7 Summary, conclusions and future work 

 

In this chapter we reported the optimization of eight HF clusters. The structural parameters 

compared very well to the experimental ones. The energies and vibrations also seemed 

reasonably accurate compared with other literature results and experimental results when the 

vibrations of the normal modes are scaled by a scaling factor. We then studied the bonding of 

the clusters. We gave an explanation regarding hydrogen bonding based on Mulliken 

population analysis results, visualizations of the MP2 wave function and the theory of Atoms 

in Molecules. We showed that for delocalized systems such as the cyclic HF clusters that 

NBO analysis is not feasible. NBO analysis could not give any explanation for why a ring 

current can be detected in the HF trimer and why no significant ring current can be calculated 

for the other cyclic clusters. By studying the relative electron population associated with the 

correlated wave function, we hypothesized that the reason for the ring current in the trimer 

can be due to the fact that fewer electrons need to be excited from a lower shell to a higher 

shell as this higher shell already contains sufficient electron density.     

    We reported charges derived from different charge derivation schemes and concluded that 

MKS charges based on the MP2 density do indeed give a better representation of the charge 

density of the systems than other charges. This was confirmed by studying the ESP-maps. See 

Table 4.4. 
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    Future work might include the validation of the intermolecular orbital explanation and the 

reason given for the ring current in the HF trimer. In addition, it is interesting that cluster VIII 

explicitly “chose” not to form a hydrogen bond with one of the fluorine atoms in the ring, but 

rather to form weak interactions with all the fluorine atoms of the ring instead. We cannot 

explain this behavior from our work and future work might elucidate the reason for this. This 

can be accomplished by determining if a series of vdW bonds are more stable than a single 

hydrogen bond and if other factors are also present. It will also be important to validate the 

relationship between electron density at ring critical points and “aromaticity” in HF clusters 

or even other clusters. It is important to note that all the models discussed in this chapter are a 

consequence of scientific questioning. We can never assume that any model as such is 

“correct”. It can only be correct within the limits of the methods used. 
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Chapter 5 

 

Optimization of the van der Waals 

parameters of the Universal Force Field 

(UFF) for the use in ONIOM-EE 

optimizations of hydrogen fluoride 

clusters 

 

5.1 Introduction 

 

In this chapter, we report the optimization of van der Waals force field parameters to be used 

for UFF in QM/MM optimizations of hydrogen fluoride clusters by using the ONIOM-EE 

methodology.      

   In Section 5.2 we will discuss the computational details, while in Section 5.3 we will 

discuss our strategy to minimize trial optimizations. Section 5.4 will contain details regarding 

the assessment of the quality of the force field parameters and in Section 5.5 we will discuss 

the actual optimization of the force field parameters. In Section 5.6 we will report the 

development of a method for force field optimizations in a hybrid system. The chapter will be 

concluded with Section 5.7.  

 

5.2 Computational details 

 

All the ONIOM-EE optimizations were performed with the Gaussian 03 set of programs. The 

computational details have been discussed in Chapter 3 (Section 3.5).       

    The UFF [Rappé et al., 1992] van der Waals parameters were modified manually for each 

ONIOM-EE optimization. Further details regarding the actual optimization of the van der 

Waals parameters will follow shortly. The nonbonded interactions were computed 

geometrically and a general 1/R Coulomb description, was used for the electrostatics, both as 

implemented in UFF. Before attempting ONIOM calculations and optimizations, it was 

verified that Gaussian 03 gives the correct energies for the van der Waals and electrostatic 

http://scholar.sun.ac.za/



96 

interactions. The procedure for this can be found in Appendix C. We further had to find 

methods to minimize the trials needed to find optimized parameters for the force field, 

because geometry optimizations were laborious. One of these methods will be discussed in 

Section 5.3. In Chapter 9 we will attempt to explain the slow convergence in the micro-

iterations when using frozen bond lengths and electronic embedding. 

    We used very tight optimization conditions, as default optimization conditions were 

inadequate for our purpose1.  

 

5.3 Strategy to limit trials in optimization of Force field (FF) -

parameters 

 

Optimizing van der Waals parameters for a force field by doing trial geometry optimizations 

is generally difficult, but can be done in a reasonable time. When the geometry optimization 

takes longer than an ab initio optimization, however, it is annoying and almost impossible to 

optimize the parameters. Since this is what we experienced, we tried another method. 

According to the literature one can freeze the MM system and make the QM system move as 

a rigid block during the micro-iterations. This has been tested and is known to lead to fast 

convergence [Vreven et al., 2003]. It would therefore be better to use only one monomer with 

frozen Cartesian coordinates in the MM system and designate the remaining part of the 

system to the QM system. By doing this we increase the time necessary to compute the 

energy of the QM system, but we minimize the time taken for a geometry optimization. Our 

approach might seem strange at first, but the time to optimize rigid blocks in the MM system 

in the micro-iterations with electronic embedding, is at this stage more laborious than 

computing the energy of more molecules in the QM system. Our approach is a “trick” to 

make use of the properties of ONIOM-EE optimizations in Gaussian 03 that has been 

developed and tested, instead of using a method that has never been used before. We therefore 

use a variation on our original hybrid system as discussed in Chapter 3 (Section 3.5). In Fig. 

5.1 we call the original hybrid system the Final set and the new hybrid system the 

Intermediate set.  

                                                 
1 In order to obtain good results with default optimization conditions it is important that one is as close 
as possible to the minimum otherwise we found that the optimizer will end up at various minima.  
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QM QM

MM MM

MM QM

The Final set The Intermediate set  
 

Fig. 5.1: Two different ways of representing the HF trimer in ONIOM-EE 

 

We first tried to optimize the Intermediate set by systematically varying vdW parameters.  In 

this set, the monomers in the QM system experience a quantum mechanical interaction 

between each other and a molecular mechanical interaction with the single MM monomer. So 

the only difference between the two sets is that in the Final set the hydrogen bonds are 

described by molecular QM/MM interactions whereas in the Intermediate set they are 

described by a QM-QM interaction and a QM-MM interaction.  

 

5.4 Criteria for assessing the quality of the Force field (FF) 

 

Usually one gauges the quality of a force field by comparison of computational results to 

experimental data. For example, heats of formation, vibrations and geometries can be used. In 

our case, we had to rely on the MP2 optimized geometries. We assumed that the force field 

would be optimized when the root mean square deviation (RMSD) of the nonbonded 

distances with respect to the MP2 values, converged. We used the root mean square deviation 

(RMSD) as defined in Chapter 2 (Section 2.10). Our aim was therefore to find parameters to 

come as close as possible to convergence in a reasonable time of ca. one month.  

 

5.5 Optimization of FF-parameters  

 

5.5.1 Testing for convergence 

 

The optimization of the eight HF clusters was simplified by using a small training set. The 

final optimized parameters were tested on the remaining clusters. The training set used 

contained the HF dimer, cyclic trimer, cyclic tetramer and cyclic pentamer. The change in the 
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geometries from their starting points after each ONIOM optimization was measured by a 

RMSD from the ab initio values of all the nonbonded distances in the cluster.2  

    Using the Intermediate set for the trimer, tetramer and pentamer, we optimized the 

Lennard-Jones parameters for these clusters by manually varying the parameters 

systematically and doing geometry optimizations. To simplify the task at hand, only the R0-

values or van der Waals equilibrium distances were optimized. Murphy and coworkers did the 

same when they optimized a force field for amino acids [Murphy et al., 2000]. We eventually 

determined optimized parameters of 3.52 Å for the fluorine atom-type (F_) and 1.28 Å for the 

hydrogen atom-type (H_). These values were then used to optimize the van der Waals 

parameters for the Final set for all the clusters in the training set yielding 3.34 Å for F_ and 

1.28 Å for H_. As the cyclic pentamer is the largest cluster in the training set, and therefore 

contributes the most to the overall RMSD, we used the change in the intermolecular distances 

of the pentamer as a measure of convergence.  

 

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35 40 45

Intermolecular distances (Å)

S
q

u
ar

e 
o

f 
th

e 
d

ev
ia

ti
o

n
 

F_:3.35 H_:1.28
F_:3.35 H_:1.34
F_:3.43 H_:1.28
F_:3.37 H_:1.28
F_:3.34 H_:1.28

Fig. 5.2 : Graph showing the change in the different intermolecular distances of the cyclic HF-

pentamer as they vary with the different R
0
-Lennard-Jones parameters for each atom-type.  The 

values for the parameters in the legend are in Ångström. 

 

                                                 
2 A nonbonded distance is the distance between two nonbonded atoms. For example, for the cyclic 
tetramer we measured 24 nonbonded distances each time the parameters were changed. All these 
distances are listed in Appendix D. 
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Fig. 5.2 shows the RMSD for the separate nonbonded distances in the optimized pentamer for 

various selected R0-values for the fluorine and the hydrogen atom-types. Here one can see 

that the changes in the intermolecular distances F1-H6 and F3-F9 are almost inversely 

proportional to each other with respect to the change in parameters.  Therefore, if we lower 

the R0-value of the fluorine atom-type and keep the R0-value of the hydrogen atom-type 

constant, the F1-H6 intermolecular distance is “benefited” (more like in the MP2 optimized 

cluster) on this section of the optimization hyper-surface.3 We also found that by keeping the 

R0-value of the fluorine atom-type at 3.350 Å and increasing the R0-value of the hydrogen 

atom-type, this worsened the force field. We took this behavior as a sign of convergence of 

the RMSD to a minimum.      

    One can argue that the R0-value for the hydrogen atom is quite small. First, we need to 

consider that the vdW interaction is only dependent on the attractive dispersion interaction 

and the repulsive exchange interaction. As the fluorine atom of the HF monomer has a large 

electron-negativity the single electron on the hydrogen atom will not play a significant role in 

the attractive dispersion or repulsive exchange interactions. The point charge on the hydrogen 

atom is sufficient enough to describe its interaction with other nonbonded atoms.  

  

5.5.2 Results for the newly determined R0-values vs the default R0-values 

 

The newly determined Lennard-Jones parameters were tested on the training set and 

compared to the results obtained when using the default parameters. Table 5.1 summarizes the 

results obtained for the training set.  

 

                                                 
3 We also looked at a visual representation of the geometry changes to obtain an idea of how the 
parameters affect the pentamer’s geometry overall.  
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Table 5.1 : Results for the optimization of the training set using different Lennard-Jones parameters. The 

well-depths for the fluorine and hydrogen atoms were kept constant at the UFF values of 0.050 kcal/mol 

and 0.044 kcal/mol respectively. MP2 density based Merz-Kollman–Singh charges were used. 

CLUSTER 

RMSD FOR DEFAULT 

FORCE-FIELD 

PARAMETERS 

 

(Å) 

RMSD FOR IMPROVED 

TRAINING SET 

F_-R0=3.34Å 

H_-R0 =1.28Å 

(Å) 

% improvement 

DIMER 0.591 NA** N/A 

TRIMER 0.646 0.139 78.5% 

TETRAMER N/A* 0.146 N/A* 

PENTAMER N/A* 0.213 N/A* 

TOTAL RMSD 0.633 0.184 70.9% 

* Micro-iterations did not converge   

** Problem with coordinate system as structure is linear 

As can be seen from Table 5.1, the new parameters made a significant improvement for the 

HF trimer. 

 

5.5.3 Results for the other clusters  

 

The new van der Waals parameters were then tested on all of the remaining clusters. The final 

results, excluding the results for the training set, are summarized in Table 5.2. 

 

Table 5.2 : RMSD for the remaining clusters, as calculated by using our Lennard Jones parameters and the 

UFF-default parameters. The total RMSD calculated for all the clusters is also shown. 

 

RMS-deviation for default 

parameters 

(Å) 

RMS-deviation for 

optimized parameters (Å) 
% 

improvement 

Cluster IV Drastic change in overall 
geometry, see discussion 

Drastic change in overall 
geometry, see discussion 

N/A 

Cluster VI Drastic change in overall 
geometry, see discussion 0.222 

N/A 

Cluster VII Micro-iterations did not converge 0.248 N/A 
Cluster VIII Drastic change in overall geometry Drastic change in overall 

geometry 
N/A 

TOTAL RMSD 0.633* 0.216 65.9% 
 

* Only the HF dimer and HF trimer could be optimized  

 

We can see from Table 5.2 that there are drastic changes in the geometries of some of the 

clusters. Cluster IV did not converge in time and its calculation was deliberately stopped.4   

This was taken as a sign that the micro-iterations had difficulty in optimizing the MM system 

due to the fact that the MM system moved significantly during the optimization. As we 

discussed in Section 2.9, the optimization algorithm is not able to give fast convergence for 
                                                 
4 The Gaussian output file was 1 GB in size which is unusual and is a sign of an extremely slow 
convergence. It was so large that some text editors could not show the contents of the file.  
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systems where the molecules in the MM system are treated as rigid blocks and move 

significantly during the optimization. The significant movement of the MM system means the 

force field parameters for the cluster are poor. Cluster VI and VIII, however, did converge in 

a reasonable time. In cluster VI the external monomer was not incorporated into the ring, but 

in cluster VIII the external monomer was incorporated into the pentamer ring structure to 

form a planar cyclic hexamer. It is therefore possible that over time the monomer in cluster IV 

will also eventually insert itself into the ring and form the cyclic tetramer. This would depend 

on how feasible ring insertion is energetically according to the ONIOM-EE extrapolated 

energy. In Fig. 5.3 we illustrate the results graphically. A trend line is drawn through the 

datapoints of the MP2 values for the nonbonded (intermolecular) distances. Points close to the 

trend line are seen as good representations of the MP2 geometry. As we discussed earlier for 

cluster I, the HF dimer, a successful ONIOM-EE optimization could not be performed, 

because the optimized structure is linear. The optimized geometry using the default UFF van 

der Waals parameters, was parallel and shows obvious deviations from the MP2 optimized 

geometry, which is not parallel. We see however, that for the other clusters that could be 

optimized with our optimized force field parameters, this resulted in good fits to the MP2 

optimized geometries as indicated by small deviations of the nonbonded distances from their 

MP2 values. As mentioned earlier, the default force field parameters could not be used to 

optimize Cluster II, V, VI and VII.  

 

5.6 Optimizing the force field based on MP2 interaction energies5 

 

As we mentioned previously, geometry optimizations were too laborious to be feasible for 

force field optimizations. We therefore looked for an alternative method. We developed a 

method based on the frozen geometries of the energy minima obtained with MP2.  
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5 MP2 interaction energies are all corrected for BSSE. 
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Cluster VI 

 

Cluster VII 

Fig. 5.3: Scattergrams of all the intermolecular distances for all the clusters optimized with ONIOM-EE 
together with the intermolecular distances optimized with MP2 in Chapter 4.  A trend line is drawn 
through the data points of the MP2 results. The squares represent ONIOM calculations with the default 
UFF-parameters. Triangles represent ONIOM-EE calculations with the optimized parameters. Only the 
clusters which could be optimized to similar structures to the MP2 energy minima are shown.  
 
This method is closely related to a method previously used to optimize force fields for 

crystals [Hagler and Wilson, 1974] and is also similar to the one used by Riccardi and 

coworkers, [Riccardi et al., 2004] to optimize a force field for peptide dimers.  

    Our method can be seen as an attempt to optimize the force field parameters in order to 

give a quantum mechanical like interaction energy rather than by requiring the geometries of 

the clusters to be similar to the equilibrium geometries at the MP2 level of theory. The quality 

assessment of the force field will therefore change from a comparison of equilibrium 

geometries to comparing the ONIOM steric energies, vide infra, to the MP2 interaction 

energies and calculating an overall RMSD with respect to these energies. By using the overall 

RMSD, we automatically add the constraint that the trend in the ONIOM steric energies, with 
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respect to the cluster size, should be the same as for the MP2 BSSE corrected interaction 

energies.     

    To assist with the discussion we first define the ONIOM-EE interaction energy as: 

       ONIOM vdW El
interaction real MME E E P                                (5.2) 

where vdW
realE is the total van der Waals interaction between all the molecules in the entire 

system. El
MME is the Coulomb electrostatic energy for the electrostatic interactions of all the 

molecules in the MM system. ΔP is the electrostatic perturbation, calculated as the difference 

in the value calculated by ONIOM-EE as high
modelE 6 (see Section 2.8) and the gas phase MP2 

energy value of the isolated monomer in the model system. As we discussed in Chapter 2, 

when the MM system is optimized during the micro-iterations, the optimizer uses the ESP 

charges derived based on the perturbed QM wave function, as a perturbation to the exact 

gradient in the micro-iterations in order to optimize the MM system. If the energies for the 

interactions between these charges and the stationary charges on the MM atoms are not 

reasonably similar, one would also expect the exact force to change incorrectly during the 

microiterations leading to an inefficient optimization of the MM system. In Chapter 9, we 

will demonstrate that in Gaussian 03 there is a large difference in the Coulomb electrostatic 

energy of the system when using point charges to describe the perturbed wave function, and 

the electrostatic energy calculated during the calculation for the model system. We will see 

that for the HF clusters this difference is so severe that it is impossible to obtain ONIOM 

interaction energy values comparable to the MP2 interaction energy. We therefore have to 

define another term which is unfortunately an approximation, but more suitable for our 

purposes. This term is the ONIOM steric energy and is defined as: 

     ( ) vdW elONIOM steric E E                 (5.3) 

where Eel is the electrostatic energy of the whole system when using the ESP fitted charges on 

the QM molecule and the stationary charges on the MM molecules. The calculation of the 

ONIOM steric energy was performed by utilizing Cerius2.  Before we commenced with the 

optimization of the force field, the ONIOM steric energies, when using the default UFF 

parameters, were compared to the ONIOM steric energies calculated by using the 

geometrically optimized R0-values. See Table 5.3.  

Table 5.3: ONIOM steric energies calculated by utilizing the default UFF R0-values and the geometrically 

optimized R0-values. 

                                                 
6 It would be better to separate the energy for the model system from the energy for the electronic 

perturbation. However in Gaussian 03 high
modelE  is the sum of the energy for the model system and the 

energy for the electronic perturbation. The MKS charges for the QM atoms used during the 
optimization of the MM system in the micro-iterations are derived based on the ESP of this term’s 
density. 
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Cluster 

MP2 BSSE corrected 

interaction energy 

(kcal/mol) 

ONIOM steric energy for 

default R0-values 

(kcal/mol) 

ONIOM steric energy for 

geometrically optimized 

R0-parameters 

(kcal/mol) 

I -3.8 14.3 -4.6 

II -11.6 50.5 -12.5 

III -21.6 274.6 -21.1 

IV -15.0 86.2 -16.5 

V -30.1 566.0 -29.0 

VI -24.6 326.2 -22.9 

RMSD (kcal/mol) N/A 311.0 1.2 

 

It seems as if the geometrically determined R0-values actually perform remarkably well when 

the quality of the force field is based on the fitting of the ONIOM steric energies to the MP2 

interaction energies.  

    To optimize the R0-parameters we made use of the first six HF clusters that we optimized 

in Chapter 4. For the optimization of the parameters by the frozen geometry method, we used 

a genetic algorithm (GA) [Jensen, 2001]. GA’s are discussed in Chapter 2 (Section 2.8). For 

the GA utilized in this work, 16 chromosomes were used in the population, one-point cross-

overs were used with a probability of 90% and the chromosome mutation and random 

selection probability were both set to 10%. Four preliminary runs with 10 generations per run 

were used. The maximum number of generations was set to 400, the convergence tolerance on 

the average deviation to 1×10-5 and the numeric precision to 12 decimal digits. The results 

obtained with the GA were reoptimized with a quasi-Newton optimization algorithm. The 

best R0-values that can be obtained for these six clusters are:  

R0(H_) = 0.481Å 

R0(F_)  = 3.386Å 

 

The R0-value for H_ is now even smaller than when a series of geometry optimizations was 

used during the optimization of this value earlier. It is important not to interpret this value as a 

vdW radius, as this is only a value determined by fitting the ONIOM steric energy to the MP2 

interaction energy and is also dependent on the point charge on the hydrogen atom, which is 

dependent on the accuracy of the charge-scheme used to derive this charge.      

In Table 5.4 we summarize the ONIOM steric energies for these six clusters with the 

optimized parameters. 

 

Table 5.4: ONIOM steric energies as calculated with the energetically optimized R0-values  
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Clusters 

MP2 BSSE corrected 

interaction energy 

(kcal/mol) 

ONIOM steric energy (kcal/mol)

I -3.8 -4.6 

II -11.6 -12.1 

III -21.6 -21.4 

IV -15.0 -16.2 

V -30.1 -30.5 

VI -24.6 -23.4 

RMSD (kcal/mol) N/A 0.8 

 

From Table 5.4 we see clearly that the fit is reasonable. The reason why it is not better is 

probably due to the use of point charges instead of a more elaborate description of the 

electrostatics in the clusters, especially in the HF dimer. For a more accurate description of 

the electrostatics, the van der Waals parameters would need to be reoptimized.  

 

5.7  Summary and conclusions 

 

Our aim in this chapter was to optimize the Lennard-Jones parameters for UFF specifically 

for use in a QM/MM hybrid system for hydrogen fluoride clusters of various sizes. We first 

optimized the R0-values for the hydrogen and fluorine atom-types by using a series of 

geometry optimizations. For the method using a series of geometry optimizations, we 

attempted to accelerate the process of finding R0-values by using an Intermediate set where 

only the van der Waals interactions between QM and MM systems were optimized and not 

the interaction between two or more MM molecules. Results pertaining to this system will be 

given and discussed in Chapter 9.  

    Finding it laborious to do geometry optimizations, we developed a method of force field 

optimization basing the quality of the force field only on the ability to reproduce the MP2 

interaction energies. Comparing the R0-values obtained with the two methods, we saw that 

when fitting the ONIOM steric energies for both sets of R0-values that their ability to 

reproduce the MP2 interaction energy did not differ much. Future work might include 

validating all the force field optimization methods discussed in this chapter for other QM/MM 

systems. Probably the simplest way to optimize the force field will be to remove the 

constraints on the bond lengths of the molecules in the MM system and to use several 

geometry optimizations, varying the force field parameters for each. Judged on the similarity 

in the ONIOM steric energies obtained for the R0-values of both force field optimization 
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methods, the use of the frozen geometry optimization method used in this chapter looks 

promising.  
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Chapter 6 

 

Ab initio calculations and analysis of 

carbon monoxide clusters 

 

6.1  Introduction 

 

Carbon monoxide clusters are found in the earth’s atmosphere and are a major component of 

interstellar clouds such as the Orion nebula. Carbon monoxide is also one of the most 

poisonous gases known to man.     

    At room temperature carbon monoxide is a gas, but at low temperatures it can occur as one 

of two polymorphic crystal structures. At approximately 61.55K the beta-phase of CO, which 

is an orientationally disordered hcp (hexagonally close packed) structure, converts to the 

orientationally ordered fcc (face centered cubic) alpha-phase [Askarpour et al., 1989]. 

    The only CO clusters investigated computationally [van der Pol et al., 1990; Vissers et al., 

2005; Han and Kim, 1997; Meredith and Stone, 1998] and experimentally [Surin et al., 2003; 

Surin et al., 2004; McKellar, 2004] to date (anno 2006) are the CO dimers. Mass 

spectrometry data are also available for the CO trimer [Muigg et al., 1998].  

   Presently it is accepted that there are two stable CO dimers; a global minimum, which is a 

C-bonded7 slipped antiparallel structure, and a local minimum, which is an O-bonded slipped 

antiparallel structure. These are the only structures that can account for the experimentally 

observed stacks of rotational levels with different rotational constants in CO dimers [Vissers 

et al., 2005; Surin et al., 2003]. It has also been shown that CO polymerizes into linear chains 

under 5GPa pressure [Bernard et al., 1998].  

    As mentioned in Section 3.1, it was only recently that researchers succeeded in developing 

a potential for the abovementioned two CO dimers that could account for the empirical 

rotational-vibrational8 (rovibrational) results found experimentally. This was done by basing 

the potential on a DFT-SAPT PES [Vissers et al., 2005]. (See Section 2.6, for an introduction 

to SAPT.) It was realized that higher order correlation effects were essential to describe the 

CO dimer [Rode et al., 1999; Rode et al., 2001]. CCSD(T) was shown to be inadequate in 

                                                 
7 They are bonded in the sense of an intermolecular interaction. The distance between the carbon atoms 
is the smallest. In this work we will sometimes refer to intermolecular interactions as bonds.  
8 Rotational states are superimposed onto vibrational states. Each mode of vibration therefore has a 
number of rotational states.  
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giving a wave function with a good approximation (asymptotic behavior) to the 

interelectronic cusp in the exact wave function (see Section 2.3), even with extended basis 

sets. It was concluded that fifth-order excitations, such as are incorporated when performing 

an MP5 calculation, also play a significant role [Rode et al., 1999; Rode et al., 2001]. As far 

as we know at the time of writing (anno 2006), no CO clusters larger than dimers have been 

calculated with an ab initio method. However, one account was found where phase transitions 

in (CO)5 and (N2)5 were investigated [Acevedo et al., 1997] by a Monte Carlo simulation 

based on an ab initio derived potential. This ab initio potential was derived assuming a T-

structure for the global energy minimum C-bonded dimer and is therefore based on a model 

that does not conform to the most recent experimental results.   

    Unlike the hydrogen fluoride clusters, CO clusters are extremely weakly bound and can be 

utilized as a model for weak dispersion interactions, such as found in the clusters of rare 

gasses. In this chapter, Section 6.2 will be devoted to discussing our ab initio method and its 

application to find starting geometries for modeling CO clusters. In Section 6.3 we will 

discuss the structural properties of CO clusters and in Section 6.4, the interaction energies. In 

Section 6.5 we will discuss the BSSE obtained when modeling these clusters. Section 6.6 will 

be devoted to discussing the bonding in these clusters and in Section 6.7 we will discuss the 

electrostatic properties of the clusters and the applicability of using atomic point charges to 

describe a charge distribution. In Section 6.8 we discuss why a description of a covalently 

bonded CO dimer as a cluster, found in the literature, is misleading. The chapter will be 

concluded with Section 6.9.   

 

6.2 Computational details 

 

Our approach for the geometry optimizations is the same as discussed for the HF clusters in 

Chapter 4 and only new details will be given in this section.  

 

6.2.1 Pre-optimization of clusters with the 6-31G(d) basis set 

 

The starting points for the pre-optimization of the CO dimers were based on information from 

the literature [Han and Kim, 1997]. However, it seems that no CO clusters9 larger than the 

dimers have been optimized at a high level of theory before and therefore we based the 

starting points for the pre-optimizations on geometries obtained for N2-clusters10 [Li et al., 

                                                 
9 It should be mentioned that the CO trimer was found to be cyclic with a semi-empirical method 
[Montero et al., 1981]. However, this is not a correlation consistent method. 
10 N2 is iso-electronic to CO. 
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2003]. Geometries of all the starting geometries, as well as information on their optimizations 

can be found in Appendix A.3.     

    In an effort to minimize the optimization times, we monitored the optimizations 

graphically. If geometries changed drastically from their starting points, such as when the 

starting geometry was planar and during the optimization one or more monomers moved out 

of the plane, we terminated the optimization prematurely. The aim was not to find all the 

energy minima on the PES, but to optimize a range of clusters of different sizes that could be 

used as a training set for force field optimizations in a QM/MM method. See Chapter 7. 

    In total, seven CO clusters were fully pre-optimized to local energy minima with the 6-

31G(d) basis set. The internal geometries of the monomers were not constrained and 

symmetry constraints11 were applied during the optimizations. In all cases, force constants 

were calculated at each optimization step to ensure that we obtained only local energy 

minima. Local energy minima were confirmed by the lack of imaginary frequencies in the 

vibrational analysis.  

    Eventually we optimized two CO dimers, one CO trimer, two CO tetramers, one CO 

pentamer and one CO hexamer at the MP2 level of theory with the 6-31G(d) basis set. These 

geometries can be found in Appendix A.4.  

 

6.2.3 Final optimization of clusters 

 

The same optimization conditions were used as with the 6-31G(d) basis set. The CO pentamer 

and hexamer however could only be optimized by using a single computer node each, due to 

the demanding nature of the calculations. Symmetry constraints were used for all clusters 

during the optimizations. All the pre-optimized clusters had distinct energy minima with the 

larger basis set. No imaginary frequencies were found for all the clusters up to the pentamer. 

With the hexamer, however, we were not able to do a vibrational analysis due to inadequacies 

of the hardware at our disposal.12 We nevertheless kept the hexamer as a suitable cluster as it 

was optimized under very tight optimization conditions and therefore had a limited chance of 

being a transition state. On the above basis, six distinct minima were found. Where possible, 

force constants were calculated at each optimization step to steer the optimizer in the direction 

of a local energy minimum.13 

                                                 
11 By using symmetry constraints the optimization is speeded up as fewer degrees of freedom are 
allowed in the optimization. The symmetry is constrained to the symmetry of the starting geometry. If 
the cluster needs to move to a higher symmetry point group during the optimization, the Gaussian 
software will notify the user.  
12 Usually Gaussian does vibrational analysis directly in the memory to save time, but in this case the 
available memory (1GB of RAM) was inadequate. 
13 Force constants are related to the second derivative of the energy and give an indication of the 
curvature of the energy function on the PES.  
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6.3 Structural properties 

 

The optimized structures for the 6-311+G(d,p) basis set are shown in Fig. 6.1. The hexamer is 

also shown, but as mentioned above, it is not necessarily a minimum on the PES. Important 

structural parameters14 to aid in the description of the geometries are included in Table 6.1.   

 

 

 

 

Cluster I: Antiparallel C-bonded dimer (I)  
Symmetry: C

2h
 

 Cluster II: Antiparallel O-bonded dimer (II)   
Symmetry:C

2h
 

                                                               Fig. 6.1 continued… 

                                                 
14 All the geometric parameters are based on mass centers calculated for the monomers with a mass of 
16.00 a.u. for 8O and 12.00 a.u. for 12C.  
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Cluster III: Cyclic trimer. Symmetry: C
3v
 

 

Cluster IV: Pseudo tetrahedral cluster. Symmetry: C
2
 (Almost D

2d
) 

                                                                         Fig. 6.1 continued… 
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Cluster V. Symmetry: C
1
 (almost C

s
) 

 
Cluster VI: Pseudo trigonal bipyramidal. Symmetry: C

1
 

                                                           Fig. 6.1 continued… 
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Cluster VII: Pseudo octahedral. Symmetry: C1 

 

Fig 6.1: CO clusters optimized with MP2 and 6-311+G(d) in ball and stick models to demonstrate the 

packing of the monomers in the cluster and the numbering scheme. The space-filling models are in the 

same orientation as the ball and stick models. They are just used for a general representation to show the 

closeness of the packing. The symmetry is also given.  
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Table 6.1: Distances between the monomers. “Mon” denotes monomer. 

Cluster Distance between monomers (Å)

I 4.37 

II 3.64 

III All: 4.44 

IV 

Mon(O5-C6)-Mon(O2-C1) :   3.59 

Mon(C7-O8)-Mon(C4-O3):    3.59 

Mon(O2-C1)-Mon(C4-O3):    4.43 

V 
Mon(O8-C7)-Mon(C2-O1):    4.38 

Mon(C5-O6)-Mon(C3-O4):    3.60 

VI 

Mon(C10-C9)-Mon(O8-C7):  6.54 

                    Mon(O1-C2)-Mon(C3-O4):   4.78 

Mon(O6-C5)-Mon(O1-C2):    4.35 

Mon(O6-C5)-Mon(C3-O4):    4.28 

VII 

Mon(O10-C9)-Mon(C5-O6):  4.27 

Mon(C5-O6)-Mon(C7-O8):    3.72 

Mon(C3-O4)-Mon(O8-C7):    4.31 

Mon(O1-C2)-Mon(C5-O6):     4.27 

Mon(O12-C11)-Mon(C3-O4): 4.31 

Mon(O12-C11)-Mon(O1-C2): 5.64 

Mon(O10-C9)-Mon(O8-C7):   5.64 

Mon(O4-C3)-Mon(O6-C5):     6.08 

 

Both CO dimers and the CO trimer are in a single plane. The planarity and the symmetric 

nature of the CO trimer are striking as all the larger clusters show out of plane conformations. 

We see in Table 6.1 that the monomers are slightly further apart in the trimer than in either of 

the two dimers. There is probably a larger repulsive force on the monomers in the trimer than 

in the two dimers, but their arrangement in the trimer allows for a possible delocalization of 

electron density in a ring, which can lead to extra stability. The arrangement of the monomers 

is such that we find that in this arrangement the resultant dipole moment is zero. The 

quadrupole moments of each monomer are also close to minima as each pair of monomers are 

arranged in an almost T-structure.   

    Clusters IV and V have many similarities except that Cluster IV has a higher symmetry 

point group than Cluster V. Cluster V has a T-like arrangement for one pair of its monomers 

(C7-O8 and C2-O1), which, as we have already mentioned, is evidence of a minimum 

quadrupole-quadrupole interaction.    

    The pseudo trigonal bipyramidal cluster IV basically consists of two monomers on opposite 

sides of a trimer. Closer inspection shows that this cluster contains distorted CO trimers (T-

formation) and dimers (antiparallel) as substructures.  

    We see that for cluster VII the monomers are arranged in a distorted octahedral structure 

with an elongated distance between Mon(O4-C3) and Mon(O6-C5). When the structure is 

closely inspected one finds that the structure can be divided into two trimers: Mon(O12-C11), 

http://scholar.sun.ac.za/



115 

Mon(C5-O6) and Mon(C7-O8) are all part of one trimer, and the other trimer consists of the 

remaining monomers. The latter trimer’s nonbonded distances are not all the same length as 

in the CO trimer (Cluster III) and the monomers are closer to each other than in Cluster III. 

The largest distance between two monomers in the cluster is smaller than in the pseudo 

trigonal bipyramidal structure.  

    It is evident that in the clusters larger than the CO dimer that many-body interactions will 

play a significant role in the stabilization of the clusters. Actually it is quite evident that as 

more monomers are added to the trimer to eventually form the tetramers, pentamer and the 

hexamer, we find a closer packing of the monomers (see Table 6.1). Although all the clusters 

have a unique arrangement of the monomers, we can always recover substructures in the 

clusters and all can be traced back to the arrangement of the CO dimer and the trimer. In the 

formation of the larger clusters there are probably first a formation of smaller units such as 

dimers and trimers and then the assembly of larger structures from these substructures.      

    The bond lengths for all the monomers in the clusters are almost identical to the gas phase 

bond length of carbon monoxide, of 1.140Å, calculated with the same method and basis set. 

The interactions between the monomers are therefore of a weak vdW nature.   

    Li and coworkers also found planar minima such as a square, pentagon and hexagon for the 

tetramers, pentamers and hexamers of N2 clusters, whereas we found no planar minima, 

except for the trimer. The many-body effects in CO clusters are probably quite different to 

those in N2 clusters leading to a different energy arrangement of the orbitals, making it 

energetically less feasible to form planar structures. CO has a small dipole moment (0.122D) 

[Muenter, J.S., 1970], whereas N2 has no dipole moment. Minimizing the interactions 

between the dipole moments of the CO monomers, adds a further constraint to the minimum 

energy geometries that can be allowed for CO clusters. Furthermore, N2 is symmetric with 

respect to a mirror plane perpendicular to the bond, whereas CO is not.   
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6.4 Electronic binding and interaction energies of clusters 

 

In Table 6.2 we summarize the most important energetic terms for the CO clusters. All these 

terms were defined in both Chapter 2 and Chapter 4. We did not include any binding 

energies in Table 6.2, as they do not differ significantly from the interaction energies. In other 

words, there is almost no one-body energies in the expansion of the binding energy of these 

clusters.   

 

Table 6.2: Table showing the energetics of the clusters as calculated with MP2/6-311+G(d). Zero-point 

vibrational energy corrections were not applied.  

[ ]*: Interaction energy calculated with a CCSD(T) potential. [Vissers et al., 2005] 

( ): Value obtained by Han and Kim [Han and Kim, 1997], converted from kJ/mol to kcal/mol by 

multiplying by 0.239001kcal/kJ. 

 

One can deduce from Table 6.2 that the optimization hyper-surface is extremely flat. This 

makes it more difficult to find individual local energy minima on the PES. For example, 

Cluster I is only 0.16 kcal/mol or 58.5 cm-1 lower in interaction energy than Cluster II. Cluster 

IV is only 0.05 kcal/mol or 17.5 cm-1 lower in interaction energy than Cluster V, according to 

our calculations.   

    In addition, we see that the interaction energy of Cluster I is reasonably close to the 

interaction energy determined by a CCSD(T) potential [Vissers et al., 2005], however the 

interaction energy for Cluster II differs substantially from the interaction energy determined 

with the CCSD(T) potential [Vissers et al., 2005]. We also see that, when correcting for 

Cluster I II III IV V VI VII 

Electronic 
energy 
(hartree) 

 

-226.15773 -226.15721 -339.23658 -452.31725 -452.31687 -565.39725 -678.47850 

BSSE 
(kcal/mol) 

 

0.18 0.43 0.54 1.63 1.45 2.22 3.51 

Interaction 
energy not 
corrected for 
BSSE 

(kcal/mol) 

 

-0.46 -0.54 -1.30 -2.87 -2.60 -4.01 -5.96 

Interaction 
energy 
corrected for 
BSSE 

(kcal/mol) 

-0.28  

[-0.38]* 

-0.12 (-
0.13)  

[-0.36]* 

-0.77 -1.24 -1.19 -1.80 -2.44 
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BSSE, the order of the energies of Cluster I and II changes. This is the same type of behavior 

found when comparing a T-shaped O-bonded dimer with a T-shaped C-bonded dimer [Han 

and Kim, 1997]. In Fig. 6.2 we show the difference in BSSE corrected interaction energies 

and the interaction energies without BSSE correction.  
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Fig. 6.2: Graph of the BSSE-corrected interaction energy per monomer and the interaction energy without 

a correction for BSSE per monomer. Diamonds: BSSE corrected interaction energy (shown on primary axis). 

Squares: Interaction energy without BSSE correction (shown on secondary axis). The trend line is drawn 

based on the data for the BSSE corrected interaction energy. 

 

From Fig. 6.2 it is clear that including BSSE, while determining the interaction energies of 

the clusters, can be disastrous. As discussed in Chapter 2, we can only approximate the 

BSSE, as the counterpoise method only gives an upper limit for the BSSE. We observe that 

the interaction energy, and therefore the many-body interactions in the clusters, decline with 

an increase in cluster size. 

    It is worth mentioning that Han and coworker [Han and Kim, 1997] used the same basis 

set, 6-311+G(d), to calculate structures for the CO dimers. However, they did not identify the 

C-bonded dimer found in this study. It is interesting to note that the C-bonded dimer found in 

this study is 0.04 kcal/mol lower in energy than the lowest energy dimer they calculated. 

When Han and coworker published their paper, it was still uncertain if the C-bonded global 

energy dimer was T-shaped. This was only later proved later not to be the case by McKellar 

and coworkers [McKellar et al., 2003]. It is thus extremely likely that the C-bonded dimer 

(Cluster I) that we found with our method and basis set is indeed the global energy 
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minimum.15 Therefore MP2/6-311+G(d,p) seems to be adequate in obtaining structures 

corresponding to the experimentally determined geometries. Methods at a higher level of 

theory will of course give much more accurate energies.  

    We see in Fig 6.1 that the CO trimer is remarkably symmetric and from Fig 6.2 we see that 

the change in interaction energy from the dimer (Cluster I) to the trimer (Cluster III) per 

monomer is much larger than from the trimer to tetramer. This might be evidence of extra 

stabilization caused by adopting a planar conformation. 

 

6.5 The importance of correcting for BSSE  

 

In Table 6.2 we see that BSSE correction is important to obtain accurate interaction energies 

for the clusters. We therefore analyzed how the BSSE varies with cluster size. The results are 

shown in Fig. 6.3.    
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Fig. 6.3: Percentage BSSE with respect to the interaction energy for the CO clusters 

 

It is obvious the percentage BSSE values, according to the counterpoise method, are 

alarmingly high for the O-bonded dimer, second from the left.16 In Fig. 6.3 it seems as if the 

percentage BSSE, in relation to the interaction energy, is larger for the clusters larger than the 

trimer, but it seems as if the percentage error stays relatively constant for these clusters. 

    We did not expect to obtain a small BSSE, as our basis set was far too small to describe all 

of the higher correlation effects that are necessary to model CO clusters accurately (Rode et 

al., 1999), but we were limited by our hardware and time.  

 

                                                 
15 Han and Kim tested various other conformations of the dimers and also found other local minima for 
the CO dimer on the PES with the 6-311+G(d) basis set. We can therefore say, with reasonable 
certainty, that the C-bonded dimer that we found is the global energy minimum.   
16 We have already commented on this in Chapter 3 and it will not be discussed again. 

http://scholar.sun.ac.za/



119 

6.6 Analysis of bonding 

 

6.6.1 Intermolecular orbitals 

 

 In Chapter 4 we went to great lengths to show how the MP2 wave function can be used to 

explain intermolecular interactions. We will now show that our model regarding 

intermolecular orbitals is just as valid for CO clusters as for HF clusters. In Table 6.3 the 

delocalized orbitals for the C-bonded and O-bonded dimers are listed. The delocalized 

orbitals for an isolated monomer are also shown. In Table 6.3 the type of the intermolecular 

orbital is based on the signs of the wave function at the monomers. In Chapter 4 we defined 

an intermolecular antibonding orbital as an intermolecular orbital where the wave function in 

the intermonomer space has a positive sign on one monomer and a negative sign on the other 

monomer.  

  It is evident from Table 6.3 that there is one antibonding intermolecular orbital for each 

bonding intermolecular orbital.    
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Table 6.3: Molecular orbital analysis for the C-bonded dimer, O-bonded dimer and an isolated monomer. 

The bonding and antibonding character is with respect to the two monomers for the dimers. For the 

monomer the characters of the orbitals denote the characters of the molecular orbitals.  

C-bonded O-bonded Monomer 

-0.552 (Antibonding) -0.553  (Antibonding) -0.557 (Bonding) 

-0.566 (Bonding) -0.555   (Bonding) -0.636 (Bonding) 

-0.636 (Antibonding) -0.628 (Antibonding) -0.636 (Bonding 

-0.637 (Antibonding) -0.633 (Antibonding) -0.805 (Bonding) 

-0.638 (Bonding) -0.635 (Bonding) -1.519 (Bonding) 

-0.638 (Bonding) -0.638 (Bonding) -11.371 (Nonbonding on C) 

-0.806 (Antibonding) -0.801 (Antibonding) -20.670 (Nonbonding on O) 

-0.807 (Bonding) -0.805 (Bonding)  

-1.520 (Antibonding) -1.516 (Antibonding)  

-1.520 (Bonding) -1.517 (Bonding)  

-11.372 (Nonbonding on C) -11.368 (Nonbonding on C)  

-11.372 (Nonbonding on C) -11.368 (Nonbonding on C)  

-20.671 (Nonbonding on O) -20.667 (Nonbonding on O)  

-20.671 (Nonbonding on O) -20.667 (Nonbonding on O)  

 

When the energy values of the orbitals in the monomer are compared to those of the orbitals 

in the clusters, we see that the C-bonded dimer’s energy values are similar to the isolated 

monomer’s, whereas the O-bonded dimer’s energy values are quite different. We see that the 

intermolecular antibonding orbitals of the C-bonded dimer are lower in energy than the O-

bonded dimer’s. The reason might be due to the Pauli-exchange repulsion in the space 

between the monomers. There are more electrons on the oxygen than on the carbon and 

therefore the electrons on the oxygen might show larger exchange repulsion than the electrons 

on the carbon in the intermonomer space. When the energy values for the C-bonded and O-

bonded dimer are compared for each molecular orbital in Table 6.3 we see that the largest 

difference between the values for the C-bonded and O-bonded dimers is found for the orbitals 

that are shown in bold. In terms of the intermonomer space, a bonding intermolecular orbital 

is the result of dispersion and electrostatic interactions, whereas an antibonding 

intermolecular orbital can be interpreted as the result of the repulsion of the electrons with the 

same spin in the intermonomer space. Using this interpretation and considering the values in 

bold, we can say that the main reason for the larger stabilization of the C-bonded dimer 

compared to the stabilization in the O-bonded dimer is due to the larger attractive 

intermolecular forces in the C-bonded dimer and a smaller number of repulsive electron 

exchange in the intermonomer space. However, the difference in stabilization between the 

orbitals is very subtle. In Table 6.4 and 6.5 we show the relative electron population analysis 

for the two CO dimers. Again we made use of Mulliken population analysis. 

Table 6.4: Relative electron population analysis for the oxygen in both CO dimers.  
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Oxygen C-bonded dimer (a.u.) O-bonded dimer (a.u.) 

1sp 0 0 

2sp 0 0 

3sp -0.0007 -0.0007 

3d 0 0 

4sp 0.0043 0.0041 

5sp -0.0092 0.1385 

Table 6.5: Relative electron population analysis for the carbon in both CO dimers 

Carbon C-bonded dimer (a.u.)  O-bonded dimer (a.u.) 

1sp 0 0 

2sp 0.0004 0 

3sp -0.0002 -0.0028 

3d 0.0002 0.0001 

4sp 0.0000 0.0156 

5sp 0.0056 0.0060 

 

In tables 6.4 and 6.5 we first see a large number of electron density donated to the 5sp-shell of 

the oxygen atom in the O-bonded dimer. The same can be said for the 4sp-shell of the carbon 

atom in the O-bonded dimer. These results are due to orthogonal overcounting that is 

probably caused by the BSSE. However, we see with the C-bonded dimer that the situation is 

a little better and if we do the mathematics, we see that it is likely that electrons are both 

excited from the 5sp-shell to the 4sp-shell on oxygen and donated to the 5sp-shell on carbon. 

Based on this assumption, the 4sp-shell should be lower in energy than the 5sp-shell in the 

cluster than in the monomer; otherwise the excitation of electrons cannot happen. Why then is 

there a flow of electrons from oxygen to carbon in the C-bonded dimer? Surely, this would 

make both carbon atoms more negative and then they should repel each other. How can this 

lead to extra stabilization? The only answer that we have at this stage is that intermolecular 

orbitals form between the two monomers and both carbon atoms donate an equal number of 

electron density into the intermolecular orbitals. The O-bonded dimer also has this behavior, 

except that it is exaggerated in the relative electron population analysis due to orthogonal 

overcounting. Obviously this will also influence the charges on the oxygen and carbon 

derived using the Mulliken population analysis, and hence any charge derivation scheme 

dependent on the basis set, vide infra. In Fig. 6.4 and 6.5 we show plots of the intermolecular 

bonding orbitals found for the CO dimers. VdW interactions are usually not associated with 
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orbital overlap17, but this is what we found. The molecular orbitals were visualized with a 

wave function cutoff of 0.01 a.u. as smaller cutoffs resulted in incomplete orbital 

visualizations. Usually, when one visualizes molecular orbitals the cutoff of the wave function 

is done at 0.001 a.u. as this includes more than 99% of the electron density found on the van 

der Waals surface around the molecules. 

 

  
HOMO-1  

Energy:-0.566 hartree  
HOMO-4  

Energy:-0.638 hartree  

 

  

HOMO-5 

Energy:-0.638 hartree  
HOMO-7 

Energy:-0.807 hartree  

 

 

 

HOMO-9 

Energy:-1.520 hartree  

 

 

Fig. 6.4: Intermolecular bonding orbitals in the global energy minimum CO dimer (I). The energies of the 
orbitals are given in hartree. The wave function was cut off at 0.01a.u. 

                                                 
17 Theories on vdW interactions might have been deduced from single determinant wave functions and 
this is why vdW interactions are usually seen as closed shell interactions.  
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Fig. 6.5: Intermolecular bonding orbitals in the local energy minimum CO dimer (II).  The energies are 

given in hartree. The wave function was cut off at 0.01a.u. 

 

In the case of the CO clusters, it seems that the wave function occupies quite a large volume 

around the molecules. As found for the HF clusters, we can take this as a sign of higher 

energy spin orbitals mixing with lower lying spin orbitals. In this case, the orbitals are even 

bigger and more diffuse than in HF clusters, showing that the empty atomic orbitals in carbon 

monoxide monomers, usually considered high in energy by Hartree-Fock theory, are more 

able to mix with lower-lying orbitals than equivalent atomic orbitals in hydrogen fluoride 

monomers. This is probably the reason why only MP5 with a large basis set can give accurate 

results that are comparable to experiment [Rode et al., 1999; Rode et al., 2001]. Mixing these 

large diffuse orbitals with lower lying orbitals probably leads to a larger delocalization of the 

wave function around the nuclei. The mixing of the orbitals will depend mainly on electron 

correlation. The electrons should be arranged to be further apart in the CO monomer than 

predicted by Hartree-Fock theory. When two or more monomers approach each other, the 

large diffuse orbitals overlap to form an intermolecular orbital. Intermolecular orbitals can 

only be “created” when electrons have sufficient energy to move into them. This energy can 

 

 

HOMO-1 

Energy: -0.555 hartree 
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Energy: -0.635 hartree 
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be supplied by electron correlation and/or polarization by an electric field. The temporary 

movement of electron density into intermolecular orbitals is probably the same as the 

dispersion interaction. The dispersion interaction has been described as a result of 

intermolecular correlation [Magnasco, 2004]. When sufficient electron density moves into the 

intermonomer space, the repulsive exchange interaction in the intermonomer space results in 

the division of the electron density into bonding and antibonding intermolecular orbitals. 

Electrostatic interactions in CO clusters are very weak and so only some electrons in the 

valence orbitals are excited to delocalized molecular orbitals and hence only a small number 

of electrons are expected to be found between the monomers. This is supported by AIM 

results, vide infra.   

 

6.6.2 CO clusters other than the dimers 

 

We visualized the molecular orbitals of the other clusters and found a relation between the 

number of intermolecular orbitals and the energy of a cluster. The larger the CO cluster, the 

more combinations of intermolecular orbitals that can form and hence the greater stabilization 

of the cluster as a whole. This is probably related to the increase in many-body interactions 

with cluster size. We plotted all orbitals in an effort to understand the bonding of the clusters; 

however, the complexity meant that an interpretation was beyond the scope of this work. A 

more detailed investigation as part of future work is warranted, along with a comparison to 

SAPT expansions of the interaction energy.    

 

6.6.3 Atoms in Molecules (AIM) 

 

An Atoms in Molecules (AIM) analysis was only done for the monomer and the two CO 

dimers, the trimer and the tetramer. Using the standard methodology of AIM, we define a 

nonbonded bond critical point as a critical point not centered on a monomer. The results are 

shown in Table 6.6.  
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Table 6.6: AIM results for the CO monomer and 4 selected CO clusters  

BCP=bond critical point, RCP=ring critical point, CCP=cage critical point 

 Monomer I II III IV 

ρ of BCP  

(e.bohr-3) 
0.463 0.463 0.463 0.463 0.463 

ρ of 

nonbonded 

BCP (e.bohr-3) 

 0.003 0.004 0.003 All: 0.003 

ρ of RCP 

(e.bohr-3) 
   0.001 0.001 

ρ of CCP 

(e.bohr-3) 
    0.0008 

 

A small amount of electron density is found between the monomers at a nonbonded BCP. 

Interestingly, there is a slightly larger electron density at the nonbonded BCP between the 

oxygen atoms in the O-bonded dimer, than between the carbon atoms in the C-bonded dimer. 

However, this should not be taken as a means of classifying the O-bonded dimer as lower in 

energy. The electron density at a nonbonded bond critical point is not directly related to the 

energy of the interaction between the monomers. We also need to consider the energies of the 

intermolecular orbitals in Table 6.2. We showed that the orbitals for the C-bonded dimer are 

all lower in energy than the O-bonded dimer’s. The electron density as found by AIM analysis 

is a 3-dimensional function. It therefore omits the sign of the wave function, and thus is 

unable to separate the electron density at the nonbonded bond critical point into those 

electrons belonging to a bonding intermolecular orbital and those specifically belonging to 

antibonding intermolecular orbitals or, in other words, to the monomers. Therefore, the value 

for the electron density at the nonbonded critical point is made up of electron densities that 

stabilize both the intermolecular interaction and the valence bonds. The antibonding 

intermolecular orbitals do not contribute to the intermolecular interaction and therefore cannot 

be used for interpreting its strength.        

    It is interesting to note that the intermolecular interactions in Cluster IV are such that a cage 

critical point is found for this cluster. 
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Comparing our explanation for hydrogen bonding in HF clusters (Section 4.5) with our 

explanation of weak van der Waals interactions in CO clusters, we see that there are only two 

significant differences: 

1. In HF clusters the wave function is not as diffuse as for CO clusters. 

2. The electric field leading to polarization and excitation of valence electrons into 

intermolecular orbitals is much larger for HF clusters than for CO clusters. 

 

    Our study shows that returning to the basics of quantum mechanics can create a foundation 

in which nonbonded interactions can be explained based on quantum mechanical principles, 

rather than classical theories or theories based on uncorrelated Hartree-Fock wave functions.   

    There is only a small amount of literature on the nature of the vdW bond. One article [Sato 

et al., 2005], stated that the vdW bond can be seen as the consequence of both electron 

correlation and long-range exchange interactions. It seems as if long-range exchange 

interactions are more important in rare-gas clusters than previously thought, as DFT 

functionals, which are unable to correctly model rare-gas dimers, have been shown to lack the 

ability to incorporate long-range exchange interactions.   

 

6.7 Investigating the electrostatics of the CO clusters 

 

In order to obtain data to be used for the MM description in a hybrid system, point charges 

need to be derived. In this section we will discuss the derivation of atomic point charges by 

the MKS scheme and as reference we will also report charges derived by other charge 

derivation schemes for selected clusters.  
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Table 6.7: ESP-maps of the ESP-potential derived from the MP2 density mapped onto the MP2 total 

density with cutoff values of 0.01au, and the charges calculated for the CO clusters using different 

electronic densities. Red shows a negative potential and blue a positive one. The sizes of the atoms in the 

molecules are scaled to their van der Waals radii. All charges are shown in a.u. 

Cluster ESP mapped onto the  
MP2 density 

MKS charges based 
on the SCF density 

(a.u.) 

MKS charges 
based on the MP2 density 

[AIM charges] (a.u.) 

NAO charges 
(a.u.) 

Monomer 

 

C:   0.081 
O: -0.081 

C :  -0.039 [1.105] 
O :   0.039 [-1.106] 

 

C:   0.421 
O: -0.421 

I 

O1: -0.119 
C2:   0.119 
C3:   0.117 
O4: -0.117 

O1:   0.002 [-1.104] 
C2: -0.003 [1.104] 
C3: -0.004 [-1.104] 
O4:   0.004 [1.104] 

O1: -0.419 
C2:   0.419 
C3:   0.419 
O4: -0.419 

II 

C1:   0.033 
O2:-0.034 
C3:  0.032 
O4:-0.032 

C1:  -0.083 [1.106] 
O2:   0.083 [-1.106] 
C3: -0.084 [1.106] 
O4:  0.085 [-1.106] 

 C1: 0.423 
        O2:-0.423 

  C3: 0.423 
O4:-0.423 

 

III 

O1:-0.134 
C2: 0.135 
C3: 0.128 
O4:-0.129 
C5: 0.132 

O6: -0.132 

O1: -0.011 
C2:   0.011 
C3:   0.013 
O4: -0.014 
C5:  0.016 
O6: -0.015 

 

O1: -0.418 
C2:   0.418 
C3:   0.418 
O4: -0.418 
C5:   0.418 
O6: -0.418 

Table 6.7 continued… 
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As is immediately evident from Table 6.7, there are significant differences between the MKS 

charges based on the SCF and the MP2 electron densities, both in magnitude and in sign. It is 

well known that the dipole moment of CO changes sign [Jensen, 2001] when an MP2 

correction is included. Interestingly, the charges for the two dimers (Cluster I and II) based on 

the SCF density have the same signs as the AIM and NAO charges. Immediately one is 

confronted with the question as to which charge scheme is the most correct. Analyzing the 

ESP-maps of the CO dimers again confirms that the MKS charges have the correct signs. 

Analyzing the RMSD of the charge fitting to the ESP (not shown), we found a worse result 

than for the HF clusters. This can be interpreted as the inability to approximate the ESP of CO 

clusters by atomic point charges. We also see that the AIM charges for the C-bonded and O-

IV C1:   0.130 
O2:-0.130 
O3:-0.129 
C4: 0.129 
O5:-0.130 
C6:  0.130 
C7:  0.131 
O8:-0.131 

C1:  0.014 
O2:-0.014 
O3:-0.012 
C4:  0.012 
O5:-0.014 
C6:  0.014 
C7:  0.014 
O8:-0.015 

Not calculated 

V O1:-0.154 
C2:  0.169 
C3:  0.142 
O4:-0.133 
C5:  0.142 
O6:-0.133 
C7:  0.052 
O8:-0.086 

O1:-0.037 
C2:  0.052 
C3:  0.025 
O4:-0.017 
C5:  0.025 
O6:-0.017 
C7:-0.057 
O8:   0.026 

 

Not calculated 

VI  
O1:-0.157 
C2: 0.169 
C3: 0.124 
O4:-0.142 
C5: 0.106 
O6:-0.132 
C7: 0.113 
O8:-0.106 
C9: 0.143 

O10:-0.119 

 
O1:-0.045 
C2: 0.059 
C3: 0.014 
O4:-0.028 
C5:-0.001 
O6:-0.020 
C7:-0.007 
O8: 0.009 
C9: 0.021 

O10:-0.002 

Not calculated 

VII O1:-0.130 
C2:   0.119 
C3:   0.207 
O4: -0.177 
C5:   0.158 
O6: -0.168 
C7:   0.078 
O8: -0.078 
C9:   0.119 

O10: 0.130 
C11: 0.078 
O12:-0.077 

O1:-0.018 
C2:   0.005 
C3:   0.100 
O4:-0.063 
C5:  0.054 
O6:-0.065 
C7:-0.039 
O8:  0.039 
C9:  0.005 

O10:-0.018 
C11:-0.040 
O12:  0.040 

Not calculated 
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bonded dimers do not differ by much, which is also the case for the NAO charges as well, 

whereas there is a large difference in the magnitude of the MKS charges for the CO dimers as 

based on the electron density. The O-bonded dimer’s monomers are closer to each other than 

in the C-bonded dimer, which should result in stronger polarization of the electron densities, 

which in turn will influence the ESP. However, it nevertheless appears that the absolute 

values of the charges for the O-bonded dimer are too large. Again, the AIM and NAO charges 

fail to give a correct representation of the charge distributions due to their localized nature.  

    In this particular case, one should be careful to use atomic point charges for the description 

of a charge distribution. One can immediately see from the ESP-maps that the electron 

density is extremely anisotropic and to correct for this anisotropy in an accurate description of 

the charge-density, one should use point charges on the π-bond as well, or use multipole 

moments on the atoms and the bond. From standard chemical principles, carbon monoxide is 

expected to have a positive charge on the oxygen and a negative charge on the carbon 

satisfying the octet rule (see Fig. 6.6).  

 
Fig. 6.6: Resonance structures for the carbon monoxide monomer  

 

However, the AIM charges and NAO charges tell a different story, since it should also be 

clear now that one can never be certain about the hybridization by looking at atomic point 

charges derived by a charge derivation scheme. If the AIM charges are correct then the sp3-

hybridization on the right hand side in Fig. 6.6 should be favored. If the MKS charges based 

on the MP2 density are correct, then sp-hybridization, such as the left most structure in Fig. 

6.6 should be favored.     

    We believe the MKS charges usually give a better representation of the charge-density than 

the other methods that localize electron density explicitly, at least for very simple molecules. 

MKS charges are usually also preferred for force fields [Jensen, 2001]. We should however 

emphasize again that point charges are a coarse approximation of the anisotropy of the 

electron density.  

    In the next chapter the MKS charges will be used as point charges to approximate the 

electron density during the micro-iterations.  We would like to illustrate in more detail why 

atomic point charges can be expected to fail in a force field based on a simple Coulomb 

potential. By using point charges on atoms in a force field the lack of electron density in the 

center of the π-bonds in CO clusters is “ignored”. If we consider the O-bonded dimer, for 

example, we see that the most stable structure according to Coulomb’s law should be where 

the positive charge on the oxygen atom is directly opposite the negative charge of the carbon 
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atom, i.e., an antiparallel geometry. This however is not the case as we already confirmed. 

The MP2 calculations predict a slipped antiparallel geometry. Therefore, a simple Coulomb 

interaction will not be able to give a correct description of the electrostatics. In Chapter 9 we 

will discuss methods to improve the description of the charge-density by point charges.   

 

6.8 Oxocarbons vs CO clusters 

 

In the literature there are references to compounds called oxocarbons, which are molecules 

containing only oxygen and carbon atoms. In a recent article [Sabzyan and Noorbala, 2003] 

calculations were done on compounds such as those shown in Fig. 6.7. 
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Fig. 6.7: Oxocarbons optimized by Sabzyan and coworker. with B3LYP/6-31G(d) 

 

Sabzyan and coworker commented that these structures, which were optimized by using 

B3LYP/6-31G(d) calculations, cannot form spontaneously from CO monomers. They found 

interesting properties for the C-C bond of the dimer, which made them believe that the dimer 

can be regarded as a CO cluster. We argue that if the dimer is indeed a CO cluster, B3LYP 

would first of all not be a suitable method to do the calculations. B3LYP has been shown to 

give erroneous results for CO dimers [Han and Kim, 1997] such as positive binding energy 

values.    

    If these oxocarbons exist, and we know from experiment that hexaoxocyclohexane is stable 

[Kanakarajan and Czarnik, 1986], covalent orbital overlap will dominate and dispersion 

interactions are expected to not contribute significantly to the interaction energy. In such a 

case, DFT would indeed be an ideal method. 

    As far as we are concerned, CO clusters are not covalently bonded. We modeled all our CO 

clusters with the monomers at a van der Waals distance from each other. The molecules in the 

article by Sabzyan and coworker were modeled with the atoms at bonding distance from 

another.  

    Jiao and coworkers [Jiao et al., 2001] report the optimization of tetraoxocyclobutane for the 

singlet and triplet states with the method and basis set used in our study. The bond lengths 
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they report show that this is a molecule rather than a cluster. It is therefore essential that one 

distinguish clearly between oxocarbons and CO clusters.    

    There are also accounts of atomic carbon-oxygen clusters [Evangelisti, 1997] in the 

literature. These are atomic clusters and should not be confused with molecular clusters such 

a those studied in our work. It is interesting to note that these carbon-oxygen clusters are 

investigated as rocket fuels, as they are extremely unstable and will release large amounts of 

energy.    

 

6.9 Conclusions and future work 

 

We have described the calculation of a range of CO clusters. The clusters larger than dimers, 

as far as we know, have never been studied before with a correlation consistent method such 

as MP2. We showed that intermolecular orbitals, based on the MP2 wave function, might play 

a role in describing the bonding of CO clusters. We showed that BSSE must be corrected for 

to obtain the C-bonded dimer as a global energy minimum. The use of atomic point charges 

cannot give a correct representation of the electrostatic potential of CO clusters and therefore 

will be inaccurate when used in a force field. However, for some of the clusters the point 

charges are very small and are expected not to make such a large difference to the interaction 

energy. Other ways of representing charge distributions should however be researched. 

    Future work should also include a more thorough investigation of the CO clusters and a 

comparison to SAPT results. A better description of the charge distribution in CO clusters 

would also be worthwhile.   

    In this work, we did not calculate the rotational energies of the dimers. A multitude of 

experimental information is available on the rotational energy levels [Surin et al., 2003]. 

Future work should entail calculating these rotational energy levels for comparison. For 

accurate work a complete or near complete basis set should be used.  
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Chapter 7 

 

Optimization of the van der Waals 

parameters of the Universal Force Field 

(UFF) for use in ONIOM-EE 

optimizations of carbon monoxide 

clusters 

 

7.1 Introduction 

 

In this chapter, we will report the optimization of the van der Waals parameters for C_1 and 

O_1 in the UFF force field based on the CO clusters optimized in the previous chapter. From 

what we know at this stage, the force field optimization will not be affected much by the point 

charges, except where the point charges are unnaturally large. We expect that dispersion 

forces are the major attractive forces in these clusters, so the careful parameterization of van 

der Waals parameters will be important. We expect, however, that the use of atomic point 

charges, instead of various multipole moments, will make it almost impossible to obtain the 

MP2 geometries exactly.   

    In Section 7.2 we will discuss the computational details and in Section 7.3 some ways to 

assess the quality of the force field. In Section 7.4 we will discuss the actual optimization of 

the force field parameters based on geometry optimizations, while we will look in more detail 

in Section 7.5 at using atom-atom contacts in assessing the quality of the force field for CO 

clusters. In Section 7.6 we will discuss an alternative way of optimizing the force field. 

Section 7.7 will conclude this chapter. 

 

7.2 Computational details 

 

All the ONIOM-EE optimizations were performed with the Gaussian 03 set of programs. 

Computational details, including which molecules are in the MM and QM parts, have been 

discussed in Chapter 3 (Section 3.5) and will not be repeated. The nonbonded interactions 

were modeled geometrically, as in UFF, and the Coulomb interactions were made dependent 
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on the inverse of the distance between two charges. No cutoffs for van der Waals or Coulomb 

interactions were used. All the optimizations were done under tight optimization conditions, 

rather than very tight optimization conditions18. Force field single point calculations were 

done with Cerius2 for comparison to Gaussian 03. For the force field calculations with 

Cerius2 the point charges on all the atoms, as obtained from the MKS scheme, were used.  

    To standardize the force field results obtained by Gaussian 03 with those from other 

software, it is important to set both the force field type and the connectivity explicitly in the 

input. The Gaussian software attempts to determine the connectivity automatically and then 

assigns a force field type, which may result in large differences in the results when using 

Gaussian 03 compared to other force field software such as Cerius2, for the same calculation. 

This is discussed further in Appendix B.2. 

     

7.3 Quality assessment of the force field 

 

Assessing the quality of the force field for CO clusters is more involved than for HF clusters. 

The reason is that for most HF clusters, one can make use of the change in atom-atom 

contacts from their MP2 values as a measure of the accuracy of the geometry. However, the 

geometries of CO clusters are more diverse in terms of their geometries, and it would be 

difficult to use a RMSD for the atom-atom contacts as a measure of the quality of the force 

field such as we did in Chapter 5. This “problem” will become clear later. It is therefore not 

ideal to optimize the force field for CO clusters based on atom-atom contacts alone, but rather 

include mass-center mass-center distances in the assessment. However, we did not have time 

for this, so the force field was optimized based on the change in atom-atom distances, and a 

RMSD from the MP2 nonbonded distances was again used as a measure of the quality. For a 

definition of RMSD see Section 5.3. In Section 7.5 we will report an alternative method of 

quality assessment that might be more trustworthy.   

 

7.4 Optimization of the force field parameters 

 

7.4.1 Training set 

 

Due to the large number of CO clusters optimized with MP2 in the previous chapter, we 

decided to focus on just a few for finding optimized Lennard-Jones parameters. This training 

set consisted of the C-bonded dimer, the trimer, the pseudo tetrahedral cluster, and the pseudo 

octahedral structure. These clusters were randomly chosen. 

                                                 
18 This was an attempt to make geometry optimizations faster. 
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7.4.3 Optimization of the force field 

 

To simplify the optimization of the force field, we did not attempt to change the well depths 

(ε-values) of the atom-types in the force field; only the van der Waals equilibrium distances 

(R0-values). The default UFF van der Waals parameters can be found in Table 7.1.  

 

Table 7.1: Default van der Waals parameters for C_1 and O_1 as in the original UFF article [Rappé et al., 

1992]. Some experimental values are also given. 

Atom-type R0 (Å) Ε (kcal/mol) R0 (Å)  

Experimental  

ε (kcal/mol) 

Experimental  

C_1 3.851 0.105 3.898 (a)  0.095 (a) 

O_1 3.500 0.060 3.405 (b)  0.096 (b) 

a) [Desiraju and Parthasarathy, 1989] 

b) [Kassarasava et al., 1991] 

 

The optimization was started with the C-bonded dimer, as this dimer’s structure is well 

known from experiment [McKellar et al., 2003] and we again manually, but systematically, 

varied the R0-values for the two atom-types until better parameters, as judged by the RMSD’s 

with the MP2 nonbonded distances, were found. We realized that the only way to obtain a C-

bonded slipped antiparallel geometry is to make the R0-value for the C_1 atom-type smaller 

than the R0-value of the O_1 atom-type. This is against experimental evidence, see Table 7.1, 

and conventional wisdom that states that the carbon atom should have the larger van der 

Waals radius. The reason for this anomaly is probably related to the fact that the van der 

Waals interaction is overcompensating for the lack of accuracy in the electrostatic interaction, 

as approximated by atomic point charges. We based our decisions on the choice of van der 

Waals parameters for the other CO clusters in the training set, on a larger O_1 than C_1 van 

der Waals radius. 14 sets of trial parameters were first tested for only the C-bonded dimer, the 

trimer and Cluster IV as, due to their size, they were quicker to calculate than the larger 

clusters. A choice of the best parameters, so obtained, was then used to find optimized 

parameters for the rest of the clusters in the training set.  
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The optimized Lennard-Jones parameters for the training set are: 

 

C_1: 3.7 Å 

O_1: 4.5 Å 

 

Our results for the training set using the optimized parameters are summarized in Table 7.2. 

 

Table 7.2: Results obtained with our optimized parameters for the training set 

Cluster RMSD for default 

force field 

parameters (Å) 

RMSD for improved 

training set (Å) 

 

% improvement 

Cluster I 0.857 0.289 66.3 

Cluster III 0.959 0.414 56.8 

Cluster IV 0.769 0.547 28.9 

Cluster VII 0.738 0.595 19.4% 

Result for entire 

training set 
0.780 0.556 28.7% 

 

The force field parameters could not be optimized for Cluster V and II and worse results, 

based on our quality assessment, were obtained than when utilizing the UFF default 

parameters. Although the minimum energy structures obtained with these parameters showed 

better RMSD’s, their overall geometries were different from the results obtained with MP2. 

With the UFF default parameters the RMSD’s and the geometries obtained were not in accord 

to the MP2 results. This is probably due to the way in which the assessment of the force field 

was done. Applying the new Lennard-Jones parameters did manage to improve the force field 

for the training set, but the parameters were based on a larger R0-value for C_1 than for O_1 

and this is not chemically correct. As we mentioned earlier, this anomaly is caused by the 

inaccurate description of charge densities by point charges. The use of the parameters is 

therefore probably limited and possibly inaccurate for the other clusters in the training set. 

Nevertheless, for completeness we did geometry optimizations with these parameters for the 

remaining clusters. The results can be found in Table 7.3.  
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Table 7.3: Optimized parameters tested for the remaining clusters. The negative % improvement means a 

worsening of the values. 

Cluster 
RMSD for default force 

field parameters (Å) 

RMSD for improved 

training set (Å) 

 

% improvement 

Cluster II 0.812 
Monomers move to 

infinity 
N/A 

Cluster V  0.243 0.297 -22.2% 

Cluster VI 0.675 0.423 37.3% 

OVERALL Ϯ 0.701 0.495 29.4% 

Ϯ  For the optimizations with the new parameters, cluster II was not accounted for in the overall RMSD, 

since the monomers moved to infinity when the parameters of the improved training set were applied.   

 

We observe from Table 7.2 and 7.3 that there are two cases where the UFF default parameters 

will actually be a better choice than our optimized parameters for an ONIOM-EE 

optimization. This is for Clusters V and II. In all the other cases our parameters fared better 

than the UFF default parameters, according to the RMSD’s of our clusters from the MP2 

nonbonded distances calculated for the clusters optimized in Chapter 6.  

 

7.5 The applicability of using atom-atom contacts for quality 

assessment 

 

In the assessment of the quality of the force field we made use of atom-atom contacts. 

Actually, other than for the HF clusters, this is not the ideal method to assess the quality. One 

can understand this by looking at the quality of the geometries as judged by a RMSD of the 

atom-atom contacts from the MP2 values with respect to a simple visual inspection. See Fig. 

7.3.  
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RMSD =0.547 Ǻ 

O_1-R
0
 4.5 Ǻ 

C_1-R
0
 3.7 Ǻ 

RMSD=0.570 Ǻ 

O_1-R
0
 4.5 Ǻ 

C_1-R
0
 4.0 Ǻ 

Fig 7.3: Diagrams showing the significant change in geometry when the Lennard-Jones parameters for the 

CO-tetramer (IV) are changed slightly.  

 

The figure on the right in Fig. 7.3 seems closer to the MP2 structure determined in Chapter 

6, although it has a worse RMSD from the intermolecular distances in the MP2 geometry. 

Therefore, a good RMSD does not necessarily mean a good geometry for the CO clusters. To 

assess the quality of the force field more accurately, the distances between mass centers of the 

monomers should also be included in the list of nonbonded distances when the RMSD’s for 

the clusters are determined.   

 

7.6 Force field optimization based on the ONIOM steric energies 

 

As we had limited time to optimize the force field parameters, it was important to find a new 

way of optimizing the parameters. There are two problems with the present method of force 

field optimization for CO clusters: 

 

1. Atom-atom contacts are not a good measure for quality assessment.  

2. The geometry optimization of a MM system in the micro-iterations can be laborious 

due to reasons discussed in Chapter 2.  

We thus saw the need for a better and faster method of optimizing van der Waals parameters 

and therefore we used a similar method to that discussed in Section 5.6. In this section, only 

the results for the method, applied to the CO clusters, will be given. Again, the same GA and 

quasi-Newton optimization algorithm methods were used as for the HF clusters in Chapter 5. 

http://scholar.sun.ac.za/



138 

For the CO clusters, unlike the HF clusters, it was actually possible to optimize the force field 

by fitting the ONIOM interaction energy19 directly to the MP2 BSSE corrected interaction 

energy, as the energy for the perturbation calculated on a QM level was small enough, due to 

the small charges on the MM atoms. For this, we found that the R0 of C_1 is 3.457 Å and the 

R0 of O_1 is 4.340 Å, which is still chemically incorrect. The RMSD with the MP2 interaction 

energy obtained was 0.565 kcal/mol. We therefore see that one cannot use the exact energy 

for the electronic perturbation, calculated on a QM level of theory, when optimizing the FF 

and one must rely on the approximation of this perturbation by point charges on an MM level 

of theory as previously found for HF clusters in Chapter 5. The reason for this is not clear, 

but in Chapter 9 we will discuss a possible reason. We therefore had no choice but to base 

the electrostatic energy, as in Chapter 5, only on the interaction between the point charges 

derived for the QM atoms and the stationary point charges on the MM atoms. When the force 

field is optimized with a GA and then reoptimized with a quasi-Newton algorithm, we obtain 

the following R0-values: 

 

R0 of C_1: 3.687 Å 

R0 of O_1 :2.948 Å 

 

It is immediately evident that these values are not chemically incorrect, as the C_1 atom-

type’s R0-value is larger than the O_1 atom-type’s value, as is expected. Table 7.4 

summarizes the results for the fitting of the R0-values so that the ONIOM steric energy20 

matches the MP2 BSSE interaction energy for all the clusters as closely as possible. Both of 

these energies are given in Table 7.4.  

                                                 
19 The ONIOM interaction was defined in Chapter 5 as the sum of the van der Waals energy, the 
electrostatic energy between the atoms in the MM system and the electrostatic energy associated with 
the perturbation of the MM charges on the QM atoms.  
20 The ONIOM steric energy was defined in Chapter 5 and is the energy obtained by adding the van 
der Waals energy for a frozen geometry to the electrostatic energy as determined by the point charges 
on the QM and MM atoms at this geometry.  
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Table 7.4: Summary of the results for the optimization of the force field parameters. The terms are 

identical to the terms used in Section 5.6. 

Cluster MP2 interaction 

energy 

(kcal/mol) 

ONIOM steric 

energy obtained 

with the optimized 

parameters 

(kcal/mol) 

ONIOM steric 

energy obtained 

with default UFF 

parameters 

(kcal/mol) 

I -0.28 -0.17 -0.19 

II -0.12 -0.18 -0.22 

III -0.77 -0.51 -0.63 

IV -1.24 -1.17 -1.39 

V -1.19 -1.18 -1.44 

VI -1.80 -1.71 -2.09 

VII -2.44 -2.57 -3.06 

Total RMSD 

(kcal/mol) 
N/A 0.128 0.292 

 

At first glance, the RMSD for the optimized parameters in Table 7.4 seems much better than 

for the HF clusters. However, one should keep in mind that the carbon monoxide clusters 

have a very shallow PES whereas the HF clusters do not and therefore a small change in 

energy can lead to a large change in geometry for the CO clusters. It is therefore not 

necessarily true that when the energy fitted parameters are used for a geometry optimization 

in ONIOM-EE, the geometries will be comparable to the MP2 ones in terms of the 

arrangement of the molecules in space.   

    Considering the values in Table 7.4, we see that for clusters I and III the UFF default 

parameters give better RMSD’s than the optimized parameters. However, for the five 

remaining clusters, the values for the optimized parameters are better. We reported the same 

type of situation earlier in Section 7.4.3, when our optimized parameters were only better 

than the UFF default R0-values for five of the seven clusters. The problem might be with the 

electrostatic energy, which is not accurate enough for a specific geometry, due to the fact that 

point charges are used on the atoms instead of a more elaborate description of the charge-

density. Without a more accurate way of treating the electrostatics, it will be almost 

impossible to optimize this force field to give a better fit of the ONIOM steric energies to the 

MP2 BSSE corrected interaction energies. Some suggestions will be given in Chapter 9 of 

how to improve the fit.  
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    The trends for the ONIOM steric energies for the default and optimized parameters as well 

as the MP2 BSSE corrected interaction energies are shown in Fig. 7.4. Note that the trends are 

reasonably close to the variation of the MP2 interaction energies in order of increasing cluster 

size. It is also evident that for smaller clusters the UFF default parameters give a closer fit to 

the MP2 interaction energies than the optimized parameters, but with the larger clusters the 

optimized parameters give an improved fit to the MP2 interaction energies. 
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Fig. 7.4: Graph illustrating the similarities and differences between the fit of the ONIOM steric energies for 

the default UFF and optimized parameters. The MP2 BSSE corrected interaction energies are also shown. 

The clusters are numbered in the same sequence as previously given in Chapter 6. Cluster I is first and 

Cluster VII last.  
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7.7 Summary, conclusions and future work 

 

In this chapter we aimed to optimize the R0-values for the C_1 and O_1 force field atom-types 

in UFF in order to use these values in future QM/MM hybrid calculations and geometry 

optimizations. In our first attempt, we used the RMSD’s of the atom-atom contact distances 

as obtained by geometry optimizations with the force field, with respect to the MP2 values, as 

a measure of the accuracy of the force field. However, we found that assessing the quality of 

the force field based on this is not ideal and distances between mass centers of monomers 

should possibly also be included in the list of nonbonded distances. Another problem was that 

the optimized parameters were based on the quality of the fit of the ONIOM-EE equilibrium 

geometry for the C-bonded dimer (Cluster I) to the MP2 equilibrium geometry.              

    In general, three main problems make the optimization of force field parameters with the 

geometric method difficult: 

 

1. The ESP of the electrostatically perturbed QM system is not well described by point 

charges on atoms. 

2.  The PES of CO clusters is known to be extremely flat and therefore if a manual 

optimization is used, parameters should be varied in smaller steps than for the HF 

clusters. This will increase the time needed to find optimized parameters by geometry 

optimizations.   

3. The quality assessment of the force field can be a problem.  

 

In order to develop a more efficient force field optimization method, the fit of the ONIOM 

steric energy to the MP2 BSSE corrected interaction energy was used as a criterion for 

optimizing the force field. This approach again seems easier, but it is uncertain how well the 

geometries of the clusters will be improved when these parameters are used in an ONIOM-EE 

geometry optimization in Gaussian 03, as they are based on the interaction energy. However, 

the ONIOM steric energies gave a better fit to the MP2 interaction energies than the default 

UFF parameters, except for Clusters I and III. It is therefore not possible to obtain a good fit 

to the MP2 interaction energies by optimizing the vdW parameters, and hence the problem 

most likely lies with the calculation of the electrostatic energy. It is also evident that the exact 

energy for the perturbation, as given by Gaussian 03, is too large to be used directly for a 

frozen geometry optimization. In Chapter 9 we will give a possible reason for this.  

    In future work, the R0-values obtained for fitting the ONIOM steric energy to the MP2 

interaction energy can be used to validate how well these values perform in ONIOM-EE 

geometry optimizations in Gaussian 03. Real improvement in the force field will, however, 
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only come with a better description of the charge-density distribution in the system.  Future 

work may be directed towards this aim.    
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Chapter 8 

CO/HF clusters: ab initio calculations 

and force field optimization for hybrid 

optimizations 

 

8.1 Introduction 

 

In this chapter we report the optimization and analysis of CO/HF clusters. The information 

that we obtain will be used to develop a force field for QM/MM hybrid optimizations of 

CO/HF clusters.  

    The only stable CO/HF-cluster known from experiment is the C···H bonded dimer [Fraser 

and Pine, 1988]. Computationally, clusters up to the trimers have been optimized [Seung-

Hoon, 1998]. It is interesting to note that interstellar clouds can contain mixtures of HF and 

CO [Cunha and Smith, 2005]. It is therefore of importance to model CO/HF clusters not just 

from a theoretical point of view, in order to understand hydrogen bonding, but also from a 

physical and astronomical point of view. We are of the opinion that CO/HF clusters can be a 

useful model to describe the simultaneous effects of weak van der Waals interactions and 

hydrogen bonding in a cluster. In this chapter, Section 8.2 will be devoted to discussing the 

optimization of these interesting clusters and Section 8.3 to the energies of the clusters. 

Section 8.4 will be used to discuss the bonding of the clusters in terms of MO theory and in 

Section 8.5 we will compare the electrostatics of these clusters. In Section 8.6 we will 

describe the development of a force field for a hybrid method for these clusters. We will 

conclude this chapter with a summary and a discussion of possible future work in Section 8.7.  

 

8.2 Computational details 

 

The general computational details are the same as in Chapters 4 and 6 and will not be 

repeated.  
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8.2.1 Pre-optimization of clusters with the 6-31G(d) basis set 

 

The starting points for the pre-optimization of the CO/HF clusters were partially obtained 

from the literature, as the minimum energy structures for the dimers have been calculated 

[Curtiss et al., 1984] and are known to be linear. The geometries for the rest of the clusters 

were determined by attempting different combinations of the optimized geometries of the HF 

and CO clusters reported in Chapter 4 and Chapter 6 respectively. For example, for the 

tetramers we used tetrahedral and square conformations as starting points. Only the clusters 

that gave unambiguous energy minima were kept. The rest were discarded.     

    Again, just as with the HF and CO clusters, very tight optimization conditions were used. 

Optimizations were done by constraining the symmetry of each cluster to its lowest symmetry 

point group during the geometry optimization. No further constraints on the geometries of the 

clusters were applied. Energy minima were confirmed by a lack of imaginary frequencies in 

the vibrational analysis. Eventually we optimized 11 CO/HF clusters with the 6-31G(d) basis 

set. The pre-optimized geometries can be found in Appendix A.5. 

 

8.2.3 Final optimization of clusters 

 

The same optimization conditions were used as with the 6-31G(d) basis set. Symmetry 

constraints were used for all clusters during the geometry optimizations, except for one cluster 

shown as cluster V in Fig. 8.1. During the optimization, it converted from a Cs point group 

symmetry to a C1 symmetry. Again, energy minima of all the clusters were confirmed by a 

lack of imaginary frequencies in the vibrational analysis.  

 

8.3 Structural properties 

 

The optimized structures for the 6-311+G(d,p) basis set are shown in Fig. 8.1.  
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Cluster I  

Symmetry: C
s
 

Cluster II  

Symmetry: C
s
 

  
Cluster III  

Symmetry:C
s
 

Cluster IV  

Symmetry: C
s
 

 

Cluster V  

Symmetry: C
1
, almost C

3v
 

Cluster VI  

Symmetry: C
1
 

Fig. 8.1 continued … 
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Cluster VII 

Symmetry: C
3
 

Cluster VIII:  

Symmetry: C
1
, almost C

s
 

 
 

Cluster IX  

Symmetry: C
1
, almost C

s
 

Cluster X:  

Symmetry: C
1
, almost C

s
 

 

 

Cluster XI 

Symmetry: C
2v
 

 

Fig. 8.1: Minimum energy geometries obtained for the CO/HF clusters with 6-311+G(d,p). The symmetry 
point group for each cluster is also shown. 
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In Table 8.1 the monomers’ bond lengths for each respective cluster in Fig. 8.1 are shown. 
 

Table 8.1: Monomer bond lengths for the monomers in each cluster. Bond lengths are in Ångström. 

Cluster I II III IV V 

Bond lengths       

C-O 1.141 1.137 1.142 
C3-O4: 1.137 

  O6-C5 :1.139 

O1-C2:1.141 

C3-O4:1.141 

O6-C5:1.141 

 

 

H-F 0.918 0.922 
F6-H4:0.922

F5-H3:0.921 
F1-H2:0.924 F8-H7:0.918  

       

Cluster VI VII VIII IX X XI

Bond lengths       

C-O 
O3-C4:1.141 

O8-C7:1.141 
O7-C8:1.140 

O3-C4:1.139 

C7-O8:1.136 

C3-O4:1.141 

C7-O8:1.136 

 

C1-O2:1.140 

O3-C4:1.140 

C7-O8:1.137 

 

O8-C7:1.135 

H-F 

F1-H2:0.923 

F6-H5:0.922 

 

F1-H2:0.929

F3-H4:0.929 

F6-H5:0.929 

F1-H2:0.931 

F6-H5:0.925 

H1-F2:0.930

F5-H6:0.924 

 

F5-H6:0.925 

H1-F2:0.921

H3-F4:0.938 

F5-H6:0.921 

 

We observe a large variation in the HF and CO monomer’s bond lengths for the clusters. To 

save space, the nonbonded atom-atom distances are not included in Table 8.1, but can be 

found in Appendix D. As discussed in Chapter 4, the change in bond lengths for the 

monomers from the values for the bond lengths of the isolated HF and CO monomers is 

related to a one-body energy. We showed in Chapter 4 that the valence bonds get weaker and 

therefore longer as electrons are delocalized into intermolecular orbitals.   

 

8.2.2 Discussion of geometries 

  

Our geometry for the C···H bonded cluster compares well with the experimental information 

available from Legon and coworkers [Legon et al., 1981] who showed, by using microwave 

spectroscopy, that the stable C···H bonded dimer is a linear complex with a C-F distance of 

3.0468 Å. Our value (see Appendix D) is 3.0484 Å.  

    Computationally the largest clusters that have been optimized are the trimers, of which we 

only optimized the O···H bonded one (Cluster III) [Seung-Hoon, 1998]21. Seung-Hoon 

optimized the trimers with SCF, MP2 and B3LYP with both the 6-31+G(d,p) and 6-

311+G(d,p) basis sets [Seung-Hoon, 1998]. We confirmed that within three decimal places 

our results are the same as their results for MP2/6-311+G(d,p) and therefore if there are errors 

in our optimizations, they are insignificant.  

                                                 
21 Our aim was not to identify all of the energy minima on the PES, but only to identify enough for the 
optimization and testing of our force field. 
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8.4 Analysis of electronic interaction and binding energies 

 

In Table 8.2 we summarize the energies for the various CO/HF clusters optimized. Only the 

energy of the C‧‧‧H bonded dimer has been determined experimentally. The most accurate 

value for the dissociation energy of 732±2 cm-1 [Oudejans and Miller, 2000] translates to 

2.093±0.006 kcal/mol as shown in terms of the binding energy in Table 8.2. Although this 

does not compare well to our value, we have not applied a zero-point vibration energy 

correction, which may change it slightly.  

    Another way of comparing our results to experimental results is by comparing the shifts in 

the frequencies of the stretching vibrational normal modes of the monomers in the optimized 

dimers from the frequencies of the stretching modes of isolated CO and HF monomers. For 

the C···H bonded dimer the HF stretch is redshifted by 131.15 cm-1, whereas the experimental  

redshift is 117 cm-1 [Yu et al., 2004] – a difference of 0.040 kcal/mol in energy. The CO 

stretch has a blueshift of 24.4 cm-1, which interestingly is the same as the experimentally 

determined blueshift [Yu et al., 2004]. We should however warn that this is coincidental, as 

one would not expect MP2 to give such accurate values. Gaussian 03 uses harmonic 

approximations of the vibrations while in actual fact they are not completely harmonic.   

 

8.5 Analysis of bonding 

 

As is the case with the CO and HF clusters discussed in Chapters 4 and 6, we found 

intermolecular delocalized orbitals when visualizing the MP2 wave function of the CO/HF 

clusters. However, we will not include the plots here, as nothing new could be determined 

from these in addition to what we have already found in Chapters 4 and 6. 
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Table 8.2: Energies of the CO/HF clusters as obtained at the MP2 level of theory. Zero-point vibrational 

energy corrections are not applied. The values are rounded off. 

Cluster 

Electronic energy 
Interaction 

energy (a) 
Binding energy (a) 

MP2 one-body 

energy (b) 

(hartree) (kcal/mol) (kcal/mol) (kcal/mol) 

I -213.359316 -1.05 
-1.04  

  (-1.67) (c) 
0.002 

II -213.362593 -3.03 
-3.00  

    (-2.10) (d) 
0.03 

III -313.646425 -5.25 -5.21 0.04 

IV -326.442815 -3.91 -3.86 0.04 

V -439.520894 -2.11 -2.10 0.009 

VI -426.727082 -5.42 -5.36 0.05 

VII -413.938706 -11.70 -11.37 0.3 

VIII -426.732642 -9.52 -9.30 0.2 

IX -426.731661 -8.68 -8.49 0.2 

X -439.523505 -4.76 -4.71 0.06 

XI -413.936856 -11.57 -11.19 0.4 

 

a) Both are corrected for BSSE. 

b) MP2 one-body energy was defined in Chapters 4 and 6. 

c) CCSD(T)/aug-cc-pVQZ result [Tuma et al., 1999]. 

d) Experimental result converted from cm-1 to kcal/mol [Oudejans and Miller, 2000]. See text. 
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In Table 8.3 the energy values of each intermolecular orbital in the two dimers are given 

together with their type, i.e., bonding or antibonding, based on the signs of the wave function 

in the intermonomer space.   

Table 8.3: A list of the intermolecular orbitals of the CO/HF dimers and their energy eigenvalues in 

hartree. The type, i.e. antibonding or bonding, is given in terms of the intermolecular orbitals. The non-

bonding orbitals are also nonbonding molecular orbitals, i.e., remains of the atomic core orbitals on the 

atoms.  

Orbital O•••H bonded dimer C•••H bonded dimer 

HOMO -0.579 (Antibonding) -0.597 (Antibonding) 

HOMO-1 -0.638 (Antibonding) -0.635 (Antibonding) 

HOMO-2 -0.638 (Antibonding) -0.635 (Antibonding) 

HOMO-3 -0.664 (Bonding) -0.665 (Bonding) 

HOMO-4 -0.664 (Bonding) -0.665 (Bonding) 

HOMO-5 -0.755 (Bonding) -0.760 (Bonding) 

HOMO-6 -0.843 (Bonding) -0.834 (Bonding) 

HOMO-7 -1.546 (Antibonding) -1.550 (Antibonding) 

HOMO-8 -1.590 (Bonding) -1.587 (Bonding) 

HOMO-9 -11.399 (Nonbonding on C) -11.403 (Nonbonding on C) 

HOMO-10 -20.695 (Nonbonding on O) -20.701(Nonbonding on O) 

HOMO-11 -26.285 (Nonbonding on F) -26.282 (Nonbonding on F) 

 

We see clearly that, unlike for the CO clusters, the number of antibonding and bonding 

intermolecular orbitals in the CO/HF dimer is not equal.  We observe that there are 12 

delocalized orbitals. Three of them are nonbonding remains of core atomic orbitals, leaving 

only four pairs of antibonding and bonding intermolecular orbitals, plus another 

intermolecular bonding orbital. Since an antibonding intermolecular orbital can be interpreted 

as a result of the Pauling electron-electron exchange in the intermonomer space, the lack of an 

antibonding intermolecular orbital can be interpreted as the lack of electron-electron exchange 

in the intermonomer space. As already mentioned, for the CO clusters (see Chapter 6) we 

found the same number of antibonding and bonding intermolecular orbitals. For the HF 

clusters, one of the antibonding intermolecular orbitals of the dimer was not completely 

antibonding, see HOMO-1 in Fig. 4.6. For the CO/HF dimers, we again observe that the 

number of bonding intermolecular orbitals is not equal to the number of antibonding 

intermolecular orbitals. Therefore, we conclude that this phenomenon is related to hydrogen 

bonds. One can rationalize this by realising that in a monomer the hydrogen atom has a very 

small electron density and most atomic orbitals, except for the valence orbitals, are empty, in 

which case the hydrogen atom can be used as a reservoir for electron density originating from 

the other monomer. By using these empty orbitals on the hydrogen atom, delocalization of 
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electron density of the “donor” monomer towards the “acceptor” monomer would not 

experience an electron-electron exchange interaction. The incorporation of the hydrogen 

atomic orbitals into intermolecular orbitals will depend on how energetically feasible it is and 

as in HOMO-1 of the HF dimer, antibonding character might still dominate in a specific 

intermolecular orbital. Adding the values for the energies of the occupied molecular orbitals 

for each cluster in Table 8.3, we obtain a larger stabilization in the C···H bonded dimer than in 

the O···H bonded dimer. It is important not to add the energies of the orbitals and compare 

this with the total electronic energy as the total MP2 energy is calculated in a specific way, 

see Chapter 2 (Section 2.5.1).    

    It seems, based on the energies for the antibonding intermolecular orbitals in Table 8.3, that 

the reason why the C···H bonded dimer is more stable than the O···H bonded dimer is the 

exchange repulsion present between the electron densities of the monomers that constitute the 

HOMO of the cluster. The electrons responsible for this exchange originate from the fluorine, 

carbon and oxygen atoms. It has previously been shown [Curtiss et al., 1985], that according 

to NBO theory, the reason for the C-bonded dimer being lower in energy than the O-bonded 

dimer, is due to the difference in their charge transfer energies. The stabilization obtained by 

transfer from the lone pair on the C-atom to the antibonding σ*-orbital on the HF monomer is 

more than the stabilization obtained when a lone pair on the oxygen atom is transferred to the 

antibonding orbital on the HF monomer. This charge transfer can also be seen as the 

formation of an intermolecular orbital as we have seen for the HF clusters in Chapter 4. 

When the bonding intermolecular orbitals’ energies in Table 8.3 are compared for the two 

dimers, we see, however, that the bonding intermolecular orbitals cannot be the main reason 

for this stability. In Table 8.3 the main difference in the orbital energies for the two dimers is 

found between the HOMO’s of the dimers. Therefore, according to our results, the electron-

electron exchange interaction between the molecular orbitals of the two monomers in the 

HOMO’s of the clusters is the main difference between the stability of the dimers.  

 

8.6 Atoms in molecules (AIM) analysis 

 

An Atoms in Molecules (AIM) analysis was done on the two CO/HF dimers. In Table 8.4 we 

summarize properties of the dimers based on AIM theory. The other clusters show more 

complexity in their electron density topologies and therefore each cluster should be studied on 

its own. Time did not permit this, so in this section we limit ourselves to the two dimers.  

    The negative of the Laplacian shown in Table 8.4 is the negative of the second derivative 

of the electron density with respect to the coordinates, and acts as a magnifying glass to show 

a local increase and decrease in the electron density. If the negative of the Laplacian is 
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positive it means that there is an increase in local electron density at this point, but this does 

not mean that the increase is necessarily in all directions.  

 

Table 8.4: AIM analysis for the CO/HF dimers. BCP=bond critical point. As we defined it in Chapter 6, a 

nonbonded BCP is a BCP that is not found on a monomer, but between two monomers. 

Clusters I II 

ρ of the BCP (e.bohr-3)  
F1-H2: 0.369 

C3-O4: 0.460 

F1-H2: 0.361 

O3-C4: 0.467 

Negative of Laplacian  

(e.bohr-5) 

F1-H2: 2.837 

C3-O4: -0.835 

F1-H2: 2.776 

O3-C4: -0.870 

 

ρ of the nonbonded BCP (e.bohr-3) 0.010 0.018 

Negative of Laplacian (e.bohr-5) -0.048 -0.061 

 

We can see from the value of the negative of the Laplacian in Table 8.4 that the interaction in 

the CO monomers is a closed shell interaction suggesting an ionic bond, whereas the bond in 

the HF monomers is a shared, covalent interaction as expected.  

    In Fig. 8.2 we illustrate the gradient paths superimposed on the electron density, as 

determined by AIM analysis. Gradient paths are lines drawn orthogonal to the contours of 

constant electron density and their directions in 3-dimensions are the same as the directions of 

the gradients of the electron density at each point on the gradient path. With AIMPAC it is 

only possible to visualize the gradient paths in two dimensions. The gradient paths start from 

infinity and end at the nuclear attractors, where maximum electron density is found in all 

directions. Gradient paths can also end at bond critical points. These gradient paths are also 

called zero-flux lines as the flux, according to Gauss’s law through the Gaussian surface, is 

zero [Popelier, 2000].   

 

 

http://scholar.sun.ac.za/



153 

  

Fig. 8.2: Gradient paths superimposed on the electron density contours of the CO/HF O‧‧‧H bonded linear 

dimer.  

  

The zero-flux line defines the volume of the total electron density that belongs to the volume 

of an atom or in AIM terms, the atomic basin. In Fig. 8.3 we show the gradient paths as 

superimposed on the electron density of the C‧‧‧H bonded dimer. Note the larger penetration 

of the electron density of the CO monomer into the electron density of the HF monomer 

leading to a more convex gradient path through the bond critical point than was found for the 

O‧‧‧H bonded dimer. This might be the main cause for the larger stabilization in the C‧‧‧H 

bonded dimer in comparison to the O···H bonded dimer.  

 

Fig. 8.3: Gradient paths superimposed on the electron density contours of the CO/HF C‧‧‧H bonded linear 

dimer.  

 

We therefore make the same conclusion as Galvez et al., 2001 [Galvez et al., 2001] for the 

HF dimer, that the stabilization in the CO/HF clusters is also due to the interpenetration of 

electron densities rather than charge transfer.  

F H O C 

F H C O 

More convex 
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8.7 Analysis of electrostatics. 

 
The ESP-maps based on the MP2 density for each cluster are given in Table 8.5, together with 

the MKS charges based on the SCF and MP2 densities. The AIM charges and NAO charges 

are given as a reference for some selected clusters. The MKS charges seem to agree with the 

ESP-maps. We see that the SCF and MP2 density based charges differ from each other. Both 

the NAO and AIM charge-schemes give a negative charge to the oxygen atom for Cluster I, 

while the MKS charge-scheme gives a positive charge to the oxygen. The NAO and AIM 

charge-schemes agree with the MKS charge-scheme in terms of that the carbon atom in 

Cluster II is positively charged. We see that no matter what charges are used, it would be 

difficult to cancel the strong repulsion between the positive charge of the carbon and 

hydrogen atoms in the C‧‧‧H bonded dimer. This dimer is of course known to be the most 

stable one and a force field would have to have a very large vdW attractive force to cancel 

this repulsive electrostatic interaction. This is chemically incorrect. Therefore, designing a 

force field for the modeling of this cluster and other CO/HF clusters would fail unless the 

atomic point charge model is replaced by a more accurate multipole model. We will show in 

the next section that it is actually impossible, due to these positive charges, to obtain the C···H 

bonded dimer as the global minimum and the O···H bonded dimer as the local minimum with 

a basic force field such as UFF or a hybrid QM/MM method incorporating UFF.  

 

8.8 CO/HF force field optimization 

 

Optimizing a force field for ONIOM-EE in Gaussian 03 is time consuming if one uses 

constrained bond lengths in the MM system. We could have attempted using several 

geometry optimizations to find the optimized parameters for the force field, but we already 

felt that the polarization of the wave function of the QM system by a positive charge on the 

carbon in the C···H bonded CO/HF cluster would be inaccurate. Therefore, for the 

optimization of the CO/HF clusters we only used the frozen geometry optimization described 

earlier in Chapters 5 and 7. This force field optimization method has the advantage that it is 

faster and the results are independent of the micro-iterations optimizer in Gaussian 03. The 

same GA and quasi-Newton algorithm methods were used for the optimization of the R0-

values.   
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