
By

F.A. van Riet
November, 2001

LF: A Language for Reliable Embedded Systems

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

OF THE UNIVERSITY OF STELLENBOSCH

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

Supervised by: Dr. P.J .A. de Villiers

Declaration

I the undersigned hereby declare that the work contained in this thesis is my own original work

and has not previously in its entirety or in part been submitted at any university for a degree.

ii

Stellenbosch University http://scholar.sun.ac.za

iii

Abstract

Computer-aided verification techniques, such as model checking, are often considered essential

to produce highly reliable software systems. Modern model checkers generally require models to

be written in eSP-like notations. Unfortunately, such systems are usually implemented using

conventional imperative programming languages. Translating the one paradigm into the other is

a difficult and error prone process.

If one were to program in a process-oriented language from the outset, the chasm between imple-

mentation and model could be bridged more readily. This would lead to more accurate models

and ultimately more reliable software.

This thesis covers the definition of a process-oriented language targeted specifically towards em-

bedded systems and the implementation of a suitable compiler and run-time system.

The language, LF, is for the most part an extension of the language Joyce, which was defined by

Brinch Hansen. Both LF and Joyce have features which I believe make them easier to use than

other esp based languages such as occam. An example of this is a selective communication

primitive which allows for both input and output guards which is not supported in occam.

The efficiency of the implementation is important. The language was therefore designed to be

expressive, but constructs which are expensive to implement were avoided. Security, however, was

the overriding consideration in the design of the language and runtime system.

The compiler produces native code. Most other esp derived languages are either interpreted or

execute as tasks on host operating systems. Arguably this is because most implementations of

esp and derivations thereof are for academic purposes only. LF is intended to be an implemen-

tation language.

The performance of the implementation is evaluated in terms of practical metries such as the

time needed to complete communication operations and the average time needed to service an

interrupt.

Stellenbosch University http://scholar.sun.ac.za

IV

Opsomming

Rekenaar ondersteunde verifikasietegnieke soos programmodellering, is onontbeerlik in die ont-

wikkeling van hoogs betroubare programmatuur. In die algemeen, aanvaar programme wat modelle

toets eSP-agtige notasie as toevoer. Die meeste programme word egter in meer konvensionele

imperatiewe programmeertale ontwikkel. Die vertaling vanuit die een paradigma na die ander is

'n moelike proses, wat baie ruimte laat vir foute.

Indien daar uit die staanspoor in 'n proses gebaseerde taal geprogrammeer word, sou die ver-

wydering tussen model en program makliker oorbrug kon word. Dit lei tot akkurater modelle en

uiteindelik tot betroubaarder programmatuur.

Die tesis ondersoek die definisie van 'n proses gebaseerde taal, wat gemik is op ingebedde pro-

grammatuur. Verder word die implementasie van 'n toepaslike vertaler en looptyd omgewing ook

bespreek.

Die taal, LF, is grotendeels gebaseer op Joyce, wat deur Brinch Hansen ontwikkel is. Joyce en op

sy beurt LF, is verbeterings op ander esp verwante tale soos occam. 'n Voorbeeld hiervan is 'n

selektiewe kommunikasieprimitief wat die gebruik van beide toevoer- en afvoerwagte ondersteun.

Omdat 'n effektiewe implementasie nagestreef word, is die taalontwerp om so nadruklik moontlik

te wees, sonder om strukture in te sluit wat oneffektief is om te implementeer. Sekuriteit was egter

die oorheersende oorweging in die ontwerp van die taal en looptyd omgewing.

Die vertaler lewer masjienkode, terwyl die meeste ander implementasies van eSP-agtige tale

geinterpreteer word of ondersteun word as prosesse op 'n geskikte bedryfstelsel- die meeste

eSP-agtige tale word slegs vir akademiese doeleindes aangewend. LF is by uitstek ontwerp

as implementasie taal.

Die evaluasie van die stelsel se werkverrigting is gedoen aan die hand van praktiese maatstawwe

soos die tyd wat benodig word vir kommunikasie, sowel as die gemiddelde tyd benodig vir die

hantering van onderbrekings.

Stellenbosch University http://scholar.sun.ac.za

• Dr. P.J.A de Villiers for his support, guidance and countless pep talks.

Acknowledgements

I gratefully acknowledge the help and support of all the individuals and companies who made this

thesis possible.

• SAN People for their generous bursary which made this paper possible.

• All of my friends especially Pierre and Hanli for helping me maintain my sanity.

v

Stellenbosch University http://scholar.sun.ac.za

Contents

Abstract

Opsomming

Acknowledgements

1 Introduction

2 LF: A Process oriented language

2.1 Language concepts

2.1.1 Processes .

2.1.2

2.1.3

· .

Communication .

Other Language attributes

2.2

2.3

Type rules

Design considerations

2.3.1

2.3.2

2.3.3

2.3.4

2.3.5

..................................

Ports .

Reference parameters

Process instantiation

Polling semantics · .

Channel sharing · .

iii

2.4

2.5

Security claims

Predefined entities and implementational dependencies

vi

IV

v

1

4

4

4

5

10

13

13

13

16

17

17

19

19

20

Stellenbosch University http://scholar.sun.ac.za

4.1 Design Criteria

44

44

45

46

46

48

48

50

52

52

53

2.6.3 Final remarks .

21

23

26

31

2.6 The LF compiler

2.6.1 Code generation

2.6.2 Examples of code generated .

3 LF examples

3.1 Simple ..

3.2 Generate.

3.3 Copy.

3.4 Merge

3.5 Suppress.

3.6 Buffer ..

3.7 Recursive instantiation .

3.8 Simple device driver

3.9 A Linked List

3.10 Remarks ...

32

32

33

34

34

35

36

37

38

41

42

4 Runtime System

4.2 The modular structure of the runtime system

4.3 Design overview. .

4.4 Memory allocation

4.5 Process Management.

4.5.1 Process creation

4.5.2 Context switches

4.5.3 Process termination

4.6 Interrupt handling and Devices

4.7 The scheduler

vii

Stellenbosch University http://scholar.sun.ac.za

A.0.1 Declarations.

A.0.2 Statements

A.0.3 Expressions

84

84

85

85

4.8 Fairness

4.9 Communication.

4.9.1 Simple Communication

4.9.2 Implementing the SELECT

4.10 Communications performance

4.11 Runtime checks . . .

4.12 Clock cycle analysis

4.12.1 Effective overhead of runtime checks

4.12.2 Index, overflow and NIL-dereference checks

4.12.3 Overhead of variable initialisation

4.12.4 Cost of a system call .

4.12.5 Interrupt latency in the LF Runtime system.

4.12.6 Actual Performance

4.12.7 Copying messages .

4.13 The size of the runtime system

4.14 Stackless execution model

4.15 Conclusion .

55

56

56

58

60

64

67

69

69

70

71

73

73

76

76

77

78

5.2 Evaluation of the Compiler and Runtime System

5.3 Future work ..

5.4 Final Remarks

80

80

81

82

83

5 Evaluation and Conclusion

5.1 Evaluation of the LF language

A EBNF

viii

Stellenbosch University http://scholar.sun.ac.za

x

List of Tables

1 Predefined types 20

2 General functions . 22

3 Bitwise functions 22

4 I/O functions .. 22

5 Heap manager functions 22

6 Instructions and clock cycles on the i386EX 68

7 Actual context switch times 75

8 Size of the Runtime System 77

9 Runtime system memory overhead (bytes) 77

Stellenbosch University http://scholar.sun.ac.za

1 The null program 5

2 A program defining two processes . 6

3 Defining a port type 8

4 Simple communication 8

5 Channel sharing ... 9

6 The structure of a SELECT 10

7 Waiting on an interrupt 11

8 Variables at physical addresses 11

9 Simple use of pointers 12

10 No output guards. 17

11 Output guards 18

12 Sets in Oberon 21

13 Sets in LF 21

14 GetReg for rArcli . 23

15 GetAdrReg for i386 24

16 Get Reg for i386 25

17 An expression requiring sign extension 25

18 Sign extension 25

19 System memory layout . 47

20 Internal representation of processes . 49

List of Figures

xi

Stellenbosch University http://scholar.sun.ac.za

39 Index checks .

49

51

51

52

53

54

57

58

61

62

62

63

64

65

66

69

69

70

70

72

72

73

74

76

88

21 Ring of process ARs

22 State of stack during context switch

23 The skeleton of an interrupt handler.

24 Continue..........

25 The interrupt mechanism

26 The scheduler

27 Communications channels

28 HookIt .

29 IPC with and without registers to pass parameters

30 IPC vs. Procedure Call ..

31 IPC to Procedure call ratio

32 Times for a SELECT with one guard .

33 Percentage overhead of select relative to simple I/O

34 Test program for multiple-guard SELECT

35 Select with multiple guards

36 Index checks

37 NIL checks . .

38 A simple array reference

40 System call restoring machine state .

41 Overhead of a null system call .

42 An empty procedure

43 Interrupt overhead .

44 Test code for interrupts.

45 System memory layout as created by the boot loader .

xii

Stellenbosch University http://scholar.sun.ac.za

1

Chapter 1

Introduction

To produce correct software is inherently difficult. Commercial software is typically put through

exhaustive testing to ascertain its correctness. This approach not only consumes much time,

but does not identify all the errors in programs. Formal methods, such as model-checking, have

emerged to try and address the problem of checking program correctness. A major stumbling block

in the use of model checkers is the disparity between the notations of formal specifications and the

programming languages in general use. Many model checkers employ specification languages that

are either derived from esp [17] (such as SPIN's Promela) or check esp directly (FDR[12]).

If one wishes to incorporate the use of model checkers into the software development cycle, one of

two approaches is possible. A model of the program can be developed as part of the specification

process. The model can then be used as a basis from which to derive the source code. Alternatively

one may infer the model from existing source code.

The abstract process algebraic notation of esp does not have a direct mapping onto conventional

programming constructs. The ideal would be to have a programming language that is both useful

and practical as an implementation tool, but also allows for easy translation to and from a formal

esp specification.

In this thesis I propose a language that strives to meet this challenge. The proposed language,

LF, aims to be an implementation language with constructs similar to that of esp. This will

facilitate automatic or semi-automatic conversion to (and possibly from) formal esp notation",

The greatest challenges in this endeavour are:

1. To design a language that is expressive enough for the purpose of programming embedded

applications.

2. To ensure that no construct within the language compromises the efficiency of LF as an

1Indeed the process of translating LF to Promela and model checking it, is the topic of another Masters project
currently under way [9].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

implementation language.

3. To ensure that translation to the notation accepted by a model checker is possible.

LF is intended primarily for use in embedded systems. A precise definition of an embedded system

is an elusive concept. Broadly speaking one may define embedded software as: software executing
on a platform with relatively limited resources, typically performing control functions that are
intimately related to the hardware, but which are imperceivable to the user. Embedded systems

exhibit the following attributes:

• The embedded software is often a monolithic piece of code. It may therefore be implemented

in a single secure programming language.

• Embedded software is intricately involved with the hardware on which it runs. This implies

that the hardware should be readily accessible to the programmer.

• Furthermore, it generally requires efficient management of limited resources. Scheduling that

is highly responsive to interrupts, is often required. Efficiency both in terms of performance

and memory usage is important.

• The need for low level operations introduces many opportunities for corrupting the system.

A compromise needs to be reached between making the language expressive enough for low

level programming, and imposing sufficient constraints on the programmer to allow some

measure of safe-guarding in the language.

LF is claimed to be a secure language. Hoare describes the concept of security in the following

way [15]:

' ... Firstly, the notations (of a programming language) should be designed to reduce as

far as possible the scope for coding error; or at least to guarantee that such errors can

be detected by a compiler ... Certain programming errors cannot always be detected

in this way, and must be cheaply detectable at run time; in no case can they be allowed

to give rise to machine or implementation dependent effects that cannot be explained

in terms of the language itself ... '

Simply put, a secure system is one in which code that adheres to the syntactic and semantic

constraints of the language is guaranteed not to corrupt the system. A corrupt system is loosely

defined as a system existing in a state that is not defined by the program. Semantic constraints

refer to the "rules of use" of constructs and include typing constraints.

In practice such a strict form of security is not a viable proposition. A less rigorous form of

security is needed. LF therefore offers the guarantee that code that adheres to the syntactic and

semantic constraints of the language cannot lead to corruption of the allotted memory of a process

by another process.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

The need for a relaxed form of security arises primarily because of the use of embedded systems

as the target environment. Such systems need to access hardware directly. This has the potential

of placing the processor or other hardware components in inconsistent states. A simple example

should suffice:

Assume that an embedded system consists of two processes one of which, p, is an interrupt handler

and some other process, q, that inadvertently writes to the wrong I/O port. Let us further assume that

this port controls the interrupt controller hardware. If the interrupt which is to be handled by p is now

disabled, process p will be rendered useless. All of this has however taken place within the syntactic

and semantic constraints of the language.

Unfortunately no practical way of imposing a safe hardware abstraction at this low level could be

identified.

As a somewhat philosophical aside, one might argue that a program that conforms to the stated

criteria for security, may indeed not be secure in the sense formerly defined if compiled by a faulty

compiler. For the purposes of this thesis however we will assume a correct compiler implementa-

tion.

LF is based on the Joyce system proposed by Brinch Hansen [7]. Essentially Joyce (and LF)

presents the programmer with the means to implement concurrent processes that may commu-

nicate by way of synchronous message passing. Apart from the fact that Joyce was not put to

much practical use, the system employed a P-Code interpreter which is not an efficient execution

environment. As such this project offers valuable insight into the practicality of the programming

paradigm introduced by Joyce.

Outline of this thesis:

• In Chapter 2 the grammar and semantics of LF are presented. The choice of language

constructs and features are examined. Important similarities as well as differences with other

CSP-derived languages such as Joyce and occam are discussed [7, 21]. A brief discussion

of the compiler and code generation concludes the chapter.

• Some examples of LF code are presented in Chapter 3. These examples highlight the most

important features of the language.

• The runtime system is explained in detail in Chapter 4. The design of the system is

motivated and performance figures are presented.

• Chapter 5 is a critical evaluation of the system both in terms of the language and the

runtime system. Future extensions to the system are also discussed.

Stellenbosch University http://scholar.sun.ac.za

(program) ::= PROGRAM identifier; (declarations) (processes) (body).
(processes) ::= { (process) }
(process) ::= PROCESS identifier[(parameter list)]; (declarations) (body);
(body) ::= BEGIN (command list) END identifier

Chapter 2

LF: A Process oriented language

LF is a practical, secure, programming language with strong ties to esp. The compiler and run-
time checks enforce the integrity of the system, thereby obviating the need for hardware memory
protection. In this chapter the grammar and semantics of LF are discussed. Considering the
concurrent nature of the language, the syntactic and semantic definition of the language should
not preclude future multiprocessor implementations. The language definition is presented as it
pertains to a single processor implementation.

2.1 Language concepts

The basic notation of LF is similar to that of Oberon and other members of the Pascal family
[36, 34]. For this reason and the sake of brevity, the focus of this discussion is on the features of
the language which relate to concurrency. The complete grammar of LF in EBNF notation may
be found in Appendix A.

2.1.1 Processes

An LF program consists of a set of communicating processes. An initial process is instantiated
and may then spawn other (child) processes dynamically. Child processes execute concurrently
with their parents. A simplified EBNF definition for an LF program is shown below.

4

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 5

PROGRAMNull;
(*

The simplest possible LF program.
*)
BEGIN (* main process *)
ENDNull.

Figure 1: The null program

The null program is listed in Figure 1. Process instantiation follows the same syntax as procedure

invocation in most imperative languages. Examples of process instantiation may be found in lines

17 and 18 of Figure 2. The instantiation of processes is hierarchical in nature. The BEGIN-END

block which is associated syntactically with the reserved word PROGRAM,is called the main process.

Lines 16 to 19 of Figure 2 constitute a main process. In the main process, processes Pi and P2

are instantiated. Process P2 is instantiated with the value parameter x. From line 01 it should

be evident that x has the value 42. All processes with the exception of the main process have a

parent. Unbounded (recursive) instantiation of processes is supported.

In keeping with CSP, no global variables are allowed. The use of global variables are inherently

dangerous in concurrent systems, as it amounts to shared memory. The variables of a process are

inaccessible to other processes. The encapsulation of data is therefore done at process level.

Parent processes only terminate once all their children have terminated. This, in addition to

the tree structure of process invocation, simplifies memory management: An activation record is

created for each instance of a process. The tree structure of activation records can be physically

represented as a stack -with the top of the stack representing the most recently activated process.

As processes terminate, their activation records are popped from the stack. Processes reaching

the end of their execution are automatically terminated, provided that the above constraint is

satisfied. In Figure 2 process Pi will execute indefinitely while process P2 will terminate after

setting local variable x to 1. When a process terminates, its local variables are destroyed.

Processes may pass information to one another in one of two ways:

• Inter-Process Communication primitives which will be discussed in the next section .

• Value parameters are used for passing values to processes upon instantiation.

2.1.2 Communication

Processes communicate by way of messages which are transmitted over channels. A channel consti-

tutes the logical link between two communicating processes. Processes create channels dynamically.

Channels are accessed by way of port variables. Port variables are therefore references to the logi-

cal entities called channels and are instances of a type definition, a port type. An analogue exists

in terms of dynamic memory. A port may be likened to a pointer and a channel likened to the

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 6

PROGRAM ProcessInstantiation;
(*

This program defines and instantiates
two additional processes.

*)
00 CONST
01 x = 42;

02 PROCESS Pl;
03 VAR
04 x: UINT8;
05 BEGIN
06 x:= 0;
07 WHILE TRUE DO
08 x := x+l
09 END
10 END Pl;

11 PROCESS P2(x : UINT32);
(*

x is a value parameter
*)

12 BEGIN
13 x:= 0;
14 x:= x+l
15 END P2;

16 BEGIN
17 Pl; (* instantiate Pl *)
18 P2(x) (* instantiate P2 *)
19 END ThreeProcess.

Figure 2: A program defining two processes

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 7

memory which was dynamically allocated and is referenced by the pointer. Just as pointers may

be required to point to instances of a specific type in languages such as LF and Oberon, a port

also has a specific type.

(porttype) ::= [(alphabet)]

(alphabet) ::= (symbol) {, (symbol) }

(symbol) ::= identifier [((type)) 1

Paris (as all types) in LF are typed using name equivalence. Types are associated with ports by

way of alphabets. An alphabet consists of a fixed set of symbols. A symbol may optionally have a

type associated with it. When no type is associated with a symbol, the symbol is referred to as a

signal. As the name implies, signals are used to signal events. A signal does not copy any data. As

such, the use of signals is more efficient in cases where messages are used only for synchronisation.

In Figure 3 a port type named Chan is defined with an alphabet consisting of symbols a and b.

Pori variable chan is an instance of pori type Chan. The type of symbol a is UINT32. Symbol b is

a signal.

A message is a value of the same type as the appropriate symbol in the appropriate pori type,

which is copied from one process to another, using the channel as logical communication medium.

Signals do not strictly conform to the above definition. One can however regard all signals as

having some implicit generic type. As far as the actual transmission of data is concerned, a signal

does not require the actual transfer of data, but the runtime system still needs to perform all of

the operations needed to transfer a normal message except for the actual copying of the data. A

symbol does therefore not directly relate to an entity but is merely used to facilitate strict type

checking. The use of symbols and messages will become apparent shortly.

During a given communication between two processes, a channel may carry anyone (and only

one) of these symbols. The programmer must explicitly state the direction of communication over

the channel. The reserved words IN and OUT indicate this direction. Note that the semantics of

LF therefore prohibits the same process from communicating, in both directions, over the same

channel. This makes it impossible for a process to deadlock by communicating with itself over the

same channel. Clearly few programmers will make this mistake during design, but it is easy to

mistype a ' !' for a '?' (See below).

Syntactically, communication in LF is similar to esp. This is evident from the following EBNF
definition.

(io) ::= (bang)l(hook)

(bang) ::= (variable access) identifier[((expression) 1
(hook) ::= (variable access) ? identifier[((variable access) 1

The statement c! a(i) in Figure 4 sends the value of the variable i over channel c. Assume

that the type Chan has the same definition as in Figure 3. Notice the type equivalence between

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 8

PROGRAMAlphabetDefinitionj
TYPE

Chan = [a(UINT32),b]j
PROCESS PleIN c : Chan)j
BEGIN
ENDPl j

VAR
OUT chan Chan j

BEGIN
Pl (chan)

Figure 3: Defining a port type

VAR
OUT c : Chanj
IN d : Chanj
i : UINT32j

BEGIN
c a(i)j c b
d ? a(i)j d ? b

Figure 4: Simple communication

the definition of symbol b and the actual variable i. Symbols therefore represent the set of the

types of messages that may be sent, whereas the value of variable i is sent over the channels as

the actual message. The statement d? a(i) receives a value of type UINT32 over the channel

and assigns this value to variable i. The commands c! band d? b are analogous but use

signals.

When an LF process p (the sender) is ready to send a message to another process q (the receiver)

which is ready to accept the message, pand q are said to match and communication is feasible.

Strictly speaking the communication commands within the processes are matched, but in the

interest of brevity these two meanings are taken to be equivalent. The Bang and Hook then

execute simultaneously. Both processes will continue concurrently. This approach to message

passing is also used by Joyce and occam. On a uni-processor system only a single process can

actually execute at any given time. The precise order of execution is determined by the scheduler.

Scheduling is discussed in Chapter 4.

Several processes may share a channel. Channel sharing is achieved by passing port variables

as value parameters to processes. In Figure 5 processes Pl and P2 have access to a common

channel through port variable c. Because of channel sharing processes may match in various

combinations. In Figure 5, the Hook in process P2 may match with anyone of the instances of

process Pi. Communication takes place in a first-come-first-served manner in this event. When

a communication statement is not matched, the process issuing the command (either a Bang or

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 9

PROGRAMShare;
TYPE

Chan = [a(UINT8)] ;

PROCESS Pi (c : Chan) ;
VAR
i : UINT8;

BEGIN
c a(i

END Pi;

PROCESS P2;
VAR

c : Chan;
i : UINT8;

BEGIN
NEW(c);
Pi(c); Pi(c);
c ? a(i)

END P2;

BEGIN
END Share;

Figure 5: Channel sharing

Hook) behaves in one of two ways. If the communication statement was used as part of a simple

input/output command (a Bang or Hook command) the process is blocked until communication

is feasible. A process may also issue a communication command as part of a guard in a SELECT

statement as explained below.

(select) ::= SELECT (select guard) THEN(command list)

{[] (select guard)THEN(command list)}

END.

(select guard) ::= (variable access)(io)[&(expression)].

As shown in the above box, a SELECT construct consists of a set of guards, with a command list

associated with each guard. Each guard consists of a communication statement with an optional

boolean expression. A guard evaluates to true when the communication statement is matched

and the boolean expression evaluates to true. The SELECTwill non-deterministically choose one

of the guards which evaluates to true and execute its command list. When no guards are true the

construct as a whole blocks until a guard becomes true. The structure of a SELECT statement is

outlined in Figure 6. Each Si refers to a command list and each chan, refers to a channel. Note the

use of boolean expressions in the guards and the fact that these expressions refer to the variables

used in the communication. The relevance of this facility is discussed in Section 2.3.4.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 10

SELECT
chanl ? cC x) & x > 0 THEN

SI
[] Chan2 ! sC y) THEN

S2
END

Figure 6: The structure of a SELECT

Note that two SELECT statements cannot match. The need for this restriction is explained in

Section 2.3.4.

2.1.3 Other Language attributes

The syntax and semantics of assignments as well as the definition of variables, constants and types

are similar to that of Pascal and more specifically, Oberon. The syntax of these constructs can

be seen in the examples presented in Chapter 3. A complete EBNF definition may be found

in Appendix A. The most notable language attributes not already discussed and the reasoning

behind their use are outlined below.

• The LF runtime system transforms an interrupt event into a message. An array of ports

is predefined. Each element of the array corresponds to one of the possible interrupts that

may occur on a specific target platform. The size of the array is therefore implementation

specific (it is referred to as MaxInt below). Listed below is a definition of the array -called

IntChannels- as it would appear to the programmer.

TYPE

IntPort [sig] ;

VAR

IntChannel = ARRAYMaxInt OF IntPort;

This introduces a platform dependence into the language specification, but since only the size

of the array changes on different platforms it is of little consequence to the programmer. This

approach makes the use of the system consistent by not having special constructs related to

interrupts. From the programmer's point of view interrupt handling does not represent a

deviation from the general language constructs. Figure 7 shows a process that continuously

waits on interrupt 32. The definition of IntChannels clearly assumes an underlying archi-

tecture which supports interrupt vectoring, but the scheme as proposed here will work on

platforms which do not implement it explicitly. Interrupt vectoring can be cheaply imple-

mented in the runtime system. The variable IntChannels is visible to the programmer, but

not the type IntPort. Therefore one cannot declare a variable of type IntPort. The details

of interrupt handling within the runtime system are discussed in Section 4.6. Chapter 3 con-

tains a complete example of interrupt handling within an LF process. The language occam

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 11

BEGIN
NEW(IntChannels[32])j (* use of predefined array IntChannels *)
WHILETRUEDO

IntChannels[32] ? sig
END

Figure 7: Waiting on an interrupt

(* Accessing a memory mapped display *)
TYPE

DisplayPage = ARRAY2000 OF RECORD
char,attr : UINT8

ENDj
VAR

dp : DisplayPage AT $b8000j
BEGIN

dp[O] .char = 65j (* write "A" to (0,0) on the screen *)

Figure 8: Variables at physical addresses

uses a similar abstraction. In occam, however, each channel is associated with a specific

device driver implemented in the occam runtime system -so-called hard channels [26]. LF
offers more flexibility than occam since LF does not implement device drivers as part of its

runtime system .

• LF allows the programmer to define a data structure at a specific physical address. This

allows the development of device drivers that need to access memory mapped devices. The

display memory is a good example. The possible violation of the system integrity is min-

imised by the fact that the address value has to be a constant. Once a variable is defined at

a physical address, no other variable may be defined within an overlapping memory range.

The range is defined by the size of the variable. The compiler keeps a table which ensures

that these memory ranges do not overlap. Of course only one instance of a process that

declares a specific absolute variable may be instantiated. A bitmap is kept by the runtime

system which sets a bit corresponding to each process defining such a variable. When the

process is instantiated, the bit is set and when it is destroyed, the bit is cleared. Once the bit

is set, the creation of another such process will result in a runtime exception. In Figure 8,

an example of how to access a memory mapped display page is given for the IBM PC .

• Typed pointers are supported. No arithmetic operations are allowed on pointers. This

limits (but does not completely remove) the inherent dangers of pointers. A heap essentially

introduces shared memory, as would be the case with reference parameters. Only structured

types (RECORDs,ARRAYs)may be allocated on the heap. This discourages the indiscriminate

use of small allocations on the heap. The allocation of a 32-bit integer variable would for

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 12

TYPE
PAr = POINTER TO ARRAY10 OF UINT16;
P = POINTER TO Ree;
Ree = RECORD

n : P
END;

VAR
r : Ree;
p : PAr;

BEGIN
NEW(r);(* initialise r *)
rt.n := NIL;
NEW(P);
pt[10] := 0

Figure 9: Simple use of pointers

instance require up to 8 bytes of heap management overhead. It should be clear from Figure 9

that syntactically the use of pointers is identical to that of Pascal. Pointers are dereferenced

with the "t" character.

• All variables are zero initialised. This allows for the detection of the dereferencing of unini-

tialised pointers and the detection of references to uninitialised channels. All references to

pointers and channels (which are represented in the runtime system by pointers) are com-

pared to o. An uninitialised channel will have a pointer with the value 0 and a runtime

exception will be generated in such a case. A pointer with the value 0 is not necessarily

uninitialised, as the programmer may have assigned the value NIL to it, but dereferencing of

a pointer with the value of O/NIL, will always cause a runtime exception. Variable initial-

isation may introduce significant runtime overhead upon process instantiation, but is vital

in ensuring the security of the system. All variables are zero initialised as this is generally

more efficient, both in terms of code size and execution time, than selective initialisation.

• Record structures are packed i.e. no padding to align fields on machine word boundaries

is performed. This leads to a significant reduction in execution speed on most hardware

platforms. Padding, however, wastes a substantial amount of memory. Moreover, padding

causes problems with the allocation of variables at specific physical addresses.

• Separate compilation is not supported. The whole program needs to be in a single file. The

system produces a single statically linked code image that is loaded by a boot-loader. The

image contains both the LF object code and the runtime system. This is well suited to

small embedded applications. The boot-loader as well as the structure of the static image

are discussed in Chapter 4 and Appendix B.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 13

2.2 Type rules

Strict type checking, by way of name equivalence, is enforced over communication channels and

also applied to all other variables. Type compatibility between integer types is governed by special

rules. Six integer types, representing signed and unsigned values in 8, 16 or 32 bits, are defined,

(U) INT32 being a 32 bit variable, (U) INT16 a 16 bit variable and (U) INT8 an 8 bit variable.

(U) INT16 and (U) INT8 may be regarded as subsets of (U) INT32. Similarly (U) INT8 is a subset

of (U) INT16. The 'U' prefix refers to unsigned values in each case.

All integer types within either the signed or unsigned class may be compared. Assignment however

requires that a subset type be assigned to a superset type. Unsigned and signed types are not

assignment compatible, nor may they be compared.

2.3 Design considerations

This section motivates many of the design decisions that were made with respect to communication

and other aspects of the language. The options pertinent to each aspect of communication are

discussed in general terms and the ones adopted for LF are then explained.

Barring the value parameters passed at process initialisation, inter-process communication (IPC)

is the only means of exchanging information between processes. IPC may be implemented by way

of two primitives [25]:

• send(x,message)

• receive(y,message)

The variables x and y refer to the destination and source of the message respectively. A process P

wishing to transmit a message to process Q does so by invoking the send primitive. The send and

receive IPC primitives in LF are called Bang(f) and Hook(?), as in esp. The process Q accepts

the message by way of the receive primitive. A communication link must exist which logically

connects the receiving and sending processes.

2.3.1 Ports

To send messages, processes must be logically linked to each other. Some means of referencing or

naming the other process must therefore exist. Naming may be either direct or indirect. Direct

naming requires a communication partner to directly name the other. The send and receive

primitives would therefore be defined as follows:

• send(P, message)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 14

• receive (Q, message)

In the above Pand Q are the process identifiers for the processes participating in the commu-

nication. Direct naming would not work well within the LF system as processes are created

dynamically. Explicitly referencing a given instance of a process would be cumbersome if not im-

possible. Each instance of a given process would have to be explicitly referenced. These references

need to be resolved by the compiler. As the number of instances is not known at compile time it

is unclear how the compiler would be able to resolve the references.

With Indirect naming messages are sent to and received from a port. A port uniquely identifies

each link. It therefore functions as a means of access to a common communication link. The port

p must be visible to, and is used by, both the sender and receiver. This implies the following

notation for send and receive. In this case p refers to a port.

• send(p, message)

• receive(p, message)

In general, the use of ports has the following properties:

• A link is established between a pair of processes only if they share a port.

• Multiple processes may be associated with a single port.

• Processes may be linked by multiple ports.

• Links may be either bi- or uni-directional. In other words a message may be passed in either

direction or only one direction over the link respectively.

Indirect naming clearly offers considerable flexibility. The use of ports presents the implementer

of the IPC primitives with a number of choices:

Multiple receivers

A process P may issue a send command to a given port. This port may for instance have two

processes Q and R which use it, both of which execute a receive. The question of which of these

two processes should receive the message arises. Note that allowing both processes to receive the

message is not an option. Only one process is allowed to receive any given message. Three possible

solutions are:

• Allow only two processes to be associated with a given port. One process to send and one

to receive. This circumvents the problem, by removing it by construction. This approach is

inflexible for the simple reason that it does not allow multiple receivers of a message.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 15

• Allow only one process to issue a receive primitive at a given time. This is cumbersome as

runtime checks would have to be performed on each receive operation.

• Allow the runtime system to decide. This clearly offers much more flexibility -in terms

of both implementation options and having a non-restrictive language definition- than the

other two options. This is the solution employed in LF. The method also has the distinct

disadvantage of implementation dependence. Therefore no assumptions should be made as

to the recipients of messages. This caveat in my view is far surpassed by the flexibility

offered.

Port ownership and process termination

According to Silberschatz and Peterson, ports may be owned either by processes or by the runtime

system [25]. Port ownership refers to who has the ability to create and destroy the ports. It was

decided to let processes own the ports as this arrangement fitted well into the hierarchical process

instantiation scheme. A process may declare a port variable. Such variables may be passed to

new instances of processes as parameters. A port variable is a reference to a channel. The parent

process has the responsibility of initialising the port by way of the NEWsystem call. This process

is then the owner of the port. Since reference parameters are not allowed, a child process which

inadvertently initialises a port which was passed to it as a parameter, only cuts off its own access

to the port.

Processes terminate in a bottom-up order. It is therefore impossible for the owner of a port to

terminate (and subsequently destroy a port) before its children (which may potentially also use

the port) have terminated. It is however possible for a parent process to attempt communication

with a child process which has already terminated. This may result in the indefinite suspension

of the parent process. References to uninitialised ports result in a runtime exception.

Uni- and hi-directionality

LF implements uni-directional communication for a number of reasons. Uni-directional com-

munication is employed by esp. It is easier to implement than bi-directional communication.

Bi-directional links would require additional queueing space as both senders and receivers on a

link need to be queued as opposed to either one in the case of un i-directional links. It is unclear

to the author when one would benefit from using bi-directional links, apart from perhaps having

fewer links. Uni-directionallinks may be combined to simulate a bi-directional connection in such

cases. The use of uni-directional links should also help to avoid some programming errors by

forcing the programmer to explicitly state the direction of travel of messages over the link.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 16

Blocking vs. Non-blocking primitives

The communication primitives may be implemented as either blocking or non-blocking. Blocking

primitives enforce synchronous transfer of messages as a process is blocked until its communication

partner is ready to send(receive) the message. It has the advantage that it provides for an intrinsic

method of synchronising processes. More importantly, there is no need to buffer messages within

the runtime system as the message remains in the address space of the sender until another process

is ready to accept it. Since a process blocks on the first message sent, no flow control techniques

are required.

Non-blocking primitives do not impose synchronisation on the processes. This may lead to a

possibly unbounded growth in the length of the message buffer for the relevant channel. Apart

from the obvious concerns of running out of memory, large buffers also introduce a response

latency as new messages are delayed, as previously buffered messages are cleared. Even when an

upper bound is placed on the size of the buffer, once the buffer is full, blocking again needs to be

imposed. Asynchronous primitives do however allow a higher degree of parallelism, as processes

do not need to wait for their communication partner to receive the message. Blocking primitives

are also significantly easier to implement than their non-blocking counterparts [22, 29]. Gehani

presents similar arguments to the above in [13]. Blocking primitives are used in systems such as

Amoeba and V [23, 5]. The LF system employs blocking primitives.

Loss or corruption of messages

When dealing with a distributed implementation of the LF system, the occurrence of message

loss or corruption is a distinct possibility. For the purposes of the language definition however,

a reliable transmission medium is assumed. The choice of reliable transfer protocol is left to the

implementer of the runtime system.

2.3.2 Reference parameters

Reference parameters are not supported. Value parameters are supported to allow for startup

conditions to be set. This allows for some measure of flexibility, without the dangers of reference

parameters. The use of reference parameters would require complex mutual exclusion constructs

in the runtime system. Furthermore, the implementation of reference parameters on a non-shared

memory multiprocessor, would have to be implemented along similar lines to communication over

channels. One would then have two syntactic constructs linked to the same runtime implementa-

tion. The extra complexity is therefore unwarranted. The functionality of reference parameters is

implemented using IPC. Chapter 3 demonstrates how to use communication instead of reference

parameters.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 17

PROCESS Buffer(IN prod: Chan; OUT cons Chan);
VAR

buffer : ARRAY9 OF CHAR;
notFull,notEmpty : BOOLEAN;
in,out : UINT32;

BEGIN
(* initialise *)
WHILE TRUE DO

SELECT
prod? buffer[in] & notFull THEN

SI
[] cons? sig(); notEmpty THEN

cons buffer [out] ;
S2

END
END

END Buffer;

Figure 10: No output guards

2.3.3 Process instantiation

LF allows for the dynamic creation of processes (as does Joyce[7]). This instantiation may be

unbounded(recursive). esp allows only for a fixed number of processes all of which terminate

simultaneously. The dynamic instantiation of processes removes the need for indexed processes

as in esp and occam. Recursion was added with little complexity to the runtime system. The

considerable elegance and flexibility of recursion surely justifies the added effort.

2.3.4 Polling semantics

The original esp and occam both restrict polling to input commands [16]. In other words

only Hooks and no Bangs are allowed as part of the guards of a SELECT statement. The occam

equivalent of the LF SELECTis the ALTconstruct. Ada contains the select-accept construct. All

of these constructs are based on the esp general choice operator ('0'). This prevents a sender and

receiver from polling the same channel at the same time. It was decided in the interest of flexibility

and symmetry to allow output polling as well. Furthermore, Hoare states that output guards are

'mathematically possible' within the model of esp [17]. A classic example of the advantage of

allowing output guards in a SELECT is adapted from Raynal [27]. It shows the implementation of

a buffer. First without the use of an output guard, and then with the use of one. Notice how in

Figure 10 the required output is performed in two stages. Firstly the producer and consumer are

synchronised. Secondly the desired output is performed. In Figure 11 an elegant, symmetrical,

solution to the same problem, is presented.

Two SELECT statements cannot match. A process executing a SELECT can only match with a

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 18

PROCESS Buffer(IN prod: Chan; OUT cons
VAR

buffer : ARRAY9 OF CHAR;
notFull,notEmpty : BOOLEAN;
in,out : UINT32;

BEGIN
(* initialise *)
WHILE TRUE DO

SELECT
prod? buffer[in] & notFull THEN

SI
[] cons! buffer[out] & notEmpty THEN

Chan);

END
END

END Buffer;

Figure ll: Output guards

process executing an input/output command (a Bang or Hook command). This is similar to the

scheme proposed by Silberschatz [30] and the scheme used in Joyce.

A number of 'enhanced' implementations of esp have been proposed which generalise the SELECT

construct. This generalisation allows for output guards and/or the ability for SELECT statements

to match. Various protocols have been suggested to implement this functionality, for instance one

by Bernstein [6]. Buckley and Silberschatz give an overview of several of these protocols, as well as

defining one of their own [8]. Their protocol, albeit one of the more general protocols, was described

by Raynal as 'cumbersome and complicated' [27]. The basic problem in the implementation of

a generalised input-output construct stems from the possible number of guards that need to be

evaluated. Every guard Gi in a SELECT statement must be compared to every guard Gj in every

other process it references (be it via ports or direct naming). If one factors in the unbounded

instantiation supported by LF the problem becomes even more daunting. Moreover, no example

could be envisioned in which matching SELECTs would be necessary.

It is the programmer's responsibility to ensure that a SELECT statement is matched by an in-

put/output statement. If this restriction is violated the SELECTstatements will never terminate,

effectively blocking the processes containing it indefinitely and possibly leading to the deadlock

of the system as a whole. One might view this as a flaw in the language design, which will lead

to many defective programs. However, the security of the system is not compromised and the ap-

proach taken is much more efficient than the alternatives. Potential deadlocks are also relatively

easy to detect by using a model checker.

LF allows for the specification of a boolean guard in conjunction with the input/output guard.

Moreover, the boolean guard is allowed to reference the variables involved in the input/output

guard. SR also allows this, but does not allow output guards [4]. Allowing such boolean guards

makes the language more expressive. Essentially it allows a process to examine the message to see

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 19

whether it wants to accept it. The alternative would be to have the process accept all messages
and then re-send them to another process, or implement some sort of buffering scheme if it wishes
to use the information in the message at a later stage.

2.3.5 Channel sharing

If every channel were to be used by two processes only, a resource process would have to be
connected to users by means of a channel array. Reasonable performance is expected from shared
channels for 'lightly' used channels. Brinch Hansen presents the same argument in [7]. Fairness
problems may howeverarise for channels carrying large amounts of traffic. A quantifiable definition
of light usage as well as the extent of fairness problems which may arise will vary from application
to application and remains a topic for investigation.

2.4 Security claims

It is claimed that LF processes cannot adversely affect each other's address spaces. In conventional
programming languages memory interference may occur in the following circumstances:

• Stack overflows are a common cause of corruption in programs. The LF compiler deter-
mines the maximum stack depth for a process at compile time and consequently allocates
sufficient stack space.

• Shared memory manifests itself in different incarnations:

- The use of global variables are a common cause of software failures. LF (as eSP) does
not allow the use of global variables.

Reference parameters in the context of concurrent programs are dangerous because they
essentially allow for the aliasing of a variable; allowingmultiple processes to change the
same variable without any form of synchronisation.

LF places severe restrictions on the use of pointers. Pointer arithmetic is disallowed.
Pointers are strongly typed. Pointers may only point to variables i.e. pointers may not
be assigned an arbitrary value.

• LF allows for variable instances at specified addresses by way of the AT construct. This
construct is also subject to restrictions. Only a single instance of such a variable is allowed.
This implies that only one instance of a process instantiating such a variable may be allowed.
A runtime check enforces this constraint. The ranges of memory that are available for use
by such variables are implementation specific. Such addresses are intended to correspond
to those addresses used by memory mapped devices, and should therefore not overlap with
the memory used by either process activation records or the runtime system. Compiler and
runtime checks enforce this requirement.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 20

INT8,INT16,INT32 The signed integer types
UINT8,UINT16,UINT32 The unsigned integer types
CHAR The character type
BOOLEAN The boolean type
SET8,SET16,SET32 The set types

Table 1: Predefined types

• Strict index checking is performed on arrays.

• Runtime checks trap references to uninitialised channels, and dereferences of NIL pointers.

As noted, all pointers are initialised to NIL by the compiler, which makes the dereferencing

of uninitialised pointers impossible.

• Overflows on arithmetic operations are detected by the runtime system.

Additional checks are also performed:

• Runtime checks detect when the system has run out of memory.

• Strict type checking as described in Section 2.2 ensures that variables of different types are

not used interchangeably.

In the event of the failure of a runtime check, a machine exception is generated. The exception

handler may be defined by the programmer by writing a handler process for the appropriate

interrupt. Runtime failures however almost exclusively indicate a serious program error. By

default, execution of the system in its entirety is stopped. Note that it is possible to redefine

an exception handler that is implemented in the runtime system. This could render the system

insecure. It was decided not to make any distinctions between the interrupt handlers that may be

defined as this would lead to unnecessary overhead.

2.5 Predefined entities and implementational dependencies

LF predefines a number of entities. Foremost of these are the standard types as listed in Table 1.

Sets are generally implemented in one of two ways. Either as having a direct mapping onto a word

in the target machine (Oberon and LF), or having some other arbitrary size. In Pascal the

size of the set representation is implementation specific. Values typically range from 64 to 2040

members [10]. Compilers generally allow the cardinality of sets to be at least as large as that of

the char type [10]. The approach of Oberon is efficient as it can make use of specialised machine

instructions. A major disadvantage of using sets which are mapped onto a machine word becomes

apparent when dealing with hardware devices. In such cases it is convenient to manipulate bits

by using sets. More often than not, these bits need to be read(written) from(to) a hardware port.

These ports may not have the same number of bits as the machine word. A proliferation of type

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 21

(* Oberon code *)
VAR

5 : CHAR;
BEGIN

PORTIN(123,5);
IF 1 IN SYSTEM.VAL(SET,5) THEN

Figure 12: Sets in Oberon

(* LF code *)
VAR

5 : SET8;
BEGIN

PORTIN(123,5);
IF 1 IN 5 THEN

Figure 13: Sets in LF

casts then appears. The author has observed that failure to type cast the values read from ports
in Oberon to the correct size has been a consistent source of program failures among novice
programmers.

By using sets of differing sizes, LF syntactically does away with these type casts. Note that no
runtime efficiencyis gained as zero extensions of smaller data types to that of a machine word are
still needed to use the specialised machine instructions. Figures 12 and 13 compare the usage of
sets in the manipulation of hardware ports. Note the use of the SYSTEM. VAL type cast mechanism
in the Oberon code, which is not needed in LF .

The integer and set types are listed in Table 1 as defined for the current implementation (Intel
i386). Additional types may be added (for instance in the case of a 64-bit architecture). Similarly
the data types used by the predefined procedures may also vary according to the target platform.
The set types are intended to evolve in a similar fashion.

As was noted in Section 2.1.3 the array of ports IutChannel s , is also predefined with an imple-
mentational dependence. This dependence is, however, less intrusive than variations in the size of
the machine word.

Two constants TRUE and FALSE referring to the boolean values are defined. Finally LF also
predefines a number of routines as listed in Tables 2 to 5.

2.6 The LF compiler

The LF experimental system generates code in two stages. The first stage is a single pass compiler
which accepts the LF source code and generates assembly listings as output. A separate assembler

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 22

ORD(a) : UINT8 Returns the ordinal value of character a.
CHR(a) : CHAR Returns the character (ASCII)value of ordinal value a.
INC(a,b) Increments an integer variable a (signed or unsigned) by b.

Note that both parameters must be signed or both unsigned.
DEC(a,b) Decrements an integer variable a (signed or unsigned) by b.

Note that both parameters must be signed or both unsigned.
ABS(a) : Signed Integer type Returns the absolute value of integer variable a. The result is

a signed integer type with the same width as the argument.

Table 2: General functions

INCL(a,b) Sets bit number b(unsigned) from set variable a.
EXCL(a,b) Clears bit number b(unsigned) from set variable a.
IN(a,b) : BOOLEAN Check whether bit number b is set within set variable a.

The same sign convention as above applies.
SHL(a,b) : Integer Type Performs a left bitwise shift of b(unsigned) bytes for integer variable

a(any sign). The result is of the same type as the a argument.
SHR(a,b) : Integer Type Performs a right bitwise shift of b(unsigned) bytes for integer variable

a(any sign). The result is of the same type as the a argument.
AND(a,b) : Set Type Performs the bitwise AND operation on two variables of set types.
ORe a,b) : Set Type Performs the bitwise OR operation on two variables of set types.
XOR(a,b) : Set Type Performs the bitwise XOR operation on two variables of set types.

Table 3: Bitwise functions

PORTIN(a) : Integer OR Set Type Reads a value from hardware port number a.
PORTOUT(a,b) Writes the Integer OR SET value b to port number a.

The number of bytes written depends on the width of b.

Table 4: I/O functions

NEW(ptr) Creates a new instance of a given pointer or port type.
DISPOSE(ptr) Releases the memory allocated by NEW.
MEMFREE() : UINT32 Returns the amount of free memory.
MAXFREEO : UINT32 Returns the size of the largest contiguous block of heap memory.
NEWDMA(ptr,size) Allocated a DMA buffer.
DISPOSEDMA(ptr) Releases the buffer allocated by NewDMA.
RELEASEDMA(ptr) Relinquishes a given amount of memory allocated for DMA to the heap manager.

Table 5: Heap manager functions

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 23

PROCEDURE GetReg(VAR r LONGINT);
VAR i : INTEGER;
BEGIN

WHILE (i < 32) & (i IN regs) DO INC(i) END;
INCL(regs,i) ; r .- i

END GetReg;

Figure 14: GetReg for rArcli

then produces the object code from these listings [32]. This route was taken because it allows the
programmer to hand optimise speed critical sections of his code with relative ease. Although this
clearly impacts on the security of the code generated, one should bear in mind that this is an
experimental system. An optimising compiler falls beyond the scope of this thesis. The use of
assembler listings made it possible to experiment with earlier incomplete compiler implementa-
tions. This section is intended to give the reader a broad idea of the quality of code generated to
place the performance measures that will be presented in Chapter 4 into perspective. Parsing was
implemented through standard recursive descent techniques.

2.6.1 Code generation

If one considers the fact that this is not an optimising compiler, very reasonable code is produced.
The code generation of the compiler is based on a scheme used by Wirth to generate code for a
theoretical RISC architecture which I shall call rArcli (Chapter 9 of Wirth [35]).

Wirth's scheme was developed for a non-optimising compiler for a subset of Oberon. It was
therefore a matter of applying the techniques used by Wirth to the Intel i386 CISC architecture;
the target platform. The most important problem that had to be contended with was the scarcity
of registers in the i386.

The first challenge was therefore to develop a scheme to utilise this limited resource. Since this
was not an exercise in compiler design a simple approach was favoured. With rArch the compiler
designer has 32 general purpose registers at his disposal (RO..R31). This, for instance, allows
Wirth the luxury of dedicating a register to contain the value O.

Wirth uses a very simplemethod of register allocation. The registers are numbered 0 to 31. When
a register is required the first available one is returned by a procedure called GetReg (Figure 14).
The variable regs is a globally defined set. The reader will notice that the assumption is made that
a free register is always available. This is a valid assumption considering the number of registers
and the relative simplicity of expressions encountered in practice. A register is freed whenever
its value is no longer needed. Because so few registers are available, no attempt is made to keep
frequently referenced variables in registers.

With the i386 four general purpose registers are placed at the disposal of the compiler designer

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 24

CONST
rEBX=O; rEAX=3; rEDI=4; rESI=5;

PROCEDUREGetAdrReg(VARr : LONGINT);
VAR i : INTEGER;
BEGIN

i := rEDI;
WHILE (i < rESI+l) & (i IN regs) DO INC(i) END;
INCL(regs,i); r := i;
IF i = 4 THENHalt("Out of registers") END

ENDGetAdrReg;

Figure 15: GetAdrReg for i386

EAX,EBX,ECXand EDX.Two additional registers are available for indexing (EDI and ESI) 1 Each

of the former four registers encapsulates a 16-bit register. For example AXmaps onto the lower

16-bits of EAX.Similarly the 16-bit registers encapsulate two S-bit registers i.e. AL and AHmap

onto the low order and high order byte of AX2. ESI and EDI do not have this sub-division. This

forces the compiler designer to only use EAXthrough EDXfor the evaluation of expressions. One

may of course go to the trouble of implementing highly specialised code for dealing with 32-bit

values only, but the added functionality is hardly worth the effort. The already dire situation is

compounded by the highly irregular nature of the i386 instruction set. The registers EAXand EDX

are specifically required for a number of instructions, notably division and multiplication.

The above constraints led to the development of a register allocation mechanism which deviates

slightly from that of Wirth's. Two different allocation procedures are used. It was decided to

allocate EDI and ESI to store the addresses of variables to which assignments are made, so-called

Ivalues (Figure 15). The basic operation of the algorithm in Figure 15 and Figure 16 entails the

following:

The globally defined regs is tested for inclusion of the presence of the bit corresponding to the

appropriate register. If the register has already been allocated then the bit will be set. If the

register is in use then the next register is examined. When a free register is found, the register is

reserved by setting the pertinent bit.

Another procedure allocates general purpose registers for the evaluation of expressions (Figure 16).

The EAXregister is never available for allocation. This leads to a significant reduction in complexity

in implementing the instructions which explicitly require this register. The alternative would have

been to implement complex register shuffling, possibly augmented with store and load instructions.

The EDXregister is allocated last since it is used in most of the instructions which specifically

require EAXas well. As the code fragments (Figures [15,16]) indicate the compiler terminates

IThe register ESPis used as the stack pointer and EBPis used to point to activation records.
2For the sake of brevity the name EAXmay be used -depending on the addressing mode- in instances which

actually refer to AXor AL

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 25

PROCEDUREGetReg(VAR r LONGINT)j
VAR i : INTEGERj
BEGIN
i := OJ
WHILE (i < 4) & (i IN regs) DO INC(i) ENDj
INCL(regs,i)j r := ij
IF i = 4 THEN Halt("Out of registers") END

END GetRegj

Figure 16: GetReg for i386

VAR i
b

BEGIN
i := i+b

UINT32j
UINT8j

Figure 17: An expression requiring sign extension

execution in the event of running out of registers. This is clearly not an ideal situation. The fact

that this is only an experimental version of the compiler and that the scheme works well in most

cases is regarded as enough of a justification for the less than optimal implementation. Another

simplification made to the register allocation scheme relates to the sub-division of registers. When

an 8-bit operand is loaded into a register, the entire 32-bit register is allocated. This simplifies

the implementation by virtue of its generality. If the registers were sub-divided in such cases the

compiler would have eight more registers at its disposal when processing 8-bit expressions.

Another complication that had to be dealt with was the fact that the rArd: only implements

32-bit operands (with the exception of the load and store instructions). The i386 has 8-,16- and

32-bit operands. The compiler must generate type casts when processing expressions containing

data types of differing sizes. A simple example of an expression requiring operand extension is

presented in Figure 17.

This generates the assembly code shown in Figure 18. Zero- and sign-extensions often lead to

the allocation of an additional register. The extension instructions require a register as target

LEA EDI, -4 [EBP]
MDVEBX,-4[EBP]
MDVCL,-9[EBP]
MOVZXECX,CL
ADD EBX,ECX
MDV [EDI],EBX

load linear address of 'i'
load value of 'i' into EBX
load value of 'b' into ECX
zero extend contents of CL to ECX
add ECX to EBX - result stays in EBX
store result

Figure 18: Sign extension

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 26

operand. It is therefore not only good programming practice to avoid mixing data types as much
as possible, but may also mean the differencebetween being able to compile a complex expression

or not.

The LF compiler produces labels instead of offsets when emitting control transfer instructions
(JUMP,CALL and RET instructions). This makes it significantly easier to alter the resultant assembly
listings. Unfortunately this requires a relatively large amount of bookkeeping to keep track of the

textual label.

2.6.2 Examples of code generated

A few examples of the code generated are now presented. Comparisons are made to the code gen-
erated by the Oberon compiler for similar structures. One should bear in mind that the Oberon
compiler is significantly more complex than the LF compiler, and therefore has an advantage
when one compares the quality of the code produced. Please note that neither the code to create
activation records nor the code to allocate and initialize local variables for either LF or Oberon

is shown.

Code for common loop operations are shown below, in both Oberon (left) and LF (right):

PROCEDURE Pj
VAR
i ; LONGINTj

BEGIN

PROCESS P;
VAR
i ; UINT32;

BEGIN
i 0; i ;= 0;

WHILE i < 10 DO
INC(i)

END
END P;

WHILE i < 10 DO
INC(I , 1

END
END P;

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 27

PROCEDURE P labPO:
OOODH: mov ebx,O LEA EDI,-4[EBP]
0012H: mov -4[ebp] ,ebx MDV [EDI] ,DWoRD 0
0015H: jmp 9 (OOOOOO23H)
0OlAH: mov ebx,-4[ebp] labWHILEl :
001DH: add ebx,l MDV EBX,-4[EBP]
0020H: mov -4[ebp] ,ebx CMP EBX,10
0023H: mov ebx,-4[ebp] JAE labExitWHILEl
0026H: cmp ebx,10 labStatementl :
0029H: jl -17 (OOOOOOlAH) LEA EDI,-4[EBP]

INC [EDI]
JMP labWHILEl
labExitWHILE1:

The reader will noticethat the code produced by the LF compiler for the above example isvir-
tuallyidenticalto that of the Oberon compiler.

PROCEDURE Pi
VAR
i : LONGINTi

BEGIN
WHILE TRUE DO
INC(i)

END
END Pi

PROCESS Pi
VAR
i : UINT32i

BEGIN
WHILE TRUE DO
INC(i, 1)

END
END Pi

PROCEDURE P
OOODH: jmp 9 (OOOOOOlBH)
OO12H: mov ebx,-4[ebp]
0015H: add ebx,l
0018H: mov -4[ebp] ,ebx
001BH: mov bl,l
001DH: cmp bl,l
0020H: jz -16 (000OOO12H)

labPO:
labWHILEO:
labStatementO:
LEA EDI,-4[EBP]
INC [EDI]
JMP labWHILEO
labExitWHILEO:

In the above example the LF compiler actuallyoutperforms the Oberon compiler. The LF spe-
ciallyoptimizes the WHILE TRUE DO construct,as itoccurs frequentlyin LF programs.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 28

PROCEDURE Pj
VAR
i : LONGINTj

BEGIN

PROCESS Pj
VAR
i : UINT32j

BEGIN
i := OJ i := OJ

i 1

IF i = 0 THEN
i := 1

ELSIF i 2 THEN
i .- 3

ELSE

IF i = 0 THEN

ELSIF i 2 THEN
i := 3

ELSE
i := 0

END
END Pj

i .- 0

END
END Pj

OOODH: mov ebx,O
0012H: mov -4[ebp],ebx
0015H: mov ebx,-4[ebp]
0018H: cmp ebx,O
00lBH: jnz 13 (0000002EH)
0021H: mov ebx,l
0026H: mov -4[ebp],ebx
0029H: jmp 33 (0000004FH)
002EH: mov ebx,-4[ebp]
0031H: cmp ebx,2
0034H: jnz 13 (00000047H)
003AH: mov ebx,3
003FH: mov -4[ebp],ebx
0042H: jmp 8 (0000004FH)
0047H: mov ebx,O
004CH: mov -4[ebp],ebx

labPO:
LEA EDI,-4[EBP]
MDV [EDI],DWORD 0
MDV EBX,-4[EBP]
CMP EBX,O
JNE labnextGuard1
labStatement 1:
labshort2:
LEA EDI,-4[EBP]
MDV [EDI],DWORD 1
JMP labexitGuard1
labnextGuard1 :
MDV EBX,-4[EBP]
CMP EBX,2
JNE labnextGuard3
labStatement3:
labshort4:
LEA EDI,-4[EBP]
MDV [EDI],DWORD 3
JMP labexitGuard1
labnextGuard3:
labshort5:
LEA EDI,-4[EBP]
MDV [EDI],DWORD 0
labexitGuard1 :

Again the LF and Oberon generated code is virtually identical. Code to traverse a linked list is

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 29

shown below, in both Oberon (left) and LF (right):

PROCEDURET;

TYPE

Node = POINTER TO TNode;

TNode RECORD

PROCESS T;

TYPE

Node = POINTER TO TNode;

TNode RECORD

next Node next Node;

END;

VAR

END;

VAR

n : Node; n : Node;

BEGIN

n := NIL;

IF n # NIL THEN

BEGIN

IF n # NIL THEN

n := n-.next

n := n.next ELSE

HALT(80)

END

END T;

ELSE

HALT(80)

END

END T;

As is evident from the listings below, the manipulation of pointers compares favourably with the

code generated by the Oberon compiler. Essentially the only difference is the extra load instruc-

tion that the LF compiler generates (LEA) during assignments.

PROCEDURET labTO:

OOODH: mov ebx,O MDVEBX,-4[EBP]

0012H: mov -4[ebp] ,ebx CMP EBX,O

0015H: mov ebx,-4[ebp] JE labnextGuardO

0018H: cmp ebx,O labStatementO:

001BH: jz 13 (0000002EH) MDVEBX,-4[EBP]

0021H: mov ebx,-4[ebp] MDVEBX, [EBX]

0024H: mov ebx,O[ebx] labshort1 :

0026H: mov -4[ebp] ,ebx LEA EDI,-4[EBP]

0029H: jmp 3 (00000031H) MDV [ED!] ,EBX

002EH: push 80 JMP labexitGuardO

0030H: int 3 labnextGuardO:

0031H: mov esp,ebp PUSH 80

INT 3

labexitGuardO:

By default the Oberon compiler does not generate overflow checks. The reader will notice that

the LF compiler generates extra instructions associated with the IMULinstruction when the code

fragments shown below are compiled. The multiplication instructions for signed multiplication

IMULand unsigned multiplication MULdiffer significantly in the addressing modes they allow, MUL

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 30

being much more restrictive.The LF compiler generates code to conform to the restrictionsof
MUL for IMUL as well.

IncidentallyOberon only supports signed data types. If Oberon were to support unsigned data
types, I cannot foreseethe code differingmuch from that generated by LF .

When accessing array indicesthe LF compiler compares lessfavourably. The LF compiler gener-
ates fairlyexplicitcode. It does not make use of the more efficientaddressing mode used by the
Oberon compiler.

PROCEDURE T;
VAR
l,m LONGINT;
a,b SHORTINT;

BEGIN
1 := m*a+b

END T;

PROCEDURE T
OOOFH: movsx ebx,byte ptr -9[ebp]
0013H: mov edx, -8 [ebp]
0016H: imul edx,ebx
0019H: movsx ebx,byte ptr -lO[ebp]
OOlDH: add edx,ebx
OOlFH: mov -4[ebp] ,edx
0022H: mov esp,ebp

PROCEDURE P;
VAR
a : ARRAY 100 OF RECORD

a,b : LONGINT
END;

i LONGINT;
BEGIN
a[i].a .- 20

END P;

PROCESS T;
VAR
l,m INT32;
a,b INT8;

BEGIN
1 := m*a+b

END T;

labTO:
MDV EBX,-8[EBP]
MDV EAX,EBX
CDQ
MOVSX ECX,BYTE -9[EBP]
IMUL ECX
INTO
MDV EBX,EAX
MOVSX ECX,BYTE -lO[EBP]
ADD EBX,ECX
INTO
labshortO:
LEA EDI,-4[EBP]
MDV [ED!], EBX

PROCESS P;
VAR
a : Array = ARRAY 100 OF RECORD

a,b : UINT32
END;

i UINT32;
BEGIN
a[i].b := 20

END P;

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. LF: A PROCESS ORIENTED LANGUAGE 31

The inadequacies of the compiler have been exposed in this section. They have been tolerated
for the most part because of the fact that this is a first implementation. I however feel that even
when considering the deficiencies of the compiler it fulfills the role of a suitable tool for conducting

experiments.

PROCEDURE Array
0023H: mov ebx,-804[ebp]
0029H: cmp ebx,lOO
002CH: jb 3 (00000031H)
002EH: push 7
0030H: int 3
0031H: mov edx,20
0036H: mov -800[ebp + 8* ebx] ,edx

2.6.3 Final remarks

PROCESS Array;
MDV EBX,-804[EBP]
CMP EBX,lOO ;Index check
JB 3

PUSH 7
INT 3
SHL EBX,3
LEA EDI,-800[EBP]
ADD EDI,EBX
ADD EDI,4
labshortO:
MDV [EDI] ,DWORD 20

Stellenbosch University http://scholar.sun.ac.za

32

Chapter 3

LF examples

In this chapter simple examples of LF programs are presented to demonstrate basic usage of the
language. The initial examples are not meant to be of any practical value, but illustrate the basic
concepts of the language. The subsequent examples are more relevant to the typical use of LF.

3.1 Simple

The example below illustrates the three most basic constructs of LF: The WHILE, assignment
and the IF-ELSIF-ELSE constructs. Assignment should look familiar to Pascal programmers.
The WHILE construct is identical to that of Oberon and is also equivalent to the Pascal WHILE
except for the mandatory END (Line 17). The IF-ELSIF-ELSE construct has no direct equivalent
in Pascal, but is identical to the Oberon construct. In Pascal, a nested IF-ELSE tree would be
equivalent. Note the use of the # as the not equal operator instead if the <> of Pascal.

00 PROGRAM Simple;

01 PROCESS Basic;
02 VAR
03 x,y UINT32;

04 BEGIN
05 x .- 0
06 WHILE x < 10 DO
07 x := x+l;

08 IF x >= 8 THEN
09 Y := 0
10 ELSIF x <= 4 THEN

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. LF EXAMPLES 33

11 Y r= 1

12 ELSIF x # 0 THEN

13 Y 2

14 ELSE

15 Y 3

16 END

17 END

18 ENDBasic;

19 BEGIN

20 Basic

21 ENDSimple.

3.2 Generate

All of the following examples, up to Example 3.7, are adaptations of Joyce examples presented

by Brinch Hansen [7]. When comparing the Joyce and LF code, it is apparent that the two

languages are indeed very similar.

In this example, the alphabet of the channel type Stream consists of the symbols item and eos

(end of stream). The symbol item is of the type INT32 1 and the symbol eos is a signal.

TYPE

Stream = [item(INT32),eos];

PROCESSGenerate(OUTout; Stream; a,b,n

(* Generates a stream of INT32's *)

VARi ; INT32;

BEGIN

INT32);

i .= 0;

WHILEi < n DO

(* an item (of type INT32) is sent via port "out" over a channel *)

out!item(a+i*b); INC(i)

END

ENDGenerate;

The line out! Lt emCa+Leb) evaluates the expression a+I eb and then sends this value over the

channel associated with port out. Notice the type correspondence between symbol i tem and the

expression. The process will go through n such iterations before terminating. In all of the following

examples, it is assumed that the type Stream is defined as in example Generate.
1Recall that INT32is a 32-bit signed integer

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. LF EXAMPLES 34

3.3 Copy

The example named Copy, illustrates the use of the SELECT construct. Notice the use of two

guards in the SELECT. The first guard reads the value of x over the channel linked to port in. The

second guard reads the signal eos from the same channel. The semantics of the SELECT construct

is such that a non-deterministic choice is made between the guards. If none of the guards are

TRUEthen the construct as a whole blocks execution of the process until such time as a guard does

evaluate to TRUE.

Process Copy will accept any number of 32-bit signed integer values from its input channel in and

transmit them via its output channel out until an eos signal is received.

(* A process to copy INT32 values from one stream to another *)

PROCESS Copy(IN in : Stream; OUT out: Stream);

VAR

more BOOLEAN; x INT32;

BEGIN

more := TRUE;

WHILE more DO

SELECT

in?item(x) THEN out!item(x)

[]in?eos THENmore := FALSE

END;

out!eos

END

END Copy;

3.4 Merge

The example Merge again makes use of the non-deterministic nature of the SELECT to create an

arbitrary interleaving of two streams. The process waits for an eos signal from each of the channels

before terminating.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. LF EXAMPLES 35

(* A process that outputs an arbitrary interleaving of two streams *)

PROCESS Merge(IN inl,in2 : Stream; OUT: Stream);
VAR

n,x INT32;
BEGIN

n := 0;

WHILE n < 2 DO
SELECT

inl?item(x) THEN out !item(x)
[]in2?item(x) THEN out!item(x)
[]inl?eos THEN INC(n)
[]in2?eos THEN INC(n)

END
END

END Merge;

3.5 Suppress

This example removesduplicate values from its input stream and outputs the result to its output
stream.

(* Removes duplicates from a stream *)

PROCESS Suppress(IN in : Stream; OUT out
VAR

more BOOLEAN; x,y INT32;
BEGIN

01 SELECT
02 in?item(x) THEN more := TRUE
03 []in?eos THEN more := FALSE
04 END;
05 WHILE more DO
06 SELECT

Stream);

07 in?item(y) THEN IF x # Y THEN out!item(x); x Y END
08 []in?eos THEN out!item(x); more := FALSE
09 END
10 END;
11 out!eos

END Suppress;

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. LF EXAMPLES 36

The first of the SELECT statements (Lines 01 to 04) handles the first item sent over the channel.

Duplicates are detected by comparing the value read from the channel in the previous iteration to

the one read in the current iteration. An eos causes the process to terminate.

3.6 Buffer

Example Buffer, is more complex. It implements a buffer as a sequence of Copy processes as

defined in Example 3.3. The buffer has a maximum size of 3 elements as indicated by constant n.

The predefined procedure NEWinitializes a new instance of a channel type or allocates space on the

heap for a pointer variable, depending on whether a port or pointer is passed to it as parameter.

This example introduces the concept of an array of channels. It is important to remember that

ports are references to channels, in much the same way as file handles are used to access files.

When a NEWcall is invoked, a channel is created.

(* Implements a buffer as a pipeline of Copy processes *)

CaNST

n = 3;

TYPE

Net ARRAYn OF Stream;

PROCESS Buffer(IN in Stream; OUT out

VAR

Stream);

a Net; i INT32;

BEGIN

NEW(a[O]); Copy(in,a[O]); i := 1;

WHILE i <= n DO

NEW(a[i]); Copy(a[i-1], a[i]); INC(i

END;

Copy(a[n-1], out)

END Buffer;

Upon examination of the above algorithm and the Copy example (Example 3.3), one finds that

items propagate through the Buffer process in much the same way as values in the bubble sort

algorithm. When the first item is sent to the Buffer process, this item is copied to channel a[O].

Similarly later values sent to Buffer are hooked by additional Copy processes. The input stream

of the following process always being the output of the preceding process.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. LF EXAMPLES 37

3.7 Recursive instantiation

This example demonstrates recursive instantiation of processes. It computes the final value in a

Fibonacci series. The result is stored in the variable i as instantiated in the process Caller. Notice

how communication replaces the use of reference parameters. The return value of each recursive

instantiation is transmitted via channels. A new set of channels -represented by ports g and h-

is created for each instance. These new ports are passed as parameters to each child instance. As

the recursion unwinds, the values are returned via port func. Port func was instantiated as either

g or h in the parent instance.

PROGRAMEx012;

(*

Calculates the n-th number in a Fibonacci series

*)

TYPE

CfuncVal [f (UINT32)];

PROCESSFib(OUTfunc CfuncVal; x UINT32);

VAR

IN g,IN h : CfuncVal;

y,z : UINT32;

BEGIN

01

02

03

04

05

06 h ? f(z);

07 func f(y+z)

END

ENDFib;

IF x <= 1 THENfunc f (x)

ELSE

NEW(g) ; Fib(g,x-l) ;

NEW(h) ; Fib(h,x-2) ;

g ? f(y);

PROCESSCaller;

VAR

IN result: CfuncVal;

i : UINT32;

BEGIN

16 NEW(result);

17 Fib(result,10);

18 result? f(i)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. LF EXAMPLES 38

END Caller;

BEGIN
Caller

END Ex012.

3.8 Simple device driver

This example demonstrates some of the basic ways in which to access hardware devices using

LF.It implements a simple process which displays the up-time of the computer on which it is

executing. To do this it needs access to the system timer interrupt, some I/O ports and the

memory mapped display. Some global declarations are shown below. A type which encompasses

the logical structure of an IBM PC, memory mapped display pages, is declared. A display page

on an IBM PC is logically an array of 2000 character and attribute pairs. The attributes refer to

the intensity or colour of the characters depending on the display type (colour or monochrome).

01 TYPE
02 DisplayPage = ARRAY 2000 OF RECORD
03 char,attrib: UINT8
04 END;

The next fragment (Lines 5 to 21) covers the initialisation code and variable declarations of

the process which does the actual work in the program. The process is called Handler. The

only significant code in this section is the initialisation of the channel associated with interrupt

32. This happens in line 15. In line 21 the PC programmable interval timer is programmed to

generate interrupts at a rate of 100Hz. The timer hardware is designed to generate an interrupt

32 upon expiry of a programmed interval. The IBM PC has a separate address space of 64kb,
which provides access to hardware devices via so-called ports. These ports are accessed via the

PORTIN and PORTOUT predefined procedures. The first parameter specifies the port and the second

parameter the value to read or write respectively. The actual values written to the ports are not

pertinent to this discussion.

05 PROCESS Handler;
06 VAR
07 vp: DisplayPage AT $b8000; (* video page *)

08 i,pulse UINT32;
09 h,m,s,d UINT8;
10 BEGIN
11 i:= 0;

12 WHILE i < 2000 DO

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. LF EXAMPLES 39

13 vp[i] .char := 32j vp[i] .attrib := 7j INC(i,l)
14 ENDj

(* initialize channel associated with interrupt 32 *)

15 NEW(IntChannels[32])j
16 pulse .- OJ s := OJ m := OJ h := OJ d O·,

(* There is no string type *)

17 vprO] .char := ORD('u')j vp[l] .char := ORD (,p ,) j
18 vp[2] .char .- ORD('-')jvp[3] .char := ORD('T') j
19 vp[4] .char := ORD('I')jvp[5] .char ORD('M') j
20 vp[6] .char .- ORD('E') j vp[7] .char := ORD(' I ,) j

(* set Programmable interval timer to 100Hz *)

21 PORTOUT(67,54)j PORTOUT(64,156)jPORTOUT(64,46)j

Lines 22 to 35 form the core of process Handler's functionality.It contains a non-terminating
loop, which continuously waits on interrupt 32 to occur. This isdone by blocking on the reception
of a message over the relevant channel (Line 23). After the reception of the message the relevant
variables to keep track of the elapsed time are updated (Lines 27 to 35). The INC predefined
procedure generates more efficientcode than would a simple add or subtract statement, such as
x : = x+1.

22 WHILE TRUE DO
(* block on interrupt msg *)

23 IntChannels[32] ? sigj

24 INC(pulse,l)j
25 IF pulse = 100 THEN
26 pulse := OJ INC(s,l) j

27 IF s = 60 THEN
28 INC(m,l) j s := O·,
29 IF m = 60 THEN
30 m := OJ INC(h,l) j
31 IF h 24 THEN
32 INC(d,l)j h := 0
33 END
34 END
35 ENDj

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. LF EXAMPLES 40

The finalsectiondoes the menial work of outputting the uptime on the display(Lines 36-52).

The main process is also listed(Lines 65-67). Since the array vp is declared at the address
of the actual memory mapped displaypage (Line 7), assigningvalues to the fieldsof the ap-
propriaterecord resultsin the displayof the desiredcharacters. For example the assignment
vp [8].char .- ORD(' 0') willwritethe character'0'at displayposition8 (coordinates(1,8)).

(* display the up-time *)

36 IF s > 9 THEN
37 vp[8] .char ;= ORD('O')+(s DIV 10); vp[9] .char ;= ORD('O')+(s MOD 10)
38 ELSE
39 vp[8] .char ;= ORD('O')+O; vp[9] .char .= ORD('O')+ s
40 END;
41 vp[10] .char ORD(' ;,);
42 IF m > 9 THEN
43 vp[ll] .char ;= ORD('O')+(m DIV 10); vp[12] .char ;= ORD('O')+(m MOD 10)
44 ELSE
45
46

vp[ll] .char ;= ORD('O')+O; vp[12] .char
END;

ORD('0')+ m

47 vp[13] .char ORD('; ,);
48 IF h > 9 THEN
49 vp[14] .char ;= ORD('O')+(h DIV 10); vp[15] .char ;= ORD('O')+(h MOD 10)
50 ELSE
51 vp[14] .char ;= ORD('O')+O; vp[15] .char ;= ORD('O')+ h
52 END;
53 vp[16] .char .- ORD('; ');
54 IF d > 9 THEN
55 vp[17] .char ORD('O')+(d DIV 100); vp[18] .char ;= ORD('O')+(d DIV 10);
56 vp[19] .char ;= ORD('O')+(d MOD 10)
57 ELSE
58 vp[17] .char ORD('O')+O; vp[18] .char ;= ORD('O')+O;
60 vp[19] .char .- ORD('O')+ d
61 END

62 END
63 END
64 END Handler;
(*---*)
65 BEGIN
66 Handler
67 END Ex016.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. LF EXAMPLES 41

3.9 A Linked List

The final example is that of a linked list. It shows how data encapsulation is achieved by using

processes. The process Q provides the encapsulation for a linked list. Operations on the list are

performed by sending messages to process Q, thereby providing a functionality similar to methods.

Note that a new list is created for each instance of the process. This is similar to multiple instances

of an object. Unfortunately no analogue for inheritance exists.

The example will again be split into sections. Lines 0 to 6 are just type definitions. The type

Node is the data type which is manipulated.

00 PROGRAMList;

01 TYPE

02 Node = POINTER TO NodeDese;

03 NodeDese = RECORD

04 next: Node;

05 b : UINT8

06 END;

07 QDesc [node(Node) J;

The process Q provides two operations on lists:

• Insertion is provided for by the first guard (Line 15) .

• Removal is provided by the second guard (Line 22).

The initialisation of the list is implicit as it takes place immediately after the instantiation of an
instance of process Q (Line 12). Notice the use of a boolean expression as part of the second guard

(Line 22). This provides a convenient and efficient mechanism to test boundary conditions with.

In this case whether the list is empty or not.

08 PROCESS Q(IN enQ

09 VAR

10 new,root Node;

11 BEGIN

QDesc; OUT deQ QDesc);

12 root := NIL;

13 WHILE TRUE DO

14 SELECT

15 enQ ? node(new) THEN

16 IF root = NIL THEN

17 root .- new

(* insert operation *)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. LF EXAMPLES 42

18 ELSE
19 new.next := root;
20 root := new
21 END

22 [J deQ ! node(root) & root # NIL THEN (* remove operation *)

23 root := root-.next
24 END
25 END
26 END Q;

27 PROCESS Control;
28 VAR
29 i UINT8;
30 nNode;
31 OUT enQ : QDesc;
32 IN deQ : QDesc;

33 BEGIN
34 i:= 0; NEW(enQ); NEW(deQ); Q(enQ,deQ);
35 WHILE i < 20 DO
36 NEW(n); n-.b i; n-.next .- NIL;
37 enQ ! node(n);3 INC(i,l)
38 END;

39 deQ? node(n);
40 WHILE n # NIL DO deQ ? node(n) END
41 END Control;

42 BEGIN
43 Control
44 END List.

3.10 Remarks

It is anticipated that the clear and concise syntax of LF would appeal to those programmers

familiar to Pascal and derived languages, such as Oberon. I hope that after examining the

examples presented in this chapter the reader will have an intuitive understanding of the nature

of LF. Syntactically and semantically LF is essentially an extension of Joyce. The extensions

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. LF EXAMPLES 43

are for the most part designed to access hardware devices. These extensions include the ability to

associate interrupts with channels, and the declaration of variables at absolute addresses.

occam has a more complex syntax than does LF/Joyce. Many of its constructs are however

found in LF and Joyce. The SELECT construct for instance has an analogue in occam -the

ALT construct. One of the most significant differences between occam and LF !Joyce is the fact

that occam supports parallelism at statement level. In LF /Joyce parallelism is at process level.

Moreover LF/ Joyce does not offer the ability to sequentially execute processes. The channel

typing mechanism of LF and Joyce is the same, but is much more rigorous than that of occam.

LF and Joyce support recursive process instantiation, occam does not. LF does not implement

device drivers as part of its runtime system. Given the intended use of LF (embedded work) this

is to be expected. Joyce and occam integrate drivers into their runtime systems.

Stellenbosch University http://scholar.sun.ac.za

44

Chapter 4

Runtime System

The most challenging part of this project was the development of the runtime system. The need to

implement a fast, efficient runtime system was offset by the necessity that the system be small and

relatively maintainable so as to make it easier to modify when testing new ideas or conducting

performance measurements. These and other problems will be discussed in this chapter. The

chapter begins with an overview of the design criteria for the system. This is followed by a brief

discussion of the structure of the runtime system and a design overview. Memory management

is examined next. In the section on process management, the mechanism of context switches

without hardware mechanisms is described. A discussion of scheduling is followed by a discussion

of communication. Amongst others, two different implementations of the SELECT construct are

discussed. This chapter concludes with a platform specific analysis of the overhead associated

with runtime checks, as well as the performance of the interrupt subsystem.

4.1 Design Criteria

A number of factors were taken into account during the design of the system:

1. Execution speed

2. Memory usage

3. Security

4. Maintainability and portability

Fast execution is preferable in any software system. When implementing a useful runtime

system it becomes essential. The efficiency of the runtime system greatly influences the efficiency

of any program written in the language which it supports. It is also required that the runtime

system be small in size and use little memory. A small runtime system improves execution speed

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 45

by improving the cache hit ratio. More importantly, the less memory the runtime system uses,

the more memory is available to the programmer. This is of special importance in embedded

applications. When implementing a secure language, a secure runtime system is indispensable.

Since this is an experimental implementation -which was likely to change significantly during

the evolution of the project- it was considered prudent to make the code as maintainable as

possible. Most of the runtime system is therefore implemented in a high level language. Only

speed critical portions of the runtime system are implemented in assembly language. Portability

arose as a beneficial side effect. The runtime system as a whole is of course not portable, but

significant portions (including a complete module) are.

The language Oberon [36] was selected for the implementation for the following reasons:

• It is a secure language. This makes it easier to implement a secure runtime system.

• A large base of software in Oberon, due to previous operating system projects, was available.

Many portions of code in the runtime system have their origin in this code.

• Oberon is well known to the author.

• Oberon compilers are available for many popular architectures. This is not of much value

in this experimental version of the system, but will of course make porting the system to

other architectures much easier.

4.2 The modular structure of the runtime system

The runtime system is divided into three modules: LFRuntime, LFHeap and LFProcess. LFRun-

time forms the basis for the rest of the runtime system. This module initialises the processor

and programmable interrupt controllers. It also contains the primitives to facilitate interrupt and

exception handling as well as the primitives for producing debugging information. This module

is very hardware dependent. However, it successfully abstracts the intricacies of the hardware

from the rest of the runtime system -promoting maintainability and portability in the rest of the

runtime system.

LFHeap, the heap manager, is entirely portable, as it contains only Oberon code and uses no

architecture specific constructs or features. The heap manager serves a dual purpose. It supports

the dynamic memory allocation primitives defined within LF and also supports the dynamic

memory primitives as used by Oberon in the runtime system. This pooling of resources, would

be dangerous were it not for the fact that both Oberon and LF are secure languages.

LFProcess is at the highest level of the runtime system. It implements the scheduler and the

communication primitives. All of the code is portable except for the speed critical code that

handles context switches and the copying of messages. A version of LFProcess that implements the

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 46

communication procedures in assembler and uses registers for parameter passing, was implemented

to measure performance.

4.3 Design overview

The system is tailored towards embedded systems. As such the runtime system must run on the

bare hardware and implement some of the functionality that one would find in an operating system.

Scheduling and interprocess communication (IPC) are the most noteworthy of these functions.

The entire LF execution environment (runtime system, program code, activation records and

heap) resides in a single linear address space. The use of paging was considered to be inefficient

and unnecessary. The LF language itself guarantees the memory security of each process. Page

tables take up memory which could be put to better use in embedded systems. Moreover, some

popular embedded processors, such as some ARM processors, do not support hardware memory

protection, or only implement primitive protection [28]. It is also unlikely that a need for virtual

memory would arise in an embedded application.

The target platform for the LF system is the i386EX embedded processor, which is essentially

a specialised version of the i386SX core. Instruction privilege levels are not used. The entire

LF system executes at the highest privilege level. LF does not allow the programmer to execute

privileged instructions. Most of these instructions are intended for memory and privilege level

management in any case. The notable exception is access to I/O ports. The need for low level

access to devices makes access control to ports impractical. The Intel i386 allows the programmer

to define a bitmap for each process which allows hardware access control to I/O ports. This is

not practical as the use of this bitmap makes the execution of hardware I/O instructions in the

order of four times slower. Moreover it forces the programmer to use the i386 task structure [20].

The use of tasks would have complicated the runtime system significantly and is less efficient than

the current implementation. Such hardware control of I/O access is also not available on many

embedded controllers, and would make the system less portable.

Procedure calls, rather than traps are used to access the runtime system. This is highly efficient,

as context switches are avoided in many cases.

4.4 Memory allocation

The memory map of the LF system is divided into three parts (as illustrated in Figure 19). The

first part (at the lowest offset in memory) contains the static image of the runtime system and

program code. This is loaded by the boot loader as discussed in Appendix B. The remaining

physical memory is divided into a heap area and stack area. The heap is allowed to grow from the

static image towards the top of memory. The stack grows from the top of memory towards the

heap. The stack contains the process and channel activation records (ARs) as well as the value

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 47

parameters passed to the processes upon instantiation. Processes are activated in a hierarchical
fashion. Each process that instantiates another process becomes the parent of the new process.
This logical tree structure is represented as a stack of activation records, one for each process.
The value parameters passed to the process upon instantiation immediately precedes its activation
record. The details of process management are explained in the next section. Section 4.9 covers
the details of channels and communication.

The heap manager is implemented as part of the runtime system. The manager is invoked by the
use of the seven pseudo procedures defined in Section 2.5. The heap is divided into two parts: a
lower and an upper half. The lower half is reserved for DMA buffers to accommodate the ISA
bus standard, which requires DMA buffers to be below the 16MB memory offset. The upper half is
used for dynamic allocation of variables. When the need arises some of the lowermemory reserved
for DMA may be released for use as part of the upper heap. This is done with the RELEASEDMA

system call (Section 2.5).

A first fit strategy is employedbecause it is simple and reasonably efficient. A free block descriptor

I>--Topo

(Parameters for Activation Record 0)
[Activation Record 0)
· ·· ·· ·· ·
(Parameters for Activation Record N)
[Activation Record N]

System Stack

I>-- Heapl

Process Heap

I DMABuffers

I
System Heap

Heap b

Program Code

Runtime System
__ Botto

Base of process heap

f physical memory

op! Stack base

ase

m of physical memory (OOOOOOOOH)

Figure 19: System memory layout

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 48

is located at the start of each free block of memory on the heap. The well known technique of

chaining block descriptors in a FIFO list is employed [2].

The use of a chain of free blocks provides for a convenient and elegant way of overcoming the

unfortunate physical memory layout of the IBM compatible series of PC's (on which the prototype

is implemented). These machines map hardware devices into memory between the offsets of 640

KB and 1MB. The various display adapters are a good example of this. All fragments of free memory

between 640 KB and 1MB and indeed any memory not occupied by the static image below 640 KB

are inserted into this list. Blocks of physical memory below the bottom of the start of the heap

may therefore be logically handled as though they were part of the continuous heap portion of the

memory.

It is important to note that the use of the AT construct (for defining variables at specific addresses)

may lead to interference between the runtime system and the LF processes. This may occur when

defining a variable within a portion of memory which forms part of the heap or runtime system

itself. This problem is avoided by only allowing AT declarations within the range of addresses that

is used by memory mapped devices. (640KB to 1MB for the PC). This is justified by the fact that

the AT construct is intended only to access memory mapped devices, although it introduces some

hardware dependence into LF.

4.5 Process Management

Processes divide the memory into separate, secure, address spaces and form the basis for imple-

menting concurrency. In addition, processes form the basis for abstraction in LF as was illustrated

in Chapter 3.

4.5.1 Process creation

An instance of a process is represented by its Activation Record (AR). The structure of an AR is

shown in Figure 20, a 't' indicating a pointer.

The mstate part of the AR is used to save the context of the process, whenever a context switch

is performed. The size field is the size in bytes of the AR. The BufAdr, NextQ and expr fields

are used during communication and will be discussed in Section 4.9. A process may be in one of

four states as indicated by the status field:

1. READY - It is ready for execution.

2. DONE - The process has terminated.

3. BLOCKED_ON....READ - The process is waiting to receive a message.

4. BLOCKED_ON_WRITE - The process is waiting to send a message.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 49

Flags

CS

EIP

Error Code

Interrupt no.

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

Stack & Local variables

Expr

tNextQ

tPrev >~
..-t-

l> MState
....
<:
I\)
..-t-

OldStack
0

tNext =~
tParent

CD~
0
'"l

ChildCount ~

BufAdr

Size

Status

Figure 20: Internal representation of processes

- - --
ARO AR! AR2 ARn- - --

Figure 21: Ring of process ARs

For the purposes of scheduling, ARs are placed in a doubly linked ring (Figure 21). The next (prev)
field points to the next(previous) AR within the linked list of ARs. A double link is used to allow
efficient removal of processes from the ring. The parent field points to the AR of the parent
of the current AR. Recall that processes are activated in a parent/child hierarchy. Note that an
execution stack as well as space for all the local variables are allocated within the AR of a process
instance. As LF does not implement procedures, a stack is not necessary. This issue is addressed
in Section 4.14.

New instances of processes are created in the followingmanner:

1. The (execution) stack is switched from the process wishing to create the new instance, to
the AR stack.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 50

2. The parameters for the process are pushed onto the stack.

3. The address of the process to be instantiated is pushed.

4. Space is allocated for the AR on the AR stack by decrementing the stack pointer. The
oldStack value of the AR is set to the old value of the stack pointer; that is the value before
the execution of step 2. This allows for an efficientway of deallocating the memory reserved
for the new AR.

5. The appropriate values, such as the instruction pointer (EIP) are set in the mstate part of
the AR.

6. The AR is inserted into the ring of ARs used for scheduling.

7. The ChildCount field of the parent process is incremented.

8. The stack is switched back to the process which requested the instantiation. This process
remains the active process.

The new process instantiation will only begin executing once it is scheduled.

4.5.2 Context switches

Context switches are performed in software. Hardware mechanisms in terms of 'task-structures'
are available on the i386, but are significantly slower than the software implementation outlined
here. The i386 task structure is also about 20% larger than the AR structure used in LF [20].

In order to understand the operation of these procedures some background is required as to how
interrupts are handled by the runtime system. Interrupts are handled in two phases. A generic
mechanism traps hardware and software interrupts as wellas machine exceptions. This mechanism
allowsan interrupt handler written in Oberon to be associated with each of the possible interrupts
or machine exceptions. The low-levelhandler passes control to this high level-handler (an Oberon

procedure) after doing some initial processing to interface with the high level code.

Whenever an interrupt is invoked either by the hardware or software, the processor pushes three
values on the execution stack: the flags, CS(codesegment) register and the instruction pointer
(EIP register). In the event of certain machine exceptions the processor will also push an error
code onto the stack. The low-levelinterrupt handler now pushes the interrupt number and in the
case where an error code was not supplied pushes a zero on the stack to maintain alignment. Next
all the general purpose registers are pushed onto the stack. Finally, a CALLinstruction is issued
to whichever high-level interrupt-handler was installed by the higher layers of the runtime system.
This extra instruction adds about 4.8 percent of overhead to the servicing of interrupts, when
assuming an empty handler. This overhead is not much when one considers the benefits of the
ability to interface with high level code.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 51

56 EFLAGS Pushed by INT XX
52 CS Pushed by INT XX
48 EIP Pushed by INT XX

44 Error code Pushed by low level handler
40 Int no Pushed by low level handler

36 EAX
32 ECX
28 EDX
24 EBX
20 ESP
16 EBP
12 ESI
08 EDI

General purpose registers pushed by low level handler

04 EIP
00 EBP

return address pushed by call to installed high level handler
pushed by entry code to procedure
local variables of Oberon procedure-x

Figure 22: State of stack during context switch

PROCEDUREHandlerC mMState);
BEGIN

m := some_otherJnstate
ContinueC m.esp-32)

ENDHandler;

Figure 23: The skeleton of an interrupt handler.

The contents of the stack upon entry to the high level interrupt handler is listed in Figure 22.

The offsets are numbered relative to the EBP register which indicates the base of the procedure

activation record.

Notice the equivalence of the structure in Figure 22 and the mstate structure in Figure 20. This

allows the interrupt handler to access the context information of the interrupted process as a

parameter. The skeleton of an interrupt handler is presented in Figure 23. The parameter m is

used to access the context information of the process. Interrupt handlers are not allowed to return

with a normal procedure return instruction (as generated by the Oberon compiler). Instead a

special procedure, Continue, must be called, which uses the IRETDinstruction. The EFLAGS,CS

and EIP values are popped from the stack and the processor then jumps to the address specified

by EIP. A context switch to process P is achieved by calling Continue with the stack pointer

value associated with P as parameter. This stack pointer value is contained in the mstate that

was saved when the process was interrupted. Note that the '-' before the procedure name in

Figure 24 indicates to the Oberon compiler not to generate a procedure activation record, but

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 52

PROCEDURE -ContinueC stackPointer : LONGINT);
POP ESP set ESP register to parameter
PoPAD
ADD ESP,8
IRETD

END Continue;

restore general registers
pops the error code and intno values

Figure 24: Continue

rather to insert the code of the procedure body at the point where the procedure would have been
called. All hardware and software interrupts are handled by the scheduler. Machine exceptions
are handled by a special exception handler procedure that produces debugging output and then
halts execution.

4.5.3 Process termination

A process may terminate only when all its child processes have terminated. The last sequence
of machine code for each process invokes the ProcDone system call. This sets the state of the
process to DONE and decrements the ChildCount field of the parent AR. When the process is again
scheduled its ChildCount field is compared to O.An activation record with no children and a state
of DONE is removed from the scheduling ring, and its process record destroyed, thereby releasing
the memory associated with it. The release of memory is accomplished by simply setting the
freemem value to the oldstack value contained in the AR of the process.

The parent/child structure of the process activation tree guarantees that the above protocol will
not destroy a channel that is in use. Processes can only share channels when a port variable
relating to the channel is passed as a parameter. Since only value parameters are allowed, the
parent process is forced to initialise the port and instantiate the child with this port as parameter.
The parent is therefore always the owner of the port and as noted above cannot terminate before
its children.

4.6 Interrupt handling and Devices

SinceLF is intended for embedded systems, efficientaccess to hardware devices is essential. Most
peripheral devices are interrupt driven. Tanenbaum [31]noted that:

'Interrupts are an unpleasant fact of life. They should be hidden away in the bowels
of the system, so that as little as possible of the system knows about them.'

This advice was followedin the design of the LF interrupt mechanism. An interrupt handler is a
process like any other. The runtime system (more specifically the scheduler) converts interrupts

Stellenbosch University http://scholar.sun.ac.za

to messages that may be received by the appropriate interrupt handler (Figure 25). This makes
the system as consistent as possible and also ensures a high degree of abstraction. An array of
pointers to channels is kept, one channel per interrupt. This array is made visible to the user as a
predefined array of ports called IntChannels (Section 2.5). This interface is platform independent,
except for the size of the array.

,-----~'--------,---,--------'-----------'J
Scheduler ---r-------- Channel Descriptor

Figure 25: The interrupt mechanism

Note that the actual channel descriptor is only created once a NEWcall is issued so that the memory
overhead of the above is minimal. Only MaxInt pointers are needed as opposed to MaxInt instances
of channel descriptors. To ensure acceptable performance, the scheduler immediately passes control
to the appropriate interrupt handling process, provided that it is blocking on a Hook statement.
If no process is ready to receive the interrupt, then the next READYprocess is selected. Scheduling
will be discussed in the next section.

Up to one interrupt is buffered (by the runtime system) per channel. This helps to alleviate the
loss of interrupts during periods of heavy processing loads, and is essential in the implementation
of the SELECTconstruct, as will be explained in Section 4.9.2. It was decided to limit the amount of
buffering because unbounded buffering could cause the system to run out of memory. Additionally,
any appreciable amount of buffering causes a latency between the occurrence and the servicing of
an interrupt.

Scheduling takes places on a round robin basis. This is a simple strategy with minimal overhead.
With each invocation of the scheduler the next process in the READYstate, i.e. not waiting for
communication, is scheduled. Interrupts are an exception to this rule. Whenever an interrupt
occurs, the scheduler will activate the associated handler if possible. The only time when this will

CHAPTER 4. RUNTIME SYSTEM

Runtime system

Runtime system generic
interrupt handler

4.7 The scheduler

53

CHandler Process

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 54

not be possible is when the system is busy servicing another interrupt and therefore not currently

blocking on the channel associated with the interrupt. Time slicing is not employed.

The scheduler is invoked upon each communication statement, or when a hardware interrupt

occurs. This means that after each Bang/Hook, a context switch occurs. A SELECTstatement is

treated as an indivisible unit. When all guards have been evaluated without success a context

switch occurs. Alternately a context switch occurs after the successful evaluation of a guard and

the completion of its command sequence.

00 PROCEDUREReqHandler(s : MState);
(* context is passed as parameter's' *)
01 BEGIN
02 currentProcess.mstate:= s;

03 IF s.intno # 42 THEN (* field IRQs & other interrupts *)
04 <ACKNOWLEDGE INTERRUPT CONTROLLER HARDWARE>

05 IF (IntChannels[i] # NIL) & (IntChannels[i] .symbols[O] .readerFirst # NIL) THEN
06 currentProcess := IntChannels[i] . symbols [0] .readerFirst;
07 <REMOVE READER FROM QUEUE>
08 currentProcess.status:= ready
09 ELSIF IntChannels[i] # NIL & (IntChannels[i] .symbols[O] .writerFirst NIL) THEN
10 <ENQUEUE A DUMMY PROCESS INTO THE QUEUE ASSOCIATED WITH THE CHANNEL>
11 END;
12
13 Continue(currentProcess.mstate.esp-32)
14 END;

15 IF currentProcess.status = done THENRemoveProcess(currentProcess) END;
16 REPEAT
17 currentProcess := currentProcess.next
18 UNTIL currentProcess.status = 0;

19 Continue(currentProcess.mstate.esp-32
20 ENDReqHandler;

Figure 26: The scheduler

When no processes are in the READYstate, the system is not necessarily in deadlock, as a process

may be waiting on an interrupt. The runtime system therefore creates an additional dummy

process upon startup of the system. The scheduling of a dummy process was the easiest way of

circumventing this problem.

The current scheduler is very simple, but may be easily extended to include facilities such as

priorities and time-slicing. An outline of the scheduler is shown in Figure 26. Phrases enclosed

within a ,<, , >, pair are descriptions of pieces of code that were omitted in order to simplify this

discussion.

In line 2 the state of the currently executing process is saved. The variable currentProcess is

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 55

a pointer to the AR of this process. In line 3 the number of the interrupt which invoked the
scheduler is examined to determine whether it was triggered by communication ('s. intno = 42')
or not. If communication primitives did not trigger the scheduler, lines 4 to 14 are executed: In
line 5 a test is performed to determine whether a process is blocking on the relevant interrupt.
If one is, it is directly scheduled (lines 6 to 8). If not then a dummy process is enqueued in the
channel to represent the interrupt. Control is then passed to the interrupted process in line 13.
The constant 32 in lines 13 and 19 is used to adjust the stack pointer for the stack being switched
to, for the correct execution of the POPADinstruction in Continue.

The other scenario occurs when the scheduler was invoked due to a communication primitive. In
this case lines 15 to 20 are relevant. In line 15 a test is performed to see whether the process
should be destroyed or not. In lines 16 to 18 the next process eligible for execution is selected.
Control is transferred to this process in line 19.

4.8 Fairness

Fairness (in the context of scheduling) refers to the guarantee that a process P which is eligible for
scheduling, will indeed eventually be scheduled regardless of the behaviour of the other processes
running concurrently with P [3]. Two forms of fairness are: Weak fairness and Strong fairness.
A scheduling policy is weakly fair if it will eventually schedule a process which remains eligible

for execution indefinitely. Remaining eligible for execution indefinitely means that once it becomes

eligible for execution, the process never again enters a state where it is no longer eligible for

execution. A scheduling policy is strongly fair if it will eventually schedule a process which is

eligible for execution infinitely often.

LF provides no guarantees as to the fair scheduling of processes. A FIFO based policy is adhered
to. The FIFO (FCFS1) scheduling policy is weakly fair by construction. The non-determinism
introduced by interrupts may lead to the degradation of weak fairness. Moreover in the unlikely
event of the system being swamped by interrupts, only processes waiting on interrupts will be
scheduled. The other processes in the system are subject to starvation in this case. Starvation
can also be introduced by the interaction of processes not related to interrupts. If communication
between two specific processes remains feasible most of the time, other processes may be starved
as well. An additional complication arises when a process is locked in a non-terminating loop
which does no communication. When no interrupt handlers are defined, such a system will not
proceed in its execution.

Note that weak fairness does not guarantee 'quality of service'. Processes, such as device drivers
that rely on hardware polling, would generally not run effectively as they are unlikely to be
scheduled often enough. Moreover, they might be scheduled erratically. Also, in the current
implementation, SELECT statements have an implicit priority order built into them. Guards are

1First come first served

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 56

evaluated from the top. It is not known how to improve fairness in this case without sacrificing

efficiency.

4.9 Communication

Processes in LF communicate by using synchronous message passing. Since this is the only

means of inter-process communication, an efficient implementation is essential. Communication

is achieved by manipulating channel and process activation records. Channels are implemented

by associating two FIFO queues with each symbol within the channel's alphabet, one queue for

writers to, and one queue for readers from the channel. Note that the semantics of LF makes it

impossible for both queues to be in use at the same time. The NextQ field of the AR is used to link

processes inserted into the FIFO queue together. Operations on FIFO queues are more expensive

(in terms of memory requirements and execution time) than those for LIFO queues, but a FIFO

implementation does promote a measure of fairness. The use of two queues might seem wasteful,

but it saves the effort and runtime overhead of explicitly tracking which queue contains readers

and which contains writers. Only one word (32-bits) of extra memory is used 2.

4.9.1 Simple Communication

Simple communication is implemented by the BangIt and RookIt system calls. Bangit is executed

by a process wishing to send a message. If no process is ready to receive the message, the sending

process is blocked and its AR is inserted into the queue corresponding to the symbol which it wants

to send. If however, a process is ready to receive the data, i.e. it is contained in the appropriate

queue, the data is copied directly from the sender to the receiver. The sender is unblocked and

removed from the queue corresponding to the symbol sent.

The bui Adr field in the AR of a process is used to store the source or destination addresses

of data that needs to be sent over the channel, depending on whether a BangIt or RookIt was

executed. The buffer address of the process executing the Banglt/Rooklt is passed as a parameter

to these procedures. When a process is blocked this value is stored in buiAdr. Therefore upon

feasible communication the buffer address of one process is stored in its activation record (the

blocked process) and the buffer address of the complementary process is available as a parameter.

Figure 27 shows a channel which contains two symbols in its alphabet (SymboLO and SymboL!).

SymboL! is buffering three processes that wish to read this symbol from the channel. SymboLO

is buffering two processes that wish to send this symbol over the channel. RookIt essentially does

the opposite of Banglt. A simplified version of RookIt is listed in Figure 28. In line 04 the queue

corresponding to the appropriate symbol is examined to determine whether it contains a blocked

writer. The parameter symbol serves to identify the correct symbol from the alphabet. If a writer
2The Oberon compiler pads its record fields to 32-bit boundaries, so a boolean field would also use 32-bits of

memory

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 57

Size

t Symbols

ReaderLast

c:
~ReaderFirst..... c: _I AR .1 _I AR 1 _I AR I_I

1 1 1 1 1e..c
8 WriterLast~

1-0 IJj
e....
Cl.·e
OJ Writer Firsttil...
8...==<':I..c
U

ReaderLast

ReaderFirst
Q

1
'0..c
8 WriterLast~ c:IJj

~WriterFirst
c: 1 AR .1 1 AR I1 1 1

Figure 27: Communications channels

is blocked, then the data is copied (line 05), the writer is unblocked (line 06) and removed from
the queue (line 07). If a writer is available, then the process executing the HookIt -denoted by
currentProcess- is inserted into the appropriate queue (lines 09 to 17).

An interesting aspect of the queue management associated with the channels, is that it takes
approximately 5 times as long to insert a process into a queue (when it blocks) and again remove
it when it is allowed to continue, than it does to compare whether a process is ready for execution
i.e. compare the status field of the process to READY. This implies that for a small amount of
processes it is more efficientnot to remove them from the scheduling queue, when they are inserted
into the channel queues. 'A small number of processes' is of course not a precise definition. A
more quantitative argument entails the following:

As a first approximation assume that no hardware interrupts are enabled. This means that the
scheduler is only invoked when the currently executing process is blocked due to the infeasibility
of communication. In order to avoid deadlock at least one other process must be in the READY

state. In order for 5 successive unsuccessful comparisons to occur at least 7 processes must exist

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 58

01 PROCEDUREHooklt(eh Channel; bufAdr,sz,offset LONGINT);
02 BEGIN
03 ASSERT(eh # NIL);
04 IF eh.symbols[offset] .writerFirst # NIL THEN
05 MoveN(eh. symbols [offset] .writerFirst.bufAdr,bufAdr,sz);
06 eh. symbols [offset] .writerFirst.status := ready;
07 eh. symbols [offset] .writerFirst := eh.symbols[offset] .writerFirst.nextQ
08 ELSE
09 eurrentProeess.bufAdr:= bufAdr;
10 eurrentProeess.nextQ:= NIL;
11 eurrentProeess.status:= bloekedOnRead;
12 IF eh. symbols [offset] .readerFirst = NIL THEN
13 eh. symbols [offset] .readerFirst := eurrentProeess
14 ELSE
15 eh.symbols[offset] .readerLast.nextQ := eurrentProeess
16 END;
17 eh.symbols[offset] .readerLast .- eurrentProeess
18 END;
19 ENDHookIt;

Figure 28: RookIt

in the system. If we assume that at least a third of processes are ready for execution then, in the

worst case, 21 processes are needed to encounter 5 successive blocked processes. The likelihood

that 5 successive processes will all be blocked is also low. This likelihood clearly increases with

the number of processes, but it is unclear how this 'cross over point' can be determined without

an extensive analysis of the program that is to be implemented. When one takes the occurrence

of hardware interrupts into account the only significant change to the model is the introduction

of some of randomness in the order of scheduling. The relative density of READYprocesses is not

expected to change. The choice of queue management is left to the implementer as it is not part

of the language definition. I chose the simpler and -for systems with relatively few processes-

more efficient implementation, and therefore do not remove blocked processes from the scheduling

queue.

4.9.2 Implementing the SELECT

The SELECTconstruct is implemented using the ReadPoll/WritePoll and CommitReadPoll/

CommitWri tePoll system calls. SELECTstatements are not allowed to synchronise. The ratio-

nale behind this decision was explained in Section 2.1.2. This constraint facilitates a relatively

simple implementation.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 59

Implementation One

A process wishing to perform a SELECTcalls ReadPoll or Wri tePoll for each guard, one after the

other, depending on whether a Hook or Bang is encountered. These procedures interrogate the

appropriate queue in the channel corresponding to the referenced symbol. If communication is

feasible, i.e. another process is blocked in the relevant queue, the message is copied and the value

TRUEis returned. If communication is not feasible then FALSE is returned. The optional boolean

expression of the guard is then evaluated, using short circuit evaluation. If the guard evaluates to

TRUEthe appropriate Comnrit call is issued. ComnritWri tePoll/Co=i tReadPoll does the necessary

housekeeping to unblock the communications partner. If the guard evaluates to FALSE the states

of the queues and processes are not changed, and the following guard is processed. If all the guards

in a particular SELECTfails the scheduler is invoked as the current process is blocked.

Implementation Two

The implementation outlined above is simple, but has some deficiencies. The most obvious in-

efficiency is the need to copy messages for every evaluation of every guard. It makes the imple-

mentation much easier as the values needed to evaluate the boolean expression in the guard are

available as a local variable to the receiving process. For small messages (a few bytes) the overhead

is relatively small. For larger messages the overhead becomes prohibitive. Clearly a more efficient

mechanism is needed.

The boolean expression needs to be evaluated before any copying is done. This is achieved by

modifying ReadPoll and Wri tePoll to return a reference to the AR at the head of the appropriate

queue -a NIL pointer indicates an empty queue and therefore infeasible communication. In the

case of a ReadPoll the returned pointer is used to access the variables in the address space of the

sending process. For WritePoll the needed data is of course already in the local address space.

The actual copying of data is performed by the appropriate Comnri t primitive.

Another -less obvious- problem with Implementation One occurs when hardware interrupts are

encountered. A normal Hook statement operating on a channel coupled to an interrupt works

fine as it will block while waiting for the interrupt or alternatively eventually service a buffered

interrupt. This was explained in Section 4.6. However, a SELECT containing a guard with similar

functionality will not work as efficiently, and significantly increases the likelihood of missing inter-

rupts. The problem arises because SELECTconstructs do not block on a specific guard, and insert

the process record in the appropriate queue. The only way a SELECT can accept an interrupt is

if it were previously buffered by the runtime system. This introduces a time delay between the

occurrence of the interrupt and the actual servicing by the appropriate process. The unpredictable

scheduling behaviour of the system compounds the problem.

This appears to be an inherent problem with the SELECT construct. One possibility would be to

keep track of each process that services interrupts, as well as the guards in these processes that

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 60

refer to the channel associated with the interrupt. The scheduler would then be able to directly
schedule the pertinent process. Only one process can service a specific interrupt. The problem
with this mechanism, however, is to determine whether the process is indeed busy processing the
SELECT at the time the interrupt occurs. Clearly control can only be passed to the process if this
is the case. An obvious solution to the problem would be to add an additional status value to
the activation records. SELECT _INT could indicate that a process is currently processing a SELECT

containing a reference to a channel associated with an interrupt. When an interrupt occurs the
runtime system could then pass control directly to where the relevant guard is evaluated. A
significant constraint then needs to be imposed on the use of SELECTS and interrupts. Only one
guard may be associated with any specific interrupt within a given process, otherwise it is unclear
to where control should be passed. The proposed solution should solve the problem, but has
not been implemented. In occam a similar constraint to the one above is imposed on the ALT

construct -the equivalent of the SELECT. The same channel may not be referenced by multiple
guards in the same ALT construct.

4.10 Communications performance

The speed of communication is an essential criterion for the evaluation of the LF system, as it has
a profound impact on the performance of the system as a whole. An experiment was conducted
in which Oberon code executing 10000 procedure calls with parameters of varying size was
compared to the communication between two LF processes using messages of corresponding size.
In this experiment simple bangs and hooks were used. Message/parameter sizes varying between
1 and 512 bytes were used. Two sets of measurements were taken. In one set the parameters for
the communication primitives were pushed onto the execution stack, and in the other set, these
parameters were passed in registers.

Rather than concentrating on absolute values, this section tries to compare the use of IPC as
paradigm to that of procedure calls. Please note that the values presented in this section should
not be taken as precise measurements. Values are only accurate to the nearest millisecond, as this
is the granularity of the timer used.

Three graphs are presented:

• Figure 29 shows the effect of using registers as opposed to the stack to pass parameters to
the communication procedures.

• In Figure 30 the efficiency of IPC is compared to procedure calls.

• In Figure 31 the ratio of IPC execution times to procedure call execution times for both
implementations is presented.

The graphs shows nothing unexpected. The values for both implementations converge for large
buffers (Figure 29 and Figure 31), because the relative advantage of passing values in registers

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 61

1250

1200

1150

1100

1050

en 1000.§.
Q)

E 950.,

900

850

800

750

700
0

Stack --+--
Registers ---x---

,

-. -. -.
"''x- ----- -----)(----------~--

2 3 4 5 6 7 8 9

log2(buffersize)

Figure 29: IPC with and without registers to pass parameters

becomes negligible relative to the time consumed to actually copy a large message. Similarly,
IPC performance compares more favourably to procedure call times for large buffers, as again the
relative overhead of IPC become less significant when compared to the time to copy the data. From
Figure 30 it is also clear that a significant relative penalty is incurred for very small messages -1
or 2 bytes. The reason is that significantly more time is spent setting up the copying of data than
is spent on copying. A contributing factor to the poor performance is the fact that the code which
performs the copying of data during IPC is less efficient for such small messages. In Section 4.12.7
issues relating to message sizes are discussed. The most important observation that may be made
from Figure 30 is not that that IPC is significantly slower than procedure call-this is inevitable-,
but that difference in speed is acceptable. As far as simple I/O is concerned, it was found that with
buffer sizes of 16 and 32 bytes, IPC is only about 9 time slower than procedure calls. The ratio
improves for larger values. One has to bear in mind that communication is an inherently expensive
operation, which not only passes data between processes, but also synchronises them. To achieve
this while still not being an order of magnitude slower than a basic conventional programming
construct is quite difficult.

The above experiment was repeated using a SELECT, with a single guard. Multiple guards will be
dealt with shortly. The results are listed in Figure 32. Considering the flexibility and complexity
of the SELECT construct, it performs surprisingly well when compared to simple communication.
In Figure 33, the relative overhead of a SELECT containing a single guard to a simple Hook is

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM

1400

1200

1000

(j)
800

.s
al
E
"" 600

400

16

14

12

10
.2
'§

8

6

4

2
0

200

Stack ---+--
Registers ---)(---

,
//'

,//'/'/>/

-----------x. ~----------)(----------*---------_)(-----------x-----------><'

OL- J_ -L ~~ ~ _L ~ ~ _L ~

o 2 3 6 74 5

log2(buffersize)

Figure 30: IPC vs. Procedure Call

Ratio for Stack ---+--
Ratio for Registers ---)(---

.....,....
<.

'\)(-----------~"

"""'''''''

""""

",

"",,-,-

2 4 6 83 5 7

log2(buffersize)

Figure 31: IPC to Procedure call ratio

8

62

9

9

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 63

1300

1250

1200

1150

1100
Ui'.s 1050Ql

E..
1000

950

900

850

800
0

SELECT 1 guard -+--

2 3 4 5 6 7 8 9

log2(buffersize)

Figure 32: Times for a SELECT with one guard

plotted with respect to the size of the data copied (as in the above graphs). The overhead varies
between about 5 and 13percent. As is to be expected the penalty for larger buffers is significantly
less than that for small buffers.

The final experiment in this section sheds some light onto the performance of a SELECT with
multiple guards. The code in Figure 34 was used to test this performance. The message twas
varied to force the selection of the different guards. As is to be expected performance is a linear
function of the number of guards. This evident from Figure 35.

The linear scaling of execution times for the SELECT with the number of guards make estimates of
the relative impact of the construct in programs easy to assess. This is good news in performance
critical code. An optimising compiler can also help to improve these times. At the moment
the stack is still used for some parameters, and even the passing of values in registers which is
implemented incurs some unnecessary overhead as a lot of redundant register shuffling is done.
Refers to Section 4.14 for a discussion of stackless execution of LF processes.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 64

14

13

12

11
"0

'"Ol

-E
Ol 10>
0
Ol
Cl

.l!l 9c:
Ole
Olc.

8

7

6

5
0

% overhead with respect to simple I/O --+--

2 3 4 5 6 7 8 9

log2(buffersize)

Figure 33: Percentage overhead of select relative to simple I/O

4.11 Runtime checks

Runtime checks form an integral part of the LF system. This section provides some background

to the clock cycle analysis of the checks that are performed in Section 4.12

• Deadlock detection is not performed, because it would be impractical. A process waiting on

an interrupt would not be ready to be scheduled. It is conceivable that no other processes

can advance until the process waiting on the interrupt proceeds. The possibility therefore

exists that periodically no processes are ready for execution. Clearly taking this scenario

into account will complicate deadlock detection significantly.

• Processes containing variables defined at absolute addresses (" AT" construct) are not al-

lowed to be invoked more than once. A runtime check is done whenever such a process is

invoked. The overhead associated with this may be ignored, as it is done only once for each

instantiation of a limited number of processes.

• Memory checks are also done. Essentially when a new process is created, or when memory is

allocated on the heap, the system checks whether enough memory is available. This amounts

to checking whether the allocation of a new entity would lead to a stack and heap collision.

The overhead associated with this is negligible when compared to the overhead of actually

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 65

TYPE
Msg = [n(UINT32)];

PROCESS Sender(OUT m Msg);
VAR

i: UINT32;
t : UINT32;

BEGIN
i := 0; t .= 1;
WHILE i < 10000 DO

m ! net);
INC(i,1)

END;
HALT(3)

END Sender;

PROCESS Receiver(IN m Msg);
VAR
t : UINT32;

BEGIN
WHILE TRUE DO

SELECT
m ? n(t) Bl t = 1 THEN
[] m ? n(t) Bl t = 2 THEN
[] m ? n(t) Bl t = 3 THEN
[] m ? n(t) Bl t = 4 THEN
[] m ? n(t) Bl t = 5 THEN

END
END

END Receiver;

Figure 34: Test program for multiple-guard SELECT

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 66

1750

1700

1650

1600

1550
éi).s 1500<Il
E
"" 1450

1400

1350

1300

1250
1

Multi guard --I-

1.5 2 2.5 3
number of guards

3.5 4 4.5 5

Figure 35: Select with multiple guards

creating a process. It does become more prominent when allocating heap memory, but is
still of little consequence.

• Overflowcheckson arithmetic operations (addition, subtraction, multiplication and division)
may lead to significant overhead depending on the frequency of such operations.

• Array index checking similarly incurs significant runtime overhead. Unfortunately, as with
overflowchecking, this test is indispensable in guaranteeing the integrity of the system.

• A runtime check for references to uninitialised ports is done. This represents substantial
overhead as a test is done for each reference to the port, but is necessary to ensure security.
A possible optimisation would be to only perform the test for the first reference to the port
within each process. There is no way that a previously initialised port can be de-initialised.
This would eliminate most of the overhead, but would complicate the compiler significantly.

• A similar check is done for dereferencing of NIL pointers. The overhead is identical to that
of checks for uninitialised ports.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 67

4.12 Clock cycle analysis

In this section the execution of pertinent instruction sequences are discussed in terms of the Intel
i386 architecture. This is done to determine the effect of the required runtime checks on the sys-
tems performance. Other hardware specific topics such as the determining the maximum interrupt
throughput is also examined. Specifically data is presented as pertaining to the 386EX embed-
ded controller, which represents a typical target platform for LF [19]. Table 6 gives the number
of clock cycles required for a number of important instructions on the Intel 386EX embedded
processor.

The list of clock cycles are subject to the following assumptions (found on page E-1 of the
manual)[19]:

• The instruction has been prefetched, decoded and is ready for execution

• Bus cycles do not require wait states

• There are no local bus HOLD requests, delaying processor access to the bus

• No exceptions are detected during instruction executions

• Add one clock cycle when an effective address calculation requires more than one general
register component e.g [EAX+2*EDX]

The values also do not reflect the effect of misaligned data (page E-1 in the Intel manual[19]).
The above assumptions represent a significant simplification of the execution environment and
is in no way a realistic representation of actual execution times. They do however represent a
consistent way of determining the relative costs associated with instruction sequences. Real
world complications to the model are incorporated as of Section 4.12.6.

Please note that only addressing modes and instruction modes relevant to LF are listed. Cycles
specified as a base value, n, plus an m value (e.g 7+m), indicates that the instruction requires n
cycles plus one cycle for each component of the next instruction. It is unclear why the format of
a followinginstruction influences the current instruction. It is suspected that it has something to
do with the alignment of instructions in the prefetch buffer or execution pipeline. Components of
an operand are defined as follows:

• An immediate operand constitutes a component e.g the 32 in MDV EDX,DWDRD 32.

• A displacement constitutes a component e.g. the 123 in MDV EAX, 123 [EDX] .

• Every other byte of an instruction constitutes an additional component.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 68

Instruction 386EX Notes
ADD 2 Register to Register

7 Register to Memory
6 Memory to Register
2/7 Immediate to Register/Memory

CALL 9+m Call direct
CLI 8
CMP 2 Register to Register

5 Memory to Register
6 Register to Memory
2/5 Immediate to Register/Memory
2 Immediate to accumulator

INT n 71 Via Interrupt of Trap gate, Same privilege level
INT 3 71 ditto
INTO 3 No overflow

71 Overflow. Via Interrupt or Trap gate
IRET 42 Return to same privilege level
JB 3 Not taken

7+m Taken
JMP 7+m Short or Direct within segment

9+m Direct Register/Memory within segment
LEA 2 Load address
MDV 2 Register to Register

2 Register to Memory
4 Memory to Register
2 Immediate to Register

MUL 12-17 Multiplier is 8 bit Register
15-20 Multiplier is 8 bit Memory
12-25 Multiplier is 16 bit Register
15-28 Multiplier is 16 bit Memory
12-41 Multiplier is 32 bit Register
17-46 Multiplier is 32 bit Memory

POP 5/7 Pop into Register/Memory
7 Pop into Memory
6 Pop Register (short form)

POPAD 29 Pop General purpose Registers
PUSH 5/7 Push Register/Memory

2 Register (short form)
PUSHAD 18 Push General purpose Registers
RET 12+m Within segment

12+m Within segment adding Immediate to ESP
SHL 3/7 Arithmetic shift Register/Memory by Immediate
ST! 8

Table 6: Instructions and clock cycles on the i386EX

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 69

4.12.1 Effective overhead of runtime checks

The effective overhead of the most prevalent runtime checks (Index, overflow and NIL checks)

are discussed in this section. The less frequently encountered checks such as the check for the

availability of memory are not examined here. This is motivated by the fact that due to the

presumed infrequency of these tests, they are expected to have a limited impact on the general

efficiency of the program. The fact that they appear sporadically in programs also makes it very

difficult to determine their actual relevance in performance evaluation.

4.12.2 Index, overflow and NIL-dereference checks

Index checks have the following general form:

CMP register,immediate
JB 3
PUSH 7
INT 3

compare index register/immediate
jump over the following two instructions
push 7 to the stack
force an interrupt 3

Figure 36: Index checks

When comparing this code sequence with Table 6 one finds that it requires 5 cycles when the

index is within bounds and 78 cycles when not. The cycles consumed when a runtime assertion is

violated is of no consequence to the performance of the system and will therefore no longer form

part of this discussion. NIL-dereference checks are similar:

CMP register,O
JNE 3
PUSH 84
INT 3

compare index register/immediate
jump over the following two instructions
push 84 to the stack
force an interrupt 3

Figure 37: NIL checks

A clock cycle analysis yields the same results as for index checking. Overflow checking consists

of a single INTO instruction which translates to 3 cycles when no overflow occurs 3. Three to five

clock cycles may not amount to much in most programs. However, if programs make frequent

use of arrays or pointers, such checks may severely impact on the performance of a program. An

example should illustrate the point. The code listed below, produces the assembler code listed in

Figure 39.

3This is the case for unsigned data. Tests on signed data results in code requiring the same number of cycles.
It has been omitted for the sake of brevity

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 70

VAR
A : ARRAY 10 OF UINT32;
j,z: UINT32;

BEGIN
z := A [jJ

Figure 38: A simple array reference

MDV EBX,-44[EBP]
CMP EBX,10
JB 3
PUSH 7
INT 3

value of j
index check (3 cycles if passed)

MDV EAX,EBX
MDV EBX,4
MUL EBX

multiply by size of array element

LEA ECX, -4 [EBP]
ADD ECX,EBX
MDV ECX, [ECX]
LEA EDI,-48[EBP]
MDV [EDI] ,ECX

address of A
add offset
get value

assign

Figure 39: Index checks

The instruction sequence requires 64 clock cycles in total, implying that the overhead of range

checking is in the order of 5 percent. When the multiplication is replaced by a shift operation, as

is done by the compiler, the instruction sequence requires 26 cycles. The overhead increases to

about 12 percent, which is significant.

The effect of overflow checking is even more pronounced. An INTO instruction would typically

be emitted after each ADD and SUB 4 instruction and also after each MUL instruction. Table 6
indicated that this instruction requires 3 cycles to execute. This compares favourably to a MUL
instruction, but executes in more cycles than is required by an ADD in most cases.

4.12.3 Overhead of variable initialisation

The zero initialisation of variables plays a prominent part in the security of the LF system. This

issue was addressed in Sections 2.1.3 and 4.11. The overhead associated may be relatively high in

terms of instruction counts, but one must see this as part of process instantiation. When seen in

this light these instructions have relatively little impact on execution times. Moreover, they only

execute once for each process instantiation. When viewed in terms of the size of the process as a

4The number of cycles required by ADDand SUBare identical

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 71

whole, these few additional instructions are insignificant.

4.12.4 Cost of a system call

A minimal system call may be defined as the least number of operations performed to successfully

change from the calling process to the runtime system and back again. Let us assume that this is

the null system call i.e. it does nothing. The processing needed to accommodate such a system

call would then be that of the context switches to and from the runtime system. System calls

are typically implemented with the aid of interrupts. This general form of system call will be

compared to the approach taken by LF, that of implementing system calls with procedure calls.

calling process:

MDVEAX,functionValue

INT BOh

pass request id in EAX

assume BOh refers to system call handler

Upon execution of the interrupt the processor automatically executes a number of operations

to save the state of the current process. The operations performed vary dramatically with the

addressing mode used and the setup of the processor. We will assume the simplest of system

setups: hardware protection disabled and an unsegmented linear address space.

The following actions are implicitly executed by processor:

PUSHEIP

PUSHCS

PUSHEFLAGS

push program counter

push value of CS segment selector

push value of processor flags

Two steps must now be taken by the interrupt handler. In order to resume execution of the

interrupted process, the interrupt handler is forced to save the contents of the general purpose

registers. A stack switch must be executed to the stack of the runtime system. The order in

which this is done depends on the implementation. For the sake of this example assume that the

registers are saved before the stack switch.

PUSHAD push general purpose registers to stack

initialise runtime stack to some valueMDVESP,rtStkvalue

As a general rule, a system call does not return to the calling process. Therefore at the very least

the original stack pointer value needs to be recorded by the interrupt handler. For the sake of

argument we shall assume that this is done by a single MDVinstruction with undisclosed operands.

In most cases a process is resumed with an interrupt return (IRET) instruction. This undoes the

operations performed by a INT nn instruction. Before the IRET is executed the stack must be

switched back to the process to resume.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 72

calling process:
MDVEAX,functionValue
INT 80h
PoPAD

pass request id in EAX
assume 80h refers to system call handler

Figure 40: System call restoring machine state

calling process:
MDVEAX,functionValue (2)
INT 80h (71)
PoPAD (29)

handler:
PUSHAD (18)
MDVESP,rtStkvalue (2)
; save stack pointer of process (2)
; do absolutely nothing
MDVESP,resStack (2)
IRETD (42)

Figure 41: Overhead of a null system call

MDVESP,resStack

The values of the general purpose registers must be restored with a PoPADinstruction. In our

example the easiest way to accomplish this would be to let the compiler insert this instruction

after the system call thus augmenting the code as in Figure 40.

The full sequence of instructions with their associated clock cycles are listed in Figure 41: The

result is an overhead of 166 clock cycles without actually doing anything. A procedure call

on the other hand firstly executes on the same stack and secondly does not require the saving

of context information as it executes in the same context as the calling process. A procedure is

instantiated with the CALLinstruction. This instruction implicitly executes a PUSHEIP to store

the return address of the procedure call. An assembly listing of a procedure skeleton is shown in

Figure 42.

A procedure call only requires 34+n clock cycles (where n refers to the number of components of

the instructions following the RETinstruction). A minimal system call is therefore in the order of

5 times slower than a similar procedure call. It should be noted that the above example states the

best case performance of a system call. There is usually additional overhead to interface with high

level code within the runtime system. The actual figures for LF context switches are presented in

the next sections.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 73

CALL address (9+m)
; m = 1
PUSH EBP (2)
MDV EBP,ESP (2)

MDV ESP,EBP (2)
POP ESP (6)
RET (12+n)

Figure 42: An empty procedure

4.12.5 Interrupt latency in the LF Runtime system

Interrupts must be serviced as quickly as possible. The runtime system must therefore invoke the
appropriate process to handle the interrupt as quickly as possible.

The sequence of events in the handling of an interrupt is described in Section 4.5.2. The occurrence
of an interrupt triggers the execution of the code in Figure 43. The scheduler has been left
empty. Much of the discussion of Section 4.12.4 is also applicable here. Although the code is
not complicated, an understanding of Section 4.5.2 is a prerequisite. Lines 01 to 05 constitute
the low level interrupt handler. Line 01 is only executed in cases where the processor does not
supply an error code. In line 02 the number of the interrupt that occurred is pushed. Line 03
stores the values of the general purpose registers on the stack. In lines 04 and 05 a call is made
to the high-level handler. Lines 06 and 07 create an activation record for the Oberon procedure
(Compare this to Figure 42.). In line 08 a local variable is instantiated. Lines 10 to 14 constitutes
the termination of the interrupt handler. The procedure Continue was discussed in Section 4.5.2.
This represents a total of 227 clock cycles (assuming a value of 4 for m) which translates into about
6,89j.ls for a context switch for a 33MHz processor.

4.12.6 Actual Performance

The analysis in the above section indicates exceptional performance. A similar operation in the
QNX real-time micro kernel takes about 54j.ls on the same machine [14] 5. QNX is a successful
commercial product. Actual performance is however much worse. In fact the code in Figure 43
took almost twice as long to execute as was calculated above. The performance figures were
gathered by executing one LF process which continuously forces a context switch. The number
of cycles required by the scheduler upon a software interrupt is 170 cycles. This adds up to 405

cycles when merged with the code in Figure 43 and the minimal code of the process. This should
execute in about 12, 03j.ls, but the actual performance is in the order of 22j.ls.

5Strictly speaking a micro-kernel and the less intricate architecture of LF cannot be directly compared as the
operations of the micro-kernel are more complex, but this comparison does place the figures presented into some
sort of context.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 74

; processor needs 71 cycles to process interrupt
; low level handler
01 PUSH 0 (4)

(4)
(34)

(2)

02 PUSH intno
03 PUSHAD
04 MDV EAX,address_handler
05 CALL EAX (9+m)
; activation of Scheduler
06 PUSH EBP
07 MDV EBP,ESP
08 SUB ESP,4
09 ; scheduler code

(Oberon)
(4)
(2)
(2)

call to continue
10 PUSH register
;Continue
11 POP ESP
12 POPAD
13 ADD ESP,8
14 IRETD

(7) register contains new ESP value

(6)
(35)
(2)
(42)

Figure 43: Interrupt overhead

The disparity between expected and measured performance can be accounted for when one con-

siders the architecture of the 386EX processor. Internally it is a full 32-bit machine, but it has a

16-bit bus interface. Both code and data use the same bus to access memory. Reading 32-bits from

memory therefore requires an additional fetch from memory for each instance. Reading 32-bits of

memory then requires 4 cycles instead of 2.

The processor prefetehes code 16-bytes at a time, using a prefetch buffer from which the execution

unit executes the code. When the prefetch buffer is not empty prefetehes only occur when the bus

is idle i.e. not used to access data. When the buffer does become empty the processor stalls and a

prefetch is forced. The prefetch buffer is flushed whenever a branching instruction takes place. A

prefetch fetches 16-bytes as noted above, and therefore occurs within 2 clock cycles. The prefetch

buffer is 6 bytes in size.

The code which constitutes the interrupt handling and scheduling contain a large amount of

branching instructions relative to other instructions -on average a branching instruction every 8

instructions- Most of the other instructions reference memory and therefore the prefetch buffer

is not allowed to fill once it has been flushed. Effectively a memory access needs to be done for

every second byte of code.

When adding up the effect of all of these considerations:

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 75

Number of switches Time per switch (/-1s)
428 199 23,35
426981 23,42
428047 23,36
428565 23,33
428570 23,33
428 270 23,34

Table 7: Actual context switch times

405 (cycles as per manuals)

132 (cycles because of 32 - bit references)

174 (cycles for code fetches)

35 (DRAM refresh)

747

The last complication is the refresh overhead of refreshing DRAM on the computer. This has an
impact of about 5% overhead [1]. This amounts to 747 cycles or 22,6/-1s.

The actual execution times measured are listed in Table 7. The number of switches were measured
over a 5 minute interval and then converted to the number of switches per second (rounded to the
nearest whole number). The average values are listed at the bottom of the table. This represents
a 3. 1% deviation from the expected value.

In the event of a hardware interrupt, the shortest path through the scheduler is the instance where
a handler is blocking on the interrupt. If one follows a similar analysis to the above, a time of
around 27/-1sis obtained. This suggests an upper bound of 37000 serviceable interrupts per second.
A more pragmatic approach would be the assumption that an interrupt handler would execute
at least 3 times as many cycles as the overhead associated with the interrupt. The value three
is purely a heuristic and was decided upon after examination of small to medium size interrupt
handlers. This suggests a practical upper bound of in the order of 12000 serviceable interrupts.

At an interrupt frequency of around 60kHz the interrupt subsystem collapses. The collapse man-
ifests itself in the form of the spurious occurrence of interrupt 39. Although a software error has
not been ruled out completely, an inherent problem with the interrupt controller hardware is sus-
pected. Of course the actual throughput of the system is nowhere near 60kHz. The test program
listed in Figure 44 was used to determine the maximal throughput for interrupts. It was found
that interrupt events started to be dropped at around 13. 8kHz.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 76

PROGRAMPerfInts;
PROCESSHandler;
VAR

snd : UINT32;
BEGIN

NEW(IntChannels[32]);
PORTOUT(67,54);
PORTOUT(64,$56);PORTOUT(64,$0); (* -13,9 kHz *)
snd := 0;
WHILETRUEDO
IntChannels[32] ? sig; INC(snd,l);

END
ENDHandler;

BEGIN
Handler

ENDPerfInts.

Figure 44: Test code for interrupts.

4.12.7 Copying messages

It is of critical importance that messages be copied as fast as possible. The problem with optimising

copies lies is the fact that messages may have any length. The implications are:

• Messages are not necessarily aligned on word boundaries

• A general mechanism that operates as efficiently as possible on both short and long messages

is needed. A compromise therefore needs to be reached.

Accessing unaligned data is exceedingly expensive on the i386. Even in the best case a penalty

of 2 or 4 extra clock cycles is incurred for each access to a misaligned 16 or 32 bit operand on

an even address. When the addresses are not even, the penalty is doubled. In most cases the

penalty is even worse because of the heightened memory contention with the prefeteher which is

caused by the additional clock cycles needed to access memory. Unfortunately this is something

which has to be lived with.

4.13 The size of the runtime system

The runtime system is implemented in the high level language Oberon. Despite this fact, it

remains noticeably compact. The sizes of the modules comprising the runtime system are listed

in Table 8. Note that about 124 lines of LFRuntime. Modis debugging code. The memory require-

ments of the runtime system may be found in Table 9. The static image contains the runtime

system code as well as global variables. An activation record (AR) is created for each instance of

Stellenbosch University http://scholar.sun.ac.za

Static image
Process AR 92
Channel AR 4+8n

CHAPTER 4. RUNTIME SYSTEM 77

Module Lines Code Size (bytes)
LFRuntime 443 4399
LFHeap 224 1702
Assembler code 66 273
LFProcess (Oberon code) 295 2076
LFProcess (Assembler code) 852 1868

Table 8: Size of the Runtime System

Table 9: Runtime system memory overhead (bytes)

a process or channel. Two sets of values are listed for LFProcess in Table 8. The first set refers

to the version of the module which implements IPC in high level code. The second set refers to

the version of the module implementing IPC in assembler.

The n in table 9 refers to the number of symbols in the alphabet associated with the channel. A

typical value for the size of the runtime system static image is about 24kB.

4.14 Stackless execution model

It is perfectly feasible for processes in LF to execute without a stack. Stackless execution is

highly desirable since a significant amount of memory is saved. Operations on the stack are

also notoriously expensive on the i386 architecture. Although this may be less of a concern on

other architectures, it is expected that a PUSHor POP operation will always be more expensive

than a direct memory access. At the moment memory is reserved within each activation record

for the allocation of the variables of a process, as well as an expression stack. The size of the

block of memory is set to the maximum amount needed by the process, as determined at compile

time (Section 2.4). The current version of the compiler does not make use of this stack for the

evaluation of expressions. Effectively the stack is only used to pass parameters to the procedures

of the runtime system and by the procedures of the runtime system themselves. The calls to the

runtime system execute in the same stack frame as the calling process. A version of the compiler

has been implemented that passes most of its parameters in registers in any case. With little

additional effort, the use of registers can completely replace the use of the stack for the passing

of parameters to the runtime system procedures. The use of temporary variables, may replace

the use of the stack as supplementary storage space during the evaluation of complex expressions.

As was noted in Section 2.6.1, the current version of the compiler is limited in the complexity of

expressions that it accepts.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 78

When one examines the runtime system closely, a major problem with stackless execution become

apparent: the runtime system is implemented in a high level language, which requires a stack for

the correct execution of its code.

Possible solutions to this problem are:

1. Re-code the entire runtime system in assembler. This is of course perfectly feasible, but

negates the maintenance and portability benefits of a high level implementation.

2. Rewrite the runtime system code to make use of global temporary variables, rather than

allocating local variables upon each instantiation of a process. This may well be faster than

the current implementation because there is no need to instantiate local variables. This is

poor programming practice and may lead to a very buggy implementation.

3. Essentially keep the runtime system in its current form, but create a stack for the runtime

system. This will of course require a stack switch for each call to the runtime system. This

is the easiest solution, but also incurs a significant performance penalty. In the current

implementation, stack switches are only required when creating a new channel or process

instance, or in the case of a context switch (in which case only a single stack switch is

executed). Having a runtime system stack will require two stack switches for every call to

the runtime system.

The passing of strings and other (potentially) large data structures as parameters complicates

solution 1, but especially solution 2. In my opinion the best compromise would be to combine

solutions 2 and 3. This would amount to the following: Code all procedures in the runtime system

that are not related to the servicing of interrupts to make use of temporary variables. These

procedures typically require in the order of 12 bytes of stack space. In addition to this allocate a

small stack to the runtime system that is used by the interrupt servicing routines in the runtime

system. The net effect is that an additional (with respect to the current implementation) stack

switch is only forced in the event of an interrupt or exception occurring. When exiting the runtime

system after the servicing of an interrupt, a full context switch to the next process scheduled is

executed in any case, so this does not represent any additional overhead.

4.15 Conclusion

In this chapter the design and implementation of the LF runtime system has been discussed.

Many performance measures have also been listed. Even when given the relatively simple design

of the system, communication performance and interrupt response times are more than adequate

and are in fact far superior to my initial estimates.

The overhead resulting from runtime checks is acceptable, although this may be arguable in

the case of overflow checks. Searching for a more efficient way to implement overflow checks,

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. RUNTIME SYSTEM 79

may be worth while. Similarly a more efficient way to check for uninitialised channels should
be implemented. These checks, do however, demonstrate the feasibility of software implemented
memory protection.

With respect to the design criteria noted at the start of this chapter: I believe that a very compact
runtime system has been implemented. This has a direct positive influence on memory usage and
the maintainability of the system. It also -generally speaking-leads to faster execution. Security
was never compromised to improve execution speeds.

One of the most interesting aspects relating to the runtime system was encountered when the
clock cycle analysis of the system's interrupt response was done. It again became apparent that
the only way to attain reasonably accurate performance figures is by measurement. My initial
estimates, based solely on processor documentation, and the true values differed by approximately
100%. It was only through additional research after the disparity had been discovered, that I
came to understand the true dynamics of the execution environment.

Stellenbosch University http://scholar.sun.ac.za

80

Chapter 5

Evaluation and Conclusion

This chapter presents my evaluation of the LF system, specifically the degree to which the ob-

jectives mentioned in Chapter 1 have been attained. Some thoughts that I have with regard to

future extensions are also presented.

5.1 Evaluation of the LF language

At the time of completion of this thesis, a usable version of the LF system had been implemented.

LF is being used as implementation language for a number of medium-sized projects related to

protocol implementation. These projects will be the first real test of the capabilities of LF as

embedded programming language. Some modifications will have to be made as LF matures. These

changes will in all likelihood affect all aspects of LF i.e. the language definition as well as the

compiler and runtime system. LF was kept as simple as possible. By only defining the most crucial

elements of the language at this early stage in its development and keeping the runtime system

as simple as possible, it is hoped that the runtime system can be modified to cater for special

needs rather than complicating the language. LF can, at the very least, be used as a teaching

language for concurrency. The concise and compact nature of the language, when combined with

the strictness of its semantics, is well suited to a teaching language. I also believe that after an

appropriate gestation period, LF will evolve into a viable programming language for embedded

applications.

One of the primary motivations for the development of LF was the desire to support model

checking at the code level. To this end another project revolves around the automated conversion of

LF code to Promela [9]. Initial results are promising: a simple implementation of an alternating

bit protocol in LF was converted and model checked at code level. This gives some indication that

LF can be used to implement and verify protocols. A full listing of the LF code and corresponding

Promela specification may be found in Appendix C.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EVALUATION AND CONCLUSION 81

Readers familiar with esp would have noticed that several of the features of esp are not
included in LF. This was done in the interest of creating a compact language. A more complete
implementation of esp would unavoidably have been more complex. It is important to bear in
mind that for the purposes of this project compatibility with Promela is far more relevant than
compatibility with esp per se. A fairly direct mapping exists between the constructs of LF and
Promela.

Many other issues have been raised during the evolution of this project. This project illustrates the
viability of software enforced memory protection in embedded systems. It also makes a strong case
for the practicality of compact languages (as does Oberon). Although no embedded programs
of realistic size and complexity have been implemented in LF, I believe that the IPC/process
paradigm can successfully replace the procedure paradigm; occam has paved the way in this
respect. I feel that LF has a more congenial syntax and is somewhat more flexible than occam.

Moreover LF was not designed with a specific hardware configuration in mind. Most importantly,
LF offers the benefits of strict type checking. Fisher criticises occam's and occam 2'8 channel
type system in [11]. Of course message passing can never be as efficient as (say) a combination of
semaphores and shared memory, but this was never the objective. LF is intended to be a concise
language that is easy to use (the use of semaphores is notoriously treacherous) and to be efficient
enough. These goals seem to have been attained.

5.2 Evaluation of the Compiler and Runtime System

The LF compiler is very simple. This at times leads to the generation of inefficient code. The
complexities of optimising compilers were however beyond the scope of this project. Despite
its inadequacies the code produced was sufficient for the purposes of this thesis and is indeed
reasonable in most cases. Related to the compiler is the assembler used. It too is very simple and
at times produces less than optimal object code. This too is of little consequence in the scope of
this thesis.

The runtime system is relatively compact. Functionality such as scheduling is very basic and may
need to be enhanced as the need arises. At this stage it seems adequate. The modular structure
of the runtime system should make extensions relatively easy. The compiler and runtime system
manage to enforce memory protection at relatively low cost. This is especially significant when
considering that many embedded platforms do not implement hardware memory protection.

Communication is much slower than procedure calls. This is to be expected. It is, however,
significantly faster than I expected initially. Interrupt response times look equally encouraging,
but it remains to be seen how the performance of interrupt handlers will be influenced by the need
to communicate with other processes in complex systems.

LF was designed to be a secure system, but some hardware related factors undermine this security.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EVALUATION AND CONCLUSION 82

1. The problem relating to restricting access to I/O ports was discussed in Chapter 1.

2. Related to the problem of I/O port restrictions, is a caveat related to DMA on the IBM
PC: DMA bypasses the memory protection hardware. This is a serious problem indeed, but
there does not seem to be an effective solution.

3. The problems associated with redefining an existing exception handler were discussed in
Section 2.4.

These problems compromise the security of LF. Not trying to remedy factors 1 and 3 has been
motivated, while factor 2 is essentially the result of poor hardware design that cannot be fixed
effectively in software. Moreover, these problems relate to very specific circumstances that are
unlikely to cause problems in general programming practice.

5.3 Future work

The LF project, in its current state, offers much opportunity for future work. Some aspects of
the system can and must be enhanced or rewritten for it to be of practical use. These aspects are
discussed below.

• The expressiveness and usability of LF can be considerably enhanced by extending its
repertoire of constructs.

- A CASE statement should be considered to increase efficiency.

- FOR loops are generally more efficient when the number of iterations are known at
compile time.

- Since there is no string type, the ability to assign literal strings to an array of char

structure wouldmake programming more convenient. The followingsyntax is proposed:

VAR
5 ARRAY 10 OF CHARi

BEGIN
5 := "hallo" i

- An important omissionfrom both the LF language definition and the runtime system is
support for floating point numbers. A practical implementation would in all likelihood
need to add such functionality.

- At the moment all processes are activated in parallel. It may be deemed necessary to
introduce constructs that allow for either the sequential or the interleaved/parallel 1

1Depending on whether a uni- or multiprocessor is involved

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EVALUATION AND CONCLUSION 83

execution of processes, to mirror the constructs of esp. This functionality is indeed

part of occam, which contains a PAR and SEQ construct that indicates parallel and

sequential execution of statements respectively 2. A possible LF incarnation might be

the following:

Pl11p211p3

to indicate the parallel execution of processes and

PljP2jP3

to indicate the sequential execution of processes.

• In order to make the LF system viable an optimising compiler needs to be developed. This

is of course a non-trivial exercise. The current scenario of hand optimisation is tedious and

error prone.

• As explained in Chapter 2, LF does not support modularisation. Modularisation will not

only remove the need for unwieldy program files, but also promote the use of libraries of

processes.

• Given the concurrent nature of the language a multi-processor'' implementation is the obvious

next step. LF is based on esp. As such the notion of disjoint address spaces as mirrored

in the process concept is a natural model on which to build multi-processor extensions. A

shared memory implementation is of course also possible.

When a multi-processor implementation is created, the language definition would have to

be extended or some other method found to specify which processes should run on which

processor.

5.4 Final Remarks

LF is a secure language suited to the implementation of embedded software. It features a clear,

concise syntax. I believe an amiable compromise between practicality -in the sense of performance

and expressiveness- and security has been achieved. LF is designed to be model checked at code

level. This further improves the ability of the language to aid the programmer in producing correct

software.

20ccam allows for parallelism at statement level
3Multi-processor is used in the broadest sense of the word, to includes distributed computing as well.

Stellenbosch University http://scholar.sun.ac.za

Appendix A

EBNF

(program) ::= PROGRAMidentifier; (declarations) (processes) (body).

(processes) ::= { (process) }
(process) ::= PROCESS identifier[(parameter list)]; (declarations) (body);

(body) ::= BEGIN (command list) END identifier

A.O.I Declarations

(parameter list) ::= «(parameter) { ; (parameter) })

(parameter) ::= (variable definition)

(declarations) ::= {[(constant part)][(type part)][(variable part)]}

(constant part) ::= CONST(constant definition) { (constant definition) }

(constant definition) ::= identifier = (constant expression);

(variable part) ::= VAR(variable definition){ (variable definition)};

(type part) ::= TYPE (type definition); {(type definition)}

(type definition) ::= identifier = POINTER TO (type definition) I

ARRAY(expression) OF (type definition) I

(alphabet definition) I(record definition) I(type identifier)

(record definition) ::= RECORD(fieldlist) END

(fieldlist) ::= (identlist) (type definition){; (identlist) (type definition)}

(alphabet definition) ::= [(symbol), {(symbol)}]

(symbol) ::= identifierf. «(type identifierj r]

(variable definition) ::= [INIOUT]identifier{, identifier} : (type identifier) [(at de£)]

(at de£) ::= AT number

(type identifier) ::= (simple type) I identifier
(simple type) ::= (integer type!) ICHARIBOOLEANI(set type2)

1Platform specific
2Platform specific

84

Stellenbosch University http://scholar.sun.ac.za

APPENDIX A. EBNF 85

(integer type) ::= (signedint) I (unsignedint)

(signedint) ::= INT81INT161INT32

(unsignedint) ::= UINT81UINT161UINT32

(set type) ::= SET81SET161SET32

A.O.2 Statements

(command list) ::= [(command){;(command)}].

(command) ::= (if) I(while) I(repeat) I(select) I(create) I(access) (new)

(access) ::= (variable access) ((assign) I(io))

(io) ::= (bang)l(hook)

(assign) ::= := (expression)

(bang) ::= ! identifier[«(expressionj I]
(hook) ::= ? identifier[((variable accessj r]
(repeat) ::= REPEAT (command list) UNTIL (expression)

(while) ::= WHILE(expression) DO (command list) END

(new) ::= NEW((variable accessr)

(create) ::= identifier[< (expression) {, (expression))}]

(if) ::= IF (expression) THEN(command list)

{ELSIF(expression)THEN(command list)} [ELSE (command list)]

END

(select) ::= SELECT (select guard) THEN(command list)

{Ll (select guard)THEN(command list)

END

(select guard) ::= (variable access) (io) [&(expression)]

A.O.3 Expressions

(selector) ::= {[(expression)] I. identifierlt}

(variable access) ::= (identifier)[(selector)]

(expression) ::= (normal expression) I(typecast)

(constant expression) ::= (expression)

(typecast) ::= CAST «(type identifier), (expression))

(normal expression) ::= (primary) [(primary operator) (expression)]

(primary operator) ::= & I I
(primary) ::= (secondary) [(secondary operator) (secondary)]

(secondary operator) ::= <1<=1>1>=1=1#

(secondary) ::= (term)[(adding operator) (secondary)]

Stellenbosch University http://scholar.sun.ac.za

APPENDIX A. EBNF 86

(adding operator) ::= +1-
(term) ::= (factor) [(multiplying operator) (term)]

(multiplying operator) ::= * I DIV I MOD
(factor) ::=numberITRUEIFALSElrv(expression) I-(expression) I«(expression)) I

(variable access) ILONG«(expression)) ISHORT((expressioni) Ichar constant

A.O.4 Tokens

(identifier) ::= (letter){ (letter) I(digit) }

(number) ::= [$] ((hexdigit) I(digit)) I{(hexdigit) (digit)}

(letter) ::= al.··lzIAI···lz

(hexdigit) ::= al···lf

(digit) ::= 01..·19

(char constant) ::= (ascii character'

Stellenbosch University http://scholar.sun.ac.za

87

Appendix B

The boot loader

The boot loader used for the LF system was originally developed for the Gneiss micro-kernel
[24, 33]. Developing a new loader is not worth the effort in an experimental system. The boot
loader loads an executable image from a diskette, and starts to execute the code in the imageI.
Before executing the code it disables all interrupts and does all of the housekeeping to switch to
protected mode. After this switch, control is transferred to the executable image. It is up to the
executable image to appropriately initialise the hardware. The layout of the memory after the
boot loader has finished its execution is illustrated in Figure 45.

The boot loader also sets up a table called the boottable which contains the memory layout of the
system after booting, as well as the hard drive parameters from the CMOS settings. Two 4kB

segments of memory on both sides of the image are left free. (This is due to historical reasons.
In the Gneiss system, the pages on both sides of the kernel were left unmapped to catch NIL
pointer references.) The next chunk of memory is used during the boot process and contains the
boottable and a provisional stack for the image. Another segment of free memory followsthe boot
memory and stretches up to 09FFFFh2• The segment between OAOOOOhto 01000000h (1MB) is
used for memory mapped devices (such as the display) and ROMs. The memory above 1MBup to
the physical memory limit is free.

IThe boot loader operates via DOS, which is later expelled from memory after loading the image.
2The old Microsoft/IBM glass ceiling

Stellenbosch University http://scholar.sun.ac.za

APPENDIX B. THE BOOT LOADER 88

Boot Memory

~~~~,....._.....,..~......,.+.--- OOOOlOOOH

~.::::..::::..:::..::::..::::..::::,.:::,.:::::.:::::...:::..::::.:::::.~OOOOOOOOH

Figure 45: System memory layout as created by the boot loader

Stellenbosch University http://scholar.sun.ac.za



89

Appendix C

LF vs. Promela

Promela is a process oriented language which serves as input to the SPIN model checker [18]. For

the purposes of this discussion a working knowledge of Promela is assumed. An implementation

of the Alternating Bit protocol implemented in LF is presented along with a Promela model

which was generated from it. The derivation was done with the use of a tool developed by Dirk

BuUl [9]. The aim of this section is not to describe the use or implementation of the tool, but

merely to demonstrate the feasibility of deriving Promela from LF. It should be clear from the

below that a fairly direct mapping exists from LF to Prornela. Some aspects of the mapping are:

• Promela does not support record types, therefore the individual components of a record

are declared as discrete variables in the Promela model.

• Expressions are mapped directly with only syntactic changes from the Pascal-like syntax of

LF to the C-like syntax of Prornela.

• The mapping of control structures such as the REPEAT is direct, albeit somewhat convoluted,

owing to the explicit non-determinism of Prornela.

• Communication in LF and Promela both owe much to CSP, the only difference being that

structured variables, such as records, are transmitted in terms of their constituent variables

in Prornela.

IThe LF implementation is also by Dirk.

Stellenbosch University http://scholar.sun.ac.za



APPENDIX C. LF VS. PROMELA

PROGRAM AlternatingBit;
TYPE
MsgType = RECORD
o UINT32;
s UINT8

END;
MesgMsg = [a(MsgType));
AckMsg = [a(UINT8));

PROCESS Receiver(IN mesg:MesgMsg;OUT ack:AckMsg);
VAR
NewMsg : MsgType;
e, a : UINT8;

BEGIN
e := 0; a := 0;

WHILE TRUE DO
REPEAT
mesg ? a(NewMsg);
a := NewMsg.s;
ack ! a(a)

UNTIL a = e;
e := 1-e

END
END Receiver;

90

proctype Receiver(chan mesg;chan ack)
{

int NewMsg_o;
byte NewMsg_s;
byte e, a;

e = 0;

a = 0;

do
1 -)

bool MyRepeatTestl
do

1;

(MyRepeatTest1 -- 1) II (a == e) -)
mesg ? NewMsg_o, NewMsg_s;
a = NewMsg_s;
ack ! a;
MyRepeatTestl 0

! (a == e) -)

break
od;
e = 1-e;

! (1) -)

break
od

}

Stellenbosch University http://scholar.sun.ac.za



APPENDIX C. LF VS. PROMELA

PROCESS Sender(IN ack:AckMsg;OUT mesg:MesgMsg);
VAR
NewMsg : MsgType;
r,s: UINT8;
Counter: UINT32;

BEGIN
5 := 0; r := 0; Counter .= 0;
WHILE TRUE DO
NewMsg.o .- Counter;
NewMsg.s .- 5;

REPEAT
mesg a(NewMsg); ack? a(r)

UNTIL r = 5;

5 := 1 - 5;

Counter .= (Counter + 1) MOD 2000
END

END Sender;

PROCESS Run;
VAR
IN ack : AckMsg;
OUT mesg : MesgMsg;

BEGIN
NEW( ack ); NEW( mesg );
Sender( ack, mesg );
Receiver( mesg, ack, I)

END Run;

BEGIN
Run

END AlternatingBit.

91

proctype Sender(chan ack;chan mesg)
{

int NewMsg_o;
byte NewMsg_s;
byte r,s;
int Counter;

5 = 0;

r = 0;

Counter 0;
do

1 -)

NewMsg_o Counter;
NewMsg_s 5;

bool MyRepeatTest2
do

1;

(MyRepeatTest2 == 1) II (r == 5) -)

mesg ! NewMsg_o, NewMsg_s;
ack ? r;
MyRepeatTest2 0

!(r == 5) -)

break
od;
5 = 1 - 5;

Counter = (Counter + 1) % 2000
! (1) -)

break
od

}

proctype RunO
{

chan ack = [0] of { byte };
chan mesg = [0] of { int, byte };
run Sender(ack, mesg);
run Receiver( mesg, ack);

}
init
{

run RunO
}

Stellenbosch University http://scholar.sun.ac.za



Bibliography

[1] M. Abrash. Michael Abrasli's Graphics Programming Black Book. Coriolis Group, Inc., 1997.

[2] A.V. Aho et al. Compilers Principles, Techniques, and Tools. Addison-Wesley, 1986.

[3] G.R. Andrews. Concurrent Programming: Principles and Practice. The Benjamin/Cummings
Publishing Company, 1991.

[4] G.R. Andrews and R.A. Olsson. The SR Programming Language: Concurrency in Practice.

The Benjamin/Cummings Publishing Company, 1993.

[5] E.J. Berglund. An Introduction to the V-system. IEEE Micro, pages 35-52, August 1986.

[6] A.J. Bernstein. Output Guards and Non-Determinism in CSP. ACM Transactions on Pro-

gramming Languages and System, 2:234-238, April 1980.

[7] P. Brinch Hansen. Joyce - A Programming Language for Distributed Systems. Software-

Practice and Experience, 17:29-50, January 1987.

[8] G.N. Buckley and A. Silberschatz. An Effective Implementation for the Generalized Input-
Output Construct of CSP. ACM Transactions on Programming Languages and Systems,

5(2):223-235, April 1983.

[9] J.D. Bull. Verification of software with automated tools (draft). Technical report, University
of Stellenbosch, 2001.

[10] D. Cooper and M. Clancy. Oh! Pascal! W.W Norton & Company, second edition, 1985.

[11] A.J. Fisher. A Critique of occam Channel Types. Computer Languages, 13(2):95-105, Febru-
ary 1988.

[12] Formal Systems(Europe) Ltd. FDR2 User Manual, fifth edition, May 2000.

[13] N.H. Gehani and W.D. Roome. Concurrent C. Software-Practice and Experience, 16:821-844,
September 1986.

[14] D. Hildebrand. An architectural overview of QNX. Proceedings of the Usenix Workshop on

Micro-Kernels (3 Other Kernel Architectures, April 1992.

92

Stellenbosch University http://scholar.sun.ac.za




