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ABSTRACT

Single-wing images were captured from 14,354 pairs of field-collected tsetse wings of
species Glossina pallidipes and G. m. morsitans, and analysed together with relevant
biological recordings. To answer research questions regarding these flies, we need to
locate 11 anatomical landmark coordinates (x, y) on each wing. The manual location of
landmarks is time-consuming, prone to error, and simply infeasible given the number
of images. Automatic landmark detection has been proposed to locate these landmark
coordinates.

We developed a two-tier method using deep learning architectures to classify images and
make accurate landmark predictions. The first tier used a classification convolutional
neural network to remove most wings that were missing landmarks. The second tier
provided landmark coordinates for the remaining wings. For the second tier, we compared
direct coordinate regression using a convolutional neural network and segmentation using
a fully convolutional network. For the resulting landmark predictions, we evaluate shape
bias using Procrustes analysis. We employ a data-centric approach paying particular
attention to consistent labelling and data augmentations in training data to improve
model performance.

The classification model used for the first tier achieved perfect classification on the
test set. The regression and segmentation models achieved a mean pixel distance error
of 5.34 (95% CI [3,7]) and 3.43 (95% CI [1.9,4.4]) respectively on 1024 × 1280 images.
Segmentation had a higher computational complexity and some large outliers. Both
models showed minimal shape bias.

Using this two-tier deep learning approach, we accurately filtered damaged tsetse wings
with missing landmarks and provided precise landmark coordinates for the remaining
wings. We chose to deploy the regression model on the complete un-annotated data since
the regression model had a lower computational cost and more stable predictions than
the segmentation model.

Key words:
Two tier; Deep learning; convolutional neural network; Regression; Segmentation; Classi-
fication; Landmark detection
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OPSOMMING

Enkelvlerkbeelde is geneem uit 14 354 pare veldversamelde tsetse-vlieg vlerke van spesies
textit Glossina pallidipes en textit G. m. morsitans, en saam met relevante biologiese
metings ontleed. Om navorsingsvrae rakende hierdie vlieë te beantwoord, moet ons 11
anatomiese landmerkkoördinate (x, y) op elke vlerk vind. Aangesien die handmatige
identifisering van landmerke tydrowend en vatbaar is vir foute, het ons diepleer algoritmes
geleer om die koördinate van elke landmerk op te spoor.

Ons het ’n tweeledige metode ontwikkel met behulp van diepleer argitekture om beelde
te klassifiseer en akkurate voorspellings vir die landmerk te maak. Eerstens het ons ’n
klassifikasie-konvolusionele neurale netwerk gebruik om die meeste vlerke wat landmerke
ontbreek, te verwyder. Tweedens het ons belangrike koördinate vir die oorblywende
vlerke verskaf. Vir hierdie stap het ons direkte koördinaatregressie met ’n konvolusionele
neurale netwerk en segmentering met ’n volledig konvolusionele netwerk vergelyk. Vir die
gevolglike landmerkvoorspellings, evalueer ons vorm sydigheid met behulp van Procrustes-
analise. Ons gebruik ’n data-sentriese benadering met spesiale aandag aan konsekwente
etikettering en aanvulling van modelberamingsdata om modelprestasie te verbeter.

Die klassifikasiemodel wat vir die eerste stap gebruik is, het ’n perfekte klassifikasie op
die toets datastel behaal. Die regressie- en segmenteringsmodelle behaal ’n gemiddelde
pixelafstandfout van 5.34 (95% CI [3,7]) en 3.43 (95% CI [1.9,4.4]) onderskeidelik op
1024 × 1280 beelde. Segmentasie het ’n hoër berekeningskompleksiteit en ’n paar groot
uitskieters. Beide modelle het minimale vorm sydigheid getoon.

Deur hierdie tweeledige benadering tot diepleer te gebruik, het ons beskadigde tsetse-
vlerke akkuraat gefiltreer met ontbrekende landmerke en presiese koördinate vir die
oorblywende vlerke verskaf. Ons het gekies om die regressiemodel op die volledige ongean-
noteerde data te implementeer, aangesien die regressiemodel ’n laer berekeningskoste en
meer stabiele voorspellings het as die segmenteringsmodel.

Sleutelwoorde: Tweeledig; diepleer; konvolusionele neurale netwerk; Regressie; Seg-
mentasie; Klassifikasie; Landmerkopsporing.
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CHAPTER 1

Introduction

1.1 Background

A large body of data and research has been curated on tsetse flies over the last 100 years.
The main driving factor for this research lies in the necessity to understand and control
African trypanosomiasis, for which the tsetse fly is a disease vector. This disease is
commonly known as sleeping sickness in humans and Nagana in livestock. It is prominent
in sub-Saharan parts of Africa, where livestock farming forms a significant part of the
economy. In livestock, the disease induces extreme fatigue and high fever, in cattle it
is known to catastrophically decrease fertility and milk production, leading to reduced
reproduction rates and often death [1]. This results in significant losses in the livestock
farming industry [1–3]. For this reason, there have been many studies and interventions
to monitor and control tsetse populations [3–5]. The predominant method for controlling
trypanosomiasis is through control of the tsetse vector. Alternatively, animals are treated
with trypanocidal drugs, but these have proven insufficient in the past [3]. However, it
has proven relatively easy to kill tsetse in large numbers with a significant impact on
trypanosomiasis [3]. Current methods are thus geared towards eradicating tsetse through
various means, which have been discussed in detail [4]. Eradicating tsetse is relatively
easily achieved in isolated geographical areas such as islands. Eradication is more difficult
in mainland Africa where populations are often panmictic, such that they are not entirely
isolated from other populations, thus increasing the risk of re-invasion [5–7]. However, It
has been noted by Ebhodaghe et al. [6] that “due to fragmentation of tsetse habitats by
anthropogenic activities, climate differences etc., it is possible for tsetse populations to
become isolated on mainlands.”

The genetic similarity between tsetse populations indicates the level of mixing between
them. Thus Patterson and Schofield [8], quoting Krafsur and Griffiths [9], state that
“Allozyme studies, for example, have revealed high levels of genetic differentiation within
populations of G. pallidipes and other species of the morsitans group in East Africa,
suggesting that these species exist as a series of relatively isolated populations”. As
such, current efforts in controlling and eradicating tsetse in an area involve identifying
and eradicating discrete sub-populations and populations of tsetse which are sufficiently
genetically isolated from other populations, such that the risk of re-invasion after
eradication is mitigated [6, 10–13].

Genetic sequence analysis is, by definition, the only exact way to gauge the genetic
differentiation between populations. A phenotypic alternative to genotypic analysis is to
analyse wing morphometric properties influenced by genes, which have been shown to
be in close accordance with genetic variation in tsetse on multiple counts [8, 10,12].

Accordingly, there is an increasing interest in using morphometrics of tsetse wings, which
quantifies the shape of wings using the location of distinct and consistent anatomical
points on the wing, referred to as landmarks. Morphometric analysis is inexpensive and
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easy to carry out on a small scale. Furthermore, in the wider context of biological under-
standing, researchers have argued that phenomics, the systematic study of phenotypes,
will bring about a similar revolution to genomics [14]. Phenomics may aid in understand-
ing or categorising important biological phenomena such as disease and evolutionary
fitness where genomics has been unsuccessful [15]. The morphometric analysis for tsetse
flies could be a useful surrogate to genetic analysis; moreover, phonemic and genomic
research are largely synergistic, and the end product of being able to characterise both
aspects of biological variation simultaneously is likely to increase the power of both
approaches. [14, 15]

With the growth of geometric morphometrics in the last two decades, geneticists, evolu-
tionary biologists, ecologists, and paleobiologists have accumulated dense data sets, often
collected from thousands of specimen images [16, 17]. For tsetse flies, a large data set of
digitised tsetse wings has been created. This data set is rich in morphometric information,
but the process of manually annotating landmarks is inherently time-consuming and
prone to error. Due to these limitations, it is generally only cost-effective to use a small
sample size of specimens. Current morphometric studies on tsetse have, accordingly,
only been done on a small scale [6, 11, 12]. Understanding multivariate patterns of
variation requires large sample sizes [14, 18]. Therefore, the need to automate landmark
detection for large data sets is an urgent and necessary development to facilitate the use
morphometrics on a larger scale. Since there is already an extensive data set of digitised
tsetse fly wings, the need for an automated landmark detection approach is ever more
pertinent. In this context, the following section motivates the current study and sets out
its aims.

1.2 Motivation and aims

This particular study is important because it marks the first attempt at addressing the
issue of automatic landmark detection on a large collection of wings (≥150,000 pairs)
of the tsetse flies Glossina pallidipes Austen and G. m. morsitans Westwood, which
were collected over an 11-year period from Rekomitjie Research Station in the Zambezi
Valley of Zimbabwe. Moreover, the vast majority of the collection of flies were females,
subjected to ovarian dissection – which provided a plethora of information on the age
structure of the flies processed. For about 30% of the sample, flies were also dissected
to see whether they were infected with the trypanosomes. Finally, about 50,000 of the
flies were also subjected to nutritional analysis. The database already contains large
amounts of information regarding the time and site of sampling and various measures
of the climatic conditions at and around the time of sampling. Numerous papers have
been based on the data from this set [19–32]. The characteristics of the wings – both
their length and their state of the fray – have been important in many of the papers
cited, but their detailed morphometry has not been studied. Several other studies have,
however, provided information on tsetse wing morphometrics [6, 8, 10–12,33–36].

The idea is that the landmark records from this study will be integrated with the above
database and provide a rich resource for much further research. In particular, we will
eventually use the landmarks combined with other features to do several exploratory
analyses. One of the directions will be to analyse the variation in wing shape with
respect to seasonal and long-term climate changes. These analyses should cast light on

2
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the question of whether wing morphometry can be used to typify populations of tsetse.
Another aim is to typify flies (using wing morphology) to identify mixing populations of
tsetse fly. This could then be used to determine the risk of re-invasion after tsetse flies
have been eradicated in a high impact area.

Photographic records have already been made of the majority of the wings. As noted
above, the processing of the wings – involving the photographic process, the identification,
recording and collating of a collection of landmarks, is a relatively straightforward process
to complete manually when done on a small scale. However, it is not feasible to do this
for 300,000 wings – hence the need to automate the process.

In this specific study, we attempt to explore current deep learning methods to develop
an automatic landmark detection system for a select subset of the wings for which
there is corresponding readily available digitised biological data that has been quality
checked. The system should provide landmarks for tsetse wings which will subsequently
be integrated with the available biological data for further morphometric research. This
system will provide a proof of concept, and if successful, could be applied to all image
data.

For this study, we consider a data set of 14,354 pairs of tsetse fly wing images. On each
intact wing, there are 11 landmarks; these are defined by the points of vein intersections
indicated in Fig 1.1. The image data comes from two volumes of the larger image data
set of tsetse fly wings consisting of 17 volumes in total. Each pair of wing images has
corresponding biological data recorded during dissection of these flies in the laboratory.
The image data set contains wings that are missing some landmarks due to damage
occurring during the capturing and processing of the flies. We refer to wing images
containing all landmarks as complete wing images and refer to wings with missing
landmarks as incomplete. For morphometric studies, it is important to have accurate and
consistently available landmarks for each fly wing to perform geometric morphometric
analysis. Apart from problem of incomplete wings, this study considers two data sets as
mentioned above, namely the biological and image data set of fly wings. In some cases
there are misalignments in information between these two data sets.

Accordingly, this study aims to detect and remove the incomplete wing images from the
data and perform automatic landmark detection for the remaining wings. Subsequently,
the landmark database created will be integrated with the available biological database
and be made available for further morphometric research.

3
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Figure 1.1. Image of a tsetse wing containing 11 landmarks indicated by white
numbered points. The image also contains a scale that can be useful for placing later
errors into context.

1.3 Literature review

In reviewing the literature we investigated studies that have addressed classification
tasks and landmark detection on fly wings. We also pay particular attention to studies
that perform landmark detection for morphometrics since it requires that landmark
shape biases are avoided. For instance, in cases where landmark detection is done for
robotic precision, for example, in medical operation where landmark shape is not a
consideration [37]. Since there is a large body of work on landmark detection in the areas
of biomedical imaging and facial recognition using deep learning, we also explore the
deep learning methods within these areas. In this study we also address a data alignment
issue whereby the image and biological data sets are not always linked correctly, most
often occurring as misalgnments whereby an image may be shifted ahead or behind the
corresponding biological data recordings. Therefore we also investigate the literature for
similar problems of data alignment.

1.3.1 Related work

To our knowledge no literature addresses the problem of detecting incomplete wings
for any insects or automatic landmark detection in tsetse wing images. In similar
wing images, deep learning models were applied successfully in classifying fruit fly
species, which are highly similar and difficult to distinguish by eye [38]. Leonardo et
al. [38] compared several pre-trained convolutional neural networks for deep feature
representation. The pre-trained convolutional neural networks were used to provide
bottleneck features from the images, which were used as input features to train various
machine learning algorithms. Although detecting incomplete wings is not of concern
in this study, their methods may be a good candidate for our task since both tasks
aim at wing classification. Furthermore, since these wings are highly similar, making it
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harder to discriminate between classes, the task complexity is most likely higher than
that of classifying incomplete wings, which are fairly easy to distinguish. Therefore this
approach may prove to be a powerful method for our case.

Concerning landmark detection, there have been numerous studies attempting landmark
detection on other insect wings, most relevantly Drosophila fly wings.

Palaniswamy et al. [39] proposed an automatic landmark detection model for morphomet-
rics using a data set of 856 grey-scale Drosophila wing images. They proposed an image
analysis approach using a minimal training set of around 5 images to extract necessary
information about landmarks that can be used to distinguish landmarks on other images.
Their approach consisted of feature extraction followed by template matching. This
approach performed well with only a small amount of manually indicated landmark data.
Even so, the accuracy was highly dependent on how well the template features matched
the scene features for the observed image.

Vandaele et al. [40] proposed a general landmark detection model for morphometrics and
applied it on a Drosophila fly data set of 138 images of size 1440×900. Their approach
used a multi-resolution tree-based approach whereby they sampled positions densely
around the average position of each landmark. Haar-like features are extracted for each
sample and given as inputs to a random forest classifier which predicts whether the pixel
lies within a certain radius of the landmark. All the pixel coordinates that lie within
this radius are averaged to decide on the final landmark position. This method uses a
separate model for each landmark.

Porto and Voje [14] also proposed a general landmark detection model for morphometrics
which was benchmarked on a Drosophila data set of 280 images of size 632×480. They
employed a machine learning approach using random forests whereby object detection
is used to detect the wings in the image, and a cascade regression algorithm is used
to predict the landmark shape starting at an initial shape and iteratively refining the
landmark shape through a cascade of regression trees. The trees use differences in pixel
intensities as input variables. This method achieved better results than previous studies
using semi-automated approaches [41,42].

Contrary to this study’s data set, the data set in the above-mentioned studies are
comparably small. Therefore, manually chosen features are used in a machine learning
or statistical approach, which can utilise small data sets effectively to train a model and
make accurate landmark predictions [14,39,40].

Convolutional neural network architectures are often utilised on larger data sets to
automatically learn the best bottleneck features due to their ability to learn complex
nonlinear relationships in images, given sufficient data. In facial landmark detection and
biomedical imaging, deep convolution neural network architectures have been used to
obtain landmarks accurately. In facial landmark detection, the current state-of-the-art
models are based on direct coordinate regression methods, where the model predicts the
landmark coordinates directly, and heat-map regression methods, whereby a 2D heat
map output is given for each landmark, whereby each pixel is viewed as a probability
of landmark location [43]. Both these techniques have also been shown to achieve
state-of-the-art results for landmark detection in biomedical image data [44–46].

In the area of facial landmark detection, facial recognition has previously been accom-
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plished using active shape models (ASM) [47], Active Appearance Model (AAM) [48]
and Constrained Local Model (CLM) [49], which all focus on deforming a mesh to place
landmarks accurately. These approaches only work well in ideal scenarios with small
variations, e.g. in landmark shape, expression, illumination, image blurring and occlusion.
Cascade shape regressors resolved some of these problems, but the performance is difficult
to improve further [50–56]. This was the approach used in the paper by Porto et al. [14],
discussed above. More recently, deep learning networks have been employed as a more
powerful method in various computer vision tasks. Various deep learning networks have
been explored for landmark detection. These include Convolutional Neural Networks
(CNN) [57], Auto-Encoder Network [58] and Recurrent Neural Networks (RNN) [59, 60].
Several deep learning architectures have been extensively studied and developed for land-
mark detection. Some of these include Fully Convolutional Neural Networks (FCN) [61],
and stacked hour glass structures with residual blocks [62–64], as well as densely con-
nected Unet architecture [65]; a type of FCN. Another crucial contribution in facial
landmark detection and landmark detection in general came through considering the
loss function used to train a model. Direct regression methods usually use L2 loss, which
pays closer attention to large errors and struggles to reduce small errors further. Feng et
al. [66] developed a new piece-wise loss function (named for its graphical shape) that
switches from L1 loss to a logarithmic loss as errors become smaller. This idea was
subsequently further developed for various cases [67,68]. This ensures a steep gradient
where smaller errors appear and hence more attention to reducing smaller errors close to
the true landmark when using a gradient descent optimisation algorithm.

In the area of landmark detection for biomedical imaging, there has been a similar
evolution using deep learning networks, and much of the breakthrough’s mentioned above
have been adopted in biomedical imaging [69,70]. Most notably, landmark detection in
cephalometry has similarly moved towards deep learning approaches adopting direct-
coordinate regression and heat-map regression on image patches since the X-ray images are
very large, often employing a further landmark refinement step using image registration
or a variation of an active shape model. [45, 46,71]

Recent papers using data-centric approaches have noted that model performance can
be greatly improved by focusing on consistent and accurate data labelling for training
and data augmentations [72–74]. In a data-centric approach, the model architecture is
held constant while the data is iteratively improved to increase performance. This can
be done by making sure labels are consistent, and that noisy samples are removed to
create a clear learning task with non-ambiguous training samples - such that they clearly
illustrate the concepts that need to be learned. Data augmentations are transformations
that increase the data by adding slightly modified copies. It acts as a regulariser and
prevents overfitting, increasing model performance and generalisability [74].

In this study, we face the problem of having two data sets that are not perfectly aligned.
That is to say, wings labelled with the identical identifier in the two data sets did not
refer to the same wing. In other words the data between the two data sets were not
always aligned correctly. The alignment problem is discussed in numerous other studies.
It has been defined as identifying and linking records that correspond to the same entity
within or across several data sets [75]. It is often termed ‘data linkage’, ‘record linkage’,
‘data matching’, or ‘entity resolution’ [75–77]. A major challenge when linking records is

6

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1 – INTRODUCTION

the lack of a common identifier across the data sets. In our case, we do have a common
identifier across the two data sets (image and biological), but this identifier (Volume,
page, line and left or right wing) is occasionally incorrect in the image data set. When no
common identifier is available, a so-called quasi-identifier (QID) is used to identify and
link records about the same entity. The seminal work by Fellegi and Sunter et al. [78]
on Probabilistic data linkage provided a sound theoretical basis [75]. They developed
an optimal decision approach to classify record pairs into matches, non-matches, and
potential matches based on the similarity of their QIDs [75]. In our study, most data is
matched correctly and so we need to classify non-matches which we call misalignments.
In many data linking problems, the data sets in question often have several QIDs such
as ‘Location’, ‘Surname’ and ‘Height’ for medical records, but in our data we only have
one viable QID; wing length. Unlike other studies described in [75], the QID in both
data sets of our study were recorded differently and with different metrics, i.e. manually
measured wing lengths for the biological data (in mm) and model predictions for the
image data (in pixel distance), thus we do not expect a one to one relationship between
wing lengths but rather some linear transformation between the two data sets. It is also
worth noting that most of the misalignment’s in our data occur frequently for a subset
as opposed to sparsely across all the data.

1.4 Proposed approach and contributions

This thesis proposes a two-tier deep learning approach to classify tsetse fly wings with
missing landmarks in the first tier followed by landmark detection in the second tier. For
the first tier we compare current generic computer vision models for classification. For
the second tier, we compare direct coordinate regression using a convolutional neural
network and segmentation using a fully convolutional network. Fully convolutional
networks have previously been used for heat-map regression with an image output size.
We chose to adapt the task to output a segmentation mask in stead of a heat map.
Current research has not studied segmentation for landmark detection, perhaps due to
there being disproportionately more background pixels than landmark pixels. This is a
well known class imbalance problem in segmentation tasks, but has been overcome in
recent years due to the development of new loss functions [79–81]. As such we compare
direct coordinate regression with segmentation using dice loss, which has previously been
used to combat class imbalance [82–84]. The segmentation task for landmark detection
is similar to that used in Vandele et al. [40] in that pixels, a given radius around the
landmark, are classified, and their locations averaged to determine the final landmark
location. These models were also compared with and without data augmentation. We
employ a data-centric approach to develop these models, sampling training data and
accurately labelling and annotating these data for classification and landmark detection.
We evaluate the effect of prediction errors on subsequent morphometric analysis and
apply the models to the full un-annotated data set. We further validate the classifier’s
performance on the un-annotated data set by comparing the expected proportion of
classifications, inferred from the sample statistics, to the predicted proportion. Finally,
we perform analysis for checking data alignment between the biological and image data
set with predicted landmarks. We correct and remove identified errors in the data set
and provide the final landmark data set as an additional contribution for subsequent
morphometric studies. The workflow described is illustrated in Fig 1.2
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Part of this work has been used to create a manuscript to be published in a peer-reviewed
journal along with the final data set.

Figure 1.2. Flow chart of the tier 1 and 2 processes. Tier 1 decides whether a wing is
complete and can be sent to tier 2 where landmarks are localised and an error analysis
is performed. The final two tier system is deployed on the un-annotated data set
referred (application on volumes), thereafter we detect misalignments between the image
data set and biological data set, and make the necessary corrections.
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Theoretical framework

This chapter provides some of the foundational concepts needed to understand our
methodological approach and why machine learning methods can achieve automatic
landmark detection.

2.1 Machine learning

Machine learning is the process of fitting a model to data to approximate a mapping
between the input and target space. There are many machine learning models that rely
on various types of optimisation algorithms to fit the model to data. The process of
fitting a model to data is termed ‘training’. Each model and optimisation algorithm has
some inductive biases: that is to say, it has a set of (explicit or implicit) assumptions
to generalise a finite set of observations (training data) into a general model of the
domain [85]. Consider classification tasks using a decision tree model or a logistic
regression model. A decision tree is always trained to overfit, fitting every training
sample exactly with many axis-parallel decision boundaries in the input space. Conversely,
logistic regression can only learn a single linear decision boundary across the input space.

This example also raises implicitly the concept of bias vs variance in machine learning,
whereby a model with high variance is highly susceptible to changes in training data,
i.e. overfitting to noisy patterns. By contrast, a model with high bias struggles to learn
the necessary patterns in the data but is unaffected by small changes in training data.
Hence, when developing models, it is important to consider the bias vs variance trade-off.
In machine learning, it is standard practice to divide the data into three sets when
developing a model. The first set is the training set, used to train the parameters of
the model. The second set is used to validate model performance when training and
to ensure that the model does not overfit. Overfitting occurs when the model learns
the noise in the training data - resulting in an overall decrease in model performance.
The third set is used if the model or optimisation algorithm has hyperparameters that
may also be overfitted for the validation set. In which case, one will have a test set to
evaluate the final model.

2.2 Neural Networks and Deep Learning

The most basic constituent of each deep learning model is the neuron (indicated by
the circles in Fig 2.1. A Neural Network is somewhat similar to logistic regression. In
essence, we can think of logistic regression as a neural network with no hidden layers
and a single binary output.

Fig 2.1 shows a neural network with a single hidden layer of neurons that receive the
network inputs. The weighted sum of inputs is given to the activation function of each
neuron. There are many types of activation functions, the most common being the
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sigmoid function given in Fig 2.1. If we consider the neuron in Fig 2.1, we see that the
activation function is nonlinear. This is a crucial part of a network’s ability to model
non-linear mappings.

A deep learning model contains many hidden layers of connected neurons with non-
linear activation functions, which together make up a large parameter space capable of
representing highly non-linear mappings from the input space to the target output space.
This provides neural networks with the potential to learn complex nonlinear relationships
given an appropriate optimisation algorithm and a sufficiently large amount of data to
fit all parameters. There are various components of deep learning which we describe in
the following subsections. For more details and understanding on deep neural learning
please refer to the deep learning textbook by Goodfellow et al. [86].

The details of neural network training are described below.

Figure 2.1. A fully connected neural network. The neurons in the input layer receive
the input values directly. All other neurons receive a weighted sum of values from the
previous layers, which are transformed by the activation function and provided to the
next layer of neurons or as the final output.

2.2.1 Activation functions

Several activation functions have been studied. The models used in this study use two
activation functions, namely the sigmoid and rectified linear unit (ReLu) [87] activation
function which are defined below.

Sigmoid : g(z) =
1

1 + e−z
(2.2.1)
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ReLU : g(z) =

{
0 if z ≤ 0

z if z > 0
(2.2.2)

ReLu units are very useful when using deep learning since their gradient does not saturate
[86]. Unlike the ReLU function, the gradients on the sigmoid function quickly vanish
(become infinitesimally small) for very large or small values. This is especially problematic
when using gradient descent methods that use the chain rule for differentiation, since the
product of small partial gradients quickly leads to what is called a vanishing gradient.

2.2.2 Layers

A deep learning model is essentially stacked layers of neurons that together form a
hierarchy. Layers can be connected in various ways to provide a variety of architectures.
The most standard architecture is the fully connected layer developed by Rosenblatt et
al. [88]. Fig 2.1 is an example of a neural network with fully connected layers. These
layers consist of neurons that receive a weighted sum of all outputs in the previous layer
with an added bias term. The output of each neuron can be expressed as

z = g

(
b +

∑
i

wixi

)
(2.2.3)

g() is the type of activation function, wi and xi denotes the weights and inputs, and b
the added bias term.

In this study, we make use of convolutional layers developed by LeCun et al. [89].
Convolutional layers are particularly useful when working with images. The convolution
operation uses a kernel (or filter) of weights. The kernel is shifted across the image to
extract features from the image. Neurons are represented in 2D e.g zm,n. The output of
each neuron in a convolutional layer can be expressed as

zm,n = g((f ~ h)m,n) = g

∑
j

∑
k

hj,kfm−j,n−k

 (2.2.4)

where f is the input image and h is the kernel. j and k refer to the number of rows
and columns respectively. Kernels can be similar to filters that extract edges in images,
otherwise known as Sobel operators. Early layes in a Convolutional Neural Network will
extract high-level features such as edges, and extracting more technical features such as
shapes and objects in deeper layers. Convolutional Neural Networks are powerful because
the kernels are not predefined (as opposed to most machine learning techniques) but
rather learnt. This allows deep Convolutional Neural Networks to learn optimal features
from the images in the training set that can be used to make accurate predictions. Below
is an example illustrating how a kernel is shifted over an image to produce the output
(otherwise known as the activation map).
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Figure 2.2. An example illustration of a convolutional operation. The kernel moves
across image patches to perform convolutional operations which are provided as outputs
to the activation map [90].

The hyperparameters for a convolutional layer are the stride and the padding. The
stride determines the number of neurons moved over to compute the next convolutional
operation, whose value is provided as the next input in the activation map. It is important
to note that the stride must overlap with all neurons on the final stride along an axis: in
other words, the local receptive field must always be the same size as the kernel. For
instance, if the stride was 2, for the example in Fig 2.2, then on the final stride along the
axis, the kernel will not be overlapping the input. To solve this we add padding to the
outer layer. If we add one padding layer, then the new input will be 8 × 8, and then we
can use a stride of 2, producing an activation map of dimension 3 × 3. The relationship
between input size nin, stride s, padding p, kernel size k and output activation map size
nout is formulated below.

zout =

(
nin + 2p− k

s

)
+ 1 (2.2.5)

2.2.3 Convolution neural networks

A Convolutional Neural Network (CNN) consists of convolutional layers with varying
numbers of kernels producing multiple activation maps in the next layer as illustrated
in Fig 2.3. To reduce the number of parameters and avoid overfitting, max-pooling
or average pooling operations [91] are also used in CNNs. The final layers are usually
flattened to provide the bottleneck features to the fully connected end of the network,
which optimally maps the features to the target output space.
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Figure 2.3. A standard CNN showing the layers and operations used to learn features.
The blue blocks represent the activation maps produced from the convolutional layer,
which are followed by a max-pooling operation that down-sample the activation map
(reducing the dimension) [92].

In this thesis, we experiment with segmentation and regression convolutional neural
networks for landmark detection. A segmentation neural network performs classification
of individual pixels resulting in a segmented output image i.e in an m × n matrix of
binary values, 1 usually indicates the landmark pixels and 0 non-landmark pixels. In
our case, we wish to segment landmark pixels and find the location of the segmented
area to extrapolate the coordinates. We can extrapolate the coordinates by finding the
average location of landmark pixels i.e. the average coordinate of the segmented area.
A regression convolutional neural network predicts the coordinates of the landmarks
directly from the input image where all output values are real values. In the next
subsections, we explore both models in more depth.

Regression convolutional neural network

A regression network provides a regression output. In this thesis, we train a regression
network to provide landmark coordinate outputs. This type of network has convolutional
layers, as well as fully connected layers as discussed in previous sections and illustrated
in Fig 2.3. The regression network extracts information from the input image using
convolutional layers. This information is provided as bottleneck features to the fully
connected layers. These layers map the convolutional bottleneck features to the target
space, which in this case are the landmark coordinates.

In this thesis, we use a ResNet50 architecture to perform regression [93]. ResNet50 is a
state-of-the-art convolutional neural network that has been used for various classification
and regression tasks and is especially stable due to its residual connections. These
residual connections increase training stability resulting in improved convergence.
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Deep neural networks naturally learn hierarchical features through the network. Early
layers extract low-level features and deeper ones extract more high-level features. In-
creasing the depth of a neural network has been shown to increase the accuracy due
to the added layers enriching the levels of features [93]. However, very deep neural
networks are hard to train. At some stage, the added layers drastically degrade the
model performance. One reason for this is believed to be due to gradient instability when
using gradient-based optimisation methods. The deeper the neural network, the more
gradient instability there is, causing exploding or vanishing gradients. This has largely
been solved by using initialisation methods and ReLU activation functions which do not
saturate. Nonetheless, for deeper networks the degradation problem still exists [93].

The construction solution for ResNet, as explained in [93], is that larger networks should
be able to learn the same task as a shallow network without degradation by simply
copying the shallow network with identity mappings between additional layers. However,
identity mappings are not easily learnt. Accordingly, the formulation of the residual
connections aims to make it easy for identify mappings to form between some layers.

The formulation of a residual layer is given in Fig 2.4

+

Figure 2.4. A residual connection bypassing two network layers, allowing an identity
mapping to be easily approximated by reducing the residual F (X) to 0. This figure was
recreated from [92].

The residual connection provides an easy solution to optimally learn an identity mapping,
since the weight layers can rather be pushed to zero: in other words, it decreases the
residual F (x) to zero. Without residual connections the network will instead have to
rely on learning an identity mapping through stacked nonlinear layers.

The result of the residual layers significantly reduces the degradation problem and allows
for much deeper networks to be used. This ultimately allows the network to learn deeper
layers of representations which significantly increases model accuracy.

The architecture for ResNet50 is given in Appendix A, along with the full description.
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Segmentation convolutional neural network

The idea of a segmentation network is to produce a mask output the same size as
the image that locates and highlights target areas in the image which are objects or
landmarks of interest. In practice, segmentation networks do not contain a fully connected
layer: instead, they are most often fully convolutional, meaning they only contain
convolutional layers with some pooling operations. This type of network is called a
fully convolutional network (FCN), first developed by Long et al. [94]. The final layer is
usually a soft-max or sigmoid output that produces an output image with probability
values for each pixel. These probabilities are set to 0 or 1 by a threshold.

We make use of a fully convolutional network called UNet++: A Nested U-net Archi-
tecture for Medical Image Segmentation [95]. This network is a variation of the UNet
architecture [96]. UNet is made up of a contraction path (encoder) and an expansion
path (decoder) with skip connections (also called ‘residual connections’) between the
two paths. The contraction path is responsible for capturing global context and low-
frequency content that objects of interest are usually comprised of. The expansion path is
responsible for precise location of objects [96]. Typically a CNN output is obtained from
a down-sampled version of the input image created through convolutions and pooling
operations, which is referred to as contraction. To produce an output the same size as
the input we need to up-sample again, which is referred to as expansion. To perform
expansion, a convolutional layer with a fractional stride of 1/s is used. This undoes
the down-sampling resulting from the convolutional layer [94]. The Unet architecture
first down-samples using convolutional layers and pooling - contraction. The output is
received by the decoder which performs convolutions, replacing the pooling operations
with large deconvolutional operations. Additionally, high-resolution activation maps
from the contracting path are combined with the up-sampled output indicated by the
grey arrows in Fig 2.5. A successive convolution layer can then learn to assemble a more
precise output based on this information.“As a consequence, the expansive path is more
or less symmetric to the contracting path and yields a u-shaped architecture” [96] shown
in figure Fig 2.5.
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Figure 2.5. The U-Net architecture. Each blue box corresponds to multi-channel
activation maps. The number of channels is given on top of the box. The size of the
activation maps is provided at the lower-left edge of the box. White boxes represent
copied activation maps. The arrows denote the different operations [95].

The variation of Unet used in this thesis, namely Unet++, is a deeply supervised
encoder-decoder network, where the encoder and decoder sub-networks are connected
through a series of nested, dense skip pathways. This creates an easier learning task
for the optimiser by using redesigned skip pathways that aim at reducing the semantic
gap between activation maps in the contraction and expansion paths. Zhou et al. [95]
argue that“the optimizer would deal with an easier learning task when the activation
maps from the decoder and encoder networks are semantically similar.” Fig 2.6 shows a
high-level overview of the suggested architecture. Each node indicates the activation
maps at a convolutional block and the black arrows indicate the down-sampling and
up-sampling. UNet++ starts with an encoder sub-network (backbone) followed by a
decoder sub-network. The difference between UNet++ and U-Net (the black components)
is the re-designed skip pathways (shown in green and blue) that connect the two
sub-networks, as well as the use of deep supervision (shown red). Both of these
features are described fully in the following sections.
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Figure 2.6. A high-level illustration of the UNet++ architecture. In the graphical
illustration, black indicates the original U-Net, green and blue show dense convolution
blocks on the skip pathways, and red indicates deep supervision. Red, green, and blue
components distinguish UNet++ from U-Net [95].

Re-designed skip pathways

In UNet the activation maps of the encoder (output of a convolutional block) are directly
received by the corresponding decoder end of the network. However, in UNet++ the
activation maps from each convolutional encoder block undergo a series of convolutional
layers otherwise called a dense convolutional block, whose number of convolutions
depends on the pyramid layer. Each feature map (in green) is created by fusing the
output activation maps of the previous convolutional layer of the same dense block with
the up-sampled output of the previous convolutional layer in the lower dense block.

We formulate this as follows. Let xi,j denote the output of feature map Xi,j , where i
indexes the down-sampled layer along the encoder and j indexes the convolutional layer
of the dense block along the skip pathway. The stack of activation maps represented by
xi,j is computed as

xi,j =

{
H(xi−1,j), j = 0

H([[xi,k]j−1
k=0, U(xi+1,j−1)]) j > 0

(2.2.6)

Where H(·) is a convolutional operation followed by an activation function, U(·) denotes
the up-sampling layer, and [ ] denotes the concatenation layer [95].
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Deep supervision

Since UNet++ generates full resolution activation maps at multiple semantic levels, the
loss is estimated from 4 output activation maps, 3 indicated by the red line for skip
pathways and 1 solid black line for the final output in Fig 2.6

A combination of binary cross-entropy and dice loss is used to calculate the final loss
value. This loss combination is formulated below.

L(Y, L̂) = − 1

N

N∑
b=1

(
1

2
· Yb · logŶb +

2 · Yb + Ŷb

Yb + Ŷb

)
(2.2.7)

Ŷb and Yb indicate the flattened ground truths and prediction probabilities, respectively,
for bth image, and N indicates the number of samples.

2.2.4 Loss functions

The loss function is used to describe the error of the model. In essence, it measures the
difference between the true output and the predicted output. This is then used by the
optimisation algorithm to decrease the error or the loss incrementally.

In this study, we make use of three different loss functions. For classifying incomplete
wings we use binary cross-entropy defined below.

BCE loss = − 1

N

N∑
i=1

Ppredi log(Ptruei) + (1 − Ppredi)log(1 − Ptruei) (2.2.8)

Binary cross-entropy requires probability outputs and compares each of the predicted
probabilities to actual class output which can be either 0 or 1. N refers to the number
of training points and P is a probability value.

For the regression model, we use Mean Square Error defined below.

MSE loss =
1

N

N∑
i=1

(yi − ŷi)
2 (2.2.9)

The MSE loss is the most commonly used loss function for regression tasks and is
especially sensitive to outliers and works well if the target data is normally distributed,
since the optimal prediction will be the mean target value. ŷ is the target value (or label)
and y is the predicted value.

For the segmentation network, we use two loss functions, namely dice loss and binary
cross-entropy loss. Dice loss is formulated below.

Dice loss =
2
∑N

i PtrueiPpredi∑N
i P 2

truei
+
∑N

i P 2
predi

(2.2.10)
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For segmentation, we have a large output with many binary outputs, one for each pixel.
In our case, only a small portion of the image indicates a landmark. This means the
classes of outputs are highly unbalanced. Since most pixels are non-landmarks the model
could predict all pixels to be non-landmarks, achieving a high average score by only
paying attention to false negatives. Dice loss is based on the Sorensen-Dice coefficient or
Tversky index, which attaches similar importance to false positives and false negatives,
and is more immune to the data-imbalance issue [97].

2.2.5 Optimisation algorithm

In deep learning, there are many optimisation algorithms to choose from when training a
model. Most of these algorithms are based on gradient descent which use backpropagation
[98] to calculate the gradient of the error function. To minimise the error by gradient
descent, it is necessary to calculate the derivative with respect to all network weights;
this is the sum of partial derivatives for each input-output case. Partial derivatives are
calculated from a backward and forward pass. The ”forward pass” provides the error
of the network from a given input. The chain rule is employed to calculate the partial
derivatives in the ”back pass”, propagating derivatives backwards across the network.
This process of calculating gradients is hence called backpropagation.

The loss function with all the network weights provides the loss landscape we wish
to descend to reduce the error. We descend the loss landscape in a stepwise manner,
estimating gradients to decide the direction of descent. The learning rate controls the
step size. In this study, we use a state-of-the-art optimisation algorithm called Adam
optimisation, which “computes individual adaptive learning rates for different parameters
from estimates of first and second moments of the gradients” [99].

The model is trained using random batches of data to estimate the current error of the
network. Once the algorithm has iterated through all batches i.e. all the data, then
one epoch has been completed. When we use random batches of data to estimate the
error we call this type of gradient descent, stochastic gradient descent (SGD), or more
specifically since we use batches we call it stochastic mini-batch gradient descent. The
Adam optimiser is an extension of stochastic gradient descent.

2.2.6 Transfer learning

In this thesis, we make use of a technique called transfer learning whereby the learned
features of one model is transferred or re-purposed for another related task. In other
words, the knowledge or skill of a trained model is transferred to another model before
training begins to improve generalisation [86]. Transfer learning works well when the
features learnt on the initial task are general. We generally train the first model on a
very large data set with high complexity. This increases the amount of generality in
the learnt features, providing transferable features for a different task. Fig 2.7 gives
an example of this process. In our case, we transfer features learnt from a very large
complex data set called ImageNet with 4 million training images with 1000 classes.

Yosinski et al. [100] explains that“in transfer learning, we first train a base network on a
base dataset and task, and then we repurpose the learned features, or transfer them, to
a second target network to be trained on a target dataset and task. This process will
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tend to work if the features are general, meaning suitable to both base and target tasks,
instead of specific to the base task.”.

Figure 2.7. Illustration of how transfer learning is achieved in deep learning and the
data sets used for transfer learning in this thesis.

Torrey and Shavlik [101] detail the benefits of transfer learning as follows:

1. Higher start: The initial model skill before training begins is higher than it
otherwise would be.

2. Higher slope: The rate of improvement of skill during training of the source
model is steeper than it otherwise would be.

3. Higher asymptote. The converged skill of the trained model is better than it
otherwise would be.

There are several techniques for transfer learning: two common deep learning techniques
are feature extraction and finetuning using a pretrained model.

Feature extraction involves freezing the early layers of the pretrained model so that they
are not updated during training. We call this feature extraction since these layers are
unchanged and use a fixed feature extractor for later layers, which are updated during
training. This technique is generally used when only a small training data set is available,
such as for the case in the study by Leonardo et al. [38].

In this thesis, we make use of the finetuning technique whereby the network is initialised
with the pretrained model weights and all weights are updated during training. We call
this finetuning since all the weights are further tuned from a skilled starting point.
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Figure 2.8. A graphical representation of the benefits of transfer learning [102].

2.3 Geometric morphometrics

In this thesis, we use geometric morphometric analysis to evaluate the predictions of
our model for subsequent morphometric studies. In this section, we briefly explain the
concept of Procrustes analysis as it applies to our methodological approach.

Procrustes analysis is often used to study the variation and co-variation of shapes. One
way of comparing shapes is to study how they differ when the rotation, position and
size of the shapes are changed to minimise the differences between them with respect
to these measures, as indicated in Fig 2.9. This allows one to study the variation in
shape more closely. General Procrustes analysis achieves this by centring all shapes at
the origin, scales all shapes to unit size and rotates each shape around the origin until
the sum of squared distances between them is minimized.
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Figure 2.9. Procrustes superimposition. The figure shows the three transformation
steps of an ordinary Procrustes fit for two configurations of landmarks. (a) Scaling of
both configurations to the same size; (b) Transposition to the same position of the
center of gravity; (c) Rotation to the orientation that provides the minimum sum of
squared distances between corresponding landmarks [103].

Once two shapes are transformed so that they are the same with respect to position,
rotation and size they can be compared using the Procrustes distance, which is the
square root of the sum of squared differences in the positions of the landmarks in two
shapes [104].

It is not uncommon for models to learn common shapes in the data with higher accuracy
[67] than less common ones. This is not ideal for subsequent geometric morphometrics
since the aim is to investigate changes in shape which will not be as apparent if the
model is biased towards common shapes. Accordingly, in our study, we make use of
Procrustes analysis to analyse this bias effect.
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Materials and methods

3.1 Data description

More than 200,000 tsetse (Glossina pallidipes and G. m. morsitans) were collected in
an 11-year study carried out at Rekomitjie Research Station in the Zambezi Valley of
Zimbabwe. Subsets of the flies were subjected to nutritional analysis and, for females,
to ovarian dissection, to determine their age. All biological variables and descriptions
can be found in Appendix B. The features used in this study for analytical purposes are
given in Table 3.1.

Variable name Description

vpn Volume, page and number

wlm Wing length measured from landmark 1 to 6

lmkl Number of missing landmarks for left wing

lmkr Number of missing landmarks for right wing

Table 3.1. Biological data captured in tsetse fly lab dissection.

All details relating to each collected fly were recorded on a single line of an A4 sheet of
paper and the tsetse wings were fixed on this line with adhesive tape. A standard measure
of wing length was determined for one wing of each pair using a binocular microscope
fitted with a graduated reticule in one eyepiece. The distance between landmarks 1
and 6 (Fig 1.1) was used as this standard measure, converted to a length (wlm) in mm
by allowing for magnification differences between microscopes. Each completed page
was laminated between transparent plastic sheets to further protect the wings. Each
page contains a maximum of 20 wing pairs. The pages were collected in 27 volumes.
The wings from volumes 13 to 25 have been digitized to 1024 × 1280 resolution images
using a high-resolution microscope camera. In this study, we only consider volumes
20 and 21, which refer to flies collected in 1994 and 1995. The biological data from
these volumes have been digitally recorded and quality checked for morphometric studies.
These volumes are also considered sufficiently large to incorporate much of the variation
in all volumes and are suitable for an initial attempt at applying an automatic landmark
detection system.

The image data set is kept in an identical folder structure corresponding to the physical
tsetse data set. Each image is named according to the location of the physical fly wing;
volume, page, line, and left- or right-wing. For example, ‘V20P076L08R’ refers to volume
20, page 76, line 8, right-wing. The name of each wing image links it to the biological
recordings. The images were photographed from the physical data and relied on the
photographer to scan the wings correctly, otherwise images would be misaligned. It is
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important to note that errors due to photographing the incorrect wing or incorrectly
naming the page would result in misalignment between the biological and image data.
Misalignment may extend to multiple wings on a page due to a single error; for example,
when the photographer misses a particular wing, the upcoming sequence of photographed
wings on the same page will be misaligned. Such misalignments have been noted and
addressed in this study. The image data is also known to contain some missing images
where there is no corresponding image for the biological data. We removed these cases
when preparing the data for morphometric analysis.

To create a suitable data set for geometric morphometric analyses, we require all
landmarks to be present consistently. We only considered making landmark predictions
on complete wings where all 11 landmarks are visible. The types of incomplete wings fall
into various categories. These include missing wings, tears, ink stains covering landmarks,
and other missing pieces of the wing. Examples can be found in Appendix C. Within
the class of complete wings. We also noticed a small proportion of wings with defects
such as tears, ink stains, and some deformation.

The complete wings mostly vary in size, rotation, and location. Images also differ in
colour contrast and brightness. Prior sample statistics were performed from a single
random sample of 200 wings to understand the proportion of incomplete wings in the
data. The sample statistics showed that 13% ± 4.63% of wings are incomplete. The
majority of incomplete wings were missing landmark 4 or 6, making up 10% ± 4.13% of
the data, and comprises on average 77% of all incomplete wings.

In our initial efforts, we attempted to remove wings using the lmkr and lmkl attributes
in the biological data set, which indicate how many landmarks are missing in the right
and left wing. However, visual inspection of the images accompanying these attributes
revealed that the attributes were sometimes labelled incorrectly. This was likely due to
either misalignment between images and biological data, or incorrect recording of missing
landmarks. Therefore, we could not rely on these attributes to remove all incomplete
wing images.

3.2 Workflow for landmark detection

For simplicity, we flipped the axis of all right-wing images horizontally to obtain a data
set of only left wing-images. We then removed incomplete wings using a classification
approach. Since most incomplete wings are missing landmarks 4 or 6, we trained a
classifier to identify wings missing these landmarks. To obtain a suitable classifier, we
benchmarked multiple state-of-the-art deep learning models on our data set. We then
trained deep neural networks to produce landmark coordinates on complete wings. We
performed image augmentations for the first tier training and experimented with and
without augmentations in the second tier. For the regression model we also experiment
with and without transfer learning using a model pretrained on ImageNet. To evaluate
the models, we used a single cross-fold validation strategy. To examine the potential
adverse effects of the landmark prediction errors on subsequent morphometric studies,
we determined whether varying shapes correlated with prediction errors. To do this,
we analyzed the effect of the geometric shape disparity on the average pixel distance
errors. The models were then applied to all images from volumes 20 and 21. To ensure
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the landmark predictions and biological data were aligned correctly, we calculate the
correlation between measured wing length (wlm) and the predicted wing length for each
page. We expected a linear relationship with a high correlation between the wing lengths
for well aligned pages. Accordingly, we identified pages with low R2 values to be inspected
for misalignments. The identified misalignments were corrected or removed from the
data set. Finally, the measured wing length and predicted wing length were plotted for
all pages and examined. The standard error was used as a measure of the agreement
between the predicted and manually measured wing length. We visually examined the
inliers (within prediction error interval) to inspect the predictions. Outliers were also
examined for mistakes such as remaining misalignments and incorrect incomplete wing
classifications. These instances were removed from the final data set.

3.3 Missing landmark classifier

3.3.1 Training data

We curated a data set consisting of a class of complete wing images containing all
landmarks and a second class consisting of incomplete wing images missing landmarks 4
or 6. Since manually finding training samples is time consuming, we aided the process
by using the biological data set (variable lmkr and lmkl) and then used visual inspection
to filter a set of training images. We employed a data-centric approach, focusing on
consistency in labelling, such that the types of wings we introduced into the training
set were not ambiguous and fell into well-defined groups. We removed bad types of
examples that do not clearly fall into either class. The resulting data set consists
of an even class distribution of incomplete and complete wing images. Images are la-
belled 1 for incomplete wings and 0 for complete wings. In total, we obtained 1227 images.

3.3.2 Convolution neural network classification models

We compared three modern computer vision models with transfer learning. These models
are ResNet18 [93], Inception [105], and VGG16 [106] with batch normalisation. We
replaced the final fully connected layers, after the convolutional layers, with a fully
connected layer of size 1. We then applied a sigmoid activation function, with an output
in the range (0, 1).

A 3-channel input was used for all models. Input image size of 244 × 244 was used for
both VGG16 and ResNet18. For the Inception model, we used an input image size of
299 × 299 since the default kernel size of 3 × 3 and a stride of 2 with zero paddings
require the image dimensions to be odd numbers. We fine-tuned each classifier with
unfrozen weights for 30 epochs with a batch size of 50. A learning rate of 0.0001 was
used with the Adam optimiser and a binary cross-entropy loss function.

Evaluation: For each classifier, we obtained 95% confidence intervals for specificity,
sensitivity, precision, f1 score, and accuracy by bootstrapping the predictions on the test
set for 205 samples.
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3.4 Landmark detection model

3.4.1 Landmark data

To train the landmark detection models, we used a data set of 2420 complete wing
images sampled from volume 20, for which landmarks were precisely annotated by a
single person and subsequently reviewed by others. A custom user interface was used
to digitally annotate the images and particular attention was paid to ensure landmarks
were captured accurately and consistently.

Evaluation: All models were evaluated in terms of pixel distances, using mean absolute
error (MAE) and root mean squared error (RMSE). The models were also compared
with data augmentation turned on and off.

3.4.2 Convolutional neural network regression model

We first frame landmark detection as a regression problem, i.e. we predict the (x, y)
coordinates for the landmarks directly. To that end, we considered a ResNet50 network
with weights pretrained on ImageNet [107]. ResNet tends to favour a smooth loss
landscape, allowing for a larger architecture while maintaining stable optimisation [93].
We altered the architecture by adding a randomly initialised convolutional layer, followed
by fully connected layer with 22 outputs corresponding to each x and y coordinate for
the 11 landmarks. Fig A.1 provides a high-level illustration of the model.

To train the model, we used mean square error (MSE) loss with the Adam optimisation
function. The model was trained for two sessions. Each session ran for 100 epochs,
initiated with a learning rate of 0.001 and reduced to 0.0001 after the first session. The
model was saved at the lowest validation score in each training session.

Figure 3.1. ResNet50 is modified by removing the final 2 layers and replacing them
with a randomly initialised convolutional layer, followed by a fully connected layer of
size 22, representing the output. The output corresponds to an x and y coordinate for
each of the 11 landmarks.

3.4.3 Fully convolutional network segmentation model

As an alternative to the regression problem framing, we considered landmark detection
as a semantic segmentation problem. Semantic segmentation is considered a dense
prediction task, where the output is a activation map with each pixel being assigned
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a label. For landmark detection in tsetse fly wing images, this becomes a supervised
learning problem where a label is a binary segmentation map for each landmark, with a
disk centred at the (x, y) position of the landmark, as shown in Fig 3.2. The dimension
of the segmentation map is the same as the dimension of the input.

For the segmentation model we chose the Unet++ [95] architecture, using the implemen-
tation as in [108].As discussed in chapter 2, Unet++ is based on the fully convolutional
Unet [96] architecture that is divided into two blocks. The first is a downsampling
block, responsible for capturing global context and low-frequency content that objects of
interest are usually comprised of. The second is an upsampling block, responsible for
precise localisation of objects [96]. Unet++ extends Unet by including skip-pathways
between layers in the downsampling block and layers in the upsampling block so that the
semantic gap between feature maps in those layers are reduced. Zhou et al. [95] argue
that reducing the semantic gap leads to an easier optimisation problem. A high-level
illustration of the architecture is shown in Fig 3.2.

Figure 3.2. The network is composed entirely of convolutional layers. It can be
divided into downsampling and symmetric upsampling blocks. The output is of
dimension 11 × 224 × 224, where each output segmentation map is a binary image with
a disk centred at a particular landmark.

To train the model, we took the average between a binary cross entropy loss and dice
loss applied to the outputs. The model was trained from scratch over 50 epochs, using
the Adam optimisation function with a learning rate of 0.001. The model was saved at
the lowest validation score in each training session.

To obtain landmarks from the segmentation maps, we determined the average location
of all pixels greater than or equal to the seventh highest pixel value in the map. This
inference process produces a landmark, even if it is absent (as does the regression
network). It is possible to predict a variable number of landmarks with more a nuanced
inference process, but it then becomes difficult to guarantee good generalisation.

3.5 Training implementation details

We employed transfer learning for the first tier and experimented with and without
transfer learning for the regression model in the second tier [101], using networks pre-
trained on ImageNet [107]. In addition, we used image augmentations during all first
tier training and experimented with and without augmentations for the second tier
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training. Example augmentations are seen in Fig 3.3. The augmentations increased the
variation in the training data, preventing over-fitting and ensuring that the training data
contained images on the extreme of the spectrum for wings available in volumes 20 and
21, in terms of wing location, rotation, and size. We randomly sample a [−5%, 5%] inter-
val for scaling and shifting and a [−22◦, 22◦] interval for rotation to transform each image.

We use a single cross-fold validation strategy for all model training with a 60:20:20 train,
validate, and test split.

(a) Original (b) Aug e.g. 1 (c) Aug e.g. 2 (d) Aug e.g. 3

Figure 3.3. Example augmentations: The subplots show random augmentations
produced for an example image during training. The image with the black border is the
original image with no augmentations. From these figures you can see how images are
rotated, shifted and scaled. The empty gaps left after augmentation are filled with
border pixel of the original image

3.6 Hardware and software

The code was run on a GTX 1650 4GB GPU with a 4GHz i7 CPU and 8GB RAM. All
of the code was written in Python version 3.7. The pre-trained models were taken from
the Pytorch Computer Vision Library and altered for our purposes. The code can be
found in a GitHub repository [109].

3.7 Effect of prediction errors on subsequent morphometric analysis

To assess the effect of prediction errors on subsequent geometric morphometrics, we
evaluated the effect of the Procrustes shape disparity on the average prediction error in
a wing image. In particular, we plotted the Procrustes disparity (Procrustes distance
from the average shape) as the independent variable and mean pixel distance error as
the dependent variable. We then fitted a regression line to determine correlation and
linear relationship.

3.8 Data alignment and correction

In this study, we faced the problem of having two data sets that were not perfectly
aligned. That is to say, some wings labelled with the same identifier in the two data sets
did not refer to the same wing.
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The approach for finding misalignments is outlined as follows. We estimated the
proportion of pages containing misaligned data by generating a random sample of 100
pages and manually checking these pages for misalignments. From this we calculate an
error estimate using a 95% confidence interval. We performed landmark predictions
for each wing and calculated the R2 value for each page of wings using measured wing
length wlm vs wing length for predicted landmarks 1 and 6. We expected pages with
very low R2 values to indicate wings not aligning with the correct wlm measurement. We
choose a R2 threshold of 0.1, such that the percentage of pages indicated as misaligned
was slightly higher than the upper bound of the confidence interval for the estimated
percentage of pages misaligned. We then manually checked these pages for misaligned
data. Once the pages with misaligned data were found, we considered whether we had
successfully corrected or removed the misaligned data by comparing the number of pages
found with the proportion estimated in the random sample.
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Results

4.1 Missing landmark classifier

After evaluating each trained model on the test set and generating a 95% confidence
interval for each model, we found VGG16 with batch normalisation to have the best
performance, achieving a perfect score for all metrics. ResNet18 and Inception had a
trade-off between sensitivity and specificity, with ResNet18 having a perfect specificity
and Inception having a perfect sensitivity. The scores for each model can be found in
appendix D.

4.2 Landmark detection model

In this section we provide the results for all experiments. First we explore the effect
of transfer learning used for the regression network ResNet50. Then we compare the
results for pixel distance error and Procrustes disparity for the two models proposed for
landmark detection. In addition we compare the effect of using data augmentation on
both models.

4.2.1 Transfer learning for CNN regression

Fig 4.1 shows the log training (in blue) and log validation (in orange) loss during model
training. We chose to use a semi log plot to more clearly visualise the decrease as the loss
becomes smaller. Note that since we use MSE loss which is quadratic, small changes in
loss create larger increases in accuracy as the loss decreases. The left and right subplots
give the training and validation loss with and without transfer learning.

From the right plot we can see transfer learning provides a more skilled initialisation
having a loss of 0.0028 after the first epoch, as opposed to without transfer learning
which has a loss of 0.0038 after the first epoch. Transfer learning also reaches a lower
asymptote faster and with more stability, reaching a validation loss of 3.1×10−5 which
obtains a pixel distance error of 8.3 on the test set. With no transfer learning the model
reaches a loss of 4.47×10−5 and obtains an average pixel distance error of 9.5 on the test
set.

The red line indicates where the model was last saved in the first training session of
100 epochs and denotes the lowest validation loss score. The training with transfer
learning did not benefit from the second session (starting after the red line from the last
saved model). Without transfer learning the validation is reduced slightly in the second
training session but training is very unstable. For both models the training loss drops
noticeably lower than the validation loss for both cases. The graph also shows that at
around 60 epochs the training becomes unstable for both, but the transfer learning case
is able to recover.

30

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4 – RESULTS

(a) Training with transfer learning (b) Training without transfer learning

Figure 4.1. A comparison with and without transfer learning from models that were
pre-trained on ImageNet. The blue and orange lines indicate the training and validation
loss after each epoch, respectively. The red vertical line denotes the position where the
model was last saved in the first training session and where the second training session
starts

4.2.2 CNN regression Vs FCN segmentation

The Euclidean pixel distance predictions errors are given as a box plot in Fig 4.2. For
all 11 landmarks, we obtained a mean average error (MAE) Euclidean pixel distance of
5.43 for the regression network and 3.64 for the segmentation network. For root mean
average error (RMSE) we obtained 6.32 for the regression network and 6.67 for the
segmentation network on the original image size (1024×1280). Since we observed skewed
error distributions, we further presented the box plot of the first and third quartiles for
the spread of errors. It is worth noting that there are variations among landmarks in
their error distributions.

When running the models on the test set the regression network was approximately 5
times faster than the segmentation network.

Table 4.1 shows the average landmark errors for each network with and without augmen-
tations. The segmentation network did not benefit from image augmentations but the
regression network improved significantly.

Segmentation network Regression network

LB Median UB LB Median UB

Without Augmentations 2.0 3.1 4.6 4.4 8.3 10.3
With Augmentations 1.9 3.0 4.4 3.0 4.8 7.0

Table 4.1. Effects of data augmentations on average landmark errors.
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(a) The regression network has a slightly
higher mean pixel distance error and higher
maxima, but has fewer egregious outliers.
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(b) Segmentation network. For clarity, the
four outliers not displayed range from 50 to
570.

Figure 4.2. Box-and-whisker plots for the (a) regression and (b) segmentation
networks.

4.3 Effect of prediction errors on subsequent morphometric analysis

Fig 4.3 shows the relationship between the mean pixel distance error, and Procrustes
shape disparity from the mean shape, after removing outliers that are more than 2
standard deviations from the mean. The best fit line for regression shows a positive
slope with an R2 value of 0.09 (0.16 before removing outliers) for the regression network,
and 0.01 (0.12 before removing outliers) for the segmentation network.
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(a) Regression network procustes disparity with R2 = 0.09.
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(b) Segmentation network procrustes disparity with R2 = 0.01.

Figure 4.3. Procrustes disparity from the mean landmark shape and predicted vs the
mean pixel distance error.

The notable correlation can be attributed to outliers, which, if removed, brings the R2

values down considerably for both models. Consequently, we considered the correlation
weak and largely due to a few outliers. 7.2% of test data points where outliers for the
regression network and 3.7% for the segmentation network. Examples of inlier predictions
plotted with the ground truth are given in appendix E.

4.4 Application to volumes 20 and 21

We applied the missing landmark classifier to volumes 20 and 21. We removed all cases
where the corresponding image name was missing, and the number of incomplete wings
classified was 2,299 out of a total of 28,708 wings (8%). The proportion of incomplete
wings removed agrees with the proportion estimated from the random sample. Visual
inspection of predictions indicates that the classifier can discriminate accurately between
classes, often classifying more images as incomplete as long as landmarks 4 or 6 were
missing.

For the remaining complete wing images we decided to deploy the regression landmark
model due to its lower computational cost and more reliable results with regard to
outliers.
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4.4.1 Data alignment and correction

We estimated 2% ± 2.56% (CI) of pages to be misaligned based on a random sample of
100 pages, i.e. we would expect around 15 of the 770 pages to be misaligned. Using our
semi-automated procedure, we found 15 misaligned pages using the 0.1 R2 threshold,
including the two misaligned pages found in the random sample. The relevant information
regarding the data cleaning can be found in appendix F.

4.4.2 Measured vs predicted wing length

Fig 4.4 shows the relationship between measured wing length (wlm) and the predicted
wing length measured between landmark 1 and 6 after correcting the misaligned data.
We observed a strong linear relationship between the two variables with an R2 of 0.867. It
is noted in appendix B that the wlm variable was measured for the right wing; otherwise,
the hatchet cell was measured (distance between landmarks 7 and 11). We excluded all
these cases in Fig 4.4. The percentage of outliers with errors larger than the standard
prediction error (shown in light blue in Fig 4.4) was approximately 1.8%. The majority
of outlying wings, however, received good predictions, which may indicate errors in the
dissector’s measurements or remaining misalignments (see an example in Fig 4.5 (i)).
Other outliers represent damaged wings or missing wings that were not detected by the
classifier. These outliers were expected since the classifier only considers wings missing
landmark 4 or 6. The distant outliers at the bottom right of Fig 4.4 are shown in Fig 4.5
(g) and (h). These were all images with missing wings or wings that were misaligned.
Fig 4.5 (g) represents a misaligned wing where the direction of the wing and image name
are inconsistent. The outliers showcased in Fig 4.5 were manually removed from the
final landmark data set.
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Figure 4.4. Relationship between wing length measured by the dissector vs wing
length calculated from the predicted landmarks 1 and 6.
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(a) Missing end (b) Folded (c) Blurry

(d) Cut off (e) Badly damaged (f) Major artefacts

(g) Misaligned wing (h) Missing wing (i) Complete wing

Figure 4.5. Wing images corresponding to outliers. Dots represent predicted
landmarks from the regression network and the straight line indicates wing length.

Besides examining the outliers, we also explored potential errors and the overall quality
of predictions amongst the inliers. These make up the majority of wings that will be
used for geometric morphometric studies. Most inlier predictions were of good quality
and had accurate landmarks, with a few exceptions. Fig 4.6 shows some of the inliers
with relatively large errors compared the average prediction accuracy errors, or good
predictions but for deformed wings that have altered the landmark shape.
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(a) Ink stain (b) Missing piece (c) Folded

Figure 4.6. Examples of Erroneous inliers. Dots represent predicted landmarks from
the regression network.
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Discussion and conclusion

Using a two-tier deep learning approach, we accurately filtered out damaged tsetse
wings that were missing landmarks and provided precise landmark coordinates for the
remaining wings. We showed that wing shape characteristics had a minimal effect on the
accuracy of landmark predictions. In addition, we addressed the misalignment problem,
allowing us to make precise links between the resulting coordinates and the field-collected
biological data. The result is a landmark data set with biological data that can be used
for morphometric analysis.

The results indicate that our models perform slightly better than two recent machine
learning approaches applied to Drosophila fly wings [14,40]. Compared to our results,
Vandaele et al. [40] reported a similar mean pixel distance error of approximately 6
pixels for images of a smaller size (1440 × 900). Porto et al. [14] reported a mean pixel
distance error of 0.57%, normalizing the mean pixel distance by the largest wing length.
Using the same metric, we obtained a smaller normalised pixel distance error of 0.47%
for the deployed regression model. We noted that the Drosophila data sets are arguably
less complex than our data. Our data often contains image artefacts and varying wing
quality which may affect the complexity of the task, indicating that our model performs
better than the algorithms mentioned above.

Concerning the classification task, we used a technique similar to that used by Leonardo
et al. [38] for classifying fruit fly species. This study also achieved the best results using
the VGG16 network compared to ResNet50, Inception and VGG19.

With regard to the data alignment problem, other approaches used the similarity of
a number of qausi-identifiers (QIDs) to align data [75–78]. The QID refers to some
variable that is contained in both data sets that can be used to link the data or find
misalignments in the data based on their similarity. This approach would be inadequate
for our case since we only have one QID (wing length) available. Moreover, dissimilarities
in QID value between the data sets may be due to factors other than misalignments.
Our approach was able to find misalignments successfully using a page level correlation
approach using wing length as a QID.

The results of the transfer learning showed that all the benefits described in Chapter 3
were observed for our case. These were a skilled starting point, higher asymptote and
faster convergence. In addition, transfer learning also gave a more stable optimisation, as
seen by the close correspondence between the training and validation loss. The instability
may happen because the model has optimised for the current batch of data, however
this batch is not fully representative of the full data set. This results in a decrease
in performance on the validation set. This is a known problem when using smaller
batches [86]. Transfer learning mitigated this effect, this may be due to a more stable
parameter initialisation, provided by the pre-trained network. At the start of the second
training session, both models had a steeper decrease in training loss. This suggests that
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the model is learning patterns specific to the training data, but that does not affect the
performance of the model on the validation data.

The results for the landmark model comparison indicate that, for both the landmark
error and Procrustes analysis, the segmentation model performs slightly better than
the regression model with regard to pixel distance error and landmark shape bias. The
Procrustes analysis suggests that the segmentation model is slightly less affected by
extreme changes in wing shape. After removing outliers, however, the correlation between
prediction error and landmark shape is minimal for both models. The analysis also shows
that the spread of errors is lower for the segmentation network, indicating higher precision.
The segmentation model contains around 1.3M more parameters which amounts to a 3%
increase in the number of parameters compared to the regression network. However the
increased model complexity is justified by the increased task complexity created by the
larger output size (11×224×224), compared to the regression output (11×2). The larger
size of the segmentation model comes with extra computational cost, taking almost 5
times longer to produce predictions using a GPU while also requiring more GPU VRAM.
The segmentation model has high accuracy but also produces extreme outliers, which
the regression model does not. The regression model uses an MSE loss function which
heavily penalises distant outliers and hence produces more consistent outputs with fewer
outliers. It could also benefit from existing loss functions and regularisation, which have
been shown to improve landmark detection [67]. In addition, it also showed significant
improvement using data augmentations as opposed to the segmentation model in which
the effects of data augmentations are insignificant.

Various workers have manually identified landmarks on tsetse wings [6, 8, 35]. To our
knowledge, however, this study is the first to use automatic landmark detection on
tsetse fly wing images. We employed a data-centric approach, obtaining a large sample
of quality checked training images with no incorrect labels and accurate landmark
annotations. In addition, we experimented with data augmentations to further increase
the variety of wings regarding position, size, and rotation which are shown to improve
performance for the regression model. These augmentations prevent the model from
learning noisy patterns or biases in wing position, size and rotation [72]. We provide an
analysis of how the prediction errors affect subsequent morphometric analysis, showing
that our approach provides a model with minimal bias model concerning wing shape.
This is particularly important for morphometrics since any bias the model has towards
certain shapes will limit the potential for morphometric studies. This is because wing
shapes at the tail of the shape distribution have less accurate landmark shape predictions,
consequently affecting variation and co-variation.

A key strength of our approach is that we divided our problem into smaller tasks
that allowed precise model choice with focused tasks. Since we have images with
different landmarks, it may seem a suitable option to design a model to detect the
available landmarks on a wing, including incomplete wings. However, this brings various
complexities to the task, since it becomes more difficult to ensure that there is no
shape bias between partial landmark shape predictions, i.e. how the error is affected
by increasing the number of landmarks and across different landmark shapes. Creating
a suitable training set may also become more difficult since we might need to include
a large variety of incomplete wings, introducing sample imbalance in the training data
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due to varying proportions and categories of incomplete wings. In addition, from a
morphometric perspective, it is standard to compare shapes with an equal number of
landmarks. Our approach allowed us to easily create a training set and train a model
with a fixed number of landmark outputs by first removing incomplete wings with partial
landmark shapes. This avoided increased task complexity and made it directly applicable
for geometric morphometrics.

There are a few limitations to the current study. First, some wings with missing
landmarks or other deformities could have remained in the final data set. However,
these would be small in number and unlikely to bias subsequent morphometric studies.
Secondly, we cannot ensure that our R2 threshold method achieves perfect alignment
between the images and the biological data. This is because pages with only a few
misalignments are less likely to be detected since they will most likely still have a high
R2 value. We are more likely to pick up misalignments due to photographing mistakes
that happened at the beginning of a page, since this will mean the subsequent flies will
not be in the correct order, resulting in a low R2. However, the sample statistics for
misaligned pages indicate that the majority of misalgnments were found and corrected.
Furthermore, some remaining misalignments were found as outliers and removed from
the final data set. Thirdly, the training images are only a subset of the images, and
as such, may not include the full variety of shapes and sizes found in the full data
set. However, we performed image augmentations to increase variation. Lastly, the
incomplete wing classifier does not address some infrequent categories of incomplete
wings, but the majority of incomplete wings are removed - leaving only a small proportion
incomplete wings in the data set. Additionally, some of the remaining incomplete wings
are identified as outliers for measured vs predicted wing length.

Several improvements can be made to increase overall performance of these methods and
their usability on more volumes of the tsetse fly data. Future research could improve
the current incomplete wing classifier by finding a method to remove all classes of
incomplete wings. Alternatively, one could develop a model that predicts landmarks
for both complete and incomplete wings, paying particular attention to avoid landmark
shape biases in incomplete wings. Future research could improve the data augmentation
to include additional affine and elastic transformations to address inaccurate predictions
for divergent shapes preventing model bias towards the mean shape.

To apply the models used in this research on other volumes of the tsetse fly data, one
should repeat all methodologies besides model training, i.e. calculating sample statistics
and detecting misalignments to ensure the same level of data quality showcased in this
study is achieved. When applying these methods to other types of data, for example, the
Drosophila data sets, one can use transfer learning to benefit from the learnt features of
this study. It is important to note that the data sets used by Vandaele et al. [40] and
Porto et al. [14] will most likely not benefit from a deep learning approach because of
the limited training data available. Therefore, we suggest a transfer learning approach
using the trained network layers of our models.

We successfully produced landmarks on a large data set of tsetse fly wing images for
subsequent morphometric studies on tsetse flies. Alongside a detailed description of the
methods used, we provide the trained models and landmark data generated from this
study. The trained models and landmark data can be found from the projects GitHub
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repository [109].
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Semantic Segmentation With Labeling Uncertainty and Class Imbalance. arXiv
preprint arXiv:210204566. 2021;.

[82] Sudre CH, Li W, Vercauteren T, Ourselin S, Cardoso MJ. Generalised dice overlap
as a deep learning loss function for highly unbalanced segmentations. In: Deep
learning in medical image analysis and multimodal learning for clinical decision
support. Springer; 2017. p. 240–248.

[83] Li X, Sun X, Meng Y, Liang J, Wu F, Li J. Dice loss for data-imbalanced NLP
tasks. arXiv preprint arXiv:191102855. 2019;.

[84] Zhao R, Qian B, Zhang X, Li Y, Wei R, Liu Y, et al. Rethinking Dice Loss for
Medical Image Segmentation. In: 2020 IEEE International Conference on Data
Mining (ICDM). IEEE; 2020. p. 851–860.
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APPENDIX A

ResNet50

Figure A.1. The network accepts images with x,y dimensions as multiples of 32 and 3
as channel width. Consider an input size of 224×224×3. ResNet initially performs
convolution and max-pooling using kernel sizes 7×7 and 3×3, respectively. Stage One
has 3 Residual blocks containing three layers each. The sizes of kernels used in all three
layers of the block are 64, 64 and 128, respectively. Curved arrows denote the identity
connection. The dashed arrow indicates that the convolution operations in the Residual
Block are performed with stride 2, reducing the size of the input to half of height and
width, and outputs double the activation maps. As stages progress, the channel width is
doubled, and the input size is reduced to half. Three layers are stacked between each
residual connection. These layers are 1×1, 3×3, 1×1 convolutions. The 1×1 convolution
layers reduce, then restore the dimensions. The 3×3 layer is a bottleneck with smaller
input/output dimensions. Finally, an Average Pooling layer is used, followed by a fully
connected layer having 1000 neurons (ImageNet class output). The diagram was
adapted from [110].
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APPENDIX B

Data collected during tsetse lab
dissection

Data captured during lab dissection

Variable name Description

vpn Volume, page and number

cd Day of the month that fly was recorded

mc Month of the year that fly was recorded

cy Year that fly was recorded

md Method used to capture fly

g Genus of the fly [Gp = G. pallidipes or Gmm = G. m. morsitans]

s Sex [1= Male 2 = Female]

c Ovarian category, which measures age [1 to 7]

wlm wing length, measured from the right wing when available

f Wing fray category, also measures age [1 – 6]

lmkl Number of landmarks missing on LEFT wing [1 – 11]

lmkr Number of landmarks missing on RIGHT wing [1 – 11]

hc Index. 1 if hatchet cell used; 0 if distance landmarks 1 to 6 used

Table B.1. The variable names given in this table were recorded during the dissection
of each respective fly. Note that these variables are only some of the variables available
for each fly which are given as part of the morphometric data set published with this
research.
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APPENDIX C

Examples of bad wings

Figure C.1. Examples of the types of bad wings that appear
in the data set.
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Figure C.2. Examples of the types of bad wings that appear
in the data set.
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APPENDIX D

Classification benchmark scores

Tables 1,2 and 3 provide the score and confidence intervals for each metric score. Tables
4 and 5 show that ResNet18 and Inception have a trade off between specificity and
sensitivity with ResNet18 having a better specificity and Inception a better sensitivity.
The best performing was VGG16, attaining 100% on all metrics.

Table D.1. VGG16 scores

95% confidence interval specificity sensitivity precision f1 score accuracy

lower bound 1.000 1.000 1.000 1.000 1.000
value 1.000 1.000 1.000 1.000 1.000
upper bound 1.000 1.000 1.000 1.000 1.000

Table D.2. ResNet18 scores

95% confidence interval specificity sensitivity precision f1 score accuracy

lower bound 1.000 0.972 1.000 0.986 0.985
value 1.000 0.993 1.000 0.991 0.990
upper bound 1.000 1.00 1.000 1.000 1.000

Table D.3. Inception V3 scores

95% confidence interval specificity sensitivity precision f1 score accuracy

lower bound 0.957 1.000 0.961 0.980 0.980
value 0.985 1.000 0.980 0.990 0.990
upper bound 1.000 1.000 1.000 1.000 1.000
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APPENDIX E

Landmark predictions on Vol. 20-21

Figure E.1. Example predictions within the 95% CI for
Procrustes disparity and mean pixel distance error. Green dots

indicate ground truth and red dots indicate predictions.
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APPENDIX F

Data information

Sample statistics for misaligned pages

sample size 100

population size 770

confidence interval 95%

pages found (%) 2

margin of error (%) 2.56

Table F.1. A table of sample statistics for pages containing mismatching data

Table 6 gives the results of how many pages where found in both volumes and either
corrected or removed.

Number of pages containing miss matching data 15

Number of pages corrected 12

Number of pages removed 3

Table F.2. A table detailing the amount of mismatching pages
found and whether they were corrected or removed from the data set.

Alterations to volume 20 and 21

Pages with R2< 0.1 :

• 3 pages removed - 36, 48, 321

• 12 pages corrected - 11, 34,35,42,75, 159, 187, 201, 226, 232, 357, 358.
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